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Dynamic Context Capture and Distributed
Video Arrays for Intelligent Spaces

Mohan Manubhai Trivedi, Senior Member, IEEE, Kohsia Samuel Huang, Member, IEEE, and
Ivana Miki¢, Member, IEEE

Abstract—Intelligent environments can be viewed as systems
where humans and machines (rooms) collaborate. Intelligent (or
smart) environments need to extract and maintain an awareness
of a wide range of events and human activities occurring in these
spaces. This requirement is crucial for supporting efficient and
effective interactions among humans as well as humans and
intelligent spaces. Visual information plays an important role
for developing accurate and useful representation of the static
and dynamic states of an intelligent environment. Accurate and
efficient capture, analysis, and summarization of the dynamic
context requires the vision system to work at multiple levels of
semantic abstractions in a robust manner. In this paper, we present
details of a long-term and ongoing research project, where indoor
intelligent spaces endowed with a range of useful functionalities
are designed, built, and systematically evaluated. Some of the
key functionalities include: intruder detection; multiple person
tracking; body pose and posture analysis; person identification;
human body modeling and movement analysis; and for inte-
grated systems for intelligent meeting rooms, teleconferencing,
or performance spaces. The paper includes an overall system
architecture to support design and development of intelligent en-
vironments. Details of panoramic (omnidirectional) video camera
arrays, calibration, video stream synchronization, and real-time
capture/processing are discussed. Modules for multicamera-based
multiperson tracking, event detection and event based servoing
for selective attention, voxelization, streaming face recognition,
are also discussed. The paper includes experimental studies to
systematically evaluate performance of individual video analysis
modules as well as to evaluate basic feasibility of an integrated
system for dynamic context capture and event based servoing, and
semantic information summarization.

Index Terms—Active vision, activity summarization, ambient
intelligence, body modeling, event analysis, face detection/recog-
nition, human-machine interfaces, multicamera systems, person
tracking, real-time vision, smart rooms/spaces.

1. INTRODUCTION

NTELLIGENT environments are indeed complex systems,
where humans and machines (i.e., rooms) collaborate to ac-
complish a task. From such a perspective, intelligent environ-
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ments can also be considered as a novel human—machine inter-
face. The overall goal of intelligent environment research is to
design and develop integrated sensor-based systems that allow
natural and efficient mechanisms for human—computer inter-
actions in places where humans work, learn, relax, and play.
There is a growing interest in developing intelligent or smart
spaces, and, like most new areas of research, there may not be
a well-accepted definition for such terms. One possibility to ad-
dress this issue could be to specify requirements, which a phys-
ical space needs to possess in order to be called intelligent. We
consider the following four requirements in developing intelli-
gent environments.

1) Intelligent spaces are designed for humans, and they
should facilitate normal human activities taking place in
these spaces.

2) Intelligent spaces should automatically capture and dy-
namically maintain an awareness of the events and activ-
ities taking place in these spaces.

3) Intelligent spaces should be responsive to specific events
and triggers.

4) Intelligent spaces should be robust and adaptive to various
dynamic changes.

Such spaces need not be limited to rooms in buildings, but ex-
tend to outdoor environments and any other spaces that humans
occupy such as a performance on a stage, or an automobile on a
highway. Design of such spaces is indeed a rather ambitious ef-
fort, especially when one considers the real-world challenges of
providing real-time, reliable, and robust performance over the
wide range of events and activities, which can occur in these
spaces.

Novel multimodal sensory systems are required to realize
useful intelligent spaces. Arrays of cameras and microphones
distributed over the spatial (physically contiguous or oth-
erwise) extent of these spaces will be at the front end of
capturing the audio-visual signals associated with various
static and dynamic features of the space and events. The
intelligent environments will have to quickly transform the
signal-level abstraction into higher level semantic interpreta-
tion of the events and activities.

The spaces are monitored by multiple audio and video
sensors, which can be unobtrusively embedded in the infra-
structure. To avoid intrusion on the normal human activities
in the space, all sensors, processors, and communication de-
vices should remain invisible in the infrastructure. The system
should also support natural and flexible interactions among the
participants without specialized or encumbering devices.

1083-4427/$20.00 © 2005 IEEE
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Fig. 1. Multilevel hierarchy of computational tasks associated with an
intelligent environment. The system captures multimodal sensory signals and
transforms it to a higher semantic level of information in order to facilitate
human activities taking place in these spaces.

In an intelligent environment, multiple video cameras and
microphones may be embedded in walls and furniture. Video
and audio signals are analyzed in real time for a wide range of
low-level tasks including: person identification, localization,
and tracking; and gesture and voice recognition. Combining
the analysis tasks with human face and body synthesis en-
ables efficient interactions with remote observers, effectively
merging disjoint spaces into a single intelligent environment.
Fig. 1 shows the overall system conceptualization, functional
blocks, and information flow associated with an Intelligent
Environment. Multimodal sensory arrays capture signals from
audio and video domains. These signals are represented in a
time-synchronized manner using appropriate basis functions.
Classification algorithms allow extraction of higher level
semantic information from the signals. Such interpretation
along with task specifications generates control signals for
the sensory arrays for acquiring the next set of signals, from
only an attention zone at a selected spatial-temporal resolution.
Successful operation of the intelligent environment requires it
to operate as a finely tuned system, where information resides
at multiple levels of abstractions. Key levels to consider are.

1) Signal: This is the lowest level of abstraction where sig-
nals from multi modal sensors are captured and repre-
sented digitally in the forms of pixels, optical flow, pitch,
or cepstrum.

2) Object: This is a pattern defined in the spatial domain. We
focus on objects, which are defined using video sensory
modality. Examples of such objects would be a person or
face.

3) Event: This is a pattern defined in the spatial-temporal
domain. We consider events using both audio and video
modalities. Examples of events can be a person en-
tering/leaving a room, or a person speaking.

4) Activity: This is a complex (or compound) pattern of
events. We consider activities using both audio and video

modalities. Examples of an activity can be people having
a meeting or a person dancing in a room.

5) Context: This is considered to be a specification of the
state of an intelligent environment. It is defined using
prior knowledge of the environment and tasks. Events de-
tected from sensory information would cause changes in
the state of the system.

Recent research on intelligent environments provides nu-
merous new challenges in the fields of machine perception.
In computer vision [1], distinct progress in face detection
and recognition [2]-[5], people tracking [6], [7], and gesture
recognition [8], [9] has been made in the last decade. For audio,
much progress has been made in speaker and speech recogni-
tion [10] and source localization [11], [12]. Integrated sensory
modalities of audio and video [13]-[18] are also being seri-
ously considered recently. One type of system that recognizes
gesture and spoken words made possible a more natural “put
that there” type of interaction between humans and computers
[19]. We are currently embedding distributed video networks in
rooms, laboratories, museums, and even outdoor public spaces,
in support of experimental research in this domain [20]. This
involves the development of new frameworks, architectures,
and algorithms for audio and video processing, as well as
for the control of various functions associated with proper
execution of a transaction within such intelligent spaces. These
test beds are also helping to identify novel applications of such
systems as distance learning, teleconferencing, entertainment,
and smart homes.

