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APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS

IN MULTIPARAMETRIC MR IMAGING

TO PREDICT PROSTATE CANCER PROGRESSION

Duc Huy Doan

ABSTRACT

Prostate cancer progression after radical prostatectomy poses a significant risk to

patient health. The ability to predict which patients are at a higher risk of progression is

crucial for determining appropriate adjuvant therapies. This study investigates the

application of convolutional neural networks (CNNs) to pre-surgical multiparametric MRI

(mpMRI) for predicting post-surgical prostate cancer progression. The study utilizes a

retrospective patient cohort and explores the performance of different CNN

architectures (ResNet and DenseNet), normalization methods, and slice selection

techniques. The results demonstrate the potential of CNNs in predicting prostate cancer

progression, with the best-performing model achieving an accuracy of 0.712. The study

highlights the importance of appropriate image normalization and slice selection

methods for optimal performance. The findings suggest that CNNs could serve as a

valuable tool for aiding clinical decision-making in prostate cancer management.
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1. INTRODUCTION

Prostate cancer (PCa) is the second most deadly cancer for men, claiming over

35,000 lives annually. Even after radical prostatectomy (RP), there is still a possibility of

disease progression, local recurrence or metastases (~20-50% within 10 years after

surgery) [1]. Therefore, it is crucial to identify those with aggressive disease early to

allow for timely intervention of adjuvant therapies. Nevertheless, these adjuvant

therapies are not without toil on the patients in terms of costs, toxicity and discomfort.

Therefore, patients should undergo adjuvant therapies only when they really need to.

An effective tool is needed to assess the risk of cancer progression to determine this.

A simple blood test, measuring prostate-specific antigen (PSA), is readily available

and valuable for screening cancer progression. An increase in PSA after RP is an

indicator of biochemical recurrence (BCR) which is the first sign that the cancer might

be returning. It suggests that some prostate tissue has already grown. It may be due to

benign or cancerous tissue in the prostatic surgical bed or due to local or distant cancer

metastases. If due to cancer, identifying this as early is important to initiate treatment.

Biopsy histologic grade is an important indicator used in progression risk

assessment but it also has its drawbacks. Even histologically similar prostate tumors

can follow significantly different disease courses after primary treatment [3].

Multiparametric MRI (mpMRI) has the potential to overcome these limitations as it is

both non-invasive and able to examine the entire prostate. It combines images from
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multiple MRI parameters such as: T2-weighted imaging (T2W), diffusion-weighted

imaging (DWI) with apparent diffusion coefficient (ADC) maps and dynamic contrast

enhanced (DCE) MRI. mpMRI has been widely used for detecting clinically significant

cancer and may be able to provide an indicator of which cases are apt to progress post

surgery, empowering earlier monitoring and earlier interventions for hisk-risk cases.

In this project, an artificial intelligence technique called convolutional neural

networks (CNNs) is applied to learn from the pre-surgical multiparametric MR images to

classify patients into high-risk versus low-risk of post-surgical cancer progression. The

high-risk patients are candidates for earlier monitoring and for adjuvant therapies.
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2. METHODS

2.1 Selecting Patient Data

A retrospective study is performed on a patient cohort who underwent radical

prostatectomy. The inclusion criteria is that they must have their mpMRI scan less than

1 year before their surgery and either have cancer progression within 3 years of surgery

or a follow-up without cancer progression more than 3 years after the surgery. In total,

there are 52 patient cases matching these criteria. Out of these patients, 20 are with

progression and 32 are without progression.

2.2 Selecting Convolutional Neural Networks

Convolutional neural networks (CNNs) have emerged as a groundbreaking

technology in the field of medical imaging, revolutionizing the way we diagnose and

treat various diseases. Inspired by the biological visual cortex, CNNs are a class of

deep learning models specifically designed to process and analyze visual data. Their

unique architecture allows them to automatically learn hierarchical representations of

images, enabling them to detect intricate patterns and features that may not be visible

to the human eye [4].

In this project, two CNN models are experimented with and compared: ResNet and

DenseNet [5][6]. They are very powerful deep learning models that have shown success

in many image classification tasks including those used in medical imaging.

