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ABSTRACT OF THE DISSERTATION

Catalytic Generation and C—C Bond Forming Reactions of Dicoordinated Carbocations

by

Stanislav Popov

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2021

Professor Hosea Martin Nelson, Chair

This dissertation describes the development of Lewis acid-based methodology to
generate dicoordinated carbocations catalytically. These reactive intermediates were once
sparingly accessible synthetically and were mostly the focus of theoretical studies. This
dissertation highlights new, mild conditions that can generate these species in a
kinetically persistent fashion through the use of weakly coordinating anions in non-polar
media. These conditions also enable new carbon—carbon bond forming reactions of these
intermediates to take place; either through Friedel-Crafts or C—H insertion. Additionally

mechanistic nuances and the key advantages and disadvantages of each developed system
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will be highlighted. Overall, this work features the development of this chemistry from a

fundamental study to a more broadly applicable reaction.

Chapter One is a brief overview of the current state of research on aryl and vinyl
cations. This chapter serves as a prelude to the remaining chapters and will be referenced
throughout this dissertation. Strategies to generate these reactive species, specifically
ones that inspired our own research in this area are presented. Furthermore, some
reactivity of these cations is also highlighted, again focusing on mechanistically similar

reactions to our own.

Chapter Two describes our efforts in the development of a silylium-carborane
catalyzed reaction to generate aryl and vinyl cations catalytically from aryl fluorides and
vinyl triflates respectively. These species were then able to be engaged in intermolecular
reactions with inert C—H bonds of both alkanes and arenes resulting in a mild C-H

functionalization reaction.

Chapter Three discusses our investigations of lithium-based Lewis acids to
generate reaction vinyl cations under highly basic conditions and their ensuing reactivity.
Notably, this work also overcomes some of the challenges presented in chapter Two with
regards to the functional group compatibility of these systems. This work represents an

important advancement of our chemistry towards a more robust, practical reaction.

Chapter Four highlights an ongoing effort in our research group to utilize different
vinyl sulfonate precursors in order to access a broader class of vinyl cation intermediates.

With these precursors in hand, we utilize similar conditions to Chapter Three to develop
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some new vinyl cation reactivity. These reactions involve trapping of vinyl cations with

allylsilanes, silyl ketene acetals, and methyl ethers.

Chapter Five discusses our ongoing effort to develop a “field guide” for the
practicing organic chemist in order to disseminate some of our groups in-house
knowledge in developing these cation methodologies over the past few years. Here,

mechanistic nuances, substrate design, and choice of catalytic system are discussed.
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CHAPTER ONE

Strategies for Catalytic Carbon—Carbon Bond-Forming

Reactions of Dicoordinate Carbocations

1.1 Abstract

Carbocations have long been heralded as reactive intermediates of great synthetic
importance. From their significance in biological processes to their implementation and
exploitation in synthetic organic chemistry, the unique reactivity of these fleeting species has
allowed for the development of previously inaccessible synthetic methods. Not nearly as
prominent as their trivalent counterparts, the dicoordinated subclass of carbocations has seen
little utility due to their inherent reactivity and lack of applications. The focus of this chapter is
not to provide a complete overview of the reactivity and generation of dicoordinated
carbocations, but rather to provide historical context for the work presented in this thesis. This
chapter will focus on dicoordinated carbocation generation that has inspired some of our research

and on reactions that proceed in a mechanistically similar fashion to our own.

1.2 Introduction

Carbocations have a rich history embedded in physical organic chemistry, mechanistic
inquiry, and structure and bonding.'> This can be seen specifically in the great classical vs.
nonclassical carbocation debate of the 20™ century.*”’ They are also often used in the context of
complex molecule total synthesis and retrosynthetic disconnections. The large impact of

carbocations on the field of chemistry and science in general has resulted in a 1994 Nobel Prize



awarded to George Olah “for his contribution to carbocation chemistry.” During his research,
Olah focused mostly on the study of “carbenium” ions.® Carbenium ions are typically
tricoordinated electron-deficient carbon centers (1.1, Figure 1.1). In conjunction with this
nomenclature, another class of so-called “dicoordinated carbocations” is appropriately named as
it consists of an electron deficient carbon center that is disubstituted (1.2, 1.3).” Although tri- and
dicoordinated carbocations are under the same branch as ‘“carbenium” ions, they possess

markedly different reactivity profiles.

é “ 0
—R
ZBN R>=@

1.1 1.2 1.3
trivalent/trico_ordinated
carbenium dicoordinated carbenium

Figure 1.1 Different types of carbenium ions
Tricoordinate carbocations, compared to their dicoordinate counterparts, are more
frequently employed in organic chemistry.'® This is largely due to the relative ease of generation
of stabilized trivalent cations, like the tripheynylmethyl (trityl) cation, that can be obtained from

commercial sources. Dicoordinated carbocations are much higher in energy since the charge is
more localized on a single electrophilic carbon without an extended 7t-system over which it can

be delocalized through resonance, unlike most stabilized trivalent cations. This chapter
highlights some common strategies used to generate these high-energy intermediates and their

ensuing reactivity.

1.3 Phenyl Carbocations

When compared to vinyl cations, phenyl cations have remained understudied in the area
of dicoordinated carbocations. This is likely due to their highly difficult generation that often
requires harsh conditions, which limits their potential synthetic utility/applicability.'' One reason
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for this is the inability of phenyl cations to adopt a sp-hybridized linear geometry that would be

ideal for a dicoordinated cation. Some exceptions and breakthroughs are highlighted below.

a Mascarelli, 1936

- 920
A
15
b Albini, 1997
0 0 B 0 .
F COLH F CO,H F CO,H
| LA | |
Ny RO Yy
HN \) F I) HN\) HN\) I)
H L H |
17 18 1.9

Figure 1.2 Early generation and C—H insertion reactions of phenyl cations

In a seminal example from Mascarelli in 1936, biaryldiazonium salt 1.4, under

thermolytic conditions, could be converted to fluorene (1.5).'* While the underlying mechanism

of this reaction was not fully understood at the time, several decades of investigations concluded

that functionalization of the methyl group was attributed to a C—H insertion event into a transient

phenyl cation 1.6. Building off of these results, Albini studied the reactivity of phenyl cations 1.9

formed via photochemical irradiation of aryl fluorides 1.7."""> An advantage of this strategy is

the use of fluorides as leaving groups, which are easier to carry through a synthesis than

[EtSi—H-SiEt,]*[CHB;;Clyy]-

: v v +
80 °C, 5 hours A
~Et,SiF ' @

1.10
1.3:1 80% combined yield

Figure 1.3 Stoichiometric generation of phenyl cations with silylium-carborane salts

(Other chlorines omitted for clarity)



diazonium salts. Furthermore, using this strategy, Albini has accessed both singlet and triplet
phenyl cations, which have reactivity analogous to singlet and triplet carbenes respectively.
Some of the more modern work that informed our initial efforts in the field was a 2010

report from Reed and Siegel."

They show that a stoichiometric amount of triethylsilylium-
carborane salts can successfully perfrom a C—F bond cleavage on fluorobenzene to yield
chloronium adducts 1.10, which result from the attack of the incipient phenyl cation by the
chlorines of the carborane. Following up on this reactivity, Siegel has developed a catalytic
system to generate phenyl cations based on silylium-carborane reagents. In their first report, they

showed that biaryl fluorides 1.11 could react with silylium-carborane salts to yield an

intermediate phenyl carbocation 1.12 (Figure 1.4a)."
a Intramolecular Friedel-Crafts through intermediacy of a phenyl cation

O [iPr3SIl*[CHB;{HsClgl” (10 mol%) O
F Me,Si(Mes), (1.2 equiv)
CeH:Cl, 110 °C o .

1.1 1.14
| 93% yield

<" “Mes

Mes—H
@ O
—_—
H )
RESi_F O O @O MeZSI(MeS)z
- o112 T - 113~

b Intramolecular C—H insertion through intermediacy of a phenyl cation

[IPrssi]+[CHB11H5C|6]7 (5 mol%)
O Me,Si(Mes), (1.2 equiv) ‘O
CgHsCl, 90 °C, MW o
(T ®
1.15 1.16

79% yield
Figure 1.4 Siegel’s Intramolecular C—C bond forming phenyl cation reactions




This phenyl cation could then be attacked by a tethered arene to generate Wheland intermediate
1.13. Using dimethyldimesityl silane as a proton sponge, this Wheland intermediate could be
deprotonated, resulting in release of mesitylene and concomitant regeneration of active silylium-
carborane catalyst. All in all, this process provides high yields of polycyclic aromatic
hydrocarbons 1.14. In a follow-up report, Siegel has also shown that under similar conditions,
intramolecular C—H insertion reactions were also possible yielding tricyclic product 1.16 from
tert-butyl biphenyl 1.15 (Figure 1.4b)."® Here, a concerted 1,1-C—H insertion of intermediate
phenyl cation 1.17 would directly produce Wheland intermediate 1.18, which can undergo
elimination to form cyclized product 1.19 (Figure 1.5, green pathway). In contrast, a stepwise
mechanism would result in a hydride shift whereupon a highly unstable primary cation 1.20

would be formed and trapped by the nearby benzene ring to give the same Wheland intermediate

@,
O hydride shift O 1,1-insertion
-~ _—

®H

o

[CHB41H5Clg]” [CHB441H5Clg]” [CHB441H5Clg]”
1.20 1.17 1.18
Friedel-Crafts Concerted vs. Stepwise elimination
(rebound) C-C Bond Formation
H®

‘O elimination ‘O

[CHB,;HsClg]” [CHB41H5Clg]”
1.18 1.19

Figure 1.5 Possible mechanisms of C—C bond formation from phenyl cations
1.18 as above (Figure 1.5 blue pathway). In this case, the C—C bond forming reaction is with a

primary, non-benzylic methyl group and is likely to be a concerted process and not a “rebound”
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type stepwise mechanism due to instability of primary cation 1.20. Furthermore, they show in the
same report that a C—H insertion into benzylic C—H bonds is also possible.'® This mechanistic
continuum of C—H insertion vs. stepwise rebound is something that we observed in much of the
work outlined in this document; the preference for one over the other is often found to be

substrate/cation dependent.

1.4 Vinyl Carbocations

Vinyl carbocations are the locally isoelectronic analogs of phenyl carbocations. However,
these species have been studied in much greater detail since the early 20" century with some
early pioneering work from Jacobs and Grob.'”'® The ensuing discussion will not nearly cover
the breadth of vinyl cation research that has been done in the field to date."” Instead, it will focus
on some recent advancements in C—C bond-forming reactions of vinyl cations that are
inspirational or mechanistically important to our own work later in this document. Furthermore,
early solvolytic studies that studied both relative ionization rates and rearrangements will be
discussed, as the former is pervasive throughout Chapters 2—5 while the latter will be covered
extensively in Chapter 5.9.

Historically, there are multiple strategies available to generate vinyl carbocations. The
most common approaches are electrophilic additions to alkynes, electrophilic additions to
allenes, and heterolytic cleavage of vinyl halides/pseudohalide precursors.'” While we have done
some preliminary exploration of alkyne chemistry, most of our work and, accordingly, most of
this discussion will focus on heterolytic cleavage. Particularly, direct solvolytic generation was
often the method of choice for simple generation of vinyl cations in early studies. While there are

multiple leaving groups that have been used such as diazonium salts*’, iodoniums salts*', and



simple halides®, the most popular ones have been the so-called “super leaving groups”,

triflates>’ and nonaflates®”.

a Solvolysis of 2-substituted cyclohexenyl triflates

OTf o] 0 EtO,
60% aq EtOH /
. + +
2,6-lutidine, 125 °C
1.21 1.22 1.23 1.24
40% yield 50% yield 10% vyield
®
J — =
_—
1.25 1.26
b Solvolysis of 6-substituted cyclohexenyl triflates
OTf (o)
50% aq EtOH EtO
> + +
NEts, 125 °C
1.27 1.28 1.29 130
38% yield 15% yield 18% yield

©)
1.31 1.32

Figure 1.6. Solvolysis of substituted cyclic vinyl triflates

While ring size effects on stability and ionization will be further discussed in Chapter 5.3,
generally vinyl cations in larger rings are more stable and their vinyl sulfonate precursors
undergo solvolysis at much higher rates. During early studies of cyclic vinyl triflates, it was
found that adding substitution on the alkene adjacent to the triflate not only increases the rate of
solvolysis, but also introduces the possibility for rearrangement reactions.” For example, upon
solvolysis of 2-methylcyclohexenyl triflate (1.21), Stang and coworkers observed formation of 2-
methylcyclohexanone (1.22) and cyclopentylmethylketone (1.23) in an almost 1:1 ratio along
with a small amount of vinyl ether 1.24. Notably, this occurs through ring contraction of vinyl
cation 1.25 to yield more stable acyclic vinyl cation 1.26. Subjection of 6,6-

dimethylcyclohexenyl triflate 1.27 to similar conditions gave the direct quenched product 1.29 in



a meager 15% yield and most of the obtained SN1/E1 products 1.28 and 1.30 had a methyl shift
occur. This methyl shift occurs from vinyl cation 1.31 to give the more stable allyl cation 1.32.
In solvolytic kinetic studies, it was also found that both vinyl triflates 1.21 and 1.27 undergo
solvolytic cleavage 10 and 920 times faster, respectively, than the parent cyclohexenyl triflate.
This is a combination of steric buttressing effects and electron-donation from the electron-rich
methyl group. These substitution effects are also present in other rings sizes as well as acyclic

systems and examples of similar rearrangements will be further discussed in Chapter 5.7.

a Metzger, 2006

o 1) EtzAl,Cly, Et3SiH,DCM Bu
I aue=—a 270 . > .
o~ ~ci — o

1.33 1.34 1.35 1.36
74% yield

b Brewer, 2017

N,
OH 0
o) B(CgFs)s (1 equiv) (';)'
DCM, —15 °C o > 0
1.37 1.40
88% yield
1.38 1.39

Figure 1.7 Intramolecular C-H insertion reactions of vinyl cations with stoichiometric Lewis acids

Although there were a lot of early studies on vinyl cations, this work was largely limited

to solvolytic studies. Before our first report in the area, there were few scattered examples of
vinyl cation C—H insertion reactions. These scattered reports piqued our interest and prompted us
to start doing research in this largely unexplored area. First, Metzger reported that mixing an
alkyne 1.34 with an alkyl chloroformate 1.33 under strongly Lewis acidic conditions
(ethylaluminum sesquichloride) can yield cyclopentane product 1.35 in 74% yield (Figure
1.7a).%° This reaction proceeds by initial ionization of chloroformate 1.33 to yield a 2-propyl

cation which can be attacked by alkyne 1.34 to yield intermediate vinyl cation 1.36. This vinyl



cation is perfectly positioned to undergo a C—H insertion with the methylene of the butyl chain
that is adjacent to the terminal methyl. Upon terminal reduction by triethylsilane, the alkane
product 1.35 is formed. While this work relies on stoichiometric use of both Lewis acid and
reactant, it was the first report in the literature that proposed a concerted C—H insertion
mechanism with a vinyl cation.

Over ten years later, Brewer and coworkers reported their seminal vinyl cation C—H
insertion studies (Figure 1.7b).*’ Here, P-hydroxy-a-diazoketones 1.37 are treated with
stoichiometric amounts of strong Lewis acids such as trispentafluorophenyl borane (Fis), which
yields ring-expanded, bicyclic cyclopentenone products. Mechanistically, the initial vinyl cation
1.38 is generated through Lewis acid-mediated hydroxide abstraction followed by loss of
nitrogen. This vinyl cation 1.38 can undergo a 1,2-carbon shift, similar to some observed in
Figure 1.6, to generate cycloheptenyl cation 1.39. This cation can then undergo a C—H insertion
with a methyl group on the tert-butylketone, and upon terminal deprotonation yield final enone
product 1.40. Because this C—H insertion proceeds with a primary C—H bond, it is also proposed
to be a concerted mechanism (instead of a stepwise “rebound” process). While most modern
papers discussed here propose a concerted mechanism, there have been some early reports by
Stang and Caple that propose a stepwise 1,5-hydride shift, “rebound-type” mechanism.** >’

Another type of C—C bond forming reaction of vinyl cations that will be discussed
heavily in Chapter 2—5 is the trapping of vinyl cations with arenes (Friedel-Crafts) to give
styrenes or arylalkanes depending on the conditions. These types of reactions have also been
reported with vinyl cations both in early reports, as well as some more recent 21* century
studies. In early reports, Stang studied the Friedel-Crafts vinylation of arenes with vinyl cations.

He found that acyclic and medium-sized ring-derived vinyl triflates could undergo solvolytic



Friedel-Crafts reactions with arene solvent.”’ However, these reactions were often sluggish and
low-yielding. For example, after heating an anisole solution of cycloheptenyl triflate 1.41 at 170
°C

a Stang, 1978

170 °C, 24h
o

1.41 (solvent) 1.42
30% yield

b Brewer, 2018

N
OH B(CgFs)s (1 equiv) Ph
DCM, 30 °C, 10 mlnutes
1.43 1 44
80% yield

¢ Bour, 2020

[LIT*[AI(OC(CF3)3)4]™ (2 mol%)
LiIHMDS (1.5 equiv)
80 °C, 2 hours
1.48
63% vyield

(solvent)

Figure 1.8 Friedel-Crafts reactions of vinyl cations
for 24 hours, only a 30% yield of styrene 1.42 was obtained (Figure 1.8a). Furthermore, vinyl
triflates derived from smaller rings (5- or 6-membered) remained completely unreactive even at
these elevated temperatures. Forty years later, Brewer reported an intramolecular Friedel-Crafts
reaction utilizing a similar strategy as shown in Figure 1.7b.>> Here, exposure of B-hydroxy-o.-
diazoketone 1.43 to one equivalent of Fs for 10 minutes at room temperature smoothly provided
indenone 1.44 in 80% yield. This reaction proceeds through the intermediate vinyl cation 1.45,
which can ring expand to cycloheptenyl cation 1.46 and undergo subsequent trapping by the
tethered aryl ring. Most recently, Bour and coworkers reported that lithium cations paired with

aluminate-derived WCAs were sufficiently Lewis acidic to catalyze formation of vinyl cations
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from vinyl triflates.®> With a stoichiometric amount of LiHMDS to turnover the reaction, they
were able to perform solvolytic Friedel-Crafts reactions of cyclohexenyl triflate (1.47) with
benzene to obtain styrene 1.48 in moderate yields. Notably, this reaction proceeds at 80 °C,
whereas cyclohexenyl triflate remained completely unreactive at this temperature in Stang’s
pioneering work even with stoichiometric BF; additives.’' In their report, Bour and coworkers
also demonstrated that with more easily ionizable vinyl triflates, the reaction could also be
performed in pentane solvent with only 2 equivalents of arene nucleophile to obtain styrene

products in moderate to good yields.

1.5 Conclusion

The work discussed in this chapter lays the framework for our own research that will be
outlined in the remainder of the document. From early studies in the field of dicoordinated vinyl
cations to more recent catalytic methodologies, these studies have given us a great deal of
conceptual tools to work with in order to forge thoughtful hypotheses and design experiments to
push the frontiers of the field. While the research shown here is nowhere close to a
comprehensive overview of the field, many of the concepts highlighted in this chapter will be

present as reoccurring themes in the chapters to come.
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CHAPTER TWO

Intermolecular C-H Insertion Reactivity of Aryl and Vinyl Cations Under the

Catalysis of Silylium-Carborane Reagents

Brian Shao, Alex L. Bagdasarian, Stasik Popov, Hosea M. Nelson Science, 2017, 355,
1403-1407.
Stasik Popov, Brian Shao, Alex L. Bagdasarian, Tyler R. Benton, Luyi Zou, Zhongyue
Yang, K. N. Houk, Hosea M. Nelson Science, 2018, 361, 381-387.
2.1 Abstract
Over the past century, there have been numerous theoretical and computational
studies on dicoordinated carbcocations, namely phenyl and vinyl cations. Despite this
long history of study, the utility of these high-energy species in synthesis has remained
limited. Most early vinyl cation investigations have been limited to intramolecular or
solvolysis reactions in polar protic solvents. Aryl cations have been even more seldom
used in organic methodology, and even their existence as a synthetic intermediate was not
certain until recently (REF). Here, we report that sliylium-carborane reagents are Lewis
acidic enough to generate both phenyl and vinyl cations in non-polar media. Furthermore,
these cations are kinetically persistent enough to undergo intermolecular C—C bond
forming reactions with inert alkane and arene C—H bonds. This work represents a new
use for these dicoordinated cations as C—H arylation and C—H alkylation reagents under

mild conditions.
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2.2 Introduction

For more than a century, carbocations have played a central role in the chemical
sciences, inspiring the development of broadly applied chemical reactions and a greater
understanding of the fundamental properties of molecules.'” Conceptually, carbocations
can serve as retrons, guiding the design of retrosynthetic analyses and elucidating the
selection of synthetic precursors.” In practice, they are equally important, as stabilized
carbocations are routinely utilized in standard synthetic transformations.* On the other
hand, carbocations that are divalent (dicoordinated carbocations), and/or not stabilized by
resonance donating groups or hyperconjugation, are neither easily manipulated nor
employed in routine transformations.” This can be observed in the case of vinyl and
phenyl cations. Phenyl cations are seldom invoked as reactive intermediates and there are
only a few reports that detail their generation through photolysis or thermolysis.®” Vinyl
cations have been studied extensively, but most reactivity studies have focused on
solvolysis reactions where the reactive vinyl cation is intercepted by heteroatom-

s 10-12
containing solvent molecules.

2.3 Initial Generation of Aryl Cations

At the outset of this research program in our group, we were inspired by several
reports from the Ozerov and Siegel groups where silylium-carborane reagents are used to
perform C—F bond cleavage and to generate highly unstable vinyl cations.”> ' The
Ozerov lab managed to perform hydrodefluorinations of multiple benzylic and aliphatic
alkyl fluorides 2.1 to alkanes 2.2 by using silylium carborane salts to generate

carbocations (e.g. 2.3) that can later be reduced by silanes to generate a reduced C—H
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product and regenerate the silylium-carborane salt (Figure 2.1a)."” Despite the highly
electron deficient nature of carbocation intermediate 2.3, this reaction proceeded

smoothly at 25 °C with extremely low catalyst loading. In 2011, Siegel and coworkers

a Ozerov, 2008 — =]

F F F F
F CF3  [PhsCJ*[CHB41HsClgl™ (0.08 mol%)  F CH,3 F @ E
F F EtasiH (33 equiv) F F via F F

25°C,24 h
F F F
>97% conversion [CHB41H5Clg]™
2.1 2.2 B 2.3
b Siegel, 2011 — —_

F O [iPr3Si]*[CHB41H5Clg]~ (0.08 mol%) O @
- [\ w

Me,Si(Mes), (1.2 equiv)

D e C

92% yield [CHB41H5Clg”
24 25 - 2.6 -
Figure 2.1 Previous reports on alkyl carbocation (a) and aryl cation (b) generation with silylium-carborane salts

applied the same class of reagents to abstract fluorides from aryl fluorides 2.4 that then
went on to do intramolecular Friedel-Crafts reactions and generate polycyclic aromatic
hydrocarbons 2.5 (Figure 2.1b).'* This reaction is believed to proceed through the highly
unstable aryl cation intermediate 2.6. Although this reaction proceeded at much more
elevated temperatures (110 °C), it is still an exciting advancement in the field of aryl
cation chemistry. Notably, both of these reactions proceed in non-polar media and rely on
the use of the weakly coordinating nature of the carborane to impart kinetic persistence to
cations 2.3 and 2.6 in order for them to undergo the desired reactivity. Carboranes and
other types of WCAs seem to be the key in generating a highly Lewis acidic silylium
cation, as well as generating persistent non-stabilized carbocations in solution. Despite
this precedent, catalytic, intermolecular reactions of phenyl cation equivalents have been

16-19

elusive. To this end, we pursued application of phenyl cations in catalytic,

intermolecular C—H functionalization reactions to forge new C—C bonds.
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2.4 C-C Bond Forming Reactions of Aryl Cations

We envisioned that B-silylated aryl fluorides (2.7) would be particularly well
suited as phenyl cation precursors for several reasons. First, we anticipated that B-silicon

stabilization would lower the barrier for fluoride abstraction and stabilize the phenyl

cation 2.8.%%*

reactive intermediate such as arenium 2.9 could regenerate the silylium-carborane

a pB-Silicon Stabilization

o @F . @ cat. [RSIIWCA]™
H f,1h O

2.7 2.11 212
B-Si Stabilization
Desired Product Trace No Product
Formation (55% yield) Product Formation

b Proposed Catalytic Cycle

Finally, we hypothesized that elimination of the B-silicon group from a

5
BTMS T™S

No Product
Formation

Cr
™S R,Si-F

fluoride
2.7 abstraction

RySiH

[Ph,CI*[WCA]

hydride @
transfer [R,SIT*
[WCA] 28 TMS
p-silicon
Ph;CH stabilized
carbocation

29

R
f . 2
R silyl H meertion f
(:r elimination

2.10 p-silicon
stabilized
arenium

Figure 2.2 Early investigation (a) and mechanistic hypothesis (b) of aryl cation reactions
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catalyst. To test this hypothesis, we exposed fluorobenzene (2.11) and a variety of

differentially trimethylsilyl (TMS)-substituted aryl fluorides 2.7, 2.12, and 2.13 to a

solution of catalytic amounts of silylium-carborane (generated from reduction of the

triphenylmethylcarbenium-carborane salt with silane) in benzene.” Notably, only the

ortho-substituted variant produces biphenyl (2.14) in 55% yield, while the arylfluorides

remain unreactive. This reaction is hypothesized to occur through silylium-mediated

fluoride abstraction to generate aryl cation 2.8. This aryl cation can then undergo an

intermolecular C—C bond-forming reaction with an alkane/arene to generate silyl-arenium

complex 2.9. This intermediate can eject a silylium group to regenerate active catalyst

E
+ | :I
H

[PhsCI*HCB4Clyy]™ (2 mol%)
EtgSiH (4 mol%)

L

%

™S 30-70 °C, 0.2-48 hours R!
Entry Substrate Product Yield (%) Entry Substrate Product Yield (%)
F Ph :
IO S NS G ARL I B
Br TMS Br 7 @iF ©/Ph
' 45
F Ph : ™S
- L, LT
I ™S | F Ph
' 8 47
F Ph : @ims ©/
3 /@: /©/ 47 ' Mes Mes
Cl TMS CI -
' F Ph
Br F Br Ph oo 99
4 \E:( \©/ 52 : ™S
T™MS - n-Bu n-Bu
F Ph i T™MS
5 77 : F Ph
©:TMS Q/ ¢ 10 C[ 36
Br Br g F Ph
: T™S
F Ph :
TMS H F Ph
JoomiooIRN RN o i o Al
: TBSO TMS HO

Table 2.1 Scope of C—H arylation of arenes with aryl cations
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2.15 and generate the arylated product 2.10.

With our initial promising results that validated our mechanistic hypothesis, we
decided to probe the scope of this methodology. We looked towards the synthesis of
various ortho-silyl aryl fluorides, which could be easily accessed by directed ortho-
lithiation of aryl fluorides followed by silylation. We were pleased to observe selective
C-F functionalization in the presence of weaker carbon-halogen (C—X) bonds, which
contrasts canonical cross-coupling reactivity (entries 1-4, Table 2.1). Notably, entry 5
shows that this selectivity holds true even when the resulting cation of a C—Br bond
abstraction would also be (-silicon stabilized. In general, the yields for all halide
substituents were moderate to good. Polycyclic aromatic fluorides (entry 6) were
competent under the reaction conditions as well, as demonstrated by the formation of 1-
phenylnaphthalene in 49% yield. Additionally, aryl and alkyl substitution (Table 2.1,
entries 7-9) were tolerated under the reaction conditions, providing phenylated aromatics
in moderate to excellent yields (45-99%). Consecutive arylation of difluorides was also
possible, as demonstrated by the formation of o-terphenyl (entry 10), albeit in a
diminished 36% yield. Introduction of a heteroatom donor (entry 11) provided a
diminished 29% yield of the desired phenol derivative. Despite the low yield, we were
pleased with this result given the hyper-Lewis acidic nature of the silylium cation.
Usually, any compounds with Lewis basic functionalities poison the silylium-carborane
catalyst through Lewis acid-base interactions, which result in no conversion.” '
Notably, throughout our scope studies, the new aryl group was introduced solely at the
carbon that originally bore the fluorine. This resulted in a development of a formal C—

H/C-F cross-coupling reaction.
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Bolstered by these results, we began our investigation into the arylation of
alkanes. After a brief optimization, we found that cyclohexane could be phenylated by
aryl fluoride 2.7 in 41% yield after two hours at 60 °C (entry 1, Table 2.2) We were
surprised to find that this alkane arylation reaction proceeded under such mild conditions,
so we decided to look at other alkanes. Likewise, cyclopentane and cycloheptane

underwent smooth arylation under similar conditions

[PhsCJ*HCB41Cly4]~ (5 mol%)

F PPraSiH (10 mol%) Alkyl
+ Alkyl=H - —>
™S o-dichlorobenzene (10 equiv)

2.7
Entry Alkane Temp. (°C) Product Yield (%)
O 60 41
1
Q 70 ©/O 54
2
100 40
3 O
H 60 40
4 H/a\[?\/\ ph/(w a:By
v 26:9:5
H
H
o ‘
LC 60 ¢ B 42
5 H/\)\/ /\/\/
Y Ph Y By
H 30:10:2

Table 2.2 C-H arylation of alkanes via phenyl cations
in 54% and 40% yield, respectively (entries 2 and 3). Switching to linear alkanes, we
found that n-hexane underwent arylation to yield all three phenylhexane isomers in 40%
overall yield (entry 4). This C—H arylation reaction displayed terminal selectivity, with

an o:B:y ratio of 5:2:1. In a similar fashion, n-pentane also underwent terminal-selective
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arylation to yield phenylpentane isomers in 42% yield with a 10:3:1 ratio (entry 5). This
terminal selectivity might be due to the steric bulk of the TMS group next to the active
cationic site. With these results in hand, we have successfully developed a catalytic

intermolecular aryl cation reaction for functionalizion of inert C—H bonds.

2.5 Early Investigations into Vinyl Cations

With these successes in hand, we pondered if perhaps vinyl cations could be
generated by utilizing similar silylium-carborane electrophiles with suitable vinyl cation
precursors. Looking through the vinyl cation literature, vinyl triflates stood out as good
candidates due to their ease of preparation (one step from ketone) and their widespread

: 11,26-28
use in modern methodology.

Furthermore, we were intrigued by an isolated
example from Hanack where solvolysis of cyclononenyl triflate (2.16) yielded fused ring
products 2.17 and 2.18 (Figure 2.3a).”” This mechanism was rationalized as a
“carbocation rebound” mechanism where vinyl cation 2.19 was quenched via /,5-hydride
shift, and the neutralized alkene 2.20 attacks the newly formed alkyl carbocation.’® This
sequence forges the ring fusion of the bicyclononenyl cation 2.21 leading to products
2.17 and 2.18. More recent efforts from Metzger and Brewer that showed vinyl cations
engaging in C—C bond forming reactions empowered us to pursue this reaction
development.’' >*

Our mechanistic hypothesis was that perhaps the silylium-carborane salt could
ionize a vinyl triflate 2.33 to generate a kinetically persistent vinyl cation-WCA ion pair

2.24 (Figure 2.3b). A 1,1-insertion of this reactive dicoordinated cation 2.24 into a C—-H

bond would lead to formation of alkyl carbocation 2.25.%> A 1,2-hydride shift would lead
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to the more stable tertiary cation 2.26 that, upon reduction by a stoichiometric silane
reagent, would generate the functionalized hydrocarbon product 2.27, and regenerate the
silylium/carborane catalyst 2.22. In its entirety, this process would enable the direct C—H

alkylation of alkanes and arenes with simple ketone derivatives.*

a Vinyl cation rebound

oTf OEt
EtOH:H,0 (1:1 v:v) 1 1
100 °C ” Oz>+
12% yield
2.16 217 T 2.18
1,5-H
shift (I®>
—_— —_—
H ® 5
2.19 2.20 2.21

b Proposed catalytic cycle

oTi
©/ Et,SiOTf
2.2M [WCAJ-
H [Et,SIFIWCA]- (@ | persistent
H Y viny!
R cation

2.24
2.27
catalyst R=H
regeneration 11C-H
insertion
Et;Si-H
H [WCA]~ ®uH [WCA]~
R
f)@’ I
~—
226 1,2-hydride 225

shift
Figure 2.3 Mechanistic hypothesis of fused ring formation (a) and our catalytic system (b)

2.6 C-H Insertion Reactions of Vinyl Cations
With our mechanistic hypothesis in hand, we initiated our studies with

cyclohexenyl triflate (2.23). We found early success when exposure of cyclohexenyl
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triflate (2.23) to 1.5 equivalents of triethylsilane and 2 mol% [Ph;C] [HCB,,Cl;1] in
anhydrous cyclohexane at 30 °C resulted in the formation of bicyclohexyl 2.28 (entry 1,
Table 2.3) in 87% yield. Astounded by the remarkably mild conditions employed in this
alkane alkylation reaction, we explored the scope to further elucidate potential synthetic
applications and to gain mechanistic insight. Other alkane

[PhsCI*CHB4Cly4]~ (2 mol%)

oTt Et;SiH (1.5 equiv) Alkyl
R? + Alkyl=H - R1
30°C, 1-3 h

n=1or3 n
Entry Substrate Solvent Product Yield (%), Time (h)
OoTf
1 ©/ CeHi2 87,15
2.23 2.28
OTf
2 ©/ C/Hq4 88, 2
H
oTf > B
3 n-CsHyo ! 68, 1.5
H
4 CgHq2
5 CeHiz

Table 2.3 C—H alkylation of alkanes

C—H bonds, such as those of cycloheptane and n-pentane, also reacted efficiently with the

cyclohexenyl cation, albeit with poor regioselectivity in the latter case, which is contrary
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to the selectivity displayed by the related phenyl carbocation (entries 2, 3). Although
cyclohexenyl triflates bearing substituents at the 2- or 6-positions led to complex
mixtures of products, presumably due to non-productive unimolecular decompositions,

other positions of the cyclohexenyl ring were tolerant of substitution.’’”*

For example,
exposure of the enol triflate derived from Sa-cholestan-3-one (2.29, entry 4) to our
reaction conditions led to formation of the alkylated steroid 2.30 in 88% yield and 15:1
d.r. (entry 5). Analogous to the previously reported ring-contraction reactions of medium-
sized cyclic vinyl triflates, exposure of cyclooctenyl triflate (2.31) to our optimized

reaction conditions led to rapid transannular C—H insertion to yield bicyclic product 2.32

(Table 1, entry 5).%

With strained cyclic vinyl cations successfully undergoing intermolecular C-H
insertion, we turned our attention to acyclic vinyl cations. We wondered if the more
stable sp-hybridized linear vinyl cations could also undergo this challenging C-H
insertion reactivity. Acyclic vinyl cations have constituted the majority of previous
experimental and theoretical studies of dicoordinated cations, as cyclic variants have
traditionally proven difficult to generate under solvolytic conditions.”” Subjection of
butenyl triflate 2.33 to the reaction conditions led to high-yielding reductive alkylation of
cyclohexane, providing 2-cyclohexylbutane (2.34) in 85% yield (entry 1, Table 2.4a).
The analogous reaction of triflate 2.35 gave formation of a high yielding 1:1 mixture of
I-cyclohexylbutane (2.34) and 2-cyclohexylbutane (2.36) (entry 2). Use of terminal
triflate 2.37 (entry 3) resulted in an identical product distribution to that of entry 2, albeit
requiring higher temperatures and longer reaction times due to initial formation of a

primary vinyl cation. Carrying out the reaction at —40 °C in chloroform solvent allowed
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for more selective formation of /-cyclohexylbutane (2.36) (ca. 2:1) (entry 4). These
product distributions can be rationalized by hydride bridging in the vinyl cation
intermediate. For example, ionization of butenyl triflate 2.35 would lead to vinyl cation
2.38, which could then form the bridged intermediate 2.39 (Table 2.4b). A minor
equilibration to the less stable primary vinyl cation 2.40 could also be envisioned.

a C-H insertion reactions of acyclic vinyl cations

oTf [PhgCI*[HCB4Cly4]™ (2 mol%) cy
Et3SiH (1.5 equiv) R!
RJ\ + > Rt *+ R/\r
O R)\/
A

L —401t0 70 °C 5 Oy

Entry Substrate Solvent Temp. (°C) Product Yield (A, B) (%)

1 ad CoHiz 30 “N 85

OTf Cy
2.33
251 EZ 2.34
2 /\/ CGH12 30 /Y + /\/\cy 40’ 39
OTf Cy
2.35 2.34 2.36
NN CgH 70 /\|/ 16, 19
3 Z ~OTH eH12 + /\/\Cy ;
2.37 Cy
11.8 EZ
2.34 2.36
4 CHCI,/CgH,» -40 + cy 17,34
OTf Cy
2.35 2.34 2.36

b Possible bridged nature of vinyl cation intermediate leading to observed product distributions

®
PN H
WCA~ WCA~ WCA~
2.38 2.39 2.40

Table 2.4 C—H insertion reactions of acyclic vinyl cations (a) and mechnastic insights (b)

Although we could not verify this computationally, direct insertion of this bridged
species into cyclohexane is in agreement with the experimental observations made over

the course of these studies.***
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2.7 Reductive Friedel-Crafts Reactions of Vinyl Cations

Having established that vinyl triflates are competent vinyl cation precursors under
silylium catalysis conditions and that these reactive intermediates undergo efficient sp’
C—H functionalization reactions, we sought to investigate their reactivity with arenes. It
has been reported that cyclic vinyl cations are poor electrophiles in Friedel-Crafts
arylation reactions.” We posited that the use of silylium/carborane salts would allow for
mild ionization of cyclic vinyl triflates in nonpolar solvents, allowing for facile Friedel—
Crafts arylation reactions. We were pleased to find that with 4 equivalents of benzene in
pentane solvent, cyclohexenyl triflate (2.23) underwent smooth reductive arylation to
yield phenylcyclohexane (2.41) in 79% yield in 2 hours at room temperature (Figure 2.4).
While we posit that triflate abstraction is rate-limiting, we hypothesize that the product-
determining step is the C—C bond forming event, with the barrier for attack by the arene
n-system falling nearly 20 kcal/mol below the barrier for C—H insertion.** In addition to
benzene, electron-poor haloarenes such as difluorobenzene and dichlorobenzene
underwent smooth, C—C bond formation to yield cyclohexylated haloarenes 2.42-2.45 in
synthetically useful yields. Likewise, electron-rich arenes, such as mesitylene were
competent nucleophiles giving mesityl cyclohexane (2.46) in 61% yield. Cyclohexenyl
triflates bearing substituents at the 4- or S-positions could also be arylated (2.47-2.49),
including the enol triflate derived from Sa-cholestan-3-one, which yielded an arylated
steroid core 2.50 in 90% yield and 8:1 d.r.. Various ring sizes were also competent under
these reaction conditions, with cyclopentenyl triflate and cycloheptenyl triflate
undergoing smooth reductive alkylation with benzene reaction partners in 64% and 71%

yield, respectively (2.51 and 2.52). Cyclobutenyl triflate participated in this reductive
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Friedel-Crafts alkylation (2.53), as did aromatic alkenes. The triflate derived from o-
tetralone was reductively arylated in 43% yield (2.54), and acetophenone-derived acyclic
triflates were also arylated in 51 to 77% yield (2.55 and 2.56). Simple acyclic vinyl

triflates were competent electrophiles for arylation by both electron-poor and electron-

[PhsCI*[HCB11Cly4]™ (2 mol%) R! R!
JO: _@/0“ Et,SiH (1.5 equiv)
or R + R1
RS )n H —401070°C R )n

- or
RZ
n=0,1,2,83
F Cl Br Br
2.41, 74% yield 2.42, 49% yield 2.43 2.44
4 equiv 10 equiv 56% vyield (47:9) 51% yield
arene functionalization in pentane solvent

o o7 o o

2.45 2.46 2.47 2.48
51% yield (43:8) 61% yield 78% yield 88% yield

2.49 2.51 2.52
49% yield (9:1 d.r.) 90% yleld (8:1d.r) 64% yield 71% yield
A0 QP 00
2.53 2.54 2.55 2.56
57% yield 43% yield 77% yield 51% yield

arene functionalization in chloroform solvent

o Y A

2.57, 66% yield (47:19) 2.58, 80% yield 2.59, 95% yield 2.60, 46% yield
10 equiv 10 equiv 50 equiv 10 equiv

¥

Figure 2.4 Reductive Friedel-Crafts reactions of vinyl cations
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rich arenes, requiring as little as 10 equivalents of arene in chloroform solvent at —40 °C

(2.57-2.60).

