
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Branch-and-Cut for Nonlinear Power Systems Problems

Permalink
https://escholarship.org/uc/item/7nh5p9ff

Author
Chen, Chen

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nh5p9ff
https://escholarship.org
http://www.cdlib.org/

Branch-and-Cut for Nonlinear Power Systems Problems

by

Chen Chen

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering / Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shmuel S. Oren, Chair
Professor Alper Atamtürk

Professor Kameshwar Poolla

Fall 2015

Branch-and-Cut for Nonlinear Power Systems Problems

Copyright 2015
by

Chen Chen

1

Abstract

Branch-and-Cut for Nonlinear Power Systems Problems

by

Chen Chen

Doctor of Philosophy in Engineering / Industrial Engineering and Operations
Research

University of California, Berkeley

Professor Shmuel S. Oren, Chair

This dissertation is concerned with the design of branch-and-cut algorithms for
a variety of nonconvex nonlinear problems pertaining to power systems operations
and planning. By understanding the structure of specific problems, we can lever-
age powerful commercial optimization solvers designed for convex optimization and
mixed-integer programs. The bulk of the work concerns the Alternating Current
Optimal Power Flow (ACOPF) problem. The ACOPF problem is to find a mini-
mum cost generation dispatch that will yield flows that can satisfy demand as well
as various engineering constraints. A standard formulation can be posed as a non-
convex Quadratically Constrained Quadratic Program with complex variables. We
develop a novel spatial branch-and-bound algorithm for generic nonconvex QCQP
with bounded complex variables that relies on a semidefinite programming (SDP)
relaxation strengthened with linear valid inequalities. ACOPF-specific domain reduc-
tion or bound tightening techniques are also introduced to improve the algorithm’s
convergence rate. We also introduce second-order conic valid inequalities so that any
SDP can be outer-approximated with conic quadratic cuts and test the technique on
ACOPF. Another application is the incorporation of convex quadratic costs in unit
commitment, which is a multi-period electric generation scheduling problem. We
show that conic reformulation can both theoretically and practically improve per-
formance on this mixed-integer nonlinear problem. We conclude with methods for
approximating a mixed-integer convex exponential constraint. Applications include
capital budgeting, the system reliability redundancy problem, and feature subset
selection for logistic regression.

i

To my family. It is thanks to their support and encouragement that I have had the
privilege to spend the last five years pursuing my curiousity.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Overview 1
1.1 Optimization . 1
1.2 Convex Optimization . 2
1.3 Branch-and-Bound . 4
1.4 Relaxations and Cuts . 7
1.5 Chapter Summaries . 9

2 Spatial Branch-and-Cut for Complex Bounded QCQP 11
2.1 Introduction . 11
2.2 Spatial Branch-and-Cut . 13
2.3 Computational Experiments . 29
2.4 Conclusion . 37

3 Bound Tightening for the Alternating Current Optimal Power
Flow Problem 38
3.1 Introduction . 38
3.2 Formulations . 40
3.3 New Instances With Large Duality Gap 41
3.4 Bound Tightening Procedures for ACOPF 43
3.5 Computational Experiments . 52
3.6 Conclusion . 53

4 Sparse Cuts for a Positive Semidefinite Constraint 55
4.1 Linear Valid Inequalities . 55

iii

4.2 Second-Order Cone Valid Inequalities 56
4.3 Positive Semidefinite Completion . 63
4.4 Computational Experiments . 66
4.5 Conclusion . 71

5 Unit Commitment with Quadratic Costs 72
5.1 Introduction . 72
5.2 Formulation . 73
5.3 Quadratic Costs and Conic Reformulation 75
5.4 Computational Experiments . 76
5.5 Conclusion . 78

6 On Mixed-Integer Geometric Programming 79
6.1 Introduction . 79
6.2 Outer-Approximation of the Exponential Constraint 80
6.3 Submodular Inequalities . 84
6.4 Application: Capital Budgeting . 86
6.5 Application: System Reliability Redundancy 91
6.6 Application: Feature Subset Selection for Logistic Regression 95
6.7 Conclusion . 97

7 Conclusion 98
7.1 Summary . 98
7.2 Extensions: Applications . 99
7.3 Extensions: Methodology . 99

A Appendix 102
A.1 Creating Bounds for CSDP from CQCQP 102

Bibliography 104

iv

List of Figures

2.1 Clockwise, starting from top-left: JR; cone of (2.12a), upper bound
of (2.12b), and lower bound of (2.12c); cone of (2.12a) and valid inequal-
ity (2.6a); cone of (2.12a) and valid inequality (2.6b). 25

6.1 y ∗ (1− log(y)) . 89

v

List of Tables

2.1 Comparison of branching rules using CSDP for ACOPF 33
2.2 Comparison of branching rules using CSDP+VI for ACOPF 33
2.3 Comparison of relaxations on BoxQP instances 34
2.4 Comparison of branching rules with SDP+RLT relaxation on BoxQP . . 35
2.5 Comparison of branching rules with SDP+VI relaxation on BoxQP . . . 36

3.1 Comparison with and without bound tightening 53
3.2 Breakdown of time spent (seconds) . 54
3.3 Comparison of branching rules using CSDP+VI and bound tightening for

ACOPF . 54

4.1 Solution times (s) . 68
4.2 Relaxation Optimum as Percent of Best Primal Optimum 68
4.3 Clique Size Distribution . 68
4.4 Capturing the Strength of 2x2 Complex PSD Inequalities 70
4.5 Adding PSD Cuts to the 2× 2 Relaxation 70

5.1 Unit Commitment with Varying Quadratic Cost Coefficients 77

6.1 Exponential Approximation Error (percent) 83
6.2 Replicated Capital Budgeting Instances: B&B data 87
6.3 Replicated Capital Budgeting Instances: Gaps 88
6.4 Gradient cuts on small instances . 91
6.5 α = 1, β = 0.5,m = 25, n = 25 . 91
6.6 Reliability Instances . 94

vi

Acknowledgments

I have had the honour of working with two tremendous advisors: Professors Alper
Atamtürk and Shmuel Oren. Professor Oren, being part of your lab has felt like being
part of a family. The impact of your work in the energy industry is inspiring, and
your opinions have been invaluable throughout my research. Professor Atamtürk,
thanks to your mentorship I’ve learned to develop a critical eye that will help me
throughout my life. Your input has always been spot-on, and I hope one day to
attain your level of discernment. I would also like to thank the other members of
my qualifying and dissertation committee: Professors David Tse, Ilan Adler, and
Kameshwar Poolla.

My family’s support has played a major part in helping me complete this disser-
tation. My love and gratitude to my parents, Xiu Hong and Zhi Qing, is beyond
words. My brother Tao and his wife Linh have always been there for me. In turn,
I will look out for the newest additions to our family: my niece Julia and nephew
Reynard.

One of the fascinating things about academia is the great diversity in approaches
to research. I have tried my best to learn from the masters; I would like to mention
a few here. Classes and discussions with Professor Ilan Adler showed me the tremen-
dous power and elegance of understanding and organizing topics using a handful of
core mathematical principles. Much of my work so far has been groping in the dark,
but I aim to develop this kind of theoretical maturity in time. Similarly, Professor
Papadimitriou’s class on Algorithmic Game Theory was a profound experience. His
level of intuition allows him to have a poetic understanding of complexity, and it
opened my eyes to see how theory in one field could meaningfully impact another.
Professors Andrew Lim and Max Shen were always eager to discuss ideas, and I am
grateful for the inspiration that they provided, particularly in my first year. Pro-
fessors outside Berkeley who have provided helpful guidance and mentorship include
Daniel Bienstock at Columbia and professors Roy Kwon and Timothy Chan from
my alma mater, the University of Toronto.

Perhaps the greatest benefit of studying at Berkeley is day-to-day interaction
with fellow graduate students. I have learned so much from my fellow students,
and virtually every idea herein has been sanity-checked by at least one of you. From
Alper’s lab: Andreas Gomez, Avinash Bhardwaj, Birce Tezel, Carlos Deck, Qi Zhang,
and Peng Yi. From Shmuel’s lab: Anthony Papavasiliou, Clay Campaigne, Kory
Hedman, Jiaying Shi, Paula Lipka, Ruoyang Li, Tanachai Limpaitoon, and Zhu
Yang. I thank you for being there, for the many shared trials and tribulations, long
days and late nights. Thanks to some other IEOR graduate students for the good

vii

times and compelling discussions: Amber Richter, Animesh Garg, Auyon Siddiq,
Evan Davidson, Rebecca Sarto, Stewart Liu, Tucge Gurek, and Yong Liang.

In the summer of my first year I went to the Federal Energy Regulatory Commis-
sion to work with the chief economic adviser, Dr. Richard O’Neill. With his support
and guidance I developed the initial seeds of many of the ideas in this thesis. He is
a tremendous person and I have learned a great deal from him and from the rest of
his team: Anya Castillo, Brian Marrs, Eric Krall, Mary Cain, Thomas Dautel.

I would like to thank my friends for being there for me, both personally, and for
bouncing off research ideas. My roommates: Michael Kim, Shelly Manber, Clement
Camp, and Yonatan Mintz. My friends from the economics department: Casper
Jørgensen, David Birke, Eric Auerbach, Jeffrey Kang, Jordan Ou, Kaushik Krish-
nan, Marion Aouad, Mikkel Sølvsten, Sandile Hlatshwayo, Vincenzo Pezone, Waldo
Tekempa. Among those friends but not in the department are Lene Sønder and
Sylvan Herskowitz. I lived in the International House in my first year, and have
made lifelong friends there, including: Andrew Critch, Daniel Hogan, Jeff Schauer,
Michael Pacer, and Mahendra Prasad. I also cannot forget my roots, my friends from
Toronto, including: Igor Nikiforovski, Ines Fernandez, Jonathan Lu, Justin Shum,
Marc Tyndel, Mark Jeffrey, Paolo del Puerto, Ronald Lo, Velibor Misic, and Xavier
Tang.

Finally, this research would not be possible without funding from the following
organizations: the PGS scholarship from NSERC, and research funding from the
NSF, the Department of Defense, and FERC.

1

Chapter 1

Overview

This dissertation is concerned with the design of algorithms for nonlinear noncon-
vex optimization problems that arise in power systems planning and operations. The
general philosophy is to adopt tried-and-true techniques for branch-and-cut in mixed-
integer linear programming (MILP) and extend them to nonlinear problems. The
intention is to develop practical methods by crafting tools around problem-specific
structures. These structures come from various applications that are relevant to the
power industry, such as electric generation scheduling and dispatch, and reliability
planning. Power systems engineering is a rich field of study in its own right, but dis-
cussion throughout will be primarily centered around the design of algorithms. The
remainder of this overview will provide some background on topics in optimization
relevant to the dissertation, as well as a summary of the remaining chapters. Some
familiarity with computational complexity theory, graph theory, and linear algebra is
assumed of the reader. Applying complexity theory, which is classically built around
decision problems, to optimization problems may require some modest additional
background; the reader is referred to De Klerk [45] on this matter.

1.1 Optimization

We shall adopt the mathematical programming perspective of optimization:

minimize f(x) (1.1a)

subject to gj(x) ≤ 0,j = 1, 2, ...,m, (1.1b)

x ∈ Ω. (1.1c)

CHAPTER 1. OVERVIEW 2

x is an n-dimensional decision vector of unknowns, and f, gj, j = 1, 2, ...,m are
real-valued functions of x. Ω is a subset of n-dimensional space, typically Rn in
the case of nonlinear programming (e.g. [106]), or Rk × Zl, k + l = n in the case
of mixed-integer programming (e.g. [115]). A solution x is said to be feasible if
it satisfies the constraints (1.1b)-(1.1c), and a problem instance is feasible if there
exists a feasible solution. Let z∗ = inf{f(x)|gj(x) ≤ 0 ∀j, x ∈ Ω}, and suppose
we are given an optimality tolerance parameter ε > 0. An optimization problem is
solved when one of three conditions can be proven: 1) an ε-optimal solution is found,
which is a feasible solution x∗ε such that f(x∗ε) ≤ z∗ + ε; 2) the problem is shown to
be unbounded, z∗ = −∞; 3) the problem is shown to be infeasible, z∗ = +∞.

The problem as posed cannot be solved in general. For instance, one can set
Ω = Zn, f = 0, m = 2 and let g1 be a polynomial function with integer coeffi-
cients and let g2 = −g1. This is Hilbert’s tenth problem, which is undecidable [44].
Even with restrictions to ensure solvability one can face difficulties with computa-
tional scalability. For instance, solving the pure integer linear programming problem,
where f, gj are linear with rational coefficients and Ω = Zn, is strongly NP-complete
[127]. Hence there is a tradeoff between expressivity and computational tractability.
In practice, one may forego the stringent requirements of solving. One concession
is to set high optimality tolerance parameter. In the case of nonconvex nonlinear
constraints one may also need to sacrifice feasibility, and accept instead feasibility
to within some numerical tolerance (e.g. [26]). Classical nonlinear programming is
centered on analysis regarding convergence towards a local optimal, as characterized
by the Karush-Kuhn-Tucker conditions, which is a weaker notion than global opti-
mality (e.g. [106]). Hence an optimization algorithm may be described as global to
distinguish it from a local or heuristic method that does not guarantee convergence
to ε-optimality. Mixed-integer programming research is more concerned with global
optimization of NP-hard problems, and so algorithms with poor theoretical worst-
case convergence rates may be adopted provided they have practical performance.
The next section will describe a broad class of problems that are computationally
tractable for a given global optimality and feasibility tolerance.

1.2 Convex Optimization

Consider the convex optimization problem:

min cTx (1.2a)

s.t. x ∈ C. (1.2b)

CHAPTER 1. OVERVIEW 3

We have a linear objective function (1.2a) with coefficients c ∈ Rn, and C is a
closed convex domain in Rn. This problem is NP-hard in general (e.g. [48]), but
if some mild assumptions about C hold the problem can be solved by algorithms
that run in polynomial-time with respect to a fixed ε [32]. Among these algorithms
are interior point methods (e.g. [117]), which have good practical performance. For
certain types of convex optimization problems interior point methods can guaran-
tee an ε-optimal solution in time polynomial in the bit-size of the problem data and
log(1/ε) [116]. A standard description of such problems would involve conic program-
ming (e.g. [117]), as the primal-dual interior point method leverages conic duality.
However for brevity we shall avoid this theoretical route and focus instead on model-
ing structure. Consider the conic geometric program, a type of convex optimization
problem:

(CGP) : min cTx (1.3a)

s.t. A0x+ b0 ≥ 0, (1.3b)

‖Ajx+ bj‖2 ≤ dTj x+ hj, j = 1, ...,m, (1.3c)

Q
(k)
0 +

n∑
i=1

xiQ
(k)
i � 0, k = 1, ..., p, (1.3d)

exp(uT` x− s`) ≤ rT` x+ t` ` = 1, ..., q. (1.3e)

Constraints (1.3b) are linear inequality constraints, with A0 ∈ Rm×n, b0 ∈ Rm

and ≥ representing an element-wise inequality. If only linear constraints used, then
we have the linear programming (LP) problem. LP can be solved exactly (ε = 0) in
polynomial time [79, 76] in the bit-model of the problem.

Constraints (1.3c) are second-order cone or conic quadratic constraints, where
the data are of appropriate dimensions, Aj ∈ Rm×n, bj, dj ∈ Rn, hj ∈ R ∀j, and ‖.‖2
denotes the Euclidean norm. If we restrict ourselves to constraints of type (1.3c),
then we have a Second Order Cone Programming (SOCP) or Conic Quadratic Pro-
gramming problem. Note that linear inequalities are a special case where Aj, bj have
all zero entries, so SOCP includes LP as a special case. Second-order cone con-
straints can be used to model convex quadratic constraints. A variety of nonconvex
constraints (see [101, 7]) can be modeled with SOCP, often using transformation
with the rotated second-order cone:

u2 ≤ v1v2, v1, v2 ≥ 0⇐⇒ ||(2u, v1 − v2)|| ≤ v1 + v2.

Constraints (1.3d) are linear matrix inequalities. We have symmetric real data

matrices Q
(k)
i ∈ Sn ∀i, k, and a condition � 0 that the weighted sum of Q matrices

CHAPTER 1. OVERVIEW 4

be positive semidefinite. If only linear matrix inequalities are used for constraints,
then we have a semidefinite programming problem (SDP) in inequality form. SDP
can be used to model second-order cone constraints (e.g. [147]), so SDP generalizes
both LP and SOCP. The equality form of SDP uses a matrix of decision variables:

(SDP) : min 〈C,X〉
s.t. 〈Q(k), X〉 = bk, k = 1, ..., p

X � 0

〈., .〉 denotes the trace operator. Any SDP in equality form can be transformed
to inequality form and vice-versa (e.g. [163, p. 5]).

Constraints (1.3e) are a generalization of the canonical constraints of geometric
programming in convex form, where the right-hand side is a constant. The convex
exponential constraint can be used to model risk (e.g.[13]), economic utility (e.g.
[5]), and a host of engineering problems after some transformations (e.g. [41, 33]).

Chandrasekaran and Shah [37] show that an interior point method can solve CGP
in polynomial-time, provided there exists a strictly feasible point, that is ∃x ∈ int(C).
This is a standard constraint qualification for the nonlinear problems SOCP, SDP,
and GP that ensures interior-point method convergence. Infeasibility can be de-
tected by interior point methods in polynomial time provided the problem is strictly
infeasible [118], i.e remains infeasible after a small perturbance in the data. In SDP,
for instance, a weakly feasible problem is one for which the feasible set is empty, but
for any ε > 0 there exists Xε � 0 such that |〈Q(k), Xε〉 − bk| ≤ ε ∀k. The complexity
of detecting weak-infeasibility in SDP is an open question (e.g. [84, 128]).

Note that CGP is not an exhaustive example, as there are other types of con-
straints amenable to interior point (e.g. [116]). Moreover, interior point is not the
only polynomial-time algorithm available for these problems. For instance, similar
convergence results for solving a strictly feasible or strictly infeasible problem apply
to the ellipsoid method [56].

1.3 Branch-and-Bound

Branch-and-bound is an algorithmic framework for optimization that was first pro-
posed by Land and Doig [90] for integer linear programming . The method re-
lies on a branching rule, which for a given set S will split the region into subsets
S1, S2, ..., Sn ⊆ S so that

⋃n
i=1 Si = S. Denote S

(1)
1 to be the set of feasible solutions

for the optimization problem to be solved, and denote S
(1)
1 , S

(1)
2 , ..., S

(1)
n to be the

CHAPTER 1. OVERVIEW 5

subsets produced by branching. Recursive application of branching on S
(1)
1 will pro-

duce a search tree, where each child node has a different subset of the parent node’s
feasible set, and the initial or root node has S

(1)
1 . The superscript of S denotes the

depth of the search tree, and the subscript denotes the order in which the node was
generated with respect to its depth.

We also require bounding procedures that will provide an upper bound (z∗U(S))
with associated solution x∗U(S) and lower bound (z∗L(S)) on z∗(S) = inf{f(x)|x ∈ S}.
We can, for instance, trivially set z∗U(S) = z∗L(S) = f(x), x∗U(S) = x if S is a singleton,
and z∗U(S) = +∞, x∗U(S) = ∅, z∗L(S) = −∞ otherwise. Suppose the branching rule

forms a partition and S
(1)
1 is itself finite. Then, provided f is computable to arbitrary

numerical precision, the problem can be solved in finite time by complete enumeration
of the leaf nodes of a search tree of sufficient depth. This is a brute-force or exhaustive
search. Denote z∗GUB to be the least upper bound encountered at any node of the
search tree. The refinement of branch-and-bound is that we may be able avoid certain
branches. If at any node we have z∗L(S

(i)
j) + ε > z∗GUB, then branching is no longer

needed, and the node is said to be pruned and is added to the leaf node set F . Thus
a good lower and upper bound function will result in a smaller search tree, resulting
in implicit rather than complete enumeration. Note that a global lower bound z∗GLB
on the optimal objective z∗(S

(1)
1) is obtained from z∗GLB = max{z∗L(S)|S ∈ F}. Any

node that has not been pruned or branched on is in the set of live nodes, N . Each
iteration of branch-and-bound selects a live node to prune or branch on; common
node selection or tree traversal rules are depth-first search and breadth-first search
using z∗L(S) as the criterion. An outline of branch-and-bound follows:

CHAPTER 1. OVERVIEW 6

1. GET S
(1)
1

SET z∗GUB := z∗U(S
(1)
1), x∗GUB := x∗U(S

(1)
1), z∗GLB = −∞,N = S

(1)
1 ,F = ∅

2. DETERMINE with node selection rule a live node S
(j)
k

3. N := N /S(j)
k

COMPUTE bounds x∗U(S
(j)
k), z∗U(S

(j)
k), z∗L(S

(j)
k)

IF z∗U(S
(j)
k) < z∗GUB

z∗GUB := z∗U(S
(j)
k), x∗GUB := x∗U(S

(j)
k)

ENDIF

IF z∗L(S
(j)
k) + ε ≤ z∗GUB

BRANCH: N := N
m⋃
r=`

S(j+1)
r

ELSE

PRUNE: F := F ∪ S(j)
k

ENDIF

4. IF N 6= ∅
GO TO 2

ELSE

SET z∗GLB := max{z∗L(S)|S ∈ F}
PRINT x∗GUB, z

∗
GUB, z

∗
GLB

ENDIF

Practical termination criteria can also be added due to limitations of time and
space. Typical rule include pruning all nodes past a certain depth, and pruning all
nodes after a time or memory limit has been reached.

We have so far avoided specifics regarding how one should implement branching
and bounding. There are many possible branching and node selection rules (e.g.
[2, 19]), and the correct choice depends on the nature of the problem, especially
the types of constraints used. However, the corresponding theoretical analysis of
branching is relatively limited (e.g. [170, 93]), so it remains perhaps more of an
art than a science. The literature on finding upper bounds is truly vast, as any
algorithm that is intended to produce a feasible solution can be employed. In mixed-
integer programming a standard approach is to use rounding heuristics (e.g. [1]).

CHAPTER 1. OVERVIEW 7

However, other possibilities for branch-and-bound include metaheuristics (e.g. [82,
132]), problem-specific greedy algorithms (e.g. [38]), or iterative algorithms designed
for nonlinear programming. Furthermore, there is also the question of when to
calculate a new upper bound (at every node, every k nodes, etc.). Lower bound
calculation in branch-and-cut is typically performed by solving relaxations, to be
discussed in the next section.

Branch-and-bound can combined with other approaches to form a hybrid algo-
rithm. For instance, since branch-and-bound is a search procedure, then reduction
of the search space (the root problem’s feasible set) can speed up convergence. It

is not necessary to set the root problem S
(1)
1 as the set of feasible solutions; it suf-

fices to have a set include at least one ε-optimal solution (should one exist). This is
known as preprocessing, where work is done on the root problem before expanding
the search tree. A constraint programming [136] algorithm, for instance, may be
able to solve the optimization problem on its own, but it can also be employed to
partially reduce the domain during preprocessing and pass the remaining problem to
branch-and-bound (e.g. [3]). Reduction of the problem domain can be applied at any
node, and the resulting algorithm can be called branch-and-reduce [139]. One can
also decompose the initial problem in terms of its variables, including variables as
needed in a method called branch-and-price [18]. Constraints can also be introduced
as needed along the search tree in a procedure called branch-and-cut (e.g. [125]).

1.4 Relaxations and Cuts

As discussed in Section 1.3, a good lower bound helps to speed up the search for an
ε-optimal upper bound. It will simplify the presentation to consider a problem with
linear objective function: z∗S := inf{cTx|x ∈ S}, S ⊆ Rn. For general optimization
this is without loss of generality as we can always replace the objective function with
a new variable xn+1 and the constraint f(x) ≤ xn+1. Let us define a relaxation of
the problem as z∗R := inf{cTx|x ∈ R} when R ⊇ S. It is clear that a relaxation
provides a lower bound, i.e. z∗R ≤ z∗S. A relaxation can be strengthened with valid
inequalities, which are constraints that are satisfied by every point in S. A cut is
a constraint removes at least one point from R, and is assumed to be valid unless
stated otherwise.

The relaxation should be computationally tractable if it is to be incorporated into
branch-and-cut. From Section 1.2 we know that a broad class of convex optimization
problems can be solved in polynomial-time. The convex hull of a subset S ⊆ Rn,
denoted conv(S) is the intersection of all convex sets that contains S. It is therefore
the strongest possible convex relaxation. The closed convex hull clconv(S) is simply

CHAPTER 1. OVERVIEW 8

the closure of the convex hull, and the convex hull of any compact set is closed. If S
is compact we have z∗S = inf{cTx|x ∈ clconv(S)} (see [83]). Thus for lower bounding
it is sufficient to consider convex relaxations.

Convexity is still not sufficient for tractability; as noted earlier convex problems
can be NP-hard. With MILP there is an important representation theorem due to
Meyer [109]. Consider the mixed-integer set M := {(x, y)|Ax + Gy ≤ b, x ∈ Rk, y ∈
Z`}, where A,G, b are rational matrices of appropriate dimension. The convex hull
of M can be represented with a rational polyhedra, i.e. there exist rational A′, G′, b′

such that conv(S) = {A′x + G′y ≤ b′}. For a broad class of polynomial programs
[120], i.e. f, g, polynomial and Ω = Rn, the convex hull of the feasible region can
be represented using additional variables with SDP via the Lasserre hierarchy [91].
However, representability is not sufficient for tractability, as there may be a large
number of constraints and/or variables involved. Furthermore, there may not be an
efficient procedure to generated the hull. For instance, with MILP one cannot in
general represent the convex hull of M with a polynomial-sized linear program (e.g.
[52, 137]).

A saving grace is that a full description of a convex hull is not required to optimize
over it. We can, for instance, solve a relaxation and obtain a solution x∗R ∈ R, and
apply a separation algorithm over conv(S). If x∗R /∈ S, then the separation algorithm
returns a separating cut: a valid inequality g(x) ≤ 0 such that g(x∗R) > 0. The cut is
added to the relaxation and the procedure is iterated — this is known as a cutting
plane algorithm. Kelley [78] introduced linear cuts for convex constraints, thereby
solving a convex problem using linear programming and a cutting plane algorithm.
Later analysis provided an important characterization of this approach: a convex
problem can be solved to ε-optimality if and only if linear separation can be done at
fixed accuracy in polynomial time (see Thm 3.1 in [64]). One example of a problem
with exponential-sized description but polynomial separation is the minimization of
submodular functions [50, 104].

Cuts can be applied at any node of the branch-and-bound tree, and for MILP
a host of cuts are available (e.g. [28]). There is a tradeoff between the breadth
of applicable problems, the difficulty of generating cuts, and the strength of cuts.
Furthermore, there is a choice of where to apply cuts in the tree, how many to
add, and whether to purge cuts that are not binding in subproblems. For instance,
Gomory’s cutting plane algorithm [60] will solve pure integer linear programs in finite
time, so it is a global algorithm that can be hybridized with branch-and-bound to
form branch-and-cut. Cuts for mixed-integer convex problems have been developed
more recently, so there are fewer results than in MILP (e.g. [12, 35]). Cuts for
continuous nonconvex nonlinear constraints (e.g. [25, 142]) are rarer still; work has
mostly focused on cuts for convex envelopes (e.g. [156, 155]).

CHAPTER 1. OVERVIEW 9

1.5 Chapter Summaries

Chapter 2 describes a spatial branch-and-cut approach for nonconvex Quadratically
Constrained Quadratic Programs with bounded complex variables (CQCQP). Linear
valid inequalities are added at each node of the search tree to strengthen semidefinite
programming relaxations of CQCQP. These valid inequalities are derived from the
convex hull description of a nonconvex set of 2 × 2 positive semidefinite Hermitian
matrices subject to rank-one constraint. Branching rules are proposed based on an
alternative to a rank-one constraint that allows for local measurement of constraint
violation. The algorithm is applied to solve the Alternating Current Optimal Power
Flow problem with complex variables and the Box-constrained Quadratic Program-
ming problem with real variables.

Chapter 3 builds on Chapter 2 with focus on the Alternating Current Optimal
Power Flow (ACOPF) problem. ACOPF may be solved to global optimality with
a semidefinite programming (SDP) relaxation in cases where its QCQP formulation
attains zero duality gap. However, when there is positive duality gap, no optimal so-
lution to the SDP relaxation is feasible for ACOPF. One way to find a global optimum
is to partition the problem using a spatial branch-and-bound method. Tightening
upper and lower variable bounds can improve solution times in spatial branching by
potentially reducing the number of partitions needed. This chapter proposes special-
purpose closed-form bound tightening methods to tighten limits on nodal powers,
line flows, phase angle differences, and voltage magnitudes. Variants of IEEE test
cases with high duality gaps are constructed in order to demonstrate the effectiveness
of the bound tightening procedures.

In Chapter 4 we develop second-order cone cuts for a positive semidefinite con-
straint on a Hermitian matrix. These can be implemented in a sparse manner, which
is important for applicability to the SDP relaxation of ACOPF. We provide an in-
depth discussion on sparsity in SDP relaxations. These cuts allow one to trade-off
the strength of the SDP relaxation with the computational expense. Second-order
cone cuts are better able to capture the nonlinearity of the positive semidefinite
constraint compared to standard outer-approximating linear cuts. Moreover, com-
mercial solvers can solve mixed-integer conic problems, so this has the potential to
be used to solve mixed-integer problems with power flow constraints.

Chapter 5 is on the Unit Commitment problem, which is an important scheduling
problem in power systems operations. Recent advances in mathematical program-
ming have significantly improved the tractability of Mixed Integer Second-Order
Cone Programming (MISOCP). In this chapter we leverage MISOCP to solve Unit
Commitment problem with quadratic costs. We show that conic strengthening can
improve solution times by strengthening the relaxation.