3



ResNet, short for Residual Network, revolutionized the field of deep learning by

introducing the concept of residual connections. ResNet networks are designed with

skip connections that allow information flow directly through the network, bypassing

some layers. This architectural innovation enabled training of significantly deeper

networks than previously possible. ResNet also generally achieves faster convergence

and better accuracy than traditional deep CNNs [5].

DenseNet is known for its dense connectivity pattern, where each layer connects to

all subsequent layers in a feed-forward fashion. This creates dense blocks where each

layer receives feature maps of all preceding layers as input. This strengthens feature

propagation and encourages feature reuse, leading to improved gradient flow, and

parameter efficiency. DenseNet also allows for the training of very deep networks [6].

2.3 Image Preparation For CNN Input

Step 1 - Standardize Image Dimension And Field Of View

Three MRI image types will be used:

● Coil-corrected T2-weighted (T2W) images

● Diffusion-weighted imaging (DWI) apparent diffusion coefficient (ADC) map

● Dynamic contrast enhanced (DCE) MRI max enhancement slope (ES) map

All the ADC and DCE MRI ES images are processed to match the T2W image’s field

of view and voxel size. The typical image domain is 512 (180 mm) x 512 (180 mm) x 16
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(48 mm). The spatial resolution of the width and height is 0.35mm/voxel and that of the

depth is 3mm/voxel.

Prostate images are generally acquired in an oblique axial orientation, but may be

ordered from the superior to inferior direction or vice versa. This orientation information

is stored in the image header as the dcos3 value. That value refers to the orientation of

the gradient vector relative to the superior-inferior (S/I) axis. Our images either have the

superior/inferior component of this value very close to 1 (pointing in the superior

direction) or very close to -1 (pointing in the inferior direction). To standardize our

images, the inferior to superior direction is chosen as the standard direction. For images

pointing in the opposite direction, the slice order has to be reversed.

Step 2 - Image Registration To T2W

Registering ADC and DCE MRI images to the T2W image is a crucial step in

medical image analysis. This process aligns the different image modalities, ensuring

that the corresponding anatomical structures are precisely overlaid. Rigid registration

was applied first in-plane, then, in the prostate region, in 3D. This method has shown

<2mm error on >95% of cases. Manual correction was applied to remaining cases with

larger shifts [7]. This alignment is essential for accurate comparison and integration of

information from the different image modalities in the CNN training subsequently.
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Step 3 - Image Normalization

The original image data is a 2-byte integer value ranging from 0 to (216-1). For input

into the CNN, these values need to be scaled down to the range from 0 to 1. A regular

normalization method would be to set the value of 1 to correspond to the max value, set

the value of 0 to correspond to the min value and scale all the values in between.

However, that approach may not be optimal. Due to the possible presence of artifacts

that result in abnormally bright spots, normalizing that way may make the resulting

image abnormally dark.

Therefore, another custom normalization method is proposed. For T2W images, the

value of 1 is set to correspond to the 80th percentile value instead of the max value. For

ADC and DCE images, since they are absolute values of the map, a different set of min

and max values are defined to narrow down the range. As these are 2-byte integer

images, the min value is set to 500 and the max value is set to 3000 (corresponding to

ADC range of 5x10-4 to 3x10-3 mm2/s and DCE range of 50% to 300% of baseline/min).

All values below the min value will have a value of 0 and all values above the max value

will have a value of 1. All other values in between min and max will be scaled to a value

between 0 and 1. In this study, the performance of this custom normalization method is

compared with the above regular normalization.

Step 4 - Fit Image Dimension Into CNN

The images are cropped to match the dimension required by the CNN (224 x 224).

Horizontally, the 144th to 367th pixels are selected. Vertically, the 159th to 383th pixels are
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selected. Both dimensions span 78.75mm. This makes the cropped area just cover the

anatomy of the prostate with the immediately surrounding areas. For the 3 channels,

data from 3 MRI image types, namely T2W, ADC and DCE, are used for each channel.