2.8 Conclusion

In conclusion we have successfully disclosed the generation and C—-C bond
forming reactions of aryl and vinyl cations that were formed from suitable aryl fluoride
and vinyl triflate precursors, respectively, by ionization from silylium-carborane salts.
The electrophilicity of the silylium as well as the kinetic persistence imparted by the
WCA were paramount to the success of these reactions. These reactions were all
conducted in non-polar media enabling new modes of reactivity that have remained
largely elusive until now. These fundamental findings have laid the groundwork for

further discoveries in this field by our own group as well as others.
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2.9 Experimental Section
2.9.1 Materials and Methods

Unless otherwise stated, all reactions were performed in an MBraun glovebox
under nitrogen atmosphere with < 0.5 ppm O, levels. All glassware and stir-bars were
dried in a 160 °C oven for at least 12 hours and allowed to cool in vacuo before use. All
liquid substrates were either dried over CaH; or filtered through dry neutral aluminum
oxide. Solid substrates were dried over P,Os. All solvents were rigorously dried before
use. Benzene, o-dichlorobenzene, and toluene were degassed and dried in a JC Meyer
solvent system and stored inside a glovebox. Cyclohexane (Sigma-Aldrich),
fluorobenzene (Sigma-Aldrich), and n-hexane (Oakwood) were distilled over potassium.
Chlorobenzene (Fisher Scientific), cycloheptane (Alfa Aesar) and o-difluorobenzene
(Oakwood) were distilled over sodium. Cyclopentane (Matheson Cole and Bell) was
filtered through dry neutral aluminum oxide. Pentane (Sigma-Aldrich) was distilled over
sodium-potassium alloy. Hexafluorobenzene (Oakwood) was dried over CaH, and stored
in a glovebox. All solvents were stored over 4 A molecular sieves. Chloroform was dried
over CaH, and stored in a glovebox. Triethylsilane (Oakwood) and triisopropylsilane
(AK Scientific) were dried over CaH, and stored inside a glovebox over 4 A molecular
sieves. Closo-carborane anions, including [Ph;C]' [HCB,Cl;;], were prepared according
to literature procedure.'® Butylcyclohexane and n-pentylcyclohexane were purchased
from Alfa Aesar. AgNOs-Impregnated silica gel was prepared by mixing with a solution
of AgNO; (150% v/w of 10% w/v solution in acetonitrile), removing solvent under
reduced pressure, and drying at 120 °C. Preparatory thin layer chromatography (TLC)

was performed using Millipore silica gel 60 F,ss pre-coated plates (0.25 mm) and
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visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230-400 mesh) was
used for flash chromatography. NMR spectra were recorded on a Bruker AV-300 ('H,
F), Bruker AV-400 (‘H, °C, "F), Bruker DRX-500 (‘H), and Bruker AV-500 (‘H, "*C).
"H NMR spectra are reported relative to CDCl; (7.26 ppm) and CD,Cl, (5.32 ppm). Data
for '"H NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling constant
(Hz), integration. Multiplicities are as follows: s = singlet, d = doublet, t = triplet, dd =
doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, td = triplet
of doublet, m = multiplet. °C NMR spectra are reported relative to CDCl; (77.0 ppm)
unless noted otherwise. GC spectra were recorded on an Agilent 6850 series GC using an
Agilent HP-1 (50 m, 0.32 mm ID, 0.25 mm DF) column. GCMS spectra were recorded
on a Shimadzu GCMS-QP2010 using a Restek XTI-5 (50 m, 0.25 mm ID, 0.25 mm DF)
column. IR Spectra were recorded on a Perkin Elmer 100 spectrometer and are reported
in terms of absorption frequency (cm™). High resolution mass spectra (HR-MS) were
recorded on a Waters (Micromass) GCT Premier spectrometer and are reported as
follows: m/z (% relative intensity). Purification by preparative HPLC was done on an
Agilent 1200 series instrument with a reverse phase Alltima C;g (5u, 25 cm length, 1 cm

internal diameter) column.

2.9.2 Experimental Procedures for Aryl Cations

Synthesis of substrates for Table 2.1 and Figure 2.2 are reported in the adapted article.

2.9.3 Aryl Insertion Reactions

2.9.3.1 Optimization Table for Aryl Insertion Reaction
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In our studies, we optimized our reaction conditions for anion, silane, concentration, and

temperature using 2.7 in benzene.

Anion % Cat. Loading Conc. Silane Temperature | Yield
[HCB41H5Clg] 5 mol% 0.1 M iPr3SiH (10 mol%) 70 °C 41%
[HCB44HsBr¢] 5 mol% 0.1 M Et;SiH (10 mol%) 70 °C 0%

[HCB1{MesBrg] 5 mol% 0.1M Et5SiH (10 mol%) 70 °C 0%
[HCB41Cly1] 1 mol% 0.02M Et5SiH (2 mol%) 30 °C 55%
[HCB4Cly4] 2 mol% 0.1 M Et;SiH (4 mol%) 30 °C 49%
[HCB41Bry4] 5 mol% 0.1 M Et3SiH (10 mol%) 30 °C 31%

[(CeF5)4Bl 5 mol% 0.1M Et5SiH (10 mol%) 30°C 27%

Table 2.5 Optimization of (2-fluorophenyl)trimethylsilane substrate in benzene.

2.9.3.2 Initial Investigation of Aryl Fluorides

Outlined below are our initial experiments evaluating the reactivity of aryl fluorides in
both the presence and absence of the trimethylsilyl group (Figure 2.2a). Our experiments

below support the need for an ortho-trimethylsilyl group for our catalytic system.

2.9.3.2.1 Fluorobenzene Control

Described below is the application of fluorobenzene using our optimized conditions.

[Ph;C] THCB,,Cl;1] (0.8 mg, 1.1 umol, 0.02 equiv) and triethylsilane (0.5 uL, 2.2 umol,
0.04 equiv) were stirred in benzene (3 mL) to form a colorless solution (0.02 M) before
the addition of fluorobenzene (9.5 pL, 0.054 mmol, 1 equiv). Reaction was stirred at 30
°C. After 5 days, GC-FID showed formation of biphenyl. Addition of nonane (9.7 pL,

0.054 mmol, 1 equiv) as an internal standard showed < 5% yield of biphenyl (Fig. 2.6).
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Figure 2.5 GC trace for internal standard nonane and biphenyl in 1:1 ratio.
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Figure 2.6 GC trace for internal standard nonane in fluorobenzene control reaction.

2.9.3.2.2 Positional Effects of the Silyl Group

Outlined below are a series of experiments probing the reactivity of our substrate in
varying the position of the trimethylsilyl group relative to the aryl C—F carbon. The
experiments below support the need for a trimethylsilyl group ortho to the aryl C—F

carbon to generate the desired product in catalytic fashion.
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[Ph;C] THCB,,Cl;1] (2.5 mg, 3.3 umol) and triethylsilane (1 pL, 6.6 pmol,) were stirred
in benzene (1.5 mL) to form a colorless solution. This solution was partitioned equally
into three separate vials before aryl fluorides 2.7, 2.12, and 2.13 (0.054 mmol) were
added in their respective reactions. Reactions were then stirred at 30 °C for 2 hours
before addition of nonane (9.7 pL, 0.054 mmol, 1 equiv) as an internal standard. As
shown below, no formation of biphenyl was observed when using meta- or para-
trimethylsilyl aryl fluorides (Figs. 2.9 and 2.10). The ortho-trimethylsilyl aryl fluoride

was the only positional isomer that afforded biphenyl in 47% yield (Fig. 2.11).
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Figure 2.7 GC trace for internal standard nonane and biphenyl in 1:1 ratio.
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Figure 2.8 GC trace for internal standard nonane and 2.12 after 2 hour reaction time.
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Figure 2.9 GC trace for internal standard nonane and 2.13 after 2 hour reaction time.
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Figure 2.10 GC trace for internal standard nonane and 2.7 after 2 hour reaction time

showing formation of biphenyl in 47% yield.

2.9.3.3 General Procedure for Intermolecular Aryl Insertion Reactions

[Ph;C] THCB,,Cl;1] (0.8 mg, 1.1 umol, 0.02 equiv) and triethylsilane (0.5 uL, 2.2 umol,
0.04 equiv) were stirred in benzene (0.5 mL) to form a colorless solution (0.1 M) before
the addition of aryl fluoride substrate (0.054 mmol, 1 equiv). Substrates were stirred
between 30-70 °C for 0.2-9 hours (see individual substrates for reaction conditions).

Reactions were monitored by GC-FID spectra. If previously heated, reactions were
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cooled to room temperature before volatiles were rotary evaporated and purified by flash

column or preparatory thin layer chromatography.

OO

Biphenyl (2.14). Synthesized according to general procedure 2.9.3.3 with a modified 1
mol% catalyst loading and 0.02 M concentration. Catalyst loading was achieved by
taking 0.55 mL from a freshly prepared stock solution of [Ph;C] [HCB,,Cl;1]” (1.5 mg)
and triethylsilane (0.5 pL) in benzene (2 mL). Additional benzene was added to reach a
total volume of 3 mL before aryl fluoride 2.7 (9.1 mg, 0.054 mmol, 1 equiv) was added to
the colorless solution of [Ph;C] THCB,,Cl;1]” (0.54 pmol, 0.01 equiv) and triethylsilane
(1.1 pmol, 0.02 equiv) in benzene. Reaction was stirred at 30 °C for 1 hour to afford 2.14

in 55% yield (GC) as shown in Fig. 2.12.
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Figure 2.11 GC trace for internal standard nonane and 2.14 in 1:1 ratio.
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Figure 2.12 GC trace for yield shown for 2.14.

2.9.3.4 Scope of Fluorotrimethylsilyl Arene Electrophiles

Described below is the characterization and procedure for the scope described in Table
2.1.

General Procedure

[Ph;C] THCB,,Cl;1] (0.8 mg, 1.1 umol, 0.02 equiv) and triethylsilane (0.5 uL, 2.2 umol,
0.04 equiv) were stirred in benzene (0.5 mL) to form a colorless solution (0.1 M) before
the addition of aryl fluoride substrate (0.054 mmol, 1 equiv). Substrates were stirred
between 30-70 °C for 0.2-9 hours (see individual substrates for reaction conditions).
Reactions were monitored by GC-FID spectra. If previously heated, reactions were
cooled to room temperature before volatiles were rotary evaporated and purified by flash

column or preparatory thin layer chromatography.

\_ 7

Br
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4-bromobiphenyl (2.61). 2.61 was synthesized according to general procedure described
in 2.9.3.4. The corresponding aryl fluoride (13.4 mg, 0.054 mmol) was added to a
colorless solution of [Ph;C] THCB,,Cl;;]” (1.1 umol, 0.02 equiv) and triethylsilane (2.2
umol, 0.04 equiv), and was stirred at 60 °C for 1 hour to give 2.61 in 56% yield (GC) as
shown in Figure 2.14. Crude product was purified by flash column chromatography

(hexanes) to give 2.61 as a white solid (5.8 mg, 46% yield). NMR Spectra match those

reported in literature.*
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Figure 2.13 GC trace for internal standard nonane and 2.61 in 1:1 ratio.
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Figure 2.14 GC trace showing formation of 2.61 in 56% yield.
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4-iodobiphenyl (2.62). 2.62 was synthesized according to general procedure described in
2.9.3.4. The corresponding aryl fluoride (15.9 mg, 0.054 mmol) was added to a colorless
solution of [Ph3C] THCB;Cly;] (1.1 pmol, 0.02 equiv) and triethylsilane (2.2 umol, 0.04
equiv) and was stirred at 70 °C for 1 hour to give 2.62 in 71% yield (NMR). Crude
product was purified by preparatory thin layer chromatography (hexanes) to give 2.62 as

a white solid (7.8 mg, 52% yield). NMR Spectra match those reported in literature.*®

o~

4-chlorobiphenyl (2.63). 2.63 was synthesized according to general procedure described
in 2.9.3.4. The corresponding aryl fluoride (11.0 mg, 0.054 mmol) was added to a
colorless solution of [Ph3C] THCB;;Cl;]” (1.1 pumol, 0.02 equiv) and triethylsilane (2.2
umol, 0.04 equiv), and was stirred at 70 °C for 9 hours to give 2.63 in 47% yield (GC) as
shown in Figure 2.16. Crude product was purified by column chromatography (hexanes)
to give 2.63 as a white solid (4.1 mg, 40% yield). NMR Spectra match those reported in

literature.*’
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Figure 2.16 GC trace showing formation of 2.63 in 47% yield.

Br

3-bromobiphenyl (2.64). 3-bromobiphenyl was synthesized from two different

substrates according to general procedure 2.9.3.4.

For Entry 4, the corresponding aryl fluoride (13.4 mg, 0.054 mmol) was added to a

colorless solution of [Ph;C] THCB,,Cl;;]” (1.1 umol, 0.02 equiv) and triethylsilane (2.2

umol, 0.04 equiv), and was stirred at 60 °C for 1 hour to give 2.64 in 52% yield (GC) as

shown in Figure 2.18.
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Figure 2.17 GC trace for internal standard nonane and 2.64 in 1:1 ratio.
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Figure 2.18 GC trace showing formation of 2.64 in 52% yield.

Similarly, the corresponding aryl fluoride (13.4 mg, 0.054 mmol) was added to a
colorless solution of [Ph;C] THCB,,Cl;;]” (1.1 umol, 0.02 equiv) and triethylsilane (2.2
umol, 0.04 equiv) and was stirred at 60 °C for 1 hour to give 2.64 in 77% yield (GC) as
shown in Figure 2.19. Crude product was purified by preparatory thin layer
chromatography (hexanes) to give 2.64 as a white solid (7.4 mg, 59% yield). NMR

Spectra match those reported in literature.*®
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Figure 2.19 GC trace showing formation of 2.64 in 77% yield.
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1-phenylnaphthalene (2.65). 2.65 was synthesized according to general procedure
described in 2.9.3.4. The corresponding aryl fluoride (11.8 mg, 0.054 mmol) was added
to a colorless solution of [Ph;C] THCB,,Cl;;]” (1.1 umol, 0.02 equiv) and triethylsilane
(2.2 pmol, 0.04 equiv), and was stirred at 30 °C for 1 hour. Crude product was purified
by preparatory thin layer chromatography (hexanes) to give 2.65 as a colorless oil (5.4

mg, 49% yield). NMR Spectra match those reported in literature.*

(
OO

o-terphenyl (2.66). 2.66 (Table 2.1 entry 7) was synthesized according to general
procedure 2.9.3.4. The corresponding aryl fluoride (13.2 mg, 0.054 mmol, 1 equiv) was
added to a colorless solution of [Ph;C]'[HCB;;Cl;;]” (1.1 pmol, 0.02 equiv) and

triethylsilane (2.2 umol, 0.04 equiv), and was stirred at 70 °C for 36 hours to give 2.66 in

41



45% yield (GC) as shown in Figure 2.21. Crude product was purified by flash column

chromatography (hexanes) to give 2.66 as a white solid (4.4 mg, 35% yield). NMR

Spectra match those reported in literature.”” The reaction for entry 10 was performed

analogously from corresponding aryl fluoride to give 2.66 in a 36% GC yield.
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Figure 2.20 GC trace for internal standard nonane and 2.66 in 1:1 ratio.
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Figure 2.21 GC trace showing formation of 2.66 in 45% yield.
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3-mesitylbiphenyl (2.67). 2.67 was synthesized according to general procedure described
in 2.9.3.4. The corresponding aryl fluoride (15.5 mg, 0.054 mmol) was added to a
colorless solution of [Ph3C] THCB;;Cl;]” (1.1 pmol, 0.02 equiv) and triethylsilane (2.2
umol, 0.04 equiv), and was stirred at 30 °C for 1 hour. Crude product was purified by
flash column chromatography (9:1 pentane:dichloromethane) to give 2.67 as a colorless
oil (6.9 mg, 47% yield).

'H NMR (400 MHz, CDCl3) § 7.66-7.62 (m, 2H), 7.59 (ddd, J = 7.8, 1.9, 1.2 Hz, 1H),
7.52-7.41 (m, 4H), 7.38-7.31 (m, 1H), 7.14 (dt, J = 7.5, 1.5 Hz, 1H), 6.98 (s, 2H), 2.36
(s, 3H), 2.07 (s, 6H); °C NMR (125 MHz, CDCLs) § 141.5, 141.1, 141.0, 138.9, 136.6,
136.0, 128.8, 128.7, 128.2, 128.1, 128.0, 127.3, 127.1, 125.2, 21.0, 20.8.

FTIR (Neat Film NaCl): 3059, 3030, 2952, 2919, 2867, 1946, 1880, 1803, 1730, 1471,
850, 757 cm’.

HR-MS (GC-CI): Calculated for C,Hyzp: 272.1565; measured: 272.1575.

OO

3-butylbiphenyl (2.68). 2.68 was synthesized according to general procedure described
in 2.9.3.4. The corresponding aryl fluoride (12.1 mg, 0.054 mmol) was added to a
colorless solution of [Ph3C] THCB;;Cl;]” (1.1 pmol, 0.02 equiv) and triethylsilane (2.2
umol, 0.04 equiv), and was stirred at 30 °C for 0.2 hours to give 2.68 in 99% yield
(NMR). Crude product was purified by flash column chromatography (hexanes) to give

2.68 as a colorless oil (10.6 mg, 93% yield).

43



'H NMR (400 MHz, CDCl3) § 7.67-7.60 (m, 2H), 7.51-7.41 (m, 4H), 7.38 (td, J = 7.4,
5.2 Hz, 2H), 7.21 (d, J = 7.5 Hz, 1H), 2.72 (t, J= 7.7 Hz, 2H), 1.74-1.65 (m, 2H), 1.49—
1.38 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); >C NMR (100 MHz, CDCl;) § 143.3, 141.5,
141.2,128.7, 128.6, 127.4, 127.3, 127.2, 127.1, 124.5, 35.8, 33.7, 22.4, 14.0.

FTIR (Neat Film NaCl): 3059, 3029 2956, 2928, 2857, 1889, 1873, 1799, 1600, 1479,
754,697 cm’.

HR-MS (GC-CI): Calculated for C;¢H;s: 210.1409; measured: 210.1404.

o~

4-hydroxybiphenyl (2.69). 2.69 was synthesized according to general procedure
described in 2.9.3.4 with a slight modification. The corresponding aryl fluoride (16.1 mg,
0.054 mmol) was added to a colorless solution of [Ph;C] THCB,;Cl;;]” (1.1 umol, 0.02
equiv) and triethylsilane (2.2 pmol, 0.04 equiv) and was stirred at 60 °C for 48 hours.
After cooling to room temperature, the reaction was quenched with a saturated aqueous
sodium bicarbonate solution. The aqueous layer was extracted with Et,O (3 x 1 mL) and
combined organic layers were rotary evaporated. Crude product was purified by flash
column chromatography (4:1 hexanes:ethyl acetate) to give 2.69 as a white solid (2.3 mg,

29% yield). NMR Spectra match those reported in literature.”'
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2.9.4 Alkane Insertion Reactions

2.9.4.1 Optimization Table for Intermolecular Alkane C—H Insertion

We optimized our reaction conditions for anion, silane, and additive using 2.7 in

cyclohexane.

Anion (5 mol%)| Silane (10 mol%) Additive Time Yield
[HCB;1HsClg] iPrgSiH 0-CgH,Cl, (10 equiv) | 120 hr 32%

[HCB41Cly4] EtzSiH 0-CgH4Cly (10 equiv) [ 8 hr 24%

[HCB41Cly4] iPrySiH 0-CgH,Cl, (10 equiv) [ 2hr 41%

[HCB1{Cly4] iPraSiH Mey(Mes),Si (1 equiv)| 9hr 37%

[HCB;1Cly4] iPraSiH 0-CgH4Fo (10 equiv) | 2hr 27%

[HCB41Cly4] iPrsSiH none 22 hr 38%

[(CgF5)4B] iPrsSiH none 36 hr 18%

Table 2.6. Optimization of (2-fluorophenyl)trimethylsilane substrate in cyclohexane.

2.9.4.2 General Procedure for Intermolecular Alkane C—H Insertion

[Ph;C] THCB,,Cl;1]” (2.0 mg, 2.7 pmol, 0.05 equiv) and triisopropylsilane (1.1 pL, 5.4
umol, 0.1 equiv) were stirred in o-dichlorobenzene (60 pL, 0.54 mmol, 10 equiv) to give
a colorless solution. Alkane solvent (1 mL), followed by aryl fluoride 2.7 (0.054 mmol, 1
equiv), were added respectively to give a 0.05 M solution. The reaction was then heated
between 60—100 °C for 1-9 hours (see individual substrates for reaction conditions).
Reaction was monitored by GC-FID. After cooling to room temperature, the reaction
mixture was quenched with saturated aqueous sodium bicarbonate and the organic layers
were concentrated via rotary evaporation and purified by flash column chromatography

(hexanes or pentane).
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Phenylcyclohexane (Table 2.2, entry 1, 2.70). Synthesized according to general
procedure 2.9.4.2. Aryl fluoride 2.7 (9.1 mg, 0.054 mmol) was added to a solution of
[Ph;C] THCB,,Cl;1]” (2.0 mg, 2.7 pmol, 0.05 equiv), triisopropylsilane (1.1 uL, 5.4
umol, 0.1 equiv), o-dichlorobenzene (60 pL, 0.54 mmol, 10 equiv), and cyclohexane (1
mL). Reaction was stirred at 60 °C for 2 hours to give 2.70 in 41% yield (GC) as shown
in Figure 2.23. Crude product was purified by flash column chromatography (pentane) to
give 2.70 as colorless oil. NMR Spectra match those reported in literature.
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Figure 2.22 GC trace for internal standard nonane and 2.70 in 1:1 ratio.
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Figure 2.23 GC trace showing formation of 2.70 in 41% yield.

Phenylcyclopentane (Table 2.2, entry 2, 2.71). Synthesized according to general
procedure 2.9.4.2. Aryl fluoride 2.7 (0.054 mmol, 9.1 mg) was added to a solution of
[Ph;C] THCB,,Cl;1]” (2.0 mg, 2.7 pmol, 0.05 equiv), triisopropylsilane (1.1 uL, 5.4
umol, 0.1 equiv), o-dichlorobenzene (60 pL, 0.54 mmol, 10 equiv), and cyclopentane (1
mL). Reaction was stirred at 70 °C for 1 hour to give 2.71 in 54% yield (NMR). Crude
product was purified by flash column chromatography (pentane) to give 2.71 as a

colorless oil. NMR Spectra match those reported in literature.™

Phenylcycloheptane (Table 2.2, entry 3, 2.72). Synthesized according to general
procedure 2.9.4.2 excluding o-dichlorobenzene. Aryl fluoride 2.7 (0.054 mmol, 9.1 mg)

was added to a solution of [PhsC]'[HCB;Cl;;]” (2.0 mg, 2.7 pumol, 0.05 equiv),
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triisopropylsilane (1.1 puL, 5.4 pmol, 0.1 equiv), and cycloheptane (1 mL). Reaction was
heated at 100 °C for 9 hours to give 2.72 in 40% yield (NMR). Crude product was
purified by flash column chromatography (hexanes) to give 2.72 as a colorless oil (3.4

mg, 36%). NMR Spectra match those reported in literature.>

ANl s aa

Phenylhexane isomers (Table 2.2, entry 4, 2.73, 2.74 and 2.75). Synthesized according
to general procedure 2.9.4.2. Aryl fluoride 2.7 (0.054 mmol, 9.1 mg) was added to a
solution of [PhsC]' [HCB,Cl;;]” (2.0 mg, 2.7 umol, 0.05 equiv), triisopropylsilane (1.1
uL, 5.4 pmol, 0.1 equiv), o-dichlorobenzene (60 pL, 0.54 mmol, 10 equiv), and n-hexane
(1 mL). Reaction was heated at 60 °C for 8 hours to give phenylhexane isomers in 40%
overall yield (GC) as shown in Figures 2.26, 2.28, and 2.30. Crude product was purified
by flash column chromatography (hexanes) to give phenylhexane isomers as colorless oil.
The error associated with the 3-phenylhexane 2.75 calibration curve was shown to be
greater than the theoretical yield. Yield of 3-phenylhexane was then calculated by using
I-phenylhexane 2.73 and 2-phenylhexane 2.74 as reference, taking into account the
integral ratio of 1 for all isomers shown in Figure 2.30. Calculated yields were: 1-
phenylhexane 2.73 (26%) shown in Figure 2.26, 2-phenylhexane 2.74 (9%) shown in
Figure 2.28, 3-phenylhexane 2.75 (5%) shown in Figure 2.30. NMR Spectra match those

reported in literature.”* >
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Figure 2.24 GC trace for a 1:1:1 ratio of phenylhexane isomers.
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Figure 2.26 GC trace showing the formation of 2.73 from 2.7 in 26% yield.
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Figure 2.27 GC trace for internal standard nonane and 2.74 in 1:1 ratio.
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Figure 2.29 GC trace for internal standard nonane and 2.75 in 1:1 ratio.
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Figure 2.30 GC trace showing formation of 2.75 from 2.7. The error associated with the

3-phenylhexane calibration curve was shown to be greater than the theoretical yield.

sandisas

Phenylpentane isomers (Table 2.2, entry 5, 2.76, 2.77, and 2.78). Synthesized
according to general procedure 2.9.4.2. Aryl fluoride 2.7 (0.054 mmol, 9.1 mg) was
added to a solution of [Ph;C]'[HCB;Cl;;] (2.0 mg, 2.7 pumol, 0.05 equiv),
triisopropylsilane (1.1 pL, 5.4 umol, 0.1 equiv), o-dichlorobenzene (60 pL, 0.54 mmol,
10 equiv), and n-pentane (1 mL). Reaction was heated at 60 °C for 8 hours to give
phenylpentane isomers in 42% overall yield (GC) as shown in Figures 2.33, 2.35, and
2.37. Crude product was purified by flash column chromatography (hexanes) to give
phenylpentane isomers as colorless oil. Calculated GC yields were: 1-phenylpentane
2.76 (30%) shown in Figure 2.33, 2-phenylpentane 2.77 (10%) shown in Figure 2.35, 3-
phenylpentane 2.78 (2%) shown in Figure 2.37. NMR Spectra match those reported in

literature.>®>®
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Figure 2.31 GC trace for a 1:1:1 ratio of phenylpentane isomers.
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Figure 2.32 GC trace for internal standard nonane and 2.76 in 1:1 ratio.
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Figure 2.33 GC trace showing formation of 2.76 from 2.7 in 30% yield.
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Figure 2.35 GC trace showing formation of 2.77 from 2.7 in 10% yield.
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Figure 2.36 GC trace for internal standard nonane and 2.78 in 1:1 ratio.
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Figure 2.37 GC trace showing formation of 2.78 from 2.7 in 2% yield.

2.9.5 Experimental Procedures for Vinyl Cations
Synthesis of substrates for Figure 2.4 are reported in the adapted article.

2.9.5.1 Synthesis of Vinyl Triflates

OoTf

Cyclohex-1-en-1-yl trifluoromethanesulfonate (2.23). In a flame dried 1 L three-neck
flask equipped with a dropping funnel, cyclohexanone (25.0 g, 255 mmol, 1.0 equiv) and
freshly distilled anhydrous pyridine (22.2 g, 280 mmol, 1.1 equiv) were dissolved in
anhydrous methylene chloride (400 mL). The solution was cooled to 0 °C. The dropping
funnel was charged with a solution of triflic anhydride (79.0 g, 280 mmol, 1.1 equiv) in
methylene chloride (160 mL). The solution was added dropwise to the reaction (~45
minutes). After addition ceased, the ice bath was removed and the reaction stirred for 16
hours. The volatiles were removed under reduced pressure and the crude material was
suspended in petroleum ether and filtered. The supernatant was concentrated and the

resulting oil was purified by vacuum distillation at 0.2 mmHg to give cyclohexenyl
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triflate (2.23) as colorless oil (25.8 g, 44% yield). NMR data match those reported in

literature.>’

OTf

O

(E)-Cyclooct-1-en-1-yl trifluoromethanesulfonate (2.31). In a flame dried 250 mL
round bottom flask, cyclooctanone (3.0 g, 23.8 mmol, 1.0 equiv) and freshly distilled 2-
chloropyridine (3.0 g, 26.1 mmol, 1.1 equiv) were dissolved in anhydrous methylene
chloride (90 mL). The solution was cooled to 0 °C. Triflic anhydride (8.1 g, 28.5 mmol,
1.2 equiv) was added dropwise to the solution. After addition, the ice bath was removed
and the reaction stirred for 16 hours. The reaction mixture was quenched with 0.5 M
aqueous HCI (200 mL). The phases were separated and the aqueous layer was extracted
with methylene chloride (2 x 100 mL). The combined organics were dried over
magnesium sulfate, filtered and volatiles removed under reduced pressure to give the
crude material as purple oil. The product was purified by vacuum distillation (5 mmHg,
100 °C) to give triflate (2.31) as colorless oil (3.2 g, 51% yield ). NMR data match those

reported in literature.”

S,8R,95,108,13R,14S5,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-

4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-
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yl trifluoromethanesulfonate (2.29). Synthesized from 5a-cholestan-3-one according to

reported literature. NMR data match those reported in literature.*

OTf

ANAom 4 /\)

(E/Z)-But-1-en-1-yl trifluoromethanesulfonate (2.37). In a flame dried 500 mL round
bottom flask, butyraldehyde (6.0 g, 83.2 mmol, 1.0 equiv) and freshly distilled 2-
chloropyridine (10.4 g, 91.5 mmol, 1.1 equiv) were dissolved in anhydrous methylene
chloride (300 mL). The solution was cooled to 0 °C. Triflic anhydride (28.2 g, 99.8
mmol, 1.2 equiv) was added dropwise to this solution. After addition, the ice bath was
removed and the reaction was stirred at room temperature overnight. The reaction was
quenched with 0.5 M HCI. The phases were separated and the combined organic were
dried over magnesium sulfate, filtered and volatiles removed under reduced pressure. The
resulting oil was purified by vacuum distillation at 20 mmHg while heating at 60 °C to
give triflate 2.37 as a brown oil (5.7 g, 30% yield). The distillate was brought into the
glovebox and plugged through dry neutral alumina to afford the triflate 2.37 (1.8:1 Z:E
mixture) as an off tan oil.

E isomer: '"H NMR (400 MHz, CDCl3) 8 6.53-6.48 (m, 1H), 5.82 (dt, J=11.8, 7.2 Hz,
1H), 2.09 (pd, J= 7.2, 1.6 Hz, 2H), 1.06 (t, J= 7.2 Hz, 3H); "’F NMR (376 MHz, C¢Ds)
§ —74.0; °C NMR (100 MHz, CDCl3) & 135.8, 124.5, 118.8 (q, 'Jer = 319 Hz), 20.3,
13.3.

Z isomer: '"H NMR (400 MHz, CDCls) 8§ 6.53—6.48 (m, 1H), 5.27 (dt, J= 7.6, 5.6 Hz,

1H), 2.22 (pd, J= 7.6, 1.6 Hz, 2H), 1.04 (t, J = 7.6 Hz, 3H); "’F NMR (376 MHz, C¢Ds)
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§ —74.4; °C NMR (100 MHz, CDCl3) & 134.9, 122.6, 118.8 (q, 'Jer = 319 Hz), 17.8,
13.3.
FTIR (Neat film NaCl): 2967, 1719, 1428, 1223, 1177, 1025, 766, 636, 578, 514.

HR-MS (GCT-LIFDI): Calculated for CsH7F305S: 204.0068; measured: 204.0075.

OoTf

~A

But-1-en-2-yl trifluoromethanesulfonate (2.35). To a 250 mL flame dried schlenk flask
was condensed 1-butyne (5.00 g, 92.0 mmol, 1.1 equiv) at —78 °C. This was dissolved in
anhydrous hexanes (92.0 mL) and the solution was warmed to —35 °C. Triflic acid (12.5
g, 83.0 mmol, 1.0 equiv) was added dropwise and the solution was allowed to slowly
warm up to room temperature. After 2 hours of stirring, the reaction was quenched with
saturated aqueous sodium bicarbonate (100 mL). The layers were separated and the
organic layer was washed with saturated aqueous sodium bicarbonate (2 x 100 mL), dried
over anhydrous potassium carbonate, filtered and volatiles removed under reduced
pressure (being careful of product volatility). The crude product was purified by vacuum
distillation (25 mmHg, 50 °C) to give triflate 2.35 as a colorless oil (6.3 g, 37% yield).

'H NMR (400 MHz, (CD;),CO) & 5.34-5.11 (m, 2H), 2.44 (qt, J= 7.4, 1.0 Hz, 2H), 1.15
(t, J = 7.4 Hz, 3H); ’F NMR (282 MHz, (CD;),CO) 8 -75.6; *C NMR (125 MHz,
(CD3),CO) & 158.8, 118.6 (q, 'Jer = 318 Hz), 103.4, 26.8, 10.1.

FTIR (Neat film NaCl): 2986, 2950, 1670, 1415, 1249, 1202, 1138, 929, 848, 610, 506,
469.

HR-MS (GCT-LIFDI): Calculated for CsH7F305S: 204.0068; measured: 204.0065.
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(E)-But-2-en-2-yl trifluoromethanesulfonate and (Z)-but-2-en-2-yl

trifluoromethanesulfonate (2.33). In a 100 mL flame dried round bottom flask, triflate
2.35 (4.00 g, 19.6 mmol, 1 equiv) was dissolved in anhydrous methylene chloride (35
mL). Triflic acid (0.15 g, 0.98 mmol, 0.05 equiv) was added and the reaction stirred for 1
hour. The reaction was quenched with 5% aqueous sodium bicarbonate (35 mL). The
layers were separated and the aqueous layer was extracted with pentane (3 x 20 mL). The
volatiles were distilled off at 80 °C and then the product was purified by vacuum
distillation (50 mmHg) to give triflate 2.33 as a 2.5:1 (E£:Z) mixture of isomers (3.1 g,
78% yield).

Major Isomer: "H NMR (400 MHz, CDCl3) 6 5.31 (qd, J= 6.8, 0.8 Hz, 1H), 2.05 (br s,
3H), 1.71 (dq, J= 6.8, 1.6 Hz, 3H); "°F NMR (376 MHz, CDCl3) 8 —75.0; °*C NMR (125
MHz, CDCl3) § 146.2, 118.4 (q, 'Jcr =318 Hz), 116.4, 19.6, 11.1.

Minor Isomer: 'H NMR (400 MHz, CDCl3) 8 5.58 (qd, /= 7.2, 0.8 Hz, 1H), 2.03 (br s,
3H), 1.69 (dq, J= 7.2, 1.2 Hz, 3H); "°F NMR (376 MHz, CDCl3) 8 —74.2; *C NMR (125
MHz, CDCl3) § 146.7, 118.6 (q, 'Jcr = 318 Hz), 116.8, 15.7, 11.9.

FTIR (Neat film NaCl): 2934, 1710, 1412, 1245, 1201, 1135, 936, 876, 728, 632, 468.

HR-MS (GCT-LIFDI): Calculated for CsH7F305S: 204.0068; measured: 204.0065.

2.9.5.2 Catalytic C—H Insertion Reactions

This section outlines the optimization of the reaction shown below. All yields of

bicyclohexyl (2.28) are GC yields.
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[PhaCI*IWCA] (X mol%)

oTf
©/ RsSiH (Y equiv)

cyclohexane

2.23 2.28

Anion % Cat. Loading | Conc. Temp. | Silane Yield
[HCB,:Cli1] 2 mol% 0.1M 30°C | EtSiH (150 mol%) 87%
[HCB,:Cli1] 2 mol% 0.1 M 30°C | iPr3SiH (150 mol%) | 68%
[HCB,:Cli1] 0 mol% 0.1M 30°C | EtSiH (120 mol%) 0%
[HCB,Cly] 2 mol% 0.1 M 30 °C none 0%
[HCB,1Hs5Cls] | 2 mol% 0.1 M 30°C | EtSiH (150 mol%) 50%
[HCB;Bri1] | 2 mol% 0.1 M 30°C | EtSiH (150 mol%) 69%
[B(CeFs)4] 2 mol% 0.1 M 30°C | EtSiH (150 mol%) 6%

Table 2.7 Optimization of intermolecular alkylation reaction.

[PhaCI*{HCB,Cly4]™ (2 mol%) ,
@/0Tf Et3SiH (1.5 equiv) OR
R > R
R-H

Scheme 2.1 General scheme for intermolecular C—H insertion reactions of vinyl triflates.

2.9.5.2.1 General Procedure

In a well-kept glovebox, H,O, O, < 0.5 ppm, a dram vial was charged with
[Ph;C] THCB,,Cl;1]”  (0.02 equiv) and this was suspended in alkane (0.1 M).
Triethylsilane (1.5 equiv) along with a magnetic stirring bar were added to the mixture,
and the resulting suspension stirred for 10 minutes. At this point, vinyl triflate (1.0 equiv)
was added to the reaction and stirred for 0.16—12 hours at 30 °C (see substrates for

specific details). Upon completion, the reaction mixture was passed through a short plug
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of silica gel inside the glovebox and washed with hexanes. The solution was brought out
and volatiles removed under reduced pressure. Some substrates needed further

purification by silica column chromatography (see below).

Bicyclohexyl (Table 2.3, entry 1, 2.28). Synthesized according to general procedure
2.9.5.2.1. A dram vial was charged with [PhsC]' [HCB;;Cl;;]” (0.8 mg, 0.001 mmol, 0.02
equiv) and this was suspended in cyclohexane (0.5 mL, 4.63 mmol). Triethylsilane (12
mL, 0.075 mmol, 1.5 equiv) along with a magnetic stirring bar were added to the mixture
and the resulting suspension stirred for 10 minutes. Cyclohexenyl triflate (2.23) (11.5 mg,
0.05 mmol, 1.0 equiv) was added to the reaction and stirred for 1.5 hours at 30 °C. Upon
completion the reaction was plugged through silica and bicyclohexyl was obtained in
87% GC yield. The crude could be further purified by flash column chromatography

(hexanes) to give 2.28 as colorless oil. NMR spectra match those reported in literature.'

nonane

Figure 2.38 GC trace showing one to one mixture of nonane to bicyclohexyl.
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nonane

Figure 2.39 GC trace showing 87% yield of bicyclohexyl.

Cyclohexylcycloheptane (Table 2.3, entry 2, 2.79). Synthesized according to general
procedure 2.9.5.2.1. A dram vial was charged with [PhsC]' [HCB;,Cl;;]” (0.8 mg, 0.001
mmol, 0.02 equiv) and this was suspended in cycloheptane (0.5 mL). Triethylsilane (12
mL, 0.075 mmol, 1.5 equiv) along with a magnetic stirring bar were added to the mixture
and the resulting suspension stirred for 10 minutes. Cyclohexenyl triflate (2.23) (11.5 mg,
0.05 mmol, 1 equiv) was added to the reaction and stirred for 2 hours at 30 °C. Upon
completion the reaction was plugged through silica and cyclohexylcycloheptane was
obtained in 88% GC yield. The crude could be further purified by flash column
chromatography (hexanes) to give cyclohexylcycloheptane as colorless oil.

'H NMR (500 MHz, CDCl3) § 1.74—1.68 (m, 2H), 1.68—1.52 (m, 9H), 1.50—1.43 (m ,2H),
1.42-13 4 (m, 2H), 1.32-1.07 (m, 7H), 1.06-0.96 (m, 2H); >C NMR (125 MHz,
CDCls) 0 45.0,44.9, 31.5, 30.0, 28.6, 27.6, 27.2, 27.1.

FTIR (Neat film NaCl): 2918, 2850, 2670, 1448, 1349, 1263, 972, 893, 844.

HR-MS (GCT-LIFDI): Calculated for C;3H4: 180.1878; measured: 180.1881.
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Figure 2.40 GC trace showing one to one mixture of nonane to cyclohexylcycloheptane.
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Figure 2.41 GC trace showing 88% yield of cyclohexylcycloheptane.
Pentylcyclohexane (Table 2.3, entry 3). Synthesized according to general procedure
2.9.5.2.1. A dram vial was charged with [PhsC]' [HCB;;Cl;;]” (0.8 mg, 0.001 mmol, 0.02
equiv) and this was suspended in pentane (0.5 mL). Triethylsilane (12 mL, 0.075 mmol,
1.5 equiv) along with a magnetic stirring bar were added to the mixture and the resulting
suspension stirred for 10 minutes. Cyclohexenyl triflate (2.23) (11.5 mg, 0.05 mmol, 1.0
equiv) was added to the reaction and it stirred for 1.5 hours at 30 °C to give 11% of 3-
cyclohexylpentane, 36% of 2-cyclohexylpentane and 21% of 1-cyclohexylpentane (GC).
Upon completion the reaction was passed through silica and an inseparable mixture of the

three isomers were obtained as colorless oil (4.3 mg, 56%). The NMR data of this
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mixture matched those of the three authentic samples. For synthesis and characterization

of authentic isomers, see SI of adapted paper.
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Figure 2.42 GC traces showing one to one mixture of nonane to 3-cyclohexylpentane
(top), nonane to 2-cyclohexylpentane (middle), and nonane to 1-cyclohexylpentane

(bottom).
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Figure 2.43 GC trace showing 11% of 3-cyclohexylpentane, 36% of 2-

cyclohexylpentane and 21% of 1-cyclohexylpentane.

(35,58,8R,95,10S5,13R,14S5,17R)-3-Cyclohexyl-10,13-dimethyl-17-((R)-6-

methylheptan-2-yl)hexadecahydro-1H-cyclopentala|phenanthrene (Table 2.3, entry
4, 2.30). Synthesized according to general procedure 2.9.5.2.1. A dram vial was charged
with [Ph3C] [HCB,,Cl;;]” (0.8 mg, 0.001 mmol, 0.02 equiv) and this was suspended in
cyclohexane (0.5 mL, 4.63 mmol). Triethylsilane (12 mL, 0.075 mmol, 1.5 equiv) along
with a magnetic stirring bar were added to the mixture and the resulting suspension
stirred for 10 minutes. Triflate 2.23 (26.0 mg, 0.05 mmol, 1.0 equiv) was added to the
reaction and it stirred for 3 hours at 30 °C. Upon completion the reaction was passed
through silica and volatiles removed under reduced pressure to give product 2.30 as a
white solid (19.5 mg, 88%). GC-FID analysis showed ~15:1 d.r. In order to assign the
stereochemistry of the newly formed C—C bond, the material was crystallized by vapor
diffusion in the following manner: ~3 mg of the material was dissolved in a minimal

amount of cyclohexane in a small crystallization tube. This was placed into a 20 mL vial
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of acetone and the vial was capped. After 3 days, a crystal suitable for single crystal X-
ray diffraction was grown.

'H NMR (500 MHz, CDCl3) § 0.79-0.66 (m, 4H), 0.83 (s, 3H), 0.96 (dd, J = 6.7, 2.3 Hz,
8H), 1.00 (d, J = 6.5 Hz, 3H), 1.37-1.04 (m, 22H), 1.49-1.37 (m, 4H), 1.69-1.56 (m,
3H), 1.85-1.70 (m, 7H), 1.95-1.86 (m, 1H), 2.05 (dt, J = 12.5, 3.4 Hz, 1H); °C NMR
(125 MHz, CDCl) 8 56.8, 56.5, 54.9, 47.0, 43.8, 43.6, 42.8, 40.3, 39.7, 39.1, 36.4, 36.2,
36.0, 35.7, 32.6, 32.4, 30.5, 30.4, 29.4, 28 4, 28.2, 27.1, 27.0, 25.8, 24.4, 24.0, 23.0, 22.7,
21.2,18.8,12.5,12.3.