CHAPTER 1. OVERVIEW 10

In Chapter 6 we consider Mixed-Integer Geometric Programming (MIGP), which
is an integer programming problem with convex constraints that involve the ex-
ponential function. It can be used to model a variety of physics and engineering
problems, as well as risk constraints and exponential utility. A generic approach
to solving MIGP is to treat it as a mixed-integer convex problem and apply lin-
ear outer-approximation techniques. We consider two additional approaches that
are applicable to bounded MIGP and compare them with the benchmark linear
outer-approximation. First, we consider conic outer-approximation of an exponen-
tial function with bounded domain. Second, we apply cuts that exploit submodular
structure. We test our approach on three applications: a capital budgeting problem,
the classic system reliability redundancy problem, and a logistic regression problem
with cardinality.

Chapter 7 concludes the dissertation and presents future research directions.

11

Chapter 2

Spatial Branch-and-Cut for
Complex Bounded QCQP

2.1 Introduction

The nonconvex quadratically-constrained quadratic programming problem with com-
plex bounded variables (CQCQP) has numerous applications in signal processing
[162, 46, 71] and control theory [22], among others. Our main motivation for de-
veloping an algorithm for CQCQP is to solve power flow problems with alternating
current [92, 73]. We consider the following formulation of CQCQP:

minx∗Q0x+ Re(c∗0x) + b0

(CQCQP) s.t. x∗Qix+ Re(c∗ix) + bi ≤ 0, i = 1, ...,m

` ≤ x ≤ u

x ∈ Cn.

We denote the conjugate transpose operator by ∗, and real components with Re(·) and
imaginary components with Im(·). The decision vector x ∈ Cn has complex entries,
and the remaining terms are data: Hermitian matrices Qi ∈ Hn×n, real vector b ∈ Rn,
and complex vector ci ∈ Cn. Note that we need only assume that the magnitudes
|xi| are bounded since this implies that the real and imaginary components of x are
bounded. Variable bounds ` ≤ x ≤ u are component-wise inequalities in the complex
space.

Real bounded QCQP (RQCQP) is a special case of CQCQP as all imaginary
components can be set to 0 using the constraints Re(ıxi) = 0 ∀i, where ı :=

√
−1.

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 12

Note that CQCQP can be transformed into RQCQP by defining separate real decision
vectors to represent Re(x) and Im(x). However, we consider the CQCQP formulation
as presented in order to exploit its particular structure, from which we derive valid
inequalities and spatial branching rules.

In this chapter we give a spatial branch-and-cut (SBC) approach to solve CQCQP.
For brevity we assume familiarity with the general spatial branching framework; the
reader is referred to Belotti et al. [19] for a thorough treatment on the subject. There
are several spatial branching algorithms exploiting the structure of RQCQP (e.g. [99,
110, 135, 17, 130]); however, to the best of our knowledge we present the first spa-
tial branching algorithm developed specifically for CQCQP. The implementation has
three distinguishing features. First, we use a complex SDP formulation strength-
ened with valid inequalities. These inequalities are derived from the description of
the convex hull of a nonconvex set of 2 × 2 positive semidefinite Hermitian matri-
ces subject to rank-one constraint that arises from a lifted formulation of CQCQP.
Second, we propose branching on the entries of the relaxation’s decision matrix, and
we consider branching rules based on an alternative measure of constraint violation
in lieu of a matrix rank constraint. Third, we develop bound tightening procedures
based on closed-form solutions.

Computational experiments are conducted on the Alternating Current Optimal
Power Flow (ACOPF) problem and the Box-constrained Quadratic Programming
(BoxQP) problem. ACOPF is a generation dispatch problem that models alter-
nating current (AC) using steady-state power flow equations, which are nonconvex
quadratic constraints that relate power and voltage at buses and across transmis-
sion lines. ACOPF is commonly solved with iterative Newton-type solvers (e.g.
[153]). ACOPF may be modeled as a CQCQP problem, and there has been a recent
interest in solving this formulation with a SDP relaxation (e.g. [16, 92]) and branch-
and-bound methods (e.g. [130, 61, 85]) due to the potential for establishing global
optimality. BoxQP is a well-studied nonconvex quadratic programming problem
with nonhomogeneous quadratic objective and bounded real variables. BoxQP can
be solved with a problem-specific finite branch-and-bound method [34]; therefore, it
provides a useful benchmark for the more general approach presented here.

The rest of the chapter is organized as follows: Section 2.2 details the spatial
branch-and-cut algorithm with three major components: valid inequalities from the
convex hull description of rank-one constrained relaxations, branching on complex
entries, and bound tightening procedures; Section 2.3 contains results from compu-
tational experiments with ACOPF and BoxQP problems; Section 2.4 concludes the
chapter.

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 13

2.2 Spatial Branch-and-Cut

The convex relaxation of CQCQP we consider comes from the rank-one constraint
from a standard SDP reformulation [105, 146]:

min 〈Q0X〉+ Re(c∗0x) + b0 (2.1)

(CSDP) s.t. 〈Qi, X〉+ Re(c∗ix) + bi ≤ 0, i = 1, ...,m (2.2)

` ≤ x ≤ u (2.3)[
1 x∗

x X

]
� 0, (2.4)

where X ∈ Hn×n is a Hermitian submatrix of decision variables. Imposing a rank-

one constraint on the matrix Y :=

[
1 x∗

x X

]
gives an equivalent reformulation of

CQCQP.
A desirable property for a relaxation is exactness given sufficient branching. For

instance, for bounded Mixed-Integer Linear Programming problems, a search tree
created by integer variable branching has finite depth because the relaxation is exact
when all integer variables are fixed. CSDP suffers from the fact that even when
all entries of diag(X) and x have fixed values, the rank-one constraint may not be
satisfied; we will present an example in the next subsection. Therefore, we shall
strengthen CSDP with valid inequalities that ensure the relaxation is exact when
variables are fixed.

This section is divided into three subsections. First, we present some examples of
nonconvergence when branching with the CSDP relaxation. Second, we derive valid
inequalities to strengthen the SDP relaxation. Third, we propose a methodology for
branching on the entries of matrix Y .

Nonconvergence Example

Consider the following constraints defining a real QCQP with one variable:

` ≤ w ≤ u

w = w2

By inspection, the problem is infeasible for any u < 1. The SDP relaxation is:

0 ≤ w ≤ u

w = W

w2 ≤ W

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 14

This is equivalent to the nonempty feasible constraint set:

w = W

0 ≤ W ≤ u

Let us also consider an example specific to ACOPF. In the example we have that
even for fixed voltage magnitudes, generation, and bus angle difference, the SDP
is feasible while the primal problem is not. Consider a two-bus system with zero
resistance and reactance x = 0.1pu. Furthermore, let Y = jB, where B11 = B22 =
−B12 = −10. The ACOPF instance is:

|V1| = |V2| = 1

θ12 = 0 ⇐⇒ Im(V1)Re(V2) = Re(V1)Im(V2)

P1 = P2 = 0

Q1 = Q2 = −10

P1 = B12[Im(V1)Re(V2)− Re(V1)Im(V2)]

P2 = B12[Im(V2)Re(V1)− Re(V2)Im(V1)]

Q1 = −B11|V1|2 −B12[Re(V1)Re(V2) + Im(V1)Im(V2)]

Q2 = −B22|V2|2 −B12[Re(V1)Re(V2) + Im(V1)Im(V2)]

This is infeasible sinceQ1 = −B11|V1|2 = −10, butB12[Re(V1)Re(V2)+Im(V1)Im(V2)]
attains a nonzero value. However, the SDP relaxation is:

W11 = W22 = 1

T12 = 0

P1 = P2 = 0

Q1 = Q2 = −10

P1 = B12T12

P2 = −B12T12

Q1 = −B11W11 −B12W12

Q2 = −B22W22 −B12W12

W 2
12 + T 2

12 ≤ W11W22

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 15

This has one feasible solution at W12 = 0, hence a spatial branching procedure
with variable branching cannot prove infeasibility on this problem using the standard
SDP relaxation.

Valid Inequalities

In this section we describe the convex hull of a nonconvex relaxation of CQCQP
derived from 2× 2 positive semidefinite Hermitian matrices subject to the rank-one
constraint. Let JC be the set of Hermitian matrices X := W + ıT ∈ H2×2 satisfying
the following constraints:

L11 ≤ W11 ≤ U11, (2.5a)

L22 ≤ W22 ≤ U22, (2.5b)

L12W12 ≤ T12 ≤ U12W12, (2.5c)

W11W22 = W 2
12 + T 2

12. (2.5d)

Since W + ıT is Hermitian, we have W21 = W12, T12 = −T21. Therefore it suffices
to consider the variables W11,W22, T12,W12. Valid inequalities (2.5a)–(2.5c) can be
derived from any instance of CQCQP and added to CSDP for all 2 × 2 principal
minors of Y (see Appendix A.1). U and L are matrices of upper and lower bounds,
so Lij ≤ Uij,∀i, j ∈ {1, 2}. Moreover, we will assume the diagonal elements of
X have at least trivial nonnegative lower bounds, so L11, L22 ≥ 0. Due to the
nonnegativity assumption, constraint (2.5d) is equivalent in the space of X to the
constraint X = xx∗, since {xx∗|x ∈ Cn} is the set of rank one matrices together with
the rank zero matrix.

In this section we will give a description of the convex hull of JC . Let us first
establish valid inequalities for JC . To do so, it will be convenient to use the following
sigmoid function:

f(x) :=

{
(
√

1 + x2 − 1)/x, x 6= 0
0, x = 0

.

Remark 1. f(x) is increasing, strictly bounded above by +1 and strictly bounded
below by −1.

Consider the following linear inequalities:

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ U22W11 + U11W22 − U11U22, (2.6a)

π0 + π1W11 + π2W22 + π3W12 + π4T12 ≥ L22W11 + L11W22 − L11L22, (2.6b)

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 16

where the coefficients π are defined as

π0 := −
√
L11L22U11U22,

π1 := −
√
L22U22,

π2 := −
√
L11U11,

π3 := (
√
L11 +

√
U11)(

√
L22 +

√
U22)

1− f(L12)f(U12)

1 + f(L12)f(U12)
,

π4 := (
√
L11 +

√
U11)(

√
L22 +

√
U22)

f(L12) + f(U12)

1 + f(L12)f(U12)
.

Lemma 2.2.1. For α12 ∈ {L12, U12} we have

1− f(L12)f(U12) + α12(f(L12) + f(U12)) = (1 + f(L12)f(U12))
√

1 + α2
12. (2.7)

Proof. If α12 = 0, then equality (2.7) follows immediately. Otherwise, suppose α12 =
L12 6= 0. Then we have

1− f(L12)f(U12) + L12(f(L12) + f(U12))− (1 + f(L12)f(U12))
√

1 + L2
12

= − f(L12)f(U12) + L12f(U12)− f(L12)f(U12)
√

1 + L2
12

= f(U12)[L12 − f(L12)(1 +
√

1 + L2
12)]

= f(U12)[L12 − L2
12/L12]

= 0.

Therefore

1− f(L12)f(U12) + L12(f(L12) + f(U12)) = (1 + f(L12)f(U12))
√

1 + L2
12.

The case where α12 = U12 6= 0 follows by symmetry.

Proposition 2.2.2. Inequalities (2.6a) and (2.6b) are valid for JC.

Proof. For any convex function f , the secant line connecting (a, f(a)) and (b, f(b))
lies above the graph of f . Thus ` ≤ x ≤ u =⇒ (` + u)x − `u ≥ x2. Now for
k ∈ {1, 2}, since

√
Lkk ≤

√
Wkk ≤

√
Ukk, applying this secant principle yields

(
√
Lkk +

√
Ukk)

√
Wkk ≥

√
LkkUkk +Wkk. (2.8a)

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 17

Multiplying inequalities from (2.8a) for k = 1 and k = 2 gives

√
W11W22(

√
L11 +

√
U11)(

√
L22 +

√
U22) ≥ (

√
L11U11 +W11)(

√
L22U22 +W22).

Rearranging terms, we have

√
W11W22(

√
L11 +

√
U11)(

√
L22 +

√
U22) + π0 + π1W11 + π2W22 ≥ W11W22.

(2.8b)

The right-hand-sides of constraints (2.6a) and (2.6b) are RLT inequalities [10] –
and thus are valid – for the bilinear term W11W22, which is the right-hand-side of
the valid inequality (2.8b). It remains to show that the left-hand-side of (2.8b) is
overestimated by the left-hand sides of (2.6a) and (2.6b), i.e.:

π3W12 + π4T12 ≥
√
W11W22(

√
L11 +

√
U11)(

√
L22 +

√
U22). (2.8c)

Let T12 = αW12 for some L12 ≤ α12 ≤ U12. Note that constraint (2.5c) restricts
W12 to be nonnegative, so from constraints (2.5c) we have:√

W11W22 =
√

1 + α2
12W12. (2.8d)

Substituting equality (2.8d) into inequality (2.8c), we therefore want to show that

(π3 + α12π4)W12 ≥
√

1 + α2
12(
√
L11 +

√
U11)(

√
L22 +

√
U22)W12 (2.8e)

for any L12 ≤ α12 ≤ U12. Replacing the coefficients with their definitions and
simplifying, we get the following equivalent condition:

1− f(L12)f(U12) + α12(f(L12) + f(U12))− (1 + f(L12)f(U12))
√

1 + α2
12 ≥ 0.

(2.8f)

To show that inequality (2.8f) is valid, first observe that the second derivative of
the left-hand side with respect to α is −(1+f(L12)f(U12))/(1+α2)3/2. Thus the left-
hand side is concave w.r.t α (as noted in Remark 1 we have that |f(L12)|, |f(U12)| <
1). Therefore, we only need to check that the left-hand side is nonnegative for
α ∈ {L12, U12}. From Lemma 2.2.1 we have that the left-hand side is exactly zero,
and so inequality (2.8f) and consequently inequalities (2.6a) and (2.6b) are valid for
JC .

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 18

Let JS be the set of feasible solutions to the standard SDP relaxation of JC :

L11 ≤ W11 ≤ U11, (2.9a)

L22 ≤ W22 ≤ U22, (2.9b)

L12W12 ≤ T12 ≤ U12W12 (2.9c)

W11W22 ≥ W 2
12 + T 2

12. (2.9d)

Remark 2. For n = 2, W + ıT � 0 is equivalent to the principal minor constraints:
W11 ≥ 0,W22 ≥ 0,W11W22 ≥ W 2

12 + T 2
12. Since by assumption L11, L22 ≥ 0, then

constraint (2.9d) is equivalent to the positive semidefinite constraint for JS.

Let JV be the set of X satisfying inequalities (2.6a)-(2.6b). We shall prove that
the convex hull of JC can be obtained by adding the valid inequalities (2.6a)-(2.6b)
to the SDP relaxation.

Proposition 2.2.3. conv(JC) = JS ∩ JV .

Proof. From Lemma 2.2.2 we have that conv(JC) ⊆ JS∩JV . From constraints (2.5a)-
(2.5b) and (2.5d) we can observe that JS ∩ JV is bounded. Thus to prove that
JS ∩JV ⊆ conv(JC), it is sufficient to ensure that all the extreme points of JS ∩JV
are in JC . First, let us invoke the following claim:

Claim 1. If W12 = 0, then either X /∈ JS ∩ JV or X ∈ conv(JC).

Proof. By way of contradiction, suppose there exists X̄ ∈ JS ∩ JV \ conv(JC) such
that W̄12 = 0. From constraint (2.5c) we have that T̄12 = 0. Consequently, if
W̄11 = 0 or W̄22 = 0, then constraint (2.5d) is satisfied, so either X̄ /∈ JS ∩ JV or
X̄ ∈ conv(JC).

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 19

By Claim 2.2.2, throughout the proof, we may assume that W̄11W̄22 > 0, which
W̄11W̄22 > 0 implies that the right-hand side of constraint (2.6b) is nonnegative since
0 ≤ Lkk ≤ W̄kk, k ∈ {1, 2}, and so L22W̄11 +L11W̄22−L11L22 ≥ L11W̄22 ≥ 0. On the
left-hand side, all terms are nonpositive, so we require all terms to be zero in order
to ensure X̄ ∈ JS ∩ JV . Since we have that W̄11W̄22 > 0, then π1W̄11 = π2W̄22 = 0
only if L11 = L22 = 0.

Now let us define the following two matrices:

U1 :=

[
U11 0
0 0

]
, U2 :=

[
0 0
0 U22

]
.

Since L11 = L22 = 0, then U1, U2 ∈ JC , and since W̄12 = T̄12 = 0. Checking
constraint (2.6a) we have 0 ≥ U22W11 + U11W22 − U11U22, so X̄ ∈ JS ∩ JV provided
W11 ≤ U11,W22 ≤ U22. Observe that X̄ can be expressed as the convex combination
of U1, U2, and the zeros matrix. L11 = L22 = 0 implies the zeros matrix is a
member of JC , which in turn implies X̄ ∈ conv(JC), which contradicts our initial
assumption.

Now we will prove that ext(JS ∩JV) ∈ JC . Observe that if the constraint (2.9d)
is binding at an extreme point of JS ∩ JV , then it is a member of JC . Moreover,
by Claim (1), if a point X̄ with W̄12 = 0 is in ext(JS ∩ JV), then X̄ ∈ conv(JC).
It follows that X̄ is a member of JC since JS ∩ JV ⊇ conv(JC) ⊇ JC . Therefore,
we shall check by cases for any extreme point where constraint (2.9d) is not binding
and W12 6= 0.

Case 1 : Constraints (2.6a) and (2.6b) are not binding:
If constraint (2.9d) is not binding, then we require at least four linearly independent
linear constraints to be binding. To obtain four such constraints, we require the two
variable bounds (2.5a) and (2.5b) to be binding. Moreover, we require that con-
straint (2.5c) is binding on both sides with L12 6= U12, which implies W12 = T12 = 0.
By Claim (1), this point can be disregarded.

Case 2 : Constraints (2.6a) and (2.6b) are both binding:
Since constraints (2.6a) and (2.6b) share the same coefficients π3, π4 for W12, T12,
then for an extreme point we require that constraint (2.5c) is binding on at least
one side. Due to Claim (1) we need only consider W12 6= 0, so constraint (2.5c) can
count for at most one linearly independent constraint; thus, let T12 = α12W12, where
α12 ∈ {L12, U12}. This gives at most three linearly independent constraints, (2.5c),
(2.6a) and (2.6b), so at least one of the variable bounds (2.5a) and (2.5b) must be
binding. Define αkk so that Wkk = (Ukk − Lkk)αkk + Lkk for k ∈ {1, 2}. Since at

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 20

least one of W11,W22 is at a variable bound, then αkk ∈ {0, 1} for either k = 1 or
k = 2. Moreover, the right-hand sides of constraints (2.6a) and (2.6b) must be equal
since the left-hand sides are the same and both constraints are binding in this case.
Therefore, we can write:

U22W11 + U11W22 − U11U22 = L22W11 + L11W22 − L11L22

⇐⇒ (α11 + α22)[U11U22 − L11U22 − L22U11 + L11L22]

= U11U22 − L11U22 − L22U11 + L11L22

⇐⇒ α11 + α22 = 1.

Thus we have either α11 = 1, in which case W11 = U11,W22 = L22 or α22 = 1, in
which case W11 = L11,W22 = U22. First suppose W11 = U11,W22 = L22. Define the
following matrix:

XA :=

 U11

√
U11L22

1+α2
12√

U11L22

1+α2
12

L22

+ ı

 0 α12

√
U11L22

1+α2
12

−α12

√
U11L22

1+α2
12

0

 ,
and as usual, denote the components as XA := WA + ıTA. By construction, we have
that (WA

12)
2 + (TA12)

2 = WA
11W

A
22, so XA ∈ JC . We want to show that, with XA,

constraints (2.5a)-(2.5c), (2.6a), and (2.6b) are binding. Constraints (2.5a)-(2.5c)
can be confirmed by observation. Recall that constraints (2.6a) and (2.6b) share the
same right-hand side:

U22W
A
11 + U11W

A
22 − U11U22 = U11L22.

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 21

The left-hand side of constraint (2.6a) or (2.6b) is:

π0 + π1W
A
11 + π2W

A
22 + π3W

A
12 + π4T

A
12

=π0 + π1W
A
11 + π2W

A
22 + (π3 + α12π4)W

A
12

=−
√
L11L22U11U22 −

√
L22U22U11 −

√
L11U11L22

+ (
√
L11 +

√
U11)(

√
L22 +

√
U22)

× 1− f(L12)f(U12) + α12(f(L12) + f(U12))

1 + f(L12)f(U12)

√
U11L22

1 + α2
12

=
√
U11L22

×
(
−
√
L11U22 −

√
U11U22 −

√
L11L22

+ (
√
L11 +

√
U11)(

√
L22 +

√
U22)

1− f(L12)f(U12) + α12(f(L12) + f(U12))

(1 + f(L12)f(U12))
√

1 + α2
12

)
=U11L22.

The last equality follows from Lemma 2.2.1. The argument for the case W11 =
L11,W22 = U22 follows by symmetry.

Case 3 : Exactly one of the constraints (2.6a) and (2.6b) is binding:
From Claim (1) we need only consider W12 6= 0, so constraint (2.5c) can count
for at most one linearly independent constraint; thus, let T12 = α12W12, where
α12 ∈ {L12, U12}. This gives us at most two linearly independent linear constraints:
(2.5c) and either (2.6a) or (2.6b). Thus both variable bounds (2.5a) and (2.5b)
must be binding. In Case 2 we have already considered the possibilities that W11 =
U11,W22 = L22 or W11 = U11,W22 = L22. Suppose, then, that W11 = U11,W22 = U22

and define the corresponding matrix:

XB :=

 U11

√
U11U22

1+α2
12√

U11U22

1+α2
12

U22

+ ı

 0 α12

√
U11U22

1+α2
12

−α12

√
U11U22

1+α2
12

0

 ,
and as usual, denote the components as XB := WB + ıTB. By construction, we have
that (WB

12)
2 + (TB12)

2 = (WB
11W

B
22), so XB ∈ JC . We want to show that, with XB,

constraints (2.5a)-(2.5c), and (2.6a) are binding. This can be done as in Case 2, by

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 22

invoking Lemma 2.2.1:

π0 + π1W
B
11 + π2W

B
22 + π3W

B
12 + π4T

B
12

=π0 + π1W
B
11 + π2W

B
22 + (π3 + α12π4)W

B
12

=−
√
L11L22U11U22 −

√
L22U22U11 −

√
L11U11U22

+ (
√
L11 +

√
U11)(

√
L22 +

√
U22)

× 1− f(L12)f(U12) + α12(f(L12) + f(U12))

1 + f(L12)f(U12)

√
U11U22

1 + α2
12

=
√
U11U22

(
−
√
L11U22 −

√
U11L22 −

√
L11L22

+ (
√
L11 +

√
U11)(

√
L22 +

√
U22)

1− f(L12)f(U12) + α12(f(L12) + f(U12))

(1 + f(L12)f(U12))
√

1 + α2
12

)
=U11U22

=U22W
B
11 + U11W

B
22 − U11U22.

Finally, suppose that W11 = L11,W22 = L22 and define the corresponding matrix:

XC :=

 L11

√
L11L22

1+α2
12√

L11L22

1+α2
12

L22

+ ı

 0 α12

√
L11L22

1+α2
12

−α12

√
L11L22

1+α2
12

0

 .
By the same argument as used with XB, which we omit to avoid repetition, XC

belongs to JC where constraints (2.5a)-(2.5c), and (2.6b) are binding. Thus, in all
cases every extreme point belongs to JC .

The real case

We now consider the special case of the real variables. Let JR be the set of symmetric
matrices W that satisfy the following constraints:

L11 ≤ W11 ≤ U11, (2.10a)

L22 ≤ W22 ≤ U22, (2.10b)

W11W22 = W 2
12 (2.10c)

JR is a special case of JC , and so we can obtain the following corollary.

Corollary 1. The convex hull of JR can be described with the following constraints:

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 23

L11 ≤ W11 ≤ U11 (2.11a)

L22 ≤ W22 ≤ U22 (2.11b)

(
√
L11 +

√
U11)(

√
L22 +

√
U22)W12 ≥ (U22 +

√
L22U22)W11

+ (U11 +
√
L11U11)W22 +

√
L11L22U11U22 − U11U22 (2.11c)

(
√
L11 +

√
U11)(

√
L22 +

√
U22)W12 ≥ (L22 +

√
L22U22)W11

+ (L11 +
√
L11U11)W22 +

√
L11L22U11U22 − L11L22 (2.11d)

W � 0 (2.11e)

Proof. This is a special case of Proposition 2.2.3 with L12 = U12 = 0, which due to
constraint (2.5c) is equivalent to setting T12 = 0, resulting in a matrix with only real
entries.

Numerical Example

Consider the following instance of JC :

W11W22 = W 2
12 + T 2

12, (2.12a)

0 ≤ W11 ≤ 1, (2.12b)

1 ≤ W22 ≤ 4, (2.12c)

0 ≤ T12 ≤
4

3
W12. (2.12d)

The coefficients π of the valid inequalities (2.6a)-(2.6b) are

f(L12) = 0, f(U12) = 0.5,

π0 = 0, π1 = −2, π2 = 0, π3 = 3, π4 = 1.5.

Valid inequality (2.6a) is

−6W11 −W22 + 3W12 + 1.5T12 + 4 ≥ 0,

and valid inequality (2.6b) is

−3W11 + 3W12 + 1.5T12 ≥ 0.

The special case on reals, JR, is obtained by setting L12 = U12 = 0 and dropping
T12. For the real case, valid inequality (2.6a) is

−6W11 −W22 + 3W12 + 4 ≥ 0,

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 24

and valid inequality (2.6b) is

−3W11 + 3W12 ≥ 0.

The inequalities for the real case are shown in Figure 2.1. The feasible region
of JR is depicted in the upper-left quadrant. The upper-right quadrant depicts the
intersection of W 2

12 = W11W22 with the variable bounds at W11 = 1 and W22 = 1.
Black spheres are centered around the intersection points of variable bounds on the
cone. The lower-right quadrant depicts the cone with valid inequality (2.6a). The
intersection is ellipsoidal and three of the highlighted points lie on the boundary
of the valid inequality ({W11 = 0,W22 = 4,W12 = 0, }, {W11 = 1,W22 = 1,W12 =
1}, {W11 = 1,W22 = 4,W12 = 2}). The lower-left quadrant depicts the intersection
of the cone with valid inequality (2.6b). The intersection is a hyperbola, and three
highlighted points lie on the boundary of the valid inequality ({W11 = 0,W22 =
1,W12 = 0, }, {W11 = 0,W22 = 4,W12 = 0}, {W11 = 1,W22 = 1,W12 = 1}).

Comparison with RLT Inequalities

The complex valid inequalities are related to the RLT inequalities, which are valid
inequalities for the set {(W,w) : W = ww′, ` ≤ w ≤ u}:

Wij ≤ ujwi + `iwj − `iuj, (2.13a)

(RLT) Wij ≤ `jwi + uiwj − `jui, (2.13b)

Wij ≥ `jwi + `iwj − `i`j, (2.13c)

Wij ≥ ujwi + uiwj − uiuj. (2.13d)

Inequalities (2.13a)–(2.13d) are derived from the RLT procedure of Sherali and
Adams [144]. They are also known as McCormick estimators as they can be derived
from earlier work on convex envelopes by McCormick [108].

Define Z :=

(
1
w

)(
1
w

)′
. Anstreicher and Burer [11] prove that conv({Z : ` ≤

w ≤ u, w ∈ R2}) is given by the RLT inequalities together with the SDP constraint[
1 w
w W

]
� 0. Consequently, conv(JR) can be described with RLT inequalities

using an extended formulation with the additional variables w1, w2 satisfying
√
L11 ≤

w1 ≤
√
U11,
√
L22 ≤ w2 ≤

√
U22. When i = j, the RLT inequalities are

Wii ≤ uiwi + `iwi − `iui, (2.14a)

Wii ≥ 2`iwi − `2i , (2.14b)

Wii ≥ 2uiwi − u2i . (2.14c)

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 25

Figure 2.1: Clockwise, starting from top-left: JR; cone of (2.12a), upper bound
of (2.12b), and lower bound of (2.12c); cone of (2.12a) and valid inequality (2.6a);
cone of (2.12a) and valid inequality (2.6b).

Inequality (2.14a) can also be obtained from (2.11c) or (2.11d) applied to

[
1 wi
wi Wii

]
.

Inequalities (2.14b)-(2.14c) are implied by the SDP constraint since (wi − l`i)
2 ≥

0, (wi − ui)2 ≥ 0 =⇒ w2
i ≥ max{2`iwi − `2i , 2uiwi − u2i } and Wii ≥ w2

i .
Note that for JC , one possible transformation to RQCQP involves a matrix of

the form  1
w
t

 1
w
t

′ ,
where the components of the complex vector x := w + ıt are treated as separate
decision variables. In this case there is no guarantee that the RLT inequalities
together with the SDP constraint (2.9d) will yield the convex hull of JC .

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 26

Numerical Example (cont.)

We continue with the numerical example of JC , and we will show that there is a
point satisfying the positive semidefinite condition and the RLT inequalities, but is
outside conv(JC). Thus a standard application of RLT inequalities is insufficient
to describe conv(JC). Let us add the complex variables x1, x2 with the following
bounds on magnitude:

0 ≤ |x11| ≤ 1,

1 ≤ |x22| ≤ 2.

Considering the real and imaginary components of x as separate decision vari-
ables, let us transform the problem into RQCQP. Moreover, we require bounds on
Re(x), Im(x). We shall use the magnitude-implied bounds:

|w1| ≤ 1, |t1| ≤ 1,

|w2| ≤ 2, |t2| ≤ 2.

Now Wij = Re(xix
∗
j) = wiwj + titj, and Tij = Im(xix

∗
j) = tiwj − witj. Applying

RLT inequalities to each bilinear term, we obtain the following inequalities:

W12 ≤ −|2w1 − w2| − |2t1 − t2|+ 4 (2.15a)

W12 ≥ |2w1 + w2|+ |2t1 + t2| − 4 (2.15b)

T12 ≤ −|2t1 − w2| − |2w1 + t2|+ 4 (2.15c)

T12 ≥ |2t1 + w2|+ |2w1 − t2| − 4 (2.15d)

W11 ≤ 2, (2.15e)

W11 ≥ 2|w1|+ 2|t1| − 2, (2.15f)

W22 ≤ 8, (2.15g)

W22 ≥ 4|w1|+ 4|t1| − 8. (2.15h)

RLT inequalities (2.15) admit the solution x = 0, T12 = 0,W12 = 0,W11 =
1,W22 = 4, which satisfies constraints (2.12b)-(2.12d) and the positive semidefinite
constraint. However, this solution violates valid inequality (2.6b), where W12 =
T12 = 0 implying W11 = 0.