In this paper, we present a framework for efficiently analyzing
human activities in the environment, using networks of static
and active cameras. Information will be extracted at multiple
levels of detail, depending on the importance and complexity
of activities suspected to be taking place at different locations
and time intervals. The environment will be constantly moni-
tored at a low resolution, enabling the system to detect certain
activities and to estimate the likelihood that other more complex
activities are taking place at specific locations and times. If such
an activity were suspected, to enable its accurate perception,
a higher resolution image acquisition and more sophisticated
analysis algorithms would be employed. Current systems focus
on analyzing data at a fixed resolution, in some cases, moni-
toring a large space with a single camera and in others covering
a small area with many cameras. We believe that the middle
ground has not been sufficiently explored and that combining
the coverage and robustness of low-resolution analysis with the
power of high-resolution analysis will result in robust and ef-
ficient systems that will be capable of extracting high quality,
relevant information from the environment.

The paper includes details of this multiresolution computa-
tional framework to help design the distributed video arrays
(DIVA) for intelligent environments. We also describe the infra-
structure and experimental testbeds of utility in design and eval-
uation of indoor intelligent spaces. We will focus on real-time
tracking of single or multiple people and on coordination of
multiple cameras for capturing visual information on wide areas
as well as selected areas for activity analysis and person iden-
tification. Finally, a detailed design and experiments conducted
in an intelligent meeting room are presented.
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Fig. 2. DIVA for tracking, human identification, and activity analysis.

II. DIVA FOR INTELLIGENT ENVIRONMENTS

DIVA is an intelligent environment that is able to detect the
presence of people, track their movements, recognize them, and
understand their actions, as shown in Fig. 2. For recognition of
complex actions, high-resolution images of the human body (or
even body parts) are necessary. To allow unconstrained human
movement in a large surveillance area, the system should there-
fore be able to acquire such high-resolution video anywhere in
the environment. Some computer vision groups have equipped
their laboratories with large numbers of static cameras [21],
[22] with the idea of obtaining very detailed information about
the monitored space. However, on the other hand, for the pur-
pose of maintaining awareness of the presence and activities of
people, the system does not need detailed information all the
time and everywhere in the environment, but only at specific
intervals or locations when/where something potentially inter-
esting is happening. At other times, much less detail is suf-
ficient. Detecting a person’s presence or recognizing whether
they are sitting or standing requires less detailed information
than estimating the direction that the person is pointing his/her
finger to. Based upon these observations, we propose a system
that continuously monitors the environment at low resolution,
which detects only the presence and location of people and
their dimension. More detailed image acquisition and analysis
would be triggered when a potentially interesting event or ac-
tivity is suspected to be taking place. We will term those po-
tentially interesting events as the focuses of attention of the
system. Equipped with a few static wide-angle view cameras,
the low resolution but large area monitoring of the environment

can be achieved. With a small number of active pan/tilt/zoom
(PTZ) cameras, multiple simultaneous focuses of attention can
be maintained. Depending on the activity to be analyzed, the
active camera can focus on various levels of details of people,
from the whole body to face or hand gestures. Using this ap-
proach, robust monitoring of the entire environment with mul-
tiple resolutions can be achieved with fewer cameras and com-
putational resources.

In this section, we discuss the development of such DIVA,
which support a wide range of tasks of the intelligent environ-
ments. Key features of these smart video arrays are:

1) the ability to derive semantic information at multiple
levels of abstraction;
the ability to be attentive to specific events and activities;
the ability to actively shift the focus of attention at dif-
ferent semantic resolutions;
the ability to apply different types of camera arrays to
provide multiple signal-level resolutions.

To develop such a multilevel approach, problems of camera
placement and control, as well as the designing of image-anal-
ysis algorithms have to be addressed. Good camera placement
will provide efficient coverage. The control problem involves
developing the system that will acquire data from certain loca-
tions/time intervals in the environment and employ appropriate
analysis algorithms at the level of detail needed to maintain
awareness of the people and their activities. This may often in-
volve maintaining multiple simultaneous focuses of attention.

Algorithms that track people in three-dimensions (3-D) at
multiple resolutions are essential parts of the proposed system.

2)
3)

4)
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Floor plan and camera network configurations of our intelligent space complex. These rooms are built for experimental development and evaluation of

the intelligent room systems utilizing 12 rectilinear cameras, eight omnidirectional cameras, eight PTZ cameras, and eight microphones, which are embedded in

the room.

At a low-resolution level, locations of all people in the envi-
ronment will be continuously monitored. A more sophisticated
algorithm is needed to extract more detailed body posture and
motion estimates. The algorithm should be able to extract mul-
tiple levels of detail depending on the quality of the available
data and the level of detail currently requested by the system.

Camera videos are first captured and processed for low-level
visual cues, such as histograms, colors, edges, and object seg-
mentations. The challenges at this level include: robustness to
illumination, background, and perspective variations.

On the next level of abstraction, tracking plays an impor-
tant role in event analysis. It derives the current position and
geometry of people as well as the histories and predictions of
their trajectories. With the semantic database, which defines
prior knowledge of the environment and activities, events can
be detected from the tracking information, e.g., one person en-
ters the room and sits beside a table. The activity analyzer and
the semantic database could be implemented by a rule base or
a Bayesian net [23]. The challenges at this level include: the
speed, accuracy, and robustness of the tracker, as well as the
scalability of the semantic database, which allows incremental
updating when new events are detected.

The events trigger the attention of a camera array to derive
higher semantic information. Using tracking information, a
suitable camera is chosen to capture a perspective that covers
the event at a desired resolution, e.g., perspective on a person
with an omnicam for posture and around the head area with
a PTZ camera for person identification. For this purpose,
necessary processing modules, such as face detection and
recognition, should be deployed. The challenges at this level
include: accuracy, speed, and robustness of the view generation
and recognition modules. The derived semantic information

at multiple levels can also be fed back to update the semantic
database.

This architecture of multilevel abstraction can be further
generalized to include many other applications such as object
recognition, facial expression recognition, 3-D human-body
modeling and tracking [24], and behavior estimation and
prediction [25].

The DIVA system architecture developed for the intelligent
environments described in this paper can be viewed as a smart
or active camera network, where various cameras are actively
controlled to support a wide range of functionalities. It is
recognized that the proper operation of the overall system
depends on the success of selecting the proper parameters
for video capture, perspective selection, feature extraction,
object/event detection, tracking, storage/archiving, and interac-
tions with humans. It is also important to emphasize that video
streams which are primary inputs to DIVA at the raw pixel
levels are prohibitively large in size. Success of the system will
depend on the ability to eliminate redundancy, to transform
raw data into higher semantic levels, and to be very selective
in acquiring new video data only when needed and also from
a specific region of interest and at the appropriate resolution.
These observations help in designing video arrays which get
turned on only when needed and vision algorithms which
extract the context specific cues to support proper operation of
the overall system. In this paper, we have focused only on the
intelligent environments which physically continuous entities
like conference room and performance space. However, the
active vision concepts used in the DIVA architecture allow
them to be effective in monitoring and surveillance applica-
tions of very large distributed spaces, such as highways and
open public spaces [20].