FTIR (Neat film NaCl): 2917, 2848, 1446, 1383, 1172, 930, 890.

HR-MS (GCT-LIFDI): Calculated for Cs3Hss: 454.4539; measured: 454.4536.

Figure 2.44 GC trace showing ~15:1 d.r. of 2.30.

(3a,6a)-Octahydropentalene (Table 2.3, entry 5, 2.32). Synthesized according to
general procedure 2.9.5.2.1. A dram vial was charged with [Ph;C] THCB,,Cl;;]” (0.8
mg, 0.001 mmol) and this was suspended in cyclohexane (0.5 mL, 4.63 mmol).
Triethylsilane (12 mL, 0.075 mmol) along with a magnetic stirring bar were added to the
mixture and the resulting suspension stirred for 10 minutes. Cyclooctenyl triflate (2.31)

(18.0 mg, 0.07 mmol, 1.0 equiv) was added to the reaction and it stirred for 1 hour at 30
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°C. The reaction was passed through silica in the glovebox and volatiles removed under

reduced pressure to give 2.32 as colorless oil (91% GC yield). NOTE: This compound is

volatile. NMR spectra match those reported in literature.*®
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Figure 2.45 GC trace showing one to one mixture of nonane to 2.32.
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Figure 2.46 GC trace showing 91% yield of (3a, 6a)-octahydropentalene.

sec-Butylcyclohexane (Table 2.4, entry 1, 2.34). Synthesized according to a modified

version of general

procedure

2.9.5.2.1.

A  dram wvial

was

charged with

[Ph;C] [HCB,,Cl;;] (0.8 mg, 0.001 mmol, 0.02 equiv) and this was suspended in

cyclohexane (0.5 mL, 5.63 mmol). Triisopropylsilane (15 mL, 0.075 mmol, 1.2 equiv)

along with a magnetic stirring bar were added to the mixture and the resulting suspension
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stirred for 10 minutes. Triflate 2.33 (10.2 mg, 0.05 mmol, 1.0 equiv) was added to the
reaction and it stirred for 6 hours at 30 °C. Upon completion the reaction was passed
through silica inside the glovebox and volatiles removed under reduced pressure. The
crude product was further purified by silica column chromatography (hexanes) to give
product 2.34 as colorless oil. (85% GC yield). NMR spectra match those reported in

literature.®

3918
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Figure 2.47 GC trace showing one to one mixture of nonane to 2.34.

Figure 2.48 GC trace showing 85% yield of 2.34.
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Butylcyclohexane (Table 2.4, entry 2, 2.34 and 2.36). Synthesized according to a
modified version of general procedure 2.9.5.2.1. A dram vial was charged with
[Ph;C] [HCB,,Cl;;] (0.8 mg, 0.001 mmol, 0.02 equiv) and this was suspended in
cyclohexane (9 mL). Triflate 2.35 (10.2 mg, 0.05 mmol, 1.0 equiv) was added to the
reaction along with a magnetic stir bar. A solution of triethylsilane (12 ml, 0.075 mmol,
1.5 equiv) in cyclohexane (1 mL) was added portionwise to the reaction mixture over 10
minutes (100 mL every minute). 1 hour after the last addition of silane, the reaction was
passed through silica in the glovebox and volatiles removed under reduced pressure to
give the ~1:1 mixture of products s-butylcyclohexane 2.34 and n-butylcyclohexane 2.36
in 40% and 39% GC yields, respectively. The NMR spectra of the mixture matched the
isolated NMR of the s-butylcyclohexane and the NMR of the commercial n-

butylcyclohexane.”

nonane

U
3 35

Figure 2.49 GC trace showing one to one mixture of nonane to 2.36.
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Figure 2.50 GC trace showing 40% yield of 2.34 and 39% yield of 2.36.

Butylcyclohexane (Table 2.4, entry 3, 2.34 and 2.36). A dram vial was charged with
[Ph;C] [HCB,,Cl;;] (0.8 mg, 0.001 mmol, 0.02 equiv) and this was suspended in
cyclohexane (0.5 mL). Triisopropylsilane (11.9 mg, 0.075 mmol, 1.5 equiv) was added
the reaction along with a magnetic stir bar. After stirring the reaction for 5 minutes,
triflate 2.37 (10.2 mg, 0.05 mmol, 1.0 equiv) was added and the reaction was heated to 70
°C. After 10 days, the reaction was cooled to room temperature and was passed through
silica in the glovebox and volatiles removed under reduced pressure to give the ~1:1

mixture of product (16% s-butylcyclohexane, 19% n-butylcyclohexane GC yield).

- nonane & O/\/\
! e E E

Figure 2.51 GC trace showing 16% yield of 2.34 and 19% yield of 2.36.
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Butylcyclohexane (Table 2.4, entry 4, 2.34 and 2.36). A dram vial was charged with
[Ph;C] THCB,Cl;1] (1.9 mg, 0.0025 mmol, 0.05 equiv) and this was dissolved in
chloroform (3 mL) and hexanes (3 mL). Triflate 2.35 (10.2 mg, 0.05 mmol, 1.0 equiv)
was added to the solution and it was cooled to —40 °C. Triethylsilane (12 mL, 0.075
mmol, 1.5 equiv) was quickly added and the reaction was stirred at —40 °C for 12 hours
to give n-butylcyclohexane (2.36, 34% GC yield) and s-butylcyclohexane (2.34, 17% GC

yield).

N

t %S 15

ﬂq?%sw
Lo

Figure 2.52 GC trace showing 17% yield of 2.34 and 34% yield of 2.36.

2.9.5.3 Arene Alkylation Reactions

2.9.5.3.1 General Procedures for Intermolecular Reductive Friedel-Crafts

Reactions.
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ot [PhgCI*[HCB1,Clyy]™ (2 mol%) Ar

Er Et3SiH (1.5 equiv) L_‘-(
)h > '

arene
n=1-4 n=1-+4

Scheme 2.2 General reaction scheme for intermolecular reductive Friedel-Crafts

reactions.

General Procedure A. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was
charged with [Ph3C] THCB;Cl;;]” (0.02 equiv.) and this was dissolved in arene (enough
to make a 0.1 M solution of vinyl triflate). Triethylsilane (1.5 equiv.) along with a
magnetic stirring bar were added to the mixture and was shaken until it turned colorless.
At this point, vinyl triflate (1.0 equiv.) was added to the reaction and it stirred for 0.1-48
hours at 30-75 °C (see substrates for specific details). Upon completion, the reaction
mixture was pushed through a short plug of silica gel inside the glovebox and washed
with hexanes. The solution was brought out and volatiles removed under reduced
pressure. Some substrates needed further purification by silica column chromatography

(see below) or preparative high pressure liquid chromatography (HPLC).

General Procedure B. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was
charged with [Ph3;C]'THCB;;Cl;;]” (0.02 equiv.) and this was dissolved in chloroform
(enough to make a 0.1 M solution of vinyl triflate). Arene (10-50 equiv.) and vinyl triflate
(1 equiv.) were added along with a magnetic stirring bar to the solution. The solution was
cooled to —40 °C. At this point, silane (1.5 equiv.) was added to the reaction and it stirred
at this temperature until completion (see substrates for specific details). Upon

completion, the reaction mixture was pushed through a short plug of silica gel inside the
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glovebox and washed with hexanes. The solution was brought out and volatiles removed
under reduced pressure. Some substrates needed further purification by silica column

chromatography (see below) or preparative high pressure liquid chromatography (HPLC).

Phenylcyclohexane (2.41). Synthesized according to general procedure 2.9.5.3.1A. A
dram vial was charged with [Ph;C] THCB;;Cl;;]” (0.8 mg, 0.002 mmol) and this was
suspended in pentane (0.5 mL, 11.1 mmol). Triethylsilane (9.6 mL, 0.060 mmol),
benzene (18 mL, 0.2 mmol, 4 equiv), and a magnetic stirring bar were added respectively
to the mixture and stirred for 10 minutes. Cyclohexenyl triflate (2.23) (12.0 mg, 0.050
mmol) was added to the reaction and stirred for 2 hour at 30 °C. The reaction was
plugged through silica in the glovebox and volatiles removed under reduced pressure to

give product 2.41 in 74% yield (GC). NMR spectra match those reported in literature.**

nonane
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Figure 2.53 GC trace showing one to one mixture of nonane to 2.41.
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Figure 2.54 GC trace showing 74% yield of 2.41.

F
2-cyclohexyl-1,4-difluorobenzene (2.42). Synthesized according to general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]' [HCB,;Cl;;]” (3.2 mg, 0.004 mmol)
and this was suspended in pentane (0.5 mL) and 1,4-difluorobenzene (51 mL, 0.50
mmol). Triethylsilane (9.6 mL, 0.06 mmol) along with a magnetic stirring bar were added
to the mixture and stirred for 10 minutes. Cyclohexenyltriflate (2.23) (12.0 mg, 0.05
mmol) was added to the reaction and stirred for 3 hours at 30 °C. The reaction was
plugged through silica in the glovebox and volatiles removed under reduced pressure to
yield 2.42 in 49% yield (NMR). 2.42 was also synthesized as described above in 1,4-
difluorobenzene solvent (0.5 mL). Crude material was purified by flash column
chromatography (hexanes) to yield a colorless oil (22 mg, 56%).

'H NMR (500 MHz, CDCl3) 8 6.96 — 6.88 (m, 2H), 6.83 — 6.78 (m, 1H), 2.84 (t, J=10.8
Hz, 1H), 1.85 (br d, /= 10.5 Hz, 4H), 1.76 (br d, J = 12.9 Hz, 1H), 1.47 — 1.32 (m, 4H),
1.29 — 1.20 (m, 1H); ""F{'"H} NMR (376 MHz, CDCl3) 8 -119.4 (J=17.7 Hz), —125.7 (J

= 17.7 Hz); °C NMR (125 MHz, CDCl;) & 158.9 (dd, 'Jc r= 240.8 Hz, *Jc r= 2.3 Hz),
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156.4 (dd, 'Jer= 239.9 Hz, *Jc r= 2.4 Hz), 136.3 (dd, *Jcr= 17.4 Hz, *Jcy= 7.0 Hz),
115.9 (dd, “Jc r= 26.2 Hz, *Jcp= 8.7 Hz), 114.1 (dd, *Jc r= 24.0 Hz, *Jc r= 5.5 Hz),
113.1 (dd, 2Jc_¢=24.1 Hz, *Jc_r= 8.8 Hz), 37.1, 32.9, 26.7, 26.0.

FTIR (Neat film NaCl): 2928, 2854, 1625, 1596, 1493, 1450, 1425, 1232, 1178, 866,
810, 780, 731.

HR-MS (GCT-LIFDI): Calculated for C;2H 4F2: 196.1064; measured: 196.1067.

Cl Cl
Cl Cl
~1:5 ratio

1,2-dichloro-4-cyclohexylbenzene (2.43). Synthesized according to general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]' [HCB,;Cl;;]” (3.2 mg, 0.004 mmol)
and this was suspended in 1,4-difluorobenzene (2 mL, 19.5 mmol). Triethylsilane (48
mL, 0.3 mmol) along with a magnetic stirring bar were added to the mixture and stirred
until colorless. Cyclohexenyltriflate (2.23) (46.0 mg, 0.20 mmol) was added the reaction
and it stirred for 1 hour at 30 °C. The reaction was plugged through silica in the glovebox
and volatiles removed under reduced pressure to give product 2.43 as a mixture of
isomers in 47% yield (NMR) and 9% yield (NMR). Crude material was further purified
via flash column chromatography (hexanes) to give product 2.43 (mixture of isomers) as
a colorless oil.

"H NMR major isomer (500 MHz, CDCl3) 6 7.33 (d, /= 8.3 Hz, 1H), 7.28 (d, /= 1.9 Hz,
1H), 7.03 (dd, J= 8.3, 1.9 Hz, 1H), 2.46 (dd, J=10.2, 7.5 Hz, 1H), 1.84 (br d, J=12.9

Hz, 4H), 1.75 (br d, J = 12.9 Hz, 1H), 1.41 — 1.33 (m, 4H), 1.28 — 1.19 (m, 2H); "°C
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NMR major isomer (125 MHz, CDCl;) & 148.4, 132.2, 130.3, 129.6, 129.0, 126.5, 44.0,
34.4,26.8,26.1.

FTIR (Neat film NaCl): 2924, 2852, 1584, 1560, 1475, 1461, 1449, 1131, 1028, 671,
592.

HR-MS (GCT-LIFDI): Calculated for C;,H4Cly: 228.0473; measured: 228.0473.

Br Br

2,4-dibromo-1-cyclohexylbenzene (2.44). Synthesized according to general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]'[HCB,,Cl;;] (0.8 mg, 0.001 mmol)
and this was dissolved in 1,3-dibromobenzene (0.5 mL, 3.4 mmol). Triethylsilane (12
mL, 0.075 mmol) along with a magnetic stirring bar were added to the mixture and the
resulting solution stirred for 10 minutes. Triflate 2.23 (12.0 mg, 0.05 mmol) was added to
the reaction and stirred for 2 hours at 30 °C. The reaction was plugged through silica in
the glovebox and volatiles removed under reduced pressure to give product 2.44 in 51%
yield (NMR). The crude product was further purified by reverse phase HPLC (9:1
acetonitrile:water) to give pure product as a colorless oil.

'H NMR (500 MHz, CDCl3) 8 7.68 (d, J = 2.0 Hz, 2H), 7.38 (dd, J = 8.3, 2.0 Hz, 2H),
7.11 (d, J = 8.3 Hz, 1H), 2.90 (tt, J=11.6, 3.0 Hz, 1H), 1.90 — 1.81 (m, 4H), 1.49 — 1.18
(m, 5H); °C NMR (125 MHz, CDCl3) § 145.6, 135.1, 130.8, 128.6, 125.1, 119.7, 43.0,
33.3,26.9,26.2.

FTIR (Neat film NaCl): 2924, 2851, 1730, 1577, 1551, 1465, 1448, 1379, 1083, 1033,

998, 812, 779, 720, 700, 553.
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HR-MS (GCT-LIFDI): Calculated for C;,H4Br;: 317.9442; measured: 317.9455.

F. Br

5.4:1
4-bromo-2-cyclohexyl-1-fluorobenzene (2.45). Synthesized according to general

procedure 2.9.5.3.1A. A dram vial was charged with [PhsC]'[HCB;;Cl;;]” (0.8 mg,
0.001 mmol) and this was dissolved in 1,4-bromofluorobenzene (0.5 mL, 4.6 mmol).
Triethylsilane (12 mL, 0.075 mmol) along with a magnetic stirring bar were added to the
mixture and the resulting solution stirred for 10 minutes. Triflate 2.23 (12.0 mg, 0.05
mmol) was added to the reaction and stirred for 2 hours at 30 °C. The reaction was
plugged through silica in the glovebox and volatiles removed under reduced pressure to
give product 2.45 as a mixture of isomers in 43% and 8% yield (NMR), respectively. The
reaction mixture was purified by reverse phase HPLC (85:15 acetonitrile:water) to give
the product 2.45 and a regioisomer as a mixture (~5:1 ratio) as a colorless oil. Major
isomer was assigned by looking at the ’C NMR and the HSQC. By °C NMR, the carbon
on the fluorine and the carbons ortho to the fluorine could be assigned by their large 'Jc.g
and “Jcr values respectively. Of the two carbons ortho to the fluorine, only one of them
was attached to a hydrogen, meaning that the other position was cyclohexylated.

"H NMR major isomer (500 MHz, CDCls) 6 7.33 (dd, J= 6.5, 2.5 Hz, 1H), 7.25 — 7.22
(m, 1H), 6.87 (dd, /= 9.9, 8.7 Hz, 1H), 2.85 — 2.77 (m, 1H), 1.87 — 1.80 (m, 4H), 1.79 —
1.72 (m, 1H), 1.44 — 1.36 (m, 4H), 1.30 — 1.21 (m, 1H); °F {"H} NMR (376 MHz,

CDCl3) 8 —119.4; °C NMR major isomer (125 MHz, CDCls) & 159.8 (d, 'Je_r= 244.9
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Hz), 137.0 (d, “Je_r= 16.3 Hz), 130.9 (d, *Jc r= 5.4 Hz), 130.0 (d, *Jcr= 5.7 Hz), 117.1
(d, 2Jer=24.8 Hz), 116.7 (d, *Jc_r= 3.3 Hz), 37.2 (d, *Jc_r= 1.7 Hz, 33.0, 26.8, 26.2.
FTIR (Neat film NaCl): 2929, 2853, 1605, 1579, 1480, 1449, 1232, 1181, 1168, 1099,
1005, 869, 810, 612.

HR-MS (GCT-LIFDI): Calculated for C;,H4BrF: 256.0263; measured: 256.0260.

2-cyclohexyl-1,3,5-trimethylbenzene (2.46). Synthesized according to a modified
procedure. A dram vial was charged with [PhsC]' [HCB;,Cl;;]” (1.6 mg, 0.002 mmol)
and this was suspended in perfluorohexanes (1.0 mL). Triethylsilane (24 mL, 0.15 mmol)
and mesitylene (120 mg, 0.1 mmol) along with a magnetic stirring bar were added to the
mixture and the resulting suspension stirred for 10 minutes. Triflate 2.23 (24.0 mg, 0.1
mmol) was added to the reaction and stirred for 3 minutes at 30 °C. The reaction mixture
was quenched with anhydrous ether inside the glovebox and then plugged through silica
inside the glovebox to give the crude material as a colorless oil in 61% NMR yield. The
crude was further purified by reverse phase HPLC (85:15 acetonitrile:water) to give
product 2.46 as a colorless oil.

'H NMR (500 MHz, 57 °C, CDCls) § 6.79 (s, 2H), 3.02 — 2.94 (m, 1H), 2.37 (s, 6H),
2.23 (s, 3H), 1.96 — 1.85 (m, 3H), 1.77 (br d, J= 12.3 Hz, 1H), 1.68 (br d, /= 13.1 Hz,
1H), 1.44 — 1.26 (m, 4H); "H NMR (500 MHz, CDCl;) § 6.82 (s, 2H), 2.97 (tt, J= 12.4,
3.3 Hz, 1H), 2.51 — 2.29 (m, 6H), 2.24 (s, 3H), 1.96 — 1.83 (m, 4H), 1.80-1.74 (m, 1H),
1.71 — 1.65 (m, 2H), 1.45 — 1.23 (m, 3H); °C NMR (125 MHz, CDCl;) § 140.3, 136.3,

134.9,131.3,129.4,41.4,30.7,27.9, 26.6, 21.8, 20.7.
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FTIR (Neat film NaCl): 2924, 2851, 1612, 1483, 1448, 1369, 1261, 1025, 849, 572.

HR-MS (GCT-LIFDI): Calculated for C;sHy: 202.1721; measured: 202.1727.

4,4-Dimethylcyclohexyl)benzene (2.47). Synthesized according to general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]'[HCB,,Cl;;] (1.6 mg, 0.002 mmol)
and this was suspended in benzene (1 mL, 11.2 mmol). Triethylsilane (24 uL, 0.15
mmol) along with a magnetic stirring bar were added to the mixture and stirred until
colorless. The corresponding triflate (25.8 mg, 0.10 mmol) was added to the reaction and
stirred for 1.5 hours at 30 °C. The reaction was plugged through silica in the glovebox
and volatiles removed under reduced pressure to give 2.47 in 78% yield (NMR). The
crude product was further purified by flash column chromatography (hexanes) to give
2.47 as a colorless oil.

'H NMR (500 MHz, CDCl3) 8 7.32 — 7.28 (m, 2H), 7.25 — 7.22 (m, 2H), 7.20 — 7.16 (m,
1H), 2.42 (tt, J=11.9, 4.0 Hz, 1H), 1.73 — 1.59 (m, 4H), 1.53 — 1.47 (m, 2H), 1.34 (td, J
= 13.1, 4.1 Hz, 2H), 0.98 (s, 3H), 0.96 (s, 3H); °C NMR (125 MHz, CDCl3) § 147.8,
128.3,126.9, 125.8, 44.5, 39.7, 33.2, 30.2, 29.8, 24.2.

FTIR (Neat film NaCl): 3062, 3027, 2923, 2861, 2843, 1740, 1602, 1471, 1451, 1385,
1364, 753, 697, 532.

HR-MS (GCT-LIFDI): Calculated for Ci4Ho: 188.1565; measured: 188.1572.
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(3,3-Dimethylcyclohexyl)benzene (2.48). Synthesized according to general procedure A.
A dram vial was charged with [Ph;C] THCB,,Cl;1]” (0.8 mg, 0.001 mmol) and this was
suspended in benzene (0.5 mL, 5.6 mmol). Triethylsilane (12 uL, 0.075 mmol) along
with a magnetic stirring bar were added to the mixture and stirred until colorless. The
corresponding triflate (12.9 mg, 0.05 mmol) was added to the reaction and stirred for 1.5
hours at 30 °C. The reaction was plugged through silica in the glovebox and volatiles
removed under reduced pressure to give 2.48 in 88% yield (NMR). The crude product
was further purified by flash column chromatography (hexanes) to give 2.48 as a
colorless oil.

'H NMR (500 MHz, CDCl3)  7.32 — 7.27 (m, 2H), 7.23 — 7.20 (m, 2H), 7.20 — 7.15 (m,
1H), 2.70 (tt, J=12.5, 3.4 Hz, 1H), 1.91 — 1.84 (m, 1H), 1.71 — 1.52 (m, 3H), 1.46 — 1.41
(m, 1H), 1.36 — 1.26 (m, 2H), 1.19 (td, J= 13.2, 4.4 Hz, 1H), 1.01 (s, 3H), 0.95 (s, 3H);
BC NMR (125 MHz, CDCl3) § 148.0, 128.4, 127.1, 125.9, 47.7, 40.1, 39.0, 34.2, 33.6,
31.4,24.8,22.9.

FTIR (Neat film NaCl): 3062, 3027, 2922, 2862, 2844, 1602, 1493, 1471, 1451, 1385,
1363, 756, 697, 538, 525.

HR-MS (GCT-LIFDI): Calculated for Ci4Ho: 188.1565; measured: 188.1571.

t-Bu™"
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anti-4-(tert-Butyl)cyclohexyl)benzene (2.49). Synthesized according to general
procedure 2.9.5.3.1A. A dram vial was charged with [PhsC]'[HCB,Cl;;]” (1.6 mg,
0.002 mmol) and this was suspended in benzene (I mL, 11.2 mmol). Triethylsilane (24
mL, 0.15 mmol) along with a magnetic stirring bar were added to the mixture and stirred
until colorless. The corresponding triflate (29.0 mg, 0.10 mmol) was added to the
reaction and stirred for 10 minutes at 30 °C. The reaction was plugged through silica in
the glovebox and volatiles removed under reduced pressure to give 2.49 as a mixture of
diastereomers (44% NMR vyield of trans, 5% NMR yield of cis).®® The crude product was
further purified by reverse phase prep HPLC (95:5 acetonitrile/water) to give the trans
product 2.49 as a colorless oil (7.5 mg, 35%).

'H NMR (500 MHz, CDCl3)  7.31 — 7.27 (m, 2H), 7.23 — 7.20 (m, 2H), 7.20 — 7.16 (m,
1H), 2.45 (tt, J=12.2, 3.5 Hz, 1H), 1.99 — 1.87 (m, 4H), 1.45 (qd, J = 12.5, 2.6 Hz, 2H),
1.21 — 1.05 (m, 3H), 0.89 (s, 9H); °C NMR (100 MHz, CDCls) § 148.0, 128.4, 127.0,
125.9,47.92,44.7,34.9, 32.6, 27.9, 27.8.

FTIR (Neat film NaCl): 3061, 3027, 2937, 2921, 2855, 1602, 1493, 1479, 1448, 1364,
1232, 895, 755, 697, 532.

HR-MS (GCT-LIFDI): Calculated for C;¢Hz4: 216.1878; measured: 216.1889.

(35,58,8R,95,108,13R,14S5,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-3-

phenylhexadecahydro-1H-cyclopentala]phenanthrene (2.50). Synthesized according
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to general procedure 2.9.5.3.1A. A dram vial was charged with [Ph;C] THCB,,Cl;;]” (0.8
mg, 0.001 mmol) and this was suspended in benzene (0.5 mL, 5.6 mmol). Triethylsilane
(12 mL, 0.075 mmol) along with a magnetic stirring bar were added to the mixture and
the resulting suspension stirred for 10 minutes. Triflate 2.29 (26.0 mg, 0.05 mmol) was
added to the reaction and stirred for 2 hours at 30 °C. The reaction was plugged through
silica in the glovebox and volatiles removed under reduced pressure to give product 2.50
as a diastereomeric mixture in 79% and 11% yield (NMR) of the major and minor
diastereomers, respectively. The crude mixture was purified via silica column
chromatography (hexanes) to give an inseparable mixture of diastereomers as a white
solid (18.5 mg, 85% of mixture). Assignment of major isomer was based on key cross-
peaks in 'H COSY and "H NOESY spectroscopy experiments. From the major benzylic
proton, adjacent protons were identified at 1.47 ppm and 1.72 ppm through COSY. The
same peaks were observed in NOESY in addition to two peaks at 1.08 ppm and 1.26 ppm
corresponding to 1,3-diaxial interactions of the benzylic proton. Through 2D HSQC and
HMBC experiments, the cross-peak at 1.26 ppm was determined to be the trans-decalin
proton.

Major Isomer: 'H NMR (500 MHz, CDCl3) § 7.33 — 7.29 (m, 2H), 7.27 — 7.24 (m, 2H),
7.22 —7.18 (m, 1H), 2.58 (tt, J=11.5, 5.0 Hz, 1H), 2.02 (dt, J = 12.5, 3.4 Hz, 1H), 1.90 —
1.80 (m, 2H), 1.77 — 1.66 (m, 3H), 1.65 — 1.58 (m, 2H), 1.56 — 1.46 (m, 3H), 1.43 — 1.25
(m, 9H), 1.23 — 1.00 (m, 11H), 0.94 (d, J = 6.6 Hz, 3H), 0.91 (d, J= 2.3 Hz, 3H), 0.90 (s,
3H), 0.89 (d, J = 2.3 Hz, 3H), 0.77 — 0.71 (m, 1H), 0.70 (s, 3H); °C NMR (125 MHz,
CDCl) 0 147.9, 128.4, 127.0, 125.9, 56.8, 56.5, 54.8, 47.2, 45.0, 42.8, 39.7, 39.1, 36.8,

36.4,36.0, 35.9, 35.7, 30.0, 28.2, 24.0, 23.0, 22.7, 18.9, 12.7, 12.3.
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FTIR (Neat film NaCl): 3070, 3023, 2926, 2846, 1466, 1381, 757, 696, 513.

HR-MS (GCT-LIFDI): Calculated for Cs3Hs: 448.4069; measured: 448.4058.

Phenylcyclopentane (2.51). Synthesized according to general procedure 2.9.5.3.1A. A
dram vial was charged with [Ph;C] THCB;Cl;;]” (1.6 mg, 0.002 mmol) and this was
suspended in benzene (1 mL, 11.2 mmol). Triethylsilane (24 mL, 0.15 mmol) along with
a magnetic stirring bar were added to the mixture and stirred until colorless.
Cyclopentenyl triflate (22.0 mg, 0.10 mmol) was added to the reaction and stirred for 6
days at 70 °C. The reaction was plugged through silica in the glovebox and volatiles
removed under reduced pressure to give phenylcyclopentane (2.51) in 64% yield (NMR).
The crude product was further purified by flash column chromatography (hexanes) to
give phenylcyclopentane as a colorless oil (7.6 mg, 52%). NMR spectra match those

reported in literature.®*

Phenylcycloheptane (2.52). Synthesized according to general procedure 2.9.5.3.1A. A
dram vial was charged with [Ph;C] THCB;;Cl;;]” (1.6 mg, 0.002 mmol) and this was
suspended in benzene (1 mL, 11.2 mmol). Triethylsilane (24 mL, 0.15 mmol) along with
a magnetic stirring bar were added to the mixture and stirred until colorless.

Cycloheptenyl triflate (24.0 mg, 0.10 mmol) was added to the reaction and stirred for 1.5
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hours at 30 °C. The reaction was plugged through silica in the glovebox and volatiles
removed under reduced pressure to give product 2.52 in 71% yield (NMR) with ~10%
yield of (cyclohexylmethyl)benzene as a small inseparable side product. NMR data match

those reported in literature.**

Phenylcyclobutane (2.53). Synthesized according to a modified general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]'[HCB,,Cl;;] (0.8 mg, 0.001 mmol)
and this was dissolved in benzene (10 mL, 112 mmol). Triisopropylsilane (15 mL, 0.075
mmol) along with a magnetic stirring bar were added to the mixture and stirred until
colorless. Cyclobutenyl triflate (10.0 mg, 0.05 mmol) was added to the reaction and
stirred for 0.5 hours at 30 °C. The reaction was plugged through silica in the glovebox
and volatiles removed under reduced pressure to give product 2.53 in 57% yield (NMR).
The crude product was purified via silica column chromatography (hexanes) to give

phenylcyclobutane as a colorless oil. NMR data match those reported in literature.®’

®
U

1-phenyl-1,2,3,4-tetrahydronaphthalene (2.54). Synthesized according to general
procedure 2.9.5.3.1A. A dram vial was charged with [PhsC]'[HCB,Cl;;] (1.6 mg,

0.002 mmol) and this was suspended in benzene (I mL, 11.2 mmol). Triethylsilane (24
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mL, 0.15 mmol) along with a magnetic stirring bar were added to the mixture and stirred
until colorless. The corresponding triflate (28.0 mg, 0.10 mmol) was added to the
reaction and stirred for 2 days at 60 °C. The reaction was plugged through silica in the
glovebox and volatiles removed under reduced pressure to give product 2.54 in 43% yield
(NMR). Crude material was purified by flash column chromatography (hexanes) to give
product 2.54 as a colorless oil (8.6 mg, 41.3%). NMR spectra match those reported in

literature.®®

1,1-Diphenylethane (2.55). Synthesized according to general procedure 2.9.5.3.1A. A
dram vial was charged with [Ph;C] THCB;Cl;;]” (1.6 mg, 0.002 mmol) and this was
suspended in benzene (1 mL, 11.2 mmol). Triethylsilane (24 ,mL, 0.15 mmol) along with
a magnetic stirring bar were added to the mixture and stirred until colorless. The
corresponding triflate (29.0 mg, 0.10 mmol) was added to the reaction and stirred for 1
hour at 30 °C. The reaction was plugged through silica in the glovebox and volatiles
removed under reduced pressure to give triflate 2.55 in 77% yield (NMR). Crude material
was further purified via flash column chromatography (hexanes) to give product 2.55 as a

colorless oil (12.2 mg, 67%). NMR spectra match those reported in literature.”®

(-
A
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1-bromo-4-(1-phenylethyl)benzene (2.56). Synthesized according to general procedure
2.9.5.3.1A. A dram vial was charged with [Ph;C]"[HCB,,Cl;;]" (0.8 mg, 0.001 mmol,
0.02 equiv.) and this was dissolved in benzene (0.5 mL). Triethylsilane (7.0 mg, 0.060
mmol, 1.2 equiv.) and 1-(4-bromophenyl)vinyl trifluoromethanesulfonate (10.2 mg, 0.05
mmol) were added along with a magnetic stirring bar to the solution and stirred for 2
hours. The reaction was plugged through silica in the glovebox and volatiles removed
under reduced pressure to give product 2.56 in 51% yield (NMR) as a colorless oil. NMR
spectra match those reported in literature.”

@/Ft Ph

o
19:47

1-methyl-4-(1-phenylethyl)benzene (2.57). Synthesized according to general procedure
2.9.5.3.1B. A dram vial was charged with [Ph;C]'[HCB,,Cl;;]" (1.6 mg, 0.002 mmol)
and this was dissolved in chloroform (1 mL). Toluene (92 mg, 1 mmol) and 1-
phenylvinyl trifluoromethanesulfonate (25.2 mg, 0.1 mmol) were added along with a
magnetic stirring bar to the solution. The solution was cooled to —40 °C. At this point,
triethylsilane (17.4 mg, 0.15 mmol) was added to the reaction and stirred at —40 °C for 1
hour. The reaction mixture was warmed to room temperature and was plugged through
silica in the glovebox and volatiles removed under reduced pressure. The crude material
was purified by flash column chromatography (hexanes) to give an inseparable mixture
of products 2.57 in 47% and 19% yield, para and ortho isomers, respectively, as a

colorless oil. NMR spectra match those reported in literature.”” "'

85



2-(sec-butyl)-1,3,5-trimethylbenzene (2.58). Synthesized according to general
procedure 2.9.5.3.1B. A dram vial was charged with [Ph;C] THCB,,Cl;;]” (1.6 mg, 0.002
mmol) and this was dissolved in chloroform (1 mL). Mesitylene (120 mg, 1 mmol) and
but-1-en-2-yl trifluoromethanesulfonate (2.35) (20.4 mg, 0.1 mmol) were added along
with a magnetic stirring bar to the solution. The solution was cooled to —40 °C. At this
point, triethylsilane (17.4 mg, 0.15 mmol) was added to the reaction and it stirred at —40
°C for 1 hour. The reaction mixture was warmed to room temperature and pushed
through a short plug of silica gel inside the glovebox and washed with hexanes. The
solution was brought out and volatiles removed under reduced pressure. The crude
material was purified by flash column chromatography (hexanes) to give 2.58 as a
colorless oil (80% NMR yield).

'H NMR (500 MHz, CDCl3) § 6.83 (s, 2H), 3.14 (sex, J = 7.5 Hz, 1H), 2.32 (br s, 6H),
2.26 (s, 3H), 1.83 — 1.67 (m, 2H), 1.30 (d, J= 7.3 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H); °C
NMR (125 MHz, CDCls) 6 140.2, 136.4, 134.8, 131.2, 129.6, 36.7, 28.4, 21.7, 20.8, 19.0,
13.3.

FTIR (Neat film NaCl): 2962, 2926, 2872, 1612, 1455, 1377, 850, 578.

HR-MS (GCT-LIFDI): Calculated for C;3Hzo: 176.1565; measured: 176.1572.
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sec-butylbenzene (2.59). Synthesized according to a modified general procedure
2.9.5.3.1B. A dram vial was charged with [Ph3;C] [HCB;,Cl;;]” (0.8 mg, 0.001 mmol,
0.02 equiv.) and this was dissolved in chloroform (0.4 mL). Benzene (195 mg, 2.5 mmol,
50 equiv.) and but-1-en-2-yl trifluoromethanesulfonate (2.35) (10.2 mg, 0.05 mmol) were
added along with a magnetic stirring bar to the solution. Triisopropylsilane (11.9 mg,
0.075 mmol, 1.5 equiv.) was added dropwise to the reaction and stirred for 1 hour. The
reaction was plugged through silica in the glovebox and volatiles removed under reduced
pressure. The solution was brought out and volatiles removed under reduced pressure) to
give product 2.59 in 95% yield (GC) as a colorless oil. NMR spectra match those

reported in literature.””

nonane

Figure. 2.55 GC trace of a 1:1 mixture of nonane to s-butylbenzene.

,,,,,,,,,,,,,,,,,,,

Figure 2.56 GC trace showing a 95% yield of s-butylbenzene.
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F
2-(sec-butyl)-1,4-difluorobenzene (2.60). Synthesized according to general procedure
2.9.5.3.1B. A dram vial was charged with [Ph;C][HCB,,Cl;;]" (1.6 mg, 0.002 mmol)
and this was dissolved in chloroform (1 mL). 1,4-Difluorobenzene (114 mg, 1 mmol) and
but-1-en-2-yl trifluoromethanesulfonate (2.35) (20.4 mg, 0.1 mmol) were added along
with a magnetic stirring bar to the solution. The solution was cooled to —40 °C. At this
point, triisopropylsilane (23.8 mg, 0.15 mmol) was added to the reaction and it stirred at
—40 °C for 3 hours. The reaction mixture was warmed to room temparature and pushed
through a short plug of silica gel inside the glovebox and washed with hexanes. The
solution was brought out and volatiles removed under reduced pressure. The crude
material was further purified by flash column chromatography (petroleum ether) with
silver nitrate impregnated silica gel as a stationary phase to give product 2.60 as a
colorless oil (46% NMR yield).

'H NMR (500 MHz, CDCls) § 6.94 (td, J=9.2, 4.6 Hz, 1H), 6.88 (ddd, J=12.8, 6.2, 3.4
Hz, 1H), 6.85 — 6.79 (m, 1H), 3.00 — 2.93 (sex, J = 7.0, 2H), 1.60 (sex, J= 7.0 Hz, 2H),
1.22 (d, J = 7.0 Hz, 3H), 0.84 (t, J= 7.0, 3H); F {'"H} NMR (282 MHz, CDCl3)  —
119.5 (d, J = 17.8 Hz), —125.2 (d, J = 17.8 Hz); >C NMR (125 MHz, CDCl3) & 158.9 (d,
'Jep=241.0 Hz), 156.7 (d, 'Jc r= 239.8 Hz), 136.0 (dd, %Jc r= 17.5 Hz, *Jc 5= 6.9 Hz),
116.1 (dd, “Jc r= 26.3 Hz, *Jcp= 8.7 Hz), 114.2 (dd, “Jc r= 13.8 Hz, *Jc r= 5.6 Hz),

113.3 (dd, %Jc r=24.1 Hz, *Jo_r= 8.8 Hz), 34.1, 29.8, 20.4, 12.0.
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FTIR (Neat film NaCl): 2963, 2931, 2875, 1596, 1496, 1464, 1415, 1380, 1180, 1165,
870, 810, 758, 731.

HR-MS (GCT-LIFDI): Calculated for C;oH2F2: 170.0907; measured: 170.0905.
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2.10 Spectra Relevant to Chapter Two:

Intermolecular C-H Insertion Reactivity of Aryl and Vinyl Cations Under the

Catalysis of Silylium-Carborane Reagents.

Brian Shao, Alex L. Bagdasarian, Stasik Popov, Hosea M. Nelson Science, 2017, 3535,
1403-1407.
Stasik Popov, Brian Shao, Alex L. Bagdasarian, Tyler R. Benton, Luyi Zou, Zhongyue

Yang, K. N. Houk, Hosea M. Nelson Science, 2018, 361, 381-387.
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Figure 2.58 'H NMR (400 MHz, CDCl;) of compound 2.61.
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Figure 2.59 "H NMR (400 MHz, CDCl;) of compound 2.62

61G€°27
€65€"L1
S85E°Lq
619€L1
0681
SY.E°/]
68.€°L1
588/
616€°L1
256€°L1
9607/
k'L
852y L
0LEp L
95e° L]
LLEY L]
02SY'L
155"
6.5 L
6€Ly L
¥025" L1
1525°L1
615 L1
¥SSG L]
2855°/1

Cl

z Gm.g
151571
264G,

10

ppm
Figure 2.60 "H NMR (400 MHz, CDCl;) of compound 2.63.
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Figure 2.62 "H NMR (400 MHz, CDCls) of compound 2.65.
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Figure 2.63 "H NMR (400 MHz, CDCl;) of compound 2.67.
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Figure 2.65 "H NMR (400 MHz, CDCl;) of compound 2.68.
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Figure 2.66 °C NMR (100 MHz, CDCl;) of compound 2.68.

120

95



1802°L7
0€12' L]
8522 L
22ET L
€192°
%92 L1
v292' Ly
1022 L
2082 LN
6282 L
6997 L]

L1111

168

20671
826v"L

T =

Fooor
T 00v

10

ppm

Figure 2.67 "H NMR (400 MHz, CDCls) of compound 2.66.

0L08'v—

SL06'9~
¥226'9”
6262
i ENW
162€L
6107
602 L
86EY'L
18LY°L
Ly8Y'L
G667 L
18€G°L
1255°L

HO

woo._.

166't

=00'L

Faro

ppm

10

Figure 2.68 "H NMR (400 MHz, CDCls) of compound 2.69.
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Figure 2.69 'H NMR (500 MHz, CDCls) of 2.70.
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Figure 2.70 "H NMR (500 MHz, CDCl;) of 2.71.
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Figure 2.73 '"H NMR (500 MHz, CDCl;) of 2.76, 2.77, and 2.78.
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Figure 2.74 'H NMR (500 MHz, CDCls) of 2.29.
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Figure 2.75 'H NMR (400 MHz, CDCl;) of 2.23.
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Figure 2.76 "H NMR (400 MHz, CDCl;) of 2.31.
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Figure 2.77 "H NMR (400 MHz, CDCl;) of 2.35.
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Figure 2.78 "H NMR (400 MHz, CDCL) of 2.33.
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Figure 2.80 'H NMR (400 MHz, CDCl3) of 2.34.
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Figure 2.82 '"H NMR (400 MHz, CDCls) of 2.42.

10



1LE0°92~
L4992

0gl6'ce—
6250°Le—

L0 e
1L66°ELL
2c6EOVLE

L98L'YLE
owmm%:\

€0E0°ELE
h_.m_..m:Wr

Lye8'GLE
0€E0'9LE
SLOL9LE

mn_.m.omr
mvhm.om_v
089€9€1
EHY'oEL

Nwwv.mm_.
wav.mm_v
€ELE LS|
€26g° LS|
6L06°LS|
1926°LS}
2c8'6S
cly8'6SH

I
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Figure 2.84 "’F NMR (282 MHz, CDCl;) of 2.42.

104



Cl Cl

Cl Cl

~1:5 ratio

ue!