Now suppose we can strengthen the RLT inequalities with some given bounds on
the components of x:

0 ≤ w1 ≤ 1, t1 = 0,

0.6 ≤ w2 ≤ 2,−1.6 ≤ t2 ≤ 0.

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 27

The bounds are constructed by fixing t1, and tightening the other variable bounds
as much as possible without excluding solutions to JC specified by (2.12). The RLT
inequalities are:

W12 ≤ min{2w1, 0.6w1 + w2 − 0.6}, (2.16a)

W12 ≥ max{0.6w1, 2w1 + w2 − 2}, (2.16b)

T12 ≤ min{1.6w1,−t2}, (2.16c)

T12 ≥ max{0, 1.6w1 − t2 − 1.6}, (2.16d)

W11 ≤ w1, (2.16e)

W11 ≥ max{0, 2w1 − 1}, (2.16f)

W22 ≤ 2.6w2 − 1.6t2 − 1.2, (2.16g)

W22 ≥ max{1.2w2 − 0.36, 4w2 − 4}+ max{−3.2t2 − 2.56, 0}. (2.16h)

These RLT inequalities admit the solution w1 = w2 = 1, t1 = t2 = 0, T12 =
0,W12 = 1,W11 = 1,W22 = 1.4, which satisfies constraints (2.12b)-(2.12d) and the
positive semidefinite constraint. However, the this solution violates valid inequal-
ity (2.6a), since −6W11 −W22 + 3W12 + 1.5T12 + 4 = −0.4 < 0.

Branching on a Complex Matrix Entry

In this section we consider branching on upper and lower bounds of Y as specified
in JC , i.e., bounds on every complex matrix entry. We examine branching rules for
selecting a single (i, j) entry of Y to branch on. One way to form a branching rule
is to use a scoring function, where the branching option with the highest score is
selected. A score can be based on the violation of relaxed constraints, or an estimate
of the impact of branching on the children nodes’ optimal relaxation objective value.
In the standard development of the SDP relaxation the only relaxed constraint is
the rank-one constraint on Y . However, the rank function is discrete and applies
globally to all variables of the decision matrix, which seems problematic for use in
variable branching. Therefore, we consider an alternative to the rank-one condition:

Proposition 2.2.4. For n > 1 a nonzero Hermitian positive semidefinite n × n
matrix Y has rank one iff all of its 2× 2 principal minors are zero.

Proof. Suppose Y has rank r > 1. Since Y is Hermitian it has an r × r nonzero
principal minor. Since Y is positive semidefinite this principal minor corresponds
to a positive definite r × r submatrix. As r ≥ 2, this implies there exists a 2 × 2
strictly positive principal minor. Now suppose instead that Y has a strictly positive

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 28

2 × 2 principal minor. Then Y contains a rank-two principal submatrix and thus
r > 1.

We will use the equivalent condition that the minimum eigenvalue of each 2× 2
principal submatrix be zero. Algebraically this can be expressed as

λmin =
1

2

(
Wii +Wjj − ‖(Wii −Wjj, 2Wij, 2Tij)‖

)
.

We branch by partitioning the range [Lij, Uij] for some (i, j) via updating the
bounds as:

L′ij ← αLij + (1− α)Uij

U ′ij ← αLij + (1− α)Uij

where α ∈ (0, 1) is a parameter. In our implementation we use the bisection rule,

i.e., set α = 0.5. We will refer to the assignment L′ij ←
Lij+Uij

2
as the up branch with

respect to a matrix entry, and similarly down branch refers to the assignment on the
upper bound. Now let us consider rules for selecting an entry to branch on.

Most Violated with Strong Branching (MVSB)

Let c be a pair of indices (i, j). Select the 2 × 2 principal submatrix of Y with the
greatest minimum eigenvalue, and let c∗ be the column indices of the submatrix.
From Proposition 2.2.4 it follows that, for CSDP, rank(Y) ∈ {0, 1} iff λmin(Yc) = 0
for all pairs. Given some c∗, there are three possible candidate entries. These are
evaluated by strong branching: for each entry we will solve the up branch problem
and obtain the solution matrix Y +, and likewise Y − from the down branch. The
following score function is used:

µmax{−λmin(Y +
c∗),−λmin(Y −c∗)}+ (1− µ) min{−λmin(Y +

c∗),−λmin(Y −c∗)},

where µ ∈ [0, 1] is a tuning parameter; we follow the example of COUENNE [19] and
use a value of 0.15. The entry with the highest score is selected for branching.

Most Violated with Worst-Case Bounds (MVWB)

Since strong branching is computationally expensive, we consider solving a simpler
subproblem to produce a score. Consider the Worst-Case Eigenvalue (WEV) problem
of finding the greatest minimum eigenvalue that can be obtained within conv(JC):

(WEV) maxλ

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 29

s.t.: ‖(W11 −W22, 2W12, 2T12)‖ ≤ W11 +W22 − 2λ, (2.5a)− (2.5c), (2.6a)− (2.6b).

Note that we dropped the positive semidefinite condition on X since the objective
maximizes the minimum eigenvalue. We solve MEV in lieu of solving the children
problems Y + and Y −. Thus, overestimates of λmin(Y +

c∗) and λmin(Y −c∗) are used in
the score function. MVWB is otherwise the same as MVSB.

Reliability Branching with Entry Bounds (RBEB)

Since MVSB and MVWB rely on a particular violation metric, for benchmarking
purposes we consider a method that is agnostic to the measure of violation. RBEB
is an application of the rb-int-br rule of Belotti et al. [19].

Reliability branching uses pseudocosts, which capture information about previous
branching decisions. Let Φ+ and Φ− be matrices containing pseudocosts, estimating
the improvement in objective value by branching up or down, respectively. If, at
search tree node k, Lkij is selected for branching up and the objective improves by

δk in the child node’s relaxation, then let Dk := δk/(
Uk
ij−Lk

ij

2
− Lkij) be the per-unit

improvement. Φ+ is the running average of all Dk for up branches, and Φ− is the
running average for down branches.

For a given candidate (i, j), the following score function is used:

(
µmax{Φ+,Φ−}+ (1− µ) min{Φ+,Φ−}

)(Uij − Lij
2

)
.

As with MVSB and MVWB, we use a value of µ = 0.15. The candidate with the
highest score is selected for branching. Note that we can restrict the set of candidate
entries to those with violation, i.e. corresponding to members of 2 × 2 principal
submatrices with strictly positive minimum eigenvalue.

In reliability branching, strong branching is used in lieu of pseudocosts until η
evaluations have been performed on a given up or down branch; η is called the
reliability parameter [2]. We test for η = 1, termed RBEB1, and η = 4, termed
RBEB4.

2.3 Computational Experiments

In this section we present the results of experiments on solving ACOPF and BoxQP
problems using the spacial branch-and-cut approach described in the previous sec-
tions. All experiments herein are conducted with a 2.26 dual-core Intel i3-350M pro-
cessor and 4 GB main memory. Algorithms are implemented using MATLAB [107]

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 30

with model processing performed by YALMIP [102]. Conic programs are solved with
MOSEK version 7.1 [9]. IPOPT version 3.11.1 [161] is used as a local solver to obtain
primal feasible solutions to CQCQP at each search tree node.

All SBC configurations are implemented with a depth-first search node selection
rule. The search termination criteria are: an explored nodes limit of 10000, a time
limit of 1.5 hours, and a relative optimality gap limit. A search tree depth of 100 is
applied, pruning all children nodes past this limit. The optimality gap is calculated
using the global upper bound (gub) and global lower bound (glb) : gap = 1− (gub−
glb)/|gub|.

Problem Instances

ACOPF

The ACOPF problem is a power generation scheduling problem that can be for-
mulated as CQCQP. The matrix entry bounds specified in Jc are provided in the
form of squared voltage magnitude bounds for diagonal terms and voltage phase
angle bounds for off-diagonal terms. The problem formulation will be detailed in
Chapter 3.

Our experiments include the test cases of Gopalakrishnan et al. [61]. Small
duality gaps were reported for these cases, so the root relaxation is known to provide
a good lower bound. These instances are named g9, g14, g30, and g57, where the
number indicates the number of buses in the problem. As in Gopalakrishnan et al.
[61] we set a optimality gap limit of 0.1%. We also use the modified IEEE test cases
that will be detailed in Chapter 3, which are named 9Na, 9Nb, 14S, 14P, and 118IN.
For these more difficult instances we set a optimality gap limit of 1%. Since the IEEE
test cases do not include phase angle differences, we have applied a 30 degree bound
across all connected buses. We also use a sparse formulation of CSDP that replaces
the positive semidefinite constraint with multiple positive semidefinite constraints on
submatrices and linear equality constraints. This is described in detail in Chapter 4,
which also proves that enforcing the rank constraint on each submatrix is sufficient
to ensure equivalence between CQCQP and the sparse version of CSDP.

BoxQP

The BoxQP problem is formulated as min 1
2
x′Qx + f ′x : 0 ≤ x ≤ 1, where x ∈ Rn

is decision vector, and f ∈ Rn, Q ∈ Rn×n are data. We use the BoxQP instances of
Vandenbussche and Nemhauser [158]. The instances are named sparAAA-BBB-C,

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 31

where AAA is the dimension of x, BBB is the density of Q, and C is the random
seed number. We set an optimality gap limit of 0.01% for these instances.

Results

In Table 2.1 we compare the branch selection rules on the Gopalakrishnan instances
of ACOPF, which have small root gap when using the CSDP relaxation. The columns
are labelled as follows: case is the case or instance name, nodes are the number of
search tree nodes explored before termination, depth is the maximum search tree
depth, time is the total time spent in seconds by the SBC algorithm. The root
gap (rgap) is calculated as rgap = (gub-rlb)/|gub|, where gub is the best known
upper bound and rlb is the root node lower bound. Since the same relaxation is used
for all selection strategies, rgap is given a separate column. The end gap (egap),
is calculated as egap = (gub-glb)/|gub|, where glb is the global lower bound
established by the SBC algorithm at termination. An asterisk indicates failure to
achieve the optimality termination criterion due to an explored nodes, a maximum
depth, or a total time limit. The table shows that, despite the strong initial bounds
provided by CSDP, practical convergence cannot be achieved using matrix entry
bound branching. Note that we exclude MVWB from comparison, as this selection
rule uses valid inequalities that are not present in the basic relaxation CSDP. None
of the branching rules converge within the limits of the computations.

In Table 2.2 we present the results with experiments with adding the valid inequal-
ities describing conv(JC) to strengthen the standard SDP relaxation. Comparison
with Table 2.1 clearly shows the positive impact in the solution times. With the
employment of valid inequalities, the algorithm converges much faster and we are
able to solve the difficult cases with large root gaps. MVWB performs the best on
average. Compared to MVWB, MVSB results in a smaller search tree. The reli-
ability branching rules do not perform as well as the violation-based rules and fail
to converge on all difficult instances. Although not shown in the table, we note
that adding valid inequalities has negligible effect on the relaxation solution times,
with roughly ±5% change in average solution time per instance. Although the root
gaps are not improved with the valid inequalities, the inequalities become effective
as variable bounds tighten deeper in the search tree. We note that Kocuk, Dey and
Sun [86] prove that a standard application of RLT inequalities will not strengthen
the standard SDP relaxation of ACOPF.

In Table 2.3 we compare three relaxations for BoxQP: SDP with RLT inequal-
ities on all entries (SDP+RLT); SDP with valid inequalities describing conv(JR)
(SDP+VI); and the standard SDP relaxation. The columns are labelled as follows:
case is the case or instance name, gap is the optimality gap between the relaxation

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 32

and the optimal objective value. The SDP relaxation solves substantially faster with-
out valid inequalities, but SDP+RLT and SDP+VI produce much tighter bounds.
The SDP+RLT has comparable solution times to SDP+VI and closes 85% of the
optimality gap of SDP+VI. This is an expected behaviour, as noted in Section 2.2.

In Table 2.4 we compare different branching strategies using the SDP+RLT re-
laxation; note that we leave out instances that are solved with zero root gap. On
average, MVSB uses fewer nodes and less depth to terminate than MVWB, but
MVWB results in faster solution times. This is a typical outcome for strong branch-
ing. Both MVWB and MVSB are substantially faster than the reliability-based rules
RBEB1 and RBEB4. RBEB4 did not reach the optimality criterion for the last case
due to a high number of strong branching candidates.

Since the SDP+RLT relaxation produces rather tight bounds, we also solve the
BoxQP instances with SDP+VI to test branch selection strategies when the search
tree is larger. The results when a weaker relaxation is used are shown in Table 2.5.
Similar conclusions can be drawn as with Table 2.4. MVWB and MVSB achieve
comparable performance, with a roughly equal trade off between time and search
tree size. Both strategies result in better average performance compared to the
reliability-based rules.

C
H
A
P
T
E
R

2.
S
P
A
T
IA

L
B
R
A
N
C
H
-A

N
D
-C

U
T

F
O
R

C
O
M
P
L
E
X

B
O
U
N
D
E
D

Q
C
Q
P

33

Table 2.1: Comparison of branching rules using CSDP for ACOPF

case rgap
MVSB RBEB1 RBEB4

nodes depth time egap nodes depth time egap nodes depth time egap

g9 0.36% 10077* 101* 4654 0.36% 6481 101* 5421* 0.36% 1639 101* 5509* 0.36%
g14 0.16% 8235 101* 5427* 0.16% 10041* 101* 5021 0.16% 10035* 101* 5047 0.16%
g30 0.18% 4247 101* 5440* 0.18% 5821 101* 5425* 0.18% 5433 101* 5416* 0.18%
g57 2.31% 379 101* 6348* 2.31% 1765 101* 5475* 2.31% 1005 101* 5553* 2.31%

Average 0.75% 5735 101 5467 0.75% 6027 101 5335 0.75% 4528 101 5381 0.75%

Table 2.2: Comparison of branching rules using CSDP+VI for ACOPF

case rgap
MVWB MVSB RBEB1 RBEB4

nodes depth time egap nodes depth time egap nodes depth time egap nodes depth time egap

g9 0.36% 77 27 28 0.10% 65 24 28 0.10% 9935 101* 5423 0.36% 967 61 237 0.10%
g14 0.16% 67 21 28 0.10% 41 14 26 0.09% 165 40 65 0.09% 211 42 80 0.10%
g30 0.18% 75 12 51 0.09% 51 9 66 0.10% 133 55 84 0.10% 175 52 135 0.10%
g57 2.31% 215 68 1202 0.10% 69 26 416 0.09% 865 101* 5588 2.21% 323 57 2630 0.10%
9Na 18.00% 2771 70 587 1.00% 10011* 41 4223 2.16% 10033* 85 2372 15.05% 10037* 99 2651 14.23%
9Nb 19.29% 2325 69 522 1.00% 9435 41 3573 1.00% 10043* 85 3242 14.66% 10029* 71 2416 14.77%
14P 5.32% 4999 72 1766 1.00% 7087 41 5405* 5.20% 8715 101* 5434 5.30% 10041* 101* 2779 5.08%
14S 2.97% 3979 72 1628 1.00% 6397 39 5406* 2.97% 5437 101* 5437 2.96% 10045* 101* 3497 2.90%

118IN 2.05% 241 39 1821 0.99% 265 39 5515* 1.81% 401 101* 5989 2.33% 33 17 5595 1.47%
Average 5.63% 1639 50 848 0.60% 3713 30 2740 1.50% 5081 86 3737 4.79% 4651 67 2224 4.32%

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 34

Table 2.3: Comparison of relaxations on BoxQP instances

case
SDP+RLT SDP+VI SDP
gap time gap time gap time

spar020-100-2 0.16% 0.2 0.60% 0.2 91.82% 0.2
spar030-060-1 1.23% 0.5 5.22% 0.6 257.08% 1.2
spar030-060-3 0.36% 0.5 2.48% 0.5 123.62% 0.4
spar030-070-1 3.06% 0.7 18.92% 0.6 322.56% 3.1
spar030-070-3 0.01% 0.6 0.64% 0.5 69.77% 0.0
spar030-080-1 1.31% 0.9 8.88% 0.6 258.73% 1.3
spar030-100-2 0.05% 0.6 0.82% 0.6 143.54% 0.1
spar030-100-3 0.13% 0.6 2.23% 0.6 156.83% 0.1
spar040-040-1 3.12% 2.3 7.44% 1.9 300.53% 3.1
spar040-040-3 0.63% 2.2 1.90% 1.8 165.06% 0.6
spar040-050-1 0.51% 2.1 6.58% 1.9 312.95% 0.5
spar040-050-2 0.35% 2.5 1.25% 2.2 186.91% 0.4
spar040-060-1 2.29% 1.8 6.21% 2.1 246.54% 2.3
spar040-080-3 0.01% 2.1 0.53% 1.8 105.83% 0.0
spar040-090-2 0.03% 2.2 0.36% 1.6 156.48% 0.0
spar040-100-2 0.18% 2 2.29% 2 176.90% 0.2
spar040-100-3 2.26% 2 9.33% 2.7 222.10% 2.3
spar050-030-2 0.20% 6.1 1.02% 6 153.73% 0.2
spar050-030-3 0.08% 5.1 1.58% 5.1 180.61% 0.1
spar050-040-2 0.21% 5 1.66% 5.6 161.57% 0.2
spar050-050-1 8.66% 4.6 35.42% 5 400.90% 8.7
spar050-050-2 0.76% 6.4 3.57% 4.9 208.22% 0.8
spar050-050-3 0.75% 4.5 1.92% 6.2 176.47% 0.8
spar060-020-3 0.54% 11.6 1.30% 13.3 176.59% 0.5

Average 1.12% 2.8 5.09% 2.8 197.68% 1.1

C
H
A
P
T
E
R

2.
S
P
A
T
IA

L
B
R
A
N
C
H
-A

N
D
-C

U
T

F
O
R

C
O
M
P
L
E
X

B
O
U
N
D
E
D

Q
C
Q
P

35

Table 2.4: Comparison of branching rules with SDP+RLT relaxation on BoxQP

case rgap
MVWB MVSB RBEB1 RBEB4

nodes depth time egap nodes depth time egap nodes depth time egap nodes depth time egap

spar020-100-2 0.16% 3 2 1 0.00% 3 2 1 0.00% 29 15 13 0.00% 39 20 33 0.00%
spar030-060-1 1.21% 5 3 3 0.00% 3 2 6 0.00% 15 8 43 0.00% 17 9 152 0.00%
spar030-060-3 0.36% 15 8 10 0.00% 5 3 8 0.00% 39 20 63 0.00% 41 21 179 0.00%
spar030-070-1 2.97% 39 8 28 0.00% 19 6 40 0.00% 29 12 56 0.00% 27 13 164 0.00%
spar030-080-1 1.30% 7 3 5 0.00% 3 2 6 0.00% 11 6 39 0.00% 17 9 148 0.00%
spar030-100-2 0.05% 3 2 2 0.00% 1 1 3 0.00% 7 4 37 0.01% 9 5 140 0.00%
spar030-100-3 0.13% 3 2 2 0.00% 3 2 4 0.00% 53 27 69 0.00% 67 34 187 0.00%
spar040-040-1 3.02% 31 7 68 0.00% 13 5 91 0.00% 59 24 285 0.00% 51 16 787 0.00%
spar040-040-3 0.62% 5 3 11 0.00% 3 2 14 0.00% 9 5 176 0.00% 9 5 648 0.00%
spar040-050-1 0.51% 5 3 11 0.00% 3 2 14 0.00% 37 19 235 0.00% 39 20 705 0.00%
spar040-050-2 0.35% 3 2 7 0.00% 1 1 11 0.00% 53 27 283 0.00% 59 30 776 0.00%
spar040-060-1 2.24% 23 5 46 0.00% 11 4 89 0.00% 45 14 236 0.00% 53 18 693 0.00%
spar040-080-3 0.01% 3 2 6 0.00% 3 2 11 0.00% 29 15 199 0.00% 29 15 613 0.00%
spar040-090-2 0.03% 3 2 6 0.00% 1 1 9 0.00% 31 16 224 0.00% 31 16 671 0.00%
spar040-100-2 0.18% 5 3 10 0.00% 3 2 13 0.00% 21 11 195 0.00% 21 11 648 0.00%
spar040-100-3 2.21% 27 6 53 0.01% 25 6 181 0.00% 31 13 203 0.00% 33 11 676 0.00%
spar050-030-2 0.20% 5 3 29 0.00% 5 3 68 0.00% 45 23 789 0.00% 51 26 2626 0.00%
spar050-030-3 0.08% 3 2 15 0.00% 1 1 25 0.00% 11 6 580 0.01% 13 7 2328 0.01%
spar050-040-2 0.21% 5 3 27 0.00% 1 1 26 0.00% 15 8 591 0.01% 17 9 2186 0.01%
spar050-050-1 7.97% 439 14 2339 0.01% 189 11 3874 0.00% 365 18 2409 0.00% 287 16 3544 0.00%
spar050-050-2 0.76% 9 4 48 0.00% 7 3 141 0.00% 21 11 624 0.01% 21 11 2140 0.01%
spar050-050-3 0.75% 13 5 68 0.00% 5 3 88 0.00% 39 20 720 0.00% 41 21 2213 0.00%
spar060-020-3 0.54% 11 4 134 0.00% 3 2 93 0.00% 15 8 1695 0.00% 9 5 6190* 0.30%

Average 1.08% 28 4 122 0.00% 13 3 201 0.00% 43 14 407 0.00% 42 15 1186 0.01%

C
H
A
P
T
E
R

2.
S
P
A
T
IA

L
B
R
A
N
C
H
-A

N
D
-C

U
T

F
O
R

C
O
M
P
L
E
X

B
O
U
N
D
E
D

Q
C
Q
P

36

Table 2.5: Comparison of branching rules with SDP+VI relaxation on BoxQP

case rgap
MVWB MVSB RBEB1 RBEB4

nodes depth time egap nodes depth time egap nodes depth time egap nodes depth time egap

spar020-100-2 2.17% 69 13 18 0.00% 37 8 23 0.00% 49 17 19 0.01% 51 15 35 0.00%
spar030-060-1 3.30% 39 11 27 0.00% 9 4 23 0.00% 65 21 78 0.00% 59 24 174 0.01%
spar030-060-3 2.58% 247 23 170 0.01% 57 11 137 0.01% 345 71 294 0.01% 343 77 392 0.01%
spar030-070-1 5.12% 257 21 195 0.00% 53 13 134 0.00% 295 73 268 0.00% 309 75 375 0.00%
spar030-080-1 2.71% 21 6 15 0.00% 11 4 23 0.00% 59 23 75 0.01% 43 17 159 0.00%
spar030-100-1 0.70% 21 10 15 0.01% 7 3 16 0.01% 57 29 71 0.01% 59 30 166 0.01%
spar030-100-2 2.17% 17 7 12 0.00% 7 3 13 0.00% 19 9 45 0.00% 19 9 135 0.00%
spar040-040-1 5.61% 455 24 973 0.01% 189 17 1410 0.01% 683 101* 1616 0.02% 643 97 1978 0.01%
spar040-040-2 0.04% 5 3 11 0.00% 1 1 10 0.01% 33 17 235 0.01% 33 17 738 0.01%
spar040-050-1 2.25% 33 9 70 0.01% 19 7 121 0.00% 109 43 388 0.01% 109 46 827 0.01%
spar040-050-2 1.64% 59 9 129 0.01% 23 5 163 0.01% 135 52 452 0.00% 145 56 919 0.01%
spar040-060-1 4.61% 343 17 741 0.01% 135 11 953 0.01% 501 76 1237 0.01% 701 74 2153 0.01%
spar040-080-1 0.95% 31 16 67 0.00% 5 3 36 0.00% 51 26 262 0.01% 49 25 750 0.01%
spar040-090-2 1.49% 25 8 54 0.00% 9 4 67 0.00% 61 26 278 0.01% 87 23 866 0.00%
spar040-100-2 2.00% 71 19 154 0.01% 27 10 191 0.01% 169 53 509 0.01% 187 53 992 0.01%
spar040-100-3 4.04% 527 26 1166 0.01% 79 10 634 0.01% 829 56 1887 0.00% 713 52 2125 0.01%
spar050-030-2 1.88% 143 18 853 0.01% 37 8 799 0.01% 167 56 1550 0.00% 159 59 3135 0.00%
spar050-030-3 1.93% 211 18 1198 0.00% 39 9 850 0.01% 163 53 1481 0.00% 153 47 3036 0.00%
spar050-040-2 2.00% 71 11 393 0.01% 37 8 849 0.01% 197 44 1710 0.01% 119 47 2874 0.00%
spar050-050-1 9.97% 1047 18 5423* 5.64% 285 15 5449* 6.71% 987 33 5433* 2.88% 697 28 5433* 7.68%
spar050-050-2 3.12% 147 24 850 0.00% 59 11 1248 0.01% 223 57 1786 0.01% 195 52 3215 0.01%
spar050-050-3 2.70% 417 19 2407 0.01% 133 10 2416 0.01% 615 57 4192 0.01% 545 58 5425 0.01%
spar060-020-3 2.74% 413 21 5479* 1.31% 121 12 5532* 1.11% 293 56 5605* 1.13% 9 5 7006* 1.99%

Average 2.78% 195 15 851 0.29% 58 8 879 0.33% 257 45 1229 0.17% 229 42 1789 0.41%

CHAPTER 2. SPATIAL BRANCH-AND-CUT FOR COMPLEX BOUNDED
QCQP 37

2.4 Conclusion

This chapter presented a spatial branch-and-cut approach for generic Quadratically-
Constrained Quadratic Programs with bounded complex variables. We derived valid
inequalities from the convex hull description of nonconvex rank-one restricted sets
to strengthen the SDP relaxations. We gave a new branching method based on an
alternative characterization of a rank-one constraint. Experiments on Alternating
Current Optimal Power Flow problems showed that the valid inequalities are critical
to improving the performance of the algorithm. The proposed branching meth-
ods resulted in better performance compared to the benchmark reliability branching
method. Tests on box-constrained nonconvex Quadratic Programming instances sug-
gest that the violation-based branching methods may also be effective for problems
with real variables.

38

Chapter 3

Bound Tightening for the
Alternating Current Optimal
Power Flow Problem

3.1 Introduction

In this chapter we will improve the spatial branch-and-cut algorithm of Chapter 2
by adding bound-tightening procedures. We focus on a single-period scheduling
problem that incorporates steady-state AC power, the Alternating Current Optimal
Power Flow (ACOPF). A standard ACOPF problem is to find a minimum cost
dispatch of generation and transmission assets to supply load, subject to engineering
constraints. Since the AC power flow equations are nonlinear, a common approach
to solving ACOPF is through iterative Newton-type solvers (e.g. [153]), which can
only guarantee local optimality. Linearization approaches (see [8]) suffer from the
same problems. Therefore, in terms of global optimality, the performance of ACOPF
methods used in practice remain an open question. The feasible set of ACOPF is
nonconvex (see [69]), and it is NP-hard (see [159, 92]). Even finding a feasible solution
to ACOPF for radial instances with fixed voltages is NP-hard (see [94]).

An important challenge in power systems optimization is to accurately model
electricity in alternating current (AC) networks while maintaining computational
tractability. Multi-period problems employ coarser approximations, where transmis-
sion losses are eschewed and power flows are linearized so that efficient algorithms
can be employed. For certain purposes linearization can perform adequately (see
[124, 151, 96]). However, the inaccuracies that stem from these approximations can
result in suboptimal and even infeasible solutions, which may be unacceptable in

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 39

other cases. It is unclear how much room for improvement may be made by better
accounting for AC power flow. However, as Mixed-Integer Programming software
for Unit Commitment has shown, even small improvements in operations can have
significant overall impact (see [123]).

Interest in conic optimization techniques for ACOPF is largely due to multiple re-
ports of zero duality gap for various IEEE power system test cases (see [130, 92, 16]).
Zero duality gap means that the optimal value of a problem instance coincides with
that of the corresponding dual. Throughout the chapter we will be referring to the
Lagrangian dual of the ACOPF problem formulated as a nonconvex Quadratically-
Constrained Quadratic Program (QCQP). The Lagrangian dual of any QCQP can
be solved with semidefinite programming (SDP). SDP is a type of conic optimization
problem, which is a useful paradigm for global optimization as it guarantees that any
local optimum is also globally optimal. Conic optimization can be done with robust
methods that can automatically find initial starting points, and have polynomial-
time convergence towards the global optimal solution. Even when duality gap exists
for ACOPF, by property of weak duality conic relaxations provide a lower bound on
the global optimal value, which can be used to judge the quality of candidate feasible
solutions. Thus, unlike ACOPF algorithms used in practice, conic optimization can
prove a problem is infeasible, or prove that a solution is a global optimum.

For certain network topologies, simple formulations ACOPF can be solved ex-
actly using a conic relaxation (see [92, 169, 149]). However, numerous examples
demonstrate that zero duality gap cannot be guaranteed in general (see [95, 31,
85]). In cases with positive duality gap, more advanced techniques must be devel-
oped to search for global optimal solutions, such as higher moment relaxations (see
[75, 112]). The method of higher moment relaxations involves solving a sequence of
convex problems that grow rapidly in problem size. Several papers have considered
an alternative method to global optimization, a spatial branch-and-bound algorithm
(see [130, 61, 85]). These algorithms all use lifted relaxations that are computation-
ally expensive to solve for large instances. Therefore practical global optimization
for ACOPF remains an active research area.