TRIVEDI et al.: DYNAMIC CONTEXT CAPTURE AND DIVA FOR INTELLIGENT SPACES 149

III. INTELLIGENT ENVIRONMENTS: SYSTEM INFRASTRUCTURE
AND EXPERIMENTAL TESTBEDS

Systematic development of intelligent environments, where
networks of cameras and microphone arrays serve as the sources
of multimodal sensory information, is indeed a system-oriented
experimental research effort. In this section, we present the
overall infrastructure and some novel experimental testbeds
designed to support design and evaluation of computational
modules. We also discuss the experimental system architecture
of our intelligent space complex.

A. Intelligent Environment Research Complex

The intelligent environment research complex at the Com-
puter Vision and Robotics Research (CVRR) Laboratory, Uni-
versity of California, San Diego, is shown in Fig. 3. It includes
two separate but connected rooms appropriately instrumented
and suitable for a wide range of experimental research. The first
one is audio video interactive appliances, rooms, and systems
(AVIARY), which was designed to be a small conference room.
The second space is multimodal interfaces, and context aware
spaces (MICASA), which was designed to be a classroom or
a performance chamber. We present a brief overview of these
testbeds below.

The audio-video sensory suite installed in the AVIARY room
includes a network of four omnidirectional cameras, four PTZ
and four static rectilinear cameras, and eight microphones. The
four omnicameras (ODVSs), are near the corner of a meeting
table, covering the entire room from inside out. ODVS is a
catadioptric camera with a hyperboloidal mirror to cover a
downward hemispherical field of view [26]. The omnidirec-
tional video can be unwarped into either a panoramic video or
a PTZ rectilinear video by nonlinear transformations [6]. The
four static rectilinear cameras are located at the upper four cor-
ners of the room, each covering the entire room from outside in.
This directional difference matters with tracking performance
as will be mentioned later. Also, four PTZ rectilinear cameras
are installed at the four corners about 1.4 m above ground. They
capture events with higher resolutions than the static cameras
but narrow field of view. Two microphone arrays, each with
four microphones, are, respectively, installed on the wall and
the ceiling to pick up the speech activities in the meeting. A
white board is sitting at the upper right corner of the room as
shown in Fig. 3. One computer resource is allotted to tracking,
which takes either the four static omnicam videos or the four
static rectilinear videos. Another computer is used to analyze
audio and visual events within the room. The third computer is
used to archive the audio and video streams for later retrieval.
AVIARY is used to develop and evaluate systems that capture,
process, transmit, and display audio-visual information in an
integrated manner. The audio and video modalities provide
valuable redundancy and complementary functionality. These
two modalities are also the most natural ways for humans to
sense and interpret their environments, and interfaces of these
two modalities can be very natural and effortless for the users.
Robustness to the environment is another essential requirement
since it is not practical to dictate to the user a specific rigid

n

- | .

Fig. 4. MICASA static rectilinear camera array placement.
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Fig. 5. Architecture for synchronous video capturing using quad.
environment. In addition, it is not unusual to expect the environ-
ment of the user to change, for example, lights getting turned
on, or the room furniture getting reconfigured. It is important
that the systems still can carry out their task.

MICASA is two times larger than AVIARY. The omnicam
array is installed on the ceiling to cover the entire space. The
PTZ rectilinear camera array is installed similar to AVIARY.
However, there are eight static rectilinear cameras installed on
top of the room, as shown in Fig. 4. The four cameras at the cor-
ners have larger field of view to cover the entire room and can
serve as the tracking camera array. The other four have smaller
coverage for a little better detail. All eight overlap each other by
approximately a 2 x 3 X 2.5-m volume. Within this volume,
voxel reconstruction of human objects can be performed by
shape-from-silhouette. The pairs of cameras that face each other
are placed with offset, since the two cameras that directly face
each other collect redundant 2-D silhouette information of the
object. The camera videos are captured frame-by-frame syn-
chronously. For the computational resources, currently, one PC
is dedicated to tracking with the omnicam array. More PC would
be favorable to increase the resolution of tracking. Six other
PCs are allotted to voxel reconstruction with six of the eight
static rectilinear cameras. Currently, no microphone arrays are
installed in MICASA. A projector presentation board is sitting
at the left side and a white board is sitting at the lower left-hand
side of the room for classroom setup, as shown in Fig. 3.

B. Camera Calibration

Camera calibration affects the tracking and voxel reconstruc-
tion accuracy. The static rectilinear cameras are calibrated auto-
matically using Tsai’s algorithm with respect to a unique world-
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coordinate system [27]. The calibration is carried out in advance
and parameters are stored in the computers.

The calibration of ODVS is carried out manually. We col-
lect a set of calibration points with their coordinate values in
a world frame with the origin at one corner of the room. The
world coordinates of the ODVS optical center are also taken.
If the ODVS is sitting upright, then the absolute azimuth ori-
entation of the ODVS can be estimated by rotating the relative
direction of the calibration points in the omnidirectional image
around the center of the image to match the azimuth directions
of the calibration points with respect to the optical center of the
ODVS in the world coordinate frame. The way to see whether
the ODVS is sitting upright is by checking whether a set of
markers at the same height as the optical center of the ODVS
is on a concentric circle in the omnidirectional image that cor-
responds to the horizontal level, or whether they align on a row
in the unwarped panorama that corresponds to the horizontal
level. If the ODVS is tilted, then the absolute orientations of the
camera need to be estimated analytically by relating the world
coordinates and the camera coordinates with the mirror optics.
However, an approximate approach may be taken if the tilting is
very small. From the horizontal markers mentioned previously,
we can tweak around the center of the omnidirectional image
by several pixels to make the horizontal markers align with the
horizontal row of the unwarped panorama. This approximation
is used to improve the tracking accuracy in our experiments.

C. Synchronized Video Capture in DIVA

Arrays of cameras are included in the DIVA system to capture
visual cues in the overlapped zone in a synchronized manner.
For the omnicam, static rectilinear, and PTZ rectilinear camera
arrays, three approaches of frame synchronization on video cap-
turing may be taken. The first one is to use quad video mul-
tiplexers to combine four videos into one to be captured by
the computer image grabber, as shown in Fig. 5. This, by na-
ture, guarantees synchronized capture of the four camera videos.
However, image resolution of each camera is reduced to one
fourth. In larger space such as MICASA and applications that
require fine details, this may be unsatisfactory. As the second
approach, each video is captured by a computer in full frame
and synchronized by time stamps. This approach allows pre-
processing to derive some higher-level visual cues of each full-
frame video before sending them through network to a server
for integrated analysis. However, since the clock cycles of the
video frames are not genlocked between the cameras, the time-
stamp synchronization is only approximate with errors as much
as 17 ms. For real-time voxelization of moving subjects like
waving arms, millisecond jitters of capture timing can cause
large misalignment between each camera array frames and de-
teriorate voxel reconstruction. Also, network traffic jam would
reduce the frame rate of real-time human tracking.