As the CNN takes in 2D images, only 1 slice out of many available slices in the

patient case is selected. An experiment is conducted to determine what is the best

approach to select this slice. On one hand, the middle slice can be automatically picked.

On the other hand, the image can be preprocessed to segment where the cancer is and

the slice in the middle of the largest cancer volume is manually selected. This is

potentially more accurate but also requires a lot more effort in preprocessing.

Step 5 - Image Augmentation

Given that the dataset only has a limited number of images, new images could be

artificially generated for learning based on those already present. The method used in

this project is to create new images by flipping the original images left and right. The

new images are anatomically reasonable because the left and right side of the prostate

are symmetrical. Other potential methods include shifting (~5mm), rotating (~2-5o) and

stretching/shrinking (~2%) the original images.

2.4 CNN Training And Validation

K-Fold cross validation technique (with K = 4) is used to ascertain the accuracy of

our model's prediction. It is ​​a resampling method that uses different portions of the data

7



to train and validate a model on different iterations. It ensures that prediction

performance does not depend on the training and validation set selection.

The data is split into 4 folds and 4 iterations are run. For each iteration:

● One fold is designated as the validation set and the other 3 as the training set.

● So 75% of the data is used for training and 25% for validation.

● The training set has left-right augmentation while the validation set does not.

During training, the CNN would tune the parameters of the convolutional filters so

that they would extract the most pertinent features from the input images. These feature

maps would then be used for classification / prediction. During validation, prediction

performance on the validation set will be assessed, using the ground truth clinical data.

The specifications of the model training are as below:

● Framework: PyTorch

● CNNs: ResNet18 and DenseNet121

● Loss function: cross entropy loss

● Optimization algorithm: stochastic gradient descent (SGD)

○ Learning rate = 0.001 and Momentum = 0.9

● Number of epoch: 15
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3. RESULTS

3.1 Validation Results For Each Condition

The validation results for different training conditions (CNN model, normalization

method, slice selection method) are tabulated accordingly in Table 3.1.1 and Table 3.1.2

below. For each condition, the validation set has a total of 5 positives and 8 negatives in

each fold.

Table 3.1.1: Validation Results Of ResNet CNN

Normalization Slice Fold True
Positives

True
Negatives

False
Positives

False
Negatives

Regular Mid

1 2 4 4 3

2 2 7 1 3

3 4 6 2 1

4 3 6 2 2

Regular Selected

1 4 3 5 1

2 2 8 0 3

3 3 5 3 2

4 3 4 4 2

Custom Mid

1 2 6 2 3

2 2 5 3 3

3 0 8 0 5

4 3 8 0 2

Custom Selected

1 2 7 1 3

2 1 8 0 4

3 2 7 1 3

4 2 8 0 3
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Table 3.1.2: Validation Results Of DenseNet CNN

Normalization Slice Fold True
Positives

True
Negatives

False
Positives

False
Negatives

Regular Mid

1 2 5 3 3

2 2 8 0 3

3 4 3 5 1

4 2 5 3 3

Regular Selected

1 2 5 3 3

2 2 7 1 3

3 4 2 6 1

4 3 4 4 2

Custom Mid

1 3 4 4 2

2 3 8 0 2

3 2 7 1 3

4 4 4 4 1

Custom Selected

1 2 7 1 3

2 2 7 1 3

3 2 7 1 3

4 2 6 2 3

3.2 Sensitivity, Specificity And Accuracy Of Each Condition

The sensitivity, specificity and accuracy metric of each training condition are

calculated, averaged over 4 folds and tabulated in the following Table 3.2.1.
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Table 3.2.1: Calculated Sensitivity, Specificity And Accuracy Metrics

CNN Normalization Slice Sensitivity Specificity Accuracy

ResNet Regular Mid 0.550 0.719 0.654

ResNet Regular Selected 0.600 0.625 0.615

ResNet Custom Mid 0.350 0.844 0.654

ResNet Custom Selected 0.350 0.938 0.712

DenseNet Regular Mid 0.500 0.656 0.596

DenseNet Regular Selected 0.550 0.563 0.558

DenseNet Custom Mid 0.600 0.719 0.673

DenseNet Custom Selected 0.400 0.844 0.673

This result is compared to a random chance classification. Given that both the

training and validation set are not balanced with a positive to negative ratio of 5:8, a

random chance model trained with this imbalance would have:

