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ARTICLE

Tricritical wings and modulated magnetic phases in
LaCrGe3 under pressure
Udhara S. Kaluarachchi1,2, Sergey L. Bud’ko1,2, Paul C. Canfield1,2 & Valentin Taufour1,3

Experimental and theoretical investigations on itinerant ferromagnetic systems under

pressure have shown that ferromagnetic quantum criticality is avoided either by a change of

the transition order, becoming of the first order at a tricritical point, or by the appearance of

modulated magnetic phases. In the first case, the application of a magnetic field reveals a

wing-structure phase diagram as seen in itinerant ferromagnets such as ZrZn2 and UGe2. In

the second case, no tricritical wings have been observed so far. Here, we report on the

discovery of wing-structure as well as the appearance of modulated magnetic phases in the

temperature-pressure-magnetic field phase diagram of LaCrGe3. Our investigation of

LaCrGe3 reveals a double-wing structure indicating strong similarities with ZrZn2 and UGe2.

But, unlike these simpler systems, LaCrGe3 also shows modulated magnetic phases similar to

CeRuPO. This finding provides an example of an additional possibility for the phase diagram

of metallic quantum ferromagnets.
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Suppressing a second-order, magnetic phase transition to
zero temperature with a tuning parameter (pressure,
chemical substitutions, magnetic field) has been a very

fruitful way to discover many fascinating phenomena in
condensed matter physics. In the region near the putative
quantum critical point (QCP), superconductivity has been
observed in antiferromagnetic1 as well as ferromagnetic (FM)
systems2–4. One peculiarity of the clean FM systems studied so far
is that the nature of the paramagnetic-ferromagnetic (PM-FM)
phase transition always changes before being suppressed to
zero temperature5: in most cases, the transition becomes of
the first order6–11. Recently, another possibility, where a
modulated magnetic phase (AFMQ) appears (spin-density wave,
antiferromagnetic order), has been observed in CeRuPO12, 13,
MnP14, 15, and LaCrGe316.

Several theories have been developed to explain those
possibilities17–26. When a FM transition becomes of the first
order at a tricritical point (TCP) in the temperature T pressure
p plane, the application of a magnetic field H along the
magnetization axis reveals a wing structure phase diagram in the
T-p-H space20, 27. This is seen in UGe228, 29 and ZrZn230 and is
schematically represented in Fig. 1a. This phase diagram shows
the possibility of a different kind of quantum criticality at the
quantum wing critical point (QWCP). In contrast with the
conventional QCP, symmetry is already broken by the magnetic

field at a QWCP. In the more recently considered case where the
transition changes to a AFMQ phase, no wing structure phase
diagram has been reported, but it is found that the AFMQ is
suppressed by moderate magnetic field12, 13. This second possible
T-p-H phase diagram has been schematically presented in a
recent review5 and reproduced in Fig. 1b.

Here, we report electrical resistivity measurements on LaCrGe3
under pressure and magnetic field. We determine the T-p-H
phase diagram and find that it corresponds to a third possibility
where tricritical wings emerge in addition to the AFMQ phase.
This type of phase diagram is illustrated in Fig. 1c: it includes
both the tricritical wings and the AFMQ phase. In addition, the
phase diagram of LaCrGe3 shows a double wing structure similar
to what is observed in the itinerant ferromagnets UGe231 and
ZrZn232, but with the additional AFMQ phase. LaCrGe3 is the first
example showing such a phase diagram.

Results
T-p phase diagram. Recently, we reported on the T-p phase
diagram of LaCrGe316, which is reproduced in Fig. 1d. At ambient
pressure, LaCrGe3 orders ferromagnetically at TC= 86 K. Under
applied pressure, TC decreases and disappears at 2.1 GPa. Near
1.3 GPa, there is a Lifshitz point33 at which a new transition line
appears. The transition corresponds to the appearance of a
modulated magnetic phase (AFMQ) and can be tracked up to 5.2
GPa. Muon-spin rotation (μSR) measurements show that
the AFMQ phase has a similar magnetic moment as the FM phase
but without net macroscopic magnetization16. In addition,
band structure calculations suggest that the AFMQ phase is
characterized by a small wave-vector Q and that several small Q
phases are nearly degenerate. Below the PM-AFMQ transition
line, several anomalies marked as gray cross in Fig. 1d can be
detected in ρ(T)16. These other anomalies within the AFMQ phase
are compatible with the near degeneracy of different Q-states
(shown as AFMQ and AFMQ′) with temperature and pressure
driven transitions between states with differing wavevectors.

