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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
‘Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, €Xpress or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, Or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the

~ United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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~ CORRELATION OF PHOTONS FROM A THERMAL SOURCE:

- Shang-keng Mo
Lawrence Radiation Laboratory

‘University of California
-Berkeley; California

April 21, 1966

ABSTRACT

The amplitude and the intensity;correlation of photons from‘a-
modei thermal source?ne studied The obJective is to express the photon
correlation functions in terms of the parameters describing the source.
The source model is analyzed ut11121ng the temperature Green's function

method. The power spectrum (1ine shape) is comouted numerically for

. some speciel cases. General properties of temperature Green s functions

are also studied.
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I. INTRODUCTION

Thé electromégheﬁic field in the vacuum outside a light source is

determined by the procésses in the source. 'Therefore, the analysis of

'A the stéﬁistical properties of & beam of phbtons involves a study of the

stochastic_processes in the source.

~

For all practical purPOSes, most of the useful information con-

'cerning a beam of photons is contained.in the amplitude- -and the intensity-

correlation functions. The former is the average of the product of the -

field amplitudes at two space time ﬁoints, and, the later, that of the

}
intensities at two space time points.

These correlation functions, and more general ones, have been

* studied by many authors without explicitly treating the emission processes

in the source within the framework of classical elgctfomagnetic theory,l
in tefms of many body wave functions,2 and in téfmsvbf the eigenétates
of the annihilation §perators.5~‘0n the other haﬁd,'thg'expligiﬁltreatment
of photon emisslon process can be found.in the papers on the theories
of the spectral line shape, which have & very long k_lis’t;ory.LL The spectral
line shape thedries in general deal with a single emitter under the
perturbation due to its environment while a photon is being emitted.

Tﬁe scope of this thesis is the following. We shall study the,
photon field and the source coupled together; The soﬁrce is viewéd as

a many body system. The correlations in this many bédy system give rise

. to the correlations in the photon field. To make the over-all picture

clear, we shall construct an 1dealized model for the source. This source

model is theh»analyzed by the temperature Green's function method. The

]
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result of our analysis will be the expressionS'of the photon correlation @

functions in terms of the parameters describing the source. General

properties of temperature Green's functiorsare also studied.

~2

In Chapter II, we clarify the connection between the photon
correlations and the cOrrelations in the source. The source model‘is
_introduced in Chapter III,vwhere.the assumptions are discussed and the
mathematical procedure outlined.-.Chapter v giyes s discussion of some
: general properties of temperature Green's functions'as well as a derive-
tion of some specific eqpations needed in later analysis. Chapters V
and VI are devoted to the analysis of the power spectrum, uhich is
proportional to the Fourier transform of the amplitude correlation
function. The analysis is essentially a simple investigation of the
emission line snape from & many body'Viewpoint. A numerical'calculation
is carried out to compute the power spectrum under more restrictive
_'conditions. Special attention is paid to the collision narrowing

phenomenon.. We analyze the intensity correlation of photons in terms
of & temperature Green' s function of three time arguments. The general
_properties of such a Green' s. function are studied in Chapter VII. In.
Chapter VIII, the connection between the intensity correlation function
.and the three time temperature Green s function is derived. The

expression for the intensity correlation function is then derived.

W

¢
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IT. BASIC NOTION .
2 . K . . .~ A. Definitions

* Let the vector A (y) be the annihilation operator in the

"
L

o Heisenberg picture for the transverse photon field at the space-time

'point Y = (¥,t). The amplitude and intensity correlation functions

are defined,respectively as:

" Amplitude Correlation function = (Ag(yi) Ay(v,)) 5 (2-1)

oIntensity Correlation function |
= ((@;(yl) Ag(ye))—cﬁa(yz) Ad(y11)+)” , C (2-2)

: where (.;;54 and (...)_ denote respectively the time ordering and the -
1inverse time ordering of the operators in the bracket._ The average
(...) is taken over the statistical ensemble describing the photon
source. Whlle the amplitude correlation function is often used in
calculating interference effects, the intensity correlation defined by
(2-2), which is seen to be proportional to the probability of finding
two photons,* is useful in deseribing two-photon-experiments such as

the coinéidence counting experiment;

:ﬁ‘ * The probabllity of finding a photon at Yy and a'photon at Y5

is proportional fo

S 14l ) 4,6y, )2
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Our objective is to express these correlation functions in

terms of parameters describing the source. Let us first discuss
briefly the different approaches appropriéte for calculating correla-

tions of photons from different types of sources.
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B. The Cavity-Vacuum Coupling

A light source is a.bounded region.in sﬁace, ﬁhich we shaii call
the."éavity,ﬁ and in which photons are created and finally_escape'into
the empty space outside. Let L denote the size of the cavity, and T,
(0 K T g 1), denote the transmission coefficient of the boundary, then

" the "cavity width"

c .

. , _ . }
is the leak raté:of a photon after its creation. (We use units such that

4 =c =1.) A photon inside'the cavitf is an excitation of a cavity
mode oscillator, and a phbtoh outside'is‘an excltation of an oscillation
mode of the empty space.-rc'-therefqre measures the coupling strength
between the cavity and the empty space. Cléarly,t I, will be small if
'Lv.is large or ‘T 1is sméll or both. Therefore, for a large source or
é souicé with an opaquevboundary, the cavity-vacuum coupling is very
weak. For these sources;’oheAwould treat the phétons in the cavity
first and then couple the cq§ity to the vecuum outside by pgrturbation
theory. Stars gnd»laserS~ar¢.examples of soufces witﬁ weak Vacuum-

:, cavity coupling. |

| | On the other hand, if the source 1s small and transparent, the |
'-caﬁiﬁy—coupling‘bgqomés stf&hg according to (2-3). It would be more

' convenient to coupie the atoms in the source directly to the photons

in the vacuum outside.

Our source model, which will be described in the next chapter,

r, =~ /L | | (2-3) -

2

&
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will be small and have 8 transparent boundary, we shall couple the

X
photons outside directly to the atoms. We now write_expressions for
: (2-1) and (2-2) in terms of operators describing the atoms in the source.
' C. Expressions in Terms of Current Correlations
If the photons are created by the atoms via an interaction of”
" the form
wW(x) = g-AI(x) 3, + heee  (2-b)

. I ,
where g is a constant and J (x), the current, is a vector appropriately
constructed from atomic operators, then 1t is straightforward to derive
the following expressions for the correlation functions: (see Appendix A.)_

1.
(atly,) Ay ,))
: 2 L L . + .
= gl fd x, d'x, a“(yl- %)) Dy, (v, ’.‘2) (J“(xl) JV(#a))_,. - (2-5)
ey ) at( (v.) A |
((hvy) A3v) (4 (vy) Ay, ))+)<
T N S |
= gl “[.d x, d x2vd x') ax', au(yl x ) (yé- X, )
g X D (¥ x',) Dy - x')
A R U LA ]

x

<(;s*”(=gL a’f(xg)(sv.(x ) 3,00, L es)
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where Doﬁ (.- x) 1s the retarded commutator r(see (A-6))

¥
Dy = %) = ot - 1) IA'a(y), A'Z(x)], e
. : ;
~and | x = (x,'r) . For very large y , we use the asymptotic form of
D :
.o
Dy - x) |
x o 1 tw(tey)-tkexer
~608f27f1r7—fy- e ) o . .:(2-8)
- x8(t - 1),
.whére k¥ = w? , and a,B". are restricted to vectoi' components
perpendicula.r_to k.
Substituting (2-8) in (2-5,6), we obtain, for large 'tl', ta' s
2 ) - v . .
W) AL - — le] [9oy oy dm (6 -y, )t (8-,
Mg/ Ag\Wp PN | 2x 7Tx ¢
(4)” y,¥,
» v1v2 :
‘ (2-9)
L L -ikl . xl+:l.k2 . x2 + :
&



() A0 Gy A0y,

dm A’ dew'

| 1 2
< e-i(w’Q«be)(te-y2)-i(w'l-w1)(tl-yl)
-1k ex. =ik ok +1k' sx' +ik', ex
X fdhxl dhxe dux':L dhx' e g} 1 ke 12

X <(J*(x ) (x ). (JB(X' ) 3y (x DRNE

where kex ¥ © T - kex . We assume that §l ~ ?2 so that

ks kyy K'y, k' al) point in the seme direction (see Figure 1).

(2-10) .

Equations (2-9, 10) express the photon correlation functions

in terms of the Fourier transforms of the current correla.t.’gqn functions,

which will be investigated within the framework of e simple model under

various assumptions.
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IIT. THE SOURCE MODEL
-AsxiAssumgtions' _A,J.,~

We like the model to be described in as few parameters as
‘possible and still retain some features of a physically realistic:
.’source. We now describe our model.

(a) ‘The source is E:! stationary, uniform, and isotropic gas of

i colliding atoms. We are concerned only- with the two levels (each may
: be degenerate) which produce the spectral line of interest.

(v) To avoid describing specific methods of excltation we let the
source be in thermal equilibrium. The'parameters, temperature and
chemical potential, determine the excitation level as well as the
density, the pressure, etc., of the atoms. In other words, we replace
the detailed external:excitetion nechenism b&'a reservoir so that the
energy . lost in radiation 1s always gained back from the reservolir.

" In order to maintain the population difference so that photons
are generated at a constant rate, the interaction betwveen the reservoir
and the:atoms must be strong enoﬁgh._ However, a stronger coupling

" implies more perturbation.on the atom amplitudes and hence more fluctus-

tion in the electromagnetic field outside. Therefore, we have to assume’

" that the fiuctuetions due‘to the collisions included in the model are
the dominating‘ones and that the rate of radiation loss is small,

| The;sinplifying feature of the tnermal equilibrium assumption
is that all the statistical'properties-of the model are.summarized by
the grand canonical.ensemble; which can be handled by the method of the

temperature éreen'S»function to be described later.
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' j(c) ;The”soufée is small and has a transparent boundary. The spectral

~ line width I' 1s assumed to be much less than _Pc « + This implies that

the emitted photon wave pdcket, which has the size of 1/I'., is much

larger than the size of the source.

(d) Let E', be the center of the spectral line. We shall restrict

0

“the discussion to photon frequencies well within the range Pc near

E’o ’ i.e"

o - B < r, = /L. o
Since P_<K‘Pc s this is not a severe restriction. This allows us to.
5 appearing in (2-9) and (2-10) as

constant vectors equal to k = ’E'O‘? , since w§-§ = (w - E

regard the vectorsb 51, ge, k'l’ k',

0)? “‘ § +

Eyfox o BV -x. | |
The restrictions (c) and (d) simplify the mathematical treatment

of the intensity correlation cbngiderably. They are not nécessary.for
oﬁr dlscussion of the amplitude correlation. |

(e) The deﬁsity of the atoms 1s low, i.e., the occuration number per
state is much less than one. We shall ignore powers of occupation |
nunbers higher than the first. | | |

(f) The atoms collide via central force so that fhé'ﬁg&g& spin. is
conserved in collision processes.

(g) Excitations by collisions will not be included in the Hamiltonian,

éithough we shall include collisions involving the trahsfer of intéfnal

'energy from one atom to another., Tﬁerefore, the excited atomé'aré all

ST ST
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generated by.the thermal reservoir. In view of the adiabatic principle, .: T

the excitation of electronic levels by collisions is not probable until

Ay

the kinetic energy of the atoms approaches the threshold energy times
the atom-electfon ma.ss ratio.5 Wé restrict our discussion to temperatures "‘ #
low enough té involve a gas of atoms instead of a plasma,
(h) Surface phenomena are ignored. The source is much larger fhan
the atom mean free path so that'the source medium may be regarded as
infinite when calculating the current correlation functions.
Under the above aséumptions, the expressions for the.amplitude

correlation function (2-9) reduces to 3

o) Al = Bglel® v L)y 3™
10(t, -yt +7; ) h - - B
- Yot 4y _
I =Y s,
" where
s) = et ™ (20 s e . (32)

Under the assumptions (é) and (d), we obtain from (2-10), after some

algebra,

Cdlry) A3 (e (vy) 45(v,)),)

-1v(t -yé-tl+yl)

= lel® v/(u)? ylyalef%

Iesv), |

C(3-3)
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where

J(a B:V> |

~ The operator Ju(k,t) in (3-2,4) is defined by

| -1 -1k o 1
Ju(ﬁyt) = Ve fdix eil's)"{‘ J(frt) P (3-5)

 where V. 1s the volume of the source. S{w) is'indepenhent of o
'S(w) shall be called the power spectrum. The averages areAtakén‘ovér
a grand canonical ensemble of temperature 1/b and chemical potential

T

B. Notation and Further Description

1, Atoms

Let the two atomic levels of interest have angular momenta
Jy» Jp and internal energles O, E, (see Figure 2); The two levels
are (231 5+ 1)-fold degenerate, respectively. The atoms are described
24 . :

by a (2jl'+ 1+2), + 1)--component gnnihilatidn operator:

c(p) /s

‘Where b annihilates an atom in the lower level and o annihilgtesf

one in the upper level:

C Uy
]

f at o1Vt ((J;(l,g) Jg(lf,t))_@é(lst) Ja(l,;))g , : (-4) |

PO



bji'(g) ” °32 (E)

= | » | . C = C : . "6

b(p) bml(g) | | (p) = mb(g) . (3-6)
_Jl(p) 'Je(p)

, P 1s.the momentum of the atom. The z-axis 1s always along k,

which points from the source £0‘£he observer.. Without'%oss'of generality,

b,c are regarded as boson . .operators,

~ 2. The Current Opefator

The current operator 1s a vector coupled to the photon. It
must change the state of an atom from the upper to the lower level in
order to create a photon of interest. The most general vector one can

‘conStruct out of ¢ and vt 1s of the form
1 ' '
k) = V2 %2;, ml(P) Cp (p + k) (ngzljlmllu) . (3-7)

'(J2m2ljlm11u) are the usual Wigner Coefficients; p=+1 . We shall
represent an atom in the lower (upper) level by a thin (thick) line,

and use the label b or 1 (c or 2) to denote the lower (upper) level.