● expected sensitivity of 0.385

● expected specificity of 0.615

● expected accuracy of 0.527

3.3 Best Model Performance

The condition that yields the best performance is the one that uses ResNet CNN

with custom normalization and manually selected slices. The average sensitivity,

specificity and accuracy for this condition is plotted in Figure 3.3.1 below.
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Figure 3.3.1: Best Model Performance Metrics

This best model performance has accuracy of 0.712 which is much better than

chance of 0.527. This is confirmed using the Chi-square Test with the contingency table

for the predicted and actual values as shown in Table 3.3.1 below.

Table 3.3.1: Contingency Table For Best Model Performance

Predicted Positive Predicted Negative

Actual Positive 7 13

Actual Negative 2 30

The two-tailed p-value equals 0.0017 (< 0.05), which implies that the observed

frequencies are significantly different from what would be expected by chance. This

confirms that the best model performance is indeed better than chance.
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3.4 Comparison Between ResNet And DenseNet

The performance comparison between ResNet vs DenseNet in terms of sensitivity,

specificity and accuracy is shown in Figure 3.4.1 below.

Figure 3.4.1: Performance Comparison Between 2D ResNet And 2D DenseNet

The contingency table showing the matching prediction results between the 2 CNNs

is also shown in Table 3.4.1 below.

Table 3.4.1: Contingency Table Between 2D ResNet And 2D DenseNet

DenseNet Correct DenseNet Wrong

ResNet Correct 112 25

ResNet Wrong 18 53

The performance of 2 CNNs are comparable. Running McNemar’s Test yields a

two-tailed p-value of 0.36 (> 0.05), indicating that any difference in the performance

between the 2 CNNs are not statistically significant.
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3.5 Comparison Between Normalization Methods

The performance comparison between regular and custom normalization in terms of

sensitivity, specificity and accuracy is shown in Figure 3.5.1 below.

Figure 3.5.1: Performance Comparison Between Normalization Methods

The contingency table showing the matching prediction results between the

normalization methods is also shown in Table 3.5.1 below.

Table 3.5.1: Contingency Table Between Normalization Methods

Custom Correct Custom Wrong

Regular Correct 110 16

Regular Wrong 31 51

The results show that the custom normalization performs better than the regular

normalization. McNemar’s Test yields a two-tailed p-value of 0.041 (< 0.05), indicating

that this difference between the 2 normalization methods is statistically significant.
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3.6 Comparison Between Slice Selection Methods

The performance comparison between mid slice and selected slice in terms of

sensitivity, specificity and accuracy is shown in Figure 3.6.1 below.

Figure 3.6.1: Performance Comparison Between Slice Selection Methods

The contingency table showing the matching prediction results between the slice

selection methods is also shown in Table 3.6.1 below.

Table 3.6.1: Contingency Table Between Slice Selection Methods

Custom Correct Custom Wrong

Regular Correct 112 21

Regular Wrong 22 53

The performance of 2 slice selection methods are comparable. Running McNemar’s

Test yields a two-tailed p-value of 1.00 (> 0.05), indicating that any difference in the

performance between the 2 slice selection methods are not statistically significant.
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4. DISCUSSION

4.1 Best Model Performance

From Figure 3.3.1, the average sensitivity (0.350) indicates that the best model

correctly identifies only about one third of the actual positive cases. This is just about

the expected sensitivity of a random chance classifier, given the imbalance of our

dataset (0.385), and may not be good enough for the use case of predicting positive

cancer progression. We do not want to miss necessary therapies for the patients who

have a high risk of progression. The average specificity (0.938) is notably much better

than sensitivity and also better than the expected specificity of a random chance

classifier (0.615). This shows that the model is more adept at correctly identifying

negative cases and not recommending adjuvant therapies when the patients do not

need them. The average accuracy (0.712) has been shown to be statistically better than

the expected accuracy of a random chance classifier (0.527). Additionally, a naive

model that always predicts the majority class would also only achieve an accuracy of

approximately 0.615 (8/13), much lower than the best model performance. Coupled with

the low standard deviation across the folds (0.038), the best model here has shown that

its performance is consistent too.