In this article, we determine the three dimensional T-p-H
phase diagram of LaCrGe3 by measuring the electrical resistivity
of single crystals of LaCrGe3 under pressure and magnetic field.

FM1 and FM2 phases. Whereas most of the features in Fig. 1d
were well understood in ref. 16, we also indicate the pressure
dependence of Tx (dρ/dTmax) at which a broad maximum is
observed in dρ/dT below TC and shown as orange triangles in
Fig. 1d. At ambient pressure, Tx≈ 71 K. No corresponding
anomaly can be observed in magnetization16, internal field16 or
specific heat34. Under applied pressure, Tx decreases and cannot
be distinguished from TC (dρ/dTmid) above 1.6 GPa. As will be
shown, application of magnetic field allows for a much clearer
appreciation and understanding of this feature.

Figure 2a shows the anomalies at Tx and TC observed in the
electrical resistivity and its temperature derivative at 1.14 GPa.
For comparison, Fig. 2b shows ambient pressure data for UGe228

where a similar anomaly at Tx can be observed. In UGe2, this
anomaly was studied intensively35–37. It corresponds to a
crossover between two ferromagnetic phases FM1 and FM2 with
different values of the saturated magnetic moment35, 36. Under
pressure, there is a critical point at which the crossover becomes a
first-order transition, which eventually vanishes where a
maximum in superconducting-transition temperature is
observed2. In the case of LaCrGe3, we cannot locate where the
crossover becomes a first order transition, since the anomaly
merges with the Curie temperature anomaly near 1.6 GPa, very
close to the TCP. However, as we will show below, the two
transitions can be separated again with applied magnetic field
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Fig. 1 Temperature–pressure phase diagram. a Schematic T-p-H phase
diagram of a quantum ferromagnet: the paramagnetic-ferromagnetic
(PM-FM) transition becomes of the first order at a tricritical point (TCP)
after which there is a quantum phase transition (QPT) at 0 K. Tricritical
wings emerge from the TCP under magnetic field and terminate at quantum
wing critical points (QWCP). b Schematic T-p-H phase diagram of a
quantum ferromagnet when a modulated magnetic phase (SDW/AFM)
emerges from the Lifshitz point (LP). c New possible schematic T-p-H
phase diagram for which tricritical wings as well as a new magnetic phase
are observed. d T-p phase diagram of LaCrGe3 from electrical resistivity
measurements16 showing two FM regions (FM1 and FM2) separated by a
crossover. The solid lines are guides to the eye
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above 2.1 GPa. This is similar to what is observed in UGe2 where
the PM-FM1 and FM1-FM2 transition lines separate more and
more as the pressure and the magnetic field are increased.
Because of such similarities with UGe2, we label the two phases
FM1 and FM2 and assume that the anomaly at Tx corresponds to
a FM1-FM2 crossover. A similar crossover was also observed in
ZrZn232. In refs 18, 25, a Stoner model with two peaks in the
density of states near the Fermi level was proposed to account for
the two phases FM1 and FM2, reinforcing the idea of the itinerant
nature of the magnetism in LaCrGe3.

Field-dependent resistivity measurement under pressure. In
zero field, for applied pressures above 2.1 GPa, both FM1 and
FM2 phases are suppressed. Upon applying a magnetic field along
the c-axis, two sharp drops of the electrical resistivity can be
observed (Fig. 3a) with two corresponding minima in the field
derivatives (Fig. 3b). At 2 K, clear hysteresis of ΔH ~ 0.7 T can be
observed for both anomalies indicating the first order nature of
the transitions. The emergence of field-induced first-order
transitions starting from 2.1 GPa and moving to higher field as
the pressure is increased (Supplementary Note 1) is characteristic
of the FM quantum phase transition: when the PM-FM transition
becomes of the first order, a magnetic field applied along the
magnetization axis can induce the transition resulting in a wing
structure phase diagram such as the one illustrated in Fig. 1a.
In the case of LaCrGe3, evidence for a first order transition
was already pointed out because of the very steep pressure
dependence of TC near 2.1 GPa and the abrupt doubling of the
residual (T= 2 K) electrical resistivity16. In UGe2 or ZrZn2, the
successive metamagnetic transitions correspond to the PM-FM1
and FM1-FM2 transitions. In LaCrGe3, at 2 K, due to the
presence of the AFMQ′ phase at zero field, the transitions
correspond to AFMQ′-FM1 and FM1-FM2.