3. Collision Terms

Four kinds of collision terms are included (see Figs, U a,b,c,d):

(a) AP +be - AP 4+ 8P » scattering of atoms in the lower level,

(v) Ac_é;hc - 4% +8° » scattering of those in the upper level,

e
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- (e) Ap’+ B¢ - A° 4 B¢ , scattering of an atom'in the lower level by

one in the upper level, and ‘ }
(a) AP 4 8% - A% 4 B° » which 1s the same as (c) except that the
excitation 1s transferred from B to A .
The separation between (c) and (d) is arfificial:(but éqnvenienﬁ)
since all atoms are identical. | |

Process (a) gives an interaction term:

bb

Voo -.(p-p)b*(p)bfn(p+p-p)
all p's and m's m'm ‘ )
b - (3-8)

" :
X bm (2) bmn (E ) *

Since we assume that all forces.are central forces, the total
spin 1s conserved. It is convenient to expand the potential Vbb into
a sum of terms each one of which corresponds to a definite "spin transfer"

analogous to the momentum transfer p~-Dp'

~o e

e, Z Vbb(QJ + 1)2 (Jlm' JM[Jlm)

m' o' mm" S |
| (3-9)
% (jlm" JMIjlm”) .

The amplitude of transfering anguler moment (J,M) from the particlé on
the left in Fig. ba  to that on the right is -then proportional to
V?b . In exactly the same manner, we can write a term like (3-8) for

(), (e), andi(d). We also define the spin transfer potentials
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cc . be = be

B T

RSP AP A for (b), (c), and (a), respectively, in. exactly the .
same way as we &ﬂined V&bb : S _ S A a "A-
ce _ 4 CCy. 3 . . : : .
T ity JEM Vyo (B3 + 1) (agmy [gpmt ) . -
) . ., R . .

% (3m", [3m o M)

1
2

|

"bc | ) be
Vv 1" = z \' (2J + l)
m' d lQO 7 T J

x'<32m21:;_2m'2 IM) <,Ji lal ", M) ,

*be ~ be i
V., m = V. (2T + 1)2
m'om 1‘“1“‘ 2 J,zM J
X <32m2|3 y M) {pm” lal My . (3-10)

4. Reabsorption of Photons by Atoms

Before a photon reaches the surface; there is a ﬁrebability '
that it will be reabsorbed by an atom. The feabsorption rate 1is, as
a function of frequency w , directly ﬁroportional to the emission
rate. Let oaf{w) Dbe the absorption rate and Pc be the‘leak rate
| in ﬁhe absence of reabsorption. Then the rrobability for a photon
to ieak but in the presencé of reabsorptiohvis

r
¢

m ‘. . (3-11) :1.

e
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; Therefore,-the‘rate of photon output is propbrtional to

a(w)/'Q+g§*?z> | .(3-12)

The larger “Pé 1s, the less will be the effect of the reabsorption on
the output. In the 1imit when (o) >T, (3-12) simply gilves r, -
In other words, the source behaves like a box of free photons iﬁ'
thermal équilibrium, as will be seen in more detail later.

We may also look upon the process of emission and the subsequent

reabsorption as an atom-atom scéttering process with internal enetgy

transfer by the exchange of a viftual photon (see Fig. lLe) similar to
that shown in Fig. U4, except tﬁat the émission.and the absorption are
not simultaneous. It 1s important to.notice thet. the time deléy is :
limited by l/l"c » after which the photon will 5e outside the source.

We 1like to emphasize that this is a much more correct way to
look at.the reabsorpﬁion process, one of the many processes in which
the internsl ‘energy of one atom is transferred to anothef atom. The _
sole fact that a photon 1is cgrrying the energy acroés has no significance.
The reason for glving specisal éttention to photon reabsorption is that
such.én energy exchange process is strong and of long range,

The propagation of an exchanged photon will be treated phenomenolo-

- glcally as a damped cavity mode coupled to the atoms.

C. Method of Calculation

The equations (3-1), (3-2), (3-3), (3-1), and (3-5) form the

basis of our talculation. The task 1s to calculate the current
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correlation functiéﬁs (3-2),'gnd (3-&>, fof_an interacting-many body-
system. The thermél’équilibr;uhiassumption enablés us to use.the
tempefature Green's function methqd.6 In the next chapter, we shall
review some basic ideas of the method ﬁnd derive some formﬁlas needed

later.

L
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IV' TEMPERATURE GREEN S FUNCTIONS

A. General Erocedure of the Temperature Green's Function Method

The motivation of the method is the following.' Often we like..

to calculate a correlation function of the type:

cp(tl, te,,..t'n) = _rr{p.A(tl) B(te),...c(tn)} - (Ih-l)l»
where
A) = e 1, , ete., ,
and’
p = z™t PH 5 2 = Tr efﬁﬁ .

. From now on- H is the Hamilﬁonian minus uN(orzziuiNi‘ 1f more thﬁn

one species of particles have non-zero chemical potential)._ﬂThis means |
that the energy of a .particle is measured from ;té chemical potential.
Since only energy differenées usually apéear in the‘resulté, this chahge
of the energy scale has no effect. It is generaliy Qery difficult to
construct a perturbation expansion for CF._ On the other hand, the

temperature Green's function:

mF(Tl,‘rane'z‘nv) = Tr{p T(ﬁ(rl)g(Té)_.e.6(¢n))j 5 . (h;a)

TH et H
vhere K(Tl) = e-l Ae 1 s ete,, 0O Ti

operators sé %hat larger T appears to the left, is relatively easy

B and T orders the

‘to obtain by perturbation expansion.
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‘ Since one is not interested in TGF itself but rather in CF, one
| then hopes to find a connection between CF and TGF. This connection

- turns out.to be quite simple for n = 2,,(n = number of operators
appearing in (4-1) or (4-2) in addition to "p). It cen alﬁays be

. derived and it will be derived for n = 2,3 . (See”Seetion B of this

‘chapter and Chaptef VII.) Therefore CF can be obtained once - TGF is

.. known.

The perturbation expansion for TGF6 i1s Just the.Feynman-Dyson
expdnsibn in the usual field theory with imaginary time running between

0 end -if and with the vacuum ex?ectation replaced bf averaging over

the unperturbed ensemble

-BH -BH
po = »e . 0 / Tr e O i
' . , _ 0 {;zm B : | ‘
TOF(T), Tps *+27,) = Zb m! f aT’y dTiyeecdr’y
— m=ue o _ .
X% Tr[po T(KI(T:L) vﬁl(hrz)’...aI(Tn) ﬁI(_T'l)“..ﬁI(T'm»] | ' | (4e3)

. g } f osoe 1 4 eee L .
X [;;% m! dt 1 dz m Tr[po T(HI(T l) Hi(r m)}l ’
=Y 0 K .

A TRy -, o |
where AI(T) = e " Ae s ete. ;3 H) 1is the unperturbed

Hamiltonian minus .
Every term in the expansion is the average of a product of

creation and annihilation operators over the unperturbed ensemble. To

z

construct a. diagrammatic representation of the terms, one needs a Wick'

»
K]

3

k0

ATEEN

G
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Theorem to contract the average of a prodﬁct to a sum of products of

'JV averaées of pairs. This is indeed possible for a large system. The

. derivation of general diagram rules are well-known6 and will not be

fepeatéd here. Rules for calculation with our model will be specified
when needed., | |

The general ﬁroceduré of calculating CF by the temperatﬁre
Gfeen's Function technique may bg summarized as follows: First,vderive
the connection between the CF of interest and some TGF . Second,

calculate TGF by diagram‘techniqne. Then finally calculate CF from
: _ | ,

IGF .

B. Temperature Greens' Functions of Two Time Arguments -

In this section, we derive the connection between CF and TGF -

defined in (4-1,2) with n = 2, i.e., for
.CF(tl,t2) = Trlp Alt)) B(£,)) , (4-k)
wr(r, ) = Tl 2(R(r) B, . (4-5)

Without loss of generality, we exclude the possibility that A,B are

.siggle fermion operators. Clearly, CF is a function of t, - t, = t

2 1

only, and TGF is a function of T, - T =T only. ILet ‘CF(w)

be defined by

CF(w) = ,.faté"“’b cF(0,6) . _. (u.v6»)
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' Expsnding (4-5,6) in terms of ‘matrix elements between eigenstates of H,

we find
A i AsEa S l
CF(w) = 2 ):b.e;' Ay B 2n8(@+ B ), (beT)
a,b’ -
where. |
Ere - B - B
and |
. ' : o )
wr(0,x) = 2t T e e Ay m, e (1-8)
. a,b ab .
if <0, agd
Cq -B E T
I A N W (19
: . &b o

if 7>0.

For 1<0, T+8> 0 , (#—8,9) imply that
T6F(0,7) = TGF(0,T + B) .

Therefore, TGF(0,T) .may be represented by the Fourler series

el T -
Y e " mFa),
w
on

TGF(0,T) =

o

where

w
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‘  . . | : B wT ‘ o
TGF(“’n)_ = f dr e ®  T0F(0, 7)., (4-10)
o .

and

r23

@ = (Eyri/ﬁ) + integer.

From (4-8,9,10) we obtain the "spectral representation"

. 8] 1 . :
TeF(w ) = f e w?féw) s )

-0 K n

where the "spectral function" p(w') i1s defined by

-BE BE. -
plat) = - :’:b A Bba (e 2 .e Eb)
’ (4-12)
X 21!'6(0.)'54— Eba) .
Comparing (L4-12) ‘aﬁd (4-7) , ve see.that'

ola') = f at A ((p(ea) ) L, (4-13)

and B | , ) 1 ‘ o
f (@) = ([BAl) . R )

Therefore, the integral in (L4-11) is well-defined if ([B(t),Al) 1is
well-defined, ’.[GF(a) ) can be continued into the a»plane by replacing

@ in (- 11) ”by the complex variable o . 'I‘GF(w) 1s then an analytic

LU function 1nthé w-plane cut along the real axis, The a.naly'tic continuatiori ,



is'unique ifr the'.x‘uriction does not bloﬁ fu’p.as fast as eB‘ImVQ‘ ‘
according +to the Ca.rlsbn's Theorem familiar in Rggge Pole Theory.7' _.
TGF(w) approaches 1/w as la)] - 00, according to (l&-ll) g(co) and
CF(w) can now be found from the discontinuity of TGF(w) 'acroés

the real axis:

e0) = -1 IR0+ in) - (o - 1n)] ,
o (4-15)

CF (a))

il

plw) [P® 117t

' ot
The symbol 1 will always denote an infinitesimal positive number.
Finally, CF(tl,ta) 1s obtained from CF(w) by Fourier transform.

- The connection between CF and TGF is now clear and.will be applied'

- in the next chapter to find the current correlation funection “;(}.E)JQ(}E’t))

Before proceeding, let us consider the trivial but instructive -

case where A =B =1 . Then, obviously, by (4-k4,5,6,10,13),

CF(ty,t,). = TOF(T

1}T2) = 1 F4

cF(w) = é:r 5(w) ,

ToF(w ) = B 5‘°n’° .

ple) = 0. | o (sae)

v
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' The fact that p(w) = 0 does not imply thet CF(w) . The factor
(e pw l) -1 in (’4-15) becanes infinite at o= 0. One must handle the

. Kronecker delta properly in order to obtain consistent results. Let us

use the representation

, 7 8o } | |
X S do' e -1 o, . :
8 (w) = 3 f % BTl (on 8(w')] (h-l'()_
'for Sw '.O The &-function in (L4-17) is regarded as sharply peaked

but the limit of infinite sharmness is taken only at the end. of a
calculation. Replacing the discrete vwn by the’com_plex variable w,
we obtain SK(w) » the amalytic continuation of the Kronecker delta.