Our results are in a similar range of overall accuracy as Lee et al., who also utilized

CNNs to predict post-surgical progression and obtained overall accuracy of 0.77 in their

larger cohort [8]. Park et al. predicted post-surgical progression using machine learning

approaches (without CNNs), reaching an accuracy of 0.638, slightly lower than both our

and Lee’s group’s accuracies [9]. Our results in the context of these others in the
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literature confirm the utility of our CNN-based approach to predict biochemical

recurrence post radical prostatectomy based upon the presurgical MRI data.

To further improve the model's performance in the future, a larger dataset is required

to have more training data. This requirement is important for several reasons. Firstly, it

would help improve generalization. A larger dataset can expose the model to a wider

variety of examples, including edge cases and subtle variations. This helps the model

learn the underlying nuanced patterns of the data and become better at generalizing to

new, unseen data. Secondly, deep learning models with many parameters often require

large amounts of data to prevent overfitting and to learn effectively. Hence, more

training data enables the training of these complex architectures, potentially leading to

improved performance.

Apart from that, the CNN architecture and hyperparameters can be further tuned to

improve performance. We can experiment with different network depths, filter sizes,

activation functions, optimizers and learning rates to yield better results.

4.2 Comparison Between ResNet And DenseNet

In Figure 3.4.1 and Table 3.4.1, ResNet and DenseNet are shown to have

comparable performance and any difference between them is not statistically significant.

Each network has their own strengths and limitations.
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On the side of DenseNet, in terms of parameter efficiency, the dense connections

allow the network to leverage features from earlier layers, promoting feature reuse and

reducing the need for a large number of filters in each layer. This can be beneficial in

the case where the dataset is limited in size. Furthermore, the direct connections

between all layers in DenseNet facilitate better information and gradient flow throughout

the network. This enables more efficient learning and can lead to better performance on

complex classification tasks with subtle features in medical images.

On the other hand, ResNet has simpler architecture and is generally more

straightforward. This simplicity can lead to reduced computational overhead and

reduced feature redundancy. ResNet's additive skip connections create direct pathways

for gradients to flow during backpropagation, preventing them from diminishing

exponentially as they traverse deep layers. This helps address the vanishing gradient

problem, enabling the training of much deeper networks with hundreds or even

thousands of layers, unlocking greater representational power and performance gains.

Overall, the relative performance of ResNet and DenseNet depends heavily on the

specific task at hand. More experiments with different cohorts and different ranges of

cancer sizes are needed to determine the best network to use for this application.

4.3 Comparison Between Normalization Methods

From Figure 3.5.1 and Table 3.5.1, the custom normalization method performs

statistically better than the regular min to max normalization method. This is indeed
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expected. Due to the possible presence of artifacts, there may be many abnormally

bright spots with maximum possible values in the image. If these large values are used

as the scaling range max, most of the other values in the image would be much lower

than this value, resulting in the abnormally dark image after normalization. In contrast,

when we set the scaling range max to a lower value (the 80th percentile for T2W and a

fixed upper value for ADC and DCE), this scaling operation would spread out all the

pixel values more evenly across the range, resulting in an overall brighter image.

Figure 4.3.1 below shows an example where the custom normalization method

results in a much brighter image than the regular normalization method. It enables finer

details to be more easily seen and detected in the image with custom normalization.

Figure 4.3.1: T2W, ADC, DCE After Regular (Top) And Custom (Bottom) Normalization

19



This custom normalization method has proven useful in the given dataset and it is

expected to be important in other datasets too, especially those with more artifacts and

less regular data. Moreover, there are other variations of custom normalization methods

that can be explored and experimented with. For example, in the same fields of deep

learning for prostate cancer research, instead of using the 0th and 80th percentile for min

and max values, there was a proposal to use the 1st and 99th percentile values, which is

expected to produce similar to our regular normalization method, and be inferior to

custom normalization [10]. Another approach to normalization is that the values could

be normalized to zero mean and unit standard deviation [11]. Future studies can

experiment with these alternative approaches to find out the best one for the use case.