This chapter provides computationally efficient methods for bound tightening,
namely the tightening of voltage magnitude, line flow, and phase angle limits. Bound
tightening reduces the domain of a problem by removing infeasible regions. This can
improve the quality of a relaxation while maintaining its validity; this is true of any
relaxation, whether SDP, SOCP, or LP-based (e.g. [42, 27]). For computational ex-
periments we have applied bound tightening to the spatial branch-and-cut algorithm
introduced in Chapter 2. Although domain reduction has a natural application to
global optimization as it can tighten relaxations, it can be applied elsewhere. For
instance, bound tightening could improve the warm-start for an iterative optimiza-

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 40

tion method, or it may complement the low-rank SDP-based heuristic introduced
in Sojoudi, Madani and Lavaei [150]. In addition to the bound tightening methods,
we also construct modified IEEE test cases with large duality gap that may pose a
challenge to global optimization algorithms. Computational tests using a complex
QCQP solver (see [39]) show that bound tightening improves the solver’s conver-
gence rate on these hard problems. The instances are made publicly available at
https://sites.google.com/site/cchenresearch/.

The rest of the chapter is organized as follows: Section 3.2 describes ACOPF
and a SDP relaxation for it; Section 3.3 introduces new ACOPF instances with large
duality gap; Section 3.4 details the bound tightening procedures; Section 3.5 contains
computational results; Section 3.6 concludes the chapter.

3.2 Formulations

We present a basic optimal power flow formulation:

(ACOPF) : min cT2 [P +DP]2 + cT1 (P +DP) + c0

subject to

P + jQ = diag(Y ∗V V ∗), (3.1a)

Pmin ≤ P +DP ≤ Pmax, (3.1b)

Qmin ≤ Q+DQ ≤ Qmax, (3.1c)

[V min]2 ≤ diag(V V ∗) ≤ [V max]2, (3.1d)

tan(θmin
mn)Re(VmV

∗
n). ≤ Im(VmV

∗
n) ≤ tan(θmax

mn)Re(VmV
∗
n). (3.1e)

Let n be the number of nodes in the graph of the problem, with nodes representing
either buses or transformers, and let k be the number of edges (aka branches). The
decision variables used are: nodal powers P + jQ ∈ Cn; a Hermitian decision matrix
representing the outer product of nodal voltages, W + ıT ∈ Hn×n; and power to
and from buses (respectively) across branches, Pf + jQf , Pt + jQt ∈ Ck. All other
parameters are fixed data: convex costs c0 ∈ R, c1 ∈ RN , c2 ∈ RN

+ ; load, DP +
jDQ ∈ Cn; admittance matrices, Y ∈ Cn×n, Yf , Yt ∈ Ck×n; voltage magnitude
limits, V min, V max ∈ Rn; phase angle limits θmin, θmax ∈ Rk; generator limits, Pmin +
jQmin, Pmax + jQmax ∈ Cn; and line limits, Smax ∈ Rn

++. Y := G + jB is the bus
admittance matrix, and Yf := Gf + jBf , Yt := Gt + jBt are branch admittances
corresponding to ‘from’ and ‘to’ nodes, respectively. Admittance is composed of

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 41

conductance G and susceptance B. For a branch r from m to n, the (r,m) entry of
Cf ∈ Rk×n and the (r, n) entry of Ct ∈ Rk×n are 1; all unconnected entries in those
matrices are 0 [172].

The objective is to minimize the cost of real power generation, where P + PD is
the net generation of real nodal power. The power flow equations are modeled with
constraint (3.1a), and nodal and generation power limits with constraints (3.1b) and
(3.1c). Constraint (3.1d) enforces voltage magnitude limits, and constraint (3.1e)
enforces bus angle difference limits. Bus angle differences can be recovered with
θmn = arctan(Im(VmV

∗
n)/Re(VmV

∗
n)). Note that for notational brevity we have left

out line limits, but three types are explicitly considered in Section 3.4.
Following Lavaei and Low [92], we consider the following lifted SDP relaxation:

(RACOPF) : min cT2 [P +DP]2 + cT1 (P +DP) + c0

subject to

P = diag(GW −BT), (3.2a)

Q = diag(−BW −GT), (3.2b)

Pmin ≤ P +DP ≤ Pmax, (3.2c)

Qmin ≤ Q+DQ ≤ Pmax, (3.2d)

[V min]2 ≤ diag(W) ≤ [V max]2, (3.2e)

tan(θmin
mn)Wmn ≤ Tmn ≤ tan(θmax

mn)Wmn, (3.2f)

W + ıT � 0. (3.2g)

The decision vector V has been replaced by the Hermitian decision matrix W+ıT ,
and a rank-one condition on W + ıT has been relaxed.

3.3 New Instances With Large Duality Gap

First we provide some intuition regarding the construction of cases with duality gap.
Provided ACOPF is feasible, RACOPF has the same optimal cost if and only if there
exists an optimal solution to RACOPF with rank 1. Recall the alternative condition
from Chapter 2:

Proposition 3.3.1. For n > 1 a nonzero Hermitian positive semidefinite n × n
matrix X has rank one iff all its 2× 2 principal minors are zero.

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 42

Suppose we are given an ACOPF-optimal solution with voltages V̂ and powers
P̂ , Q̂. Consider its corresponding rank-one optimal solution in lifted space Ŵ +jT̂ =
V̂ V̂ ∗. From the proposition we have that the principal minor condition Ŵ 2

mn+ T̂ 2
mn =

ŴmmŴnn holds across all bus pairs. The positive semidefinite constraint (3.2g)
enforces Ŵ 2

mn + T̂ 2
mn ≤ ŴmmŴnn, so a gap between LACOPF and ACOPF can only

occur if for each optimal solution to LACOPF there exists at least one pair m,n such
that W 2

mn + T 2
mn < WmmWnn.

If there is a pair m,n where decreasing either T̂mn or Ŵmn improves the objective
value, then there is a gap between the optimal values of LACOPF and ACOPF.
A decrease in the magnitude of T̂mn has the equivalent effect of a decrease in the
magnitude of θmn. Note that this is a nonphysical effect if the rank condition is
lost; for instance this could lead to an increase in power factor between m and n
without affecting flows elsewhere. Decreasing Ŵmn decreases real and reactive power
at both buses by decreasing real and reactive power flows in both directions across
the connecting lines.

Let us now consider conditions where decreasing the magnitudes of T̂mn or Ŵmn

(and adjusting nodal powers accordingly) could improve the objective function. Since
decreasing |T̂mn| reduces the power transfer between m and n, then it may be desir-
able when line congestion is problematic, or when transfer across a lossy transmission
line is otherwise unavoidable. Decreasing Ŵmn increases losses, which would allow an
otherwise unmanageable amount of power to be produced by dissipating flows in an
unphysical manner. Using this intuition, we construct new cases with large duality
gap by applying simple changes to IEEE test cases. We name these cases as follows:
9Na, 9Nb, 14S, 14P , and 118IN , with number indicating the number of buses and
letter indicating the type of change.

Negative costs: 9Na and 9Nb

We use the 9-bus instance in MATPOWER and change the cost coefficients by set-
ting all quadratic coefficients c2 to be zero, and reversing the sign of the linear real
power cost coefficients c1 on certain generators, making these costs negative. Neg-
ative cost coefficients can model opportunity costs such as start-up and shut-down
cost avoidance, ramping considerations (e.g. anticipating high demand in the next
period), feed-in-tariffs from renewable resources, and the value of absorbing excess
generation from an import bus. Thus the cost coefficients in these cases represent
bids rather than marginal generation costs. For this small 9-bus network we have
constructed extreme cases: in 9NA we give negative costs to generators 1 and 3, and
in 9NB we do so for all three generators.

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 43

Congestion: 14S and 14P

We modified the IEEE 14-bus case by applying a a universal line limit across all
lines, applying either real power (14P) or apparent power (14S) limits. For 14P we
apply a per-unit limit of 0.23, and for 14S a per-unit limit of 0.24. These produce
severe amounts of congestion, as further lowering the limit on either case by 0.01
resulted in infeasibility.

Congestion and Negative Costs: 118IN

We modified the 118-bus IEEE case in order to construct a relatively large case with
modest duality gap. The first (in lexicographic order) 7 generators were set to have
negative linear costs, and all quadratic cost coefficients were set to zero. Substantial
congestion was created by setting a thermal limit across all lines of 1.14 p.u. on
current magnitude.

3.4 Bound Tightening Procedures for ACOPF

In this section we propose fast procedures for domain reduction aka bound tighten-
ing. The typical procedure for bound tightening is as follows: minimize/maximize the
desired variable subject to the constraints of the relaxation; however, this is compu-
tationally intensive. Instead we consider ACOPF-specific methods with closed-form
solutions.

Tightening on power flows

Let us examine some bus m. If we consider voltage magnitude and angle constraints
at all buses, and real and reactive power constraints only at bus m, then we have
the following ACOPF relaxation in polar coordinates:

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 44

V min
n ≤ |Vn| ≤ V max

n , (3.3a)

θmin
mn ≤ θmn ≤ θmax

mn , (3.3b)

Pmin
m ≤ Gmm|Vm|2 +

∑
∀n∈C(m)

Gmn|Vm||Vn| cos(θmn)

+
∑

∀n∈C(m)

Bmn|Vm||Vn| sin(θmn) ≤ Pmax
m , (3.3c)

Qmin
m ≤ −Bmm|Vm|2 −

∑
∀n∈C(m)

Bmn|Vm||Vn| cos(θmn)

+
∑

∀n∈C(m)

Gmn|Vm||Vn| sin(θmn) ≤ Qmax
m . (3.3d)

We can further relax the problem by decoupling P and Q, and rewriting some
terms using the optimal solution to certain subproblems. First let us define the
following terms:

pmn := Gmn|Vn| cos(θmn) +Bmn|Vn| sin(θmn),

qmn := −Bmn|Vn| cos(θmn) +Gmn|Vn| sin(θmn),

pm :=
∑

∀n∈C(m)

pmn,

qm :=
∑

∀n∈C(m)

qmn.

Thus we can rewrite the nodal power equations:

Pm = Gmm|Vm|2 + pm|Vm|,
Qm = −Bmm|Vm|2 + qm|Vm|.

We can obtain upper and lower bounds on pmn, qmn by finding the following

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 45

optima:

pUmn := maxGmn|Vn| cos(θmn) +Bmn|Vn| sin(θmn)

subject to constraints (3.3a) and (3.3b),

pLmn := minGmn|Vn| cos(θmn) +Bmn|Vn| sin(θmn)

subject to constraints (3.3a) and (3.3b),

qUmn := max−Bmn|Vn| cos(θmn) +Gmn|Vn| sin(θmn)

subject to constraints (3.3a) and (3.3b),

qLmn := min−Bmn|Vn| cos(θmn) +Gmn|Vn| sin(θmn)

subject to constraints (3.3a) and (3.3b),

pLm :=
∑

∀n∈C(m)

pLmn,

pUm :=
∑

∀n∈C(m)

pUmn,

qLm :=
∑

∀n∈C(m)

qLmn,

qUm :=
∑

∀n∈C(m)

qUmn.

Each bound is computed by checking variable bounds and the unconstrained
first-order necessary conditions (FONC). For instance, for pmn, FONC give us either
θ∗mn = arctan(Bmn

Gmn
) if Gmn 6= 0, or else θ∗mn = π

2
, in which case we can discard

the point as infeasible. We can test all candidates (θmn = arctan(Bmn

Gmn
), |Vn| =

|Vn|min; θmn = θmax
mn , |Vn| = |Vn|max, etc.) to determine bounds for pm, qm. With these

variable bounds we form the following relaxation:

V min
m ≤ |Vm| ≤ V max

m ,

Pmin
m ≤ Gmm|Vm|2 + pm|Vm| ≤ Pmax

m ,

Qmin
m ≤ −Bmm|Vm|2 + qm|Vm| ≤ Qmax

m ,

pLm ≤ pm ≤ pUm,

qLm ≤ qm ≤ qUm.

From here, new variable bounds are determined in a straightforward and compu-
tationally efficient manner. Let us consider the power bounds first. An (resp. over)

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 46

underestimate of the (resp. max) min (resp. real) reactive power flow is attained
either at variable bounds or the appropriate unconstrained FONC point. For P we
have:

min{PN , PA} ≤ Gmm|Vm|2 + pm|Vm| ≤ max{PX , PB},
PN := min{Gmm(V min

m)2 + pLm(V min
m),

Gmm(V max
m)2 + pLm(V max

m)},
PX := max{Gmm(V min

m)2 + pUm(V min
m),

Gmm(V max
m)2 + pUm(V max

m)},

V A
P :=

{
− pLm

2Gmm
, Gmm 6= 0, V min

m ≤ − pLm
2Gmm

≤ V max
m ,

V min
m o/w,

V B
P :=

{
− pUm

2Gmm
, Gmm 6= 0, V min

m ≤ − pUm
2Gmm

≤ V max
m ,

V max
m o/w,

PA := Gmm(V A
P)2 + pLm(V A

P),

PB := Gmm(V B
P)2 + pUm(V B

P).

Here, V A
P , V

B
P are FONC solutions for Vm given a fixed value of pm, and PA, PB

are the corresponding nodal powers. Reactive power can be updated in the same
way, replacing Gmm with −Bmm, and p with q. Thus voltage limits can be used to
tighten nodal power limits.

We can apply the quadratic root formula to make inferences about voltage mag-
nitude using real and reactive power constraints. Note that only the positive root
needs to be considered, as the negative part corresponds to the lower portion of the
nose curve that is avoided in power systems operation to maintain stability. Let us
consider the following problem structure:

ax2 + bx+ c ≤ 0,

bL ≤ b ≤ bU ,

≡
ax2 + bx+ c+ d = 0,

d ≥ 0,

bL ≤ b ≤ bU .

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 47

Here, a, c are parameters, and x, b, d are real-valued variables. For example, with
the real power upper bound we have a = Gmm, b = pm, c = −Pmax, x = |Vm|,
and hence tightening of the limits on voltage magnitude. We are interested in the
projection on x so that we can establish implied variable bounds for purposes of
tightening: xL ≤ x ≤ xU . We use the property that the lower portion of nose curves
are forbidden or infeasible regions and take only the higher root:

x =

√
b2 − 4ac− 4ad

2|a|
− b

2a
.

From here, by maximizing or minimizing the right-hand side with b, d, we infer
either upper and lower bounds xL, xU , or else infeasibility:

a = 0, bU < 0 :

− c

bL
≤ x,

a = 0, bL > 0, c ≤ 0 :

x ≤ − c

bL
,

a = 0, bL > 0, c > 0 :

Infeasibility,

a < 0 :

−
min{

√
[(bL)2 − 4ac]+ + bL,

√
[(bU)2 − 4ac]+ + bU}

2a
≤ x,

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 48

a > 0, 4ac ≤ (bN)2 :

− bU

2a
≤ x ≤

max{
√

(bL)2 − 4ac− bL,
√

(bU)2 − 4ac− bU}
2a

,

a > 0, (bN)2 < 4ac ≤ (bX)2, bX < 0 :√
c

a
≤ x ≤

√
(bL)2 − 4ac− bL

2a
,

a > 0, (bN)2 < 4ac ≤ (bX)2, bX > 0 :

− bU

2a
≤ x ≤

√
(bU)2 − 4ac− bU

2a
,

a > 0, 4ac > (bX)2 :

Infeasibility,

bN :=

{
bL, (bL)2 < (bU)2,
bU o/w,

bX :=

{
bL, (bL)2 > (bU)2,
bU o/w.

Tightening on line constraints

Three types of line flow limits typically used for ACOPF are apparent power, real
power, and line current magnitude. For notational simplicity we will assume that
nodes are connected by a single line. This is not a technical requirement (we include
limits on specific lines in our experiments) as multiple lines can be easily accommo-
dated by replacing m,n entries with the appropriate indices for specific lines.

Apparent power is usually applied as a proxy for thermal line or transformer
limits: P 2

mn +Q2
mn ≤ (Smax

mn)2

Note that line limits are quartic constraints with respect to voltages. In our
relaxation we include nodal powers as explicit decision variables, so the line limits
are modeled as convex quadratic constraints with respect to power, which maintains
the QCQP framework.

Let us now deduce some limits by fixing either Pmn or Qmn in the same way as
with nodal powers. For brevity we will only show the procedure for real power, with
the procedure holding symmetrically for reactive power. First let us determine the
minimum possible magnitude of reactive power flow:

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 49

Q0
mn := max{QN

mn,min{QX
mn, 0}},

QN
mn := min{−Bmn(V min

m)2 − qUmnV min
m ,

−Bmn(V max
m)2 − qUmnV max

m ,

−Bmn(V A
Q)2 − qUmnV A

Q },
QX
mn := max{−Bmn(V min

m)2 − qLmnV min
m ,

−Bmn(V max
m)2 − qLmnV max

m ,

−Bmn(V B
Q)2 − qLmnV B

Q },

V A
Q :=

{
− qUmn

2Bmn
, Bmn 6= 0, V min

m ≤ − qUmn

2Bmn
≤ V max

m ,

V min
m o/w,

V B
Q :=

{
− qLmn

2Bmn
, Bmn 6= 0, V min

m ≤ − qLmn

2Bmn
≤ V max

m ,

V max
m o/w.

Using the same principles as with nodal powers, we have determined QN
mn, Q

X
mn,

respectively upper and lower bounds on reactive power flow from m to n. |Q0
mn| gives

us the minimum magnitude, so we the have the following valid inequality:

P 2
mn + (Q0

mn)2 ≤ (Smax
mn)2,

≡ Pmin
mn ≤ Pmn ≤ Pmax

mn ,

Pmin
mn := −

√
(Smax

mn)2 − (Q0
mn)2,

Pmax
mn :=

√
(Smax

mn)2 − (Q0
mn)2.

Note that the explicit real power limits are sometimes included as a proxy for
voltage stability limits. In such a case we use whichever bound is tighter. Voltage
magnitude bound tightening can then be applied to line flow limits using the same
procedure as for nodal power limits. For instance, with Pmax

mn and we have Gmn|Vm|2−
pmn|Vm| − Pmax

mn ≤ 0.
Line current magnitude is the key factor in thermal line limit violation. In the

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 50

lifted space we write this as a linear constraint, unlike apparent power bounds:

|Imn| ≤ Imax
mn ,

≡ (G2
mn +B2

mn)(|Vm|2 + |Vn|2

− 2|Vm||Vn| cos(θmn)) ≤ (Imax
mn)2,

=⇒ (G2
mn +B2

mn)(Wmm +Wnn,

− 2Wmn) ≤ (Imax
mn)2.

Defining θ0mn := max{θmin
mn ,min{θmax

mn , 0}} as the feasible angle closest to zero, we
make the following inference, supposing that |Ymn| 6= 0:

|Vm| ≤ max{V D, V E, V F},

V C :=

{ √
IR

1−cos2(θ0mn)
, θ0mn 6= 0,

∞, o/w,

V D :=


V max
n cos(θ0mn)

+
√
IR + (V max

n)2(cos2(θ0mn)− 1), V max
n ≤ V C ,

V C , o/w,

V E :=


V min
n cos(θ0mn)

+
√
IR + (V min

n)2(cos2(θ0mn)− 1), V min
n ≤ V C ,

Infeasible problem, o/w,

V F := min{V min
n ,max{min{V max

n , V C}, V G}},

V G :=


√
IR(| sin(θ0mn)|+

cos(θ0mn)| cot(θ0mn)|), θ0mn 6= 0,
V E, o/w,

IR :=
(Imax
mn)2

G2
mn +B2

mn

.

The same procedure applies symmetrically on |Vn|. We also update the angle
bounds, considering only the nontrivial cases where |Ymn|V min

m V min
n 6= 0:

(G2
mn +B2

mn)(|Vm|2 + |Vn|2,
− 2|Vm||Vn| cos(θmn)) ≤ (Imax

mn)2,

=⇒ |Vm|2 + |Vn|2 − IR

2|Vm||Vn|
≤ cos(θmn). (3.4)

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 51

We can then determine the minimum of the left-hand side of inequality (3.4).
Supposing a nontrivial bound, where (V min

m)2+(V min
n)2−IR > 0, V min

m > 0, V min
n > 0,

by examining derivatives we can see that the minimum is attained at one of the
following values:

|Vm| = V min
m , |Vn| = max{V min

n ,min{V max
n , (V min

m)2 − IR}},
|Vm| = V max

m , |Vn| = max{V min
n ,min{V max

n , (V max
m)2 − IR}},

|Vn| = V min
n , |Vm| = max{V min

m ,min{V max
m , (V min

n)2 − IR}},
|Vn| = V max

n , |Vm| = max{V min
m ,min{V max

m , (V max
n)2 − IR}}.

Let θAmn be the minimum value for the left-hand side of inequality (3.4). If θAmn >
1, then the problem is infeasible; otherwise, θmn is bounded above and below by
± arccos(θAmn).

Tightening on graph cycles

For meshed networks, we propagate angle bound changes across cycles using the
identity that the sum of angle differences around a cycle must sum to zero. For
instance, if we choose to partition the bounds of θmn, it is easy to check if there
is some third bus k that connects to m and n in the chordally completed graph.
Supposing that all bounds are at -30 to 30 degrees, and that the upper bound θ̂max

mn

has been updated to -15 degrees, then we can update the other lower bounds:

θ̂min
nk = max{θmin

nk ,−(θ̂max
mn + θmax

km)}
= −15 deg,

θ̂min
km = max{θmin

km ,−(θ̂max
mn + θmax

nk)}
= −15 deg .

Although this applies to cycles of any size, for simplicity we restrict the procedure
to 3-cycles in our experiments. Note that this procedure generalizes to QCQP with
bounded complex variables (see [39]).

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 52

3.5 Computational Experiments

Setup

All experiments herein are performed with a 2.26 dual-core Intel i3-350M processor
and 4 GB main memory. Algorithms are coded in MATLAB [107] with model pro-
cessing performed by YALMIP [102]. We use the solver for QCQP with bounded
complex variables developed in Chapter 2.

In addition to the challenging instances produced in Section 3.3, we have included
test instances with small duality gap from Gopalakrishnan et al. [61]. These instances
are called g9-g57, with the number indicating the number of buses in the problem.
Since the IEEE test cases do not include phase angle difference limits, we have applied
a 30 degree bound for all connected bus pairs. For the challenging problems we set
a global optimality tolerance of 1%, and for g9-g57 we use a tolerance of 0.1%.

Results

We summarize our results using MVWB in Table 3.1. The columns are defined
as follows. Case is the case name. BT indicates whether the bound tightening
procedures were used. Nodes are the number of search tree nodes explored before
termination. Depth is the maximum search tree depth. Time is the total time spent
in the solver. rgap is the root gap, calculated as (gub− rlb)/|gub|, where gub is the
best known upper bound and rlb is the root node lower bound. egap is the end gap,
calculated as (gub−glb)/|gub|, where glb is the global lower bound established by the
solver at termination. cgap is the closed gap, i.e., 1− egap

rgap
. Note that egap-rgap is a

lower bound for the duality gap present in these cases. Column averages are provided
in the last row. For cases with small root gap, g9-g30, bound tightening has a modest
effect, and the solver terminates quickly regardless. For the more difficult problems
bound tightening presents clear advantages in both time and search tree size. In case
118IN bound tightening reduces the root gap by 16%, and for other cases it does
not have substantial effect at the root node.

Table 3.2 provides a detailed breakdown of times. Total indicates the total time
spent in the solver. LB is the time spent solving lower bound problems, UB is the
time spent upper bound problems. The overhead (OH) is calculated as Total−LB−
UB. Total/n is the time spent per search tree node, and OH/n is the overhead
time per node. There are small but significant increases in overhead due to the
bound tightening procedures. The per-node overhead increase is larger on the more
difficult cases. This is because the bound tightening procedure is able to prune a high
percentage of nodes due to infeasibility, and thus makes up a larger percentage of total

CHAPTER 3. BOUND TIGHTENING FOR THE ALTERNATING CURRENT
OPTIMAL POWER FLOW PROBLEM 53

Table 3.1: Comparison with and without bound tightening

case
With Tightening Without Tightening

nodes depth time rgap egap cgap nodes depth time rgap egap cgap

g9 57 22 20 0.36% 0.08% 76% 77 27 28 0.36% 0.10% 73%
g14 49 18 18 0.16% 0.10% 38% 67 21 28 0.16% 0.10% 40%
g30 73 12 45 0.18% 0.09% 49% 75 12 51 0.18% 0.09% 49%
g57 109 39 358 2.31% 0.09% 96% 215 68 1202 2.31% 0.10% 96%
9Na 1171 45 340 18.00% 1.00% 94% 2771 70 587 18.00% 1.00% 94%
9Nb 1149 43 333 19.29% 1.00% 95% 2325 69 522 19.29% 1.00% 95%
14P 2290 50 1026 5.32% 1.00% 81% 4999 72 1766 5.32% 1.00% 81%
14S 1799 51 968 2.97% 1.00% 66% 3979 72 1628 2.97% 1.00% 66%

118IN 190 33 1620 1.61% 1.00% 38% 241 39 1821 2.05% 0.99% 52%
Average 699 37 925 4.56% 0.71% 65% 1608 51 1561 4.59% 0.79% 60%

time spent. With the exception of phase angle tightening the procedures presented
in this chapter involve closed-form solutions and involves only simple arithmetic
operations. The angle tightening involves propagation across cycles on chordal graphs
(see [39]), which has linear time worst case complexity (see [29]). Thus it may be
possible to further reduce per-node time impacts with more efficient coding practices
than used in our prototype.

Table 3.3 contains the results of applying bound tightening procedures for all
branching rules. Again, modest improvements can be seen for the cases with small
root gap. For the more difficult cases, bound tightening offers substantial improve-
ments, with both MVWB and MVSB able to reach the optimality criterion for all
cases. The observed increase in overhead as a result of the bound tightening proce-
dures is less than 5% of total time. Again, reliability branching rules do not perform
as well as the violation strategies. We also note that bound tightening reduces the
root gap by 21% for 118IN .

3.6 Conclusion

We constructed new instances of ACOPF with high duality gap, which require meth-
ods beyond a one-stage SDP relaxation for global optimization. We presented closed-
form bound-tightening procedures to reduce the domain of the problem by removing
infeasible regions. Computational experiments using a spatial branch-and-cut solver
indicate that the bound-tightening techniques are particularly effective on more dif-
ficult instances. Further experiments could explore details regarding configurations,
e.g. number of bound tightening passes per node, size of cycles for angle tightening,
and applying strong tightening at the root node.

C
H
A
P
T
E
R

3.
B
O
U
N
D

T
IG

H
T
E
N
IN

G
F
O
R

T
H
E
A
L
T
E
R
N
A
T
IN

G
C
U
R
R
E
N
T

O
P
T
IM

A
L
P
O
W

E
R

F
L
O
W

P
R
O
B
L
E
M

54

Table 3.2: Breakdown of time spent (seconds)

case
With Tightening Without Tightening

Total LB UB OH Total/n OH/n Total LB UB OH Total/n OH/n
g9 20 3 11 6 0.35 0.11 28 5 16 7 0.36 0.09
g14 18 5 8 4 0.37 0.09 28 9 14 5 0.42 0.08
g30 45 18 17 10 0.62 0.14 51 20 22 9 0.68 0.12
g57 358 114 190 54 3.28 0.49 1202 233 911 59 5.59 0.27
9Na 340 58 173 109 0.29 0.09 587 134 307 147 0.21 0.05
9Nb 333 57 168 107 0.29 0.09 522 117 274 131 0.22 0.06
14P 1026 316 420 290 0.45 0.13 1766 648 811 307 0.35 0.06
14S 968 263 436 269 0.54 0.15 1628 548 804 275 0.41 0.07

118IN 1620 737 553 330 8.52 1.74 1821 878 638 304 7.56 1.26
Average 925 241 497 187 4.07 0.60 1561 472 885 204 2.80 0.29

Table 3.3: Comparison of branching rules using CSDP+VI and bound tightening for ACOPF

case rgap
MVWB MVSB RBEB1 RBEB4

nodes depth time egap nodes depth time egap nodes depth time egap nodes depth time egap

g9 0.36% 57 22 20 0.08% 52 21 28 0.10% 7545 82 5440* 0.36% 607 49 207 0.10%
g14 0.16% 49 18 18 0.10% 31 11 20 0.09% 151 36 97 0.10% 177 36 87 0.10%
g30 0.18% 73 12 45 0.09% 49 9 68 0.10% 125 54 141 0.10% 248 52 241 0.10%
g57 2.31% 109 39 358 0.09% 51 23 386 0.10% 784 101* 5531* 2.22% 264 88 2456 0.10%
9Na 18.00% 1171 45 340 1.00% 460 30 195 0.99% 10030* 73 3461 14.72% 7188 61 1780 1.00%
9Nb 19.29% 1149 43 333 1.00% 722 29 313 1.00% 10052* 101* 3555 14.56% 6464 58 1690 1.00%
14P 5.32% 2290 50 1026 1.00% 1582 31 1454 1.00% 10048* 101* 4897 5.31% 10033* 97 3499 5.08%
14S 2.97% 1799 51 968 1.00% 1187 28 1307 1.00% 10041* 101* 4879 2.96% 10024* 95 4473 2.63%

118IN 1.61% 190 33 1620 1.00% 250 21 5980 1.00% 562 91 5614* 1.46% 264 81 5670* 1.41%
Average 5.58% 765 35 525 0.60% 487 23 1083 0.60% 5482 82 3735 4.64% 3919 69 2234 1.28%

55

Chapter 4

Sparse Cuts for a Positive
Semidefinite Constraint

In this chapter we study valid inequalities for a positive semidefinite constraint on
a Hermitian decision matrix. This is the canonical constraint of complex semidef-
inite programming (SDP), which as mentioned in Chapter 2 can be used to solve
a relaxation of complex quadratically-constrained quadratic programs. The valid
inequalities can be used to form an outer-approximation of any complex or real
semidefinite program. We will apply these inequalities on the Alternating Current
Optimal Power Flow (ACOPF) problem, which has sparse structure that can be in-
corporated into its SDP relaxation [113, 72, 15]. We propose a separation approach
to solving a sparse complex (or real) SDP problem, which allows for the flexibility of
terminating at a near-optimal solution and retaining a weaker but potentially easier
to solve relaxation. This may be particularly useful for branch-and-cut methods,
although may also be benefits to incorporating cuts into interior point methods (see
[111, 88]). Specific applications include large-scale problems, mixed-integer SDP, and
spatial branch-and-bound where a SDP relaxation may be solved repeatedly.