10

9 8 7 6 5 4 3 2

1 0
ppm
Figure 2.85 "H NMR (400 MHz, CDCls) of 2.43.
L i
22‘0 260 léO léO 1“10 120 160 8‘0 6‘0 4‘0 2‘0 6
ppm

Figure 2.86 °C NMR (100 MHz, CDCls) of 2.43.
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Figure 2.87 '"H NMR (400 MHz, CDCl;) of 2.44.
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Figure 2.88 °C NMR (100 MHz, CDCL) of 2.44.
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Figure 2.90 °C NMR (100 MHz, CDCL;) of 2.46.
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Figure 2.91 'H NMR (400 MHz, CDCl;) of 2.49.
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Figure 2.92 °C NMR (100 MHz, CDCL) of 2.49.
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Figure 2.93 '"H NMR (400 MHz, CDCl;) of 2.50.
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Figure 2.94 °C NMR (100 MHz, CDCL) of 2.50.
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Figure 2.95 "H NMR (400 MHz, CDCl;) of 2.51.
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Figure 2.96. "H NMR (400 MHz, CDCl;) of 2.53.
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Figure 2.97 'H NMR (400 MHz, CDCl;) of 2.54.
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Figure 2.98 "H NMR (400 MHz, CDCls) of 2.55.
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Figure 2.99 'H NMR (400 MHz, CDCL;) of 2.56.
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Figure 2.100 "H NMR (400 MHz, CDCl;) of 2.57.
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Figure 2.101. "H NMR (400 MHz, CDCl;) of 2.58.
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Figure 2.102 "H NMR (400 MHz, CDCl;) of 2.59.
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Figure 2.103 "H NMR (400 MHz, CDCl;) of 2.60.
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Figure 2.104. °C NMR (125 MHz, CDCLs) of 2.60.
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CHAPTER THREE

Lithium Lewis Acid Generation of Vinyl Cations and their Intramolecular C—H Insertion
and Intermolecular Friedel-Crafts Reactions
Benjamin Wigman, Stasik Popov, Alex L. Bagdasarian, Brian Shao, Tyler R. Benton, Chloé G.
Williams, Steven P. Fisher, Vincent Lavallo, K. N. Houk, and Hosea M. Nelson J. Am. Chem.
Soc. 2019, 141, 9140-9144.
Alex L. Bagdasarian, Stasik Popov, Benjamin Wigman, Wenjing Wei, Woojin Lee, and Hosea

M. Nelson Org. Lett. 2020, 22, 7775-7779.

3.1 Abstract

Here we report the surprising discovery that high-energy vinyl carbocations can be
generated under strongly basic conditions, and that they engage in intramolecular sp> C—H
insertion reactions in the presence of catalytic quantities of commercially available electron
deficient borate salts or easily accessible, benchtop stable 3,5-bistrifluoromethylphenyl urea
species. This approach relies on the unconventional combination of lithium hexamethyldisilazide
base and triphenylmethylium tetrakis(pentafluorophenyl)borate (TrF,) or urea catalyst. These
reagents form a catalytically active lithium species that is Lewis acidic enough to ionize strong
C—O bonds. This enables the application of vinyl cation C—H insertion reactions to heteroatom-
containing substrates, and expands upon the synthetic utility of vinyl cation C—C bond forming

reactions.
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3.2 Introduction

Through a multitude of both synthetic and experimental studies, carbocations have played
a large role in the development of modern organic chemistry."* Such species, which contain an
electron deficient, positively charged carbon center, are typically generated under Bronsted
acidic or Lewis acidic conditions.” > This mode of generation is popular for all different types of
carbocations, including vinyl cations.®® While Bronsted acidic and highly oxidizing “magic
acid,” and potent electrophiles, like silylium ions, are useful in generating such reactive
carbocations for the conversion of hydrocarbons, they hinder the application of these strategies in
the syntheses of heteroatom-rich complex molecules, such as those utilized for materials and

pharmaceuticals.* '

These limitations were evident in our own studies as well (see Chapter 2). In
order to overcome these challenges, we desired to find a mode of ionization that did not rely on

the hyper-electrophilic silylium ion.

a Polymerization of olefins with Li-carborane salts

N [LII*[CB41(CHg)12]™ (cat) . M\
1,2-DCE n

3.1
b Intramolecular 2-alkynylaniline cyclization to indole
Ph
FZ [Li[*[CB14H 12~ (cat)
toluene, 120 °C, 24h mph
NH, N
3.2 33 f

¢ Friedel-Crafts alkylation of benzene with benzyl alcohol
[LiI*[B(CgF )4l (cat)

OH .
benzene, 120 °C, 24 h

3.4 3.5

Figure 3.1 Previous application of Li-Lewis acids for cation generation
We were inspired by work from Michl and Uchiyama that showed how lithium cations
were powerful enough Lewis acids to activate alkenes, alkynes and alcohols.'"'* Michl was able
to apply Li-carborane salts to promote electrophilic radical polymerizations of simple olefins 3.1

(Figure 3.1a)."" Uchiyama and coworkers showed that Li-carborane salts are strong m-acids and
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can promote Larock type cyclization of 2-alkynylanilines 3.2 to give indole products 3.3 (Figure
3.1b)."”> Furthermore, they also showed that lithium tetrakis(pentafluorophenyl)borate (LiFa0)
could abstract a hydroxide group from benzyl alcohol (3.4) and the ensuing benzylic cation could

undergo Friedel-Crafts trapping by benzene to give diphenylmethane (3.5) (Figure 3.1c¢).

3.3 Transannular C-H Insertion of Cyclooctenyl Triflates Under Basic Conditions

To evaluate this hypothesis, we investigated cyclooctenyl triflates (e.g. 3.6, Figure 3.2a)
that undergo facile ionization by silylium cations to form vinyl carbocations.® These cations
subsequently engage in transannular C—H insertion reactions to generate bicyclooctane product
3.7 in excellent yield (Figure 3.2b). We postulated that nucleophilic attack of a lithium base on
[Ph;C] TWCA] would yield the active [Li] [WCA] catalyst (Figure 3.2a). Catalyst-mediated
triflate abstraction would then afford vinyl cation 3.8, which would undergo transannular C—H
insertion to form bicyclic secondary cation 3.9. Importantly, we envisioned that deprotonation of

this cation by a lithium base would generate the desired alkene products 3.10 and concomitantly

a Proposed catalytic cycle b Transannular C-H insertion reactions of cyclooctenyl triflate
[Ph3C]+ [WCA]~
[Li]* [Base]‘ OTf
[Ph3CJ*[CHB41Cly1]~ (2 mol%)
’ Et3SiH (1.2 equiv)
N _ >
3.10 [L|]+ [L|] [OTf]
[WCA]~ 36 3.7
[Li]*[Base]” triflate 92% yield
terminal abstraction
deprotonation
[WC A] [WCA]
OTf
[PhsCI*[WCA]~ (cat)
ydrlde LiX @
migraton 4 38 | | tmmmmmmmmmmmmsmsmmmmmemenes >
© |nsert|on
[WCA] 3.6 3.10
3 9

Figure 3.2 Mechanistic hypothesis of Li-WCA vinyl cation reactions (a) and reactions of cyclooctenyl triflate (b)
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regenerate the active [Li] [WCA] catalyst.

In early attempts, we looked at several lithium bases, trityl-WCA catalysts, and general
reaction parameters in order to find a good catalytic platform. We were gratified to find that
using a catalytic amount (5 mol%) of [Ph;C]'[HCB,;Cl;;] and 1.5 equivalents of LIHMDS base
in o-difluorobenzene (0-DFB) solvent produced a mixture of bicyclooctene products 3.10 in a
combined yield of 90% (Table 3.1, entry 1). Remarkably, deleterious nucleophilic quenching or
elimination products were not observed despite the utilization of the highly basic
hexamethyldisilazide anion in the presence of a high-energy, reactive vinyl cation intermediate.
Chlorinated solvents, which are traditionally unstable under silylium catalysis, were also
competent media for these reactions, albeit providing the products in lower yield (Entry 2).'
Pleasingly, commercially available [PhsC] [B(C¢Fs)s]” was superior in this reaction, providing
the bicyclooctene products 3.10 in 98% yield in 30 minutes at room temperature, obviating the
need for the less accessible [HCB,;Cl;;] anion (Entry 3). Without catalyst, or without lithium
ions, the reaction failed to yield any insertion products (Entries 4-6). Notably, [Li] [B(CsFs)]
could also be utilized instead of using a trityl precatalyst, although this salt is not commercial
(entry 7). Moreover, unlike silylium-mediated reductive coupling conditions, here we generate

olefinic products that can be further functionalized.'>'®

OTf
catalyst, base EQ Egj Egj
> + +
solvent (0.1M), 30 °C, 0.5 hr

3.6 3.10

entry cat. catalyst loading  base (1.5 equiv) solvent yield
1 [Ph3CI*[CHB44Cly4]~ 5 mol% LiIHMDS o-DFB 90%
2 [PhsCl*[CHB41Cly4]~ 5 mol% LiIHMDS DCM 59%
3 [Ph3CI*[B(CgF5)al™ 5 mol% LiIHMDS o-DFB 98%
4 none 0 LiIHMDS o-DFB 0%
5 [PhsCT*[B(CeFs)al™ 5 mol% NaHMDS o-DFB 0%
6 [PhsCI*[B(CgFs)al™ 5 mol% KHMDS o-DFB 0%
7 [LiT*[B(CgF5)4]™ 5 mol% LiIHMDS o-DFB 84%

Table 3.1 Optimization table for transannular C—H insertion
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With optimized conditions in hand, we desired to evaluate the scope of this reaction.
Specifically, we sought to validate our hypothesis that the use of Li" ions would improve the
substrate compatibility of vinyl cation reactions. To this end, silyl ether-containing cyclooctenyl
triflate 3.11 was synthesized and exposed to slightly modified Li-WCA conditions to yield silyl
enol ether products 3.12 in 92% overall yield (Figure 3.3a). Furthermore, my colleagues have
synthesized and optimized the conditions for transannular insertion reactions of 3-
arylcyclooctenyl triflates 3.13 to give predominantly bicyclic styrene products 3.14 in a 48-97%
total yield of olefin isomers (Figure 3.3b).!” These reactions allowed us to expand our scope to

substrates containing silyl ether, morpholine, thioether, and anisole functional groups.

a 2-substituted cyclooctenyltriflate

oTf OTBS
0TBS [Ph3CJ*[HCB1Cl4]~ (5 mol%) \
LiHMDS (1.5 equiv)
toluene, 30 °C -
3.1 3.12

92% yield (2:1 E:2)
b 3-aryl cyclooctenyltriflates

OTf Ar

[Ph30]+[B(C6F5)4]_ (5 mol%)
LiHMDS (1.5 equiv)
1,2-difluorobenzene, 30 °C o
Ar

3.13 3.14
48-97% total yield of isomers

K@ﬁoms ﬂ@ )<©/\3t-su %©/0Me

Figure 3.3 Cyclooctenyl triflate scope in the Li-WCA catalyzed C—H insertion reactions of vinyl cations

3.4 Intramolecular C—H Insertion Annulation Reactions Under Basic Conditions

While my colleagues were developing the transannular C—H insertion reactions of
cyclooctenyl triflates, I pondered if the scope of this C—H insertion chemistry could be expanded
to annulation reactions. To this end, alkylated benzosuberone-derived triflates 3.15 with tethered

alkyl chains stood out as potential candidates for several reasons: 1) The 7-membered ring
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triflate would have a low barrier for vinyl cation formation, 2) the possibility of insertion into 1°
carbon C—H bonds could be probed and, 3) the potential for intramolecular, not just transannular
C—H insertion could be investigated.'"® Furthermore, the vinyl carbocation intermediates 3.16
derived from these vinyl triflates (3.15) are unable to undergo deprotonation/elimination

reactions to yield undesired alkyne/allene products (Figure 3.4)."” Gratifyingly, upon exposure to

Ti0 A: [PhCI*[B(CsFs)a]~ (5 mol%)
LiIHMDS (1.5 equiv)
— DCM (0.01M), 30 °C

R B: [PhaCI*[B(CgFs)al~ (1o mol%)
X LiHMDS (1.1 equiv)

cyclohexane (0.1M), 70 °C L

3.15
L) Q\ " D
(o) ‘ .
3.17 3.18 3.1 9
84% yield 68% yleld 48% yleld

(3.3:1 tetra tri)

3.21 3.22, X = F, 72% yield I 324 3.5 _
66% yield 3.23, X = Cl, 82% yield > 3.25 3.26, R = Me, 77% yield
(8:1 trittetra) B y 96 /"Ay'eld 83 /°Ay'e|d 3.27,R = I—A 96% vield
B

Figure 3.4 Alkylated benzosuberone triflate C-H annulation scope

10 mol% of [PhsC]'[B(CeFs)s] and 1.1 equivalents of LiHMDS, propylbenzoxepinyl triflate
afforded tricycle 3.17 in 84% yield (3.3:1 isomer ratio) after two hours (Figure 3.4). Further, 2-
substituted pinacol boronic ester and anisole benzosuberone derivatives were successfully
converted to their corresponding tricyclic styrene products 3.18 and 3.19 in 68% and 48% yield
respectively. C—H insertion into a benzylic 2° C—H bond was also possible, offering styrene 3.20
in 76% yield in 3.3:1 d.r. Protected aniline-containing triflate also reacted smoothly to give
tricycle 3.21 in 66% yield. Similarly, meta-halogenated benzosuberonyl triflates provided the
desired styrene products (3.22 and 3.23) in 72% and 82% yield. Functionalization at other
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positions of the fused aryl system afforded tricyclic styrene products (3.24-3.27) in good to
excellent yields (77-96%). These examples not only further highlight the vastly improved
heteroatom compatibility of these conditions, but also demonstrate the C—H insertion reactivity

of benzylic vinyl cations into 1° as well as 2° C—H bonds.

3.5 Urea-Catalyzed Vinyl Carbocation Formation

While we were really excited about the newfound substrate tolerance of the LiF,y system
outlined above, we sought out new catalysts for this transformation that have more tunable
groups on them than on the Fy anion. The end goal for this research program is to find a
catalytic system that can be tuned to give C—H insertion products chemoselectively or ultimately,
enantioselectively. To this end, we looked towards hydrogen-bonding catalysts, such as
thioureas. These readily available and highly tunable scaffolds have found success in promoting
the formation of cationic intermediates.”’ > Specifically, we were inspired by Reisman, Doyle,
and Jacobsen’s use of thioureas to generate resonance-stabilized tricoordinate carbocations that
engage in highly-selective bond-forming processes.”* The same group later showed that
squaramides, combined with trimethylsilyl triflate (TMSOTY), enhance the electrophilicity of the
silicon center via triflate binding.”® Building upon these reports, we posited that hydrogen-
bonding catalysts could perhaps ionize vinyl triflates to generate vinyl cations.

We began proof-of-concept studies in the context of the C—H insertion reactions of
propylated benzosuberonyl triflate 3.28, since we saw great success with this substrate in the
context of Li-WCA systems (Figure 3.5). After some optimization, we found that both the
presence of a lithium base and a hydrogen-bonding catalyst is necessary for this transformation

to take place.”® Other key findings included that the 3,5-bisCF; substituents are key to the
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TfO
catalyst 3.29 or 3.30 (20 mol%)
LiHMDS (1.5 equiv)
O‘ 0-DFB (0.0167 M) O
3.28 3.27

96% yield with 3.29
72% yield with 3.30

3

CF3 CF3 FsC o io CF
o
FsC NJ\N CF N N
3 H H 3 F,C

3.29 3.30

CF,
Figure 3.5 Optimized conditions for C-H insertion with hydrogen-bonding catalysts

reactivity of these catalysts. Under these conditions, both the urea 3.29 and squareamide 3.30

catalysts furnished the desired C—H insertion product 3.27 in good yield. Notably, the 96% yield

obtained with urea is the same as the yield we saw with the LiF catalytic system (Figure 3.4).

To further develop the scope of this reaction, urea-catalyzed Friedel-Crafts reactions of
vinyl triflates were explored. Here, we decided to use the optimized reaction conditions from the
above insertion chemistry as a starting point. I found a large scope of both triflates and arenes to
be tolerant of this transformation. A silylated pyrrole gave moderate selectivity for vinylation of
the C3 position (Figure 3.6a, 3.31).”” Electron deficient vinyl triflates were tolerated, reacting
with anisoles and xylenes in moderate to good yields (52-76%, 3.32-3.34). The
trifluoromethylated vinyl triflate also reacted with benzene or a bromobenzene derivative
yielding vinylated arenes in high yields (3.35, 3.36). More electron rich aromatic nucleophiles,
such as dimethoxybenzene, underwent smooth coupling with a variety of halogenated vinyl
triflates in good yields (3.37-3.39). There was minimal decrease in efficiency when performing
the reaction on 1-gram scale with the iodinated vinyl triflate, giving styrene 3.39 in 64% yield.
Furthermore, cyclooctenyl triflate 3.6 was observed to undergo a transannular C—H insertion,

Friedel-Crafts cascade with 4-methylanisole giving alkylated arene 3.40 in 57% yield (Figure
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3.6b). Here, two C—C bonds, a 5,5-fused ring system, and a quaternary carbon center were all

forged in a single step. Notably, all of the reactions

a Friedel-Crafts reaction of vinyl triflates
TfO catalyst 3.29 (10 mol%)
LiIHMDS (2.0-3.0 equiv)
Ar—H (5.0 equiv)

o-DFB or hexanes, 30-70 °C

-
TfO

3.31 3.32 3.33 3.34

82% yield (2.3:1 C3:C2) 67% yield (13:1 r.r.) 52% yield 76% yield
tBu OMe OMe
MeO MeO
O ) O ) O ) O N
F3;C F3C
3.35 3.36 3.37, X = F, 70% vyield 3.39
80% yield 84% yield 3.38, X = Br, 67% yield 67% yield

(64% vyield, gram scale)

b Transannular insertion followed by Friedel-Crafts

OTf catalyst 9 (10 mol%)
LiIHMDS (2.4 equiv)
4-methylanisole (2.0 equiv) MeO

0-DFB, 30 °C

3.6 via <I>
3.40
1 mmol 47% yield
Figure 3.6 Li-urea catalyzed Friedel-Crafts reactions

outlined in Figure 3.6 were performed on the bench and required neither scrupulous drying of
substrates nor catalysts. This is one advantage of this Li-urea system over all previous examples.
All of the reactions done previously in this chapter and in Chapter 2 were performed in the
glovebox. Furthermore, when comparing these reactions to the Friedel-Crafts reactions in Figure
2.4, we can see that the substrate tolerance is much broader than with silylium-carborane

catalysis.
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After developing the intermolecular Friedel-Crafts chemistry, I assisted my colleagues in
designing and synthesizing some substrates for intramolecular C—H insertion reactions. Here, we
targeted tetrasubstituted acyclic vinyl triflates that had relatively low ionization barriers and that

could not eliminate to alkyne/allene products (Figure 3.7a)."” We then

a C-H insertion reactions for tetrasubstituted enol triflates

RZ
catalyst 3.29 or 3.30 (20 mol%)
[LiT*[X]~ (1.5-5 equiv)
o-DFB, 70-90 °C
~ (0)
(jp \" o
CF; MeO,C Ph
3.41 3.42 3.43 3.44 3.45
61% yield 90% yield 90% yield 77% yield 61% yield
(LIHMDS) (LiH) (LiH) (LiH) (LiOBu)

b C—H insertion reactions for vinyligous acy! triflates

catalyst 3.30 (20 mol%)
CO,R LiH (3.0-5.0 equiv)
o-DFB, 70 °C CO,R
3.4

3.46

R = Me, tBu 6 examples, 33 64% yield
R'= Me, CI, OMe, OMOM, Bpin

Figure 3.7 Li-urea catalyzed intramolecular C—H insertion reactions of viny! triflates

sought to validate our hypothesis that these readily accessible organocatalysts were able to
tolerate various functional groups in the context of vinyl cation C—H insertion reactions. To
explore the functional group tolerance, a variety of alkylated styrenyl triflates were prepared
(Figure 3.7). We were quite pleased to find that a substrate bearing a pyridine substituent was
competent in this transformation, yielding cyclopentenyl pyridine 3.41 in 61 % yield. Substrates
bearing electron-withdrawing substituents, however, resulted in products with poor olefin isomer
ratios. Upon further optimization, we discovered that utilization of LiH allowed for high yielding
reactions with excellent olefin selectivity for these substrates (3.42—3.44). Moreover LiOfBu was

also a competent base for this transformation, allowing for formation of dihydrofuran 3.45 in 61
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% yield, via insertion into an ether tether. To the best of our knowledge, this example showcases
the first heterocycle synthesis from a C—H insertion reaction of a vinyl cation. Furthermore, my
colleagues have also demonstrated that vinyligous acyl triflates 3.46 (easily made from the
corresponding [-ketoester) can undergo moderate yielding C—H insertion reactions using similar
conditions (with LiH instead of LiHMDS) to give non-conjugated enoate product 3.47 in 33—

64% yield.

3.6 Mechanistic Studies

With our scope studies in hand, we began our investigation into the mechanistic
underpinnings of this transformation. Several experiments were conducted to support our
proposed reaction pathway. Because hexamethyldisilazane has been previously used as a silyl
transfer reagent, we sought to discount the formation of silylium intermediates.*® To this end, we
showed that these reactions work with a stoichiometric amount of what is believed to be the
active catalyst in system: LiFy, and Li-urea (Figure 3.8a, 3.8b). In the event, subjecting
propylatedbenzosuberonyl triflate 3.28 to a stoichiometric amount of LiFy led to full
consumption of the vinyl triflate and formation of LiOTf. Furthermore, fully reduced tricyclic
product 3.48 was observed as one component in a mixture of organic products with varying
degrees of unsaturation (Figure 3.8a). Exposure of vinyligous acyl triflate 3.49 to a
stoichiometric amount of Li-urea 3.50 (synthesized from deprotonation of parent urea 3.29) led
to a similar result wherein full consumption of starting material was observed as well as
formation of LiOTf and enoate 3.51 in 22% yield (Figure 3.8b). To confirm the intermediacy of a

vinyl cation species in our system
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Figure 3.8 MechaFistic studies probing vinyl cation_generation under basic conditions
despite the strongly basic conditions, we synthesized 2-phenyl vinyl triflate 3.52, as 2-substituted
cyclic vinyl cations have been previously reported to undergo ring-contractive rearrangement to
exocyclic vinyl cations (Figure 3.8c).”” Under the reaction conditions, we were pleased to
observe formation of ring-contracted product 3.54 and transannular insertion product 3.53. The
cycloheptene derivative 3.54 is a result of C-H insertion into cyclohexane from the ring-
contracted exocyclic vinyl cation 3.56. We have also done some mechanistic studies to
investigate the concerted vs. stepwise nature of the C—H insertion event, but the results suggested
that this is highly substrate dependent. For example, we found that in the case of benzosuberonyl
triflates, a concerted C—H insertion is more likely, while for vinyligous acyl triflates a stepwise

: . 30,31
“rebound” mechanism is proposed.”™
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3.7 Conclusion

In conclusion, we showed that it is possible to generate kinetically persistent vinyl
carbocations in highly basic media. Importantly, this catalytic regime represents a new strategy
in synthetic chemistry where lithium bases can be utilized to fuel [Li]'[WCA] catalyzed,
intramolecular C—H insertion reactions of carbocations. We have also developed a newfound
utility for widespread hydrogen-bonding catalysts such as ureas and squareamides. This study
highlights the power of main group-catalyzed and organocatalyzed C—H functionalization
reactions in a field dominated by transition metal-based systems. The easily accessible catalysts,
simple reaction protocols described above, and the vastly improved functional group
compatibility render this strategy an attractive approach to build complex molecules through the

intermediacy of vinyl cations.

133



3.8 Experimental Section
3.8.1 Materials and Methods

Unless otherwise stated, all reactions were performed in an MBraun glovebox under
nitrogen atmosphere with < 0.5 ppm O, levels. All glassware and stir-bars were dried in a 160 °C
oven for at least 12 hours and dried in vacuo before use. All liquid substrates were either dried
over CaH, or filtered through dry neutral aluminum oxide. Solid substrates were dried over P,0:s.
All solvents were rigorously dried before use. Benzene, o-dichlorobenzene, and toluene were
degassed and dried in a JC Meyer solvent system and stored inside a glovebox. Cyclohexane,
fluorobenzene, and n-hexane were distilled over potassium. Chlorobenzene was distilled over
sodium. o-Difluorobenzene was distilled over CaH,. Pentane was distilled over sodium-
potassium alloy. Chloroform was dried over CaH, and stored in a glovebox. Triethylsilane and
triisopropylsilane were dried over sodium and stored inside a glovebox. Closo-Carborane
catalysts were prepared according to literature procedure.”’” [Li] [B(CsFs)s] and [K]'[B(CeFs)s]
salts were synthesized according to literature procedure.”> Hydrogen-bonding catalysts were
prepared according to original or modified literature procedures.’® Preparatory thin layer
chromatography (TLC) was performed using Millipore silica gel 60 F,s4 pre-coated plates (0.25
mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230-400 mesh)
was used for flash chromatography. AgNOs-Impregnated silica gel was prepared by mixing with
a solution of AgNOs (150% v/w of 10% w/v solution in acetonitrile), removing solvent under
reduced pressure, and drying at 120 °C. NMR spectra were recorded on a Bruker AV-300 ('H,
F), Bruker AV-400 (‘H, "°C, "°F), Bruker DRX-500 ('H), and Bruker AV-500 (‘H, °C). 'H
NMR spectra are reported relative to CDCl; (7.26 ppm) unless noted otherwise. Data for 'H

NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling constant (Hz),
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integration. Multiplicities are as follows: s = singlet, d = doublet, t = triplet, dd = doublet of
doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, td = triplet of doublet, m =
multiplet. ?C NMR spectra are reported relative to CDCl; (77.0 ppm) unless noted otherwise.
GC spectra were recorded on an Agilent 6850 series GC using an Agilent HP-1 (50 m, 0.32 mm
ID, 0.25 mm DF) column. GCMS spectra were recorded on a Shimadzu GCMS-QP2010 using a
Restek XTI-5 (50 m, 0.25 mm ID, 0.25 mm DF) column interface at room temperature. IR
Spectra were record on a Perkin Elmer 100 spectrometer and are reported in terms of frequency
absorption (cm”). High resolution mass spectra (HR-MS) were recorded on a Waters
(Micromass) GCT Premier spectrometer, a Waters (Micromass) LCT Premier, or an Agilent GC
EI-MS, and are reported as follows: m/z (% relative intensity). Purification by preparative HPLC
was done on an Agilent 1200 series instrument with a reverse phase Alltima C;g (5m, 25 cm

length, 1 cm internal diameter) column.

3.8.2 Experimental Procedures for LiF,, Catalysis

Spectra for substrates in Figure 3.4 are reported in the adapted article. Full synthetic
procedures for substrates in Figure 3.4 are reported in the adapted article. Synthesis and
spectra of substrates and products for Figure 3.3b are reported in the adapated article.
Synthesis of triflate 3.6 is reported in Chapter 2.

3.8.2.1 Preparation of Vinyl Triflate Substrates

TfO OH

(Z£)-2-(hydroxymethyl)cyclooct-1-en-1-yl trifluoromethanesulfonate (3.57). Synthesized

according to known procedures. Spectral data match those reported in the literature.>
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TfO OTBS

(Z£)-2-(((tert-butyldimethylsilyl)oxy)methyl)cyclooct-1-en-1-yl trifluoromethanesulfonate
(3.11). In a 10 mL roundbottom flask, imidazole (809 mg, 11.9 mmol, 2.5 equiv.) and alcohol
3.57 (1.37 g, 4.75 mmol, 1 equiv.) were dissolved in anhydrous dimethylformamide (1.37 mL).
TBSCI (860 mg, 5.70 mmol, 1.2 equiv.) was added and the reaction was stirred for 24h at room
temperature. The reaction was diluted with water (10 mL) and the product was extracted out of
the aqueous layer with diethyl ether (3 x 10 mL). The organics were washed with water (5 x 20
mL) followed by brine (1 x 20 mL), dried over magnesium sulfate, filtered and concentrated to
give crude product as colorless oil. The crude was purified by silica flash column
chromatography (100% hexanes to 5% ethyl acetate in hexanes) to give 3.11 as a colorless oil
(1.29 g, 67%).

'H NMR (500 MHz, CDCl3) § 4.27 (s, 2H), 2.52 — 2.45 (m, 2H), 2.37 — 2.28 (m, 2H), 1.73 —
1.64 (m, 4H), 1.57 — 1.50 (m, 4H), 0.90 (s, 9H), 0.07 (s, 6H).

BC NMR (126 MHz, CDCls) & 143.9, 132.1, 118.4 (q, 'Jer = 319.7 Hz), 59.5, 29.9, 29.2, 27.8,
27.1,26.2,25.8,25.8, 18.3, -5.6.

F NMR (282 MHz, CDCl;) & —74.9.

FTIR (Neat film NaCl): 2957, 2930, 2858, 1686, 1465, 1411, 1362, 1206, 1140, 1085, 918, 835,
615.

HRMS (GCT-CI): Calculated for [C;sH290F304SSi + H]: 403.1586; Measured: 403.1602.
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TfO

O

|
4-iodo-8-propyl-6,7-dihydro-SH-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.58).
In a flame dried 100 mL roundbottom flask was suspended sodium carbonate (436 mg, 4.11
mmol, 3 equiv.) in anhydrous methylene chloride (14 mL). To this suspension was added
corresponding ketone (450 mg, 1.37 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (426 mg, 1.51 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to r.t. The reaction was monitored by TLC and every 12 hours that the
reaction wasn’t done, triflic anhydride (426 mg, 1.51 mmol, 1.10 equiv.) and sodium carbonate
(436 mg, 4.11 mmol, 3 equiv.) were added. Upon completion of the reaction by TLC, the
reaction was quenched with water (15 mL). The layers were separated and the product was
extracted with diethyl ether (3 x 20 mL). The combined organics were dried over magnesium
sulfate, filtered and concentrated to give the crude material as brown oil. The crude product was
purified by silica flash column chromatography (25% dichloromethane in hexanes) to give pure
vinyl triflate 3.58 as a yellow oil (298 mg, 47%).
'H NMR (500 MHz, CDCl3) & 7.82 (dd, J= 7.9, 1.2 Hz, 1H), 7.34 (dd, J= 7.8, 1.2 Hz, 1H), 6.97
(t, J=17.8 Hz, 1H), 2.94 (t, J = 7.0 Hz, 2H), 2.56 — 2.28 (m, 2H), 2.19 (p, J = 7.2 Hz, 2H), 1.89
(t,J=7.2 Hz, 2H), 1.65 — 1.55 (m, 2H), 1.01 (t, /= 7.4 Hz, 3H).
C NMR (126 MHz, CDCls) § 143.2, 139.8, 139.0, 136.6, 134.9, 127.6, 126.6, 118.3 (q, 'Jer =
320.3 Hz), 100.5, 36.6, 34.1, 33.3, 28.2, 21.3, 14.1.

F NMR (376 MHz, CDCl;) & —74.2.
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FTIR (Neat film NaCl): 2963, 2936, 2865, 1551, 1452, 1411, 1278, 1245, 1115, 975, 859, 845,
787, 613.

HR-MS (EI-MS): Calculated for C;sH6F3103S: 459.9817; measured: 459.9814.

TfO

A

3-bromo-8-propyl-6,7-dihydro-5SH-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.59).
In a flame dried 100 mL roundbottom flask, sodium carbonate (628 mg, 5.90 mmol, 3.00 equiv.)
was suspended in anhydrous methylene chloride (18 mL). To this suspension, corresponding
ketone (0.556 g, 2.00 mmol, 1.00 equiv.) was added, and the reaction was cooled to 0 °C. Triflic
anhydride (400 pL, 2.4 mmol, 1.20 equiv.) was added dropwise and the reaction was allowed to
warm to room temperature. The reaction was monitored by TLC and every 12 hours that the
reaction was not complete additional triflic anhydride (400 pL, 2.4 mmol, 1.20 equiv.) and
sodium carbonate (628 mg, 5.90 mmol, 3.00 equiv.) were added. Upon completion by TLC, the
reaction was quenched with 50 mL of saturated aqueous sodium bicarbonate solution. The crude
product was then extracted with diethyl ether (3 x 50 mL). The combined organic layers were
dried over magnesium sulfate, filtered, and then concentrated to give the crude compound. The
crude product was purified by silica flash chromatography (100% hexanes to 1% ethyl acetate in
hexanes) to give pure vinyl triflate 3.59 as a white solid (628 mg, 77%).

'H NMR (500 MHz, CDCl;) & 7.45 — 7.38 (m, 2H), 7.24 (d, J = 8.2 Hz, 1H), 2.66 (t, J= 7.2 Hz,
2H), 2.42 — 2.30 (m, 2H), 2.19 (p, /= 7.2 Hz, 2H), 1.92 (t, /= 7.2 Hz, 2H), 1.63 — 1.55 (m, 2H),

1.01 (t,J=7.3 Hz, 3H).
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C NMR (126 MHz, CDCly) & 143.0, 138.7, 136.4, 132.8, 131.9, 129.4, 128.0, 123.0, 118.3 (q,
'Jer=320.1Hz), 34.2,34.1,31.5,28.1,21.3, 14.1.

F NMR (282 MHz, CDCl;) & ~74.2.

FTIR (Neat film NaCl): 2962, 2937, 2867, 1663, 1589, 1477, 1409, 1205, 1138, 1085, 961, 858,
817, 607.

HR-MS (EI-MS): Calculated for C;sH,¢BrF;03S: 411.9956; measured: 411.9954.

e

2-(4-methoxyphenyl)-8-propyl-6,7-dihydro-SH-benzo[7]annulen-9-yl

trifluoromethanesulfonate (3.60). In a flame dried 100 mL roundbottom flask was suspended
sodium carbonate (188 mg, 1.77 mmol, 3 equiv.) in anhydrous methylene chloride (7 mL). To
this suspension was added corresponding ketone (182 mg, 0.59 mmol, 1.00 equiv.) and the
reaction was cooled to 0 °C. Triflic anhydride (183 mg, 0.65 mmol, 1.10 equiv.) was added
dropwise at 0 °C and the reaction was allowed to warm up to room temperature. The reaction
was monitored by TLC and every 12 hours that the reaction was not complete, additional triflic
anhydride (183 mg, 0.65 mmol, 1.10 equiv.) and sodium carbonate (188 mg, 1.77 mmol, 3
equiv.) were added. Upon completion of the reaction by TLC, the reaction was quenched with
water (10 mL). The layers were separated and the product was extracted with diethyl ether (3 x
10 mL). The combined organics were dried over magnesium sulfate, filtered and concentrated to
give the crude material as brown oil. The crude product was purified by silica flash column
chromatography (5% diethyl ether in hexanes) to give pure vinyl triflate 3.60 as colorless oil (75

mg, 29%).
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'H NMR (500 MHz, CDCl3) & 7.56 (d, J = 2.2 Hz, 1H), 7.53 — 7.47 (m, 2H), 7.46 (dd, J = 7.9,
1.9 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.72 (t, J = 7.1 Hz,
2H), 2.41 (dd, J= 8.7, 6.9 Hz, 2H), 2.21 (p, J= 7.2 Hz, 2H), 1.97 (t, J = 7.2 Hz, 2H), 1.60 (sex, J
= 8.0 Hz, 2H), 1.03 (t, J = 8.0 Hz, 3H).

C NMR (126 MHz, CDCls) § 159.2, 139.7, 139.3, 138.9, 135.7, 134.1, 133.0, 129.4, 127.9,
127.3, 124.78, 118.4 (q, 'Jo ¢ = 320.3 Hz), 114.3, 55.3, 34.2, 34.1, 31.2,28.2, 21.3, 14.1.

F NMR (376 MHz, CDCl;)  —74.2.

FTIR (Neat film NaCl): 2961, 2937, 2868, 1610, 1520, 1489, 1410, 1246, 1210, 1140, 973, 826,
615.

HR-MS (EI-MS): Calculated for CH3F304S: 440.1269; measured: 440.1273.

QI\Q TfO
|
B

8-propyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,7-dihydro-5H-benzo[7]annulen-

9-yl trifluoromethanesulfonate (3.61). In a flame dried 100 mL roundbottom flask was
suspended sodium carbonate (213 mg, 2.01 mmol, 3 equiv.) in anhydrous methylene chloride (7
mL). To this suspension was added corresponding ketone (220 mg, 0.67 mmol, 1.00 equiv.) and
the reaction was cooled to 0 °C. Triflic anhydride (208 mg, 0.74 mmol, 1.10 equiv.) was added
dropwise at 0 °C and the reaction was allowed to warm up to room temperature. The reaction
was monitored by TLC and every 12 hours that the reaction was not complete, an additional
batch of triflic anhydride anhydride (208 mg, 0.74 mmol, 1.10 equiv.) and sodium carbonate

(213 mg, 2.01 mmol, 3 equiv.) were added. Upon completion of the reaction by TLC, the
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reaction was quenched with water (10 mL). The layers were separated and the product was
extracted with diethyl ether (3 x 10 mL). The combined organics were dried over magnesium
sulfate, filtered and concentrated to give the crude material as red oil. The crude product was
purified by silica flash column chromatography (5% diethyl ether in hexanes) to give pure vinyl
triflate 3.61 as yellow oil (160 mg, 52%).

'H NMR (500 MHz, CDCl;) & 7.82 (s, 1H), 7.70 (dd, J = 7.6, 1.2 Hz, 1H), 7.23 (d, J = 7.5 Hz,
1H), 2.70 (t, J = 7.1 Hz, 2H), 2.48 — 2.30 (m, 2H), 2.19 (p, J = 7.2 Hz, 2H), 1.90 (t, J = 7.2 Hz,
2H), 1.58 (sex, J=7.6 Hz, 2H), 1.34 (s, 12H), 1.01 (t,J= 7.3 Hz, 3H).

C NMR (126 MHz, CDCls) § 144.0, 139.6, 135.3, 135.3, 133.2, 133.0, 128.3, 118.3 (q, 'Jer =
320.2 Hz), 83.9, 34.1, 33.9, 31.8, 28.0, 24.8, 21.3, 14.1. Note: Carbon attached to boron not seen
due to relaxation on B.

F NMR (376 MHz, CDCl;) & —74.2.

"B NMR (128 MHz, CDCl;) § 30.2.

HR-MS (EI-MS): Calculated for C,;HsBF303S: 460.1703; Measured: 460.1712.

TfO

@

8-propyl-6,7-dihydro-5H-benzo|[7]annulen-9-yl trifluoromethanesulfonate (3.28). In a flame
dried 100 mL round bottom flask was suspended sodium carbonate (563 mg, 5.31 mmol, 3
equiv.) in anhydrous methylene chloride (16 mL). To this suspension was added corresponding
ketone (358 mg, 1.77 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C. Triflic anhydride
(549 mg, 1.95 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction was allowed to

warm up to r.t. The reaction was monitored by TLC and every 12 hours that the reaction was not
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complete, additional triflic anhydride anhydride (549 mg, 1.95 mmol, 1.10 equiv.) and sodium
carbonate (563 mg, 5.31 mmol, 3 equiv.) were added. Upon completion of the reaction by TLC,
the reaction was quenched with water (10 mL). The layers were separated and the product was
extracted with diethyl ether (3 x 30 mL). The combined organics were dried over magnesium
sulfate, filtered and concentrated to give the crude material as dark red oil. The crude product
was purified by silica flash column chromatography (2% ethyl acetate in hexanes) to give pure
vinyl triflate 3.28 as yellow oil (540 mg, 91%).

'H NMR (400 MHz, CDCls) § 7.42 — 7.34 (m, 1H), 7.31 — 7.26 (m, 2H), 7.23 (dt, J = 4.6, 3.2
Hz, 1H), 2.70 (t, J = 7.1 Hz, 2H), 2.43 — 2.34 (m, 2H), 2.20 (p, J = 7.2 Hz, 2H), 1.93 (t, J=7.2
Hz, 2H), 1.65 — 1.55 (m, 2H), 1.02 (t, /= 7.3 Hz, 3H).

C NMR (126 MHz, CDCl3) § 140.9, 139.6, 135.5, 133.8, 129.0, 128.9, 126.5, 126.2, 116.0 (q,
'Jor=258.0 Hz), 34.4, 34.1, 31.6,28.1, 21.3, 14.1.

F NMR (376 MHz, CDCl;) & —74.3.

FTIR (Neat film NaCl): 3069, 3027, 2937, 2864, 1455, 1411, 1208, 1140, 963, 857, 766, 678,
608.

HR-MS (EI-MS): Calculated for C;sH;7F305S: 334.0851; measured: 334.0866.

Ph

TfO

8-(3-phenylpropyl)-6,7-dihydro-5SH-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.63).
In a flame dried 100 mL round bottom flask was suspended sodium carbonate (857 mg, 8.08

mmol, 3 equiv.) in anhydrous methylene chloride (25 mL). To this suspension was added
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corresponding ketone (750 mg, 2.69 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (836 mg, 2.96 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to r.t. The reaction was monitored by TLC and every 12 hours that the
reaction was not complete, additional triflic anhydride anhydride (836 mg, 2.96 mmol, 1.10
equiv.) and sodium carbonate (857 mg, 8.08 mmol, 3 equiv.) were added. Upon completion of
the reaction by TLC, the reaction was quenched with water (10 mL). The layers were separated
and the product was extracted with diethyl ether (3 x 20 mL). The combined organics were dried
over magnesium sulfate, filtered and concentrated to give the crude material as a dark red oil.
The crude product was purified by silica flash column chromatography (2% ethyl acetate in
hexanes) to give pure vinyl triflate 3.63 as a yellow oil (880 mg, 80%).

'H NMR (400 MHz, CDCl3) § 7.39 — 7.34 (m, 1H), 7.33 — 7.26 (m, 4H), 7.24 — 7.17 (m, 4H),
2.70 (dt, J = 13.8, 7.5 Hz, 4H), 2.52 — 2.40 (m, 2H), 2.19 (p, J = 7.1 Hz, 2H), 1.98 — 1.83 (m,
4H).

C NMR (126 MHz, CDCl;) § 141.8, 140.9, 139.7, 135.2, 133.7, 129.1, 128.9, 128.4 (2C),
126.5, 126.2, 125.9, 118.3 (q, 'Jer = 320.3 Hz), 36.0, 34.4, 32.0, 31.6, 30.0, 28.2.

F NMR (376 MHz, CDCl;) & —74.2.

FTIR (Neat film NaCl): 3027, 2937, 2862, 1603, 1467, 1454, 1410, 1208, 1139, 996, 961, 854,
766, 699, 608, 514.

HR-MS (EI-MS): Calculated for C,;H»,F305S: 410.1164; measured: 410.1179.