4.4 Comparison Between Slice Selection Methods

Figure 3.6.1 and Table 3.6.1 show quite a surprising result. Automatic mid slice

selection and manually selected slice have comparable performance and any difference

between them is not statistically significant.

The result is counterintuitive because selecting the slice with the most cancer area is

expected to provide more information about the tumor for the CNN to learn. Sometimes,

automatically selecting the mid slice may even miss the cancer area altogether.

Nevertheless, there may be benefits of selecting the mid slice too. The mid slice

tends to be in the middle of the prostate and it may have the largest area of the

prostate, capturing more information about both the healthy and the cancerous tissue.
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Apart from the cancerous tissue, the healthy tissue may also contain subtle information

about the cancer progression risk.

Furthermore, in our dataset, many times the mid slice is just the same slice as the

manually selected one or just within a few adjacent slices. Especially when the cancer is

large and spans multiple slides, it is possible that the mid slice can just show the cancer

just as well as the selected slice. Figure 4.4.1 below illustrates this point with an

example patient case. The mid-slice images show as much cancer information as the

selected slice. The left peripheral zone is dark on the T2Ws and there is a small dark

spot on both of the ADCs. The DCE slope is brighter in a larger area on the mid slice

than the selected slice but they represent the cancer just the same.

Figure 4.4.1: T2W, ADC, DCE From Mid Slice (Top) And Selected Slice (Bottom)
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5. CONCLUSION

In this project, the application of convolutional neural networks (CNNs) in analyzing

pre-surgical multiparametric MRI to predict prostate cancer progression has been

explored. The results demonstrate the potential of CNNs as a valuable tool in this

domain. The best-performing model, utilizing a ResNet architecture, custom

normalization, and manually selected image slices, achieved an accuracy of 0.712,

significantly surpassing random chance classification. The model's high specificity

indicates its proficiency in accurately identifying negative cases, thereby avoiding

unnecessary adjuvant therapies. However, the relatively lower sensitivity underscores

the need for further refinement to enhance the model's ability to detect positive cases

and ensure timely intervention for high-risk patients.

The comparative analysis between ResNet and DenseNet revealed comparable

performance, suggesting that both architectures hold promise for this task. The choice

between them may depend on specific dataset characteristics and computational

constraints. The investigation into normalization methods highlighted the superior

performance of the custom normalization technique, emphasizing the importance of

addressing potential image artifacts for optimal model performance. The findings

regarding slice selection methods, while somewhat counterintuitive, suggest that both

automatic mid-slice selection and manual selection can yield valuable insights,

potentially capturing different aspects of tumor characteristics and surrounding tissue.
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The insights gained from this study pave the way for future research aimed at further

enhancing the accuracy and clinical utility of CNN-based models for predicting prostate

cancer progression. The acquisition of larger and more diverse datasets, coupled with

improvements in model architecture and hyperparameter tuning, holds the potential to

unlock even greater predictive power.

In addition, while 2D CNNs have shown promise, the inherent 3D nature of the

prostate gland and its surrounding structures suggests that 3D CNNs could offer

significant advantages and future studies should explore this further. 3D CNNs process

the entire volumetric data, enabling them to capture spatial relationships and

dependencies between adjacent slices that might be missed by 2D CNNs. This could

lead to a more comprehensive understanding of tumor characteristics, such as shape,

size, and location within the prostate, potentially improving the accuracy of cancer

progression prediction.

All in all, the ongoing research and development of CNNs in the field of prostate

cancer diagnosis and treatment holds immense potential to transform the way this

disease is managed. By providing clinicians with more precise and efficient tools for

image analysis, risk stratification, and treatment planning, CNNs can empower them to

make more informed decisions that lead to improved patient outcomes. This technology

has the potential to revolutionize prostate cancer management, ultimately leading to

earlier detection, more personalized treatment plans, and increased survival rates.
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