The third approach is to synchronize the image grabbing by
hardware devices, as shown in Fig. 6. This way guarantees full-
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Fig. 7. Workstations that perform synchronous grab from multiple cameras.
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frame capturing for high-resolution demands as well as cap-
ture timing. In our systems, each camera is connected to a PC
with a Matrox Meteor II frame grabber. To ensure synchronous
grabbing, one PC is designated as the primary and the others as
secondary. The primary sends a trigger signal to the secondary
frame grabbers, which grab a frame at the rising edge of the
trigger pulse. The trigger pulse is boosted and distributed to the
secondary machines using a high-speed CMOS 74HC244 octal
inverting tristate buffer. Each output of the octal buffer is con-
nected to an RG58 cable, and can then be attached to a Meteor
IT input cable for external triggering. Multiple boosters can be
cascaded if more than eight videos are needed. Additionally, the
signal can be converted to a RS-232 computer serial port signal
to allow for alternative triggering methods, e.g., synchronization
of frame grabbing from firewire cameras via serial port. The set
of workstations used is shown in Fig. 7.

D. Active Control for Event Capture in DIVA

The DIVA system is designed to capture the interested
objects and events in the sensor array coverage, as shown in
Fig. 8. Person detection and tracking is carried out on the
static video arrays. Multiple baseline stereo on the synchro-
nized static video arrays measures the locations of people on
each frame and tracking filters smooth measurement noises
and predicts the trajectories of people. When the trajectory is

TABLE 1

SUMMARY OF THE INTELLIGENT COMPLEX SETUP

AVIARY MICASA

Size 6.7m % 3.3m X2.9m 6.7m X 6.6m X2.9m
Video Array 4 Omnicams 4 Omnicams

4 Rectilinear 8 Rectilinear

4PTZ 4PTZ
Video Quad synchronized Quad or hardware
Synchronization synchronized
Audio Array 2 microphone arrays None
Processors 1 for tracking 1 for tracking

6 for voxelization and event
analysis

1 for event analysis
1 for video & audio
archiving
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Fig. 9. Functional blocks of the NOVA intelligent room system. The lower
window shows head tracking by ODVS perspective view generation and face
recognition.

available, low-level events, such as a person entering the room
or a person sitting down, triggers system attention. The system
then captures more details of the event by driving a dynamic
camera to it, and higher level analysis and interpretation of the
event is computed. The processes are implemented in C++ with
multithreaded programming, and the thread synchronization is
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shown in the timing diagram in Fig. 8. Tracking could be run-
ning on one computer and the trajectories are communicated to
other machines through network. Dynamic event capture takes
one thread to compute the attentive directions to the interested
low-level events. High-level event analysis takes spatial-tem-
poral visual-audio events and derives semantic interpretations
of the human activities by dynamic multistate models. Those
processes achieve minimum delay and optimal efficiency by
carefully synchronized multithreading.

The features of the system architecture of our current intelli-
gent complex testbed are summarized in Table 1.

IV. TRACKING AND ANALYSIS OF HUMANS IN INTELLIGENT
ENVIRONMENTS AND EXPERIMENTAL STUDIES

As mentioned in Section II, video arrays deployed in an intel-
ligent environment need to support a number of important tasks.
These include: tracking of human movements, human identi-
fication, and human body analysis including gait and gesture
recognition. Also, based upon the state and context of the intel-
ligent environment, the system should be able to switch between
functionalities of the video modules. In this section, we present
subsystems for multiperson tracking as well as for human body
analysis and give experimental results.

A. Multiperson Tracking Using Video Arrays

We have developed a real-time intelligent room system, the
networked omni video array (NOVA) system as shown in Fig. 9
which utilizes the omnicam array for tracking, face capture, and
face recognition [6]. It is a subsystem of Fig. 2. The 3-D tracker
takes the ODVS array videos for detecting and tracking people
on their planar locations as well as heights, and sends their tracks
to another computer. Active camera selection (ACS) and dy-
namic view generation (DVG) modules in the second computer
use the track information to latch upon person’s face by a per-
spective view generated from an ODVS video in the array. Since
the view is generated electronically, the face is immediately cap-
tured according to the direction of the tracker. A 64 x 64 face
video is then extracted from the perspective view to be identi-
fied.! This system provides a platform for developing and eval-
uating robust face recognition schemes in order for the humans
to behave naturally in the intelligent room.

The omnicam-based person tracker or omni-video array
tracker (O-VAT) [6] is shown in Fig. 10. Silhouettes of people
are detected by background subtraction with shadow removal
on the panoramas unwarped by the omnicam videos. The
horizontal locations of people are first measured from the
azimuth angles of the silhouettes or blobs for each panorama
by N-ocular stereo [28], [27] and associated to the existing

IDemonstration clips of person and face tracking on the ODVS array is avail-
able at http://cvrr.ucsd.edu/pm-am/demos/index.html.
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Visual servoing for face capture on a mechanical PTZ camera driven by the 3-D O-VAT. In the sample sequence, please note the motion of the subject

both in horizontal and vertical directions, and the dynamics of the PTZ camera trying to catch up the human motion.

set of tracks by the nearest neighborhood. If a measurement is
not associated to the tracks, a new track is initialized with a
time delay to avoid spurious detection. The tracks that have no
measurements are also kept for some period before termination
to avoid missing detection. The heights of people are measured
from the topmost pixels of the silhouettes of people in the
panorama by triangulation with the knowledge of the horizontal
distances of people to the camera. Height measurements of one
person from the cameras are averages with weights reciprocal
to the horizontal distances of the person to the cameras. Then,
a constant velocity Kalman filter is updated by the associated
set of 3-D measurements for each person. The Kalman filter
uses random maneuver with fixed maneuver covariance, but
the time interval between frames is updated on-the-fly. Also,
the measurement covariance is fixed and estimated empirically.
They are fine-tuned for regular indoor human motions.

B. Human Face, Body, and Movement Analysis

1) Head Tracking and Face Capture: Results of the tracker
are used to control the face capture module. As shown in Fig. 9,
one ODVS in the array may be picked and captured in full-frame
to capture the face. The advantage is that electronic PTZ is in-
stantaneous. However, image resolution would be lower. The
face capture using mechanical PTZ is shown in Fig. 11. The
O-VAT uses the ODVS array on the ceiling in the MICASA
testbed to track people. The location of the head is then es-
timated and used to drive a PTZ rectilinear camera through
RS-232 commands. From the video sequence in Fig. 11, it can

be seen that mechanical PTZ would have some control delay
problems, and the human-motion speed needs to be limited.