TfO

O

1-methyl-8-propyl-6,7-dihydro-5H-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.64).
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In a flame dried 100 mL roundbottom flask was suspended sodium carbonate (572 mg, 5.39
mmol, 3 equiv.) in anhydrous methylene chloride (15 mL). To this suspension was added ketone
corresponding ketone (389 mg, 1.80 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (558 mg, 1.98 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to room temperature. The reaction was monitored by TLC and every 12
hours that the reaction was not complete, additional triflic anhydride anhydride (558 mg, 1.98
mmol, 1.10 equiv.) and sodium carbonate (572 mg, 5.39 mmol, 3 equiv.) were added. Upon
completion of the reaction by TLC, the reaction was quenched with water (10 mL). The layers
were separated and the product was extracted with diethyl ether (3 x 20 mL). The combined
organics were dried over magnesium sulfate, filtered and concentrated to give the crude material
as dark brown oil. The crude product was purified by silica flash column chromatography (2%
ethyl acetate in hexanes) to give pure vinyl triflate 3.64 as a yellow oil (437 mg, 70%).

'H NMR (300 MHz, CDCl3) & 7.20 (t, J = 7.5 Hz, 1H), 7.10 (d, J= 7.5 Hz, 1H), 7.04 (d, J= 7.4
Hz, 1H), 2.84 (td, J = 13.1, 7.8 Hz, 1H), 2.67 — 2.52 (m, 1H), 2.50 — 2.36 (m, 2H), 2.33 (s, 3H),
2.16 (tt, J=13.0, 6.8 Hz, 1H), 2.07 — 1.93 (m, 2H), 1.85 — 1.54 (m, 3H), 1.03 (t, /= 7.3 Hz, 3H).
BC NMR (126 MHz, CDCls) & 141.2, 139.1, 136.7, 136.5, 132.1, 129.3, 128.7, 126.1, 118.2 (q,
'Jer=1320.4 Hz), 33.3, 33.1, 31.5, 27.6, 21.2, 20.2, 14.0.

F NMR (376 MHz, CDCl;) & -75.0.

FTIR (Neat film NaCl): 2962, 2864, 1461, 1411, 1209, 1140, 963, 857, 829, 613.

HR-MS (EI-MS): Calculated for C;sH29F305S : 348.1007; measured: 348.1001.

TfO
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4-propyl-2,3-dihydrobenzo|b]oxepin-5-yl trifluoromethanesulfonate (3.65). In a flame dried
100 mL roundbottom flask, sodium carbonate (1.37 g, 12.9 mmol, 3.00 equiv.) was suspended in
anhydrous methylene chloride (40 mL). To this suspension, corresponding ketone (880 mg, 4.31
mmol, 1.00 equiv.) was added, and the reaction was cooled to 0 °C. Triflic anhydride (1.34 g,
4.74 mmol, 1.20 equiv.) was added dropwise and the reaction was allowed to warm to room
temperature. The reaction was monitored by TLC and every 12 hours that the reaction was not
complete additional triflic anhydride (1.34 g, 4.74 mmol, 1.20 equiv.) and sodium carbonate
(1.37 g, 12.9 mmol, 3.00 equiv.) was added. Upon completion by TLC, the reaction was
quenched with 70 mL of aqueous sodium bicarbonate solution. The layers were separated and
the crude product was then extracted out of the aqueous layer with diethyl ether (3 x 70 mL). The
combined organic layers were dried over magnesium sulfate, filtered, and then concentrated to
give the crude compound. The crude was purified by silica flash chromatography (20%
dichloromethane in hexanes) to give pure vinyl triflate 3.65 as a yellow oil (510 mg, 31%)).

'H NMR (500 MHz, CDCl3) 8§ 7.42 (d, J = 7.9 Hz, 1H), 7.29 (t, J= 7.8 Hz, 1H), 7.13 (t, J= 7.7
Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.50 (td, J = 6.2, 1.9 Hz, 2H), 2.40 (dtd, J = 12.6, 6.9, 6.2, 2.0
Hz, 4H), 1.64 — 1.57 (m, 2H), 1.01 (t, J= 7.4, 3H).

C NMR (126 MHz, CDCl3) § 155.4, 139.0, 135.0, 130.3, 127.3, 126.1, 123.2, 122.0, 118.4 (q,
'Jer=1320.2 Hz), 76.8, 34.3, 31.3, 20.8, 14.0.

F NMR (376 MHz, CDCl;) & -73.9.

FTIR (Neat film NaCl): 3073, 2965, 2936, 2877, 1603, 1574, 1487, 1447, 1412, 1284, 1244,
1204, 1139, 1114, 1008, 869, 854.

HR-MS (EI-MS): Calculated for C;4H,sF304S: 336.0643; measured: 336.0642.

145



TfO

o @

2-Chloro-8-propyl-6,7-dihydro-SH-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.66).
In a flame dried 100 mL roundbottom flask was suspended sodium carbonate (255 mg, 2.40
mmol, 3 equiv.) in anhydrous methylene chloride (7.5 mL). To this suspension was added
corresponding ketone (190 mg, 0.80 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (249 mg, 0.88 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to r.t. The reaction was monitored by TLC and every 12 hours that the
reaction was not done, additional triflic anhydride (249 mg, 0.88 mmol, 1.10 equiv.) and sodium
carbonate (255 mg, 2.40 mmol, 3 equiv.) were added. Upon completion of the reaction by TLC,
the reaction was quenched with water (20 mL). The layers were separated and the product was
extracted with diethyl ether (3 x 20 mL). The combined organics were dried over magnesium
sulfate, filtered and concentrated to give the crude material as a brown oil. The crude product
was purified by silica flash column chromatography (5% dichloromethane in hexanes) to give
pure vinyl triflate 3.66 as a yellow oil (140 mg, 47%).

'H NMR (400 MHz, CDCls) § 7.35 (d, J=2.2 Hz, 1H), 7.24 (dd, J = 8.1, 2.2 Hz, 1H), 7.16 (d, J
= 8.1 Hz, 1H), 2.66 (t, J= 7.2 Hz, 2H), 2.46 — 2.30 (m, 2H), 2.18 (p, J = 7.2 Hz, 2H), 1.93 (t,J =
7.2 Hz, 2H), 1.71 — 1.57 (m, 2H), 1.02 (t,J = 7.3 Hz, 3H)

C NMR (126 MHz, CDCl3) § 139.3, 138.3, 137.0, 135.4, 132.1, 130.3, 129.0, 126.5, 118.3 (q,
'Jer=320.2 Hz), 34.1, 34.0, 31.1, 28.0, 21.3, 14.1.

F NMR (282 MHz, CDCl;) & —74.2.

FTIR (Neat film NaCl): 2963, 2937, 2867, 1592, 1410, 1204, 1138, 1003, 980, 862, 826, 607.
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HR-MS (EI-MS): Calculated for C;sH,cCIF303S: 368.0461; measured: 368.0457.

TfO
@

2-fluoro-8-propyl-6,7-dihydro-5H-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.67).
In a flame dried 100 mL roundbottom flask was suspended sodium carbonate (296 mg, 2.79
mmol, 3 equiv.) in anhydrous methylene chloride (8 mL). To this suspension was added
corresponding ketone (205 mg, 0.93 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (289 mg, 1.02 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to r.t. The reaction was monitored by TLC and every 12 hours that the
reaction was not complete, additional triflic anhydride anhydride (289 mg, 1.02 mmol, 1.10
equiv.) and sodium carbonate (296 mg, 2.79 mmol, 3 equiv.) were added. Upon completion of
the reaction by TLC, the reaction was quenched with water (10 mL). The layers were separated
and the product was extracted with methylene chloride (3 x 10 mL). The combined organics
were dried over magnesium sulfate, filtered and concentrated to give the crude material as dark
green oil. The crude product was purified by silica flash column chromatography (15%
dichloromethane in hexanes) to give pure vinyl triflate 3.67 as yellow oil (162 mg, 49%)).

'H NMR (400 MHz, CDCl3)  7.18 (dd, J = 8.4, 5.6 Hz, 1H), 7.07 (dd, J = 9.4, 2.7 Hz, 1H), 6.98
(td, J= 8.4, 2.7 Hz, 1H), 2.66 (t, J = 7.1 Hz, 2H), 2.45 — 2.30 (m, 2H), 2.18 (p, J = 7.2 Hz, 2H),
1.93 (t,J=7.2 Hz, 2H), 1.64 — 1.54 (m, 2H), 1.02 (t, J= 7.3 Hz, 3H).

BC NMR (126 MHz, CDCL3) & 161.2 (d, 'Je.r = 244.9 Hz), 138.6 (d, *Jor = 2.6 Hz), 136.9,

136.6 (d, “Jer = 3.3 Hz), 135.4 (d, *Jer = 7.8 Hz), 130.4 (d, *Jcr = 8.0 Hz), 118.3 (q, 'Jer =
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320.1 Hz), 116.0 (d, *Jo ¢ = 21.2 Hz), 113.3 (d, *Jcr = 22.7 Hz), 34.2, 34.1, 30.9, 28.1, 21.3,
14.1.

F NMR (376 MHz, CDCl;) 8 —74.2, —116.2.

FTIR (Neat film NaCl): 2961, 2938, 2868, 1612, 1584, 1492, 1411, 1208, 1139, 988, 827, 650,
612.

HR-MS (EI-MS): Calculated for C;sH;6F405S : 352.0756; measured: 352.0754.

TfO

O

8-propyl-2-((1,1,1-trifluoro-N-methylmethyl)sulfonamido)-6,7-dihydro-5SH-
benzo[7]annulen-9-yl trifluoromethanesulfonate (3.68).

In a flame dried 100 mL roundbottom flask was suspended sodium carbonate (350 mg, 3.30
mmol, 3 equiv.) in anhydrous methylene chloride (10 mL). To this suspension was added
corresponding ketone (400 mg, 1.10 mmol, 1.00 equiv.) and the reaction was cooled to 0 °C.
Triflic anhydride (342 mg, 1.21 mmol, 1.10 equiv.) was added dropwise at 0 °C and the reaction
was allowed to warm up to r.t. The reaction was monitored by TLC and every 12 hours that the
reaction was not complete, additional triflic anhydride anhydride (342 mg, 1.21 mmol, 1.10
equiv.) and sodium carbonate (350 mg, 3.30 mmol, 3 equiv.) were added. Upon completion of
the reaction by TLC, the reaction was quenched with water (10 mL). The layers were separated
and the product was extracted with methylene chloride (3 x 15 mL). The combined organics
were dried over magnesium sulfate, filtered and concentrated to give the crude material as dark
brown oil. The crude product was purified by silica flash column chromatography (2% ethyl

acetate in hexanes) to give pure vinyl triflate 3.68 as a white solid (363 mg, 67%).
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'H NMR (500 MHz, CDCls) & 7.34 (s, 1H), 7.29 (d, J = 1.4 Hz, 2H), 3.44 (d, J = 1.1 Hz, 2H),
2.71 (t, J = 7.2 Hz, 2H), 2.50 — 2.35 (m, 2H), 2.22 (p, J = 7.2 Hz, 2H), 1.96 (t, J = 7.2 Hz, 2H),
1.71 — 1.56 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H).

C NMR (126 MHz, CDCl;) § 141.8, 138.1, 137.6, 137.5, 135.26, 130.1, 128.1, 125.3, 120.4 (q,
*Jor=325.1Hz), 118.3 (q, “Jor =321.3 Hz), 40.5, 34.2, 34.1, 31.3, 28.1, 21.3, 14.2.

F NMR (376 MHz, CDCls) 8 —73.5, —74.3.

FTIR (Neat film NaCl): 2928, 2869, 1492, 1455, 1395, 1209, 1128, 1071, 994, 930, 859, 834,
666, 606, 503.

HR-MS (EI-MS): Calculated for C;7H9FsNOsS,: 495.0609; Measured: 495.0608

3.8.2.2 C-H Insertion Reactions Fueled by LIHMDS Base

3.8.2.2.1 General Procedure for C—H Insertion Reactions

In this section, we outline the procedures used for the intramolecular C—H insertion reactions of
benzosuberone derived vinyl triflates into tethered alkyl chains.

General Procedure A: In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [Ph3C][(CeFs)4B]  (0.05 equiv.) and this was dissolved in methylene chloride (enough to
make a 0.0166 M solution with respect to vinyl triflate). Lithium hexamethyldisilazide (1.5
equiv.) was added along with a magnetic stirring bar to the solution. The suspension was stirred
for 5 minutes at 30 °C. Vinyl triflate (1 equiv.) was added to the reaction and it was stirred at 30
°C. Upon completion, the reaction mixture was brought outside the glovebox. It was quenched
by addition of diethyl ether and passed through silica and concentrated to give crude product.

The crude was then purified by silica flash column chromatography to give pure product.
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General Procedure B: In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [PhsC] [(CeF5)4B] (0.05 equiv.) and this was suspended in cyclohexane (enough to make a
0.1 M solution with respect to vinyl triflate). Lithium hexamethyldisilazide (1.1 equiv.) was
added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C. Vinyl triflate (1 equiv.) was added to the reaction and it was stirred at 70 °C.
Upon completion, the reaction mixture was cooled to room temperature and brought outside the
glovebox. It was quenched by addition of diethyl ether and passed through silica and
concentrated to give crude product. The crude was then purified by silica flash column

chromatography to give pure product.

OTBS

\

(E/Z)-tert-butyl((hexahydropentalen-1(2H)-ylidene)methoxy)dimethylsilane (3.12E and
3.127). In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged with
[Ph;C]'[CHB,Cl;1]” (7.6 mg, 0.010 mmol, 0.05 equiv.) and this was dissolved in toluene (0.4
mL). Lithium hexamethyldisilazide (50.1 mg, 0.30 mmol, 1.5 equiv.) was added along with a
magnetic stirring bar to the solution. The solution was stirred for 4 minutes at 30 °C. Vinyl
triflate 3.11 (80.4 mg, 0.20 mmol, 1 equiv.) was added to the reaction and it was stirred at 30 °C
for 12 hours. The reaction mixture was cooled to room temperature and brought outside the
glovebox. It was quenched by addition of diethyl ether and filtered. The supernatant was
concentrated to give crude product as orange oil (60% NMR yield of major olefin isomer 3.12E,
32% minor olefin isomer 3.12Z). The crude was then purified by silica flash column

chromatography (1% ethyl acetate in hexanes) to give the major (E)—-isomer 3.12E as colorless
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oil. Assignment of the major isomer was based on key cross peaks in 'H NOESY experiments.
Through HSQC and COSY experiments it was determined that the proton at 2.86 ppm was the
tertiary allylic ring fusion proton and that the CH; protons adjacent to that CH showed up at 1.46
and 1.33. There were key NOEs present between the olefinic proton at 6.25 and the tertiary
allylic proton at 2.86 as well as one of the protons on the aforementioned CH; leading to the
assignment of the (E£)—isomer.

The minor (Z)-isomer was found to be unstable on SiO2, so the crude reaction mixture
could be purified by flash column chromatography on triethylamine treated silica gel (0.1:99.9
NEts;:hexanes) to give pure 3.12Z as colorless oil. The olefin geometry of this isomer was
assigned based on key cross peaks in 'H NOESY experiments. There were key NOEs present
between the olefinic proton and the protons on the allylic methylene carbon. This lead to
assignment of the minor compound as the (Z)—isomer.

Characterization of 3.12E

'H NMR (500 MHz, C¢Ds) & 6.25 (q, J = 2.2 Hz, 1H), 2.90 — 2.83 (m, 1H), 2.50 (dddd, J = 8.0,
6.9, 2.3, 1.2 Hz, 2H), 2.41 (qt, J = 8.4, 5.1 Hz, 1H), 1.84 — 1.70 (m, 2H), 1.69 — 1.54 (m, 2H),
1.53 - 1.41 (m, 2H), 1.36 — 1.29 (m, 1H), 1.28 — 1.22 (m, 1H), 0.98 (s, 9H), 0.08 (d, /= 1.1 Hz,
6H).

C NMR (126 MHz, C¢Dg) 5 132.2, 130.3, 45.5, 44.6, 35.8, 33.5, 32.2, 27.9, 27.0, 26.0, 18.5, —
5.2,-5.1.

FTIR (Neat film NaCl): 2929, 2858, 1679, 1463, 1890, 1362, 1253, 1173, 1137, 834, 777, 671
cm

HR-MS (EI-MS): Calculated for C;sH»30Si: 252.1909; measured: 252.1898.

Characterization of 3.12Z
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'H NMR (500 MHz, C¢D¢) & 6.19 (br s, 1H), 3.27 — 3.20 (m, 1H), 2.48 — 2.37 (m, 1H), 2.25 —
2.17 (m, 1H), 2.16 — 2.09 (m, 1H), 2.08 — 2.02 (m, 1H), 1.71 — 1.62 (m, 3H), 1.62 — 1.55 (m,
1H), 1.47 — 1.41 (m, 1H), 1.40 — 1.33 (m, 1H), 1.26 — 1.15 (m, 1H), 0.95 (s, 9H), 0.04 (s, 6H).
C NMR (126 MHz, CsDg) 8 130.8, 129.8, 44.5, 44.4, 342, 33.6,32.8,29.2, 27.7, 25.9, 18.4, —
5.1,-5.2.

FTIR (Neat film NaCl): 2931, 2859, 1682, 1472, 1463, 1449, 1406, 1389, 1362, 1252, 1189,
1172, 1129, 852, 837, 779 cm .

HR-MS (EI-MS): Calculated for C;sH»30Si: 252.1909; measured: 252.1912.

_ )
() Q ()
3.17a 3.17b

7,8,9,10-tetrahydro-6 H-benzo|b]|cyclopenta[d]oxepine (3.17). Synthesized according to a
modified version of general procedure 3.8.2.2.1B. In a well kept glovebox, (H,O, O, < 0.5 ppm),
a dram vial was charged with [Ph;C]'[B(C¢Fs)s]” (4.6 mg, 0.005 mmol, 0.10 equiv.) and this
was suspended in cyclohexane (0.5 mL). Lithium hexamethyldisilazide (5.02 mg, 0.028 mmol,
0.6 equiv.) was added along with a magnetic stirring bar to the suspension. Vinyl triflate 3.65
(16.8 mg, 0.05 mmol, 1 equiv.) was added to the reaction and it was heated to 70 °C for 60
minutes. The reaction mixture was cooled to room temperature and then another batch of
LiHMDS (4.30 mg, 0.022 mmol, 0.5 equiv.) was added and the reaction was heated to 70 °C for
an additional hour. The reaction was then cooled to room temperature and brought outside the

glovebox. It was quenched by addition of diethyl ether and passed through silica and

concentrated to give crude tricyclic compound 3.17a as brown oil (66% NMR yield.). The crude
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was then purified by silica column chromatography on silver nitrate treated silica (2% ethyl
acetate in hexanes) to give product 3.17a as colorless oil. The remaining material was further
purified via silica flash column chromatography on silver nitrate impregnated silica (10%

benzene in hexanes) to give the minor trisubstituted isomer 3.17b as colorless oil.

Characterization of 3.17a

'H NMR (500 MHz, CDCl3) & 7.28 (dd, J = 7.8, 1.7 Hz, 1H), 7.10 (td, J = 7.6, 1.7 Hz, 1H), 7.02
(td, J=17.5, 1.5 Hz, 1H), 6.97 (dd, J= 7.9, 1.5 Hz, 1H), 4.21 (t, J = 5.2 Hz, 2H), 2.96 — 2.76 (m,
2H), 2.65 (br s, 2H), 2.61 — 2.57 (m, 2H), 1.95 (p, J = 7.4 Hz, 2H).

C NMR (126 MHz, CDCl3) & 159.4, 140.7, 131.3, 128.9, 127.2, 127.0, 122.6, 120.1, 69.5, 39.9,
36.9,34.7, 21.6.

FTIR (Neat film NaCl): 3062, 3023, 2950, 2885, 2807, 1640, 1599, 1489, 1218, 1123, 1064,
986, 755 cm.

HR-MS (EI-MS): Calculated for C;3H;40: 186.1045; measured: 186.1041.

Characterization of 3.17b

'H NMR (500 MHz, CDCl3) § 7.35 (dd, J = 7.6, 1.7 Hz, 1H), 7.14 (ddd, J = 8.0, 7.3, 1.8 Hz,
1H), 6.97 (td, J= 7.5, 1.3 Hz, 1H), 6.94 (dd, J = 8.0, 1.3 Hz, 1H), 5.92 - 5.89 (br q, /= 2.5 Hz,
1H), 4.25 (ddd, J=12.2, 7.1, 3.8 Hz, 1H), 3.97 (ddd, J = 12.2, 7.5, 3.6 Hz, 1H), 3.02 (dddd, J =
8.4,4.2,2.8, 1.5 Hz, 1H), 2.63 — 2.52 (m, 1H), 2.44 — 2.36 (m, 1H), 2.33 —2.23 (m, 1H), 2.20 —

2.13 (m, 1H), 1.81 — 1.68 (m, 2H).

153



A1

2-(2,3,3a,4,5,6-hexahydrobenzo|e]azulen-9-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
(3.18). Synthesized according to general procedure 3.8.2.2.1B. In a well kept glovebox, (H,0, O,
< 0.5 ppm), a dram vial was charged with [PhsC] [B(C¢Fs)s]” (2.3 mg, 0.0025 mmol, 0.1 equiv.)
and this was suspended in cyclohexane (0.25 mL). Lithium hexamethyldisilazide (4.6 mg, 0.033
mmol, 1.1 equiv.) was added along with a magnetic stirring bar to the suspension. The
suspension was stirred for 5 minutes at 30 °C. Vinyl triflate 3.61 (11.5 mg, 0.025 mmol, 1
equiv.) was added to the reaction and it was subsequently stirred for 15 minutes. The reaction
mixture was cooled to room temperature and brought outside the glovebox. The reaction was
quenched with saturated aqueous ammonium chloride and extracted with diethyl ether. The
combined organics were filtered through a pad of silica gel and concentrated to give crude
tricyclic compound 3.18 as a yellow oil (68% NMR yield). The crude was then purified by flash
silver nitrate impregnated silica gel chromatography (2% ethyl acetate in hexanes) to give pure
product 3.18 as a colorless oil.

'H NMR (500 MHz, CDCl3) & 7.69 (s, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H),
5.79 (s, 1H), 2.84 (dd, J = 14.6, 7.8 Hz, 1H), 2.71 — 2.60 (m, 2H), 2.54 (dt, J = 16.9, 8.3 Hz, 1H),
2.39 —2.29 (m, 1H), 2.28 — 2.16 (m, 1H), 2.05 — 1.87 (m, 2H), 1.65 — 1.58 (m, 1H), 1.55 — 1.52
(m, 2H), 1.33 (s, 12H).

C NMR (126 MHz, CDCl;) & 149.5, 144.4, 138.7, 135.0, 133.4, 128.8, 127.7, 83.6, 47.1, 37.5,
37.2,32.7,31.3, 26.8, 24.9, 24.8. Note: Carbon attached to boron not seen due to relaxation on B.

"B NMR (128 MHz, CDCl;) 8 31.6.
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FTIR (Neat film NaCl): 2969, 2925, 2852, 1602, 1360, 1260, 1146, 798, 689 cm .

HR-MS (EI-MS): Calculated for C,0H27BO;: 310.2104; measured: 310.2101.

MeO D

O O. 9-(4-methoxyphenyl)-2,3,3a,4,5,6-hexahydrobenzo[e]azulene

(3.19). Synthesized according to general procedure 3.8.2.2.1B. In a

well kept glovebox, (H,0, O, < 0.5 ppm), a dram vial was charged with [PhsC] [B(C¢Fs)4]™ (4.3
mg, 0.0047 mmol, 0.10 equiv.) and this was suspended in cyclohexane (0.47 mL). Lithium
hexamethyldisilazide (8.65 mg, 0.052 mmol, 1.1 equiv.) was added along with a magnetic
stirring bar to the suspension. Vinyl triflate 3.60 (20.7 mg, 0.047 mmol, 1 equiv.) was added to
the reaction and it was heated to 70 °C for 10 minutes. The reaction mixture was cooled to room
temperature and brought outside the glovebox. It was quenched by addition of diethyl ether and
passed through silica and concentrated to give crude tricyclic compound 3.19 as brown oil (48%
NMR vyield, 44% solated yield on 0.1 mmol scale). The crude was then purified by silica column
chromatography on silver nitrate treated silica (5% ethyl acetate in hexanes) to give product 3.19
as a white solid.
'H NMR (500 MHz, CDCl;) § 7.58 — 7.51 (m, 2H), 7.47 (d, J = 2.1 Hz, 1H), 7.32 (dd, J = 7.8,
2.1 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.00 — 6.90 (m, 2H), 5.81 (t, J = 2.0 Hz, 1H), 3.85 (s, 3H),
2.93-2.83(dd, J =16.0, 8.0 Hz, 1H), 2.77 — 2.64 (m, 2H), 2.63 — 2.53 (m, 1H), 2.44 — 2.34 (m,
1H), 2.32 - 2.23 m, 1H), 2.07 — 1.89 (m, 2H), 1.71 — 1.56 (m, 3H).
C NMR (126 MHz, CDCl3) § 158.9, 149.9, 139.4, 138.4, 133.6, 129.8, 128.0, 127.7, 126.9,

125.0, 114.1, 55.3, 47.1, 37.4, 36.6, 32.7, 31.3, 27.0.
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FTIR (Neat film NaCl): 3035, 2924, 2848, 1609, 1518, 1486, 1441, 1247, 1177, 1030, 817 cm .

HR-MS (GCT-LIFDI): Calculated for C,;H»70: 290.1671; Measured: 290.1678.

g
o
U

1-phenyl-3,3a,4,5,6,10b-hexahydrobenzo|e]azulene (3.20). Synthesized according to general
procedure 3.8.2.2.1A. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [PhsC]'[B(C¢Fs)s]™ (2.3 mg, 0.0025 mmol, 0.05 equiv.) and this was dissolved in
methylene chloride (5.0 mL). Lithium hexamethyldisilazide (12.5 mg, 0.075 mmol, 1.5 equiv.)
was added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C and then cooled to —40 °C. Vinyl triflate 3.63 (20.5 mg, 0.05 mmol, 1 equiv.)
was added to the reaction and it was stirred at —40 °C for 30 minutes. The reaction mixture was
warmed to room temperature and brought outside the glovebox. It was quenched by addition of
diethyl ether and passed through silica and concentrated to give crude tricyclic compound 3.20 as
a yellow oil (61% NMR yield). The crude was purified first by flash silica gel column
chromatography (hexanes) to give product 3.20 as a mixture of diastereomers. This mixture was
further purified by HPLC to give the major cis-ring fused product 3.20 as a white solid.
Assignment of the major cis product was determined by key cross peaks in 'H NOESY
experiments. HSQC and 'H COSY experiments led to the assignment of the tertiary allylic
benzylic proton to be at 4.50 ppm and the other tertiary proton to be at 2.09 ppm. Further, the

two diastereotopic CH, benzylic protons on the seven membered ring were assigned to be at 3.15
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ppm and 2.79 ppm. The allylic benzylic proton showed key NOE interactions with the other ring
tertiary CH proton as well as one of the diastereotopic benzylic protons at 3.15 ppm. The other
diasteretopic benzylic proton at 2.79 ppm showed an NOE with the neighboring aromatic CH
doublet at 6.5 ppm. These NOE interactions lead to the assignment of the product as the cis fused
product.

'H NMR (500 MHz, CDCl3) & 7.29 (d, J = 7.0 Hz, 3H), 7.23 (t, J= 7.6 Hz, 2H), 7.19 — 7.15 (m,
1H), 7.12 (dd, J= 7.4, 1.4 Hz, 1H), 7.00 (td, /= 7.3, 1.4 Hz, 1H), 6.88 (dd, J = 8.2, 6.9 Hz, 1H),
6.22 (q, J = 2.4 Hz, 1H), 4.50 (d, J=9.2 Hz, 1H), 3.15 (t, J = 13.6 Hz, 1H), 2.79 (dd, J = 14.0,
6.4 Hz, 1H), 2.71 — 2.63 (m, 1H), 2.25 - 2.17 (m, 2H), 2.14 — 2.04 (m, 2H), 1.86 (qd, J = 12.9,
4.0 Hz, 1H), 1.46 — 1.37 (m, 1H).

BC NMR (126 MHz, CDCls) & 143.9, 143.2, 142.7, 137.4, 130.2, 129.0, 128.2, 126.6, 126.5,
1259, 125.7, 125.4, 54.1, 46.8, 39.8, 37.7, 35.4, 28.0.

FTIR (Neat film NaCl): 3029, 2918, 2848, 1598, 1493, 1444, 1259, 1155, 1074, 1039, 1019,

797,752, 693, 613 cm .

e I

1,1,1-trifluoro-N-(2,3,3a,4,5,6-hexahydrobenzo|e]azulen-9-yl)-/NV-

methylmethanesulfonamide (3.21). Synthesized according to general procedure 3.8.2.2.1B. In a
well kept glovebox, (H,0, O, < 0.5 ppm), a dram vial was charged with [Ph;C] [B(C¢Fs)4]™ (2.7
mg, 0.003 mmol, 0.1 equiv.) and this was suspended in cyclohexane (0.3 mL). Lithium
hexamethyldisilazide (6.8 mg, 0.045 mmol, 1.5 equiv.) was added along with a magnetic stirring

bar to the suspension. The suspension was stirred for 5 minutes at 30 °C. Vinyl triflate 3.68 (12.4
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mg, 0.03 mmol, 1.0 equiv.) was added to the reaction and it was subsequently heated to 70 °C for
3 hours. The reaction mixture was cooled to room temperature and brought outside the glovebox.
It was quenched by addition of diethyl ether and passed through silica and concentrated to give
crude tricyclic compound 3.21 as a yellow oil (51% NMR yield). The crude was then purified by
silver impregnated silica flash column chromatography (1% ethyl acetate in hexanes) to give
pure product 3.21 as a colorless oil.

'H NMR (500 MHz, CDCl3)  7.22 (d, J = 2.1 Hz, 1H), 7.14 — 7.05 (m, 2H), 5.85 — 5.69 (m,
1H), 3.45 (s, 3H), 2.86 (dd, J = 14.7, 8.0 Hz, 1H), 2.72 — 2.66 (m, 1H), 2.66 — 2.49 (m, 2H), 2.41
—2.34 (m, 1H), 2.31 — 2.20 (m, 1H), 2.03 — 1.95 (m, 1H), 1.94 — 1.86 (m, 1H), 1.67 — 1.60 (m,
1H), 1.57 = 1.52 (m, 1H).

BC NMR (126 MHz, CDCls) & 148.5, 141.9, 140.7, 136.9, 130.5, 129.1, 127.3, 125.4, 120.5 (q,
'Jor=1324.7 Hz), 46.9, 40.7, 37.1, 36.5, 32.6, 31.3, 26.5.

F NMR (282 MHz, CDCls) & -73.3.

FTIR (Neat film NaCl): 3042, 2924, 2850, 1489, 1392, 1227, 1188, 1127, 1072, 920, 821, 621,
588 cm .

HR-MS (EI-MS): Calculated for C;¢HsF3NO,S: 345.1013; measured: 345.1006.

ho @

9-Fluoro-2,3,3a,4,5,6-hexahydrobenzo[e]azulene (3.22). Synthesized according to general
procedure 3.8.2.2.1B. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [PhsC]'[B(CeFs)s] (2.7 mg, 0.003 mmol, 0.1 equiv.) and this was suspended in

cyclohexane (0.3 mL). Lithium hexamethyldisilazide (5.5 mg, 0.033 mmol, 1.1 equiv.) was
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added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C. Vinyl triflate 3.67 (10.6 mg, 0.03 mmol, 1.0 equiv.) was added to the reaction
and it was subsequently heated to 70 °C for 10 minutes. The reaction mixture was cooled to
room temperature and brought outside the glovebox. It was quenched by addition of diethyl ether
and passed through silica and concentrated to give crude tricyclic compound 3.22 as a yellow oil
(72% NMR yield). The crude was then purified by silica flash column chromatography (hexanes)
to give pure product 3.22 as a colorless oil.

'H NMR (500 MHz, CDCl3) & 7.01 (dd, J = 8.3, 5.9 Hz, 1H), 6.96 (dd, J=9.9, 2.8 Hz, 1H), 6.79
(td, J = 8.4, 2.8 Hz, 1H), 5.77 (q, J = 2.2 Hz, 1H), 2.81 (dd, J = 14.6, 8.4 Hz, 1H), 2.74 — 2.66
(m, 1H), 2.63 — 2.49 (m, 2H), 2.41 — 2.32 (m, 1H), 2.25 (dddd, J = 12.6, 9.5, 8.6, 7.3 Hz, 1H),
2.06 — 1.94 (m, 1H), 1.90 (dtdd, J = 10.3, 5.1, 3.5, 2.0 Hz, 1H), 1.62 (ddt, J = 12.5, 8.7, 3.7 Hz,
1H), 1.57 = 1.50 (m, 2H).

BC NMR (126 MHz, CDCls) 8 161.08 (d, J = 243.1 Hz), 148.94 (d, J = 1.8 Hz), 140.82 (d, J =
7.6 Hz), 136.56, 130.59 (d, J = 8.1 Hz), 128.59, 114.99 (d, J = 21.1 Hz), 112.95 (d, J = 20.5 Hz),
46.86,36.97,35.97, 32.69, 31.19, 26.87.

F NMR (282 MHz, CDCl;) & —118.7.

FTIR (Neat film NaCl): 3036, 2919, 2848, 1607, 1582, 1488, 1443, 1419, 1351, 1266, 1162,
1104, 847, 811, 754, 713 cm

HR-MS (EI-MS): Calculated for C;4HsF: 202.1158; measured: 202.1154.

o
*@
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9-Chloro-2,3,3a,4,5,6-hexahydrobenzo|e]azulene (3.23). Synthesized according to general
procedure 3.8.2.2.1B. In a well kept glovebox, (H,0O, O, < 0.5 ppm), a dram vial was charged
with [PhsC]'[B(CeFs)s]™ (2.3 mg, 0.0025 mmol, 0.1 equiv.) and this was suspended in
cyclohexane (0.25 mL). Lithium hexamethyldisilazide (4.6 mg, 0.033 mmol, 1.1 equiv.) was
added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C. Vinyl triflate 3.66 (9.2 mg, 0.025 mmol, 1 equiv.) was added to the reaction
and it was subsequently heated to 70 °C for 15 minutes. The reaction mixture was cooled to
room temperature and brought outside the glovebox. It was quenched by addition of diethyl ether
and passed through silica and concentrated to give crude tricyclic compound 3.23 as a yellow oil
(82% NMR yield). The crude was then purified by silica flash column chromatography (hexanes)
to give pure product 3.23 as a colorless oil.

'H NMR (500 MHz, CDCls) § 7.24 (d, J = 2.3 Hz, 1H), 7.07 (dd, J = 8.1, 2.3 Hz, 1H), 7.00 (d, J
= 8.0 Hz, 1H), 2.81 (dd, J = 14.9, 8.6 Hz, 1H), 2.70 — 2.64 (m, 1H), 2.63 — 2.50 (m, 2H), 2.41 —
2.32 (m, 1H), 2.24 (dddd, J = 12.7, 9.6, 8.7, 7.4 Hz, 1H), 2.04 — 1.95 (m, 1H), 1.92 — 1.86 (m,
1H), 1.62 (ddt, J=12.4, 8.6, 3.6 Hz, 1H), 1.58 — 1.48 (m, 2H).

C NMR (126 MHz, CDCls) § 148.7, 140.8, 139.3, 131.2, 130.6, 128.7, 128.2, 126.4, 46.9, 37.1,
36.2,32.6,31.2,26.7.

FTIR (Neat film NaCl): 3040, 2920, 2849, 1591, 1560, 1478, 1442, 1402, 1094, 884, 813, 691
cm

HR-MS (EI-MS): Calculated for C;4H,sCl: 218.0862; measured: 218.0855.
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7-iodo-2,3,3a2,4,5,6-hexahydrobenzo[e]azulene (3.24). Synthesized according to general
procedure 3.8.2.2.1A. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [PhsC] [B(CeFs)s]” (9.2 mg, 0.010 mmol, 0.05 equiv.) and this was dissolved in methylene
chloride (5.0 mL). Lithium hexamethyldisilazide (50.2 mg, 0.30 mmol, 1.5 equiv.) was added
along with a magnetic stirring bar to the solution. Vinyl triflate 3.58 (92.1 mg, 0.20 mmol, 1
equiv.) was added to the reaction and it was stirred at 30 °C for 15 minutes. The reaction mixture
was brought outside the glovebox. It was quenched by addition of diethyl ether and passed
through silica and concentrated to give crude product as brown oil (96% NMR yield). The crude
was then purified by silica flash column chromatography (hexanes) to give product 3.24 as a
colorless oil (55.9 mg, 90% yield).
'H NMR (500 MHz, CDCl3) & 7.71 (d, J = 8.0 Hz, 1H), 7.19 (d, J= 7.4 Hz, 1H), 6.77 (t, J=1.7
Hz, 1H), 5.75 (br s, 1H), 3.23 (dd, J = 14.6, 9.1 Hz, 1H), 2.71 (ddd, J = 15.1, 9.5, 2.0 Hz, 1H),
2.65 (br s, 1H), 2.60 — 2.51 (m, 1H), 2.40 — 2.33 (m, 1H), 2.24 — 2.16 (m, 1H), 1.99 — 1.82 (m,
2H), 1.65 — 1.58 (m, 1H), 1.57 — 1.48 (m, 2H).
C NMR (126 MHz, CDCls) § 149.5, 143.0, 140.5, 138.1, 128.8, 128.1, 127.4, 102.1, 46.8, 40.6,
36.0,32.9,31.1, 25.6.
FTIR (Neat film NaCl): 3048, 2917, 2846, 1549, 1444, 1423, 1347, 1169, 834, 778, 731, 686,
651 cm .

HR-MS (EI-MS): Calculated for C;4H;sI: 310.0219; measured: 310.0214.
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8-bromo-2,3,3a,4,5,6-hexahydrobenzo|e]azulene (3.25). Synthesized according to general
procedure 3.8.2.2.1A. In a well-kept glovebox, (H,O, O,< 0.5 ppm), a dram vial was charged
with [Ph3C] [B(CeFs)s] (2.3 mg, 0.0025 mmol, 0.05 equiv.) and lithium hexamethyldisilazide
(12.5 mg, 0.075 mmol, 1.5 equiv.). This was suspended in methylene chloride (3.2 mL) and
stirred for 5 minutes at 30 °C. Vinyl triflate 3.59 (20.7 mg, 0.05 mmol, 1.0 equiv.) was added to
the reaction and the reaction was stirred for 15 minutes. The reaction was brought outside the
glovebox and was passed through a pad of silica with diethyl ether and concentrated to give
crude tricyclic compound 3.25 as a yellow oil (77% NMR yield). The crude was then purified by
silica flash chromatography (hexanes) to give pure product 3.25 as colorless oil.

'H NMR (500 MHz, CDCl3) § 7.25 —7.22 (m, 2H), 7.11 (d, J= 7.9 Hz, 1H), 5.75 (q, J= 2.1 Hz,
1H), 2.84 — 2.73 (dd, J = 14.2, 8.0 Hz, 1H), 2.69 — 2.46 (m, 3H), 2.39 — 2.30 (m, 1H), 2.28 —
2.18 (m, 1H), 1.99 — 1.83 (m, 2H), 1.62 (ddt, J = 12.8, 8.5, 3.7 Hz, 1H), 1.57 - 1.47 (d, J = 13.7
Hz, 2H).

C NMR (126 MHz, CDCls) § 148.7, 143.0, 138.0, 132.0, 130.1, 128.7, 128.3, 120.3, 46.9, 37.1,
36.6,32.6,31.3, 26.6.

FTIR (Neat film NaCl): 3040, 2917, 2846, 1584, 1479, 1441, 1087, 882, 822, 805, 677, 528 cm~
1

HR-MS (EI-MS): Calculated for C;4H,sBr: 264.0337; measured: 264.0335.
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10-methyl-2,3,3a,4,5,6-hexahydrobenzo|e]azulene (3.26). Synthesized according to general
procedure 3.8.2.2.1A. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [PhsC]'[B(C¢Fs)s]™ (2.3 mg, 0.0025 mmol, 0.05 equiv.) and this was dissolved in
methylene chloride (3.0 mL). Lithium hexamethyldisilazide (12.5 mg, 0.075 mmol, 1.5 equiv.)
was added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C. Vinyl triflate 3.64 (17.4 mg, 0.05 mmol, 1 equiv.) was added to the reaction
and it was stirred at 30 °C for 15 minutes. The reaction mixture was cooled to room temperature
and brought outside the glovebox. It was quenched by addition of diethyl ether and passed
through silica and concentrated to give crude tricyclic compound 3.26 as a yellow oil (77% NMR
yield, 60% isolated yield on 0.1 mmol scale). The crude was then purified by flash silver
impregnated silica gel column chromatography (hexanes) to give pure product 3.26 as a colorless
oil.

'H NMR (500 MHz, CDCl3) & 7.06 (d, J = 7.5 Hz, 1H), 7.01 (t, J=7.4 Hz, 1H), 6.94 (d, J=7.3
Hz, 1H), 5.55 (s, 1H), 2.72 — 2.62 (m, 2H), 2.63 — 2.57 (m, 1H), 2.46 — 2.34 (m, 2H), 2.22 - 2.14
(m, 1H), 1.97 - 1.83 (m, 2H), 1.76 — 1.55 (m, 3H), 1.51 — 1.35 (m, 1H).

BC NMR (126 MHz, CDCl;) & 146.7, 142.1, 139.1, 135.4, 128.5, 127.8, 126.3, 126.1, 47.1, 37.4,
37.0, 33.0, 31.3, 27.0, 21.0.

FTIR (Neat film NaCl): 3061.21, 3038.21, 3014.47, 2918.18, 2847.38, 1579.33, 1461.65,
1441.41, 1477.77, 1348.43, 1290.94, 1260.12, 1096.13, 1034.94, 961.28, 818.33, 772.70, 742.88
cm

HR-MS (EI-MS): Calculated for C;sH;s: 198.1409; measured: 198.1403.
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2,3,3a2,4,5,6-hexahydrobenzo|e]azulene (3.27). Synthesized according to a modified general
procedure 3.8.2.2.1A. In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged
with [Ph3C]THCB,Cl;;] (1.9 mg, 0.0025 mmol, 0.05 equiv.) and this was dissolved in
methylene chloride (5.0 mL). Lithium hexamethyldisilazide (12.5 mg, 0.075 mmol, 1.5 equiv.)
was added along with a magnetic stirring bar to the suspension. The suspension was stirred for 5
minutes at 30 °C. Vinyl triflate 3.28 (16.7 mg, 0.05 mmol, 1 equiv.) was added to the reaction
and it was stirred at 30 °C for 15 minutes. The reaction mixture was cooled to room temperature
and brought outside the glovebox. It was quenched by addition of diethyl ether and pass through
silica and concentrated to give crude tricyclic compound 3.27 as a yellow oil (96% NMR yield,
90% isolated yield on 0.2 mmol scale). The crude was then purified by silica flash column
chromatography (hexanes) to give pure product 3.27 as a colorless oil.