SK(co) is discontinuous across Im w = 0 , and the discontinuity is

85(w +,in.) - 5w - 11)

n

-Q-g—i- 8(w) (P -1) . | (b-17")

Using this for p(w), we sée_ that (4-15) glves the correct CF(w) .

‘C . Temperature Green's I\mctioﬁs wﬁ:h Arbitrary Number -of Times

The results of the preceding section suggest that the analytically

continued Fourier coefficient 18, importent. It is quite clear that the

temperature szeen's functions with more than two times can be éxpanded

in multiple Fourier series and the Fourier éoefficients will be well.

- defined. In this section we shall derive some trivial but useful

results concerning the an&ly'tic and asymptotic behavior of the Fourier

A
)

‘ coefficien’c ‘ ’bf 8 temperature Green s function of an a.rbitrary number of

"time argxﬁg_ht Se
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1. Asympﬁotic-Behavior of the-Fourier Coefficientfl
Consider tﬁe TGF defined by (4-2). Without lbsing'mﬁch-generelity,

we assume that none of the operators A, B,....C 1is & fermion operator.

TGF 1s alfuncﬁion of the differences among 411’12".;’Tn . There are

n-1 independent differences. Let tl,tg,-w-,ﬁn_l be a set of n-1

independent differences. We then expand TGF in an (n-l)-dimensional

Foﬁrier series. The Fourier coefficient can be shown to be

&

TGF(ai’aé""ai-l)
p ' tobeset®d % '
_  a=n+l v 4& 1 n-1n-1 , '
= B f vvdtl., at , e o (4-18)
0

X TGF(s) b 00t )

where

® = (integer) x 2n 1/8 ,
m = l, 2,"’,1’1‘--1'. :

Equation (4-18) is an integral over a finite range, Obviously,
’I'GF(wl,---wn_l) -is always finite (of course, TGF(tl, .-.,tn_l) is
assumed to be finite.). As any one of the. o's tends to infinity, we
expect the Fourier coefficient to vanish. To see how 1t vanishes, let

us hold ué""ah-l fixed and integrate tl by parts;

L]



w25

ey, )

= '(Bai)"l [TGF(B;GE:"’:“h-i)Y‘

-

- TGF(0, @y, 2, )]

L B . . : .
t B c
-1 B A Y| Ly - |
- (Bwy) f at, e a; mF(gl,a;a ) . (k=19)
TGF can only have a finite number of Jumps as a func‘_tiongofftl due
to the change of ordering of the operators. The integral in (k-19) is

therefore-finite. We conclude

lim mF(dﬁ.’-onw,oaaw

. -l ' .
B 1) = ol ™) . -+ {k-20)
% .

We can arrlve at conclusions stronger thah‘(h~20) bylarguing in
- terms of the peffurbation expansion, which we aesume-to convergen Since
TGF 1s just & sum of the products of contractions and ah appears only
in the energy denominstors. of the contzactions, TGF must vanish like
O(;/w ), not only for ah along the descrete set on the imaginary axis,
but:also for ah along any line in the complex aﬁ—plane.
In view of Carlson's Theorem, the convergence of the rerturbation
expansion also implies the existence of a unique analjtic continuvation
7 of the Fouriet coefficient, because every term in the expansion can be

analytically COntinued.

g A
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One can study the Fourier coefficient by constructing the spectral i _;.
'representation explicitly in terms of the matrix elements of the operators
between energy eigenstates of the system.' ‘This is done for the case

= 2 (Section B of this chapter) and for n =3 (Chapter‘VII). However, >> 5
for n >3, explicit constructions are impractical. We procede to show
that the essential feature of the analytic structure can be derived

through very simple arguments.

2. Cuts for the Analytically Continued Foufier Coefficient

Let us introduce one more frequency variable wﬁ :v
= —(l)l - U.é - 008 = wn-l‘ . : S (’4-21)
We define the frequencies in such a way that

TGF(Tl’ s, 'tn)

- T . wmeoomld T

- lv 4 ' nn
.= B n+ ol e
WG
X TOF(ay, 0,0 ) . o - © (be22)

This-way; a freqpency can be associated with each operator. We repre-
'sent the analytically continued Fourier coefficient by a diagram (see

Fig. 3&) The operators A, B,***,C form n "ends" or "external -
lines" with® energy ai,--o,u) » respectively. The following physical .

arguments wi%% clarify the analytic properties of the Fourier coefficient. -

%
£
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In Section B of this chapter, we expanded the one~freqpency

Fourier coefficient in the matrix elements A ab Bbc ~ We found that

the Fourier coefficient becomes singular when

ab’
(4-23)

Ay ;/o, end B /£ 0.

i. e., when & resonance between the two energy eigenstates a and b
is possible. To make our later arguments intuitively clear, let us

call such a resonance between two eigenstates of the system an
elementary excitation” of the system, or a "particle" in the medium.-

It has energy Eab and symmetry properties determined by the states

& and b . The ends A,B represent the external disturbance. The

- rule (4-23) is simp]y the condition for energy and symmetry conservation.

Thus, if an elementary excitation can exist between B and A (see
Fig. 3b) with all conservation .laws satisfied, the Fouriler coefficient -
is singular.

The generalization is clear: The Fourier coefficient is singular

if an elementary excitation can be created and destroyed by the external

lines with all conservation laws satisfied.
For a large system, there are elementary excitations available
with all energies and symmetries so that the Fourier coefficlent is

singular whedﬁver 8 partial sum of the external line energies becomes

Areal. This ; rule is very useful For example, consider the case of

oot
¥ Tgn‘

four externélilines with energies @, @, a , and W, 5 -0 - - aB..
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Figure 3¢ shows how the "elementary~excitations" are -created and
destroyed by thevexternalilines. By our rule, the Fourier coefficienﬁ

is singular when.one or more of.the folléwing is real:
oy,
B T e O R W
i.e., tﬁere’are seven cuts (or rather "cu; planesf).given by
. ‘
Im.aﬁ = 0 ’1,f.......;;f..f~; Im(“i + @h) = ‘Q,

in the space of three complex variables.
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V. THE FOWER SPECTRUM

A. The Green's Function
The power spectrum S(w), which we now proceed to ca.lcxﬁ.a.‘te, is

defined by (3-2):

s@ = [ar 0 3w . G

S(w) 1s independent of n, and p 1is not summed. It is related to

the temperature G’reen('s function
. ) .f A | . " _
of (7) = (Tl3 (k) I (k™)) | (5-2)

through (L4-15). If we substitute J;(l's) for A and ,ja(k) for B
In Section B of last chapter, then CF = S end TGF =8 . The -
spectral function defined by (ll,-lE) 1s now real since A b Bba I3 o ba 12

Equation (4-15) now reads:

s(w)

fl

S 409 (@4 ) - (@ - 1)/ - 1) :
| (5-3)

2 :im;?(w +:'1n)/(eB“’ - 1) .

The next step is to find the Fourier coefficient Q (w ) and 1ts analytic

con'tinua'tion, which will be referred to as the "Green 8 i‘unction.

5 i
R
%

L3
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B. Representation by Diagrams ' -,_ ; C

'Lét & thick lihe represent the_ééntra¢tion of an annihilaﬁion
opérator and a creation operator for aﬁ atom in the upper level, and a
thin.iine represent that for an atom iﬁ the lower level. Arrows point .
to the annihilation. These ére the atom propegators. The interaction
potentials (defined in Section III.B,'seé4also Fig. L) will be représented
| - by dashed lines. The virtual photon is represented by é wavy line.

The rules for calcﬁlating a given diagram are the following.

a. Vertices. For every dashed line, we write (-1) tim%s the appropriate
potential labeled by spin indices of the atom lines conﬁected to the
dashed line,

b. Virtual Photons. The scattering by the exchange of a virtual photon

cannot be described by a potential. We use the propagator of a damped
traveling cavity mode to describe the virtual photon. We shall only .
need to consider the mode with momentum X ., energy .and spin

u=1=+21, for which we write
- Dlapx) = el @0 le - x -5 (0,00],  (5-b)
n’~ n AN _ i}

where we have included in D the_photon-qurrent coupling constant g .
Zc(ah,k) 1s the self energy of the virtual photon. When w is

continued to real value,

i r
4 -

T (ot k) & 71T, DR

i

b - . ' ’ .
where r, iﬁithe phenomenological cavity width introduced before. A
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c. Atom Irggagators. It is convenient to put in the self energy at

'-thevbeginning. Trénslation and rotation symmetries plus the assumption

of total spinvéonservation (central forces) allow us to write a factor

- G+(€n,g) - [en - ey E, - Z#(en?g)]’l o (5-5)

~

iIndependent of spin orientation for every thick<solid'line labeled by

the energy €, spin m ; and momentum p , where ep . 1s the single

~

‘p T Zm "M ‘
and Z+(en,p) 1s the s€lf-energy of the upper level atom.

- Similarly, for every thin line, we have e factor

Glepp) = s e - - E (e L (546)
=, will be calculated later.

Notice that the single pafticle kinetic energy is measured'from
the chemical potential u .-
d. Sums. We then sum and integrate over every energy eh ; spin m, -

and momentum p "which are not fixed by the energy, spin, and momentum

conservation:

3 1
1 a
n ‘_ VI—L (.‘.) .
g Pt R (2ﬁ)3
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The Green's function g (@) is the sum of all diagrams with
T(k) and j (k) at the ends (see Fig. 5), which may be broken into
terms shown in Fig. 6. QF is the sum of all diagrams with four appropriate
'.dorners for hooking up the legs._<& must not include any "intermediate
state" withaonly one thick line up and one thin line down. Fig. 6
suggests the following procedﬁre of summing“the diagrams. First, we
open up the upper ends of all the diagrams 1ﬁ Fig. 6, and we then have
~an equation for the vertex function K shown in Fig. T. We next
4 approximate 13_by a few simple diagrams and solve the'eration for X .
Finally we_close the open ends to obtain sg(ah). Before! we carry oﬁt
these stepe, we first show how to ciese the ends of the vertex fgnction

K +to obtain ﬁ? .

C. Connection between ﬁ? and the Vertex Function X .

- ‘ i 1- '

The vertex function Kﬁzml&en,ah,g). has three ends, bml(g) ’

cme(p + k), and jﬁ(g) . The assumption of total spin conservation
implies that

(

m2mlp' en: n’ P D)

= (ngel-jlmllll) K(enlq)n!g) hd ' o . _(5"‘)
K(e ;a>,p) 1s & scalar function. The label k 1s suppressed. Y @» )

" is obtained from X by summing over the intermediate energy, spin and

momentum after closing the open ends:
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) = P (gminlim)

_ ; | v | S

1 d’p n :

X = —— K (e, ,p) e o - (5-8)
B ; (ex )5 vmemlyll n’ ' .

where =0+ 1s to insure that b+, stands to the left of ¢ . The

Wigner coefficient in (5-8) comes from the definition of ju(k) (see

Eq. (5;7)). Since

P <JlmlJM|32m2> (o fpmy) !

m-} ‘ .
1’72 o (5-9)
Brye By (Rdp + 1)/(2J,+ 1),
we have the simple equation
1 1 ?R_ ey
Wig) = 3 (23, +1) 5 Z ~E= K(e, w,p) e . (5-10)

(2x)

Whet we are interested in is Iﬁxﬂ?(a)i-in) (see»Eé.v(B;B)); fhe sum
over €, 1in (5-10) must be pefformed before the analytic continuation
in . mo evaluate the sum, we need to know the site of the cuts of
K(e,ah) (as 2 function of complex € ). The analytic structure of a
general three end temperature Green's Function is worked out in Chapter VII.Y
X 1is discontinuous when any of the energies €, w, w+ € becomes real
(see the disculision at the end of Chapter IV). The cuts along Im = Oi,
Im e =0, and Im(e + @) = 0 divide fhe two-complex-varigble space into

- six regions-a§ shown in-Fig. 80, Here we are only interested in va w>0 .

g
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On the -plane, K(e,a>), as a function of €, has cuts along
Im € = O, and,Im €=-a (see FLg 9) The,standard procedure of
doing the sum over € is to replace the sum’ by an integral along

‘the path- C (shown in Fig 9) enclosing the points €

1 o de 1 | '
Loy f = : (5-11)
€ : e -1

n - C
" Then one deforms the contour S0 that the integrals are Just above?
and below the cuts. The integral along the infinite cirecle venishes
due to the factor el /(e66 -1). Let Kl(e,a», K?(e,aﬁ, and K (e,w)
be the analytic continuation of K(e ’Q ) into the reglons 1,2,3 (see

Figs. 8,9), respectively. Then (5-10) becomes

39(& + in) j(27t)3 f .Qni P el_ N .’ [185(»3- A‘._ @, p)

. Slan) Cy+0s, e

where Kij-rstands for 'I{:"'-\K'j .