There is a possible way to improve the PTZ face tracking.
Given the face that O-VAT is a low-resolution tracker, the PTZ
control scheme could be fine-tuned. After the PTZ camera
captures the face by the direction of O-VAT, a face detector and
tracker comes in to grab the face. Autonomous face tracking
servo mechanism can be implemented to keep the detected
face near the center of the video. If it fails to detect the face,
loses track, or has a spurious detection that does not match with
O-VAT, O-VAT overrides the face tracking again. If the system
decides to change target, the face tracking can also be reset by
the O-VAT. By this way the inaccuracy and delay due to O-VAT
can be bypassed. This mechanism is to be implemented and
evaluated in the future.

2) Single-Frame Face Detection and Recognition: The
captured video is then processed to detect the face and extract
the face video, as shown in Fig. 12. From the head tracking
output, skin tone segmentation is first used to find the face
candidates. Possible face images are cropped from the skin
tone blobs. Those images are then classified to reject nonfaces.
A simple eigenface, or principle component analysis (PCA)
method is used for both face classification and single-frame
face recognition [3]. We construct the PCA feature subspace
with 200 face images of multiple people and face orientations
taken with the perspective unwarping of omnicam videos. The
output of this module is the stream of projection vectors of the
face video in the PCA subspace as well as the stream of face
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Fig. 12. Single-frame face detection and recognition on omni-vision array using view-based method. The pictures illustrate the mechanism of skin tone

segmentation and face classification. Panoramic face detection is also shown.

Fig. 13. Face orientation estimation for best-view camera selection.

recognition identity. The stream of feature vectors can be fur-
ther processed to estimate the face orientations and recognize a
person over the frames.

As a direction of further improvement, multiple modalities of
features should be used in the face detection in addition to skin
tone segmentation, which works robustly only on constant illu-
minations like indoor environments. Possible modalities include
elliptical edge links [29] and wavelets [30]. More sophisticated
methods are also needed for better face/nonface classification
(2], [31], [32].

3) Face-Orientation Estimation: Face-orientation estima-
tion is needed to select a camera to capture the face with a best
viewing angle. If the face capture finds a profile face, it would
be necessary to capture the face by another suitable active
camera. It can also be used to assess the direction of attention
of people in the intelligent environment. It provides valuable
information to estimate the behavior of people. We present an
effective simple method built upon skin tone segmentation.

Due to the hairline, the ellipse fitted to the skin pixels changes
orientation as person turns from far left to far right, as shown
in Fig. 13. We can regard the skin pixels as samples from a 2D
Gaussian distribution and find the distribution parameters as

1 N
X = ﬁ;xh
Lo

_ e T B
C_N_lg(xl X)(x; —X)", wherex =

T
[y] - (D)
Then, the principle component, i.e., the first eigenvector corre-
sponding to the larger eigenvalue, of the 2 X 2 covariance matrix
C describes the orientation of the ellipse. A lookup table based
on a set of training samples is used to relate the approximate
direction the person is facing to the angle between the prin-
ciple component of the ellipse and the vertical axis, as shown
in Fig. 14. The table is interpolated from five facing angles of
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Fig. 14. Lookup table for face orientation estimation computed by averaging
across the training examples.

Fig. 15. Examples of the face images in the training and testing video streams.
The left six are perspective views generated from the omni videos, and the
right face images are automatically extracted by the NOVA system. They show
various face angles, sizes, expressions, backgrounds, and other perturbations
that SFR needs to deal with.

the training samples. More sophisticated methods would be re-
quired for higher accuracy and robustness to cluttered back-
grounds [33], [32].

4) Streaming Face Recognition: Served as a crucial event
analyzer, face recognition performance can be enhanced by
video-based algorithms [34]. In order to deal with uncertainties
in face alignment in the captured face video, illumination
changes, face orientation, gender, and racial differences, hair
style and clothing, and sensor noises as shown in Fig. 15,
accumulating the confidence across frames in the face video
will boost the recognition accuracy. As shown in Fig. 16, the
captured face video is partitioned into segments, and streams
of single-frame face recognition identities as sell as PCA
subspace feature vectors of the detected face are computed
by subspace feature analysis module as mentioned earlier.
These two streams are classified by three schemes, as shown
in Fig. 16. The majority rule (MAJ) decides on the highest
occurrence of the single-frame recognition identities in the
segment, the discrete HMM (DHMM) maximum likelihood

Face Video Stream

* Str: Stream of face images

Stream Partitioning

* S i-th segment sequence

Single-Frame
Subspace
Feature Analysis

Sequence of Sequence of
Classification Results Feature Vectors

MAIJ DMD CMD
Majority DHMM ML CDHMM ML
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Person 1

Person 2
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Fig. 16. Streaming face recognition scheme and the geometric interpretation
in feature subspace.

(ML) decision rule (DMD) decides on the sequence pattern
of the single-frame recognition identities, while the CDHMM
ML decision rule (CMD) decides on the stream of single-frame
feature vectors.

MALJ rule is a straightforward way to decide the identity of
the face video segment. It does not require training. On DMD, a
DHMM is trained by the single-frame face-recognition identity
streams for each person. Then, on testing phase, DMD picks the
maximum value of the likelihoods of those DHMMs given the
testing segment. This smoothes the jitters in the single-frame
recognition sequence and would give better results than MAJ
rule. However, useful information of features is already dis-
carded by the single-frame face recognition before the DMD
rule. CMD rule avoids this problem by taking the feature vector
stream of subspace analysis instead of recognition identity
stream. Similarly, a CDHMM must be trained for each indi-
vidual, and upon testing the identity of the CDHMM that yields
the maximum likelihood on the testing face video segment is
decided as the final recognition output, as illustrated in Fig. 16.
In the subspace interpretation of Fig. 16, each single frame of
face video is represented as a point in the feature subspace, and
a video segment is represented as a scatter of points. Each point
has a likelihood value with respect to a specific class modeled
by the Gaussian mixture density. Thus, the accumulation of
the likelihoods has a maximum value if the scattering of the
video segment falls mostly to the density function modeled by
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Fig. 17. Body modeling system components. Video from four cameras is
segmented and 3-D voxel reconstruction is performed. Model initialization
finds body parts using template fitting and growing. The positions of located
body parts are then adjusted to ensure the valid model using and extended
Kalman filter. A modified version of that filter is then used for tracking.

a CDHMM. This rule would give the best recognition accuracy
since it is in a delayed decision style.