'H NMR (400 MHz, CDCl3) § 7.27 — 7.24 (m, 1H), 7.16 — 7.10 (m, 2H), 7.10 — 7.06 (m, 1H),
5.74 (q, J = 2.2 Hz, 1H), 2.90 — 2.79 (m, 1H), 2.74 — 2.60 (m, 2H), 2.59 — 2.49 (m, 1H), 2.41 —
2.30 (m, 1H), 2.29 — 2.20 (m, 1H), 2.05 — 1.83 (m, 1H), 1.67 — 1.51 (m, 3H).

C NMR (126 MHz, CDCls) § 149.8, 140.9, 139.1, 129.3, 128.5, 127.5, 126.8, 125.9, 47.0, 37.3,
36.9,32.7,31.2,26.9.

FTIR (Neat film NaCl): 3015, 2917, 2848, 1483, 1448, 1350, 873, 755, 734, 529 cm .

HR-MS (EI-MS): Calculated for Ci4H6: 184.1252; measured: 184.1249.

3.8.3 Experimental Procedures for Li-urea Catalysis
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3.8.3.1 Catalyst Synthesis

Synthesis of catalysts 3.29 and 3.30 is reported in the adapted article.

3.8.3.2 Vinyl Triflate Synthesis

For synthesis of ketone precursors for vinyl triflates in Figure 3.6, Figure 3.7, and Figure 3.8
see adapted articles. Spectral data for these precursors and vinyl triflates are also reported in
the adapted article.

3.8.3.2.1 General Procedure

A: In a flame dried roundbottom flask, the starting ketone (1 equiv) was dissolved in THF to
make a 0.413 M solution and this was cooled to —78 °C. To this solution was added a solution of
NaHMDS (1.5 equiv, 1M solution in THF). This was warmed up to —40 °C for one hour before
being cooled back down to —78 °C. Finally, a solution of PhNTf, (1 equiv, 1.65M in THF) was
added dropwise and the reaction was allowed to warm up to r.t overnight. The reaction was
quenched by addition of 1:9 v/ solution of methanol:ethyl acetate. The crude mixture was
rotovapped and then suspended in 1:1 ether/pentane. The suspension was filtered and the solid
washed with pentane. The supernatant was concentrated giving the crude product. The crude was

purified by flash column chromatography to give the pure vinyl triflate.

B: Ketone (1 equiv.) was dissolved in anhydrous DCM to make a 0.65 M solution. 2-
chloropyridine (1.21 equiv) was added and the solution was cooled to 0 °C. To this was added
triflic anhydride (1.32 equiv) as a 1.7 M solution in DCM. The resulting solution was allowed to
warm up to room temperature and stir until all starting material was consumed as determined by

GC or NMR (sometimes the product decomposes to the starting material on TLC). After reaction
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was finished, the reaction was concentrated and the crude sludge was suspended in hexanes. This
was sonicated and stirred and then filtered. This process was repeated three more times and the
combined hexanes supernatant was concentrated to give product. If necessary, this was heated

under reduced pressure to remove residual 2-chloropyridine.

TfO

6,7-dihydro-5H-benzo[7]annulen-9-yl trifluoromethanesulfonate (3.69).
Synthesized according to known procedures. Spectral data match those reported in the

literature.>®

OoTf

F
1-(4-fluorophenyl)vinyl trifluoromethanesulfonate (3.70).

Synthesized according to general procedure 3.8.3.2.1B starting from 4-fluoroacetophenone.
Triflate 3.70 (600 mg, 2.22 mmol) was obtained as a yellow oil in 6% yield. NMR data matched

those reported in the literature.”’

OoTf

Br

1-(4-bromophenyl)vinyl trifluoromethanesulfonate (3.71).
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Synthesized according to general procedure 3.8.3.2.1B starting from 4-bromoacetophenone.
Triflate 3.71 (4.20 g, 13.0 mmol) was obtained as a yellow oil in 42% yield. NMR data matched

those reported in the literature.”’

OoTf

o

1-(4-iodophenyl)vinyl trifluoromethanesulfonate (3.72).
Synthesized according to general procedure 3.8.3.2.1B starting from 4-iodoacetophenone.
Triflate 3.72 (4.77 g, 12.6 mmol) was obtained as an orange oil in 61% yield. NMR data matched

those reported in the literature.”’

oTf

_ /@

1-(4-(((trifluoromethyl)sulfonyl)oxy)phenyl)vinyl trifluoromethanesulfonate (3.73).
Synthesized  according to  general procedure 3.8.3.2.1B  starting from  4-
(((trifluoromethyl)sulfonyl)oxy)acetophenone. Triflate 3.73 (1.50 g, 3.7 mmol) was obtained as a
yellow oil in 29% yield.

'H NMR (300 MHz, CDCl3) § 7.64 (d, J = 8.9 Hz, 2H), 7.35 (d, J = 8.9 Hz, 2H), 5.66 (d, J = 4.2
Hz, 1H), 5.49 (d, J = 4.3 Hz, 1H).

BC NMR (126 MHz, CDCl3) § 151.5, 150.4, 132.4, 127.4, 122.0, 118.6 (q, J = 349.0 Hz), 118.5
(q, 'Jer =292.3 Hz), 106.1.

F NMR (282 MHz, CDCls) 8 —72.7, -73.6.
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FTIR (Neat film NaCl): 3002, 2928, 2867, 1619, 1416, 1326, 1212, 1138, 1067, 967, 858, 615.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C1oHoF¢0sS 348.0255; Found 348.0252.

OTf

m
F5;C

2-methyl-1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl  trifluoromethanesulfonate (3.74)
Synthesized according to general procedure 3.8.3.2.1A  starting from 2-methyl-1-(4-
(trifluoromethyl)phenyl)propan-1-one. Triflate 3.74 (220 mg, 1.80 mmol) was obtained as a
colorless oil in 35% yield. Chromatography was performed using 5% ether/hexanes as a solvent
system on silica gel.

'H NMR (300 MHz, CDCl3) & 7.66 (d, J = 7.6 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 2.02 (s, 3H),
1.82 (s, 3H).

BC NMR (126 MHz, CDCls) & 140.0, 136.2, 131.2 (q, *Je_r = 32.8 Hz), 130.0, 129.9, 125.4 (q,
Jer = 3.8 Hz), 123.7 (q, 'Je_r = 272.5 Hz), 118.1 (q, "Je_r = 320.2 Hz), 20.2, 19.1.

F NMR (282 MHz, CDCl;) 8 —180.0, —191.7.

FTIR (Neat film NaCl): 3002, 2928, 2867, 1619, 1416, 1326, 1212, 1138, 1067, 967, 858, 615.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C1oH;oF¢05S: 348.0255; Found 348.0252.

m
NC

1-(4-cyanophenyl)-2-methylprop-1-en-1-yl trifluoromethanesulfonate (3.75)
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Synthesized according to general procedure 3.8.3.2.1A  starting from 4-isobutyrlbenzonitrile.
Column chromatography was performed using 85:14.9:0.1 hexane:ethyl acetate:triethylamine.
Product 3.75 was obtained as colorless oil (660 mg, 6.1 mmol, 36%).

'H NMR (500 MHz, CDCl3) & 7.69 (d, J= 7.6 Hz, 2H), 7.49 (d, J = 7.6 Hz, 2H), 2.03 (s, 3H),
1.83 (s, 3H).

C NMR (126 MHz, CDCl3) § 139. 4, 137.2, 132.2, 130.8, 130.1, 118.1, 118.1 (q, 'Jcr = 320.7
Hz), 113.1, 20.2, 19.2.

F NMR (376 MHz, CDCl;) & —74.5.

FTIR (Neat film NaCl): 3067, 3000, 2952, 2865, 2231, 1608, 1504, 1412, 1242, 1206, 1138,
1081, 957, 855, 617, 595.

HR-MS (EI-MS m/z: [M]+ Calc’d for C;2H;oF3NOsS 305.0333; Found 305.0331.

OTf

CF

3

2-Methyl-1-(2-(trifluoromethyl)phenyl)hex-1-en-1-yl trifluoromethanesulfonate (3.8:1 Z:E
isomers) (3.76).

Synthesized according to general procedure 3.8.3.2.1A starting from 2-methyl-1-(2-
(trifluoromethyl)phenyl)hexan-1-one. Column chromatography was performed using 95:5:0.1
hexane:diethyl ether:triethylamine. 3.76 was obtained as colorless oil and as a 3.8:1 mixture of
Z:E isomers (260 mg, 1.8 mmol, 36%). The major isomer was determined by observing an NOE
between the allylic methyl peak at 1.57 with aromatic protons.

NMR Data for Major Isomer:
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'H NMR (500 MHz, CDCls) § 7.74 (dd, J= 7.5, 1.4 Hz, 1H), 7.59 (td, J = 7.4, 1.6 Hz, 1H), 7.55
(t, J = 7.2 Hz, 1H), 7.53 — 7.48 (m, 1H), 2.46 (ddd, J = 13.4, 9.1, 7.0 Hz, 1H), 2.30 (ddd, J =
13.4, 8.9, 6.4 Hz, 1H), 1.57 (s, 3H), 1.55 — 1.49 (m, 2H), 1.48 — 1.36 (m, 2H), 0.97 (t,J= 7.3 Hz,
3H).

C NMR (126 MHz, CDCls) § 137.2, 135.1, 133.9, 131.8, 130.1, 130.1 (q, *Jcr = 20.5 Hz),
126.56 (q, *Jer = 4.9 Hz), 123.5 (q, 'Jer = 273.8 Hz), 118.0 (q, 'Jer = 319.9 Hz), 31.7, 29.0,
22.5,17.9,13.8.

F NMR (376 MHz, CDCl;) § -61.1, -75.3.

FTIR (Neat film NaCl): 2963, 2936, 2876, 1605, 1411, 1315, 1211, 1136, 1118, 846, 770, 606.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C;sH;6Fs0sS 390.0724; Found 390.0730.

OoTf

YN

.
N

(E)-2-methyl-1-(pyridin-3-yl)hex-1-en-1-yl trifluoromethanesulfonate (3.77).

Synthesized according to general procedure 3.8.3.2.1A starting from 2-methyl-1-(pyridin-3-
ylhexan-1-one. Purified by column chromatography (first with 20% ether/hexanes and then 8%
acetone/hexanes) to afford pure triflate 3.77 as yellow oil (530 mg, 26%).

Assignment of the E configuration of this substrate was based on key cross peaks in 'H NOESY
experiments. There were key NOEs present between the two aromatic protons of pyridine (7.68,
8.61 ppm) and the allylic CH; protons (2.03-2.09 ppm). This led to the assignment of the (E)-

1somer.
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'H NMR (500 MHz, CDCl;) & 8.63 (dd, J = 4.9, 1.6 Hz, 1H), 8.61 (d, J = 2.0 Hz, 1H), 7.68 (dd,
J=17.9,2.0 Hz, 1H), 7.35 (ddd, J = 7.9, 4.9, 0.9 Hz, 1H), 2.09 — 2.03 (m, 2H), 2.00 (s, 3H), 1.50
—1.40 (m, 2H), 1.24 (hex, J = 7.4 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H).

C NMR (126 MHz, CDCl3) 8 150.4, 150.3, 139.0, 137.0, 134.8, 128.9, 123.2, 118.1 (q, 'Jc 5 =
320.1 Hz), 33.1,29.9,22.3, 16.5, 13.8.

F NMR (376 MHz, CDCl;) & —74.7.

FTIR (Neat film NaCl): 3033, 2961, 2933, 2865, 1588, 1567, 1411, 1207, 1140, 951, 847, 713,
607.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C 3H;sF3NO5S 323.0803; Found 323.0796.

OTf

BN

Methyl (E)-4-(2-methyl-1-(((trifluoromethyl)sulfonyl)oxy)hex-1-en-1-yl)benzoate (3.78)

Synthesized according to general procedure 3.8.3.2.1A starting from corresponding ketone. To a
25 mL round bottom flask was added corresponding ketone (130 mg, 0.52 mmol, 1 equiv) as a
solution in dry THF (1mL). This flask was cooled to —78 °C, and to it was added a solution of
NaHMDS (144 mg, 0.79 mmol, 1.5 equiv) as a solution in dry THF (5 mL) drop wise. This
solution was allowed to stir for 30 minutes at —78 °C. To the reaction was added 1,1,1-trifluoro-
N-phenyl-N-((trifluoromethyl)sulfonyl)methanesulfonamide (206 mg, 0.58 mmol, 1.1 equiv) as a
solution in dry THF (2 mL). The reaction was allowed to warm to room temperature and stir for

8h. The reaction was concentrated and suspended in 1:1 ether:hexanes (15 mL) and filtered. The
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solids were washed with cold 1:5 ether:hexanes. The filtrate was concentrated and purified by
flash column chromatography (8% ether:hexanes) to give 3.78 as a clear oil (50 mg, 25% yield).
'H NMR (300 MHz, CDCls) & 8.07 (d, J = 7.9 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 3.94 (s, 3H),
2.07 (t,J=7.8 Hz, 2 H), 1.98 (s, 3H), 1.45 (p, J= 8.0, 7.5 Hz, 2H), 1.23 (q, J = 7.3 Hz, 2H), 0.83
(t,J=7.2 Hz, 3H).

C NMR (126 MHz, CDCl3) § 166.7, 141.3, 137.3, 133.9, 131.1, 129.9, 129.8, 118.3 (q, 'Je r =
320.2 Hz),52.6, 33.4, 30.2, 22.6, 16.8, 14.1.

F NMR (282 MHz, CDCl;) & -74.66.

FTIR (Neat Film NaCl): 2959, 2938, 2865, 1728, 1414, 1279, 1210, 1141, 1104, 955, 868, 838,
706, 607 cm’.

HRMS (CI-MS) m/z: [M]+ Calc’d for Ci6H19F305S 380.0905; Found 380.0902.

OoTf
nBu

CN
(£)-1-(3-Cyanophenyl)-2-methylhex-1-en-1-yl trifluoromethanesulfonate (3.79). Synthesized
according to general procedure 3.8.3.2.1A starting from corresponding ketone. To a round
bottom flask was added corresponding ketone (220 mg, 1.0 mmol, 1 equiv) as a solution in dry
THF (2.5 mL). This flask was cooled to —78 °C, and to it was added a solution of NaHMDS (281
mg, 1.5 mmol, 1.5 equiv) as a solution in dry THF (2 mL) drop wise. This solution was allowed
to stir for 30 minutes at —78 °C. To the reaction was added 1,1,1-trifluoro-N-phenyl-N-
((trifluoromethyl)sulfonyl)methanesulfonamide (365 mg, 1.0 mmol, 1.0 equiv) as a solution in

dry THF (0.6 mL). The reaction was allowed to warm to room temperature and stir overnight.
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The reaction was then cooled to —78 °C and was quenched by addition of MeOH in EtOAc (10%
v/v). The solution was allowed to warm to room temperature and the combined organics were
washed with water and brine. The organic layer was then dried over MgSQO,, filtered and
concentrated. The crude material was concentrated and purified by flash column chromatography

(2.5% ether:hexanes) to give 3.79 as a clear oil (310 mg, 87% yield).

'H NMR (500 MHz, CDCl3) & 7.69 (dd, J = 7.7, 1.3 Hz, 1H), 7.65 (s, 1H), 7.62 — 7.57 (m, 1H),
7.54 (t, J = 7.8 Hz, 1H), 2.07 — 2.00 (m, 3H), 1.99 (d, J = 0.8 Hz, 3H), 1.45 (tt, J = 7.7, 6.1 Hz,
3H), 1.27 — 1.16 (m, 3H), 0.88 — 0.77 (m, 4H).

C NMR (126 MHz, CDCls) & 139.6, 134.7, 134.2, 133.2, 133.0, 129.6, 120.7 (q, 'Jc 5 - 320
Hz), 118.1, 113.0, 33.1,29.9, 22.4, 16.5, 13.9.

F NMR (376 MHz, CDCl;) & —74.64.

HRMS (CI-MS) m/z: [M]+ Cale’d for C;sHigFsNOsS 347.0803; Found 347.0797.
FTIR (Neat Film NaCl): 2960, 2932, 2864, 2233, 1412, 1244, 1207, 1139, 983, 903, 844, 592

-1
cm .

OTf

! X OBu

(Z2)-2-Butoxy-1,2-diphenylvinyl trifluoromethanesulfonate (3.80). Synthesized according to
general procedure 3.8.3.2.1A starting from known butoxy benzoin derivative. To a flame dried
flask was added NaHMDS (1.08 g, 5.9 mmol, 1.5 equiv) and anhydrous THF 20 ml, then cool
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the solution to —78 °C. 2-butoxy-1,2-diphenylethan-1-one (1.09 g, 3.9 mmol, 1 equiv) in 10 ml
THF was added dropwise. Stir the solution at —78 °C for 30min and then warm up to 0 °C and
keep at 0 °C for 30 min. 1,1,1-trifluoro-N-phenyl-N-
((trifluoromethyl)sulfonyl)methanesulfonamide (1.55 g, 4.3 mmol, 1.1 equiv ) in 10 ml THF was
added after the solution was cooled to —78 °C then warm up slowly to room temperature.
Reaction was quenched with 10 ml 1:5 methanol/ethyl actetate after 1 hour stirring at room
temperature. The solvent was evaporated and the crude was purified by flash column

chromatography (1% ether:hexanes) to give 3.80 as white solid (920 mg, 59% yield).

*Note: Vinyl triflate 3.80 was found to be unstable for long term storage on benchtop and should
be stored in a glovebox freezer at — 40 °C after purification in order to maintain purity.

Major Z isomer was assigned by a ['H-"F HOESY] experiment where correlations were
observed between the trifluoromethyl group with the methylene protons of the butoxy chain.

'H NMR (500 MHz, CD,Cl,) & 7.38 — 7.33 (m, 2H), 7.30 — 7.25 (m, 2H), 7.25 — 7.17 (m, 6H),
4.59 (dd, J=9.8, 8.8 Hz, 1H), 4.23 (dd, J = 8.8, 7.0 Hz, 1H), 3.49 (dddd, J = 10.3, 8.9, 6.9, 3.5
Hz, 1H), 1.61 (dqd, J=13.7, 7.6, 3.5 Hz, 1H), 1.45 — 1.35 (m, 1H), 0.89 (t, J= 7.4 Hz, 3H).

C NMR (126 MHz, CD,Cl,) § 150.1, 135.6, 132.0, 128.8, 128.4, 128.2, 128.0, 127.6, 126.3,
114.8, 73.3, 49.1, 25.5, 10.6.

F NMR (282 MHz, CD,Cl,) § —75.29

FTIR (Neat film NaCl): 3085, 3061, 3028, 2961, 2937, 2876, 1651, 1446, 1415, 1258, 1240,
1201, 1139, 1100, 1074, 1001, 986, 897,820, 768, 694, 647, 601, 569, 511.

HRMS (ESI-MS) m/z: [M+Na]+ Calc’d for C1oH;oF304SNa 423.0854; Found 423.0845.
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Methyl (2)-2-(p-tolyl(((trifluoromethyl)sulfonyl)oxy)methylene)hexanoate (3.49)

To a 3-neck flask equipped with a reflux condenser and a stir bar was added NaH (170 mg, 60%
w/w, 4.35 mmol, 1.8 equiv) followed by dry toluene (20 mL). To this was added dropwise
corresponding ketone(600 mg, 2.4 mmol, 1 equiv). This was heated to 85 °C for 1.5 hours. The
reaction mixture was then cooled to 0 °C and trifluoromethanesulfonic anhydride (0.57 mL, 3.4
mmol, 1.5 equiv). This was allowed to stir at 0 °C for 1h, and then warmed to r.t. overnight. The
reaction was diluted with ether (15 mL), followed by addition of satd. aqueous NaHCO; (10
mL). The aqueous layer was extracted with ether (3 x 20 mL). The organic layer was dried with
Na,COs, filtered, and concentrated. The crude oil was purified by column chromatography (6%
ether:hexanes) to give 3.49 as a yellow oil (600 mg, 65% yield).

'H NMR (500 MHz, CDCl3) & 7.30 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 3.88 (s, 3H),
2.34 —2.23 (m, 2H), 1.56 (s, 3H), 1.41 (tdd, J = 9.9, 7.4, 3.9 Hz, 2H), 1.33 — 1.21 (m, 2H), 0.82
(t,J=7.3 Hz, 3H).

C NMR (126 MHz, CDCls) § 166.1, 147.5, 140.9, 129.2, 129.0, 128.2, 128.1, 118.3 (q, 'Jer =
320.2 Hz), 52.3, 30.6, 29.7, 22.2, 21.5, 13.6.

F NMR (282 MHz, CDCl;) & -74.55.

FTIR (Neat Film NaCl): 2960, 2934, 2875, 1731, 1421, 1302, 1208, 1139, 969, 842, 608 cm™".

HRMS (ESI-MS) m/z: [M+Na]+ Calc’d for C16H;5F305SNa 403.0803; Found 403.0799.

3.8.3.3 Li-urea Catalyzed Friedel-Crafts Reactions.
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In this section we outline reactions done in Figure 3.6.

3.8.3.3.1 General procedure for hydrogen-bond donor catalyzed reactions performed
outside of glovebox.

To an oven dried 2-dram vial with a magnetic stir bar was added catalyst (0.1 equiv, 0.02 mmol).
The 2-dram vial was covered with a septum and vacuum/backfill three times and left under
nitrogen. Solvent (1.4 mL) was added followed by LIHMDS (0.3 mmol, 1.5 equiv, 0.6 mL of 0.5
M solution in reaction solvent). To this was added arene (1.0-2.0 mmol, 5-10 equiv) and
allowed to prestir for 5 minutes. Substrate (0.2 mmol, 1.0 equiv) was added through the septum
and the reaction was allowed to stir at r.t. For reactions conducted at elevated temperature, the
septum was quickly replaced with a PTFE lined cap under a stream of argon and further sealed
with electrical tape. The reaction progress was closely monitored by TLC and/or GC. If a
reaction started to stall, an extra equivalent of LIHMDS (0.2 mmol, 1.0 equiv, 0.4 mL of 0.5 M
solution in reaction solvent) was added. Upon completion of reaction, the mixture was diluted
with ether and pushed through a plug of silica gel in a pipette. This was concentrated to give the
crude material. The crude material was purified by silica flash chromatography to give the pure
product.

*Solutions of LiHMDS in 1,2-difluorobenzene have a limited storage lifetime due to slow
nucleophilic aromatic substitution reaction of LIHMDS with 1,2-difluorobenzene.

**depending on quality of LIHMDS solution and airfree technique, slightly more LIHMDS may

be required to drive a reaction to full conversion.
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***hexanes was obtained directly from solvent system and 1,2-difluorobenzene was distilled

over CaH, prior to performing reaction, but arene and substrate were used without careful

drying.
NTBS _
| P < NTBS

2.3:1
1-(tert-Butyldimethylsilyl)-3-(6,7-dihydro-5SH-benzo|7]annulen-9-yl)-1H-pyrrole (3.31a) and
1-(tert-butyldimethylsilyl)-2-(6,7-dihydro-5H-benzo[7]annulen-9-yl)-1H-pyrrole (3.31b)
Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(9.6 mg, 0.02 mmol, 0.10 equiv). The 2-dram vial was covered with a septum and
vacuum/backfill three times and left under nitrogen. Hexanes (1.4 mL) was added followed by
LiHMDS (0.30 mmol, 0.6 mL of 0.5M solution in hexanes, 1.5 equiv). This was allowed to
prestir for 5 minutes. N-TBSPyrrole (363 mg, 2.0 mmol, 10 equiv) was added followed by
benzosuberonyl triflate 3.69 (58.5 mg, 0.2 mmol, 1.0 equiv) through the septum. The septum was
replaced with a PTFE cap and sealed with electrical tape under a flow of argon. The reaction was
stirred at 50 °C for 12 hours. At this point LIHMDS (0.20 mmol, 0.4 mL of 0.5M solution in
hexanes, 1.0 equiv) was added and reaction stirred for additional 24 hours. The reaction was
diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was concentrated to give
the crude material as orange oil. The crude material was purified by silica flash chromatography

(3% ether/hexanes) to give product as a mix of isomers (2.3:1 C3:C2) as colorless oil (52.8 mg,
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82%, 0.16 mmol). The isomers were further separated by silica flash chromatography (15%
benzene/hexanes) to give analytically pure samples of both major and minor isomers.

The major isomer was assigned by using NOESY, COSY, and HSQC NMR experiments. The
methyl groups of the TBS (0.89 and 0.34 ppm) exhibited NOE’s with 2 distinct protons on the
pyrrole ring suggesting that neither of the C2 positions were functionalized. Another observation
was made that in general the C2 peaks are more downfield than the C3 peaks in these mono-
substituted pyrrole compounds. In the major isomer the three pyrrole protons are at 6.75, 6.58,
and 6.39 ppm whereas in the minor they are located at 6.77, 6.22, and 6.05 ppm.

Major isomer (3.31a):

'H NMR (500 MHz, CD,Cl,) & 7.35 — 7.32 (m, 1H), 7.27 — 7.23 (m, 1H), 7.23 — 7.19 (m, 2H),
6.75 (dd, J=2.8, 2.1 Hz, 1H), 6.58 (t, /= 1.8 Hz, 1H), 6.39 (dd, J= 2.7, 1.4 Hz, 1H), 6.36 (t, J =
7.4 Hz, 1H), 2.62 (t,J = 7.0 Hz, 2H), 2.13 (p, J = 7.1 Hz, 2H), 1.88 (q, J = 7.2 Hz, 2H), 0.89 (s,
9H), 0.39 (s, 6H).

C NMR (126 MHz, CD,Cl,) § 141.9, 140.8, 136.8, 128.6, 128.5, 127.9, 126.7, 125.6, 124.5,
122.6,122.4,109.4,35.4,32.3,25.7,24.7, 18.1, -5.7.

FTIR (Neat film NaCl): 3121, 3096, 3055, 3020, 2928, 2900, 2855, 1616, 1479, 1471, 1258,
1112, 1094, 837, 807, 787, 748, 681, 661.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C1H29NSi 323.2069; Found 323.2061.

Minor isomer (3.31b):

'H NMR (500 MHz, CD,Cl,) & 7.19 (dd, J = 7.3, 1.5 Hz, 1H), 7.13 (td, J = 7.4, 1.6 Hz, 1H), 7.08
(td, J=7.5, 1.6 Hz, 1H), 6.84 (dd, J = 2.9, 1.5 Hz, 1H), 6.77 (dd, J = 7.6, 1.5 Hz, 1H), 6.26 (t, J
= 6.5 Hz, 1H), 6.22 (t, J = 3.0 Hz, 1H), 6.06 (dd, J= 3.1, 1.5 Hz, 1H), 2.74 (t, J = 6.5 Hz, 2H),

2.17 (pd, J = 6.2, 2.8 Hz, 2H), 2.13 — 2.01 (m, 2H), 0.84 (s, 9H), 0.12 (s, 6H).
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BC NMR (126 MHz, CD,Cl,) & 142.0, 141.2, 141.0, 136.7, 132.6, 129.3, 128.9, 126.7, 126.3,
125.8, 114.6, 109.8, 34.3, 33.9, 27.3, 26.6, 19.2, =3.6.

FTIR (Neat film NaCl): 3096, 3063, 3017, 2929, 2857, 1471, 1462, 1404, 1257, 1140, 1063,
839, 809, 788, 721.

HR-MS (EI-MS) m/z: [M]+ Calc’d for Co1HysNSi 323.2069; Found 323.2060.

A O
JIT L

11:1

2-(1-(4-Bromophenyl)vinyl)-1-methoxy-4-methylbenzene (3.32a) and 2-(1-(4-
bromophenyl)vinyl)-4-methoxy-1-methylbenzene (3.32b)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 3,4-bis((3,5-
bis(trifluoromethyl)phenyl)amino)cyclobut-3-ene-1,2-dione 3.30 (10.7 mg, 0.02 mmol, 0.10
equiv). The 2-dram vial was covered with a septum and vacuum/backfill three times and left
under nitrogen. Hexanes (1.4 mL) was added followed by LiHMDS (0.30 mmol, 0.6 mL of 0.5
M solution in hexanes, 1.5 equiv). Next, 4-methylanisole (122 mg, 0.20 mmol, 5 equiv) was
added to the reaction. This was allowed to prestir for 5 minutes. 1-(4-bromophenyl)-2-
methylprop-1-en-1-yl trifluoromethanesulfonate (66.2 mg, 0.2 mmol, 1.0 equiv) was added
through the septum. The reaction was allowed to stir for 12 hours. At this point, more LIHMDS
(0.2 mmol, 1.0 equiv, 0.4 mL of 0.5 M solution in hexanes) was added. Reaction stirred for an

additional 4 hours at which point it was complete. The reaction was diluted with ether (ca. 2 mL)
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and pushed through a pad of silica. This was concentrated to give the crude material as orange
oil. The crude material was purified by silica flash chromatography (3% ethyl acetate/hexanes) to
give a 13:1 mixture of isomers as yellow oil (40.6 mg, 67%, 0.134 mmol). To separate the
isomers, a small portion of the mixture was purified by reverse phase preparative HPLC (95:5
MeCN:water) to give a pure sample of the major isomer and a ca. 90% pure sample of the minor
isomer for characterization. The major isomer was assigned by observing key NOE’s between
aryl protons on the anisole with the tolyl peak and the methoxy peak. Notably, protons at 7.14
ppm and 7.05 ppm had NOE’s with the tolyl peak at 2.32 ppm, while the proton at 6.81 ppm had
an NOE with the methoxy peak at 3.61 ppm. This lead to assigning the major isomer with
substitution ortho to the OMe peak.

Major isomer (3.32a):

'H NMR (500 MHz, CDCl3) § 7.39 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 7.14 (dd, J =
8.3,2.4 Hz, 1H), 7.05 (d, /=2.4 Hz, 1H), 6.81 (d, /= 8.3 Hz, 1H), 5.69 (d, /= 1.2 Hz, 1H), 5.33
(m, J=1.2 Hz, 1H), 3.61 (s, 3H), 2.32 (s, 3H).

BC NMR (126 MHz, CDCls) & 154.9, 146.2, 140.1, 131.8, 131.0, 130.2, 129.9, 129.5, 128.0,
121.1, 115.7, 111.2, 55.7, 20.4.

FTIR (Neat film NaCl): 3088, 3020, 3000, 2924, 1495, 1487, 1243, 1009, 902, 834, 744.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C,¢H;5BrO 302.0306; Found 302.0303

Minor isomer (3.32b):

'H NMR (500 MHz, CDCl3) § 7.40 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.2
Hz, 1H), 6.81 (dd, J = 8.5, 2.7 Hz, 1H), 6.77 (d, J = 2.9 Hz, 1H), 5.75 (s, 1H), 5.22 (s, 1H), 3.80

(s, 3H), 1.95 (s, 3H).
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C NMR (126 MHz, CDCls) 8 157.6, 148.4, 141.9, 139.2, 131.4, 131.1, 131. 0, 128.1, 121.6,
115.5,115.3, 113.0, 55.3, 19.1.

FTIR (Neat film NaCl): 3090, 2994, 2953, 2924, 2850, 1610, 1488, 1236, 1074, 1040, 1009,
904, 835, 802.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;6H;sBrO 302.0306; Found 302.0302

(

4-(1-(2,5-Dimethylphenyl)-2-methylprop-1-en-1-yl)benzonitrile (3.33)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(9.7 mg, 0.02 mmol, 0.10 equiv). The 2-dram vial was covered with a septum and
vacuum/backfill three times and left under nitrogen. 1,2-Difluorobenzene (1.4 mL) was added
followed by LiHMDS (0.30 mmol, 0.6 mL of 0.5 M solution in 1,2-difluorobenzene, 1.5 equiv).
Next, para-xylenes (106 mg, 0.2 mmol, 5 equiv) was added to the reaction. This was allowed to
prestir for 5 minutes. 1-(4-cyanophenyl)-2-methylprop-1-en-1-yl trifluoromethanesulfonate 3.75
(61.1 mg, 0.2 mmol, 1.0 equiv) was added through the septum. The septum was replaced with a
PTFE cap under a stream of argon and the reaction was heated to 70 °C for 16 hours. At this
point, more LiHMDS (0.2 mmol, 1.0 equiv, 0.4 mL of 0.5 M solution in 1,2-difluorobenzene)
was added. Reaction stirred for an additional 10 hours at which point it was complete. The
reaction was diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was

concentrated to give the crude material as orange oil. The crude material was purified by silica
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flash chromatography (5% ether/hexanes) to give pure product 3.33 as yellow oil (27.2 mg, 52%,
0.104 mmol).

'H NMR (500 MHz, CDCl;) & 7.54 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.7
Hz, 1H), 6.99 (d, J = 1.9 Hz, 1H), 6.88 (d, J = 1.9 Hz, 1H), 2.29 (s, 3H), 2.07 (s, 3H), 1.88 (s,
3H), 1.64 (s, 3H).

PC NMR (126 MHz, CDCls) § 147.0, 141.4, 135.1, 134.8, 133.9, 132.9, 131.6, 130.6, 130.2,
130.1, 127.8, 119.2, 109.4, 22.6, 21.7, 20.9, 19.2.

FTIR (Neat film NaCl): 3037, 2985, 2922, 2858, 2227, 1603, 1500, 1438, 851, 816.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;9H 9N 261.1518; Found 261.1513

®
pe

4-(1-(2,5-Dimethylphenyl)vinyl)phenyl trifluoromethanesulfonate (3.34)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(9.6 mg, 0.02 mmol, 0.10 equiv). The 2-dram vial was covered with a septum and
vacuum/backfill three times and left under nitrogen. para-Xylene (1.4 mL) was added followed
by LiHMDS (0.30 mmol, 0.6 mL of 0.5M solution in para-xylene, 1.5 equiv). This was allowed
to prestir for 5 minutes. 1-(4-(((trifluoromethyl)sulfonyl)oxy)phenyl)vinyl
trifluoromethanesulfonate 3.73 (80.1 mg, 0.2 mmol, 1.0 equiv) was added through the septum.
The reaction was stirred at r.t. for 12 hours. At this point LiHMDS (0.20 mmol, 0.4 mL of 0.5M

solution in para-xylene, 1.0 equiv) was added and reaction stirred for additional 4 hours. The
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reaction was diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was
concentrated to give the crude material as orange solid. The crude material was purified by silica
flash chromatography (3% ether/hexanes) to give product 3.34 as colorless oil (53.8 mg, 76%,
0.15 mmol).

'H NMR (500 MHz, CDCl;) & 7.34 (d, J = 8.8 Hz, 1H), 7.18 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 1.3
Hz, 2H), 7.01 (s, 1H), 5.77 (d, J = 1.3 Hz, 1H), 5.27 (d, J = 1.3 Hz, 1H), 2.34 (s, 3H), 1.99 (s,
3H).

C NMR (126 MHz, CDCl3) & 148.8, 147.9, 141.1, 140.5, 135.4, 132.7, 130.6, 130.2, 128.6,
128.2,121.2, 118.7 (q, 'Je ¢ = 320.8 Hz), 116.4, 20. 9, 19.6.

F NMR (376 MHz, CDCl;) & —72.8.

FTIR (Neat film NaCl): 3092, 3016, 2925, 2861, 1615, 1499, 1425, 1250, 1210, 1140, 886, 848,
607.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;7H,sF503S 356.0694; Found 356.0692.

A

1-Bromo-4-(tert-butyl)-2-(2-methyl-1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)benzene
3.35)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29

(10.7 mg, 0.02 mmol, 0.10 equiv). The 2-dram vial was covered with a septum and
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vacuum/backfill three times and left under nitrogen. Hexanes (1.4 mL) was added followed by
LiHMDS (0.30 mmol, 0.6 mL of 0.5 M solution in hexanes, 1.5 equiv). Next, 4-
tertbutylbromobenzene (213 mg, 1.0 mmol, 5 equiv) was added to the reaction. This was allowed
to  prestir for 5 minutes. 2-methyl-1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl
trifluoromethanesulfonate 3.74 (69.7 mg, 0.2 mmol, 1.0 equiv) was added through the septum.
The septum was replaced with a PTFE cap under a stream of argon and the reaction was heated
to 50 °C for 4 hours. The reaction was diluted with ether (ca. 2 mL) and pushed through a pad of
silica. This was concentrated to give the crude material as orange oil. The crude material was
purified by silica flash chromatography (3% ether/hexanes) to give product as yellow oil (65.9
mg, 80%, 0.16 mmol). The major isomer was assigned using key interactions from the 1H-1H
NOESY. Notably, the methyl peaks of the #-Butyl (1.30 ppm) had NOE’s with two peaks in the
aromatic region at 7.22 and 7.14 which is suggestive of the isomer depicted

'H NMR (500 MHz, CDCl3) & 7.53 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 8.0,
2H), 7.22 (d, J = 2.5 Hz, 1H), 7.14 (dd, J = 8.4, 2.6 Hz, 1H), 1.87 (s, 3H), 1.65 (s, 3H), 1.30 (s,
9H).

C NMR (126 MHz, CDCl3) § 150.7, 144.9, 142.5, 135.0, 134.6, 132.3, 129.9, 128.5, 128.1 (q,
*Jer = 32.2 Hz), 125.6, 124.7 (q, *Jer = 3.8 Hz), 124.3 (q, 'Jer = 272.3 Hz), 120.9, 34.6, 31.3,
22.5,21.6.

FTIR (Neat film NaCl): 3053, 2965, 2909, 2870, 1614, 1463, 1322, 1163, 1108, 1066, 830, 820.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C,xH2,BrF;: 410.0857; Found 410.0856.
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1-(2-methyl-1-phenylprop-1-en-1-yl)-4-(trifluoromethyl)benzene (3.36)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(4.8 mg, 0.0 mmol, 0.10 equiv). The 2-dram vial was covered with a septum and
vacuum/backfill three times and left under nitrogen. Hexanes (0.7 mL) was added followed by
LiHMDS (0.15 mmol, 0.3 mL of 0.5 M solution in hexanes, 1.5 equiv). Next, benzene (39 mg,
0.5 mmol, 5 equiv) was added to the reaction. This was allowed to prestir for 5 minutes. 2-
methyl-1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl trifluoromethanesulfonate 3.74 (34.8 mg,
0.1 mmol, 1.0 equiv) was added through the septum. The reaction was stirred at r.t. for 12 hours.
At this point LIHMDS (0.10 mmol, 0.2 mL of 0.5M solution in hexanes, 1.0 equiv) was added
and reaction stirred for additional 4 hours. The reaction was diluted with ether (ca. 2 mL) and
pushed through a pad of silica. This was concentrated to give the crude material as yellow oil.
The crude material was purified by silica flash chromatography (2% ether/hexanes) to give
product 3.36 as colorless oil (23.1 mg, 84%, 0.84 mmol).

'H NMR (500 MHz, CDCl3) & 7.54 (d, J = 8.1 Hz, 2H), 7.32 — 7.28 (m, 2H), 7.28 — 7.25 (m,
2H), 7.24 - 7.20 (m, 1H), 7.15—-7.10 (m, 2H), 1.83 (s, 3H), 1.82 (s, 3H).

C NMR (126 MHz, CDCly) & 147.0, 142.5, 136.0, 132.6, 130.1, 129.8, 128.1 (q, *Jcr = 31.5
Hz), 128.0, 126.4, 124.8 (q, *Jcr = 3.8 Hz), 124.3 (q, 'Jcr = 248.6), 22.5 (d, J = 14.3 Hz).

F NMR (376 MHz, CDCl;) & —62.3.
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FTIR (Neat film NaCl): 3050, 3027, 2988, 2928, 2861, 1616, 1493, 1325, 1164, 1124, 1069,
759.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;7H,sF; 276.1126; Found 276.1124.

! OMe
MeO
e

2-(1-(4-fluorophenyl)vinyl)-1,4-dimethoxybenzene (3.37)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(9.7 mg, 0.02 mmol, 0.10 equiv) and 1,4-dimethoxybenzene (138.0 mg, 1.0 mmol, 5.0 equiv).
The 2-dram vial was covered with a septum and vacuum/backfill three times and left under
nitrogen. 1,2-Difluorobenzene (1.5 mL) was added followed by LiHMDS (0.24 mmol, 0.48 mL
of 0.5 M solution in 1,2-difluorobenzene, 1.2 equiv). This was allowed to prestir for 5 minutes.
1-(4-fluorophenyl)vinyl trifluoromethanesulfonate 3.70 (54.0 mg, 0.2 mmol, 1.0 equiv) was
added through the septum and the reaction was allowed to stir at r.t for 6 hours. At this point,
more LiHMDS (0.16 mmol, 0.8 equiv, 0.32 mL of 0.5 M solution in 1,2-difluorobenzene) was
added. Reaction stirred for an additional 12 hours at which point it was complete. The reaction
was diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was concentrated to
give the crude material as a yellow solid. The crude material was purified by silica flash
chromatography (3% ether/hexanes) to give a mixture of product with some leftover 1,4-

dimethoxybenzene. This was heated under reduced pressure (50 °C, 0.2 mmHg) to remove
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residual dimethoxybenzene and afford pure product 3.37 as a yellow oil (35.9 mg, 70%, 0.14
mmol)

'H NMR (500 MHz, CDCl3) & 7.34 — 7.21 (m, 2H), 6.98 — 6.93 (m, 2H), 6.90 — 6.80 (m, 3H),
5.65(d, J= 1.3 Hz, 1H), 5.30 (d, J = 1.3 Hz, 1H), 3.79 (s, 3H), 3.58 (s, 3H).