D. The Integral Equation for the Vertex'Fvnction

In this section we shall write down the integral eqnation for
X represented by the diagrams in Fig. 7, simplify it, and analytically
continue it to real energy variables.

The four corner function <% in Figs. 6,7 may, under

mymym' m'l
the central ferce assumption, be written in the form
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qm?mlmyamvl (en:e oS 2P ) . _ S - :
27 + 1 ‘.F( - N
Z YRS € ,e' ,0,p,Dp') ;
IM ”232 +1 J'n o ~ :
1 1] . . . - - {
X Coympealygm) Caymty amlgpmty) o - (5-13) !
. . _ |
: {
5 * |
can be obtained from F t w1 DY ;
J MMM oMy :
: ‘ 27 + 1 .
Foo= s> F ot 1
J mlQO'lm'a 2'32 +1 ikl 1 ;
, ' 1y -
X (Jqm M|3pmy) (gym'y Jmlgmt) . o (5-14)
’ *
.The equation represented by Fig. 7 -is then i
Klepapp) = G(e + a,p +k) G (c,p)
1 &p' F (e ) - PRSI LS
X [1 +.é‘ Z 3 l(en)€'n:wn:P)P') K(e,n’wn’p') e ] . (5'15); 3
€' (2xn) _ : - -~ : ﬁ
n 2
All the Wigner coefficients are factored out.,  Before doing the e'n '
sum in'(5-15) we consider the common factor ’
Ko(eﬁ,ah,gn)
_ E*ﬁf = G+(en +@,p+ E) G-(en,g) » - ‘(5-16)
o ' K

 on the righﬁvﬁgnd side and make some simplifications.

.
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Let the retarded and the adva.nced propagators G R, A be

defined as (;ee Eqs. (5-5,6)
A + 1 '
p+k) = C(e+ot in, p + k)

= [e -e +w-E - pkuTt in - ZE'A (p +.k)]'l s (5-17)

= le-e tam - 2AenT, (5-18):

. where p stands for (e,p) and k for (k) . We have made use

of the fact that k << p so that

/

de

eg+§"zz eg +k - 7;§~ = e2 +k --Bﬁh .
The aﬁalytic,continuation of .Kb in the:region§'1,2,3f($;e Fig. 8)
‘are N
KOl _ G;R(P"+ x) G?B(é) ;
Ko = 6 e +x) ¢ ),
Ko: :¥ G;A(p‘f.k) G;A(p)'..i ,' - (5-19)

-

4
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In & gas, the atoms are nearly free, so that the self energy |

is munh smaller than the kinetic energy. Thus, the G's given by

1,2,3

(5n17,18) are nearly singular at € = €p ¢ X must then be small

0
except vhen € is near ep . Since K~ is pfoportional to KO ; We
expect X to peak and diﬁInish the same was'és Kb does,

We are only interested 1n integrals of the mroduct of K(e,aﬁ
and some smooth function of € (see (5<12)). The sum over €' in
(5-15) will be‘converted'to an-integral over real €' and the kernal
1s expected to be & smooth function of €' because it plays the part
of an average scattering amplitude as suggested by the diagrams, The‘.
- integrals will be dominated by the peaked part of K .

The above consideration leads to tﬁe following approximation fof

the G's.8 Let

S G (R) = ole - e tan]T

" then

Bhp+x) 6, Ae)
- (5“20)

. ! ; < R,A " é; : R, A
,(m-;?g;n - By - (p+k))_a€ (),

e 2 oM -5 & oPhe) . e

 Substituting _35;20, 21) in (5-19), we have



-38‘...

5 = LI -cfe 0N (e -cfe)
Ko3 '»:.5% 'GbA(P) ’

X, x. (- z_A(p) + Z;R(? +I'k) . '(‘w - l,s'ijm.% -'?0)]_1

X {- 2ri 8_(é - eg)_-&- g?g [GO'R(PI) ‘ ; . '. ) ,-_

x (- - EO z, o @ éo“(vpl> z_A(g)i} - - G
We now make the further approximationv by .negltecvﬁing‘ "'t.he-. .te_‘rms involving

derivatives since K 1is to be integrated over a smooth function, whose

derivative is small. Thus,
Ky =~ 2ni 8(e - ep>/[‘°" Ey - 1‘52 m
" » v ,
- 20 + x) + 2 2(p)] (5-23)

K is propbfﬁional to Ko s we have, therefore,"



oy oo,
Ke(e,w,g) x 2xi 8(e - ep) ﬁ(g,w) . (5-214)

‘We now transform the sum over e'n in (5-15) to an integral so
that we can take advantage of (5-2L4). Agé.in we.replace the sum by an
‘integral éncldsing the imaginary axis in e'~plane. (See Fig 10.)

Now we have to know the cuts for W (e‘. e, a ) as a function of €',
as well as those far K(e?,'wn). The singularities of '5, l(e,e',w) in
the space of three éémplex_ variables can be located easily by the rule
lgivén et the end of Chapter‘. IV. ¥ has four corners to be hooked to
external lines with energles € +w, €, €' + w, and €' » respectively

(see Fig. 11). According to the rule, there are seven cuts given by

Im(e +®) = 0, Ime =0, Im(e' +) =0, Ime' =0,

(5-25)

Imw=0, Im(e +e' +a) =0, Imle -€') =
We are interested in Ke only, so we restrict our gttention to
In >0, Ime <0, and Im(w+e€)>0.

On the e’-pla.ne, with definite e ,a), T (e v m) has,

according to { -25), cuts along (see Fig. lO)

"
I
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Im &' = O, Tm e' = - (en + w’n), Im €' = €y end Tme' =-a . (5-26)

'The region between t.he cuts Ime' =0 and Im €' = '--a)n 1s the region
2 for K(e',o) (see Fig. 10 end also Figs. 8,9). The function
”&l(en,e',wn)' breaks into thre;e pleces in this region. They are calléd
1“1,‘52, an‘d."l;5 , respectively (see Fig. 10), in the three domains

| bounded by the four cuts. Now we.deform the coﬁtour C 80 that the |

integral is taken above and below the cuts. Therefore

-1 ) ' L n ]
B e’z ‘}71(€n;€ n:wn) K(e n)wn) e . »
n _ ’
o _ : . .
de’ 1 1 ¢ .
[ 85 o [ ey feny)

-0

12 | . :
+ ‘% (en,e' + en,wny) Ke(e'+-:en,wn) .
. ey 23 o o :
+ B (en,e' -e - wn,a)n) K2(e' -c, - wn,wn)v_ _

| -+ »¢3 (en';e_' - _wn’wn> 18(3' - wn’wn)] K" (5-27)
where H 1 .5"541..'&3‘;'_4 ST

Now we let €%, epproach real values and substitute (5-24) for

_}{2 in (5-27), then the sum becomes simply

L 'F(g,gr)' #(p, 0) , L (528)

;'\

where F(g, P ?



-)-Fl-f :

1 .
% (e,ep,,a),g,g') [N<€p1 + (D) - N,p'.] .

~ . o~

HI|

+ G -(E,GP,, (D,,B,E') [N(Gp, -€) - N(epe + )]

~ “~ ~

+ ¥ (e, e ,,w,.pfmw (N(e,, +¢+a) =Ne, +a)),  (5-29)

.and

n

N(e)

n

Be -1 . '
e - l N T N € e
CARE PR S CH)
oo
The integral equation (5-15) for K2 continued to resl w_‘ and €

now becomes, by (5-23,24,28),

- fpo) = [o-Xkp nt - E, - E;R(p +vk) ‘+’2_A(p)]'l
4p -
X < == F(p,p') A’ ,w)> | ‘(5 30)

‘e 1is set equal to sp . Equation (5~12) reduces to

~

: o ,
99(9> +14n) = (232 + l)f o (N(e + ) N) 75(9,&) s
' | ' (3-51)_

and finally the power spectrum S(a))_ is




oo

S(4>5,.

2 Tm & (w + in) .(eﬁaS - 1')';’“’.

- v%(ejg + 1) (eB“’-__- 1)t

X

(ex)

3 ‘. . .
f L2 (N(ep*, ®) - N,) mhlp,0)  (5-32)
= 3 (232 +1) —-‘P—(gﬁ)B N_(ep + w)» -2Im ;J(E,w) . (_5....33)

The Egs.’(5-29,30,32,33) formally end the derivation of the expression
for the bower spectrum. In the next chapter, we shall make fui'ther
approximations, fix various parameters and déscribe the procedure and

the results of numerical solutions.
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- VI. FURTHER APTROXIMATION, PHYSICAL INTERPREIATION

- AND NUMERICAL SOLUTION

In this chapter, we shall consider the simplest'diagrams

- contributing to the kernal F(p,p') and the self energies Z+R s

z A}, which constitute the input to the integral equation (5-30).
:,We shall‘discuss the physical meaning of various diagrams. .Under .

further approximations and assumptions, the integral equation becomes

'simple enough for numerical solution, and the results are discussed.

A. Diffusion of Excitation

We begin by considering the transfer of the internal energy
from one atom to another through collisions--collisions via the potential
”bc’ or via the exchange of virtual photons. (See Subsection III.B{M
and Figs. 4d,e.) |

The lovest order contribution to F(p,p') from V™ em the
virtual photon is shown in Fig. 12a, and the result of putting such
kernal into the integral equation is to generate all the string diagrams
like the one shown in Fig 12b for the Green's function 557 .

One serious shortcoming of the temperature Green's function
method is that the diagrams do not have a straightforward physical
: interpretation. ‘This is because the time evolution and the statistical -
averaging are scrambled together and each element in a diagram contains
both statistical and dynamical information. For example, a vertex

may represent an - event as well as a correction to the average of a

- dozen other,e?ents.' Nevertheless, one canzget some idea of a portion of




~l4ha

the physicel informetion th.at've_. disgram contains by breaking up lines,
i:u'rnixig parts of the diagram uésme doﬁﬁ, ete.
One wgy'to break up Fig. 12b 1is shown in Fig. 12c. it is
clear that Fig. 12b does contribute to the avefage of the-seqpence
of events descriﬁing the transfef of the internal energy of atom A
to atom C. One can get a diagram contributing to that‘in Fig. 12b
vby closing up the endé of each of the external atom lines separately.
This éroceduré represents the averaging over the unperturbed ensemblé
for'each of thevatoms ih.Fig{ 12c separately. It is clear that diagfaﬁs.
like Fig. 12b do,describe,the effect of transfering thé internal
energy from éne atbm to another and that the "bubbles" represént
independent averages. The name "diffusion of*excitafion," or "proﬁaga-
tion of excitation,” or "propagation of a virtual.photon" seems to be
appropriate to sum up the main effect of the kernal giﬁen by Fig. 12a.
One can find the term in F(E’E') represented by Fig. 12a
through our diagram rules and (5429). The sum of ell the string

diagrams is

P(@+1n) = @0+ i)
[+ Glyas )+, <k>f>§7 (w+in)] |

where g9 (m) is the Green's function obtained with F:Lg. 123 excluded

from F(p,p ), or the "undiffused Green's function. D(k,®) and

~Jb are deéined by (5 L) and (3- 10); respectively- Since Glbc -1s

.b-'

. ¥
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an e.tom-atom scattering amplitude and k s the photon momentum, is

much smaller than the momentum of the ‘atoms, then V. v.be (k) ~ V bc(O) ,

"the scattering amplitude with internal energy and spin transfer in ‘the

forward direction. D(k,w + in), which describes the transient of a

damped cavity mode, is approximately constant:
112 w1l -1
D(x, + 1n) 2 lg|” (2x)™ (ir,)
(see (5-#)), We rewrite (6-1) as

of (0 + in)
| ' (6-2)

(9 @+ 1)+ Jg]? (2k)"l (1, s ?"’(o) f]

which implies that the effect of the excitation diffusion is the shift
and the broadening of the pea.k of the power spectrum calculated from
the undiffused Green's function '(w + 1n). |

In the frequency range where & (o + 1in) 1s very large and

the diffusion of excitation very strong, ,v? (w+ 1n) becomes a constant. '

The power spectrum S(w) (see (5-32)) dis then proportional to
(eBa) - l)‘l s, i.e., the source becomes simply a black body emitter

_in' this frequency range. Speaking very roughly, the photons are trapped

" for a long time and are thermalized by the atoms before they get out.