The rest of the chapter is organized as follows: Section 4.1 describes the standard
linear cuts for SDP, Section 4.2 details the proposed conic cuts, Section 4.3 describes
the sparse decomposition approach, Section 4.4 provides some computations, Sec-
tion 4.5 concludes the chapter.

4.1 Linear Valid Inequalities

A Hermitian matrix X ∈ Cn×n has only real eigenvalues, which we will order as
follows: λ1 ≥ λ2 ≥ ... ≥ λn. Assign a corresponding eigenbasis: d1, d2, ..., dn. We can

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 56

use the Courant-Fischer min-max principle to form a variational characterization of
these eigenvalues (see [70]):

λi(X) = maxdim(C)=i minc∈C:||c||=1 c
∗Xc

Consequently, since X is positive semidefinite only when its minimum eigenvalue
is nonnegative, the positive semidefinite constraint is equivalent to a semi-infinite
linear constraint set:

X � 0 ≡ c∗Xc ≥ 0 ∀c ∈ C
Thus, if some optimal decision matrix X̂ is not PSD, then we can introduce

cutting planes c∗Xc ≥ 0, c ∈ Ĉ, where Ĉ is some (finite) set of valid inequalities.
Motivated by the min-max principle, Sherali and Tuncbilek [145] proposed using all
eigenvectors corresponding to the negative eigenvalues of X̂ for real SDP problems;
this approach was later extended to sparse SDP by Qualizza, Belotti, and Margot
[133]. This is a method of exact separation, as cuts can be generated iff X̂ is not
positive semidefinite. Hence any SDP may be outer-approximated to arbitrary pre-
cision using these cuts. This method adds the deepest cut in some sense, since from
the variational characterization we have that dn attains maximal violation:

λn(X) = d∗nXdn = minc∈Rn:||c||=1 c
∗Xc

We note that a small modification is used to apply these cuts — originally pro-
posed for real-valued symmetric matrices — to Hermitian matrices. One can use
two real n × n matrices of decision variables for the real and imaginary compo-
nents, X := Re(X)+ ıImag(X), where the real part is symmetric, and the imaginary
skew-symmetric. Any cut with c can be implemented as a linear constraint using real
decision variables: Re(c)∗Re(X)Re(c)+Im(c)∗Re(X)Im(c)+2Im(c)∗Im(X)Re(c) ≥ 0.

4.2 Second-Order Cone Valid Inequalities

Another necessary condition for a matrix to be positive semidefinite is:

X � 0 ≡ N∗XN � 0 =⇒ C∗XC � 0.

N a n × n nonsingular matrix and C some matrix with n rows. Oskoorouchi and
Mitchell [122] observed that if C is n× 2 then CTXC is a 2× 2 matrix, and so this
positive semidefinite constraint can be written as a second-order cone constraint.
However, they left open the question of separating from this set, i.e. selecting a C.
We present some analysis that can guide cut generation.

Let us define the cut coefficient C in terms of its columns: C = [c1 c2], C ∈ Cn×2.
Thus

C∗XC =

[
c∗1Xc1 c∗1Xc2
c∗2Xc1 c∗2Xc2

]

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 57

C∗XC � 0 is equivalent to the following three inequalities:

(c∗1Xc1)(c
∗
2Xc2) ≥ |c∗1Xc2|2 (4.1a)

c∗1Xc1 ≥ 0, c∗2Xc2 ≥ 0 (4.1b)

Note that inequality 4.1a ensures nonnegativity of det(C∗XC), and inequalities 4.1b
ensure nonnegativity of the remaining principal minors. These describe a rotated
second-order cone, and so they are equivalent to the following second-order cone
constraint:

c∗1Xc1 + c∗2Xc2 ≥ ||(2c∗1Xc2, c∗1Xc1 − c∗2Xc2)|| (4.2)

Inequality 4.2 constraints the minimum eigenvalue of X since λmin(C∗XC) =
1
2
(c∗1Xc1 + c∗2Xc2− ||(2c∗1Xc2, c∗1Xc1− c∗2Xc2)||). Using the transformation described

in the case of linear valid inequalities, this cut can be implemented using real decision
variables. It has several desirable properties. Since inequality 4.2 implies 4.1b, then
the second-order cone cut dominates the linear cut. Furthermore, this approach
subsumes the 2 × 2 principal minor valid inequalities that are commonly used to
form a SOCP relaxation of SDP (e.g. [80]):

X � 0 =⇒
[
Xpp Xpq

Xqp Xqq

]
� 0∀p, q.

For the principal minor corresponding to indices p, q, one can set c1 = ep, c2 = eq,
where ep is the unit basis vector with an entry of 1 at p and 0 everywhere else.
Hence there is a possibility of generating a stronger SOCP relaxation for a given
SDP. To address this question we examine the violation of a given cut. Let ‖.‖F
denote the Frobenius norm. Given a symmetric matrix X̂ ∈ Rn×n with eigenvalues
λ1 ≥ ... ≥ λn,, and some C ∈ Rn×2, we have:

Theorem 4.2.1.

1. min
||C||F=1

λmin(C∗X̂C) = λn

2. min
||C||F=1

det(C∗X̂C) =

{
λ1λn
4
, λ1 > 0

0, λ1 ≤ 0

Proof. We start with the first minimization. Let C = [c1, c2], and let d1, d2, ..., dn be
an eigenbasis of X, where each di corresponds to the eigenvectors of X, λ1 ≥ ... ≥ λn.

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 58

Then with a change of variables a, b ∈ Rn : ai , c∗1di, bi , c∗2di we have:

z∗1 := min
||C||F=1

λmin(C∗XC)

= min
c∗1c1+c

∗
2c2=1

1

2
[c∗1Xc1 + c∗2Xc2

−
∣∣∣∣(c∗1Xc1 − c∗2Xc2, 2c∗1Xc2)T ∣∣∣∣]

= min
aT a+bT b=1

1

2

[
n∑
i=1

λi(a
2
i + b2i)

−

∣∣∣∣∣
∣∣∣∣∣(

n∑
i=1

λi(a
2
i − b2i), 2

n∑
i=1

λiaibi)
T

∣∣∣∣∣
∣∣∣∣∣
]

(4.3)

First suppose that
∑n

i=1 λiaibi = 0. Then

z∗1 = min
aT a+bT b=1

1

2

[
n∑
i=1

λi(a
2
i + b2i)−

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

λi(a
2
i − b2i)

∣∣∣∣∣
∣∣∣∣∣
]

= min
aT a+bT b=1

1

2

[
n∑
i=1

λia
2
i +

n∑
i=1

λib
2
i −

∣∣∣∣∣
n∑
i=1

λia
2
i −

n∑
i=1

λib
2
i

∣∣∣∣∣
]

= min
aT a+bT b=1

{
n∑
i=1

λia
2
i ,

n∑
i=1

λib
2
i

}
=λn

The penultimate equation is obtained using the fact that x+y−|x−y| = min{2x, 2y}.
Now suppose

∑n
i=1 λiaibi 6= 0 and let µ be the Lagrange multiplier associated

with aTa + bT b − 1 = 0. We have the following first order necessary conditions for
optimality for all k = 1, ..., n:

µak =λk

[
ak −

ak
∑n

i=1 λi(a
2
i − b2i) + 2bk

∑n
i=1 λiaibi

||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||

]
(4.4)

µbk =λk

[
bk −

2ak
∑n

i=1 λiaibi − bk
∑n

i=1 λi(a
2
i − b2i)

||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||

]
(4.5)

By supposition there must exist some ambmλm 6= 0, so we have:

µ =λm − λm

∑n
i=1 λi(a

2
i − b2i) + 2 bm

am

∑n
i=1 λiaibi

||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||
(4.6)

µ =λm − λm
2am
bm

∑n
i=1 λiaibi −

∑n
i=1 λi(a

2
i − b2i)

||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||
(4.7)

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 59

Together, (4.6)-(4.7) imply the following:

n∑
i=1

λi(a
2
i − b2i) = (

am
bm
− bm
am

)
n∑
i=1

λiaibi (4.8)

Substituting (4.8) back into (4.6), we have:

µ =λm − λm
(am
bm
− bm

am
)
∑n

i=1 λiaibi + 2 bm
am

∑n
i=1 λiaibi∣∣∣∣∣∣((ambm − bm

am
)
∑n

i=1 λiaibi, 2
∑n

i=1 λiaibi)
T

∣∣∣∣∣∣
=λm − λm

(am
bm

+ bm
am

)
∑n

i=1 λiaibi∣∣∣∣∣∣(ambm + bm
am

)
∑n

i=1 λiaibi

∣∣∣∣∣∣
=λm − λm

(am
bm

+ bm
am

)
∑n

i=1 λiaibi∣∣∣(ambm + bm
am

)
∑n

i=1 λiaibi

∣∣∣
=

{
0, (a

2
m+b2m
ambm

)
∑n

i=1 λiaibi > 0

2λm, (a
2
m+b2m
ambm

)
∑n

i=1 λiaibi < 0
(4.9)

Now multiplying (4.4) by ak and (4.5) by bk and taking a sum over all k we obtain:

µ =µ(
n∑
k=1

a2k + b2k)

=
n∑
k=1

λk(a
2
k + b2k)

−
∑n

k=1 λk(a
2
k − b2k)

∑n
i=1 λi(a

2
i − b2i)

||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||

− 4
∑n

k=1 λkakbk
∑n

i=1 λiaibi
||(
∑n

i=1 λi(a
2
i − b2i), 2

∑n
i=1 λiaibi)

T ||

=
n∑
i=1

λi(a
2
i + b2i)−

∣∣∣∣∣
∣∣∣∣∣(

n∑
i=1

λi(a
2
i − b2i), 2

n∑
i=1

λiaibi)
T

∣∣∣∣∣
∣∣∣∣∣ (4.10)

Thus µ is twice the optimal objective value, and so by (4.10)-(4.9) we have:

z∗1 =

{
0, (a

2
m+b2m
ambm

)
∑n

i=1 λiaibi > 0

λm, (a
2
m+b2m
ambm

)
∑n

i=1 λiaibi < 0

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 60

Hence z∗1 ≥ λn, and equality can be attained by setting an = 1, so z∗1 = λn.
We prove the second minimization using similar arguments:

z∗2 = min
||C||F=1

det(C∗XC)

= min
c∗1c1+c

∗
2c2=1

c∗1Xc1c
∗
2Xc2 − (c∗1Xc2)

2

= min
aT a+bT b=1

n∑
i=1

λia
2
i

n∑
i=1

λib
2
i − (

n∑
i=1

λiaibi)
2 (4.11)

First suppose
∑n

i=1 λiaibi = 0. Then:

z∗2 = min
aT a+bT b=1

n∑
i=1

λia
2
i

n∑
i=1

λib
2
i

=

{
λ1λn
4
, λ1 > 0

0, λ1 ≤ 0

Now suppose
∑n

i=1 λiaibi 6= 0. Reusing µ as the Lagrangian multiplier associated
with aTa+ bT b− 1 = 0, we have the following first order necessary conditions for all
k = 1, ..., n:

µak =λkak

n∑
i=1

λib
2
i − λkbk

n∑
i=1

λiaibi (4.12)

µbk =λkbk

n∑
i=1

λia
2
i − λkak

n∑
i=1

λiaibi (4.13)

Multiplying (4.12) by ak and (4.13) by bk, and taking a sum over all k, we have:

µ =µ
n∑
i=1

(a2k + b2k)

=
n∑
k=1

λka
2
k

n∑
i=1

λib
2
i +

n∑
k=1

λkb
2
k

n∑
i=1

λia
2
i

− 2
n∑
k=1

λkakbk

n∑
i=1

λiaibi

=2

(
n∑
i=1

λia
2
i

n∑
i=1

λib
2
i − (

n∑
i=1

λiaibi)
2

)

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 61

Thus µ is twice the objective value. If we multiply (4.12) by bk and (4.13) by ak,
we get:

λkakbk

n∑
i=1

λib
2
i − λkb2k

n∑
i=1

λiaibi

= λkakbk

n∑
i=1

λia
2
i − λka2k

n∑
i=1

λiaibi

⇔ λk(a
2
k − b2k)

n∑
i=1

λiaibi = λkakbk

n∑
i=1

λi(a
2
i − b2i) (4.14)

Suppose
∑n

i=1 λi(a
2
i − b2i) = 0, so that together with (4.14) and

∑n
i=1 λiaibi 6= 0

we have a2k = b2k ∀k. Let z ∈ {−1, 1} be a sign variable so that ak = zkbk. Then by
(4.11) we have:

z∗2 = min
aT a+bT b=1

n∑
i=1

λia
2
i

n∑
i=1

λib
2
i − (

n∑
i=1

λiaibi)
2

= min
aT a+bT b=1

(
n∑
i=1

λia
2
i)

2 − (
n∑
i=1

λiaibi)
2

= min
aT a+bT b=1

(
n∑
i=1

λia
2
i +

n∑
i=1

λiaibi)(
n∑
i=1

λia
2
i −

n∑
i=1

λiaibi)

= min
aT a= 1

2
,z∈{−1,1}

(
n∑
i=1

2λizia
2
i)(2

n∑
i=1

λi(1− zi)a2i) (4.15)

Now if X has no positive eigenvalues, then the optimal value is 0, since each sum
in (4.15) must be nonnegative. Otherwise, denoting p < n as the index of the least
nonnegative eigenvalue, we have:

z∗2 =4 min
aT a= 1

2

(

p∑
i=1

λia
2
i)(

n∑
j=p+1

λja
2
j)

=
λ1λn

4
(4.16)

Now suppose
∑n

i=1 λi(a
2
i−b2i) 6= 0. Together with the supposition that

∑n
i=1 λiaibi 6=

0 and (4.14) we have for some a2m 6= b2m:

n∑
i=1

λiaibi =
ambm
a2m − b2m

n∑
i=1

λi(a
2
i − b2i) (4.17)

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 62

Substituting (4.17) into (4.12) yields:

µam =λmam

n∑
i=1

λib
2
i − λmbm

ambm
a2m − b2m

n∑
i=1

λi(a
2
i − b2i)

⇔ µ =λm

n∑
i=1

λi(
a2m

a2m − b2m
b2i −

b2m
a2m − b2m

a2i)

=
λm

a2m − b2m

∑
i 6=m

λi(a
2
mb

2
i − b2ma2i)

Since µ is twice the objective value we can write:

z∗2 = min
aT a+bT b=1

λm
2(a2m − b2m)

∑
i 6=m

λi(a
2
mb

2
i − b2ma2i) (4.18)

Assigning again µ as the multiplier for aTa+ bT b− 1 = 0, we have the following first
order necessary conditions for all k 6= m:

2µak =− λmb
2
mλkak

a2m − b2m

2µbk =
λma

2
mλkbk

a2m − b2m
Thus λkakbk = 0 ∀k 6= m. If λkak = 0 or λkbk = 0 ∀k 6= m then by (4.18) the
objective value is 0. Otherwise, if there is some t 6= m such that λtat 6= 0, bt = 0, then
by (4.12) we have µ = λk

∑n
i=1 λib

2
i ≥ min{0, λiλn}. Using (4.13) shows the same

bound holds for λtbt 6= 0, at = 0. Thus we have shown in all cases z∗2 ≥ min{0, λ1λn
4
},

where 0 can be obtained with a = b and λ1λn
4

with a1 = bn = 1√
2
.

The constructive proof of the first statement of Theorem 4.2.1 shows that the cut
producing the greatest violation given a bounded Frobenius norm on C can actually
be obtained by the largest violation linear cut, i.e. the eigenvalue dn(X̂), using,
say C = [dn(X̂) 0]. If λn < λn−1, then this cut attains a unique minimum. This
result seems lacking, as we are left with simply the original linear cut. For this
reason, we proved the second statement. The cut exploiting the largest violation
of the nonlinear component, represented in valid inequality 4.1a, is attained with√

2C = [d1(X̂) dn(X̂)], provided λ1 > 0. Moreover, this cut also implies the largest
violation linear cut due to the choice of second column. We will call this cut soc1.
However,

√
2C = [dn−1(X̂) dn(X̂)] maximizes the largest violation of each of the

inequalities 4.1b, provided the columns are independent (otherwise the linear cut is

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 63

best). Provided that λn−1 < 0, such a cut would not result in nonlinear violation from
inequality 4.1a. We will call this cut soc2. Comparing soc1 and soc2 we see there is
a tension between finding violation in inequality 4.1a and in inequality 4.1b. Using
violation as a guideline, we would expect soc1 to be more effective in later cutting
plane algorithm iterations as the relaxation tightens, due to the increasing condition
number of the solution matrix as the minimum eigenvalue approaches 0. We leave as
an open question whether there is a better metric for generating second-order cone
cuts. For instance, soc2 does not generate nonlinear violation with respect to the
current solution, but as a nonlinear constraint it could still become binding in later
iterations.

4.3 Positive Semidefinite Completion

In a sparse SDP, the objective and linear constraints use only a small proportion
of the decision matrix variables. Hence the positive semidefinite constraint becomes
problematic due to its density, which raises the question of whether it is possible
to use fewer variables. It turns out that one can reduce the number of variables
by increasing the number of positive semidefinite constraints: Fukuda et al. [58]
introduced a methodology that relies on a positive semidefinite completion theorem
proved by Grone et al [62]. Variations of this approach have been applied to ACOPF
[113, 72, 15]. We present one variant below.

Consider some partial Hermitian matrix X, where some entries are specified and
others are null. We say X has a positive semidefinite completion if there exists a
full Hermitian positive semidefinite matrix X̄ having the same values in all specified
entries of X. Now consider the unweighted undirected graph G(N,E) induced by X:
the node set N corresponds to the columns, and there is an edge between distinct
nodes, Emn = 1, only if the corresponding entry Xmn is specified. Furthermore,
denote the set of maximal cliques C(G); a maximal clique Cr ∈ C(G) is a clique
(Emn = 1 ∀m,n ∈ Cr,m 6= n) not contained by any other clique. Denote the subma-
trix induced by Cr as X(Cr), having only those rows/columns of X corresponding to
the index set Cr. Then the positive semidefinite completion theorem gives a sufficient
condition for completion based on chordality. A chordal graph is a graph where the
largest chordless cycle has 3 nodes.

Theorem (Grone et al. [62]). Suppose G(N,E) is chordal. Then X has a
positive semidefinite completion iff X(Cr) � 0 ∀Cr ∈ C(G).

While this has wider application, we mention only the one pertinent to our use.
Consider a standard form SDP, and construct a matrix U that accounts for variables
used in the objective or linear constraints, e.g. Umn =

∑
∀i |Amn| or null if this sum

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 64

is zero. Then if the graph induced by U is chordal, we can apply the theorem, and
replace X � 0 with positive semidefinite constraints of the form X(Cr) � 0 ∀Cr ∈ C.
Although there can, in general, be an exponential number of cliques, for chordal
graphs these are linearly bounded and can be found in linear time [29]. If the
graph is not chordal, we lose sufficiency of positive semidefinite completion, and so
a natural question is: what are the fewest extra entries of U or, equivalently, edges
in E needed to ensure G is chordal? Unfortunately [166] proved that this problem,
known as minimum triangulation or minimum fill-in, is NP-complete.

However, while a minimum fill-in is desirable, it is not necessary, as any solution
(known as a chordal extension) will do, with the complete graph being a trivial case.
In this chapter we employ a symbolic Cholesky decomposition on a permutation of U ,
call it U ′. The permutation is found using a popular heuristic called minimum-degree
ordering. It turns out that symbolic Cholesky decomposition (Cholesky factorization
that is independent of numerical values) will always yield a lower triangular matrix
L, where L + LT that induces a chordal graph. In fact, finding a permutation
that results in a Cholesky factorization with the least nonzero entries is equivalent
to the minimum triangulation problem. Jabr [72] implemented one a variant of
this decomposition technique to greatly reduce solution times to SDP relaxations of
ACOPF.

As indicated in Kim et al. [81], a similar theorem can be used for LMIs. Consider
some symmetric matrix Y :=

∑m
i=1 viAi, and an associated graph G(N,E) where

Emn = 1 only if there is some i such that Aimn 6= 0. Then if G is chordal with some
set of maximal cliques C, we have the following:

Theorem (Agler et al. [4]). Suppose G(N,E) is chordal. Y is positive semidef-
inite iff there exist Z(Cr) � 0 such that Y =

∑
Cr∈C(G) Z(Cr).

In addition to improving the SDP solution times, sparse decomposition can also
help improve cut performance. Consider a rather extreme case, an LP posed using
SDP:

min tr(diag(c)X)

subject to

tr(diag(ai)X) = bi, ∀i
X � 0

If we drop the positive semidefinite constraint entirely and apply dense linear cuts,
then dn(X̂)TXdn(X̂) could add a large number of (unbounded) dummy variables. If
we instead applied, say, symbolic Cholesky decomposition, then the positive semidef-
inite constraint would be decomposed using cliques of one node: Xmm � 0↔ Xmm ≥
0. Applying one linear (nonzero) cut to each dense clique (c2mXmm ≥ 0), we would

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 65

recover the LP nonnegativity constraint immediately in the first cutting plane iter-
ation.

Completion and Rank-One for CQCQP

In Chapter 2 we presented CSDP in dense form, but implemented the relaxation in
sparse form. This leaves open the question of whether enforcing rank-one constraints
on each submatrix of the sparse form retains equivalence with CSDP with rank-one
constraint on the dense matrix. We will show that equivalence does indeed hold.
Consider a Hermitian matrix X with spectral decomposition X =

∑N
k=1 λkdkd

∗
k,

where the eigenvalues are ordered so that λk ≥ λk+1. Unlike in the real symmetric
case, if λk has multiplicity 1, then the eigenvector dk is only unique up to rotation by a
complex phase ejθk [154, pp. 41]. In polar coordinates we have that the eigenvector
is unique up to scaling of all phase angles by the same degree (preserving angle
differences). That is, if dki = |dki|(cos(θki) + j sin(θki)), then we can add δ ∈ R to all
angles and replace dk in the eigenbasis. In terms of rectangular coordinates (i.e. real
and imaginary components), we can state that dk can be replaced in the eigenbasis
with

Re(dk) + δ~1 + j(δI − Im(dk)),

for any δ ∈ R such that (Re(dki) + δ)2 ≤ |dki|2∀i and δI ∈ RN with entries δIi =√
|dki|2 − (δ + Re(dki))2.
Sparse positive semidefinite decomposition of a Hermitian matrix X ∈ HN×N

yields a set of index sets C, where Xc � 0 ∀c ∈ C ⇐⇒ X � 0. Note that
⋂
∀c∈C c =

{1, ..., N}. A property of sparse decomposition is that C can be represented with an
acyclic graph where each node is an element c of C and an edge between two nodes
indicates that at least one index is shared between the corresponding index sets; this
is known as a clique tree [62, 58].

Proposition 4.3.1. Xc � 0, rank(Xc) ≤ 1 ∀c ∈ C iff X can be completed so that
X = xx∗ for some x ∈ CN.

Proof. If X = xx∗, then rank(X) ≤ 1, X � 0 and so one direction is obvious. Now
consider the other direction: suppose that Xc � 0, rank(Xc) ≤ 1 ∀c ∈ C. We will
use a constructive proof, i.e. we shall construct an x so that (xx∗)c = Xc∀c ∈ C.

Let us consider the clique tree corresponding to the chordal graph formed by C.
Label a terminal node c1. Since Xc1 has rank one and is positive semidefinite, we
have that Xc1 = λc11 (dc11)∗dc11 , and so we can set xc1 =

√
λc11 d

c1
1 for any normalized

principal eigenvector dc11 . Now denote a neighbouring node c2 and consider its corre-
sponding index set with some normalized principal eigenvector, dc22 . By clique tree

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 66

property, Xc1 and Xc2 share at least one entry, say Xmm, so |(dc11)m| = |(dc22)m|. Since
eigenvectors of the eigenbasis are only unique up to rotation by complex phase, d2
can be rotated to form d̂2 so that (dc11)m = (d̂c22)m, i.e. rotating the eigenvector so
that one entry attains a specific angle. Then we can set xc2 =

√
λc21 d̂2, where xmm,

the shared entry of xc1 , xc2 retains the same value. The remaining elements of x can
be found by proceeding through neighbours in the same manner, with the acyclic
property ensuring that each element of x is set once.

This relies on a generalization of the fact that in ACOPF and in load flow the
bus angles of any solution can be scaled up or down by constants. From the propo-
sition it immediately follows that in the alternative rank condition only the 2 × 2
principal minors related to the submatrices Xc need to be considered, and so valid
inequalities (2.6a) and (2.6b) can be applied in a sparse fashion.

4.4 Computational Experiments

All experiments herein were performed with a 2.26 dual-core Intel i3-350M processor
and 4 GB main memory. Experiments were coded in MATLAB (r2010a, see [107])
with model processing from YALMIP (R20130213, see [102]). Test instances were
taken from MATPOWER (version 4.1, see [172]), which in turn are derived from
IEEE power system test cases. In many cases line ratings were not provided, and
angle limits were not added. Conic programs were solved with MOSEK (version 6.0,
see [9]), and IPOPT (3.11.1, see [161]) was used as a local solver to obtain primal
feasible solutions.

Results are divided into two subsections. First, we discuss the effects of sparse
decomposition; although this method has been applied to ACOPF already, there are
certain insights here that we believe are worth emphasizing as we have used a more
intuitive configuration. Second, we present results on solving SDP via a cutting plane
algorithm.

Sparsity

We compare time spent in solvers for various relaxations in Table 4.1, with cases
indicating the number of buses in the problem, and a dash indicates an unsolved
problem due to a lack of memory. The relaxations tested are: the SDP relaxation
(SDPR), SDP in dual form (DSDPR), SDP in sparse form (SpSDPR), and the 2× 2
principal minor SOCP relaxation (SOCP). SDPR, due to its use of 4N2 variables,
runs into memory limitations past 57 buses. DSDPR solves faster due to the natural

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 67

tendency of dual-form SDPs to use fewer variables. The sparse formulation, denoted
SpSDPR, solves substantially faster, but minor convergence issues from this method
meant that rank-one solutions could not be obtained directly. Overall formulation
time was substantially higher (30 minutes for the 300 bus case), but to some degree
this was due to our choice of modeling language, so we have included only time spent
in the MOSEK solver.

SOCPR solves considerably faster, as it uses fewer variables and sparser conic
constraints. Memory usage was significantly lower as well; for instance, after pre-
processing and factorization, for case300 SpSDPR has 2× 105 nonzero entries in the
constraint data matrix, while SOCPR uses 6×104 and 4×105 for the 2383-bus case.
Thus, while the sparse method for SDPR is effective on small instances, SOCPR
becomes significantly faster and less memory intensive for medium and large-scale
systems. Although SOCPR provides a weaker bound, we can see in Table 4.2 that it
is still of high quality. The voltage magnitudes and real power generation schedules
are close to the feasible optimum, but reactive power and angles are significantly
mismatched, a phenomenon that also occurs in cases with duality gap (see [95]). To
some extent this strong performance of SOCPR and SDPR can be explained by the
relative ease of the problem; even the copper plate model (no transmission network)
provides a good lower bound. This is a property of the IEEE cases, which tend to
have ample generation and very little congestion.

The differences between SDPR, its sparse form SpSOCPR, and SOCPR depend
on the topology of the underlying network. For dense, highly meshed networks
we should expect SpSDPR to take longer to solve, and possibly for the optimal
value of SOCPR to diverge from that of SDPR. However, the test problems we have
available are rather sparse. For instance, in case300, SpSDPR used less than 5% of
the variables of SDPR; the minimum necessary amount could be even less, since we
have used a heuristic that satisfies a sufficient condition. In Table 4.3 we show the
distribution of clique sizes for the larger instances; clique sizes correspond to a PSD
constraint on a submatrix of twice that size. For all instances, more than 80% of
cliques involved 2 to 4 buses, indicating a consistent sparsity regardless of problem
size. Indeed, cliques of size 2 imply constraints that can be represented exactly with
SOCP, so the sparse topology helps explain the strong performance of SOCPR in
Table 4.2. Larger cliques appeared sporadically in the largest instances, with the
Polish 2383-bus system having a 25-bus clique.

Cuts for a Positive Semidefinite Constraint

We implement a simple cutting plane algorithm: the initial relaxation is solved with-
out PSD enforcement, and in subsequent iteration cuts are added and the relaxation

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 68

Table 4.1: Solution times (s)

case SDPR DSDPR SpSDPR SOCPR
case14 1.06 2.5 0.7 0.1
case30 13.16 0.8 0.81 0.1
case39 55.4 1.9 0.71 0.1
case57 657.74 2.5 1.2 0.1
case118 - 18.2 1.61 0.2
case300 - 363.1 6.47 0.6

case2383wp - - - 7.3

Table 4.2: Relaxation Optimum as Percent of Best Primal Optimum

case Copper Plate SOCPR
case14 94.6% 99.9%
case30 98.4% 99.8%
case39 98.6% 99.98%
case57 98.2% 99.9%
case118 97.1% 99.8%
case300 98.1% 99.9%

case2383wp 94.6% 99.3%

Table 4.3: Clique Size Distribution

Clique Size case118 case300 case2383wp
2 8% 32% 28%
3 61% 36% 53%
4 25% 20% 8%
5 6% 8% 4%
6 0% 3% 2%
7 0% 1% 1%

8 to 25 0% 0% 4%

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 69

is solved again. At each iteration we added a cut for each clique-induced positive
semidefinite constraint. We tested three types of cuts: a set of linear cuts with
c = [di(X̂)], ∀i : λi < 0 (lincut), and the second-order cone cuts soc1 and soc2.