Determination of the wing structure phase diagram. As the
temperature is increased, the hysteresis decreases for both
transitions, as can be seen in Fig. 3c, d and disappears at a wing
critical point (WCP). Also, the transition width is small and
weakly temperature dependent below the WCP and it broadens
when entering in the crossover regime. Similar behavior has been
observed in UGe229. At 2.39 GPa for example, we locate the WCP
of the first-order FM1 transition around 13.5 K and the one of the
first-order FM2 transition around 12 K. At this temperature and

pressure, the transitions occur at 5.1 and 7.7 T, respectively. This
allows for the tracking of the wing boundaries in the T-p-H space
up to our field limit of 14 T. At low field, near the TCP, the wing
boundaries are more conveniently determined as the location of
the largest peak in dρ/dT (Supplementary Note 2).

The projections of the wings lines Tw(p, H) in the T-H, T-p,
and H-p planes are shown in Fig. 4a–c, respectively. The
metamagnetic transitions to FM1 and FM2 start from 2.1 GPa
and separate in the high field region as the pressure is further
increased. For the FM1 wing, the slope dTw/dHw is very steep
near H= 0 (Fig. 4a), whereas dHw/dpw is very small (Fig. 4c). This
is in agreement with a recent theoretical analysis based on the
Landau expansion of the free energy, which shows that dTw/dHw

and dpw/dHw are infinite at the TCP27. This fact was overlooked
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Fig. 3 Determination of wing critical point at 2.39 GPa. a Field dependence
of the electrical resistivity at 2, 13.5, and 30 K at 2.39 GPa with applied field
along the c-axis. Continuous and dashed lines represent the field increasing
and decreasing, respectively. When the continuous and dashed lines do not
overlap, there is indication for hysteresis. b Corresponding field derivatives
(dρ/dH). The curves are shifted by 15 μΩ cm T−1 for clarity. Vertical arrows
represent the minima. The transition width is determined by the full width
at half minimum as represented by horizontal arrows. Solid and open symbols
in a, b represent the transition fields for field increasing and decreasing
(squares for AFMQ-FM1 and circles for FM1-FM2). The blue cross symbols in
a, b represent the AFMQ-PM transition at this pressure. The temperature
dependence of the hysteresis width of Hmin1 and Hmin2 (solid symbols) are
shown in c, d (left axes). The hysteresis width gradually decreases with
increasing temperature and disappears at Tw corresponding to the wing
critical point (vertical red arrows). The right axes show the temperature
dependence of the transition widths (open symbols). Dashed lines are guides
to the eye. The width is small for the first-order transition and becomes
broad in the crossover region. The blue-color shaded area represents the first
order transition region, whereas the white color area represents the
crossover region. These allow for the determination of the wing critical
point of the FM1 transition at 13.5± 1.5 K, 2.39 GPa, and 5.1 T and the one
for the FM2 transition at 12± 1 K, 2.39 GPa and 7.7 T
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in the previous experimental determinations of the wing structure
phase diagram in UGe228, 29 and ZrZn230, but appears very clearly
in the case of LaCrGe3. In the low field region, there are no data
for the FM2 wing since the transition is not well separated from
the FM1 wing, but there is no evidence for an infinite slope near
H= 0. The wing lines can be extrapolated to QWCPs at 0 K in
high magnetic fields of the order of ~30 T (Fig. 4a) and pressures
around ~3 GPa (Fig. 4b).

Figure 4d shows the H-p phase diagram at low temperature
(T= 2 K). The magnetic field at the transition to the FM1 phase
increases rapidly, whereas the field suppressing the AFMQ′ phase
does not exceed 7 T. Above 2.5 GPa, the AFMQ′ and FM1 phases
are separated by a region corresponding to the polarized PM
phase. We note that a similar diagram where the wings extend
beyond the AFM phase was recently obtained theoretically in the
case of strong quantum fluctuations effects38. The similarity of
the H-p phase diagram at 2 K (Fig. 4d) and the projection of the
wings in the H-p plane (Fig. 4c) reveals the near vertical nature of
the wings.