On the other hand, when ' 1s sma1l, of = €' . Thus, the "tail"

rarts of thé bpectral lines are affected less by the excitation diffusion

B e
because theyfire off resonance.



6

We now take a cloSer -ibok at the 'question of the' ‘photon re-

"e.bso_rption. Let us a.bsorb the constant - V (0) into the definition

of ' and write out the denominator of (6-1) explicitly' ‘

.' denominator ‘ = (2,j2 + l) -l-—l—

f(2 )5 (N - N(e + a))) ( Im}é (p,w))

+ (ir‘c)':L Re ,Q' ’ (6-3)

where we have replaced Im Q' ' by the integral given by (5-31)

_ ,d(p, w) is the solution of (5-30) with the disgrams in Fig. 122
excluded from F(p,p )

Except for the last term, which represents a- frequency shift,
(6- 3) is exactly the denominator of (3-12 ), which is

1. éx(w)/rc .

where o(w) is the absorption rate. The function
12 -1
lg]"(2x)™ [~ Im g (p,w)]

which is always positive, 1s " proportienal to the absorption or emission

rate of a photon by an atom. The integral over N » the low level

: atom occupatibn number, gives the effect of absorption by lower level

é‘:
Sy
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atoms. The integral.over - N(epu+ w) 'gives the "gain" of the virtual

photon amplitude when passing by théllpper level atoms. There 1s

always a net absorption unless the population is inverted, in which
case our temperature Green S function method 1s not defined

Having gone through the reabsorption process in some detail, we

y:like to emphasize again that it should be viewed as one of the important

" processes contributing to the diffusion of excitation. It is the

diffusion of excitation, not the photon, that is important.

B. Additional TImplications of the Cavity Mode Propagstor

The cavity mode propagatdr D wused in the last section is a

temperature Green's function, and it implies more than Just the transfer

- of internal energy. In addition, it automatically implies the existence

of cavity modes in thermal equilibrium with the atoms. This seems to

be Inconsistent with our assumption that the wall of the cavity is
v transparent. However, the important question is not whether the cayity |
‘modes are or are not thermally excited. After all, we have a-large

~thermal reservoir to distribute the atom population and any ‘additional

system in thermal equilibrium with the atoms simply implies a larger

reservoir, which has no effect except introducing new perturbation to

the atom-currents; Thus; the important question is whether the additional

_perturbation is small compared to the other perturbations already

included invthe model. The answer will be clear after we examine the

’~diagrams discussed in the last section further and analyze the self

rf energy diagraﬁ Fig. 13, in which the propagator' D also plays a part. '
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. Iet us analyze Fig. 13 first. If one calculates Fig. 13,
.one would end'up caleulating two effects; first, the temperature
independent "true" self energy, and secona; thc forward scattering
. amplitude averaged over the thermal equiiibrium'cavity model popula-
-tion (see Fig. lba,b, which are not tempe;ature Greeﬁ's function
diagrams but ordinary diagrams’shcwing'the events). The second effect
is the additional flﬁctuation, which gives rise to the well known
. _dissipation due to the stimulated emlssion.

In fect, every factor D may be fhought of as having.two:
.effects; first, the proﬁagation of a virtual photon inthe crdinary
sense, and second, an average over the external‘lines created by
bfeaking the ﬁavy line. | |

If we break a wavy line in é:string dlagram like t#e one shown
in Fig. 12b, we get two disconnected pieces,.which contribute to the
square of the amplitude of,é procéss in.which a. cavity mcde excifes
an atom and the internal energy thus created then diffuses away to
other atoms.i Figure 12d shows such a process.

Now the implications of . D apart from describing the exchange
of the internal energy are clear. First, the cavity modes cause
additional fluctuation and the stimulated emission results. This
additional fluctuation is usually much less than that due to collisions.
Second, the cavity modes act as a souice, and therefore must also act
as a sink of the atom internal energy. This impiies a bilgger reservoir
- and has no effect on the reéult of the previous section.

In the rest of this chapter we shall 1limit our discussion to
‘the effect bf collisions on the structure of the kernasl F(p,p ) and

the self enérgies Z%B , and. Z;A .
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C. The Self FEnergiles

_ Ih this section'we sﬁall evaluate tﬁe self energles Zﬁg énd"
Z_A in second order of the interaction potentials gi&en by‘(3-8,9,10).
The flrst order terms will be ighored for the following reasons. The
first order terms are thevHartree and the Hartree-Fock corrections,

: Whichvare small for a dilute gas. More important,; the interaction
potentials are in general unknown or undefined. The second orderrterms
may be identified as proportional to various cross sections, for which
more definite statements can be made. '

Flgure 15 shows the second order dlagrams represenﬁing the

.following terms. - For Z;R(p +Xx), Figs. 15a,b,c glve

3 ' 3 ) :
.. .JP d P3 d Pg (23 +1) N [V (p - p1)?
(ex)  (2x) P T
% 6*’(62 + Gg" - €g+g'1_2' - ng ) . k4
o 3 ' 3w . . . ~
b. f - p5 - P3 (232 +1) N+.., fvcc(P - P')le
| (ex)’  (2x) P T
X 6+(€E -+ Gg,, - v€g+gnagy - egl) ’ ‘
dBP' djp"

Ce (231 + I)an 'ﬁbc(g e g’)le

- (2x)° '(2::)3.

fax 5+(eP t e T €yt -"62') R . (6-5)

~ ~r - e ~
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For Z:_A_(p), we have, from Figs. 15d,e,?, "

’ d5p' 'dBP‘j‘.. : I+’ . vbb . 1y[2
* f(2:r)3 (2x)? e 2 iy | .(g- 2

X 8(e_ +e 4 - €

”~

-e,)

p+tp' D' P

P
- f(e_n)? e W W -

X5 (e + ¢ - € | ~- €
_( p . p" P‘f‘P"'P' : 2' ) }

~ ~ ~ o~ ~

5 ' 3." . » a y | .

a”p' d’p 2 ' + . 1&be ‘ 2

£, f <= (23, +1)/(23, +1) N .V (p - p')]
(ex)’  (ex)? B TTTTTLOTT TRt L o

x 8—(€P + GP" - €p+P"-P' - eg') ) ; .v A‘ (6-6)

~ ~ ~ o~ ~

we have used the abbreviations
N p = (e _P o - l> = the occ_upation‘ m_:mber per state in

. the uppervlevel N e s

"st(*)'a 1/(x * in) ,
and'also
We =% R (e

J

v
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 The V&’s are'the potentials for definite spin transfer defined by
(3-9,10). ‘In calculating (6-5,6), only the first power of the occupation
numbers ére kept{ Exchange diagrams suéh as Fig. 16 are ignored. TFor
- future referenée;1ﬁendefine E(p)‘ and Z(p) by
R, Ap N = ~ - 6.8
z o (p+x)-27(p) = Z(p) +2(p), (6-8)
 where X(p) dis the contribution from gbc, the potential for the

scéttering involving internal energy transfer.

" D. The Kernal F(p,p') .

The_kernal‘ F(E’E') can be found.from.(5-29)'after ><Fl} 1&2 s
and; QF‘5 are calculated froh the diagrams. There‘are_tﬁo first order
‘diegrems (see Fig. 17). Figure 17a plays a part in the "diffusion of
excitation” process discussed in Section A of thié chaxmer'énd-its
effect 1is given in (6-2), which can be carried out ét the end of all
calculetions. Figure 19..shows the second §rder diggramé vhich we
.shall calculate. Figure 18 \ma& look like a second order contribution
to F(B,g') ffom étc’ but it must not be included because it simply

r‘génerates a part of the "string diagrams" (see Fig. 12) generated by
ﬁhe first order kernal shown in Fig. 1lTa or l2a. .
- Straightforwerd algebra leads to thé following expression for

F(p,p') due to the diagrams shown in Figs. 17b and 19 :




‘ so-

) - e - o)) (it
F(p;p') = [V (pA p.)i W = N)

3. o o
+ 1 SE v - p) VP - )] (23 + 1) M,
(2x) ~ o e s P

X 21 d(e_ + € ~ € - €
( P ‘ P" E‘H-g".-'g' Bv)

~ ~

o |
+ if——'p— {Vcc(p-p)v (' - p)] (23, + 1) AT,
(2ﬂ - P

X2t d(e_ + €y =~€ i _, =€
(ep + €pn = Epipriape p'

~ o~ ~ ~

N (X

We have used the shorthand [V], and [VV') in (6-9) to denote

[vbC] "'Z VJ-1 RJ-v ’
J‘l

and

, [W']’A-_- ;,_‘,, Voo Vg Ry (6-10)
respectivély, vhere \

”31’32
Ryy = [(23, +1) (23, + 1)]2 ( )
Jo jl J' - :

~ The appearance of & 63 symbol is due to .the summation over four

' " . o o ~ -
Wigner coef?ibients as required by (5-14). Notice that ¥ does not
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appear in F(p,p’) . The equations (6 8 9) ‘constitute the input to the'
integral equation for ﬁ(p,w)
What is the physical meaning of ﬁ(p,w)? Recall that # is

related to the vertex function X through (5-24):

K = 2t 8(e - ) Blpe) . ey s

- L &
The diagram for the vertex function is in Fig. 7. Itﬁhas three ends,
two for the incoming and out-going atom and the‘third for the current
operator to be coupled to a photon in the vacuum. Roughl& speaking,’

the vertex function 1s proportional to the average of the product

(the amplitude of finding the atom in the upper level)‘

X (that of finding 1t in the lower level)¥. - | (6-12)

The factor 8(e¢ = ep) puts the atom on its "energyfshell," i.e., the'

atom is almost free. ﬁ(p,a> therefore sums up vwhat is happening to

the atom when a photon is emitted or absorbed. The self energies and
the kernel together describe the correction to the vertex function due»
to collisions. As an example, Fig. 20 shows that an atom is colliding
with another atom while emitting & photon. The evehts shown In a and

¢ are included in the self energy terms while that in b is generated
by the kernal., _ ‘

The self energies always give a dissipative effect and the kernal

must have the effect of compensating such dissipation to some extent

W .f,";l‘{
Doty
e

uf

B .
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This can be seen by the following argument. Ir the,internal state of
" the atom is not disturbed by the ‘collisi'ons, then't-n:e' product (6-12)
muSt not be dissipated at all; ‘Therefore, the presence of a dissipating

“term implies that of a8 compensatory term.i 3

R, Limit-of7No:Spin Transfer)}Collision_Narrowing‘

.;To'extraCt still7morefenplicit information out ofvthe integral
equation (5-30)'end then solve 1%, we have to'restrict our discussionito
very special cases where the expressions for the self energies and the
kernal are further simplified. _ Do _ 'r

Unlike those appearing in (6-5,6 7) for the self energies, the
potentials appearing'in-the expression'(6-9) for the kernal do not
appear in the form IVTQ . 'They Only appeer as the,prOducts of different
V's and therefore cannot be related to some cross sections.‘ To proceed,
let us make the following restriction. S o »A

First we drop the first order: term in (6-9) ~ Then let the

J',=‘O' term be“separated from the-sum,(6-lo) and, utilizing the identity

17 31 + 3,47
N S S ,
: R
x [ +1) (25 +1)17F 0 (6-12)
we have;ﬂfrom (6-10), " 0
(w') = Vv, M) Vg By o (6-13)
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The Vb s are the amplitudes for collisions with no spin. transfer, i. e.,.

collisions in which the internal states of the colliding atoms are not
affected. If ve restrict our discussion to the limiting cases whereh
such collisions dominate and also are independent of the level of the

atoms, i.e.,

’Yobb ~ VObC' ~ VOCC - Vo , . (6-1’4)
vwe‘have
2 o .
vl = vl . | (6-15)

These restrictions effectively eliminate the complications, and hence
much of the essential features, of having two specles of atoms and of
naving arbitrary spins. Under the assumptions (6-14,15), we obtain
from (6-6,7,8,9) - |

F(p,p') = if—‘i—% lvo(g - g'),g{Npu(&jl +1) + N"P.,(e,jé + 1)}_

(2x)
sy ey gyt ) o 69
Re'z(p)v - o, o : - | ) - (6-17)
iIm,Z(é) = .....P._. F(p,p) ‘. ‘» .' | : (,6'18)_

(ex)?

A
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The integral equation (5-30) may now be Written as

AA(m.f}f.gm',-E -Z(p)) ;Zf(p,w) ‘ l+f(2 )5

 xFop) @o,e) -¢<p,w>) - _"(6'-19)

We make no attempt to simplify E‘,(p), (see (6-8)) the self -energy'
terms due to the scattering with intermal energy transfer.