BC NMR (126 MHz, CDCl3) 8 162.27 (d, 'Je_r = 246.1 Hz), 153.59, 151.22, 145.91, 136.95 (d,
*Jor = 3.1 Hz), 131.89, 127.95 (d, *Jcr = 8.1 Hz), 117.04, 115.23, 114.83 (d, *Jcr = 21.4 Hz),
113.46, 112.66, 56.36, 55.73.

F NMR (376 MHz, CDCl;) & —115.4.

FTIR (Neat film NaCl): 3046, 2999, 2936, 2833, 1602, 1582, 1507, 1491, 1464, 1422, 1298,
1218, 1045, 1025, 841.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;¢H sFO, 218.1056; Found 218.0153

I OMe
MeO
Br I

2-(1-(4-bromophenyl)vinyl)-1,4-dimethoxybenzene (3.38)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
(9.7 mg, 0.02 mmol, 0.10 equiv) and 1,4-dimethoxybenzene (138.0 mg, 1.0 mmol, 5.0 equiv).
The 2-dram vial was covered with a septum and vacuum/backfill three times and left under
nitrogen. 1,2-Difluorobenzene (1.5 mL) was added followed by LiHMDS (0.24 mmol, 0.48 mL
of 0.5 M solution in 1,2-difluorobenzene, 1.2 equiv). This was allowed to prestir for 5 minutes.
1-(4-bromophenyl)vinyl trifluoromethanesulfonate 3.71 (66.2 mg, 0.2 mmol, 1.0 equiv) was
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added through the septum and the reaction was allowed to stir at r.t for 6 hours. At this point,
more LiHMDS (0.16 mmol, 0.8 equiv, 0.32 mL of 0.5 M solution in 1,2-difluorobenzene) was
added. Reaction stirred for an additional 12 hours at which point it was complete. The reaction
was diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was concentrated to
give the crude material as a yellow solid. The crude material was purified by silica flash
chromatography (3% ether/hexanes) to give a mixture of product with some leftover 1,4-
dimethoxybenzene. This was heated under reduced pressure (100 °C, 0.2 mmHg) to remove
residual dimethoxybenzene and afford pure product 3.38 as a yellow oil (43.8 mg, 67%, 0.134
mmol)

'H NMR (500 MHz, CDCl3) § 7.42 — 7.35 (m, 2H), 7.21 — 7.13 (m, 2H), 6.91 — 6.78 (m, 3H),
5.70 (d,J=1.2 Hz, 1H), 5.34 (d, J= 1.2 Hz, 1H), 3.79 (s, 3H), 3.58 (s, 3H).

C NMR (126 MHz, CDCly) & 153.6, 151.2, 146.0, 139.8, 131.5, 131.1, 128. 0, 121.3, 117.1,
116.0, 113.6, 112.6, 56.3, 55.7.

FTIR (Neat film NaCl): 3088, 2997, 2933, 2832, 1611, 1583, 1490, 1463, 1421, 1217, 1045,
1038, 904, 834, 806.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;6H;sBrO, 318.0255; Found 318.0248

I OMe
MeO
| I

2-(1-(4-iodophenyl)vinyl)-1,4-dimethoxybenzene (3.39)
Synthesized according to a slightly modified general procedure 3.8.3.3.1. To an oven dried 2-
dram vial with a magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29
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(9.7 mg, 0.02 mmol, 0.10 equiv) and 1,4-dimethoxybenzene (138.0 mg, 1.0 mmol, 5.0 equiv).
The 2-dram vial was covered with a septum and vacuum/backfill three times and left under
nitrogen. 1,2-Difluorobenzene (1.5 mL) was added followed by LiIHMDS (0.24 mmol, 0.48 mL
of 0.5 M solution in 1,2-difluorobenzene, 1.2 equiv). This was allowed to prestir for 5 minutes.
1-(4-iodophenyl)vinyl trifluoromethanesulfonate 3.72 (66.2 mg, 0.2 mmol, 1.0 equiv) was added
through the septum and the reaction was allowed to stir at r.t for 6 hours. At this point, more
LiHMDS (0.16 mmol, 0.8 equiv, 0.32 mL of 0.5 M solution in 1,2-difluorobenzene) was added.
Reaction stirred for an additional 12 hours at which point it was complete. The reaction was
diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was concentrated to give
the crude material as a yellow solid. The crude material was purified by silica flash
chromatography (3% ether/hexanes) to give a mixture of product with some leftover 1,4-
dimethoxybenzene. This was heated under reduced pressure (100 °C, 0.2 mmHg) to remove
residual dimethoxybenzene and afford pure product 3.39 as a yellow oil (48.9 mg, 67%, 0.134
mmol).

'H NMR (500 MHz, CDCl3) § 7.64 — 7.51 (m, 2H), 7.06 — 6.99 (m, 2H), 6.93 — 6.78 (m, 3H),
5.70 (d,J=1.2 Hz, 1H), 5.33 (d, /= 1.2 Hz, 1H), 3.79 (s, 3H), 3.58 (s, 3H).

BC NMR (126 MHz, CDCls) & 153.6, 151.2, 146.1, 140.4, 137.1, 131.4, 128.3, 117.1, 116.0,
113.6, 112.6,92.9, 56.3, 55.7.

FTIR (Neat film NaCl): 3086, 2996, 2933, 2831, 1610, 1582, 1492, 1462, 1421, 1268, 1219,
1045, 1004, 841, 756.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C6H;510, 366.0117; Found 366.0114

Gram scale reaction procedure
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To a flame dried 100 mL schlenk flask with a magnetic stir bar was added 1,3-bis(3,5-
bis(trifluoromethyl)phenyl)urea 3.29 (145 mg, 0.3 mmol, 0.10 equiv) and 1,4-dimethoxybenzene
(2070 mg, 15.0 mmol, 5.0 equiv). 1,2-difluorobenzene (23 mL) was added followed by LIHMDS
(3.60 mmol, 7.2 mL of 0.5 M solution in 1,2-difluorobenzene, 1.2 equiv). This was allowed to
prestir for 5 minutes. 1-(4-iodophenyl)vinyl trifluoromethanesulfonate 3.72 (1.13 g, 3.0 mmol,
1.0 equiv) was added through the septum and the reaction was allowed to stir at r.t for 4.5 hours.
At this point, more LIHMDS (3.0 mmol, 1.0 equiv, 6.0 mL of 0.5 M solution in difluorobenzene)
was added. Reaction stirred for an additional 12 hours at which point it was complete. The
reaction was diluted with ether (ca. 2 mL) and pushed through a pad of silica. This was
concentrated to give the crude material as a yellow solid. The crude material was purified by
silica flash chromatography (3% ether/hexanes) to give a mixture of product with some leftover
1,4-dimethoxybenzene. This was heated under reduced pressure (100 °C, 0.2 mmHg) to remove
residual dimethoxybenzene and afford pure product 3.39 as a yellow oil (701 mg, 64%, 1.91

mmol).

MeO

H

(cis)-3a-(2-Methoxy-5-methylphenyl)octahydropentalene (3.40)

Synthesized according to a slightly modified general procedure 3.8.3.3.1. To a flame dried 25
mL  schlenk flask with a  magnetic stir bar was added 3.,4-bis((3,5-
bis(trifluoromethyl)phenyl)amino)cyclobut-3-ene-1,2-dione 3.30 (53.6 mg, 0.1 mmol, 0.10
equiv). LIHMDS (1.20 mmol, 2.4 mL of 0.5M solution in 1,2-difluorobenzene, 1.2 equiv) was

added to the flask. This was allowed to prestir for 5 minutes. 4-methylanisole (244 mg, 2.0
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mmol, 2 equiv) was added followed by cyclooctenyl triflate 3.6 (258.3 mg, 1.0 mmol, 1.0 equiv)
through the septum. The reaction was stirred at room temperature for 14 hours. At this point
LiHMDS (1.20 mmol, 2.4 mL of 0.5M solution in 1,2-difluorobenzene, 1.2 equiv) was added
and reaction stirred for additional 48 hours. Nonane (150 uL) was added to acquire a GC yield
(57%). The reaction was diluted with ether (10 mL) and water (10 mL). The layers were
separated and the aqueous was extracted with ether (2 x 10 mL). Combined organics dried over
magnesium sulfate, filtered and concentrated to give crude product as orange oil. The crude
material was heated to 70 °C under reduced pressure to remove residual 4-methylanisole. The
remaining material was purified by silica flash chromatography (3% ether/hexanes) to give
bicycle 3.40 as colorless oil (107 mg, 47%, yield, 0.47 mmol). The major regioisomer/Friedel-
Crafts isomer was determined by performing 2D NMR experiments: NOESY, COSY, HSQC,
and HMBC. First, on HSQC it was evident that there was only one tertiary carbon peak (47.5
ppm on carbon NMR and 2.83 on proton NMR) which was suggestive that the product was
arylated at the ring fusion position. In order to assign the correct Friedel-Crafts isomer, the
aromatic protons were analyzed for NOE’s with the tolyl peak or methoxy peak. The protons at
7.08 and 6.97 had NOE’s with the tolyl peak at 2.29 whereas the proton at 6.78 had an NOE with
the methoxy protons at 3.79. Taken together, this suggested that the arene was functionalized
ortho to the methoxy as drawn.

'H NMR (500 MHz, CDCl3) § 7.08 (d, J=2.2 Hz, 1H), 6.97 (dd, J=2.2, 0.8 Hz, 1H), 6.78 (d, J
= 8.1 Hz, 1H), 3.79 (s, 3H), 2.83 (tt, J = 8.8, 4.7 Hz, 1H), 2.29 (d, J = 0.7 Hz, 3H), 1.99 — 1.91
(m, 4H), 1.90 — 1.84 (m, 2H), 1.70 — 1.60 (m, 2H), 1.54 — 1.46 (m, 2H), 1.40 — 1.34 (m, 2H).

C NMR (126 MHz, CDCl;) § 156.0, 138.3, 128.7, 126.9, 126.6, 111.6, 57.2, 55.2, 47.6, 40.5,

34.2,25.8,20.9.
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FTIR (Neat film NaCl): 3111, 2937, 2862, 2831, 1606, 1585, 1495, 1464, 1450, 1291, 1236,
1226, 1180, 1034, 803, 735.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C16H»,0: 230.1671; Found 230.1671.

3.8.3.4 Li-urea Catalyzed Intramolecular C—H Insertion Reactions.

In this section we outline reactions done in Figure 3.7a.

3.8.3.4.1 General Procedure

In a well kept glovebox, (H,0O, O, < 0.5 ppm), a dram vial was charged with the urea catalyst
3.29 (2.4 mg, 0.01 mmol, 0.2 equiv) and LiH (1.0 mg, 0.25 mmol, 5 equiv) followed by dry 1,2-
difluorobenzene (1.5 mL). To this was added vinyl triflate (0.050 mmol, 1 equiv) and heated to
70 °C until reaction was completed as monitored by GC-FID or TLC. The reaction vial was
removed from the glove box and plugged through silica gel with ether and concentrated. The

crude oil was purified by flash column chromatography to yield cyclopentene product.

A

Z
N

3-(2,5-Dimethylcyclopent-1-en-1-yl)pyridine (3.41).

Synthesized according to a slightly modified general procedure 3.8.3.4.1. To a 20 mL vial with a
magnetic stir bar was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29 (9.6 mg, 0.02
mmol, 0.20 equiv). LiHMDS (56.5 mg, 0.34 mmol, 3.4 equiv) was added followed by
cyclohexane (6 mL). After a five minute prestir, vinyl triflate 3.77 (32.3 mg, 0.10 mmol, 1 equiv)
was added. The reaction was heated to 70 °C. After 4 hours, the reaction was cooled to room

temperature and removed from the glovebox. The reaction was concentrated and then suspended
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in ether and pushed through a pad of silica. This was concentrated to give crude product as dark
solid (80% NMR yield). This was purified by silica flash column chromatography (1%
MeOH/DCM) and then another flash column chromatography (1:25:175 triethylamine:ethyl
acetate:hexanes). This gave cyclopentyl product 3.41 as colorless oil (10.6 mg, 61% yield, 0.061
mmol).

'H NMR (400 MHz, CD,Cl,) & 8.43 (d, J = 2.0 Hz, 1H), 8.41 (dd, J = 4.8, 1.7 Hz, 1H), 7.49 (dt,
J=1.8,2.0Hz, 1H), 7.25 (ddd, J = 7.8, 4.8, 0.9 Hz, 1H), 3.22 — 3.12 (m, 1H), 2.60 — 2.46 (m,
1H), 2.44 — 2.32 (m, 1H), 2.22 (dddd, J = 12.8, 9.0, 8.1, 4.7 Hz, 1H), 1.74 (dt, J = 2.2, 1.2 Hz,
3H), 1.48 (dddd, J=12.8, 9.3, 6.8, 6.1 Hz, 1H), 0.93 (d, /= 6.8 Hz, 3H).

C NMR (126 MHz, CD,Cl,) 8 149.7, 147.2, 137.4, 137.1, 135.5, 133.8, 123.0, 43.2, 37.9, 31.4,
19.9, 15.1.

FTIR (Neat film NaCl): 3083, 3032, 2954, 2928, 2864, 2842, 1654, 1563, 1479, 1453, 1409,
1377, 1324, 1268, 1186, 1100, 1026, 1001, 957, 807, 716, 617.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C1oH;sN 173.1205; Found 173.1199.

9

CF;

&

'1-(2,5-Dimethylcyclopent-1-en-1-yl)-2-(trifluoromethyl)benzene (3.42).

Synthesized according to general procedure 3.8.3.4.1. To a 20 mL vial with a magnetic stir bar
was added 1,3-bis(3,5-bis(trifluoromethyl)phenyl)urea 3.29 (9.6 mg, 0.02 mmol, 0.20 equiv).
LiH (2.9 mg, 0.30 mmol, 3.0 equiv) was added followed by 1,2-difluorobenzene (6 mL). After a
five minute prestir, vinyl triflate 3.76 (39.0 mg, 0.10 mmol, 1 equiv) was added. The reaction

was heated to 70 °C. After 2 hours, the reaction was cooled to room temperature and removed
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from the glovebox. The reaction was concentrated and then suspended in ether and pushed
through a pad of silica. This was concentrated to give crude product as yellow solid. This was
purified by silica flash column chromatography (3% ether/hexanes) to give cyclopentenyl
product 3.42 as colorless oil (21.6 mg, 90% yield, 0.90 mmol).

This compound exists as a mixture of rotamers at room temperature due to the ortho-CF3 group
interacting with the methyls of the cyclopentene ring: the major rotamer is reported in CDCl; at
room temperature and a spectrum of C¢Ds at elevated temperature is shown to show the two

rotamers converging into one.

Major Rotamer

'H NMR (400 MHz, CDCl3) & 7.69 — 7.64 (m, 1H), 7.53 — 7.45 (m, 1H), 7.35 (t, J = 7.6 Hz, 1H),
7.08 (d, J = 7.6 Hz, 1H), 2.99 (s, 1H), 2.39 (t, J = 6.8 Hz, 2H), 2.22 (dtd, J = 12.3, 7.8, 6.1 Hz,
1H), 1.53 — 1.46 (m, 1H), 1.44 (s, 3H), 0.90 (d, J = 6.9 Hz, 3H).

BC NMR (126 MHz, CDCls) & 139.2, 138.1 (q, *Jer = 2.5 Hz), 136.8, 132.3, 131.0, 128.9 (q,
*Jer = 29.7 Hz), 126.5, 125.9 (q, J = 5.4 Hz), 124.3 (q, 'Jer = 273.6 Hz), 44.6 (q, *Jor = 2.3
Hz), 36.7,32.3, 19.9, 15.0.

F NMR (376 MHz, CDCl;) 8 —61.7.

VT NMR (70 °C)

'H NMR (500 MHz, C¢Ds, 70 °C) & 7.52 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.93 (t, J =
7.6 Hz, 2H), 6.92 (t, J = 7.6 Hz, 2H), 3.10 (s, 1H), 2.30 (br s, 2H), 2.16 (br s, 1H), 1.43 (s, 3H),
1.42 — 1.38 (m, 1H), 0.90 (d, J = 6.9 Hz, 4H).

FTIR (Neat film NaCl): 3072, 2956, 2928, 2857, 2845, 1734, 1448, 1314, 1167, 1127, 1103,

1062, 1035, 768, 756.
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HR-MS (CI-MS) m/z: [M]+ Calc’d for C14H;sF3 240.1126; Found 240.1133.

Neon!

_0

Methyl 4-(2,5-dimethylcyclopent-1-en-1-yl)benzoate (3.43)

Synthesized according to a modified general procedure 3.8.3.4.1. In a well kept glovebox, (H2O,
0, < 0.5 ppm), a dram vial was charged with the urea catalyst 3.29 (2.4 mg, 0.005 mmol, 0.2
equiv) and LiH (0.6 mg, 0.075 mmol, 3 equiv) followed by dry 1,2-difluorobenzene (1.5 mL). To
this was added 3.78 (9.5 mg, 0.025 mmol, 1 equiv) and heated to 70 °C for 6 hours. The reaction
vial was removed from the glove box and plugged through silica gel with ether and concentrated.
The crude oil was purified by flash column chromatography (4% acetone:hexanes) to yield
cyclopentene 3.43 as a clear oil (5.2 mg, 90% yield).

'H NMR (500 MHz, CDCl3) & 8.00 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 7.5 Hz, 2H), 3.91 (s, 2H),
3.16 — 3.23 (m, 1H), 2.46 — 2.54 (m, 1H), 2.33 —2.41 (m, 1H), 2.22 (dtt, J = 12.9, 8.6, 4.5 Hz,
1H), 1.76 (s, 3H), 1.50 — 1.43 (m, 1H), 0.93 (d, /= 6.9 Hz, 2H).

C NMR (126 MHz, CDCl3) & 167.5, 143.5, 140.3, 137.2, 129.6, 128.6, 127.9, 52.3, 43.5, 38.4,
31.6,20.5, 15.8.

FTIR (Neat Film NaCl): 2952, 2927, 2866, 2840, 1722, 1607, 1435, 1275, 1177, 1109, 1000,
857,775,709 cm’,

HRMS (CI-MS) m/z: [M]+ Calc’d for C;sH;50, 230.1307; Found 230.1299.
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OQ

CN
3-(2,5-Dimethylcyclopent-1-en-1-yl)benzonitrile (3.44).
Synthesized according to general procedure 3.8.3.4.1. In a well kept glovebox, (H,O, O, < 0.5
ppm), a dram vial was charged with the urea catalyst 3.29 (4.8 mg, 0.01 mmol, 0.2 equiv) and
LiH (2.0 mg, 0.25 mmol, 5 equiv) followed by dry 1,2-difluorobenzene (3.0 mL). To this was
added 3.79 (17.4 mg, 0.050 mmol, 1 equiv) and heated to 70 °C for 24 hrs. The reaction vial was
removed from the glove box, diluted with ether and plugged through silica gel with
dichloromethane and concentrated. The crude oil was purified by flash column chromatography
(2% ether:hexanes) to yield olefin 3.44 as a clear oil (7.6 mg, 77% yield).
'H NMR (500 MHz, CDCls) & 7.49 (dt, J = 7.1, 1.8 Hz, 1H), 7.47 — 7.45 (m, 1H), 7.45 — 7.39
(m, 1H), 3.15 (dddt, J= 8.5, 6.4, 4.3, 2.1 Hz, 1H), 2.59 — 2.45 (m, 1H), 2.44 — 2.31 (m, 2H), 2.22
(dddd, J=12.8,9.1, 8.2, 4.5 Hz, 1H), 1.79 — 1.64 (m, 1H), 1.52 — 1.40 (m, 1H), 0.92 (d, J = 6.8
Hz, 3H).
C NMR (126 MHz, CDCl3) § 139.6, 138.8, 137.4, 132.9, 132.0, 129.6, 128.9, 119.3, 112.3,
43.3,38.0,31.4,20.2, 15.4.
HR-MS (CI-MS) m/z: [M]+ Calc’d for C14H;sN 197.1205; Found 197.1204.
FTIR (Neat Film NaCl): 3405, 3068, 2956, 2928, 2865, 2230, 1691, 1596, 1574, 1479, 1454,

1413, 1378, 1273, 1211, 1140, 985, 903, 845, 799, 698 cm'".
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3-Ethyl-4,5-diphenyl-2,3-dihydrofuran (3.45).

Synthesized according to a slightly modified general procedure 3.8.3.4.1. To an 1-dram vial with
a magnetic stir bar in the glove box was added LiOtBu (9.0 mg, 0.11 mmol, 1.5 equiv), 3.,4-
bis((3,5-bis(trifluoromethyl)phenyl)amino) cyclobut-3-ene-1,2-dione 3.30 (8.0 mg, 0.015 mmol,
0.2 equiv), 1.5 ml DCE, and 0.1 ml hexanes. This was allowed to prestir at room temperature for
1 hour. Then triflate 3.80 (30.0 mg, 0.075 mmol, 1 equiv) was added. The reaction was heated to
70 °C for 12 hours then 90 °C for another 12 hours. The reaction was diluted with ether and
pushed through a pad of silica. The crude material was purified by silica flash chromatography
(3% acetone/hexanes) to give pure dihydrofuran 3.45 as colorless oil (11.5 mg, 61%, 0.046
mmol).

'H NMR (500 MHz, CD,Cl,) & 7.44 — 7.33 (m, 2H), 7.32 — 7.26 (m, 2H), 7.26 — 7.04 (m, 6H),
4.60 (dd, J = 9.8, 8.8 Hz, 1H), 4.24 (dd, J = 8.8, 7.0 Hz, 1H), 3.50 (dddd, J = 10.3, 9.0, 6.9, 3.5
Hz, 1H), 1.62 (dqd, J =13.7, 7.5, 3.5 Hz, 1H), 1.47 — 1.36 (m, 1H), 0.90 (t, ] = 7.4 Hz, 3H).

C NMR (126 MHz, CD,Cl,) § 150.0, 135.4, 131.8, 128.7, 128.3, 128.1, 127.9, 127.5, 126.1,
114.7,73.2, 49.0, 25.4, 10.5.

FTIR (Neat film NaCl): 3079, 3055, 3025, 2959, 2929, 2873, 1950, 1886, 1808, 1650, 1601,
1497, 1446, 1365, 1233, 1094, 1067, 1016, 985, 950, 916, 761, 694, 674, 580, 493

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;sH;s0 250.1358; Found 250.1354

3.8.4 Mechanistic Studies

197



This section describes the experiments in Figure 3.8.

3.8.4.1 Stoichiometric LiF,y Experiment

In a In a well-kept glovebox, (H,O, O, < 0.5 ppm), a J. Young tube was charged with
[Li] [B(CsFs)a] (18.1 mg, 0.0026 mmol, 1.05 equiv.) and suspended in dry CDCl; (0.5 mL).
Vinyl triflate 3.28 (8.3 mg, 0.025 mmol, 1.0 equiv.) was added to the reaction and the reaction
was shaken by hand for 10 minutes. At this point, 'H and 'F NMR spectra were acquired
indicating incomplete reaction. The reaction was shaken by hand for an additional 80 minutes
and another 'H and '’F NMR spectra were acquired. At this point, full consumption of starting
material was observed. The reaction was poured into D,O (0.8 mL) and the layers were
separated. The aqueous layer was analyzed by ’F NMR and LiOTf was observed. The organic
layer had many products, but HRMS data was suggestive that intermolecular hydride transfer
was occurring to quench the incipient cations resulting in insertion products with varying degrees
of unsaturation. One such product was 3.48 which was identified in 15% NMR yield from the

crude reaction mixture.

wJ
L
(Preparation of authentic sample of reduced product)
(3aR,10bR)-1,2,3,3a2,4,5,6,10b-octahydrobenzo[e]azulene (3.48). In a well kept glovebox,
(H,0, 0, < 0.5 ppm), a dram vial was charged with [Ph;C] [HCB,;Cl;;]~ (0.8 mg, 0.0030 mmol,
0.02 equiv.) and this was suspended in cyclohexane (1.5 mL). Triethylsilane (36 uL, 0.225

mmol, 1.5 equiv.) was added along with a magnetic stirring bar to the suspension. The

suspension was stirred for 5 minutes at 30 °C. Vinyl triflate 3.28 (16.7 mg, 0.05 mmol, 1 equiv.)
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was added to the reaction and it was stirred at 30 °C for 15 minutes. The reaction mixture was
passed through a plug of silica with hexanes in the glovebox. The resulting solution was brought
outside of the glovebox and concentrated to give crude tricyclic compound 3.48 in 76% NMR
yield. The crude was then purified by silica flash column chromatography (hexanes) to give pure
product 3.48 as a colorless oil. Assignment of the major cis-diastereomer was done using 2D
NMR experiments: “C—'"H HSQC, 'H-'H COSY and 'H-'H NOESY. Three key NOE
interactions were observed. The interaction between the protons on C1 and C2, the interaction
between the proton on C1 with one of the protons on C4, and lastly, the proton of C2 with the
protons on C3.

'H NMR (500 MHz, CDCl3) § 7.20 — 7.17 (m, 2H), 7.16 — 7.12 (m, 1H), 7.08 — 7.04 (m, 1H),
3.50 —3.25 (m, 1H), 2.84 (ddd, J=13.4, 11.3, 7.2 Hz, 1H), 2.62 (ddd, /= 13.4, 6.7, 2.6 Hz, 1H),
2.20 — 2.04 (m, 2H), 1.99 — 1.91 (m, 1H), 1.91 — 1.84 (m, 1H), 1.83 — 1.77 (m, 1H), 1.72 — 1.64
(m, 1H), 1.62 — 1.56 (m, 1H), 1.54 — 1.48 (m, 1H), 1.49 — 1.42 (m, 1H), 1.16 — 1.02 (m, 1H),
1.02 - 0.87 (m, 1H).

C NMR (126 MHz, CDCl;) § 141.8, 139.7, 128.3, 126.1, 126.0, 125.9, 44.6, 40.3, 34.7, 32.1,
31.1, 28.6,25.4,25.2.

FTIR (Neat film NaCl): 3063, 3016, 2926, 2855, 1685, 1487, 1451, 1378, 1258, 1047, 764, 751,
714 cm™.

HR-MS (EI-MS): Calculated for C;4H;s: 186.1408; measured: 186.1414.

3.8.4.2 Stoichiometric Li-urea Experiment

3.8.4.2.1 Preparation of Lithium-urea

In this section, the synthesis of the mono-lithiated urea catalyst is described. This is simply

performed by a mono-deprotonation of the parent urea with a sufficiently strong base.
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CF; CF;

F3c/©\Nj\N/©\CF

H |
Li

3

lithium (3,5-bis(trifluoromethyl)phenyl)((3,5-bis(trifluoromethyl)phenyl) carbamoyl)amide
(3.50)

In a well kept glovebox, urea 3.29 (1.26 g, 2.6 mmol, 1 equiv) and LIHMDS (435 mg, 2.6 mmol,
1 equiv) were weighed out into a 250 mL schlenk. This was brought outside the glovebox and 60
mL of anhydrous benzene were added. The reaction mixture was heated to 70 °C for 14 hours.
This was cooled down to r.t. and then solvents were removed on the schlenk line. The flask was
cycled back into the glovebox and the residue was suspended in hexanes and filtered inside the
glovebox. This was washed with extra hexanes to yield a white solid. After evaporation of
residual hexanes under reduced pressure, obtained the lithium salt 3.50 as a white powder (950
mg, 75% yield).

This solid was characterized by 'H, °C, "F and 'Li NMR as shown below.

Notably, this compound has different solubility properties than the parent urea 4 and is readily
soluble in 1,2-difluorobenzene. The spectra were recorded in anhydrous d3-acetonitrile (distilled
over CaH,;) and NMR samples were prepared in J Young tubes inside the glovebox. Some
residual benzene is observed which was not able to be removed even under reduced pressure.

'H NMR (500 MHz, CD3CN) & 7.94 (s, 4H), 7.29 (s, 2H), 7.12 (s, 1H).

C NMR (126 MHz, CDsCN) & 159.1, 148.7, 131.8 (q, *Je_r = 32.4 Hz), 129.3, 124.9 (q, 'Jer =
271.7 Hz), 112.87.

F NMR (282 MHz, CD;CN) & -63.5
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"Li NMR (194 MHz, CDsCN) & -1.88

3.8.4.2.2 Stoichiometric C—H Insertion with Li-urea

M902C

oTf O
Li-urea 3.50 Q
Y P

Figure 3.9 Stoichiometric Li-Urea experiment

In a well kept glovebox, (H,0, O, < 0.5 ppm), a dram vial was charged with Li-urea 3.50 (25.7
mg, 0.0525 mmol, 1.05 equiv) and dissolved in dry 1,2-difluorobenzene (3 mL). To this was
added vinyl triflate 3.49 (19.0 mg, 0.0500 mmol, 1 equiv) and stirred at 30 °C for 1.5 hours. The
reaction vial was removed from the glove box and to it was added ~1 mL of D,O and the
biphasic mixture was stirred for 5 minutes. The layers were separated and the aqueous D,O layer
was analyzed by NMR to see LiOTT. The organic layer was concentrated and analyzed by proton
NMR with 3 uL of nitromethane to obtain a 23% NMR yield of cyclopentene product 3.51. For
characterization data of 3.51 see the adapted article.

*Notably, the reaction started out fully homogeneous, but became cloudy after completion. This

is further evidence of formation of LiOTf (insoluble in 1,2-DFB) during the reaction.

3.8.4.3 Vinyl Cation Rearrangment Experiment
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B Ph
C
Ph  OTf Ph Ph y Ph \®
[PhaCI*[B(CeFs)a] ™ (5 mol%) . ®
LiIHMDS (1.5 equiv) via.
> + —_—
cyclohexane, 70 °C
3.52 3.53 3.54 cyclic vinyl linear vinyl
cation cation
Figure 3.10 Ring contraction mechanistic study -

1-(cyclohexyl(phenyl)methyl)cyclohept-1-ene and 6-phenyl-1,2,3,3a,4,6a-

hexahydropentalene (3.53 and 3.54). Synthesized according to general procedure B. In a well-
kept glovebox, (H,0, O,< 0.5 ppm), a dram vial was charged with [Ph;C] [B(C¢Fs)s] (2.3 mg,
0.0025 mmol, 0.05 equiv.) and lithium hexamethyldisilazide (12.5 mg, 0.075 mmol, 1.5 equiv.).
This was suspended in cyclohexane (0.5 mL) and stirred for 5 minutes at 30 °C. Vinyl triflate
3.52 (16.7 mg, 0.05 mmol, 1.0 equiv.) was added to the reaction and the reaction was stirred for
5 minutes at 70 °C. The reaction was cooled to room temperature and brought outside the
glovebox and was passed through a pad of silica with diethyl ether and concentrated to give
crude bicyclic compound 3.53 and ring contracted cyclohexylated product 3.54 as yellow solid
(6% NMR vyield of transannular product 3.53, 15% NMR yield of cyclohexylated product 3.54).
The crude was then purified by silica flash chromatography (hexanes) to give pure
cyclohexylated product 3.54 as a white solid. The transannular insertion product was further
purified by preparative reverse phase HPLC (10% water in acetonitrile) to give bicycle 3.53 as a
colorless oil.

Characterization of bicycle 3.53:

'H NMR (500 MHz, CDCl3) & 7.48 — 7.39 (m, 2H), 7.31 (t,J = 7.7 Hz, 3H), 7.24 — 7.16 (m, 1H),
6.01 (q, J = 2.1 Hz, 1H), 3.66 — 3.39 (m, 1H), 2.98 — 2.65 (m, 2H), 2.17 (dd, J = 17.3, 2.9 Hz,
1H), 1.97 - 1.78 (m, 2H), 1.54 — 1.44 (m, 3H), 1.42 — 1.35 (m, 1H).
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BC NMR (126 MHz, CDCLs) & 145.1, 136.5, 128.2, 126.6, 126.2, 125.1, 50.4, 41.2, 40.5, 35.6,
32.2, 26.0.

FTIR (Neat film NaCl): 3064, 2957, 2925, 2854, 1719, 1681, 1449, 1261, 1178, 1020, 911, 798,
699 cm’.

HR-MS (EI-MS): Calculated for Ci4H6: 184.1252; measured: 184.1244.

Characterization of cyclohexyl adduct 3.54:

'H NMR (500 MHz, CDCl3) & 7.27 — 7.23 (m, 2H), 7.20 — 7.12 (m, 3H), 5.75 (t, J = 6.6 Hz, 1H),
2.18 — 1.93 (m, 4H), 1.90 — 1.72 (m, 3H), 1.67 — 1.56 (m, 4H), 1.52 — 1.42 (m, 2H), 1.39 — 1.24
(m, 3H), 1.22 — 1.10 (m, 2H), 1.07 — 0.98 (m, 1H), 0.93 — 0.84 (m, 1H), 0.75 — 0.63 (m, 1H).

C NMR (126 MHz, CDCl;) & 145.9, 143.2, 128.5, 127.9, 126.8, 125.6, 62.4, 37.6, 32.6, 32.4,
31.7,30.1,28.3, 27.0, 26.7, 26.6, 26.5, 26.4.

FTIR (Neat film NaCl): 3082, 3059, 3024, 2919, 2849, 1599, 1495, 1448, 1309, 1262, 1180,
1031, 833, 700, 622 cm™.

HR-MS (EI-MS): Calculated for C,oHas: 268.2191; measured: 268.2188.
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3.9 Spectra Relevant to Chapter Three:

Lithium Lewis Acid Generation of Vinyl Cations and Their Intramolecular C—H Insertion

and Intermolecular Friedel-Crafts Reactions

Benjamin Wigman, Stasik Popov, Alex L. Bagdasarian, Brian Shao, Tyler R. Benton, Chloé G.
Williams, Steven P. Fisher, Vincent Lavallo, K. N. Houk, and Hosea M. Nelson J. Am. Chem.
Soc. 2019, 141, 9140-9144.

Alex L. Bagdasarian, Stasik Popov, Benjamin Wigman, Wenjing Wei, Woojin Lee, and Hosea

M. Nelson Org. Lett. 2020, 22, 7775-7779.
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Figure 3.13 "H NMR (500 MHz, C¢Ds) of compound 3.12Z.
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Figure 3.23 °C NMR (126 MHz, CDCls) of compound 3.19.
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Figure 3.24 "H NMR (500 MHz, CDCl;) of compound 3.20.
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Figure 3.29 'H NMR (500 MHz, CDCl;) of compound 3.22.
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Figure 3.30 °C NMR (126 MHz, CDCls) of compound 3.22.
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Figure 3.32 "H NMR (500 MHz, CDCls) of compound 3.23.
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Figure 3.33 °C NMR (126 MHz, CDCls) of compound 3.23.
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Figure 3.34 "H NMR (500 MHz, CDCls) of compound 3.24.
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Figure 3.35 °C NMR (126 MHz, CDCls) of compound 3.24.
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Figure 3.36 '"H NMR (500 MHz, CDCl;) of compound 3.25.
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Figure 3.37 °C NMR (126 MHz, CDCls) of compound 3.25.
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Figure 3.38 "H NMR (500 MHz, CDCl;) of compound 3.26.
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Figure 3.39 °C NMR (126 MHz, CDCls) of compound 3.26.
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Figure 3.40 "H NMR (500 MHz, CDCls) of compound 3.27.
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Figure 3.41 °C NMR (126 MHz, CDCls) of compound 3.27.
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Figure 3.42 "H NMR (500 MHz, CDCls) of compound 3.31a.
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Figure 3.43 °C NMR (126 MHz, CDCLs) of compound 3.31a.

120

200 180 160

220

9€c1’'0—

9¥8°0
26L0C
6180°C
€560'C
LL0V'C
L6012
€291'C
0S91'C
19LL'C
JAYAN4
wa_..mﬂ
8161L'¢C
9leLen
wwvn.m%
9/S/.°¢2

G650°9
929091
95909
6912°97
8222'91
18229
2LV N
0099
1£22°9

Y6529
¥292°9
YrLL 9
Ry
99€8°9
16£8°9
¥2r8'9
GS¥8'91
9180°L1
05801
69601
2001/
0sLl 2]
No:.a
8221 /]
60842
2581,
288l'L
86612
62022

momo.ﬂ

=

=

88’

N-sij

=06'8

L0e
W_.o.m

Lo

£00¢

ppm
Figure 3.44 "H NMR (500 MHz, CDCl3) of compound 3.31b.
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Figure 3.45 °C NMR (126 MHz, CDCl3) of compound 3.31b.
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Figure 3.46 "H NMR (500 MHz, CDCl;) of compound 3.32a.
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Figure 3.47 °C NMR (126 MHz, CDCls) of compound 3.32a
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Figure 3.48 '"H NMR (500 MHz, CDCl3) of compound 3.32b.

223



£0L0°61L—

901€'65—

Sro.m:/
BSLE'SLI
610SGLL

65€9' 121~
1066'22 1
1£60°82 -

EE00'LEL T
28erIel

6£52°6E1
2626°LyL”
85/E°8Y L~

¥€09°LG1—

20

40

180 160 140 120 100 80

200

220

ppm
Figure 3.49 °C NMR (126 MHz, CDCl;) of compound 3.32b.
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Figure 3.51 °C NMR (126 MHz, CDCls) of compound 3.33.
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Figure 3.52 "H NMR (500 MHz, CDCls) of compound 3.34.
225

10




—FrrrrrrrTErEEFEFEIFEIEIE T

PEUELALLRN IR AN

_-20.8861
~19.5762

AL} {

220 200 180 160 14

120 100 80 60 40 20 0
ppm

.. H‘ o ) A
0

Figure 3.53 °C NMR (126 MHz, CDCls) of compound 3.34.

—-72.8120

120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120
ppm

Figure 3.54 °F NMR (376 MHz, CDCls) of compound 3.34.
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Figure 3.56 °C NMR (126 MHz, CDCls) of compound 3.35.
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Figure 3.58 'H NMR (500 MHz, CDCl;) of compound 3.36.
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Figure 3.59 °C NMR (126 MHz, CDCls) of compound 3.36.
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Figure 3.60 °F NMR (376 MHz, CDCLs) of compound 3.36.
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Figure 3.61 "H NMR (500 MHz, CDCl;) of compound 3.37.
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Figure 3.62 °C NMR (126 MHz, CDCl;) of compound 3.37.
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Figure 3.64 "H NMR (500 MHz, CDCl;) of compound 3.38.
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Figure 3.65 °C NMR (126 MHz, CDCls) of compound 3.38.
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Figure 3.66 'H NMR (500 MHz, CDCl;) of compound 3.39.
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Figure 3.67 °C NMR (126 MHz, CDCls) of compound 3.39.
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Figure 3.68 "H NMR (500 MHz, CDCl;) of compound 3.40.
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Figure 3.69 °C NMR (126 MHz, CDCls) of compound 3.40.
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Figure 3.70 "H NMR (500 MHz, CDCl;) of compound 3.41.
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Figure 3.71 °C NMR (126 MHz, CDCls) of compound 3.41.
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CHAPTER FOUR

Vinyl Tosylates as Vinyl Cation Precursors Enable Broad Heterocycle
Synthesis, as well as Intermolecular Trapping by Carbon and Oxygen Based
Nucleophiles
(Unpublished Work)
Zhenqi Zhao, Chloe G. Williams, Stasik Popov, Lee Joon Kim, Jonathan Wong, and

Hosea M. Nelson

4.1 Abstract

During the course of our research on vinyl cation chemistry, it has remained
difficult to add functionality due to the instability of the vinyl triflate substrates (REF see
chapter 5). Due to this substrate instability, we sought to investigate a new vinyl sulfonate
to be utilized as a vinyl cation precursor. We found that vinyl tosylates could be ionized
under the catalysis of Li-WCA salts to generate vinyl cation intermediates. Concurrently
with these exciting results, we present several new intermolecular vinyl cation reactions,
which include an intermolecular vinyl ether synthesis, allylation of vinyl cations as well
as a-vinylation of silyl ketene acetals through vinyl cation intermediates. We also report
on an intramolecular Friedel-Crafts methodology that allows facile access to medium-

sized rings in a catalytic fashion.
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4.2 Introduction

Triflates, which have been initially developed to be excellent leaving groups, are
considered to be "pseudohalides" and have found many applications in cross-coupling
and other transition-metal catalyzed processes.'”> However, because of their excellent
leaving group-ability, alkyl triflates and even some vinyl triflates can be unstable and
readily decompose upon isolation attempts.’ In our efforts to bring C—C bond forming
vinyl cation chemistry from a fundamental study to an applicable methodology”®, we
sought a robust vinyl cation precursor that could enable us access to previously
unavailable substrate classes. Here, we demonstrate that a tosylate group is a competent
leaving group, and vinyl cations can be readily generated from vinyl tosylates’ under Li-
WCA conditions. Changing the leaving group-ability of the vinyl sulfonate precursor
would not only allow us to access a wider class of substrates, but also grant us tunable
substrate design based on the electronics of the starting material (triflate for electron-
deficient substrate, tosylate for electron-rich substrate).