T-p-H phase diagram of LaCrGe3. The resulting three-
dimensional T-p-H phase diagram of LaCrGe3 is shown in Fig. 5,

which summarizes our results (Several of the constituent T-H phase
diagrams, at various pressures, are given in Supplementary Fig. 3).
The double wing structure is observed in addition to the AFMQ

phase. This is the first time that such a phase diagram is reported.
Other materials suggested that there is either a wing structure
without any additional magnetic phase28–30, or a magnetic phase
without a wing structure12, 13. The present study illustrates a third
possibility where all such features are observed. The phase diagram
of LaCrGe3 and the existence of wings clearly establish that the
quantum phase transition from FM to AFMQ′ is of the first order. It
is plausible that the reason is the same as for the FM to PM
transition, but no theory is available for this case, as pointed out in a
recent review5. Another interesting aspect is the existence of the two
metamagnetic transitions (to FM1 and FM2) which suggests that
this might be a generic feature of itinerant ferromagnetism. Indeed,
it is observed in ZrZn2, UGe2, and LaCrGe3, although these are very
different materials with different electronic orbitals giving rise the
the magnetic states. We note that a wing structure has also been
determined in the PM compounds UCoAl39–41 and Sr3Ru2O7

42,
implying that a FM state probably exists at negative pressures in
these materials. Strikingly, two anomalies could be detected upon
crossing the wings in UCoAl (two kinks of a plateau in electrical
resistivity39, two peaks in the ac susceptibility41), as well as in
Sr3Ru2O7 (two peaks in the ac susceptibility42). These double fea-
tures could also correspond to a double wing structure.

Conclusions. To conclude, the T-p-H phase diagram of LaCrGe3
provides a distinct example of possible outcomes of FM quantum
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criticality. At zero field, quantum criticality is avoided by the
appearance of a new modulated magnetic phase, but the appli-
cation of magnetic field shows the existence of a wing structure
phase diagram leading towards QWCP at high field. These
experimental findings reveal insights into the possible phase-
diagrams of FM systems. The emergence of the wings reveals a
theoretically predicted tangent slope27 near the TCP, a fact that
was overlooked in previous experimental determination of phase
diagrams of other compounds because of the lack of data density
in that region. In addition, the double nature of the wings appears
to be a generic feature of itinerant ferromagnetism, as it is
observed in several, a priori, unrelated materials. This result
deserves further theoretical investigations and unification.

Methods
Sample preparation. Single crystals of LaCrGe3 were grown using a high-
temperature solution growth technique43, 44. A mixture of La, Cr, and Ge
with a molar ratio of La:Cr:Ge = 13:13:74 was premixed by arc melting. The
material was then placed in a 2-mL alumina crucible and sealed in a silica
ampoule under partial pressure of high purity argon gas. The sealed ampoule was
heated to 1100 °C over 3 h and held for 5 h. After that, it was cooled to 825 °C and
the remaining liquid was decanted using a centrifuge. Details about the crystal
growth procedure and sample characterization at ambient pressure is described
in ref. 34.

The resistivity measurements under pressure. The samples for the pressure
study were selected after ambient pressure characterization by the magnetization
and resistivity measurements. Temperature and field dependent resistance mea-
surements were carried out using a Quantum Design Physical Property Mea-
surement System from 1.8 to 300 K. The resistivity was measured by the standard
four-probe method with the current in the ab plane. Four Au wires with diameter
of 12.5 μm were spot welded to the sample. A magnetic field, up to 9 or 14 T, was
applied along the c-axis, which corresponds to the magnetization easy axis34, 45.

Two types of pressure cells were used for this experiment. A Be-Cu/Ni-Cr-Al
hybrid piston-cylinder cell, similar to the one described in ref. 46, was used for
pressures up to 2.1 GPa. A mixture of 4:6 light mineral oil: n-pentane46 used as a
pressure medium, which solidifies at ~3–4 GPa at room temperature47. For higher
pressures, a modified Bridgman cell48 was used to generate pressure up to 6 GPa. A
1:1 mixture of n-pentane:iso-pentane was used as a pressure medium. The
solidification of this medium occurs around ~6–7 GPa at room temperature47, 49.
For both cells, the pressure at low temperature was determined by the
superconducting transition temperature of Pb50 measured by the resistivity.

The resistivity measurement under pressure at zero field is described in ref. 16.

Data availability. The data that support the findings of this study are available on
request from the corresponding authors.

Received: 4 November 2016 Accepted: 23 June 2017
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