If we define a function f(p,w) by
f(g,w) = 1 Npﬁ(g,w) = 1ie ?,d(;g,w) , ‘(‘6-20)
then (6-19) takes the form

-ilo-kpunT - E - %(p)) £(p0) = XN
. : : v ,‘ - | (6-21)

--JL- (- 1 F(p,p') £(p'0) + 1 F(p',p) £(p,0)] .

(x> T RS B

Equation (6-21) has the form of 8 master ecj_ua.tv;ion:. f(g, ®w) is.the

Boltzmann function a.nd‘ - iF(g,B') iij.fhe ﬁransition ﬁfobability

‘per unit time from the stefe D' to the state p S(p) glves

.an edditieﬁal dissipation and -frequency shift The physical picture

now simplifies to that of a gas of atoms, each carrying an oscillating

dipole, colli,ding and emitting photons independently. The function

-2 In ,d(p, w) 1s"the pover spectrum generated by an atom with momentum
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p . The total power spectrum is obtained by’integratihg over P
welghted by the population distribution function (see (5433)).
Before solving the integral equation (6-19), let us anticipate

the solution for extréme cases.

First, if F(p,p') 1s very smell (cdmpafed to kep/m), then
N o~ - -1 -1 "
Blp0) % [o- Ey-kpm ™ - Z(p)]" . (6-22)

For small Z(p) one would have a Doppler line shape. For large
E(p) ,‘ i.e., when the collisions invoiving internal energy ﬁransfer
dominate, the power spectrum has the shaﬁé of the imaginary part of
the Plasma Dispersion Function,9 if f(p) is -a slowly varying function
of p . It approaches a Lorentzian when £(p) becomes much lérger |
than the Doppler wiath. Therefore, the integral equation is unintefesting
when- F(g,g') is small.
Second, if .F(g,g') vis véry large and E(p) is very small,
then each atom is bound by its neighbors but its internal state is
not affected by collisions; We then expect somé sqft of " Ssbauer
Effect" so that the'pqwer spectrum becomes much narrdwer than the
Doppler shape. This is the "collision nérrowing"»phenomenon.lo
Third,vwhen bpth F(B,g’) and E(p) are large,'wé havé '
both the narrowing and broadening effects. As we shall see, the
broadening due to x(p) tends to be.domiﬁating.

b
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F. Numerical Solution

We 'shai_l first solve the integral eq{:ation (6-19) énd calculate
[ the power spectrum for zero E(p) s§ that the collision narrowing cen
be observed as we increase the'transitidnlrate -E(g,g'). Tﬁen we
increase :g(p) to see the broadening and the shift.

To writé everything in terms of dimensionless qpéntitiés, we

define the following symbols: .

y = g/(Thermal'momentum) 5 | (6-23)
. | : :
where
1 1
Thermal momentum -= (2m/B)2 = (2mkT)? ;
A = (o - EO)/(Doppler width),
='(y) = =(p)/(Doppler width),
Z'(y) = =(p)/(Doppler wiath), . . (6-24)
where o
Doppler width = (Eo/m) + (Thernal momentum);
#'(y,N) = (Doppler idth). f(p;0) , - (6-25)
F’(X,X') = (éﬂ)'5r(Thermal momentum)5 (Doppler widﬁh)’l F(p,p')
| (6-26)

The integral equation (6-19) then takes the form:

o o
G e



Fpn) = oepk- B - s en™
X [1 +Vfd3y‘ Fily,y') 1)) . (6-27)

The explicit form of the kernal F'(y,y') can be worked out from (6-16):

Py = teet em- @y, (6-28)
. I
&t = nE 1 ola) , b (629)
whgre
1=y -y
. 1s the momentum transfer in units of thermal momentum, - n = thev

total numﬁer of atoﬁs per volume, and o(qj is therc.m. differéntial
cross section (in the Born approximatién) for the scaﬁtering not ’

. affecting the internal state of the atoms. | 13 1s_épproximately the.
numbef of atoms in é cylinde? of cross area ¢ and one wavelength long.

The self energy terms EZ'(y) and g'(y) are given by

z'(y) dey' F'-(Z;g') ;

2 (y) 'f-a5y~ Fly) . . (630)

: whererﬁﬁ'(y,ﬁf) is given by



" Re F' = E'(Q’nq)-.‘}.‘ f %}J- exp - (u - ab:' )2 -. ’
Im F' ‘=M -1 ™t exp - (@-{')2_ P (6-31)
and
7 = TR Imy tag (20, +1)/(RY +1)] o) . (6-32)

o(q) 1is the c.m. differential cross section for the scattering with

internal energy transfer. nb(n ) is the number of atoms in the lower

(upper) level per volume. v
The integral equation (6-27) can then be solved and the function

s'(x) = fd5y eV gma o (6-33)

- . ' P ) ~+ . . .
‘calculated with the input parameters A,£,&~ . S'(A) 1is proportional

to the power spectrumv S(w)‘. The proportionality factor is uninteresting.

The correction (641)'willino£ be carried out S1nce its consequence is
obvieus.‘ ¢ |

The integfel equation is solved by first reduciﬁgvif to a set
of:simulteneous linear eqﬁations through expanding ¢'(y,k) in terms
of iegendre and lLeguerre polynomials, and fhen solving the resulting
set of linear equatiens. The detail is described in Appendix B .
Before presenting the results, it seems proper to repeat here.the

vvmeanlng of the paremeters.:

w”f
Yo
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A 1s the frequency in units of Dopﬁler width measured_from
EO » the unperturbed atomic transition frequency. ¢ is approximately

the total number of atoms in a cylinder of length E -1 and cross

0
area o(q) . &' 1is the same as £ except that the cylinder has a
cross sectional area E(Q) . E; 1s roughly the number difference
of the upper and lower level atoms in the cylinder{ The order of
magnitude of the size of the cylinder is ebout 10'20 c.c., if we
2

take EO ~ 2 ev. and a cross sectional ares J.O"l5 cm .

w~t
For large q the paremeters ¢ and &- are cut off arbltrarily .

by the factor (1 + hq2)~2 . This corresponds to assuming that the
cross sections have the momentum transfer dependence (1 + l\tqe)“2 .
See (6-29) and (6-32). ' |

The computed S'(A) 1s plotted VS, A in”Figs. 21, and 22.
For the curves in Fig. 21, Et = 0, corresponding to no collisions
involving internal energy fransfer. AWe sée that the lines.become |
sharper for increasing ¢ ., Figure 22 _shows the effect of a non;zero
Ei » corresponding to‘a finite cross section for cpllisions involving
internal energy transfer.

Let us summarize what has been done in‘fhe pfevious chapter
and this chapter.

We have discussed the power spectrum S(w), which 1s related |
to the photon amplitudé correlation function through (3~i). We first
expressed S 1in terms of the discontinuity of the Green's function
H(w) in (5-3). Then 39(“», was related to the vertex function which
. satisfies an integrai equation represented by.Fig. 7._‘We arrived at |

Vo

.
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the general form of this integral. eéuatioh foyia dilﬁté gaé (5-36)

at the end of the last éhépﬁef; In this chaptér,vwe made many

simplifying assumptionsvto maké fhe‘pﬁysical‘implication of the_intégral

equation explicit. We then solved the eqﬁatipﬁ ﬁndér special conditions.
Our discussion on the émélitude_cérrelationvfunction is completed.

We now turn our attention to the intensity correlaﬁion function.




e
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'VII. TEMPERATURE GREEN'S FUNCTIONS WITH THREE TIME ARGUMENTS

The purpese of this chapter is two-fold, First, in order to

calculate the intensity correlation function in the next chapter by
- the temperature Green's,function method,'we need a few general equations.

‘This chapter will supply these equations. Second, the discussion in

Section IV.C on the enalytic structure of an arbitrary temperature
Green'e function ie only a brief sketch. 1In this chapter, a more
detailed analysis of the three end temperature‘Green's function will
provide a better‘understandiné ef the general techniques.
Our'anelysis will be based entirely on the expansion of the
temperature Green's function in terms of the matrix elements between

the energy eigenstates of the system.

A. »Feurier Series

The general form of a temperature Green's function with three

ends is

% = e (e 8y B} .
oA TlH . -T.H
where A(Tl) =T e~ Ae T ete., and
B s fe, TB,Z'O . ) . f .- (7-2)

Without losing ‘much generality, we shall assume that none of the

-operators A, B, c is a fermion operator.

The ensemble 1s stationary, so that X 1s a function -of

two variables,




~6la

and

b, = Tyt Ty e -  (7°3)

There are 3! = 6 different orderings of the imaginary times Ty

‘12, 5 + Let us divide them into two cycles. Cycle 1 consists of the

orderings (1,2,3), (2,3,1), and (3,1,2). Cycle 2 consists of the

T

orderings (3,2,1), (2,1,3), and (1,3,2). In terms of the matrix elements

!

~of A, B, C between eignestateé_of H, the cycle 1 orderings give

L . -BE_
K(Cyele 1) = z7t ¥ ALB_C_ [e & o(1 2 3)
a,b,c
-8 -
+ e .Eb~ e(2 31) +e PBy e(3 1 2)]
4 T .+ E T , , - L
x o W17 oo o, - (7-4)
where 
8(123) = e(Tl_"Te) 6(72‘- 13), ete,,
and - B . L " . : (7-5)

The three terms in (7-L) are separately defined in thé,regibns I, II,
‘and IITI showh in Fig; 23. The 5oundaries of the regioﬁS'aré defined

by the step functions and the restrictions (7-2):

ok
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Region T :  8(123)~8(t) 6(t,) o8 - t; - t5)
Region II : ©(23 1) - 8(t, + 5)‘é(t2) o(- t, - t,) (7-6)

3egion IIT : e(312) - e(tl) e(g +>t2) e(- ty - te) .
The values of XK(cycle 1) in II and ITI are related to those:in I by

= K(t),t, - 8) (7-7)

for (t,%,) € T . Equation (7-7) is obtained from (7-4,6) by
straightforward substitution. Therefore, ”K(tl,tz) ‘may be written

. as & Fourler series :

‘ : - .t + at , , g
_ K(tl’te) = 5‘2 | e kot vag 2 _K(cycle 1 ai,ab),‘ (7-8)
- w5y | . | |
where k . .
’ai, 93 = (2xi/b) ><‘integer,' : i ; (7-9)
and . ‘ L .
. P - B'#a At et
.K(chle l_;,ai,aé) =.jf - dt, 'Jr dt, e K(tl,tQ) .
. Y% Yo -

~ (7-10)
‘Substituting (7-4) into (7-10), we obtain

foeg
L3
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K(cycl.e 1 45__, @, mj) |
| SRS o

_ - ZQ-:L v ab Bbc [( a

a,Db,c o+ E.) (d)5+ E,,)

a

-BEbV | o - -B_Ec ; . . :
+ S + = ' ] oo (7-12)
(y+ Bp)) (o Eb ) _ (a‘é+ Boe ) (m§+ Eca_)
 We have introduced & new variable -
% = e i TS o (7-12)

“to makAe the‘ expression (7-11) appear more symmetrical. ;
We go through the above steps in the same fashion for the

Cycle 2 orderings. We obtain, similar to (7-1),

]
N

- 1o« B - -pE,
K(cycle 2) 1 zb: B, A_Da [ & o(3 2 1‘) +e Co(213)
) ; 9'; e L _ L o

-BEb

B 1'+E T
o e(l5‘2)] e8¢ 3 cb2 Eb&

N .