In Table 4.4 we see how quickly cuts can capture the 2×2 complex valid inequal-
ities starting from no enforcement of the PSD condition. The rows are labelled as
follows. case is the IEEE case name, indicating the number of buses. 2 × 2 gap
is the optimality gap between the 2 × 2 relaxation of ACOPF and the best known
solution. ite is the number of cutting plane iterations, where each iteration involves
adding a set of cuts and solving the modified relaxation. cuts is the total number of
cuts added. gap is the optimality gap between the lower bound established by the
cutting plane algorithm and the best known solution. An asterisk indicates failure to
converge — either tailing off in convergence or numerical instability causing failure
in the interior point method solver. time is the total time spent in the relaxation
solver; overhead is omitted to remove noise in the comparison. The table indicates
difficulty in a cold-start (no PSD limit enforced) approach to solving the SDP relax-
ation. soc2 has moderately more success in achieving convergence. soc1 and soc2

combined achieve the fastest convergence rate where possible.
Since the 2 × 2 relaxation performs well, we examine in Table 4.5 the effects of

adding PSD cuts to this relaxation. 5 iterations of the cutting plane algorithm were
applied. egap indicates the optimality gap between the lower bound established by
cuts and the best known upper bound. cgap is the percent of the 2 × 2 gap closed
by the cuts. The second-order cone cuts performed better than the linear cuts,
requiring a similar amount of solving time but closing more gap. soc1 did not add
to the performance of soc2. With respect to lower bound quality, the experiment
indicates that a few rounds of cuts can bring a 2× 2 SOCP relaxation quite close to
the SDP relaxation, which has zero gap on these instances.

C
H
A
P
T
E
R

4.
S
P
A
R
S
E
C
U
T
S
F
O
R

A
P
O
S
IT

IV
E
S
E
M
ID

E
F
IN

IT
E
C
O
N
S
T
R
A
IN

T
70

Table 4.4: Capturing the Strength of 2x2 Complex PSD Inequalities

case 2× 2 gap
lincut soc1 soc2 soc1 + soc2

ite cuts gap time ite cuts gap time ite cuts gap time ite cuts gap time

case9 0.0% 21 100 0.6%* 3.5 7 30 0.0% 1.2 5 22 0.0% 0.9 4 36 0.0% 0.8
case14 0.1% 21 241 0.1% 2.5 5 56 0.0% 0.4 4 44 0.0% 0.3 3 64 0.0% 0.3
case30 0.6% 23 586 0.5% 16.4 7 128 0.3% 3.9 3 68 0.2% 1.7 2 90 0.6% 1.4
case57 0.1% 27 1420 98.6* 16.4 49 1102 100%* 37.8 12 523 0.0% 4.6 11 1038 20.7%* 6.8
case118 0.3% 11 1326 99.5%* 17.1 30 3093 6.5%* 52.9 13 1342 7.0%* 13.5 15 3102 10.0%* 30.3
case300 0.2% 13 3461 98.4%* 46.8 13 2649 17.7%* 47 9 1911 3.1%* 30.7 11 4198 18.6%* 54

Table 4.5: Adding PSD Cuts to the 2× 2 Relaxation

case 2× 2 gap
lincut soc1 soc2 soc1+soc2

cuts egap cgap time cuts egap cgap time cuts egap cgap time cuts egap cgap time

case9 0.0% 20 0.00% 0% 1.2 10 0.00% 66% 1.2 12 0.00% 94% 1.2 16 0.00% 92% 1.2
case14 0.1% 52 0.00% 97% 1.2 31 0.00% 100% 1.1 26 0.00% 100% 1.0 36 0.00% 100% 1.1
case30 0.6% 111 0.53% 8% 5.6 81 0.49% 15% 4.1 73 0.00% 100% 4.4 96 0.00% 100% 4.6
case57 0.1% 254 0.06% 7% 5 203 0.06% 14% 5.7 188 0.01% 89% 5.9 336 0.01% 85% 5.7
case118 0.3% 631 0.25% 4% 11.6 408 0.25% 4% 10.4 362 0.05% 79% 10.8 626 0.05% 80% 11.7
case300 0.2% 1056 0.12% 27% 43 933 0.12% 29% 46.3 916 0.04% 78% 46 1784 0.07% 61% 47.7

CHAPTER 4. SPARSE CUTS FOR A POSITIVE SEMIDEFINITE
CONSTRAINT 71

4.5 Conclusion

We derived two novel separation rules for second-order cone valid inequalities for
a positive semidefinite constraint on a Hermitian matrix. These are closed-form
solutions that use the eigenvectors of a matrix. The cuts were applied in sparse
fashion to obtain a lower bound for ACOPF problem instances. Computational
experiments on IEEE demonstrate that these conic inequalities can be more effective
than adding linear inequalities. Further experiments are needed to see if there is a
useful ordering of adding cuts, e.g. adding one round of soc2, then one round of soc1
and finishing with lincut. There may also be merit in exploring cases where the 2×2
relaxation is substantially worse than the SDP relaxation. Computational results
from Kocuk, Dey, and Sun [86] indicate that linear cuts can perform substantially
better than the SDP formulation on large cases (2000+) buses. Thus experiments
on larger cases may also be worthwhile.

72

Chapter 5

Unit Commitment with Quadratic
Costs

5.1 Introduction

Unit commitment is an electric generation scheduling paradigm where one must
determine which generators should be committed to turn on or off at future time
periods in order to reliably satisfy consumer demand at minimum cost. The complex-
ities stem from engineering considerations of certain generators such as large thermal
units, which require minimum amounts of time to economically and safely start or
stop generation. Unit commitment involves further complexities such as forecasting
consumer demand, unpredictable generation from renewable sources of energy, and
various engineering requirements to reliably operate a power system. Problems are
solved using simplifying assumptions so that the unit commitment can be completed
within a practical amount of time Nonlinear constraints are particularly troublesome,
and so they are often simplified; for example, modeling alternating current can result
in prohibitively difficult problems [57], so linearized power flow is used instead (e.g.
[67]). The combinatorial nature of the underlying scheduling problem is such that
even a basic linear UC model is NP-Complete [23]. Linearization may be costly as
extra generators are turned on to protect against problems that might arise due to
the simplifications. Effective methods for nonlinear scheduling problems would allow
for more realistic modeling and, in turn, would reduce the costs and possibly the
risks of delivering electricity to the consumer.

In this chapter we consider a unit commitment problem with convex quadratic
costs. We show that a reformulation can improve solution times of the resulting
mixed-integer convex formulation. Although not known at the time this research

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 73

was conducted, the idea was already proposed by Günlük and Linderoth [65] under
the purview of strengthening formulations with the perspective function. However,
no computational experiments were conducted on the problem, so this chapter does
present substantial contribution.

5.2 Formulation

A basic formulation of the Unit Commitment for thermal generation follows, where
operation costs are minimized subject to meeting demand and generator restrictions:

Data

For each ith generator in the set of generators {1, ..., I} we have:

• MCi- marginal cost of generating a unit of power

• Ni- fixed per period cost of leaving the generator on

• SUi- startup cost

• SHi- shutdown cost

• Ri- ramping limit

• K−i , K+
i - minimum burn and maximum capacity, respectively

• ni, fi- minimum uptime and downtime, respectively

Finally, for each period t in the set of periods {1, ..., T} we have the demand lt.

Variables

For each generator i and time period t we have:

• qi,t- amount of power generated

• ui,t- indicator that is 1 if generator is turned on in a given period, 0 otherwise

• si,t- indicator that is 1 if the generator started up in a given period, 0 otherwise

• hi,t- indicator that is 1 if the generator shut down in a given period, 0 otherwise

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 74

Model

min
q,u,s,h

∑
i,t

(MCiqi,t, +Niui,t + SUisi,t + SHihi,t)

Subject to

∑
iεI

qi,t = lt ∀t ∈ T (5.1a)

K−i ui,t ≤ qi,t ≤K+
i ui,t ∀i ∈ I, t ∈ T (5.1b)

−Ri ≤ qi,t − qi,t−1 ≤ Ri ∀i ∈ I, t ∈ T (5.1c)
t∑

τ=t−ni+1

si,τ ≤ ui,t ∀i ∈ I, t ∈ T (5.1d)

t∑
τ=t−fi+1

hi,τ ≤ 1− ui,t ∀i ∈ I, t ∈ T (5.1e)

si,t ≥ui,t − ui,t−1 ∀i ∈ I, t ∈ T (5.1f)

hi,t ≥ui,t−1 − ui,t ∀i ∈ I, t ∈ T (5.1g)

ui,t, si,t, hi,t ∈ {0, 1} ∀i ∈ I, t ∈ T (5.1h)

qi,t ≥ 0 ∀i ∈ I, t ∈ T (5.1i)

Constraint (5.1a) ensures that demand is met in all periods. Constraint (5.1b)
ensures that production falls between the minimum burn and maximum capacity of
each generator. Constraint (5.1c) enforces the ramping limits for each generator,
which are technical limitations on the rate of change in generation over time. Con-
straints (5.1d)-(5.1e) are minimum up-time and minimum down-time constraints,
respectively. That is, for maintenance and cost reasons, once turned on a generator
must stay on for a minimum amount of time; once turned off, a generator has a min-
imum cool-down time. The structure from constraints (5.1d)-(5.1e) couple together
multiple time periods, making the unit commitment a nontrivial scheduling problem.
Constraints (5.1f)-(5.1g) define the startup and shutdown states, respectively, and
constraints (5.1h)-(5.1i) enforce decision variable restrictions.

Many variants and extensions of this basic model have been proposed. A sig-
nificant concern is uncertainty in demand and renewable generation, so stochastic
[36, 138] and robust optimization models [171] have been proposed. There are also
models incorporating AC transmission systems (e.g. [103, 57]), though these are
not yet computationally tractable at industrial scale. Incorporating linearized DC

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 75

approximations of the transmission network can approximate network effects; for ex-
ample, the idea of dispatching transmission – so-called transmission switching – could
greatly reduce losses [68, 121]. In electricity markets, issues of fairness and trans-
parency arise, so the choice of solution methods have wider-reaching consequences
than strictly minimizing system costs (see [148]). For markets where generators com-
mit their own units, the generation company faces financial risk. Thus several models
have been developed to account for this price uncertainty [164, 167, 98, 119, 74].

Numerous methodologies have been proposed for solving the unit commitment,
many of them heuristic in nature. In early times, generators were solved using a
greedy method called Priority Listing, which takes the lowest average cost units in
order until demand can be met. Since this does not guarantee feasibility, numerous
ad hoc corrections were to be made by the operators. Lagrangian relaxations became
a dominant methodology, where by relaxing the demand constraint, units are decou-
pled, allowing each generator decision to be easily solved by dynamic programming.
Other methods include Benders’ Decomposition [36], MIP (e.g. [66]), and meta-
heuristics (e.g. [77, 129]). More details on these methods can be found in surveys
(e.g. [143, 126]). There has been a recent trend in favour of MIP, which can provide
exact solutions in theory, and in practice offers good lower bounds. For example, the
world’s largest wholesale electricity market, PJM, reported savings of $90M one year
after switching from Lagrangian Relaxation methods to Mixed-Integer Programming
[152].

5.3 Quadratic Costs and Conic Reformulation

Marginal costs for thermal generators can be represented by quadratic or cubic ap-
proximations that capture the nonlinear relationship between fuel and heating [165].
We consider a convex quadratic objective, replacing the linear objective in the pre-
vious basic unit commitment model:

min
q,u,s,h

∑
i,t

(MC2iq
2
i,t, +MCiqi,t, +Niui,t + SUisi,t + SHihi,t)

Subject to (5.1a)-(5.1i).
MC2 denotes the quadratic cost coefficient. The above problem is a Mixed-

Integer Quadratic Programming (MIQP) problem, and can be readily solved by a
commercial MIP solver such as CPLEX [43]. However, it is possible to build a
stronger formulation, using the following result from Aktürk, Atamtürk, and Gürel
[6]:

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 76

Let C =
{

(x, y, z) ∈ R2 × {0, 1} : y ≥ x
a
b , uz ≥ x ≥ lz, x ≥ 0

}
, with a ≥ b > 0

and u ≥ l ≥ 0. The convex hull of C is given by{
(x, y, z) ∈ R3 × {0, 1} : ybza−b ≥ xa, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x ≥ 0, y ≥ 0

}
.

We can reformulate the quadratic Unit Commitment problem and observe that
C is contained in the structure. First we linearize the objective with a substitute
variable v:

min
q,u,s,h

∑
i,t

(MC2ivi,t +MCiqi,t, +Niui,t + SUisi,t)

Subject to

q2i,t ≤ vi,t ∀i ∈ I, t ∈ T (5.2a)

and (5.1a)− (5.1i).

Constraint 5.2a is a rotated second-order cone constraint, which can be repre-
sented with second-order cone programming, so the problem is now a mixed-integer
conic program. In general, such an approach will not improve solution times, but
we observe that constraints (5.1b),(5.1h)-(5.1i), and (5.2a) give the form of C. We
can therefore develop the strengthened conic reformulation using the aforementioned
description of the convex hull of C :

min
q,u,s,h

∑
i,t

(MC2ivi,t +MCiqi,t, +Niui,t + SUisi,t)

Subject to

q2i,t ≤ ui,tvi,t∀i ∈ I, t ∈ T
and (5.1a)-(5.1i), and (5.2a).
As mentioned in the introduction, this has been proposed by Günlük and Lin-

deroth [65] in the context of perspective reformulation, though no computational
experiments were conducted in the paper. Other approaches to this problem have
involved linear approximations of the objective [55, 53] or solving the MIQP directly
[134].

5.4 Computational Experiments

Experiments are performed using CPLEX 12.2 on a 2.3 GHz i3-350M processor
with 4GB memory. Generator data and demand are based on the commonly used

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 77

Table 5.1: Unit Commitment with Varying Quadratic Cost Coefficients

coef 90% Quad 50% Quad
gens 100 100 Conic 50 50 Conic 100 100 Conic 50 50 Conic
rgap 2.61% -0.01% 2.62% -0.02% 5.37% 0.2% 5.29% 0.18%
egap 2.21% -0.01% 1.99% -0.02% 4.58% 0.2% 4.37% 0.18%
iub 120 40 37 17 713 49 46 19

nodes 19510 0 64658 0 12064 0 33576 0

coef 10% Quad 1% Quad
gens 100 100 Conic 50 50 Conic 100 100 Conic 50 50 Conic
rgap 2.29% 1.54% 2.32% 1.52% 1.99% 1.92% 1.84% 1.76%
egap 1.26% 0.65% 1.21% 0.53% 0.67% 0.61% 0.52% 0.52%
iub 1250 56 76 28 1115 45 102 22

nodes 9647 15842 25669 15482 10486 18566 23274 30749

benchmark of Kazarlis, Bakirtzis, and Petridis [77]. The quadratic costs are varied in
order to test the effects of the severity of nonlinearity in the objective function. For
each quadratic cost setting, the standard formulation and conic reformulation are
compared using 50 and 100 generators. Each instance is terminated after 1 hour or
if the optimality gap was less than 0.5% before 1 hour. This is a standard optimality
gap for the problem (e.g. [54]).

All results are contained in Table 5.1. The first row coef denotes the average
percent of costs at maximum generation that can be attributed to the quadratic
term. Thus 90% Quad has much higher quadratic cost coefficients than 1% Quad.
In practice, marginal costs are dependent on fuel costs and generator types, and
quadratic curves can vary significantly. The second row gens denotes the generator
and formulation type. For example, 100 denotes a 100-generator instance using
the MIQP formulation, and 100 Conic denotes the conic reformulation of the same
instance. Initial root gaps, rgap are calculated using the objective of the best known
feasible solution, Z*, and the initial relaxation objective, R: initial gap = (Z*-R)/Z*.
The end gap egap is calculated in the same manner using the best known upper
bound at termination. Negative values for gaps are due to numerical issues, but
represent a near-optimal solution. iub denotes the time to find the initial upper
bound via a feasible integer solution. nodes are the number of branch-and-bound
nodes explored before termination.

As expected, the strengthened conic reformulation results in smaller root gaps.
The difference in relaxations is especially pronounced for the highly nonlinear cases.
At 90% and 50% quadratic costs, the initial solution was proved to be optimal for
the conic reformulation, but gaps in the MIQP formulation were poor. Even for 10%

CHAPTER 5. UNIT COMMITMENT WITH QUADRATIC COSTS 78

and 1% quadratic costs, we see that the conic reformulation resulted in significantly
faster times to the first feasible solution.

5.5 Conclusion

We developed a strong conic formulation of the unit commitment problem with
quadratic costs, which involves more variables than the natural mixed-integer quadratic
formulation, but is a tighter relaxation. The experiments showed that conic refor-
mulation resulted in greatly improved relaxations compared to the linear relaxation
of the MIQP, particularly when the quadratic coefficient was higher, increasing the
curvature of the objective function with respect to generation. In these highly non-
linear instances, the initial feasible integer solutions were found to be optimal. In all
cases, the first feasible solution was found much faster with the conic reformulation.

79

Chapter 6

On Mixed-Integer Geometric
Programming

6.1 Introduction

We consider the Mixed-Integer Geometric Programming (MIGP) problem:

minimize cx+ qy

subject to eaix+giy−bi ≤ dix+ kiy − hi, i = 1, 2, ..., k

x ∈ Zn, y ∈ Rp

MIGP is a generalization of geometric programming (GP). GP was developed by
Zener [168] in the context of engineering design problems, and its name comes from
the use of the arithmetic geometric-mean inequality. Applications include structural
design, statistical physics, growth modeling, circuit design, and problems in commu-
nication systems (see [41, 33]). Many such applications are naturally formulated in
the nonconvex standard form:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, ...,m

hj(x) = 1, j = 1, ..., q

hi is termed a monomial function, which is of the form cxa11 x
a2
2 ...x

an
n with c > 0,

and fi is a posynomial, the sum of such monomials. By change of variables yi :=
log(xi) such a problem can be put in convex form, as each monomial can be replaced

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 80

with ea
T y+log(c) = 1 ⇐⇒ aTy + log(c) ≥ 0 and the posynomial constraints may be

rewritten as convex sum of exponential constraints.
In this chapter we adopt the exponential inequality of Chandrasekaran and Shah

[37], which generalizes geometric programming as the right hand side is not required
to be constant. These constraints are convex, and the continuous or natural relax-
ation where x ∈ Rn can be solved in polynomial time with interior point methods
provided constraint qualification, e.g. the existence of a strict interior point. Note
that a polynomial time interior point algorithm can be constructed even with the
addition of second-order cone, and symmetric positive semidefinite conic constraints
[37].

Unlike its continuous counterpart, MIGP has received relatively little attention.
A generic approach is to treat MIGP as a convex mixed-integer problem and outer-
approximate the nonlinear constraints with gradient cuts in order to leverage mixed-
integer linear programming algorithms (e.g. [49]). In this chapter we compare this
linearization approach with methods that account for the specific structure of MIGP,
namely the following mixed-integer set:

G := {x ∈ Zn+, y ∈ Rp
+ : eax+gy−b ≤ dx+ ky − h}

We explore some possibilities of solving MIGP using Mixed-Integer Second-Order
Cone Programming (MISOCP), a class of problems for which there are special-
purpose commercial branch-and-cut solvers. To our knowledge, there are no branch-
and-bound solvers for MIGP that solve the continuous geometric programming relax-
ation for lower bounds. We adapt a method to approximate the exponential function
in order to outer-approximate MIGP with MISOCP. We also consider submodular
cuts, which we will show are applicable to G when x is a binary vector.

6.2 Outer-Approximation of the Exponential

Constraint

Glineur [59] proposes using the following limit:

e−x = lim
α→∞

|1− x

α
|α

Each exponential constraint can be approximated with the following convex con-
straint:

|1 +
aix+ giy − bi

α
|α ≤ dix+ eiy − hi

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 81

Moreover, Glineur provides the following bounds for 0 ≤ x ≤ α:

|1− x

α
|α ≤ e−x < |1− x

α
|α +

1

α

In this case the approximation is an underestimator and hence we have a valid
inequality for MIGP that may be used for convex outer-approximation.

Ben-Tal and Nemirovski [20, Ch. 3, pp. 134] combine the aforementioned limit
with the Maclaurin series characterization ex =

∑∞
n=0

xn

n!
. Define

φp,r(x) :=

(
1 +

x

2r
+

1

2
(
x

2r
)2 + ...+

1

p!
(
x

2r
)p
)(2r)

For every p ≥ 1 we have:

lim
r→∞

φp,r(x)= lim
q→∞

(
1 +

p∑
n=1

xn/n!

qn

)q

= lim
q→∞

(φp,0(x/q))
q

= exp

(
lim
q→∞

q ln(φp,0(x/q))

)
= exp

(
lim
q→∞
−q2

d
dq
φp,0(x/q)

φp,0(x/q)

)
(L’Hôpital’s rule)

= exp

(
x+ limq→∞

∑p
n=2 q

1−nxn/(n− 1)!

1 + limq→∞
∑p

n=1
xn/n!
qn

)
=ex.

For fixed r, the limit on p also converges:

lim
p→∞

φp,r(x)=

(
∞∑
n=0

(
x
2r

)n
n!

)(2r)

=(e(x/(2
r)))(2

r)

=ex

By design, for any positive integers p, r, φp,r provides an approximation that
is representable with second-order cone constraints [20]. We will give an explicit
representation in the next subsection. Ben-Tal and Nemirovski show that for fixed
p and |x| ≤ T the approximation error |ex − φp,r(x)| ≤ ε reduces exponentially:

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 82

r ≥ O(ln(
1

ε
) + T)

=⇒ (1− ε)ex ≤ φp,r(x) ≤ (1 + ε)ex, |x| ≤ T

Note that φp,r(x) can be used to construct a second-order cone representable
minorant or underestimator of ex over a domain L ≤ x ≤ U . Observe that for x ≥ 0:

1 +
x

2r
+

1

2
(
x

2r
)2 + ...+

1

p!
(
x

2r
)p ≤ exp(

x

2r
)

⇐⇒ φp,r(x) ≤ ex

Hence for a bounded problem x ≥ L, the constraint ex ≤ t implies the valid
inequality φp,r(x − L) ≤ e−Lt. This may be viewed as an outer-approximation that
is tangent to the true function only when x = L.

We note that any MISOCP can outer-approximated with a polyhedral relaxation
[47]. However, a more sophisticated approach possible involving extended reformu-
lation (see [21, 160]) may allow for superior performance compared to generic appli-
cation convex gradient-based cuts. Hence one advantage of relaxing the exponential
constraint using SOCP is the possibility of generating better polyhedral relaxations.

Selecting p and r for φ

The greater the domain of x−L, the more curvature there is to be approximated, and
so a higher degree approximation is needed at the same level of approximation error.
Let us define the approximation error at a given point as 1− φ(x− L)/ exp(x− L).
Over the range (x−L, x+U −L), φ is tangent to exp at the origin and increases in
approximation error as x. We illustrate in Table 6.1 the worst-case approximation
error for a given range, specified by the upper bound of x − L. deg indicates the
degree of the polynomial, i.e. p2r. Low-degree approximations are effective for
x−L < 1. For a given degree polynomial, the series expansion φp,0 is necessarily the
most accurate configuration, i.e. φp,0 ≥ φk,r pointwise over the domain of x− L for
2kr ≤ p. However, this configuration of φ may require more variables and constraints
to formulate using SOCP. Without loss of generality let us consider the constraint
ex ≤ t0, where x ∈ R+. Then we can represent the outer-approximation with φp,r as
follows:

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 83

Table 6.1: Exponential Approximation Error (percent)

deg Upper bound of x-L
0.01 0.1 1 10

φ1,0 1 0.00 0.47 26.42 99.95
φ1,1 2 0.00 0.24 17.23 99.84
φ1,2 4 0.00 0.12 10.19 99.32
φ2,0 2 0.00 0.02 8.03 99.72
φ2,1 4 0.00 0.00 2.86 98.45
φ3,0 3 0.00 0.00 1.90 98.97
φ2,2 8 0.00 0.00 0.86 91.25
φ4,0 4 0.00 0.00 0.37 97.07
φ5,0 5 0.00 0.00 0.06 93.29
φ4,1 8 0.00 0.00 0.03 80.60
φ6,0 6 0.00 0.00 0.01 86.99
φ6,4 96 0.00 0.00 0.00 0.01

ti ≥ t2i+1, i = 0, ..., r − 1,

tr = 1 + x/2r +

p∑
k=2

qk−1/k!,

q1 ≥ (x/2r)2,

qk(x/2
r) ≥ q2k/2, 1 < k ≤ p, k is even,

qk ≥ q2(k−1)/2, 1 < k ≤ p, k is odd.

Here t ∈ Rr
+, q ∈ Rp

+ are auxiliary variables for the limit form and Maclaurin
series expansion, respectively. Each variable qk is associated with an additional
rotated second-order cone constraint or a convex quadratic constraint, and each
variable ti is associated with an additional convex quadratic constraint. Thus a
φ1,r-approximation uses r variables and constraints, but the equivalent 2r-degree
Maclaurin series expansion uses exponentially more constraints and variables.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 84

6.3 Submodular Inequalities

Definition 6.3.1. A set function h : 2N → R is submodular on N if

h(S) + h(T) ≥ h(S ∪ T) + h(S ∩ T) ∀S, T ⊆ N

Ahmed and Atamtürk [5] consider set utility functions of the form

h(S) = f

(∑
i∈S

ai

)
, S ⊆ N,

where f : R→ R is strictly concave, increasing, and differentiable.
They identify a condition in which the function is submodular:

Proposition 6.3.1. The set function h is submodular if a ≥ 0 or a ≤ 0.

Thus when a ≥ 0 or a ≤ 0 and x ∈ [0, 1]n, then −eax is submodular.
Nemhauser and Wolsey [115] study the problem of maximizing an arbitrary sub-

modular function, which is NP-Hard. They show that the constraint t ≤ h(S), t ∈ R,
where h is submodular, can be reformulated using t, |N | binary variables and an ex-
ponential number of mixed-integer linear constraints. The polyhedral constraints can
be added via cutting planes, for which they provide a greedy separation heuristic.

When the function h(S) = f
(∑

i∈S ai
)
, S ⊆ N is submodular, Ahmed and

Atamtürk exploit the concavity of f and develop stronger valid inequalities than
those of Nemhauser and Wolsey. This structure can be exploited in any exponen-
tial constraint where x is a binary vector, a has nonzero entries and g is zeros, i.e.
eax−b ≤ dx+ ky − h. We can rewrite such a constraint as follows:

t ≤ eb(dx+ ky − h)

t ≥ eax

With complementing binary variables q, the second constraint can be transformed
as follows:

t ≤ eb(dx+ ky − h)

− e−~1a+t ≤ −e−a+q+a−x−

The second constraint will yield a submodular maximization cut due to Proposi-
tion 6.3.1, and it will be a valid inequality of the form t ≥ π0 + πx after substituting
out the complementing variables.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 85

Partitioning and Scaling for the 0-1 Mixed-Integer Set

Let us now consider the case where g may have nonzero entries, and let us continue
assuming that x is a binary vector. Partition the indices of a into R nonempty
subsets Si, 1 ≤ i ≤ R. Define a(Si) to be the coefficients of a corresponding to the
index set Si, and likewise let x(Si) be the corresponding decision variable vector.
Moreover, let k be the least integer such that 2k > R. Then we may rewrite the
mixed 0− 1 exponential constraint as follows:

exp((gy − b)/2k) ≤ t0 (6.1a)

t2
k

0 ≤ (dx+ ky − h)
R∏
i=1

ti (6.1b)

− exp(−a(Si)x(Si)) ≤ −ti, 1 ≤ i ≤ R (6.1c)

ti ≥ 0, 1 ≤ i ≤ R (6.1d)

Constraint (6.1b) may be reformulated using at most 2k−1 rotated second-order
cone inequalities [7]. The advantage of this approach is that the integer components
may be represented with second-order conic constraints, and eq. 6.1a is scaled so
that (in the bounded case) the domain may be small enough to use conic outer-
approximation. In the special case that R = n, each nonconvex constraint in eq. 6.1c
may be linearized with a single constraint; otherwise, linearization can be obtained
via cuts for submodular minimization (see [13]).

Unfortunately linearization results in a weaker formulation compared to using the
mixed-integer exponential constraint. That is, since − exp is strictly concave, the
facets of the convex hull of integer points of − exp(−a(Si)x(Si)) are strictly interior
to the curve of − exp at fractional values and therefore underestimates it. We can
improve the conic relaxation by scaling:

exp[(gy − b+ ax)/2v] ≤ q

q2
v ≤ dx+ ky − h

As v ∈ Z++ increases, then a/2v approaches zero, so the linear underestimation
becomes more accurate.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 86

6.4 Application: Capital Budgeting

We consider an application used by Ahmed and Atamtürk [5] as an example of
submodular utility function maximization. This is a capital budgeting problem,
where the objective is to maximize exponential utility:

max

{
m∑
i=1

πi(1− exp(−vix
λ

)) : ax ≤ 1, x ∈ {0, 1}N
}

We have N investment options and m scenarios, each with a probability of oc-
currence πi and payout vector vi ∈ RN . λ is the parameter for risk aversion, and a
is the vector of scaled capital requirements for each investment.

This problem can be reformulated as a pure 0-1 instance of MIGP. We can cal-
culate lower bounds for each scenario’s utility with the simple greedy value Li =
maxj

vij
λaj

.

Computational Experiments

Experiments were conducted with CPLEX 12.6 on a single thread of an 8-core Intel
i7 2.93 GhZ processor and 8 GB of RAM. Branch-and-bound termination conditions
settings were: 0.01% optimality gap, 1 hour time limit, and 1 GB memory limit for
the branch-and-bound tree.