5) Body Modeling and Movement Analysis: An important
feature of the MICASA testbed setup is that it allows synchro-
nized capture of rectilinear camera array that covers an over-
lapped volume as shown in Fig. 6. Within the volume, voxel
reconstruction of human body can be carried out in real-time.
As shown in Fig. 17, the 2-D silhouettes from different viewing
directions of the calibrated cameras are obtained by background
subtraction with shadow detection. From the silhouettes and the
calibration parameters, shape-from-silhouette is used to recon-
struct the 3-D silhouette of the human. L by M by IV voxels are
first defined in the overlapped volume, then a voxel is marked
if all the 2-D silhouettes has a pixel corresponds to it through
camera calibration model. After the 3-D voxel reconstruction is
available, search for the head ellipsoid is made. It is followed
by fitting other ellipsoids for torso and limbs. The length and
connectivity of each body parts are adjusted then by a Bayesian
net. While tracking, the centroid and joints of the body parts are
tracked by extended Kalman filters with respect to a body coor-
dinate defined on the torso. Complete details of the body mod-
eling and movement analysis system are described in a recent
publication [24].2 Some of the joint angles of the body model
are plotted in Fig. 18 with two walking subjects. Differences
between the walking patterns can be used as another biometrics

2The demonstration video clips are available at http://cvrr.ucsd.edu/pm-
am/index.html.

modality for person identification, posture, and gesture analysis,
and behavior recognition.

C. Experimental Results

In this section, we present the experimental results of some
algorithms mentioned earlier.

1) 3-D Multiperson Tracking by O-VAT: Since O-VAT
relates directly to the accuracy of face capturing in the NOVA
system, it is necessary to evaluate its accuracy. We test it by
tracking people walking on a designated path in the room
around the array of four ODVS in AVIARY and in MICASA
testbeds as shown in Fig. 3. People’s tracks are logged for
later retrieval, analysis, and plotting offline for comparison.
We define the accuracy indices by the offset of the track from
the ground truth and by the standard deviation of the track. In
AVIARY, the four ODVSs are mounted on the four corners
of a meeting table in the midst of the room and are a little
higher than sitting people. The designated walking path goes
around the table. Test results in AVIARY can be found in [6].
For MICASA, the room is twice the size of AVIARY, and the
camera array of four ODVS is installed under the ceiling, with
one ODVS near the center of each quadrant of the room (see
Fig. 3). We tested O-VAT in MICASA with one to six adults
as the tracking targets walking on a designated path in the
room which would pass under the ODVSs. Some track plots
of the targets are shown in Fig. 19, and the accuracy results
are given in Table II.

From the MICASA results in Table I, the ground track offset
and standard deviation increase with the number of people, es-
pecially after five people. The height estimate also degrades
with the number of people. We note that for the experiments in
the AVIARY testbed these indices only have a little fluctuation
with one to four people [6]. The major difference between these
two testbeds is that the coverage of the ODVS array in AVIARY
is strictly inside-out and is about as high as people. Thus, the
chance of people occluding each other is almost independent
to the number of people because the ODVSs are standing up-
right at approximately the height of people and people walking
around the array can be easily distinguished in the panoramas.
To fix this occlusion problem in MICASA, the merged blobs of
people in the panorama of a camera could be excluded from the
measurement calculations.

O-VAT runs at approximately 20 frames per second on a plat-
form of dual Pentium III 866 MHz, 256 MB memory, Windows
2000. Therefore it is very suitable for real-time applications. In
term of system flexibility, ODVS array has good reconfigura-
bility because with the same ODVS array, the system not only
allows tracking but also allows electronic PTZ for higher level
processing. Note that electronic PTZ does not require mechan-
ical control, which leads to delay and damping problems. Also
multiple electronic PTZ views at different objects can be gen-
erated from the same ODVS video at the same time. In addi-
tion, since the ODVS array can be placed in the midst of the
meeting participants, it has the advantageous inside-out cov-
erage on people’s faces from a close distance by unobtrusive
electronic PTZ views. Therefore ODVS network is very suit-
able for a meeting room setup.
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Fig. 18.

2) Streaming Face Recognition: For streaming face recog-
nition (SFR) experiments, the parameters include video seg-
ment length L, the number of states N for both the DHMM
and CDHMM, the number of Gaussian mixture M, and the uti-
lized first d dimensions of the PCA feature vector of full di-
mension D for the CDHMM. The accuracy is evaluated as the
overall correct percentage (OCP), defined as the correct recog-
nition percentage of all frames in the single-frame case, and
the percentage of correct recognized segments of all video seg-
ments in the streaming cases. Table III compares the best OCP
of the recognition schemes. This outcome justifies the streaming
type processing schemes because accumulating the likelihoods
of the frames in a video segment would provide a better match
to a class in the feature subspace than only one single frame,
as illustrated in Fig. 16. It also confirms the implications of the
streaming-type recognition schemes as mentioned earlier.

V. HUMAN ACTIVITY AND INTERACTIONS IN AN
INTELLIGENT MEETING RooM (IMR)

IMR are spaces, which support efficient and effective interac-
tions among their human occupants as in Fig. 20. They can all be
occupying the same physical space or they can be distributed at
multiple/remote sites. The infrastructure which can be utilized
for such intelligent rooms include a suite of multimodal sensory
systems, displays, pointers, recording devices, and appropriate
computing and communications systems. The necessary intelli-
gence of the system provides adaptability of the environment to

Comparison of multiple joint angle patterns of the body model when tracking two walking subjects.

the dynamic activities of the occupants in the most unobtrusive
and natural manner.

The types of interactions in an intelligent environment impose
requirements on the system that supports them. In an intelligent
meeting room we identify three types of interactions:

1) between active participants—people present in the room;

2) between the system and the remote participants;

3) between the system and the future participants.

The first category of interactions defines the interesting events
that the system should be able to recognize and capture. The ac-
tive participants do not obtain any information from the system
but cooperate with it, for example by speaking upon entering
the room to facilitate accurate person identification. Two other
types of interactions are between the system and people that
are not present in the room. Those people are the real users of
the system. For the benefit of the remote participant, the video
from active cameras that capture important details such as a face
of the presenter or a view of the whiteboard should be cap-
tured and transmitted. Information on identities of active par-
ticipants, snapshots of their faces and other information can be
made available. The future participant, the person reviewing the
meeting that happened in the past, requires a tool that graph-
ically summarizes past events to easily grasp the spatio-tem-
poral relationships between events and people that participated
in them. Also, an interface for interactive browsing and review
of the meeting is desirable. It would provide easy access to
stored information about the meeting, such as identities and
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Fig. 19. Some tracking results of O-VAT in MICASA testbed with one to four adult people walking simultaneously on the designated path. The floor plan on the
left shows the 2-D tracking accuracy. Dash lines are the designated walking paths on the floor (ground truth). The height tracking on different tracks of people are
color-coded. The height tracking on the right are plotted against time. The actual heights of the volunteers are shown as dash lines and denoted below the plots.

snapshots of participants and video from active cameras asso- Interactions between active participants in a meeting room
ciated with specific events. define interesting activities that the system should be able to



TRIVEDI et al.: DYNAMIC CONTEXT CAPTURE AND DIVA FOR INTELLIGENT SPACES 159

TABLE 11
TRACKING ACCURACY OF O-VAT IN THE MICASA TESTBED FOR ONE TO SIX
PEOPLE. ACCURACIES ARE COMPARED IN TERMS OF TRACK MEAN OFESET
FROM THE GROUND TRUTH AND STANDARD DEVIATION OF THE TRACK,
FOR BOTH X-Y GROUND TRACK AND HEIGHT ESTIMATION