(7-13)

The three terms in (7-13) are separa-tely defined in Reg_ions 1, II, and
| IIT shown in Fig. 24. The ‘boundaries are defined by the step functions

in (7-13) and the res’crictions (7-2)

Region I: e(321)- e(tl. + b, + B) e(- tl) o(- t2)',
Region II : 8(213) -0 - té) e(tl‘+ te) 6(-'1:1) oy (7-14)

Region 4T 8(1 3 2) » o(- t,) 8(t; + 1':2) o(p - ti) .
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 The values of K(Cycle 2) in I, II, and ITI are related by
K(t,t,) = K(t; +B,t,)
= K(t,t, +8) 5 - (7-25)
for (tl,t ) € I . Thus, K(tl,t ) may be written as a Fourier

series. Similar to (7- 11) we obtain K(Cycle2 3 @, W, @ ). The.
D B “‘5

sum of K(Cycle 1) and X(Cycle 2) gives

. : -BE
-KA(‘GEL’ 092,0:5) - a;%,c 'Aab "be = [ (“i*“ Ea:) (15 + Eca) ., :
- H -sEb | S -pE | o
em L

e . e °© J
+ - + .
(‘“1* Eo) (@+ E,) (e + Ecb) (ug E DI
The analytic continuation of K d1nto the space of two complex variables

-

1s then obtained by letting a , 5 be complex and keep w + u.)a 015 =
) : 25,

e . o
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B. Spectral Functions and the Spectral Representation

The expansion (7-16) is the spectral representation we look
for. To write it in a better form, let us define, for ‘reavl cui,ab, mj,

the spectral functions P1p s ~pe3 , and P3q 'as,"

_ D12<03 )U-é) = (27T)2 % € Eb [AabBBcCca 8(aﬁ.+ ‘Eab) 8(w2+ Ebc)
a,%,¢c ‘ - . :
+ A'ba Bcb ,Caé 8<ml+ Eba.) 8((1.)2-" Ecb')] Z-l ’
' ' 2 Z ‘-'BEc s ! [
923(‘%’(%) = | (2n) 0T e ) _[_‘é‘ab]_abé?ca 5(u>2+ E“bc) 5(03"' Eca)
g By G 808 +2) 0l + 5, )1 27,
2. ' -BE, | i- - ' oy |
p51(('u5"'u')1.) = (Qn? '.ag c E [AabBbcCca 8(“1+_Eab) 5((%+ Eca)
+ Abé Bcb_ vcs..c 8((1)1 + Eba) 5(”"5+ Ea.‘c‘)] Z;Jf :. | S (77
where

Then X has the spectral representation:

N
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n

1] \ . ) 1 Tt \
-qu)l dw pmr(wl,we)

TE ey - wy) (g - 0ly)

.-Idw'g dw'3 o péj(w'g’%)
: 2n 25 (dé - w,e) <U“5 - (1)'3)

K(d)]_: s “’5)

21 2n

do' do', 'L, 0 R :
-f 3 L Py ‘ ) . (7-18)
- t - !
(e - o) (@ - o) |
We may represent X by a diagram (see Fig. 25). The three energy
. . . ] :
‘ variables are associated with the three ends A,B, and C. The p's

are not independent. In fact, if we define pI, and. pII by

- | on -
pI = 7 1(271:)2 a%‘, . e 2 AabBb¢Cca s(ml + Eab) 8(a:5+ Eca) s
RRE - SRS P IDY ;’BEa_ N | S
' e = 27 (2x) © e BpCac S(ai + Eba) S(ag + Eac).’ (7-19)

a,b,c-

then 1t follows from the definitions of the p's  that

-Pay oy PG g
€ - p t e p PR

P12

e .
e > yI +.e E ot

It

J

Pp3 "
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The cuts for. K(aﬁ)qé,a%)_ as a’function'ofﬁtwo'conblex{neriabies‘are
easily read off from the_spectral‘representation (7-18). They are
along | | | - |

Im ai = 0, Im “5 -0, aﬁa Im as = 0.
These cuts divide ‘the space into six regions as; shown in Fig._26
However, one of the cuts is missing for each of the three terms in

(7-18). Figures 27a,b c. show the cuts for the three terms. Missing

cuts are denoted by - dashed lines.

.C. Spectral Functions in Terms of the Discontinuities_

The spectral functions, can be found when K(ai,abag) is
known, from the . various discontinuities across the cuts. With the
aid of (7-18) and Fig. 27, we find

P12 T Pp

K3‘- Kh -‘Kl + k6v

'R?;{T.:
T
>

n .
]

. - x4 K | :f. = A ";«y o (7-21)

, . : : :
- The superscript on X denotes the regions of'definition shonn in
.Figs. 26,27. Only two of these three_eqpations'are independent.

Also

A +h,+8 = 0 . | ‘(7-22)
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- In terms of the functions pI and 'pII “defined in (7-20), we obtain

A = pi(e_aai -1) + o't esai i) y
B -B -8 B
A2 = pI(e ""5 - e wl) + DII(e m5 - ml) s
S N efs%), -  (723)

A§

Only two of the three equations are independent. Solving any two of

_ these three for pI and pII>, we have !

ea

B . .
0 = '[Al(é 7 -1) + A3(e A - 1)] /b‘;

| . -
o™t [Al(l - e C%) £ 0 - e b, (7-28)
- Wwhere

Ba o, oy By e“% ey

D = e + e

i}

Once ‘pI , and’ pII are known, pﬁl" P1p » pé3 may be obtained
from (7-20): | | |

o,  -po, B, -Bo

€ j) 'Aj(e i. - e.._ i)]/D; '

i
>
- .
~~
o
Co
?

oy

Ba, B By
(éml'-;.l)_(E q)z,-'.l)_(e%"l)' o (1e5)

12, 23, 31 . o i  (7-26)
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VIII. THE INTENSITY CORRELATION

The intensity correlation function of'photons has been defined

in Chapter II (see (2-2». Its simpleet physioal;interpretation is the’

probability of finding two photons, one at the space time point ‘yl »

and one at. Yyt
(G ory) A5 ,0) (g ) A,y 0),)
(T Kl lry) a0, [901°)

averaged over the statistical'ensemble of the statee ls) s which
contains full informetion about.the'source. |

In this chapter, we shall apply the temperature Green s function
method to calculate the inten51ty correlation function. We first
derive its connection with a particular temperature Green's function;
This temperature Green s function can be obtained through the dlagram
method or through other means, As will be seen, within the_framework
of the diagram method, there\can'onl& be two terms for the intensity v
correiation function, i.e., the fomiliar<‘direct term and the erchange

term.

A. Connection with the Three End Temperature Green's Function

The photon intensity correlation function has been expressed in

terms of the current correlation function J by (3-3,4) :



P
¥

-T3-

( <A+a(y-1l) Aty (v, )5-(Ae (v,) Aoz(yl ))Q
- Uel? V/(lm)? y;yglz f%};— J(a(B,V)_‘
X exp-1v(ty, ~y, -t +y)
where
(e 5,9)

- f at e™V* <(q*¢(15) 3pt) (5008) 300, . (6-1)

J can be written in terms of the matrix elements of the current.

operators between eigenstates of H as

| o o
ey =zt T {a- (5% 30y, ¢ . |
s “arbre cab '“p “B’be “aca - _ 1(v + E‘bc) +y
¥ t o5 e |
" Ve Wadahe foea TrTT T } |
| T e :

where

fdv' Ty Teav) )
-+ » (8'2).
v 27 '-'i(v - V') % N _i(V‘- v‘) +1 o

el me e e e e



e
bc ozca. 2“ §(v + Ebc) ‘
. | | (8- 3)
J'(x B,v) . may be obtained from a temperature Green s function with

J(aB,V) _‘l‘Z'j*‘( J)

a,b, xadb

three ends. To see this, let us rewrite here the first expression in
I
(7-19) for o :
-BE

.pI = ‘.z"l(ezr)2 %“ ¢ & A pBooCon s(a;i + Eab)' 6(&)2 + E.bc) .
: a,n0,C .
| (8-k)

We have replaced 8(&3 + B, ) in (7-19) by S(w + Eb ) . This is

permissible since ai “é aB O _and hence.

8(qi + Eab) 6(a5v+ Eca)

n

(ai + E ) 6(&1 + E + ag + E )

= s(m_L+E s(w +Eb) ' ) E : (8;5)
if we let
A = Jfa(lf))
B o= gt 30,
vC = Ja(lf);
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and integrate over a , we obtain (8-3), 1.e.,

- . aa
I .
I (o 5;“)2)"—f‘g (@,a,) .
pI .may be obtained from (7-24) in terms of Al and A3 , the discontin-

uitles of X . After some rearrangements, we find

7@, v) =“§v"l—‘fg‘r? '5—23"" + ET’A"L"B'G’ :
. e -1 < e -1 e - e

(8-7)
where Al and A@ are evaluated at , . !

(Dl=-V-(D,

o = o . N )

Tﬂué we héve esﬁablished the connéétion between the fémperature.Greeh's
function K and the desired correlation function. .K 1s represented
diagramatically in Fig. 28. (See Section V.B for the conventions
reéarding diagramatié representations.‘ The current opérétors aréfdefined
by (3-7). The dotted line indicates that the operators vjfa(E) and
36(5) , which are obtained from _jfﬁ(f) and jB(E') by s?parate Fourier
trahsforms and whose product is the B operatof (seé (8-6)), are

| separated in space although they are tled to the same time. '

The remaining task is té find the temperature_Green's function

" K and feed the results into (8-7).
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B. The Direct Term and the Exchange Term

There are two disconnected diagrams cdntributing to K (see

Figs. 29,30). First, consider the direct term given by Fig. 29 :

,Kair(“i’“‘a’“’;? = 35> :9(- @) B %é,b : - (8-9)

_(jfﬁ jB) is simply & with ends tied together:

AN & _ 1 ' enw"
(e = 5 ) Plar) ™

Y

-1

JE 2 eiw9e-m)
_I%“Z? S@) = s . e ENCEN

ST may be called the total source strength. The power spectrum
S(w) is given by (5-3) in terms of f (w) | |

L : : _ . K, .

To analytically continue 'Kﬁiri? we write B & (“é)' for

B B,

o (see (4-17,17') and the discussion there):_
2), . ) ]

-Kaﬁ(“i’we’%) = 5y ’?(;%),MK(%) - (8a1)

which is discontinuous across Im @ = 0, and Im W = 0. The

discontinuities are obtainéd from (7-21):.



4 = (e e 1) 8y [0 (-q - 1m)1- @ (- @ +1n]
o Bl8 (e, + 1n) - 5K(Qé‘+_ in)]

: . |
( felsys-a) e b msl) , - (8)

1

]

'and ‘AB 0.
Substituting (8-12) in (8-7) taking into account (8- 8), we
have the expected ;esult ' v '

I aar (@ B,v) = 2x 8(v) STe c o (8-13)

Next, consider the exchange term given by Fig. 30 :

v .Kexc (Uﬁ’wg’%) = 39(055) 39(" CUl) 5 ., ) o .(8_1)_;)

which has cuts along Im (13 =0 and along Im a)l = O .
By (7-21.),

s

[- D(a +1n) + (o e-rin")] [- % ('-ml. +1n) +§ (:-cL}L-, iﬁ)] o

B '-.;3 S o
e (e T sw) st-a) 8,

A} =‘Al '- : | o L (8-15) ,
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Substituting (8-15) in (8- 7) taking (8 8) into account, we obtain the

simple result

' exc (a B,v) f S(w) S(a) + v) 5013 e (_.8.-16)

Figures 29, 30 are the only disconnected diegrams. contributing
to K-. In the limit of large volume, connected diagrams are negligible
compared to the disconnected diagrams because each connected piece
implies & factor of volume. Within the framework of diagram method, we
must keep ' only the terms with the highest power of voldme becaﬁse
Wick's theorem is meaningfui only in the limit of an infinite volume.
Therefore, withiﬁ the limit of applicability of the diagrem method,

(8-13,16) give the exact result.

Substituting (8-13,16) into (8-2, 1) we obtain the result
<<’_3‘+a(y1) LSO N_(ag () ‘Ad(lvfl))-) = [‘ST_lzla v/ (lhr)e_/ylyQJQ
X [1 + 8, , f | 2 y2 64, 5(w) l | ] . (87

where s(w) is the normalized power spectrum defined by -

(@) = ste)fsy . (89)

- All the information about the s'ource'is contained in the power
spectrum S(w), which we have discussed in detail in Chapters V and VI.
It is clear ’chat the intensity correlation function contains no more

information’ about the source than the amplitude correlation function.
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IX. '~ SUMMARY AND DISCUSSION -

The over-all picture. of our analysis is the following. The..

‘ photon field is coupled to the many atom source system. The correlations
3 in the‘many atom systemvlead té,the correlations in.the~photon field.
The influence of the photen field back on the source is ignored. After
the correlations in the photon field are written in terms of the
correlations in the source system, the latter are then studied by/the

. temperature Green's function method regarding the source system as a
large many body interacting system. In conneetion withathe’power‘
spectrum, we have studied in some detail the behavior oi,the many atom‘
source model. We have also analyzed various projerties of temperature
Green's functions in general.