First we replicate the data generation procedure of Ahmed and Atamtürk [5]. We
compare three methods: standard outer-approximation gradient cuts for each expo-
nential term, submodular valid inequalities for each exponential term, and solving
the linear outer-approximation from φ1,0. Table 6.2 shows that the gradient method
converged much faster than the submodular cuts, and that the φ1,0-approximation
problem were similarly easy to solve. Matching the results of Ahmed an Atamtürk,
all instances with submodular inequalities terminated early due to the memory con-
dition. Table 6.3 compare upper and lower bounds produced by each method. Root
gaps were calculated as rgap= (zb− zr)/zb, where zr is the root relaxation optimum,
and zb the best known upper bound. End gaps were calculated as egap= (zb−ze)/zb,
where ze is the best upper bound at termination. Upper bound gaps were calculated
as ugap= (zb − zu)/zb, where zu is the exponential utility of the incumbent solution
found by each method. Note that φ1,0 is a relaxation of the capital budgeting prob-
lem, so its lower bounds also bound the original problem’s optimal objective value.
Results from Table 6.3 indicate that these instances can be solved solely by linear ap-
proximation – higher-order convex approximations are not needed. Furthermore, the
φ1,0 relaxation only requires a single linear inequality for each exponential function,

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 87

Table 6.2: Replicated Capital Budgeting Instances: B&B data

Problem Gradient Cuts φ1,0

n m λ time nodes cuts time nodes

25 1 1 0.01 64 6 0 45
2 0.01 62 6 0 45
4 0 57 6 0 41

25 1 0.02 112 150 0.01 90
2 0.02 95 200 0.01 102
4 0.03 85 200 0 53

100 1 0.05 85 500 0.01 95
2 0.04 69 500 0.01 80
4 0.02 57 500 0.01 68

50 1 1 0.01 65 6 0.01 40
2 0.02 61 6 0 40
4 0.01 54 6 0 34

25 1 0.04 124 250 0.02 42
2 0.06 189 225 0.02 117
4 0.05 140 275 0.02 80

100 1 0.07 131 500 0.02 77
2 0.06 86 500 0.01 66
4 0.06 102 500 0.02 41

100 1 1 0.01 21 5 0 31
2 0.01 19 5 0.01 22
4 0.01 27 5 0 0

25 1 0.01 0 125 0 0
2 0.02 0 125 0 0
4 0.04 10 125 0 0

100 1 0.09 104 700 0.01 8
2 0.08 84 500 0.02 0
4 0.07 43 400 0.01 0

whereas the gradient approach uses considerably more outer-approximationcuts. The
small root gaps demonstrate that some instances of MIGP can be easily solved with
a linear method.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 88

Table 6.3: Replicated Capital Budgeting Instances: Gaps

Problem Gradient Cuts φ1,0

n m λ rgap egap ugap rgap egap ugap

25 1 1 0.14 0.01 0 0.21 0.06 0
2 0.06 0.01 0 0.1 0.02 0
4 0.04 0.01 0 0.05 0.01 0

25 1 0.11 0.01 0 0.57 0.46 0.01
2 0.04 0.01 0 0.17 0.12 0
4 0.02 0.01 0 0.06 0.04 0

100 1 0.19 0 0 0.72 0.63 0
2 0.06 0.01 0 0.2 0.17 0
4 0.03 0.01 0 0.06 0.05 0

50 1 1 0.12 0 0 0.32 0.17 0
2 0.07 0.01 0 0.12 0.04 0
4 0.04 0.01 0 0.04 0.02 0

25 1 0.17 0.01 0 0.61 0.55 0
2 1.42 0.01 0 0.19 0.15 0
4 0.03 0.01 0 0.04 0.04 0

100 1 0.09 0.01 0 0.66 0.59 0
2 0.05 0.01 0 0.2 0.16 0
4 0.03 0.01 0 0.07 0.05 0

100 1 1 0.03 0 0 0.13 0.07 0
2 0.03 0.01 0 0.05 0.02 0
4 0.02 0.01 0 0.01 0.01 0

25 1 0.01 0.01 0 0.72 0.71 0
2 0 0 0 0.19 0.19 0
4 0.01 0 0 0.05 0.05 0

100 1 0.03 0 0 0.73 0.72 0
2 0.02 0.01 0 0.19 0.19 0
4 0.02 0.01 0 0.06 0.06 0

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 89

Increasing Root Gap

The capital budgeting problem is solved easily, so we seek to increase the root gap.
Consider a simple one-dimensional problem:

minx e
bx − ax, x ∈ {0, 1}

The optimal objective is z∗ = min{1, eb − a}. If xR := log(a/b)
b
∈ (0, 1), then

the optimal relaxation objective is a
b
(1 − log(a

b
)), otherwise it is z∗. The function

y ∗ (1− log(y)) is shown in Figure 1. It has a global maximum at y = 1, and has no
other critical points.

Figure 6.1: y ∗ (1− log(y))

Case 1: a/b < 1. This possible iff a, b < 0 (so that xR > 0). Now xR = log(a/b)
b

,
and so for a given a, b can take an arbitrarily low value and still have xR ∈ (0, 1).
Thus if b < 0, as is the case for capital budgeting, it is desirable to decrease b
relative to a as much as possible (optimal integer objective will remain at 1). In the
generated instances, the bang-per-buck ratio is close to unity, explaining low root
gaps. Root gaps increase as lambda (risk aversion) decreases, which is intuitive as
this is equivalent to decreasing b.

Case 2: a/b > 1. From the iff observation of Case 1, this means that a, b > 0 (a
set cover-type problem). Consider two subcases.

Subcase A: z∗ = 1 ⇐⇒ 1 + a < eb. From the graph, root gap will increase as b
decreases. Therefore, b should approach log(1 + a). The calculation is cumbersome,
but root gap is monotonically increasing in a when b = log(1 + a). Thus, arbitrary
root gap can be achieved by increasing a.

Subcase B: 1 + a > eb. The relative root gap is 1 + a/b(log(a/b)−1)
eb−a . If eb − a > 0,

then we are again minimizing on the graph, and this is the same as Subcase A
(denominator remains constant when b = log(1 + a). If eb < a, then for more than
100% root gap we need log(a/b) − 1 < 0 ⇐⇒ a < eb. But this is impossible as
eb > eb has no solution, so the root gap is bounded by 100%.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 90

High Root Gap Computations

We intend to construct more challenging computational instances with higher root
gap and requiring more branching so we can get a better understanding of when (or
if) φ-approximation should be used instead of gradient cuts.

Consider the following problem, motivated by the previous subsection:

min
x∈{0,1}

∑
j

ebjx/m− ax : cx ≥ 1

It is a convex knapsack problem. c is drawn from uniform [0.9 ∗ 3/n, 1.1 ∗ 3/n],
so that roughly a third of the variables will be chosen. The objective data is
parameterized by α, β. For j < n, the jth scenario will draw bjj from Uniform
(0.9α, 1.1α) × β; all other entries from vj(1 − β), which is a weighted factor of the
original Ahmed and Atamtürk data. For positive values of α (and hence b) we will set
ai = β(exp(α) − 1)/m to attain high root gap; otherwise we will set ai = −0.1β/m
and reverse the sign of the constraint to cx ≤ 1. If β = 1, then maximum root gap
is obtained; indeed the relaxation will be so bad that virtually all 2n possibilities
must be explored. The simple variable bound of Lj := min bj/cj is used for each
exponential φ-approximation valid inequality; this bound is worse as β increases.
Some small test cases in Table 6.4 demonstrate that the root gap can be easily made
overwhelming. The severe case requires branching over virtually all possibilities (15
choose 5 ≈ 3000), as the natural relaxation is rendered ineffective.

Table 6.5 contains results comparing various φ configurations with the gradient
cuts, grad. nodes is the number of search tree nodes explored, and cuts is the
number of gradient cuts included or outer-approximation cuts in the case of φ. time
the total time spent by the solver, and mem the maximum memory used during search
in MB. rgap is calculated as rgap = (gub-rlb)/|gub|, where gub is the best known
upper bound with respect to the true objective function and rlb is the root node
lower bound with respect to the given outer-approximation strategy. egap is the
end gap, calculated in the same manner as rgap but using the global lower bound
established at termination instead of the root lower bound. We note that the same
upper bound solution was found by all methods — hence the difference lies in lower
bound quality, time and memory.

More cuts are used as the degree of φ increases. φ2,2 achieves the same end gap as
the gradient cuts, so an approximation of degree 8 is sufficient for practical purposes
here. The substantially large root gap of the gradient cuts is caused by tailing
off behaviour in he cutting plane algorithm, resulting in early termination without
completely ensuring root node convergence. Furthermore, CPLEX includes some but
not all user cuts; for instance in our example we have 600/718 cuts applied. The

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 91

Table 6.4: Gradient cuts on small instances

m n α β nodes gradcuts rgap
15 15 1 0.05 160 85 29%
15 15 1 0.5 1374 225 36%
15 15 10 0.05 1705 285 36%
15 15 10 0.5 4137 255 174%

Table 6.5: α = 1, β = 0.5,m = 25, n = 25

alg nodes cuts time mem rgap egap

grad 63407 600 47 127 18.11% 0.01%
φ1,0 296 - 0.0 0 5.36% 5.25%
φ1,1 4345 276 2 0 3.56% 3.08%
φ1,2 16459 554 13 2 2.66% 1.69%
φ2,0 103790 341 25 6 2.06% 0.91%
φ2,1 209163 655 121 11 1.82% 0.28%
φ3,0 164876 537 75 8 1.75% 0.13%
φ2,2 367497 1098 323 27 1.73% 0.01%
φ4,0 185702 695 98 13 1.75% 0.10%
φ5,0 245724 852 167 19 1.75% 0.09%

substantially higher memory requirements of the gradient cuts indicates relatively
higher density. As explained in Subsection 6.2, our implementation of φp,r uses
p+ r− 1 additional variables, r+ p/2 convex quadratic constraints, and p/2 rotated
conic quadratic constraints. For the budgeting application we have m applications
of φ.

6.5 Application: System Reliability Redundancy

The series system reliability redundancy problem has been studied since the 1960’s
(see [89, 131]) and continuous geometric programming relaxations were proposed
soon after, starting with Federowicz and Mazumdar [51]. Chern [40] proved that
the problem is NP-hard. To our knowledge the problem has not been solved as a
mixed-integer geometric program.

Consider a problem with S stages in series. The system fails if there is failure
at any stage, and we define the reliability level of the system as its probability of
success. The probability of failure at a stage s is the probability that all components

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 92

in the stage fail. There are Js components that can be purchased for each stage. Let
qsj be the probability of failure of the jth component failing at stage s and let xsj be
a binary decision variable used to select the component j. Supposing that failures
occur independently, the probability of stage failure is

∏
∀j q

xsj
sj .

Given some cost csj and minimum reliability level 1 − ε, we can formulate the
problem of minimizing system procurement cost as follows:

min
∑
s

∑
j

csjxsj

subject to
∏
∀s

(1−
∏
∀j

q
xsj
sj) ≥ 1− ε (6.2a)

xsj ∈ {0, 1} ∀s, j

Introducing auxiliary variables w, we can rewrite the problem as a MIGP:

min
∑
s

∑
j

csjxsj

subject to
∑
s

ws ≥ log(1− ε) (6.3a)

exp(ws) ≤ 1− ts ∀s (6.3b)

exp(
∑
j

log(qsj)xsj) ≤ ts ∀s (6.3c)

xsj ∈ {0, 1} ∀s, j

Constraints (6.3b)-(6.3c) enforce exp(ws) ≤ 1−exp(
∑

j log(qsj)xsj) = 1−
∏
∀j q

xsj
sj .

Therefore, we have that constraint (6.3a) is the log transform of constraint (6.2a),
and so there is equivalence between the two problems.

Computational Experiments

For the computational experiments we use the MIP solver of CPLEX Version 12.6
that solves linear outer-approximations of conic quadratic relaxations at the nodes
of the branch-and-bound tree. The solver time limit has been set to 3600 seconds,
the memory limit to 1 GB, and the search tree nodes limit to 106. All experiments
are performed on a 2.93GHz Pentium Linux workstation with 8GB main memory on
single-thread processing.

Random instances were generated with varying number of stages S, and compo-
nents per stage Js. Each stage was given the same number of possible components J .

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 93

Each failure probability qsj was drawn independently and uniformly from [0.01, 0.2].
Stage costs cs were drawn uniformly from [1, 4], and components costs were cal-
culated as csj = cs(− log(2qsj) + εsj), where ε is a random variable drawn from
Normal(0, 0.04). The reliability level is controlled by parameter R, with 1− ε = Rm.

We compare conic outer-approximation with the gradient method. For con-
straint (6.3b), we applied either conic outer-approximation (denoted φp,r) or a stan-
dard gradient linearization (gr). A practical lower bound could not be found for
constraint (6.3c), so we only apply gradient linearization, or linearization together
with submodularity cuts. For instance, using the naive solution of x equal to all
ones, we have a lower bound of

∑
j log(qsj). This is an extremely pessimistic lower

bound; for instance, in the smallest case we will use this is roughly a domain of
−20, 0 for the exponential function. Moreover, the minimum cost solution tends to
be towards the upper bound, so a good approximation is needed. In practical tests,
a sufficiently high degree resulted in too much numerical stability to solve the conic
approximation.

Results are shown in Table 6.6. Column headings are as follows. R,S,J are the
problem parameters. sub indicates whether submodular cuts were applied. (6.3b)
indicates the type of cut applied to constraint (6.3b), and likewise for (6.3c).
nodes is the number of search tree nodes. time is the total time spent in the
solver. If convergence to near-optimality did not occur, then either (M) for mem-
ory limit or (N) for nodes limit is indicated. The root gap (rgap) is calculated as
rgap = (gub-rlb)/|gub|, where gub is the best known upper bound with respect to
the true objective function and rlb is the root node lower bound with respect to the
given cut strategy. The end gap (egap), is calculated as egap = (gub-glb)/|gub|,
where glb is the global lower bound established at termination. ub is the best
known upper bound with respect to the true objective function; an asterisk denotes
an infeasible solution, which may be possible when the conic outer-approximation
is insufficiently tight. cone is the number of outer-approximation cuts CPLEX ap-
plies to the conic formulations. cplex is the number of mixed-integer cuts applied
by CPLEX. user is the total number of gradient and submodular cuts applied by
CPLEX.

As a general trend, the problem became more difficult as reliability, number
of stages, or the number of components increased. The pure linear cut strategies
performed poorly, although submodular cuts resulted in substantial improvements
in convergence irrespective of configuration. Memory limit problems were observed
in large problems. φ4,0 had superior performance and was tight enough to produce
feasible and near-optimal solutions to the problem with the addition of submodularity
cuts.

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 94

Table 6.6: Reliability Instances

R S J sub (6.3b) (6.3c) nodes time rgap egap cone cplex user

0.98 10 10 N gr gr 14138 2.7 76.34% 0.01% - 0 316
φ4,0 gr 1199 0.3 3.92% 0.01% 45 17 40

Y gr gr 10678 2.6 47.67% 0.01% 0 0 384
φ4,0 gr 652 0.2 1.15% 0.01% 98 10 99

20 N gr gr 26568 4.1 76.19% 0.01% - 0 247
φ4,0 gr 4158 1.0 6.36% 0.01% 45 19 45

Y gr gr 26847 5.8 50.48% 0.01% 0 0 439
φ4,0 gr 15948 3.6 18.84% 0.01% 101 28 110

15 10 N gr gr 268984 59.7 76.62% 0.01% - 0 483
φ4,0 gr 12551 3.2 4.18% 0.01% 67 26 59

Y gr gr 635714 138.8 (M) 47.85% 1.95% 0 0 529
φ4,0 gr 11781 3.3 3.02% 0.01% 152 16 141

20 N gr gr 707645 137.4 (M) 76.82% 0.57% - 0 436
φ4,0 gr 346722 72.4 5.17% 0.03% 69 23 66

Y gr gr 682210 196.4 50.84% 0.01% 0 0 652
φ4,0 gr 226565 63.1 9% 0.01% 151 10 177

0.99 10 10 N gr gr 407528 79.8 80.02% 0.01% - 0 340
φ4,0 gr 178893 36.9 8.67% 0.1% 60 19 56

Y gr gr 162972 36.3 55.74% 0.01% 0 0 429
φ4,0 gr 25079 6.5 3.5% 0.01% 83 24 137

20 N gr gr 583442 120.9 80.46% 0.01% - 0 382
φ4,0 gr 196759 33.5 6.46% 0.03% 63 14 62

Y gr gr 121636 24.9 59.26% 0.01% 0 0 338
φ4,0 gr 27519 6.2 3.66% 0.01% 83 23 114

15 10 N gr gr 488451 89.8 (M) 80.22% 2.01% - 0 486
φ4,0 gr 2000000 393.9 (N) 9.79% 0.73% 82 23 87

Y gr gr 416038 99.7 (M) 55.81% 1.48% 0 0 609
φ4,0 gr 130871 35.3 3.23% 0.96% 137 33 158

20 N gr gr 417958 89.8 (M) 81.03% 4.33% - 0 681
φ4,0 gr 2000000 363.9 (N) 6.65% 2.61% 84 14 95

Y gr gr 2000000 393.9 (N) 13.77% 3.67% 28 37 230
φ4,0 gr 2000000 543.3 (N) 12.82% 2.34% 133 40 243

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 95

6.6 Application: Feature Subset Selection for

Logistic Regression

Let a ∈ Rn be a vector of features or explanatory variables, and let b ∈ {−1,+1} be
the associated binary dependent variable. The logistic regression model is given by:

P(b|a) =
1

1 + exp(−b(wTa+ c))
,

where P(b|a) is the conditional probability of of outcome b given x ∈ Rn. The
parameters for this model are the weight vector w ∈ Rn, and the intercept value
c ∈ R. Given some i.i.d samples {ai, bi}mi=1, the corresponding likelihood function is∏m

i=1 P(bi|ai). The average logistic loss function l is defined as:

l(w, c) := −1/m log
m∏
i=1

P(bi|ai)

= (1/m)
m∑
i=1

log(1 + exp(−bi(wTai + c)))

Thus w, c can be obtained by maximum likelihood estimation, or equivalently by
the convex optimization problem of minimizing average logistic loss:

min
w,c

l(w, c)

The solution to this problem can be used to form the logistic classifier φ(x) =
sgn(wTa+ c), where φ identifies the more likely outcome of b given x.

When there are too few observations relative to features, then the standard re-
gression may lead to over-fitting, resulting in a vector w with many nonzero entries
(high cardinality) and entries with large magnitudes. A standard approach is to
apply regularization, wherein convex penalty functions are added to the objective
problem (see [100, 87]). This addresses the problem if large magnitudes directly, and
the cardinality of w indirectly.

Sparsity can be induced in w directly via the cardinality constraint card(w) ≤ k,
which sets an upper bound k on the number of nonzero entries. Selecting the appro-
priate entries of w to use is the feature subset selection problem (e.g. [114]). The
cardinality-constrained logistic regression may be formulated as a MIGP problem.
Consider the following intermediate formulation of the regression problem:

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 96

min(1/m)
m∑
i=1

ti

subject to log(1 + exp(−bi(wTai + c))) ≤ ti, 1 ≤ i ≤ m (6.4a)

w2
j ≤ ujvj, 1 ≤ j ≤ n (6.4b)
n∑
j=1

vj ≤ k (6.4c)

v ∈ {0, 1}n

v is a vector of binary variables that constrains the support of w, and u, t are
auxiliary decision vectors. Introducing auxiliary variables y, we can rewrite this
problem as a conic MIGP:

min(1/m)
m∑
i=1

ti

subject to exp(−bi(wTai + c)− ti) ≤ 1− yi, 1 ≤ i ≤ m (6.5a)

exp(−ti) ≤ yi, 1 ≤ i ≤ m (6.5b)

w2
j ≤ ujvj, 1 ≤ j ≤ n (6.5c)
n∑
j=1

vj ≤ k (6.5d)

t ≥ 0 (6.5e)

v ∈ {0, 1}n

Constraints (6.6a)-(6.6b) are equivalent to exp(−bi(wTai + c)− ti) + exp(−ti) ≤
1 ⇐⇒ 1 + exp(−bi(wTai + c)) ≤ exp(ti). Thus constraint (6.4c) can be interpreted
as a log transformation, and equivalence is ensured with nonnegativity of t from
constraint (6.5e). Constraint (6.6c) is convex and uses the rotated second-order
cone, but can be replaced by Ljvj ≤ wj ≤ Ujvj for sufficiently large bounds. With
linear inequalities the problem becomes an instance of MIGP; however, overly large
bounds would result in a weak natural relaxation.

Cardinality can be penalized in the objective function instead:

CHAPTER 6. ON MIXED-INTEGER GEOMETRIC PROGRAMMING 97

min2
m∑
i=1

ti + λ(
n∑
j=1

vj + 1)

subject to exp(−bi(wTai + c)− ti) ≤ 1− yi, 1 ≤ i ≤ m (6.6a)

exp(−ti) ≤ yi, 1 ≤ i ≤ m (6.6b)

w2
j ≤ ujvj, 1 ≤ j ≤ n (6.6c)

t ≥ 0 (6.6d)

v ∈ {0, 1}n

Setting λ = 2 and λ = log(n) yields a problem of maximizing Aikake (AIC) and
Bayesian (BIC) information criteria, respectively (see [140]).

6.7 Conclusion

We considered the mixed-integer geometric programming problem with bounded vari-
ables. Conic outer-approximation and submodular cuts can be used on the problem
in addition to the standard linear gradient-based outer-approximation applicable to
any differentiable convex constraint. We demonstrated with computational experi-
ments on several applications that mixed-integer conic solvers can be used to solve
the mixed-integer geometric programming formulations to practical precision.

98

Chapter 7

Conclusion

7.1 Summary

We developed branch-and-cut algorithms to accommodate a variety of nonlinear
nonconvex mathematical programming problems. Chapters 2-4 formed a trilogy fo-
cusing on the Alternating Current Optimal Power Flow (ACOPF) problem. In these
chapters we constructed a spatial branch-and-cut algorithm for generic quadratically-
constrained quadratic programs with complex bounded variables (CQCQP), we de-
veloped bound-tightening strategies for power flow constraints, and we introduced
a conic outer-approximation method for semidefinite programming (SDP) problems.
Chapter 5 demonstrated that the capability of mixed-integer conic solvers by devel-
oping a conic reformulation of a mixed-integer convex quadratic programming model
of unit commitment. Chapter 6 introduced techniques to solve mixed-integer geo-
metric programs using mixed-integer conic solvers; we applied this to solve a system
reliability problem. All these developments were motivated by theory — typically
preserving some notion of exactness or algorithm convergence — and their practical-
ity has been confirmed with computational experiments. Thus these are ideas that
hold some promise. Whether they last the test of time is another matter, but the
hope has been to demonstrate to the reader that branch-and-cut methods are flexible
and that global optimization over nonconvex feasible regions is worthy of pursuit.

The remainder of the conclusion is devoted to possible extensions, with applica-
tions and methodology discussed separately.

CHAPTER 7. CONCLUSION 99

7.2 Extensions: Applications

The efficient inclusion of power flow in problems such as unit commitment would have
major benefits; for instance, several undesirable market loopholes could be avoided
by accurately accounting for losses and loop flows during generation commitment.
Unfortunately the computational experiments suggest that CQCQP may for now be
restricted to medium-sized problems, with say hundreds of variables. This is still
useful for distribution-level applications (e.g. [157]). Furthermore, instances at this
scale can help indicate what is left on the table with regard to current practices,
and therefore what is worth pursuing in future research. Moreover, building up a
body of knowledge with regards to what can be solved globally is worthwhile in its
own right. For instance, in ACOPF there is the folk knowledge that current solvers
are adequate, but in the absence of rigorous testing (e.g. high duality gap cases),
this verdict remains unscientific. Convincing testing could pave the way to nonlinear
nonconvex AC power pricing in real-time markets. This could have numerous benefits
such as improved economic valuation of reactive power support.

We have focused on applications in the energy industry, although the problem
structures we have studied provide tremendous flexibility to a clever modeler. For
instance, nonconvex quadratic constraints can be used to model polynomial con-
straints, which can model a very wide range of problems. Another example is in
mixed-integer geometric programming. The convex exponential constraint has po-
tential applications in machine learning. The field of machine learning has begun
to expand its focus from local convexity analysis to structure integer sets, namely
submodularity (e.g. [14]). Bertsimas and Shioda [24] demonstrated some of the
potential benefits of embracing integer nonconvexity; for instance, they show that
endogenous outlier removal can be performed in linear regression. We can, of course,
come full circle and apply new machine learning techniques to the energy industry.
For instance, the electricity markets have an abundance of high-dimensional data
and with constant regulatory updates there remain many questions that may be
addressed with statistics (e.g. [97]).

7.3 Extensions: Methodology

CQCQP

There are many avenues to further improve spatial branch-and-cut for CQCQP prob-
lems such as ACOPF. For instance, our branching is effectively local, concentrating
on 2 × 2 principal minors, so cuts involving more variables (e.g [141, 142]) may

CHAPTER 7. CONCLUSION 100

be complementary to this approach. This could be seen as analogous to the typical
MIP branch-and-cut approach, branching on fractional variables, but employing cuts
involving more structural information. Different variable selection strategies more
specifically geared to ACOPF can also be explored. Our tightening techniques, in
fact, enable a fair amount of flexibility in this regard. For instance, branching on
real nodal power would result in the appropriate bound contraction w.r.t. voltage
magnitudes, and hence make use of our valid inequalities.

The valid inequalities developed for branch-and-cut involved a somewhat simple
set J , so a natural question is whether it is possible to generalize further. For
instance, it would be quite valuable to find an efficient procedure to find pertinent
facets of the convex hull of a 2×2 complex PSD rank-1 decision matrix together with
an arbitrary number of linear constraints. This would allow us to describe the convex
hull of a bus pair while accounting for real and reactive power flows. We demonstrated
in our special case that the convex envelope of an eigenvalue constraint (equivalent to
the rank constraint) over a certain convex projection coincided with the convex hull of
J . Again, it may be possible to generalize the result, or else variants of the approach
may be useful in analyzing other rank-constrained sets. The lifted relaxation of CSDP
also seems worthy of further consideration, for unlike in the original space of CQCQP,
which seemingly can produce any number of intricate feasible regions, the rank-one
constrained CSDP is a set of points along the positive semidefinite cone. As the
feasible region of CSDP can be interpreted as the intersection of a polyhedron with
the positive semidefinite cone, there may be opportunities to extend geometrically
motivated cuts for MIP to CSDP with rank-one constraint.

One could also form various hybrid algorithms using the developments in Chap-
ters 2-4. For instance, bound tightening using full relaxations could be judiciously
applied to problematic buses, and our closed-form methods could then be used to
propagate bound changes on neighbouring buses. Moreover, further investigation is
needed to see if propagating angle bound changes on larger cycles may be useful. It
may also be worthwhile to consider bound tightening on other problems involving AC
power flow equations, such as the mixed-integer CQCQP optimal capacitor location
problem (e.g. [73]). Mixed-integer CQCQP would naturally lend itself to the SDP
outer-approximation method, as this would allow the use of mixed-integer linear or
second-order cone solvers to be used.

Mixed-Integer Geometric Programming

We studied the integer structure of mixed-integer geometric programming via sub-
modularity. However, another point of view is that of disjunctive programming on
convex problems (e.g. [63, 30]). This route may allow the development of convex

CHAPTER 7. CONCLUSION 101

valid inequalities and perhaps a better understanding of the exponential inequality
with unbounded integer variables. It may also be possible to leverage Mixed-Integer
Rounding [115]. The main obstacle is finding a useful aggregation of polyhedral
constraints that could make such an approach viable; if we draw on experience with
conic integer programming (e.g. [12]), extended formulations are likely in store.

102

Appendix A

Appendix

A.1 Creating Bounds for CSDP from CQCQP

The diagonal bounds follow directly from the bounds on x, i.e., Lkk = |`k|2, Ukk =
|uk|2. The off-diagonal bound is given in ACOPF and is a phase condition that
implies that x1 cannot have a purely real nonzero solution if x2 has a purely imaginary
nonzero solution, and vice versa. In the real case we can set L12 = U12 = 0. However,
such a bound can always be derived from CQCQP via transformation of variables.
Let x = w + ıt. Since X = xx∗ in the lifted formulation of CQCQP we have
W12 = w1w2 + t1t2 and T12 = t1w2 − w1t2. A sufficient condition to derive the off-
diagonal bound is that either w or t (or both) have strictly positive entries. We can
apply an affine transformation on CQCQP, so this is not a restrictive requirement.
Observe that for any ` we have:

x∗Qx+ c∗x+ b = (x− `)∗Q(x− `) + (c∗ + 2`∗Q)(x− `) + b+ `∗Q`+ c∗`.

Therefore with substitution of variables y := x − ` + e + ıe, where e is the ones
vector, any bounded complex QCQP may be rewritten with a decision vector with
only positive components.

Then we can assume 0 < W− ≤ W12, where W− := wL1w
L
2 + tL1 t

L
2 . From

rank(X) = 1 we have that W 2
12 + T 2

12 = W11W22, and so:√
U11U22

(W−)2
− 1 ≥

√
W11W22

W 2
12

− 1 =
|T12|
W12

.

Hence we have valid inequalities with −L12 = U12 =
√
U11U22/(W−)2 − 1. Note

that if the affine transformation was used and the valid inequalities are translated

APPENDIX A. APPENDIX 103

back to the original space, then the inequalites will also include the original variables
of CQCQP. For instance, suppose we set y = x − l + e + ıe. Moreover, define the
components y := wy + ıty. Then we have

W y
ij = (wi − wLii + 1)(wj − wLj + 1) + (ti − tLii + 1)(tj − tLj + 1)

= wiwj + titj + (1− wLj)wi + (1− wLi)wj + (1− wLi)(1− wLj)

+ (1− tLj)ti + (1−Li)tj + (1− tLi)(1− tLj)

= Wij + (1− wLj)wi + (1− wLi)wj + (1− tLj)ti + (1−Li)tj

+ (1− wLi)(1− wLj) + (1− tLi)(1− tLj).

Thus a valid inequality for W y
ij gives a valid inequality for Wij, xi, xj.

104

Bibliography

[1] T Achterberg, T Berthold, and G Hendel. “Rounding and propagation heuris-
tics for mixed integer programming”. In: Operations Research Proceedings
2011. Springer, 2012, pp. 71–76.

[2] T Achterberg, T Koch, and A Martin. “Branching rules revisited”. In: Oper-
ations Research Letters 33 (2005), pp. 42–54.