Tracking X-Y Ground Height Z

Accuracy (cm) Au o Au o
Single Person 11 5 1 4
Two People 10 6 2 7
Three People 12 10 3 11
Four People 13 11 5 11
Five People 19 20 5 19
Six People 29 31 9 22

TABLE III

COMPARISON OF THE BEST OCP OF THE SINGLE-FRAME FACE RECOGNITION
AND THE SFR RULES. COMMON SETTINGS: D = 135,L = 49,
NON-OVERLAPPING VIDEO SEGMENTS

Decision Rules ~ Best OCP Note
Single-Frame FR ~ 75.9 %
MAIJ 81.7 %
SFR DMD 89.7% N=14
CMD 99.0% N=1,M=1,d=8

Fig. 20. Configuring AVIARY in an Intelligent Meeting Room. People are
tracked, identified, and classified as presenters or participants based upon
dynamic analysis of the visual and audio signals. A summarization module
maintains a record of all state changes in the system which can be accessed at
a later time.

recognize and capture. We identified three: 1) a person located
in front of the whiteboard; 2) a lead presenter speaking; and
3) other participants speaking. A lead presenter is the person
currently in front of the whiteboard. First, activity should draw
attention from one active camera that captures a view of the
whiteboard. Two other activities draw attention from an active
camera with the best view of the face for capturing the video of
the face of the current speaker.

To recognize these activities, the system has to be aware of
the identities of people, their locations, identity of the current
speaker and the configuration of the room. Basic components
of the system that enable described functionality are:

1) 3-D tracking of centroids using static cameras with highly
overlapping fields of view;

2) person identification (face recognition, voice recognition,
and integration of the two modalities);

3) event recognition for directing the attention of active
cameras;

4) best-view camera selection for taking face snapshots and
for focusing on the face of a current speaker;

5) active camera control;

6) graphical summarization/user interface component.

Tracking and face-recognition algorithms using visual data are
already discussed in the previous section. In this section, we
will also explain the role of audio data. Integration of audio and
video information is performed at two levels. First, the results
of face and voice recognition are integrated to achieve robust
person identification. At a higher level, results of 3-D tracking,
voice recognition, person identification (which is itself achieved
using multimodal information) and knowledge of the structure
of the environment are used to recognize interesting events.
When a person enters the room, the system takes the snapshot
of their face and sample of their speech to perform person iden-
tification using face and voice recognition [35], [36].

The system-block diagram is shown in Fig. 21. As men-
tioned before, it currently takes inputs from four static cameras
with highly overlapping fields of view, four active cameras,
and two microphones. All of the eight cameras are calibrated
with respect to the same world coordinate system using Tsai’s
algorithm [27]. Two PC computers are used. One performs 3-D
tracking of blob (people and objects) centroids based on input
from four static cameras. Centroid, velocity, and bounding
cylinder information are sent to the other PC which handles
all other system functions. For new people in the environment,
the camera with the best view of the face is chosen and moved
to take the snapshot of the face. The person is also required
to speak at that time and the system combines face and voice
recognition results for robust identification. Identity of the
current speaker is constantly monitored and used to recognize
interesting events together with 3-D locations of people and
objects and known structure of the environment. When such
events are detected, the attention of active cameras is directed
toward them.

The IMR project is designed for a meeting-room scenario.
It not only tracks people and recognizes them, but also detects
speaker activities and archive the events. The speaker activity
detection is composed of a voice gate based speech detector
and IBM ViaVoice speaker recognition. When a person walks
in the room, the system recognizes the person by a face snap-
shot and speech. The identity is tagged to the track of the person.
Events are defined according to the room setup. In AVIARY, an
area is defined near the white board as the presenter’s zone. If
a person is in the area, then that person is regarded as a pre-
senter. When the people are nearly static, the meeting starts and
speech activities trigger events such as presenting, listening, and
speaking (questioning/answering) and a PTZ camera zooms into
the event.

A. Event Recognition for Directing the Attention
of Active Cameras

This module constantly monitors for events as described in
Section II. When a new track is detected in the room, it is clas-
sified as a person or object depending on the dimensions of the
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Fig. 21. Block diagram of the IMR system.

bounding cylinder. This classification is used to permanently
label each track. If classified as an object, the camera closest to
it takes the snapshot. If classified as a person, the camera with
the best view of the face needs to be selected. The snapshot is
then taken, and person identification is performed. Each person
track is labeled with the person’s name. Events are associated
with tracks labeled as people (person located in front of a white-
board, person in front of the whiteboard speaking, and person
located elsewhere speaking) and are easily detected using track
locations and identity of the current speaker.

B. Best-View Camera Selection

The best-view camera for capturing the face is the one for
which the angle between the direction the person is facing
and the direction connecting the person and the camera is the
smallest (Fig. 22). Center of the face is taken to be 20 cm
from the top of the head (which is given by the height of the
bounding cylinder). There are three different situations where
the best-view camera selection is performed. First is taking
snapshot of the face of the person that just entered the room.
Second, if the person in front of the whiteboard is speaking
a camera needs to focus on their face. The third situation is
when a person not in front of the whiteboard speaks. In these
three situations, we use different assumptions in estimating the
direction the person is facing.

When a person walks into the room, we assume that they
are facing the direction in which they are walking. If a person
is in front of a whiteboard (location of which is known), one
camera focuses on the whiteboard (Fig. 23). If the person starts
speaking, a best-view camera needs to be chosen from the
remaining cameras to focus on that person’s face. Since the
zoomed-in whiteboard image contains person’s head, we use
that image to estimate the direction the person is facing by the
method described in Section IV-B (Fig. 14). These estimates
are not very accurate, but we have found that this method works
quite reliably for purposes of best-view camera selection. In
the third case, where person elsewhere in the room is speaking,

&

L d

Fig. 22. Best-view camera is chosen to be the one the person is facing the most
(maximum inner product between the direction the object is facing and direction
toward a camera).

Fig. 23. Person standing close to the whiteboard draws attention from one
active camera.

we assume they are facing the person in front of the whiteboard
if one is present there. Otherwise, we assume they are facing
the opposite side of the room. By these assumptions, the first
image obtained with the chosen camera is processed for facing
direction and the camera selection is modified if necessary.