Our study has demonstrated the power of the diagrammatic »
temperature Green's function method of analysis. Indeed, this method
1is mathematically rigorous and straightforward. The very complicated;
-process of averaging a product of Heisenterg operators at‘different
 times is reduced to the elegant procedure of analytic continuation

and simple dlagram rules.

| Our analysis also reflects the limitation of the diagrammatic
temperature Green's function techniqpe. This technique is limited to
systems in thermal equilibrium. The price for the diagram rules is the
restriction of the analysis to infinite systems. More important, the
Physical meaning of the analytic continuation procedure and'that of

‘ more'complicated‘diagrams are not transparent. As has been stated in
Chapter III, the limitation of the method limits the validity of our

 results to sﬁ%cial cases.
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. .The expression for the inten51ty correlation function derived
in Chapter VIII (éee (8- 17)) agrees with that derived through other
methodsv(see, for example, Ref. 2). Through the expressions of photon
correlation functions in terms of the correlations.in'the source systemn,
one can obtain informatioh concerning the latter by experimentally
analyiiné the former. A detailed_discussion in this connection can be
found in Ref. 2. | |

The formulation in this fhesis applies to a solid or a liquid
source, too. The mathematical procedure would be essentially the same.
In a solid or in a liquid, the correlationé-are described'in terms of
the propagation of‘various elementary excitations (such as electrqns;
holes, excitons) and the interactioﬁs among them, Wheh the témpéfature
is not too hiéh, the elementary excitétions.behave very much like the
particles iﬁ'a dilute gas. |

Iasers are light sources of current interest. Uﬁfortunately,

K témperature cannot be defined for the laser caviﬁy. While the |
populations of the internal states are inverted and describable by

B - négative temperature, tﬂe kineti¢'energy of fhe afbms aﬁd the inter-
 actions among ﬁhem must be deséribed by'a:posit;ve temperature. As

was mentioned before, the temperature Green's function method applies
on}y to a system with a single positive temperature. The generalization
of the method to systems not in thermal equilibrium is expected.to be

non-trivial,
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- APPENDICES

A.. The Photon-Atom Coupling

Since the size of an atom is much snaller than the'ﬁavelength
of an optical photon, the atoms may be regarded as point particles.
For optical tran31tions, the A term in the usual electromagnetic

~ coupling is not effective. ‘The interacfion

.W§(x) = g A+u(x)'3u(x) + n,c. , : - (A-1)

] =
is edequate. ju changes the state of the atom from the upper level

to the IOWer level. j+“ does the opposite.

We now derive the expressions (2-5) and (2-6);. We do it here
in order toimakevthe main text simpler and more_continuous.

Let [1) Dbe the state; in the interaction picture, of the

system (source plus the vecuum outside) at the time - o, and let

U(t,t') De the time displacement _operator in the interaction picture,

We shall put a prime to an operator to denote that operator in the
interaction picture. The un-primed operators are in the Heisenberg
plcture.

The state of the system at time t =0 »is_
Is) = v(o, -0 ) |1) .

Thus,
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AW = V00 4,6) U @)l

(a-2)

vu(o,t) (A (v), Ult, - ))]1) .

We have set A'u(y)li) to zero, i.e., the photons created before the

- time -~ oo are ignored.

Since
s @) = @e-t [ W), 5 e
and
W, R = ela () AT) 3, . (ask)
‘we have
BO ), Uo- o)) = - 15 [a% 6 - x)
X U(0,t) (h'v(x) éxpv- i’/-dhx' 'W&'(x'))+
= - 1g.fa’*x D, (¥ - x) §,(x) U0, @) i (a5)
 where
e =) 2 W), A) el - ) 6
(A-7)
L (o, _?‘uﬁ o(t - 1) f 2 N ol (gg)-(6-)
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Therefqre; (A-2) becomes
. )+ . .A‘ . . |
a0 = g [d% p 0 g6l . a8)
- It follows thét

.*.
(s] A7 (¥,) Ay (yy)ls) ,
(A-9)
= el _]ﬂd_xld %o Dy (7= %) By (= 7,) (sl 37 () Jv(xe){s) K
Averaging over an ensembe of |s) , we obtain (2-5).
Applying another photon annihilation operator to both sides

for the moment,

of (A-2), we obtain, letting ty, >t

CRRNCHARE

v

'tmm%)A@h@)uﬁéﬁ)Tmawpgvﬁkygﬂhf;?1

U(0,8,) [A'5 (a0, Ultpty) [A1,(r)), Ule- 00))] 1) . (a-20)

Similar to (A-5), (A-10) can be written in terms of the current

‘operators. Since j‘u and A'u commute, (A-10) becomes;'by (A-3,14),
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(&, ) ISR

Lo L .
= U(ot,) (- gg)jd %p 4% Dy, (vp = %) Doy (g = )

%
| 2
x (1, (x) 37, (ry) exp - 1 I R EHREY
| n |
 =--- ge.j’dhx2 duxl DBv(y2 - xe)IQXH(yl - xl)
x (Jv(xe)',Ju(xl))+ls> . b (A-11)

By the same argument, one arrives at (A-11) for ty, <ty . Squaring

(A-11) and averaging over the ensembe of |s) , one obtains (2-6) .
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.'B;_iNﬁmerical_fTocedure

The integral eqpation (6-27) to be solved is:
e -1
B (y,n) = (? -y ﬁ -z (y) = (y))”
x [1+ IdBY' F'(X’X') ¢'(Z)>\)J ’ (3-1)
~with the restriction that

(30 o ooy
e’y e g(y,N)

shall be finite.-
Equation (B- l) can be solved by approximating the integral
by a finite sum so that the integral equation becomes a set of

simultaneous linear equations of the form, in matrix notation,

AC = B-b. : ._ ;>» (BQE)

The matrix division can be done in a reasonable amount of tﬂ@éw
nevest machine only if the dimensionality of A is smaller than

about 100. %The integral in (B-1) can be reduced to a two dimensional




integral by exploiting the cylindrical symmetry. However, it is still

impossible to well approximate the integral by a sum over 100 mesh
points. Therefore, we expard the function @'(y,\) in e series of ;

Legerdre and laguerre polynomizla:

W

B /d%:‘)::/\)

§
Q
]
—
N
N
-
’_’J
g
N
=
=
S
H
&'U
—
~
S

x L7 . . - (B-L)
A o . : ‘
where x = .y , and then truncate the series. We expect ¢'(y,&)
to be a smooth function of y  so that terms of high order are

negligible. The motivation of using I (y ) is that there are man

o n
integrals over eV to do.
ANA
The kernal F'(y,y') is a function of y,y' and y.3' = x' .

~ o~

It can therefore be written as

~

Ppny) = L (e 1) ()7 ) By yt)
7

where

Fﬁ(y.‘!y') =

2V
b
£
5]
N
1<
-
g
S
N
i
)
e

The integral equetion (B-1) now becomes a set of lirear equations for

the coefficients %n:



-88-

z,z’:n' A)@n,Z'n' sznv = an"'v: - (B‘6)
where
w .
o C -2
= P =y 5.2 2
Azn,ﬂ'n' B 622' Bnn' en ,/; - © 7 dy Ln(y )

x (22" +1) (hzr)'l f ax P,(x) Py, ( )/D<y,x>

@

% f dy'z' y'_F/gv'(y)y") (Y )
0
: ’ 0 2
B, = on ay° &Y L y° ax P, (X)/b(y)X) ;
[T [

D(y,x) = A-yx -Z'(y) - 2'(y) .. | o (B-T)

8'(\) = Jf Py eV gy
, 2 | _
- .;; § COn' fco dfye‘ e-? 'y Ln(yz) . (8-9)

We keep Legendre polynomials of order less than 6 and Laguerre
polynomials of order less U4 , Then (B-6) is a set of 24 linear
equations. These equations were solved and the sum (B-9) computed

for various ¥hput parameters on a Control Data 6600 compﬁter.
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Fig. 1 | Fig. 2

MUB-10606
Fig. 1. (See Section III-A.) The source and the observation points.
‘Fig. 2. (See Section III-B.) The two atomic levels of interest.
The degeneracles of the two levels are 231 + 1 and 232 + 1,

respectively. The unperturbed energy differences is EO- .

Fd
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Fig. 3.

‘ | MUB-10607
(See Subsection IV-C-2.) a.’ Schematic representation of a
general temperature Green's function. '

b. The schematic representation of a term in the expansion o
: of a temperature Green S function of two ends (Pze (k-9, -

1

S 11,12)). : .
¢: A general four end temperatzre Green's function. The
. seven elementary excitation lines (the very thick lines)

"give rise to seven cuts,

e e e e e 1 o
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M
J}L X
.(ff::v',.
MUB-10608
Fig. 4. (See Section III-C.) Momentum and spin are transferred from
one atom to another. The thick lines (thin lines) represent
- atoms in the upper (lower) level. The wavy line in (e)
represents & virtual photon. (a), (b), (c¢) represent elastic
‘scatterings. (d) and (e) represent scatterings with internal
energy transfer. :
Fig. 5. &See Section V-B.) The Green's function P )
See Section V-B.) The Green's function & in Fig. 5 1is

Fg. 6.

brokén into a sum. “F cannot be broken further into two
piecés connected by one thick line up and one thin line down.
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W+ €p ._e'“ Fig. 7. o Fig. 8
K s p , ‘ .
m w
ERVES- (O N
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Wy k m' 7 . 4 6
2 /A 5
MU B-10609
Fig. 7. _(See Section V-C. ). The integral equation satisfied by the

vertex function X .
(See Section V-C.) The cuts of the analytically continued

X . The dashed line represents the €-plane shown in

Fig. 9.




-94 -

€ plane

MU B-10610

Fig. 9. (See Section V-C.) The cuts of K(e, ) on the e-plane

and the integration contours.
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Im e’=-(ey+ wp)

/= o

y | ~ MuB-10611

' Fig., 10. (See Section V-D.) The cuts of ¥ (en,e',a)n) on the

€'~plane and the integration contours. »

------
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MUB-10612

Fig 11. (See Section V-D.) The four corner function

% hooked to four legs.
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MUB-10613

. Fig. 12. (See Section VI-A.) a&. +the lowest crder contribution

 to the kernal F(p,p'). o _ R
b. An example of the string diagrams generated by Fig. 124,

-1 . c. The scatterings (the events between the operators ,j+
and J, ) transfer the internal energy of the atom

A to the atom C ., : ,

d. A cavity mode quantum excites an atom, which transfers

its internal energy to another atom. j,, is the coupling Co

to the photon field outside the source (see Section VI-B),

.

e
i 35‘:,
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(a)

Fig. 13.

MUB-10614

(see section VI-A.) The self energy diagram due to the

. internal energy transfer »vié. t_he exchange of a virtual

Fig. 14,

photdn.‘ ’

(See Section VI-A.) ,'Figx..ti*e 13 unscrambled.

(9) The temperaturet iridevpehd,enicv "true" self energy.
(v) 'I_'he.self energy '.d.ue i’tovscatt‘erin'g'.v .

PR}
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(a) (b) (c)
"
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(d) (e) (f)
MU B-10615

. Fig. 15. (See Section VI-C.) The second order self energy diegrams

representing the terms (6-5,6).
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Fig.16 | .~ Fig.I7

(a)  (b)

NN  MUB-10616

Fig. 16. The exchange diagram obtained from Fig. 15b by switching
the upper end of the line on the right and that on the
left. ‘

Fig. 17. (See Section VI-D.) First order contributions to F(p,p').
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Fig. 18

Fig. 20

ybe
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P o 40 o

Vbc

(c)

(a)

Fig. 18.

Fig. 19,

Fig. 20.

MUB-10617

.(See Section VI-D.) The effect of this disgram is included

in the first order kernal.
(See Section VI«D ) The seconﬁ order diagrams representing

the terms in (6-9).
(Sée Section VI-D.) The second order elastic scattering of

£6 atoms while a photon is being Lmitted.
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Fig. 21.

0.5 0.6 0.7

MUB-10619

(See Section VI-F.) The power spectrum S'(\) vs. A
(see (6-24,29,33) for the definition of the pa.rameters)i
£t = 0 for the curves in this figure. S'(X) =
S'(= A). The numbers labeling the curves are the

values of ¢ .

¥y

A




-

_(drbifrory units)

-103- R
100 = I | l I
= I\‘ -
= ~ I -
I -€*=0 ik i
|
- ~ i
§+=0 i
7z \
3 .
1
A

S (X\)

'Fig. 22.

" MUB-10618

(See Section VI-F. ) The power spectrum vs. K -

The dashed curves are the reproductions of the
curves in Fig. 21 for & = 10,100, 1000 for

comparison.
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| Im Wy
MUB-10620
Fig. 23. (See Section VII-A.) Domains of definition of K(Cycle 1). | s

Fig. 24k. (See Section VII-A.) Domains of definition of K(Cycle 2).
Fig. 25. (See Section VII-B.) Schematic representation of K(ai,aé,ag). e
Fig. 26. (See Section VII-B.) The cuts for K(ai,ab,aa) in the space

of two complex variables.
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Fig. 27. (See Section VII-B.) The cuts for the three terms in
(7-18). |
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Fig. 28. (See Section VITI-A.) The dlaegram representation of X . The
' dotted line 1
time,

' Fig. 29. (See Section VIIT-B.) The diagram leading to the direct term. = *°

‘MUB-10622

. %1
ndicates that 3+6 and Jg are tied to the same

Fig. 30. JG%ee Section VIII-B.) The diagram leading to the exchange

bérm,



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
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mission, or employee of such contractor, to the extent that
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to, any information pursuant to his employment or contract
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