[3] T Achterberg et al. “Constraint integer programming: A new approach to
integrate CP and MIP”. In: Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems. Springer, 2008, pp. 6–
20.

[4] J Agler et al. “Positive semidefinite matrices with a given sparsity pattern”.
In: Linear algebra and its applications 107 (1988), pp. 101–149.

[5] S Ahmed and A Atamtürk. “Maximizing a class of submodular utility func-
tions”. In: Mathematical programming 128 (2011), pp. 149–169.

[6] M S Aktürk, A Atamtürk, and S Gürel. “A strong conic quadratic refor-
mulation for machine-job assignment with controllable processing times”. In:
Operations Research Letters 37 (2009), pp. 187–191.

[7] F Alizadeh and D Goldfarb. “Second-order cone programming”. In: Mathe-
matical programming 95 (2003), pp. 3–51.

[8] O Alsac et al. “Further developments in LP-based optimal power flow”. In:
IEEE Transactions on Power Systems 5 (1990), pp. 697–711.

[9] E D Andersen and K D Andersen. “The MOSEK interior point optimizer for
linear programming: an implementation of the homogeneous algorithm”. In:
High performance optimization 33 (2000), pp. 197–232.

[10] K M Anstreicher. “Semidefinite programming versus the reformulation lin-
earization technique for nonconvex quadratically constrained quadratic pro-
gramming”. In: Journal of Global Optimization 43 (2009), pp. 471–484.

BIBLIOGRAPHY 105

[11] K M Anstreicher and S Burer. “Computable representations for convex hulls of
low-dimensional quadratic forms”. In: Mathematical programming 124 (2010),
pp. 33–43.

[12] A Atamtürk and V Narayanan. “Conic mixed-integer rounding cuts”. In:
Mathematical programming 122 (2010), pp. 1–20.

[13] A Atamtürk and V Narayanan. “Polymatroids and mean-risk minimization
in discrete optimization”. In: Operations Research Letters 36 (2008), pp. 618–
622.

[14] F Bach. “Learning with submodular functions: A convex optimization per-
spective”. In: arXiv preprint arXiv:1111.6453 (2011).

[15] X Bai and H Wei. “A semidefinite programming method with graph parti-
tioning technique for optimal power flow problems”. In: International Journal
of Electrical Power & Energy Systems 33 (2011), pp. 1309–1314.

[16] X Bai et al. “Semidefinite programming for optimal power flow problems”.
In: International Journal of Electrical Power & Energy Systems 30 (2008),
pp. 383–392.

[17] X Bao, N V Sahinidis, and M Tawarmalani. “Multiterm polyhedral relaxations
for nonconvex, quadratically constrained quadratic programs”. In: Optimiza-
tion Methods & Software 24 (2009), pp. 485–504.

[18] C Barnhart et al. “Branch-and-price: Column generation for solving huge
integer programs”. In: Operations research 46 (1998), pp. 316–329.

[19] P Belotti et al. “Mixed-integer nonlinear optimization”. In: Acta Numerica
22 (2013), pp. 1–131.

[20] A Ben-Tal and A Nemirovski. Lectures on modern convex optimization: anal-
ysis, algorithms, and engineering applications. Vol. 2. SIAM, 2001.

[21] A Ben-Tal and A Nemirovski. “On polyhedral approximations of the second-
order cone”. In: Mathematics of Operations Research (2001), pp. 193–205.

[22] A Ben-Tal, A Nemirovski, and C Roos. “Extended matrix cube theorems with
applications to µ-theory in control”. In: Mathematics of Operations Research
28 (2003), pp. 497–523.

[23] D P Bertsekas et al. “Optimal short-term scheduling of large-scale power
systems.” In: IEEE Transactions on Automatic Control 28 (1983), pp. 1–11.

[24] D Bertsimas and R Shioda. “Classification and regression via integer opti-
mization”. In: Operations Research 55 (2007), pp. 252–271.

BIBLIOGRAPHY 106

[25] D Bienstock and A Michalka. “Cutting-planes for optimization of convex func-
tions over nonconvex sets”. In: SIAM Journal on Optimization 24 (2014),
pp. 643–677.

[26] D Bienstock and G Munoz. “LP approximations to mixed-integer polynomial
optimization problems”. In: ArXiv e-prints (2015).

[27] D Bienstock and G Munoz. “On linear relaxations of OPF problems”. In:
arXiv preprint arXiv:1411.1120 (2014).

[28] R Bixby and E Rothberg. “Progress in computational mixed integer program-
ming – a look back from the other side of the tipping point”. In: Annals of
Operations Research 149 (2007), pp. 37–41.

[29] J R S Blair and B Peyton. “An introduction to chordal graphs and clique
trees”. In: Graph theory and sparse matrix computation. Springer, 1993, pp. 1–
29.

[30] P Bonami et al. “On mathematical programming with indicator constraints”.
In: Mathematical Programming 151 (2015), pp. 191–223.

[31] S Bose et al. “Quadratically constrained quadratic programs on acyclic graphs
with application to power flow”. In: IEEE Transactions on Control of Network
Systems PP (2015).

[32] S P Boyd and L Vandenberghe. Convex optimization. Cambridge Univ Pr,
2004. isbn: 0521833787.

[33] S Boyd et al. “A tutorial on geometric programming”. In: Optimization and
engineering 8 (2007), pp. 67–127.

[34] S Burer and D Vandenbussche. “Globally solving box-constrained noncon-
vex quadratic programs with semidefinite-based finite branch-and-bound”.
In: Computational Optimization and Applications 43 (2009), pp. 181–195.

[35] S Ceria and J Soares. “Convex programming for disjunctive convex optimiza-
tion”. In: Mathematical Programming 86 (1999), pp. 595–614.

[36] S Cerisola et al. “Stochastic power generation unit commitment in electricity
markets: A novel formulation and a comparison of solution methods”. In:
Operations research 57 (2009), pp. 32–46.

[37] V Chandrasekaran and P Shah. “Conic geometric programming”. In: Informa-
tion Sciences and Systems (CISS), 2014 48th Annual Conference on. IEEE.
2014, pp. 1–4.

BIBLIOGRAPHY 107

[38] C Chekuri and S Khanna. “A polynomial time approximation scheme for
the multiple knapsack problem”. In: SIAM Journal on Computing 35 (2005),
pp. 713–728.

[39] C Chen, A Atamtürk, and S S Oren. “A Spatial Branch-and-Bound Algorithm
for Nonconvex QCQP with Bounded Complex Variables”. 2015.

[40] M-S Chern. “On the computational complexity of reliability redundancy allo-
cation in a series system”. In: Operations Research Letters 11 (1992), pp. 309–
315.

[41] M Chiang. Geometric programming for communication systems. Now Pub-
lishers Hanover, 2005.

[42] C Coffrin and P Van Hentenryck. “A linear-programming approximation of
AC power flows”. In: INFORMS Journal on Computing 26 (2014), pp. 718–
734.

[43] IBM ILOG CPLEX. “V12. 1: User’s Manual for CPLEX”. In: International
Business Machines Corporation 46 (2009), p. 157.

[44] M Davis. “Hilbert’s tenth problem is unsolvable”. In: American Mathematical
Monthly (1973), pp. 233–269.

[45] E De Klerk. “The complexity of optimizing over a simplex, hypercube or
sphere: a short survey”. In: Central European Journal of Operations Research
16 (2008), pp. 111–125.

[46] A De Maio et al. “Design of optimized radar codes with a peak to aver-
age power ratio constraint”. In: IEEE Transactions on Signal Processing 59
(2011), pp. 2683–2697.

[47] S Drewes and S Ulbrich. “Subgradient Based Outer Approximation for Mixed
Integer Second Order Cone Programming”. In: Mixed Integer Nonlinear Pro-
gramming (2012), pp. 41–59.

[48] M Dür. “Copositive programming–a survey”. In: Recent advances in optimiza-
tion and its applications in engineering. Springer, 2010, pp. 3–20.

[49] M A Duran and I E Grossmann. “An outer-approximation algorithm for a
class of mixed-integer nonlinear programs”. In: Mathematical programming
36.3 (1986), pp. 307–339.

[50] J Edmonds. “Submodular functions, matroids, and certain polyhedra”. In:
Combinatorial structures and their applications (1970), pp. 69–87.

BIBLIOGRAPHY 108

[51] A J Federowicz and M Mazumdar. “Use of geometric programming to maxi-
mize reliability achieved by redundancy”. In: Operations Research 16 (1968),
pp. 948–954.

[52] Samuel Fiorini et al. “Linear vs. semidefinite extended formulations: exponen-
tial separation and strong lower bounds”. In: Proceedings of the forty-fourth
annual ACM symposium on Theory of computing. ACM. 2012, pp. 95–106.

[53] A Frangioni and C Gentile. “A computational comparison of reformulations of
the perspective relaxation: SOCP vs. cutting planes”. In: Operations Research
Letters 37 (2009), pp. 206–210.

[54] A Frangioni, C Gentile, and F Lacalandra. “Solving unit commitment prob-
lems with general ramp constraints”. In: International Journal of Electrical
Power & Energy Systems 30.5 (2008), pp. 316–326.

[55] A Frangioni, C Gentile, and F Lacalandra. “Tighter Approximated MILP
Formulations for Unit Commitment Problems”. In: IEEE Transactions on
Power Systems 24 (2009), pp. 105–113.

[56] Robert M Freund and Jorge R Vera. “Condition-based complexity of con-
vex optimization in conic linear form via the ellipsoid algorithm”. In: SIAM
Journal on Optimization 10 (1999), pp. 155–176.

[57] Y Fu, M Shahidehpour, and Z Li. “Security-constrained unit commitment
with AC constraints”. In: IEEE Transactions on Power Systems 20 (2005),
pp. 1001–1013.

[58] M Fukuda et al. “Exploiting sparsity in semidefinite programming via matrix
completion I: General framework”. In: SIAM Journal on Optimization 11
(2001), pp. 647–674.

[59] F Glineur. “Topics in convex optimization: interior-point methods, conic du-
ality and approximations”. PhD thesis. Polytechnic College of Mons, 2001.

[60] R E Gomory. “An algorithm for integer solutions to linear programs”. In:
Recent advances in mathematical programming 64 (1963), pp. 260–302.

[61] A Gopalakrishnan et al. “Global optimization of optimal power flow using
a branch & bound algorithm”. In: Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on. IEEE. 2012, pp. 609–
616.

[62] R Grone et al. “Positive definite completions of partial Hermitian matrices”.
In: Linear algebra and its applications 58 (1984), pp. 109–124.

BIBLIOGRAPHY 109

[63] I E Grossmann and S Lee. “Generalized convex disjunctive programming:
Nonlinear convex hull relaxation”. In: Computational Optimization and Ap-
plications 26 (2003), pp. 83–100.

[64] M Grötschel, L Lovász, and A Schrijver. “The ellipsoid method and its conse-
quences in combinatorial optimization”. In: Combinatorica 1 (1981), pp. 169–
197.

[65] O Günlük and J Linderoth. “Perspective reformulations of mixed integer non-
linear programs with indicator variables”. In: Mathematical programming 124
(2010), pp. 183–205.

[66] K W Hedman, R P O’Neill, and S S Oren. “Analyzing valid inequalities of
the generation unit commitment problem”. In: IEEE/PES Power Systems
Conference and Exposition, 2009. IEEE. 2009, pp. 1–6.

[67] K W Hedman et al. “Co-optimization of generation unit commitment and
transmission switching with N-1 reliability”. In: Power Systems, IEEE Trans-
actions on 25 (2010), pp. 1052–1063.

[68] K W Hedman et al. “Optimal transmission switching – sensitivity analysis and
extensions”. In: Power Systems, IEEE Transactions on 23 (2008), pp. 1469–
1479.

[69] I A Hiskens and R J Davy. “Exploring the power flow solution space bound-
ary”. In: IEEE Transactions on Power Systems 16 (2001), pp. 389–395.

[70] R A Horn and C R Johnson. Matrix analysis. Cambridge university press,
1990.

[71] Y Huang and D P Palomar. “Randomized algorithms for optimal solutions of
double-sided QCQP with applications in signal processing”. In: IEEE Trans-
actions on Signal Processing 62 (2014), pp. 1093–1108.

[72] R A Jabr. “Exploiting sparsity in SDP relaxations of the OPF problem”. In:
IEEE Transactions on Power Systems 27 (2012), pp. 1138–1139.

[73] R A Jabr. “Optimal power flow using an extended conic quadratic formula-
tion”. In: IEEE Transactions on Power Systems 23 (2008), pp. 1000–1008.

[74] R A Jabr. “Robust Self-Scheduling Under Price Uncertainty Using Condi-
tional Value-at-Risk”. In: IEEE Transactions on Power Systems 20 (2005),
pp. 1852–1858.

[75] C Josz et al. “Application of the moment-SOS approach to global optimization
of the OPF problem”. In: IEEE Transactions on Power Systems 30 (2013),
pp. 463–470.

BIBLIOGRAPHY 110

[76] N Karmarkar. “A new polynomial-time algorithm for linear programming”. In:
Proceedings of the sixteenth annual ACM symposium on Theory of computing.
ACM. 1984, pp. 302–311.

[77] S A Kazarlis, A G Bakirtzis, and V Petridis. “A genetic algorithm solution to
the unit commitment problem”. In: Power Systems, IEEE Transactions on
11 (2002), pp. 83–92.

[78] J E Kelley Jr. “The cutting-plane method for solving convex programs”. In:
Journal of the Society for Industrial & Applied Mathematics 8 (1960), pp. 703–
712.

[79] L G Khachiyan. “Polynomial algorithms in linear programming”. In: USSR
Computational Mathematics and Mathematical Physics 20 (1980), pp. 53–72.

[80] S Kim, M Kojima, and M Yamashita. “Second order cone programming re-
laxation of a positive semidefinite constraint”. In: Optimization Methods and
Software 18 (2003), pp. 535–541.

[81] S Kim et al. “Exploiting sparsity in linear and nonlinear matrix inequalities
via positive semidefinite matrix completion”. In: Mathematical programming
129 (2011), pp. 33–68.

[82] S Kirkpatrick, C D Gelatt, and M P Vecchi. “Optimization by simulated
annealing”. In: science 220 (1983), pp. 671–680.

[83] K Kleibohm. “Bemerkungen zum Problem der nichtkonvexen Programmierung”.
In: Mathematical Methods of Operations Research 11 (1967), pp. 49–60.

[84] I Klep and M Schweighofer. “An exact duality theory for semidefinite pro-
gramming based on sums of squares”. In: Mathematics of Operations Research
38.3 (2013), pp. 569–590.

[85] B Kocuk, S S Dey, and X A Sun. “Inexactness of SDP Relaxation for Op-
timal Power Flow over Radial Networks and Valid Inequalities for Global
Optimization”. In: IEEE Transactions on Power Systems PP (2014).

[86] Burak Kocuk, Santanu S Dey, and X Andy Sun. “Strong SOCP Relaxations
for Optimal Power Flow”. In: arXiv preprint arXiv:1504.06770 (2015).

[87] K Koh, S-J Kim, and S P Boyd. “An interior-point method for large-scale
l1-regularized logistic regression.” In: Journal of Machine learning research 8
(2007), pp. 1519–1555.

[88] K Krishnan and J E Mitchell. “A unifying framework for several cutting
plane methods for semidefinite programming”. In: Optimization methods and
software 21 (2006), pp. 57–74.

BIBLIOGRAPHY 111

[89] W Kuo. Optimal reliability design: fundamentals and applications. Cambridge
university press, 2001.

[90] A H Land and A G Doig. “An automatic method of solving discrete pro-
gramming problems”. In: Econometrica: Journal of the Econometric Society
(1960), pp. 497–520.

[91] J B Lasserre. “Global optimization with polynomials and the problem of mo-
ments”. In: SIAM Journal on Optimization 11 (2001), pp. 796–817.

[92] J Lavaei and S H Low. “Zero Duality Gap in Optimal Power Flow Problem”.
In: IEEE Transactions on Power Systems 27 (2012).

[93] P Le Bodic and G L Nemhauser. “How important are branching decisions:
fooling MIP solvers”. In: Operations Research Letters 43 (2015), pp. 273–278.

[94] K Lehmann, A Grastien, and P Van Hentenryck. “AC-Feasibility on Tree
Networks is NP-Hard”. In: IEEE Transactions on Power Systems PP (2014).

[95] B C Lesieutre et al. “Examining the limits of the application of semidef-
inite programming to power flow problems”. In: Communication, Control,
and Computing (Allerton), 2011 49th Annual Allerton Conference on. IEEE.
2011, pp. 1492–1499.

[96] F Li and R Bo. “DCOPF-based LMP simulation: Algorithm, comparison
with ACOPF, and sensitivity”. In: IEEE Transactions on Power Systems
22 (2007), pp. 1475–1485.

[97] R Li, A J Svoboda, and S S Oren. “Efficiency impact of convergence bidding in
the california electricity market”. In: Journal of Regulatory Economics (2014),
pp. 1–40.

[98] T Li, M Shahidehpour, and Z Li. “Risk-Constrained Bidding Strategy With
Stochastic Unit Commitment”. In: IEEE Transactions on Power Systems 22
(2007), pp. 449–458.

[99] J Linderoth. “A simplicial branch-and-bound algorithm for solving quadrat-
ically constrained quadratic programs”. In: Mathematical programming 103
(2005), pp. 251–282.

[100] J Liu, J Chen, and J Ye. “Large-scale sparse logistic regression”. In: Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 2009, pp. 547–556.

[101] M S Lobo et al. “Applications of second-order cone programming* 1”. In:
Linear Algebra and its Applications 284 (1998), pp. 193–228.

BIBLIOGRAPHY 112

[102] J Lofberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”.
In: Computer Aided Control Systems Design, 2004 IEEE International Sym-
posium on. IEEE. 2004, pp. 284–289.

[103] A Lotfjou et al. “Security-Constrained Unit Commitment With AC/DC Trans-
mission Systems”. In: IEEE Transactions on Power Systems 25 (2010), pp. 531–
542.

[104] L Lovász. “Submodular functions and convexity”. In: Mathematical Program-
ming The State of the Art. Springer, 1983, pp. 235–257.

[105] L Lovász and A Schrijver. “Cones of matrices and set-functions and 0-1 opti-
mization”. In: SIAM Journal on Optimization 1 (1991), pp. 166–190.

[106] D G Luenberger and Y Ye. Linear and nonlinear programming. Vol. 116.
Springer Science & Business Media, 2008.

[107] The mathworks. “MATLAB User’s Guide”. In: Inc., Natick, MA 5 (1998).

[108] G P McCormick. “Computability of global solutions to factorable noncon-
vex programs: Part 1 Convex underestimating problems”. In: Mathematical
programming 10 (1976), pp. 147–175.

[109] R R Meyer. “On the existence of optimal solutions to integer and mixed-
integer programming problems”. In: Mathematical Programming 7 (1974),
pp. 223–235.

[110] R Misener and C A Floudas. “GloMIQO: Global mixed-integer quadratic
optimizer”. In: Journal of Global Optimization 57 (2013), pp. 3–50.

[111] J E Mitchell. “Polynomial interior point cutting plane methods”. In: Opti-
mization Methods and Software 18 (2003), pp. 507–534.

[112] D K Molzahn and I A Hiskens. “Sparsity-exploiting moment-based relaxations
of the optimal power flow problem”. In: IEEE Transactions on Control of
Network Systems PP (2014).

[113] D K Molzahn et al. “Implementation of a Large-Scale Optimal Power Flow
Solver Based on Semidefinite Programming”. In: IEEE Transactions on Power
Systems (2013), pp. 1–12.

[114] P M Narendra and K Fukunaga. “A branch and bound algorithm for feature
subset selection”. In: Computers, IEEE Transactions on 100 (1977), pp. 917–
922.

[115] G L Nemhauser and L A Wolsey. Integer and combinatorial optimization.
Vol. 18. Wiley New York, 1988.

BIBLIOGRAPHY 113

[116] A Nemirovski. “Advances in convex optimization: conic programming”. In:
International Congress of Mathematicians. Vol. 1. 2006, pp. 413–444.

[117] Y Nesterov, A Nemirovskii, and Y Ye. Interior-point polynomial algorithms
in convex programming. Vol. 13. SIAM, 1994.

[118] Y Nesterov, M J Todd, and Y Ye. “Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems”. In: Mathematical
Programming 84 (1999), pp. 227–267.

[119] E Ni, P B Luh, and S Rourke. “Optimal Integrated Generation Bidding and
Scheduling With Risk Management Under a Deregulated Power Market”. In:
IEEE Transactions on Power Systems 19 (2004), pp. 600–609.

[120] J Nie. “Optimality conditions and finite convergence of Lasserre‘s hierarchy”.
In: Mathematical Programming 146 (2014), pp. 97–121.

[121] R P O’Neill et al. “Economic analysis of the N-1 reliable unit commitment and
transmission switching problem using duality concepts”. In: Energy Systems
1 (2010), pp. 165–195.

[122] M R Oskoorouchi and J E Mitchell. “A second-order cone cutting surface
method: complexity and application”. In: Computational Optimization and
Applications 43 (2009), pp. 379–409.

[123] A L Ott. “Evolution of computing requirements in the PJM market: Past and
future”. In: 2010 IEEE Power and Energy Society General Meeting. IEEE.
2010, pp. 1–4.

[124] T J Overbye, X Cheng, and Y Sun. “A comparison of the AC and DC power
flow models for LMP calculations”. In: System Sciences, 2004. Proceedings of
the 37th Annual Hawaii International Conference on. IEEE. 2004, 9–pp.

[125] M Padberg and G Rinaldi. “A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems”. In: SIAM review 33.1
(1991), pp. 60–100.

[126] N P Padhy. “Unit commitment-a bibliographical survey”. In: IEEE Transac-
tions on Power Systems 19 (2004), pp. 1196–1205.

[127] C H Papadimitriou. “On the complexity of integer programming”. In: Journal
of the ACM (JACM) 28 (1981), pp. 765–768.

[128] G Pataki. “Bad semidefinite programs: they all look the same”. In: Arxiv
preprint arXiv:1112.1436 (2011).

BIBLIOGRAPHY 114

[129] S Patra, S K Goswami, and B Goswami. “Differential Evolution Algorithm
for Solving Unit Commitment with Ramp Constraints”. In: Electric Power
Components and Systems 36 (2008), pp. 771–787.

[130] D T Phan. “Lagrangian duality-based branch and bound algorithms for op-
timal power flow”. In: Operations Research 60 (2012), pp. 275–285.

[131] F Proschan and T A Bray. “Optimum redundancy under multiple constraints”.
In: Operations Research 13 (1965), pp. 800–814.

[132] Jakob Puchinger and Günther R Raidl. Combining metaheuristics and ex-
act algorithms in combinatorial optimization: A survey and classification.
Springer, 2005.

[133] A Qualizza, P Belotti, and F Margot. “Linear programming relaxations of
quadratically constrained quadratic programs”. In: Mixed Integer Nonlinear
Programming (2012), pp. 407–426.

[134] R Quan et al. “A two-stage method with mixed integer quadratic program-
ming for unit commitment with ramp constraints”. In: IEEE International
Conference on IEEM, 2008. IEEE. 2008, pp. 374–378.

[135] Ulrich Raber. “A simplicial branch-and-bound method for solving noncon-
vex all-quadratic programs”. In: Journal of Global Optimization 13 (1998),
pp. 417–432.

[136] F Rossi, P Van Beek, and T Walsh. Handbook of constraint programming.
Elsevier, 2006.

[137] Thomas Rothvoß. “Some 0/1 polytopes need exponential size extended for-
mulations”. In: Mathematical Programming 142 (2013), pp. 255–268.

[138] P A Ruiz, C R Philbrick, and P W Sauer. “Modeling Approaches for Compu-
tational Cost Reduction in Stochastic Unit Commitment Formulations”. In:
IEEE Transactions on Power Systems 25 (2010), pp. 588–589.

[139] N V Sahinidis. “BARON: A general purpose global optimization software
package”. In: Journal of Global Optimization 8 (1996), pp. 201–205.

[140] T Sato et al. “Feature Subset Selection for Logistic Regression via Mixed
Integer Optimization”. In: (2015).

[141] A Saxena, P Bonami, and J Lee. “Convex relaxations of non-convex mixed in-
teger quadratically constrained programs: extended formulations”. In: Math-
ematical programming 124 (2010), pp. 383–411.

BIBLIOGRAPHY 115

[142] A Saxena, P Bonami, and J Lee. “Convex relaxations of non-convex mixed in-
teger quadratically constrained programs: projected formulations”. In: Math-
ematical programming 130 (2011), pp. 359–413.

[143] G B Sheble and G N Fahd. “Unit commitment literature synopsis”. In: Power
Systems, IEEE Transactions on 9 (1994), pp. 128–135.

[144] H D Sherali and C H Tuncbilek. “A global optimization algorithm for polyno-
mial programming problems using a reformulation-linearization technique”.
In: Journal of Global Optimization 2 (1992), pp. 101–112.

[145] H D Sherali and C H Tuncbilek. “A reformulation-convexification approach for
solving nonconvex quadratic programming problems”. In: Journal of Global
Optimization 7 (1995), pp. 1–31.

[146] N Z Shor. “Quadratic optimization problems”. In: Soviet Journal of Circuits
and Systems Sciences 25 (1987), p. 6.

[147] C K Sim and G Zhao. “A note on treating a second order cone program as
a special case of a semidefinite program”. In: Mathematical programming 102
(2005), pp. 609–613.

[148] R Sioshansi, R P O’Neill, and S S Oren. “Economic Consequences of Al-
ternative Solution Methods for Centralized Unit Commitment in Day-Ahead
Electricity Markets”. In: IEEE Transactions on Power Systems 23 (2008),
pp. 344–352.

[149] S Sojoudi and J Lavaei. “Network Topologies Guaranteeing Zero Duality Gap
for Optimal Power Flow Problem”. In: Submitted to IEEE Transactions on
Power Systems (2011).

[150] S Sojoudi, R Madani, and J Lavaei. “Low-rank solution of convex relaxation
for optimal power flow problem”. In: 2013 IEEE International Conference on
Smart Grid Communications (SmartGridComm). IEEE. 2013, pp. 636–641.

[151] B Stott, J Jardim, and O Alsac. “DC power flow revisited”. In: IEEE Trans-
actions on Power Systems 24 (2009), pp. 1290–1300.

[152] D Streiffert, R Philbrick, and A Ott. “A mixed integer programming solution
for market clearing and reliability analysis”. In: Power Engineering Society
General Meeting, 2005. IEEE. IEEE, 2005, 2724–2731 Vol. 3.

[153] D I Sun et al. “Optimal power flow by Newton approach”. In: IEEE Trans-
actions on Power Apparatus and Systems (1984), pp. 2864–2880.

[154] T Tao. Topics in random matrix theory. Vol. 132. American Mathematical
Soc., 2012.

BIBLIOGRAPHY 116

[155] F Tardella. “Existence and sum decomposition of vertex polyhedral convex
envelopes”. In: Optimization Letters 2 (2008), pp. 363–375.

[156] M Tawarmalani and N V Sahinidis. “Convex extensions and envelopes of
lower semi-continuous functions”. In: Mathematical Programming 93 (2002),
pp. 247–263.

[157] J A Taylor and F S Hover. “Convex models of distribution system reconfigu-
ration”. In: IEEE Transactions on Power Systems 27 (2012), pp. 1407–1413.

[158] D Vandenbussche and G L Nemhauser. “A branch-and-cut algorithm for non-
convex quadratic programs with box constraints”. In: Mathematical Program-
ming 102 (2005), pp. 559–575.

[159] A Verma. “Power grid security analysis: An optimization approach”. PhD
thesis. Columbia University, 2009.

[160] J P Vielma, S Ahmed, and G L Nemhauser. “A lifted linear programming
branch-and-bound algorithm for mixed-integer conic quadratic programs”.
In: INFORMS Journal on Computing 20 (2008), pp. 438–450.

[161] A Wächter and L T Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathemat-
ical Programming 106 (2006), pp. 25–57.

[162] I Waldspurger, A D’Aspremont, and S Mallat. “Phase recovery, maxcut and
complex semidefinite programming”. In: Mathematical Programming 149 (2015),
pp. 47–81.

[163] H Wolkowicz, R Saigal, and L Vandenberghe. Handbook of semidefinite pro-
gramming: theory, algorithms, and applications. Vol. 27. Springer Science &
Business Media, 2012.

[164] H Y Yamin and S M Shahidehpour. “Risk and profit in self-scheduling for
GenCos”. In: IEEE Transactions on Power Systems 19 (2004), pp. 2104–
2106.

[165] H Yang, P Yang, and C Huang. “Evolutionary programming based economic
dispatch for units with non-smooth fuel cost functions”. In: Power Systems,
IEEE Transactions on 11 (1996), pp. 112–118.

[166] M Yannakakis. “Computing the minimum fill-in is NP-complete”. In: SIAM
Journal on Algebraic Discrete Methods 2 (1981), pp. 77–79.

[167] Z Yu. “A spatial mean-variance MIP model for energy market risk analysis”.
In: Energy economics 25 (2003), pp. 255–268.

BIBLIOGRAPHY 117

[168] C Zener. “A mathematical aid in optimizing engineering designs”. In: Pro-
ceedings of the National Academy of Sciences of the United States of America
47 (1961), p. 537.

[169] B Zhang and D Tse. “Geometry of feasible injection region of power net-
works”. In: 2011 49th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton). IEEE. 2011, pp. 1508–1515.

[170] W Zhang and R E Korf. “Performance of linear-space search algorithms”. In:
Artificial Intelligence 79 (1995), pp. 241–292.

[171] L Zhao and B Zeng. “Robust unit commitment problem with demand response
and wind energy”. In: 2012 IEEE Power and Energy Society General Meeting.
2012, pp. 1–8.

[172] R D Zimmerman, C E Murillo-Sánchez, and R J Thomas. “MATPOWER:
Steady-state operations, planning, and analysis tools for power systems re-
search and education”. In: IEEE Transactions on Power Systems 26 (2011),
pp. 12–19.