C. Active Camera Control

Pan and tilt angles needed to bring a known location to the
center of the image can be easily computed using the calibrated
camera parameters. However, the zoom center usually does not
coincide with the image center. Therefore, the pan and tilt angles
needed to direct the camera toward the desired location have to
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TABLE IV
EVENT LOG DATABASE FOR ACTIVITY ARCHIVING AND RECALL.
ENTRIES ARE LOGGED WHEN THERE IS CHANGE OF THE STATES.
(K = KOHSIA, I = IVANA; AND M = MOHAN)

Time Person ID Speech IMR state /
Stamp (Location) Activity Context
(# Occupants)
0 0 0 Vacant

1 K (3.3,0.2) 0
2 K (2.5,0.7) 0

Occupied (1)
Occupied (2)

1(3.3,0.2)

3 K(1.5,1.3) 0 Occupied (2)
1(4.1,0.5)

4 K (0.5,2.1) 0 Occupied (2)
1(5.2,0.8)

5 K (0.4, 2.0) K: Presenting Presentation (2)
1(5.2,0.8) I: Listening

8 K (0.4,2.1) K: Presenting Presentation (3)
1(5.2,0.9) I: Listening
M (3.3,0.2) M: Listening

11 K (04,2.1) K: Listening Discussion (3)
1(5.1,0.8) I: Speaking
M (5.2,2.5) M: Listening

15 K (04,2.0) K: Presenting Presentation (3)

1(5.3,0.8) I: Listening
M (5.4,2.9) M: Listening

20 K(05,22) 0 Occupied (3)
1(5.2,0.9)
M (5.5,3.0)

22 K(0.6,2.1) K: Listening Discussion (3)
1(5.2,0.8) I: Listening
M (5.5,3.1)  M: Speaking

be corrected by the pan and tilt angles between the center of the
image and the zoom center (C,, C,) as

¥ =M(n)[r—C,]+ C,
y' = M(n)[y— Cyl + Cy. )

Otherwise, for large magnifications, the object of interest may
completely disappear from view. A lookup table is used to se-
lect a zoom needed to properly magnify the object of interest
(person’s face or a whiteboard). Magnifications M (n) are com-
puted for a subset of possible zoom values defined by a chosen
zoom step. Magnifications for other zoom values are interpo-
lated from the computed ones. The magnifications are obtained
using a slightly modified version of [37]. Two images taken with
two different zoom values are compared by shrinking the one
taken with the larger zoom value. The value of magnification
(will be smaller than one) that achieves best match between the
two images is taken to be the inverse of the magnification be-
tween the two images. The absolute magnification for a certain
zoom value with respect to zero zoom is computed by multi-
plying the magnifications of the smaller zoom steps. The image
coordinates of the zoom center is determined manually by over-
laying a crosshair over the view from the camera and zooming
in and out until we find a point that does not move under the
crosshair during zooming.

Fig. 24. Graphical summarization interface of the IMR system for retrieval.
The horizontal plane is the floor plan of the meeting room, and the vertical
direct represents time. People’s tracks are color coded and plotted in a
spatial-temporal manner. Square dots are plotted if the person is speaking,
otherwise, circular dots are plotted. Interesting activities on person’s location
and speech activities trigger the attention from active cameras. Every object in
this graphical summarization is associated with information needed to access
the appropriate portion of video, face snapshots, and identity information.

D. Graphical Summarization/User Interface Module

The tracks, identities, and events are logged into a database as
shown in Table I'V and the audio and video are also recorded for
later retrieval. A summarization interface as shown in Fig. 24
is used for the user to do the retrievals. The horizontal plane is
the floor plan of the meeting room, and the vertical direct rep-
resents time. People’s tracks are color coded and plotted in a
spatial-temporal manner. Square dots are plotted if the person
is speaking, otherwise, circular dots are plotted. Interesting ac-
tivities on person’s location and speech activities trigger the at-
tention from active cameras. Every “object” in this graphical
summarization is associated with information needed to access
the appropriate portion of video, face snapshots and identity in-
formation. When user clicks on a circular dot, the snapshot and
identity of the person is shown. If a square dot is clicked, the
video clip of the speech interval is replayed. For remote viewing,
the videos from active cameras that capture interesting events
can be transmitted together with the other information needed
to constantly update the remote summarization graph.

Experimental trials confirm satisfactory performance of the
system. Person tracking module performed with maximum er-
rors around 200 mm. These experiments included five people
in the face and speaker databases, so the person identification
accuracy based on both modalities is 100% in most situations.
Also, recognition of the current speaker performs with nearly
perfect accuracy if silence in a speech clip is less then 20%
and clip is longer than 3 s. The results are very good for clips
with low silence percentage even for shorter clips, but results
deteriorate when silence is more than 50% of the clip. The si-
lence percentage and speech clip length can be fine-tuned by the
voice gate sensitivity. By increasing the voice gate threshold,
less silence is in the speech clip, and clips less than 3 s can be
discarded. However, there is an indispensable delay of 1-5 s
between the beginning of speech and the recognition of the
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speaker, which causes a delay in recognizing activities that are
concerned with the identity of the current speaker.

The face capture and pose estimation modules work flaw-
lessly when the moving person keeps the face in the direction
of the movement. Difficulties arises when a person turns the
head while walking. In this case, another camera is selected ac-
cording to the estimated face orientation and the current loca-
tion of the person as in Fig. 22. The camera selection for fo-
cusing on the face of the person that is talking in front of the
whiteboard succeeds around 85% of the time. In the case of the
person talking elsewhere in the room, our assumption that they
are facing the person in front of the whiteboard or the opposite
side of the room is almost always true. This is due to the room
setup—there is one large desk in the middle of the room and
people sit around it—therefore almost always facing the oppo-
site side of the room, unless they are talking to the presenter. If
exception happens, another camera can take over to capture the
speaker on the face orientation estimations.

VI. CONCLUDING REMARKS

In this paper, we presented a framework for efficiently an-
alyzing human activities in the environment, using networks
of static and active cameras. In the framework we developed,
information is extracted at multiple levels of detail depending
on the importance and complexity of activities suspected to be
taking place at different locations and time intervals. The envi-
ronment will be constantly monitored at a low resolution, en-
abling the system to detect certain activities and to estimate the
likelihood that other more complex activities are taking place at
specific locations and times. If such an activity were suspected,
to enable its accurate perception, a higher resolution image ac-
quisition and more sophisticated analysis algorithms would be
employed. The paper includes an overall system architecture
to support design and development of intelligent environments.
Details of panoramic (omnidirectional) video camera arrays,
calibration, video stream synchronization, and real-time cap-
ture/processing are discussed. Modules for multicamera-based
multiperson tracking, event detection and event-based servoing
for selective attention, voxelization, and streaming face recogni-
tion are also discussed. The paper includes experimental studies
to systematically evaluate performance of individual video anal-
ysis modules as well as to evaluate basic feasibility of an inte-
grated system for dynamic context capture and event based ser-
voing, and semantic information summarization.

The trend toward humans inhabiting intelligent or smart
spaces has already begun. This will continue as high per-
formance computing, high-speed communication links, and
multi functional sensory arrays are becoming available at low
cost. Integrating these modules to support natural interactions
with humans in real-world situations, is still an open research
problem especially from the systems engineering perspec-
tive. Satisfactory resolution of the research agenda for the
development of these novel human—machine systems not only
require efforts of the engineering community but also from the
cognitive science, human factors and psychology communities.
Such multidisciplinary efforts are already getting established,
and in the not too distant future, environments such as our au-
tomobiles, highways, conference rooms, hospitals, and homes,
would start displaying significant smartness in them.
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