In addition to expanding the scope of available vinyl cation precursors, we seek to
develop new methodologies that possess good chemoselectivity to deliver single products
in high yields and easy isolation. C—H functionalization reactions of alkanes have often
yielded complex product mixtures derived from the plethora of C—H bonds available.'’"?
Furthermore, some of the previously developed strained cyclic vinyl cations undergo
unimolecular rearrangements often yielding product mixtures."’> Here, we report several
new classes of vinyl cation reactions that can forge new C—-C and C—O bonds in an
intermolecular fashion with complete chemoselectivity analogous to that found in

transition-metal cross-coupling. Specifically, we find that allyl silanes, silyl ketene
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acetals (SKAs) and methyl ethers can all trap the incipient vinyl cation intermediate and
lead to chemoselective product formation. Furthermore, we leverage the high energy of
the vinyl cation intermediate to forge C—C bonds through intramolecular Friedel-Crafts
reactions to furnish medium-sized ring products (8—-10 membered), despite the high
energetic cost associated with making these rings'*'°.
4.3 Initial Results and Optimization of Intramolecular Friedel-Crafts

Initial studies into medium-sized ring formation began with the conversion of
vinyl tosylate 4.1 to dihydro-dibenzazocine 4.2 (Table 4.1). We started by surveying a

suspension of LiF,y4.4 (10 mol%) with LiH (5 equiv) in different solvents. Due to the

high ionization barrier of the vinyl tosylate, we needed to use high boiling solvents at

catalyst
base
OTs >
solvent (0.014M), 140 °C

N

Ts

4.1 ¢

entry catalyst catalyst loading base (equiv) solvent yield
1 4.4 10 mol% LiH (5) o-DCB 74%
2 4.4 10 mol% LiH (5) mesitylene 50%
3 4.4 10 mol% LiH (5) DMF 0%
4 4.4 10 mol% LiH (5) 0-DFB (90 °C) 0%
5 4.4 5 mol% LiH (5) 0-DCB 49%
6 4.4 20 mol% LiH (5) o-DCB 71%
7 4.4 10 mol% LiIHMDS (1.5) o-DCB 21%
8 4.3 10 mol% LiIHMDS (1.5) o-DCB 0%
9 4.3 10 mol% LiH (5) o-DCB 19%
10 4.4 10 mol% none o-DCB 40%
11 none 0 mol% LiH (5) o-DCB 0%
H H
F3C N \n/ N CF;
o [LiP*[B(CsFs)al
CF3 CF3
4.3 4.4

Table 4.1. Optimization table for intramolecular Friedel-Crafts
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140 °C and obtained a 74% yield of desired product 4.2 with 1,2-DCB and a 50% yield
with mesitylene (entries 1-2, Table 4.1). DMF did not give any desired product likely
due to its high polarity/nucleophilicity (entry 3). 1,2-DFB also provided diminished
results, likely due to limitations in reaction temperature (entry 4). Decreasing catalyst
loading to 5 mol% gave a lower 49% yield (entry 5) while increased loading did not have
a positive impact on the reaction (entry 6). Using LIHMDS as base gave a lower 21%
yield (entry 7). Furthermore, using our previously developed urea catalyst 4.3” with either
LiHMDS or LiH resulted in poor yields (entries 8 and 9). Additionally, we found that the
addition of base was important, as the reaction performed poorly when base was excluded
giving only 40% yield of the desired product 4.2 (entry 10). Lastly, the reaction failed to

make any product in the absence of catalyst (entry 11).

4.4 Scope of intramolecular Friedel-Crafts

With optimized conditions in hand for this transformation, we wanted to explore
the scope of medium-sized rings that can be forged with this catalytic reaction. First, we
looked at the scope of ring sizes that we could make with this reaction. Eight-membered
ring formation was facile, leading to dibenzazocine 4.5 in a 56% yield (Figure 4.1). We
found this reaction to be scalable, with the same conditions affording product 4.5 in a
66% yield on 1 mmol scale. Nine-membered ring formation also proceeded smoothly,
furnishing dibenzazonine 4.6 in an 82% yield under identical conditions. Ten-membered
ring synthesis proved more challenging, with Friedel-Crafts product 4.7 being obtained in
only 25% yield. The majority of the mass balance of this reaction was unreacted starting

material as well as a small amount of intramolecular C—H insertion products. Heating at

249



higher temperatures or for longer periods of time failed to improve the yield of this
product. Replacement of the protected nitrogen with a sulfur atom in the chain was well
tolerated, leading to thioether 4.8 in a 46% yield. This reaction manifold can also be

applied to construct carbocycles as demonstrated by the synthesis of

Ry Ry Li*[B(CgFs)a]™ (10 mol%)
LiH (5.0 equiv)
OTs
Rz Rs 0-DCB (0.0167M)

n

5 o ¢

TsN

TsN TsN

4.5 4.6 4.7 4.8
56% yield 82% yield 25% yield 46% yield

(66% yield, 1 mmol scale)
. OMe ; Br ez
TsN TsN N
Ts

4.9 4.10 4.11 4.12

81% yield 76% yield 79% yield 62% yield

X_-S
7]
TsN S TsN
4.13 4.14 4.15 4.16
73% yield 85% vyield 65% yield 0% yield

Figure 4.1. Scope of lithium-catalyzed medium size ring synthesis
cyclooctane 4.9 in 81% yield. Substitution on the aryl ring was also tolerated with
anisole, bromobenzene and dimethylaniline derivatives forging benzazocine product
4.10, 4.11, and 4.12 in 62-79% yield. Furthermore, heterocycles could be used either as

the nucleophile (blue) or on the parent aryl group (black) connected to the enol tosylate
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as demonstrated by the thiophene products 4.13 and 4.14 produced in 73% and 85%
yields from their respective tosylate precursors. Lastly, substitution in the chain of the
ring conjugated to the C—H donor arene was also tolerated giving phenylether 4.15 in
65% yield. Unfortunately, oxygen substitution was not tolerated when conjugated to the
vinyl tosylate, as demonstrated by the lack of ether 4.16 formation from its tosylate
precursor. This is hypothesized to be due to higher electron-donating ability of the
oxygen as compared to a sulfonamide, sulfur or carbon substituent, leading to significant

stabilization of the vinyl cation, making this reaction too sluggish."’

4.5 Intermolecular C—C Bond Forming Reactions of Vinyl Tosylates

During the course of our medium-sized ring formation studies, we have
successfully demonstrated that vinyl tosylates are good vinyl cation precursors and allow
for a larger scope of stable enol sulfonates to be synthesized. We wanted to explore these
tosylates for a wider array of C—C bond forming reactions. First we started by looking at
intermolecular Friedel-Crafts reactions using stoichiometric amounts of arene
nucleophiles in trifluorotoluene solvent. These reactions generally proceeded in good
yields similar to those obtained with vinyl triflate precursors.” Fluoro-substituted vinyl
tosylate reacted with five equivalents of p-xylene in the presence of catalytic LiFy to
yield diarylalkene 4.17 in 87% yield (Figure 4.2). Unlike the intramolecular Friedel-
Crafts reactions, we found LiHMDS to be more effective as the stoichiometric base
instead of LiH. Under the same conditions, both cyclohexyl substituted vinyl tosylate as
well as a diarylvinyl tosylate yielded styrene product 4.18 and 4.19 in 75% and 82%

yields respectively. Using 4-isopropylanisole as a nucleophile led to generation of the
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OTs [LiT*[B(CeFs5)al™ (10 mol%) Ar
LiHMDS (1.5 equiv)
N R arene (5 equiv)

" PhCFg, 70 °C
oY OO O
F

417 4.18 4.19 4.20
87% yield 75% yield 82% yield (3:1 Z:E) 80% yield

Figure 4.2 Intermolecular Friedel-Crafts reactions of vinyl tosylates.
tetrasubstituted olefin 4.20 as a single isomer in 80% isolated yield. Notably, the vinyl
triflate analogs of the three vinyl tosylates employed in this study have been previously
found to be unstable, further demonstrating the complementary nature of the tosylate

leaving group.

OTs
X
Ar tosylate
abstraction Li-OTs
4,22
[LiT* [WCA]
[VX%’?] vinyl
' Ar—®=< carbocation
4.23
- SiRg
R;Si-X =
4.24
silyl allylation
elimination R;Si
Ar NS ®
4.26 AT X
Li-X [WCA]-
4.25

Figure 4.3 Mechanistic hypothesis for allylation of vinyl cations
Empowered by our Friedel-Crafts successes, we sought to further investigate the

reactivity of these vinyl tosylates. We hypothesized that perhaps vinyl cation allylation
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reactions could be achieved using an allyl silane reagent analogous to a Sakurai
allylation.'® ' Our mechanistic hypothesis was that upon generation of vinyl cation 4.23
via ionization of vinyl tosylate 4.22 with Li-Lewis acid 4.21, nucleophilic attack by
allylsilane 4.24 would generate a B-silicon stabilized carbocation 4.25 (Figure 4.3). This
species can then be attacked by a Li-salt to generate the allylated product 4.26 and
concomitantly regenerate Li-WCA species 4.21 along with a silyl adduct. We were
pleased to see that these reactions proceeded smoothly to forge new C—C bonds and give
allylated products after some minor optimization. Reaction of arylvinyl tosylates with an

excess of allyltrimethylsilane

oTs : [LI[*[B(CgFs)al™ (10 moi%)
e 4 /\/SiMe3 LiIHMDS (1.5 equiv) _ XN R
R o : PhCF, 70 °C R o
- 1.5-5 equiv -
F 1
4.27 4.28 4.29
84% yield 90% vyield 97% yield
F
4.30 4.31 4.32
77% yield 60% yield 81% yield

Figure 4.4 Intermolecular allylation reactions of vinyl tosylates.

furnished allylated products 4.27-4.29 in 84%-97% yield (Figure 4.4). Using
differentially substituted methallylsilanes yielded f-methallyl styrene 4.30 in 77% yield

or the branched products 4.31 and 4.32 in 60% and 81% yield respectively. These efforts
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present an alternative to classic transition metal-catalyzed allylations of vinyl sulfonates
or vinyl halides.”* **

After developing the successful Sakurai-type allylation reaction, we decided to
investigate if we could use other common “soft” carbon nucleophiles to trap the vinyl
carbocation intermediates. Based on work by Mayr and coworkers'’, we saw that silyl
ketene acetals (SKAs) have a nucleophilicity parameter even greater than that of allyl
silanes (Figure 4.5a). After a brief optimization of several reaction parameters, we found

that this reaction works best under base-free conditions in electron-deficient arene

solvents. The proposed mechanism for this base-free reaction is believed to proceed

a Nucleophilicity of allyl silanes vs SKAs OTMS
SiMe. >
)\/ 3 YKOMe
Nucleophilicity 4.33 4.34
parameter (N) 4.41 9.91

b Proposed catalytic cycle

OTMS
MeO N SKA
attack
4.34
OTs ® _SiMe;
AN B
' [WCAI Ar OMe
[Lil* 4.22 A (_9=<
- — > Ar— [WCA]~
4.
weay 423 %
vinyl OTs
carbocation
Ar)\(
silyl 4.22
transfer
Me;Si ®
¥ oTs
(o]
s Ar)\( |
ionization Ar OMe
TsO—SiMe; [WCAJ
4.38 4.37 4.36

Figure 4.5 Mechanistic hypothesis for a-vinylation of silyl ketene acetals with vinyl cations
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through a “silyl-transfer” type mechanism similar to a Mukaiyama-Aldol reaction (Figure
4.5b).2?° Here, the first ionization step is performed by the Li-WCA 4.21 to generate
vinyl cation 4.23, which can then be trapped by the SKA 4.34 to give the silyl
oxocarbenium 4.35. This adduct can transfer its silyl group to another tosylate and
liberate ester product 4.36. The ensuing silyl complex 4.37 can heterolyze to give vinyl

cation 4.23, generating an equivalent of trimethylsilyl tosylate 4.38.

N . W%OR LB(CeFs)al (10mol%)
R o 1,2-DFB or PhCF3 (0.1M), 70 °C
” 3 equiv
(o] o o o)
OEt OEt OMe OMe
A A X AN
F
4.39 4.40 4.41 4.42
42% yield 82% yield 80% yield 62% yield

Figure 4.6 Synthesis of a-vinylated esters from SKAs attacking vinyl cations

With successful optimization efforts completed, we decided to briefly survey the

scope of this reaction with different SKAs and vinyl tosylates. From our current studies,
fully substituted SKAs seemed optimal for this reaction. This yielded ester products that
have a quaternary carbon center with a tetrasubstiuted olefin on two adjacent carbons.
Despite the sterically congested nature of these products, they were able to be synthesized
with only 3 equivalents of SKA. With an ethyl ester derived SKA, the a-vinylated
products 4.39 and 4.40 were obtained in 42% and 82% yields respectively (Figure 4.6).
Using a methyl ester derived SKA, methyl ester products 4.41 and 4.42 were obtained in

a slightly diminished 80% and 62% yields respectively. The scope of this reaction is still
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being explored, but these initial results are promising examples of delivering sterically

encumbered and synthetically useful products under simple conditions.

4.6 C-0O Bond Forming Reactions of Vinyl Tosylates
Early vinyl cation studies focused on solvolysis of vinyl triflates or other
precursors in aqueous ethanol to generate ketones or vinyl ethers through trapping by

27,28
solvent.””

We wanted to see if catalytic C—O bond formation was possible under non-
solvolytic conditions using our knowledge from working in the area of vinyl cations for
several years. To this end, we attempted to mimic some of the reactions presented in this
chapter by simply replacing the carbon-based nucleophile with an oxygen nucleophile.
We decided to look at a model system similar to that of our intramolecular Friedel-Crafts
reactions. In the event, vinyl tosylate 4.43 was synthesized and exposed to the same
conditions as highlighted in section 4.4. We were pleased to see the formation of cyclic
vinyl ether 4.44 in 92% yield upon exposure of the tosylate precursor to a suspension of
LiF; and LiH in 1,2-DCB (Figure 4.7). Furthermore, upon synthesizing diarylvinyl
tosylate 4.45 and employing conditions from section 4.5, we saw facile formation of
benzofuran 4.46 in 88% yield.” Both of these reactions are believed to involve the attack
of the methyl ether oxygen onto the intermediate vinyl cation followed by the loss of a
methyl group to the arene solvent or the lithium base. Notably, this benzofuran contained
substitution both at C2 and C3, which can be difficult to achieve under traditional Larock
synthesis conditions.*

After observing intramolecular reactivity from methyl ethers attacking vinyl

cations, we pondered if perhaps adding an external methyl ether would facilitate
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| Li*[B(CgFs)]" (10 mol%) \

OTs LiH (5 equiv) . /0)
N/\/OMe 1,2-DCB, 150 °C \
Ts Ts
4.43 4.44
92% yield

Li*{B(CgFs)al~ (10 mol%)
LiIHMDS (1.5 equiv)

PhCFj, 70 °C

4.46
88% yield

Figure 4.7 Intramolecular C-O bond formation of vinyl cations
intermolecular vinyl ether synthesis in a similar mechanistic fashion. To this end, several
methyl ethers were synthesized and explored for reactions with vinyl tosylates using the
previously developed conditions. In the event, we found that 1-methoxycyclohexene was
a competent nucleophile delivering divinyl ether 4.47 in 77% yield (Figure 4.8). Simple
dialkyl ethers such as methyloctyl ether were also competent as octylvinyl ethers 4.48
and 4.49 were synthesized in 65% and 41% yields respectively under these conditions.
Notably, these reactions work in non-polar media with a stoichiometric amount of

nucleophile (5 equiv); a far cry from the early solvolytic studies done by the giants of the

field.
OTs OR'
. [LiI*[B(CgF5)4]™ (10 mol%)
R'—\ ~ 1+t Rl-oMme - R_I\ N H
= o 1,2-DFB or PhCFj3 (0.1M), 70 °C L o
” 5 equiv -
0/ C o/\/\/\/\ o/\/\/\/\
F F
4.47 4.48 4.49
77% yield 65% yield 41% vyield

Figure 4.8 Synthesis of vinyl ethers through C-O bond forming reactions
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4.7 Conclusion

In conclusion, we have discovered that vinyl tosylates are competent vinyl cation
precursors under Li-WCA conditions and can generate similar vinyl cation-WCA ion
pairs as seen in our previous reports. We have shown that these precursors have enhanced
stability compared to their vinyl triflate/nonaflate counterparts and thus broaden the
scope of the methodology. In addition to demonstrating several intermolecular Friedel-
Crafts reactions analogous to those reported in chapter 3, we have developed a simple
methodology to catalytically access medium-sized rings through an intramolecular
Friedel-Crafts reaction. Furthermore, we have expanded the range of nucleophiles that
are competent in “trapping” vinyl cations to include allyl silanes, silyl ketene acetals as
well as methyl ethers, resulting in new intermolecular C—C and C-O bond forming

methodologies that can deliver useful products with simple Li-WCA catalysts.
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4.8 Experimental Section

4.8.1 Materials and Methods

Unless otherwise stated, all reactions were performed in a VAC glovebox under nitrogen
atmosphere with < 0.5 ppm O; levels. All glassware and stir-bars were dried in a 160 °C
oven for at least 12 hours and dried in vacuo before use. All liquid substrates were
rigorously dried before wuse. Ethyl ether, tetrahydrofuran, dichloromethane,
dimethylformamide, toluene, 1,2-dichloroebenzene, and hexanes were degassed and dried
in a JC Meyer solvent system. Acetonitrile, triethylamine, and pyridine were distilled
over calcium hydride. Solid substrates were dried over P,Os. [Li] [B(C¢Fs)4] salts were
synthesized according to literature procedure.”’ Preparatory thin layer chromatography
(TLC) was performed using Millipore silica gel 60 F,s4 pre-coated plates (0.25 mm) and
visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230-400 mesh) was
used for flash chromatography. NMR spectra were recorded on a Bruker AV-300 ('H,
Bc, PF), Av-400 ('H, “C, "F), Bruker DRX-500 ('H, "°C), and Bruker AV-500 ('H,
BC). 'TH NMR spectra are reported relative to CDCl; (7.26 ppm) unless noted otherwise.
Data for 'H NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling
constant (Hz), integration. Multiplicities are as follows: s = singlet, d = doublet, t =
triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of
doublet, td = triplet of doublet, tt = triplet of triplet, quint = quintet, sept = septet, m =
multiplet. >C NMR spectra are reported relative to CDCl; (77.0 ppm) unless noted
otherwise. GC spectra were recorded on an Agilent 6850 series GC using an Agilent HP-

1 (50 m, 0.32 mm ID, 0.25 um DF) column. GCMS spectra were recorded on a Shimadzu

GCMS-QP2010 using a Restek XTI-5 (50 m, 0.25 mm ID, 0.25 um DF) column interface
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at room temperature. IR Spectra were record on a Perkin Elmer 100 spectrometer and are
reported in terms of frequency absorption (cm™). High resolution mass spectra (HR-MS)
were recorded on a Waters (Micromass) GCT Premier spectrometer, a Waters
(Micromass) LCT Premier, an Agilent GC EI-MS, and are reported as follows: m/z (%
relative intensity). Purification by preparative HPLC was done on an Agilent 1200 series
instrument with a reverse phase Alltima C;g (5m, 25 cm length, 1 cm internal diameter)

column.

4.8.2 Experimental Procedures

4.8.2.1 Synthesis of Vinyl Tosylates

MgBr
(o)

C[CN R)\R R
—»
NH [ :[ R
2 NH

2
Scheme 4.1 Representative scheme for the reaction between Grignard reagent and aryl
nitrile.

4.8.2.1.1 General Procedure for Reaction Between Grignard and Aryl Nitriles

Magnesium (3.0 equiv) was put into a flame-dried three-neck flask equipped with a
condenser. THF was then added into the flask to generate a 1M solution for the following
alkyl bromide. Alkyl bromide (1.0 equiv) was added slowly into the flask to keep the
solution under gentle reflux. After the formation of the Grignard reagent, cooled the
solution down to 0 °C and 1 M solution of 2-aminobenzonitrile (3.0 equiv) in THF was
added dropwise. The reaction was run overnight. After this the reaction was quenched
with water and concentrated hydrochloric acid to make the pH down to 1. Then it was

extracted with ethyl ether three times. The combined organic phase was washed with
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saturated sodium bicarbonate solution and brine. It was dried with magnesium sulfate,
filtered, and concentrated to give the crude product. The crude product was purified via

flash column chromatography to give the product.

0

CLO

2
(2-aminophenyl)(cyclohexyl)methanone (4.50).

Synthesized according to general procedure 4.8.2.2 starting from 25.4 mmol of 2-
aminobenzonitrile. Crude product was purified via flash column chromatography using
20% ethyl ether in hexanes to give the product as a yellow solid (2.51 g, 48.6% yield).

Spectral data matched those reported in the literature.’

0

CLY

2
1-(2-aminophenyl)-2-methylpropan-1-one (4.51).

Synthesized according to general procedure 4.8.2.2 starting from 42.3 mmol of 2-
aminobenzonitrile. Crude product was purified via flash column chromatography using
10% ethyl ether in hexanes to give the product as a yellow solid (5.45 g, 78.9% yield).

Spectral data matched those reported in the literature.”

(o}

CLD

2

(2-aminophenyl)(cyclopentyl)methanone (4.52).
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Synthesized according to general procedure 4.8.2.2 starting from 78.28 mmol of 2-
aminobenzonitrile. Crude product was purified via flash column chromatography using
10% ethyl ether in hexanes to give the product as a white solid (13.32 g, 88.8% yield).

Spectral data matched those reported in the literature.”

(o} (o}
R TsCI o R
R pyridine/DCM R
NH, NHTs

Scheme 4.2 Representative scheme for the N-tosylation of anilines

4.8.2.1.2 General Procedure for N-Tosylation of Anilines

To a flame dried roundbottom flask was added aniline (1.0 equiv) followed by DCM
(13.0 equiv) and pyridine (7.0 equiv). This was cooled to 0 °C and then tosyl chloride
(1.42 equiv) was added. The reaction was warmed up to room temperature and stirred for
16 hours. The reaction was diluted with additional DCM (~15 equiv) and water. The
layers were separated and the aqueous later was extracted twice more with DCM. The
combined organics were washed 1M aqueous HCI, water and brine in that order and the
dried over magnesium sulfate, filtered and concentrated. The crude product was purified

by flash column chromatography to give pure material as a white solid.

(o)

NHTs

N-(2-isobutyrylphenyl)-4-methylbenzenesulfonamide (4.53).
Synthesized according to general procedure 4.8.2.1.2 starting from 24.5 mmol of the

corresponding aniline 4.51. Crude product was purified via flash column chromatography
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using 30% ethyl acetate in hexanes to give sulfonamide 4.53 as a white solid (5.15 g,

66% yield). Spectral data matched those reported in the literature.™

(o)

NHTs

N-(2-(cyclohexanecarbonyl)phenyl)-4-methylbenzenesulfonamide (4.54).

Synthesized according to general procedure 4.8.2.1.2 starting from 73.3 mmol of the
corresponding aniline 4.50. Crude product was purified via flash column chromatography
using 20% ethyl acetate in hexanes to give sulfonamide 4.54 as a white solid (26.2 g,

80% yield). Spectral data matched those reported in the literature.”

0o

: NHTs

N-(2-(cyclopentanecarbonyl)phenyl)-4-methylbenzenesulfonamide (4.55).

Synthesized according to general procedure 4.8.2.1.2 starting from 62.51 mmol of the
corresponding aniline 4.52. Crude product was purified via flash column chromatography
using 20% ethyl acetate in hexanes to give sulfonamide 4.55 as a white solid (10.43 g,

48.59% yield). Spectral data matched those reported in the literature .**
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Sg, piperidine

(0]
o NC\)H/ fo) fo)
o Ts-Cl o
EtOH o idi o
| A\ NH, pyridine/DCM | A\ NHTs
S S

Scheme 4.3 Gewald synthesis of thiophene ketone 4.57

/| 0
$™ “NH,

1-(2-amino-4,5,6,7-tetrahydrobenzo|b]|thiophen-3-yl)-2-methylpropan-1-one (4.56).

Cyclohexanone (1.25 g, 12.7 mmol, 1.0 equiv) was added to a 100 mL schlenk followed
by a-cyano isopropyl ketone (1.70 g, 15.3 mmol, 1.2 equiv) and this was dissolved in
ethanol (20 mL). To this solution was added Sg (3.92 g, 15.3 mmol, 1.2 equiv) and
piperidine (1.30 g, 15.3 mmol, 1.2 equiv). The reaction vessel was sealed and heated to
65 °C for 48 hours. Upon completion, the reaction was cooled to r.t. and poured onto ice.
After the ice melted, the resultant suspension was filtered and washed with water
followed by pentane. The light yellow solid (2.54 g, ca. 89%) was dried under vacuum

and carried forward to the next step without further purification.

74 | o
S NHTs

N-(3-isobutyryl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-

methylbenzenesulfonamide (4.57).
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Synthesized from the crude material (2.54 g) from the previous step according to a
slightly modified general procedure 2 using 26 equiv of DCM instead of 13 equiv. The
crude product was purified by flash column chromatography using 30% ether/hexanes to
give roughly a 7:1 mixture of desired sulfonamide 4.57 to di-tosylated sulfonamide (2.80
g, ca. 60% vyield desired). This was carried forward without additional purification.
Representative 'H NMR shifts of desired product shown below.

'H NMR (300 MHz, CDCl3) & 11.60 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3
Hz, 2H), 3.12 (sept, J = 6.7 Hz, 1H), 2.74 — 2.59 (m, 4H), 2.38 (s, 3H), 1.82 — 1.72 (m,
4H), 0.99 (d, J= 6.7 Hz, 6H).

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C9H23NO3S,Na 400.1017; Found 400.1015.

K2CO3 R R
R X,
—_— o
R DMF R
NHTSs N
Ts
X=Brorl
R4 = Ar or OMe

Scheme 4.4 Representative scheme for alkylation of sulfonamides

4.8.2.1.3 General Procedure for N-Alkylation of Sulfonamides.

To an oven dried 20 mL scintillation vial was added sulfonamide (1.0 equiv) followed by
DMF (to yield a 1M solution). To the solution was added and potassium carbonate (2.0
equiv) and alkyl iodide (2.0 equiv) under a stream of N,. The vial was sealed and heated
to 100 °C for 24h. The reaction mixture was cooled to rt, diluted with water and ether.
The layers were separated and the aqueous layer was extracted with ether (3x). The
combined organics were washed with water (3x) and brine (1x) then dried over MgSQOsy,
filtered and concentrated to give crude product. The crude product was purified by flash

column chromatography.
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: NTs

Br

N-(4-bromophenethyl)-N-(2-(cyclopentanecarbonyl)phenyl)-4-
methylbenzenesulfonamide (4.58).

Synthesized according to general procedure 4.8.2.1.3 starting from 2.91 mmol of the
corresponding sulfonamide 4.55 and 5.82 mmol of 1-bromo-4-(2-bromoethyl)benzene.
Crude product was purified via flash column chromatography using 40% ether in hexanes
to give sulfonamide 4.58 as a white powder (1.06g, 69% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCls, 70 °C) § 7.59 (d, J= 7.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H),
7.38 (t,J=7.5 Hz, 1H), 7.35 (d, /= 6.4 Hz, 2H), 7.33 (t, /= 7.6 Hz, 1H), 7.23 (d, J=17.9
Hz, 2H), 6.96 (d, J = 7.8 Hz, 2H), 6.84 (d, J= 7.9 Hz, 1H), 3.77 (br s, 2H), 3.63 (quint, J
= 8.0 Hz, 1H), 2.86 (br s, 2H), 2.42 (s, 3H), 1.93 (br s, 4H), 1.76 (m, 2H), 1.62 (m, 2H).
C NMR (126 MHz, CDCls, 70 °C) & 206.2, 143.3, 142.3, 137.4, 136.7, 136.1, 131.4,
130.4, 130.2, 129.2, 129.0, 128.7, 127.9, 127.8, 120.2, 53.1, 50.3, 34.3, 30.3, 26.1, 21.2.
FTIR (Neat film NaCl): 3064, 3028, 2952, 2867, 1690, 1595, 1488, 1440, 1348, 1159,
572

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,7H,3BrNOs;SNa 548.0871; Found
548.0877.
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: NTs :

OMe
N-(2-(cyclohexanecarbonyl)phenyl)-V-(4-methoxyphenethyl)-4-
methylbenzenesulfonamide (4.59).

Synthesized according to general procedure 4.8.2.1.3 starting from 2.86 mmol of the
corresponding sulfonamide 4.54 and 5.72 mmol of 1-(2-iodoethyl)-4-methoxybenzene.
Crude product was purified via flash column chromatography using 40% ether in hexanes
to give sulfonamide 4.59 as a white powder (1.22 g, 86.7% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCl3, 70 °C) § 7.54 (m, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.32 (t,J =
7.8 Hz, 1H), 7.24 (d, J = 7.8 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 6.82 (d, J = 8.1 Hz, 1H),
6.78 (d, J= 6.9 Hz, 2H), 3.76 (s, 3H), 3.75 (br s, 2H), 3.36 (m, 1H), 2.81 (br s, 2H), 2.41
(s, 3H), 2.01 (brs, 2H), 1.83 (m, 2H), 1.69 (m, 1H), 1.36 (m, SH).

C NMR (126 MHz, CDCls, 70 °C) & 206.6, 158.4, 143.4, 141.9, 136.9, 136.0, 130.3,
129.4, 129.2, 129.1, 128.3, 127.9, 127.8, 114.1, 55.1, 53.6, 49.2, 33.9, 29.0, 25.9, 25.7,
21.2.

FTIR (Neat film NaCl): 3032, 2930, 2853, 1691, 1513, 1350, 1248, 1162, 578

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C2oH34NO4S 492.2209; Found 492.2229.
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: NTs :

NMe,
N-(2-(cyclohexanecarbonyl)phenyl)-N-(4-(dimethylamino)phenethyl)-4-
methylbenzene sulfonamide (4.60).

Synthesized according to general procedure 4.8.2.1.3 starting from 2.41 mmol of the
corresponding sulfonamide 4.54 and 4.82 mmol of 4-(2-bromoethyl)-N,N-
dimethylaniline. Crude product was purified via flash column chromatography using 20%
ethyl acetate in hexanes to give sulfonamide 4.60 as a white powder (0.50 g, 41% yield).
*NMR had poor resolution at room temperature, so NMRs are reported below at 60 °C.
'H NMR (500 MHz, CDCls, 60 °C) § 7.56 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H),
7.36 (dd, J = 7.4, 7.4 Hz, 1H), 7.32 (dd, J = 7.8, 7.8 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H),
6.96 (d, J = 8.2 Hz, 2H), 6.80 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 8.1 Hz, 2H), 3.73 (br s,
2H), 3.40 (tt, J = 11.2, 3.4 Hz, 1H), 2.90 (s, 6H), 2.77 (m, 2H), 2.41 (s, 3H), 2.01 (br s,
2H), 1.83 (d, J = 12.6 Hz, 2H), 1.70 (d, J = 12.5 Hz, 1H), 1.46 (br s, 2H), 1.37 (m, 2H),
1.28 (m, 1H).

BC NMR (126 MHz, CDCl3) § 207.4, 149.4, 143.7, 141.9, 136.8, 134.7, 130.7, 129.7,
129.4, 129.4, 128.5, 128.1, 128.1, 127.1, 113.0, 53.4, 49.2, 40.8, 33.8, 29.7, 28.6, 26.0,
21.6.

FTIR (Neat film NaCl): 2925, 2854, 1691, 1522, 1350, 1163, 1033, 577

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C3oH3sN,O3SNa 527.2344; Found 527.2333.
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N-(2-(cyclohexanecarbonyl)phenyl)-4-methyl-N-(4-phenylbutyl)benzenesulfonamide
(4.61).

Synthesized according to general procedure 4.8.2.1.3 starting from 3.00 mmol of the
corresponding sulfonamide 4.54 and 6.00 mmol of (4-iodobutyl)benzene. Crude product
was purified via flash column chromatography using 40% ethyl ether in hexanes to give
sulfonamide 4.54 as a white powder (1.16 g, 79.0% yield).

*NMR had poor resolution at room temperature, so "C NMR is reported below at 50 °C.

'H NMR (400 MHz, CDCl3) § 7.53 (dd, J = 7.6 Hz, 1H), 7.46 (ddd, J = 8.3, 1.8, 1.8 Hz,
2H), 7.35 (ddd, J = 7.4, 7.4, 1.3 Hz, 1H), 7.28 (ddd, J = 7.8, 7.8, 1,8 Hz, 1H), 7.23 (m,
3H), 7.16 (m, 2H), 7.09 (d, J = 6.8 Hz, 2H), 6.68 (dd, J = 7.9, 1.3 Hz, 1H), 3.67 (br s,
1H), 3.36 (tt, J = 11.4, 3.4 Hz, 1H), 3.33 (m, 1H), 2.55 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H),
2.07 (brs, 1H), 1.83-1.18 (m, 13H).

BC NMR (126 MHz, CDCl3) § 207.1, 145.5, 143.5, 142.0, 141.8, 136.9, 135.7, 130.4,
129.4, 129.3, 128.3, 128.1, 128.0, 127.9, 125.7, 51.8, 49.2, 35.3, 29.1, 28.5, 27.7, 26.0,
25.8,21.4.

FTIR (Neat film NaCl): 3062, 3026, 2929, 2855, 1689, 1596, 1495, 1450, 1350, 1162,
700, 661, 577, 545.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C30H3sNO;SNa 512.2235; Found 512.2233.
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: NTs :

N-(2-chlorophenethyl)-/N-(2-(cyclohexanecarbonyl)phenyl)-4-
methylbenzenesulfonamide (4.62).

Synthesized according to general procedure 4.8.2.1.3 starting from 1.50 mmol of the
corresponding sulfonamide 4.54 and 6.00 mmol of 1-(2-bromoethyl)-2-chlorobenzene.
Crude product was purified via flash column chromatography using 25% ethyl ether in
hexanes to give sulfonamide 4.62 as a white powder (0.50 g, 67% yield).

*NMR had poor resolution at room temperature, so "C NMR is reported below at 50 °C.
'H NMR (400 MHz, CDCl3) & 7.59 (dd, J = 7.6, 1.8 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H),
7.39 (ddd, J=17.5, 7.5, 1.3 Hz, 1H), 7.33 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 7.29 (m, 1H),
7.23 (d, J= 8.0 Hz, 2H), 7.17 (m, 3H), 6.78 (dd, J= 7.9, 1.2 Hz, 1H), 3.95 (m, 1H), 3.49
(m, 1H), 3.42 (tt, J = 10.8, 3.4 Hz, 1H), 3.10 (m, 1H), 2.94 (m, 1H), 2.41 (s, 3H), 2.11
(m, 1H), 1.94-1.56 (m, SH), 1.46-1.22 (m, 4H).

C NMR (101 MHz, CDCl;) & 206.8, 143.6, 141.8, 136.8, 136.0, 135.5, 134.2, 131.0,
130.6, 129.5, 129.4, 129.3, 128.2, 128.1, 128.0, 127.0, 51.3, 49.3, 32.8, 29.2, 26.0, 25.9,
21.4.

FTIR (Neat film NaCl): 3065, 2928, 2853, 1690, 1596, 1444, 1351, 1159, 1092, 580

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,3H3oCINOs;SNa 518.1533; Found
518.1528.

270



(o)
N/\/o\

Ts

N-(2-isobutyrylphenyl)-N-(2-methoxyethyl)-4-methylbenzenesulfonamide (4.63).
Synthesized according to general procedure 4.8.2.1.3 starting from 7.88 mmol of the
corresponding sulfonamide 4.53 and 11.8 mmol of 1-iodo-2-methoxyethane. Crude
product was purified via flash column chromatography using 40% ether in hexanes to
give sulfonamide 4.63 as a yellow oil (2.40 g, 81% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCls, 70 °C) & 7.48 (d, J = 7.6 Hz, 1H), 7.42 (br s, 2H), 7.27 (t, J
=17.4 Hz, 1H), 7.22 (t, J= 7.7 Hz, 1H), 7.15 (d, J = 7.8 Hz, 2H), 6.72 (s, 1H), 3.72 (br s,
2H), 3.57 (sept, J = 6.9 Hz, 1H), 3.42 (s, 2H), 3.10 (s, 3H), 2.32 (s, 3H), 1.14 (s, 6H).

C NMR (126 MHz, CDCls, 70 °C) & 207.0, 143.3, 141.2, 136.9, 135.6, 130.4, 129.0,
128.9, 128.6, 127.8, 127.1, 69.7, 57.9, 51.1, 38.6, 18.7.

FTIR (Neat film NaCl): 3067, 2972, 2930, 2873, 1692, 1596, 1445, 1349, 1164, 1117,

981, 657, 577.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C2oHeNO4S 376.1583; Found 376.1581.

~ A

Ts

N-(2-isobutyrylphenyl)-4-methyl-/V-phenethylbenzenesulfonamide (4.64).
Synthesized according to general procedure 4.8.2.1.3 starting from 6.30 mmol of the

corresponding sulfonamide 4.53 and 9.45 mmol of (2-iodoethyl)benzene. Crude product
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was purified via flash column chromatography using 30% ether in hexanes to give
sulfonamide 4.64 as a white solid (1.70 g, 64% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCl3, 70 °C) & 7.58 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H),
7.37 (t,J=7.5Hz, 1H), 7.33 (t,J= 7.7 Hz, 1H), 7.23 (d, /= 7.3 Hz, 4H), 7.17 (d, J= 7.3
Hz, 1H), 7.09 (d, J = 7.4 Hz, 2H), 6.85 (d, J = 7.7 Hz, 1H), 3.82 (s, 2H), 3.58 (sept, J =
6.9 Hz, 1H), 2.90 (s, 2H), 2.40 (s, 3H), 1.24 (s, 3H), 1.23 (s, 3H).

C NMR (126 MHz, CDCls, 70 °C) & 207.2, 143.6, 141.6, 138.2, 137.0, 135.7, 130.6,
1293, 129.2, 128.5, 128.4, 128.0, 127.9, 126.4, 53.3, 39.2, 34.8, 31.4, 18.8.

FTIR (Neat film NaCl): 2924, 1693, 1596, 1455, 1349, 1163, 1093, 1056, 1033, 1017,
815, 688, 579.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for CosHasNOsS 422.1790; Found 422.1790.

N-(2-isobutyrylphenyl)-4-methyl-/V-(3-phenylpropyl)benzenesulfonamide (4.65).
Synthesized according to general procedure 4.8.2.1.3 starting from 6.30 mmol of the
corresponding sulfonamide 4.53 and 9.45 mmol of (3-iodopropyl)benzene. Crude product
was purified via flash column chromatography using 30% ether in hexanes to give
sulfonamide 4.65 as a white solid (2.60 g, 95% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCl3, 70 °C) & 7.55 (d, J = 7.5 Hz, 1H), 7.49 (s, 2H), 7.35 (t, J =

7.5 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 4H), 7.15 (t, J = 7.4 Hz, 1H),
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7.09 (d, J = 7.3 Hz, 2H), 6.79 (s, 1H), 3.64 — 3.55 (m, 3H), 2.59 (t, J = 7.5 Hz, 2H), 2.41
(s, 3H), 1.98 — 1.85 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H).

3C NMR (126 MHz, CDCls, 70 °C) & 207.4, 143.5, 141.7, 141.0, 137.2, 135.8, 130.5,
129.3,129.2, 128.3, 128.2, 128.0, 127.9, 125.9, 51.6, 39.3, 33.1, 29.5, 21.3, 18.8.

FTIR (Neat film NaCl): 3063, 3027, 2971, 2932, 2871, 1694, 1596, 1348, 1161, 980,
700, 658, 576.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C26H3oNO;S 436.1946; Found 436.1946.

N-(3-isobutyryl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-methyl-/V-
phenethylbenzenesulfonamide (4.66).

Synthesized according to general procedure 4.8.2.1.3 starting from 7.42 mmol of the
corresponding sulfonamide 4.57 (7:1 mixture) and 11.1 mmol of (2-iodoethyl)benzene.
Crude product was purified via flash column chromatography using 20% ether in hexanes
and then recrystallization from boiling DCM/hexanes (1:1) to give sulfonamide 4.66 as
yellow crystalline solid (1.35 g, 38% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCl3, 70 °C) & 7.55 (d, J = 8.3 Hz, 2H), 7.30 — 7.21 (m, 5H), 7.20
—7.15(d, J= 8.3 Hz, 2H), 4.15 — 3.21 (br s, 2H), 3.55 (quint, J= 6.9 Hz, 1H), 2.92 (t, J =
8.5 Hz, 2H), 2.71 — 2.51 (br s, 2H), 2.64 (t, J = 6.1 Hz, 2H), 2.42 (s, 3H), 1.94 — 1.68 (m,

4H), 1.13 (s, 6H).
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C NMR (126 MHz, CDCl3, 70 °C) & 204.4, 144.3, 140.0, 137.9, 137.5, 134.4 (d, J=2.9
Hz), 133.1, 129.5, 128.7, 128.6, 128.4, 126.7, 54.6, 39.4, 34.9, 252, 25.1, 22.9, 22.4,
21.6.

FTIR (Neat film NaCl): 3206, 3029, 2931, 2868, 1685, 1597, 1560, 1454, 1356, 1167,
1091, 1059, 662, 575.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C7H3;NO3S,Na 504.1643; Found 504.1660.

N-(2-(cyclohexanecarbonyl)phenyl)-4-methyl-NV-(2-(thiophen-2-
yDethyl)benzenesulfonamide (4.67).

Synthesized according to general procedure 4.8.2.1.3 starting from 4.20 mmol of the
corresponding sulfonamide 4.54 and 6.30 mmol of 2-(2-iodoethyl)thiophene. Crude
product was purified via flash column chromatography using 15% ether in hexanes to
give sulfonamide 4.67 as a white solid (0.80 g, 40% yield).

'H NMR (600 MHz, CDCl3) & 7.59 (dd, J = 7.7, 1.7 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H),
7.39 (td, J=7.5,1.2 Hz, 1H), 7.34 (td, J = 7.7, 1.7 Hz, 1H), 7.24 (d, J= 8.3 Hz, 2H), 7.10
(dd, J=5.1, 1.2 Hz, 1H), 6.88 (dd, J = 5.1, 3.4 Hz, 1H), 6.76 — 6.73 (m, 2H), 4.04 (br s,
1H), 3.60 (br s, 1H), 3.35 (tt, /= 11.4, 3.4 Hz 1H), 3.25 (br s, 1H), 3.00 (br s, 1H), 2.41
(s, 3H), 2.10 (br s, 1H), 1.92 (br s, 1H), 1.87 — 1.77 (m, 2H), 1.69 (d, J = 12.5 Hz, 1H),
1.63 —1.53 (m, 1H), 1.41 — 1.18 (m, 4H).

C NMR (151 MHz, CDCl3) & 206.8, 143.7, 141.4, 140.0, 136.5, 134.6, 130.8, 129.4,

129.3,128.2,127.8, 127.7, 126.8, 125.2, 123.7, 53.1, 49.0, 28.8, 25.8, 21.4.
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FTIR (Neat film NaCl): 3068, 2929, 1854, 1690, 1596, 1444, 1350, 1162, 1092, 907,
728.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,6H29NO3S;Na 490.1487; Found 490.1496.

o o Cul (o]
T1,0 ///\ OPh
—_— >
pyridine diisopropylamine

OH oTf DMF X _orh

(0]

H,
Pd/C
3 o
X_ _oph OPh

Scheme 4.5 Scheme for synthesis of ketone 4.70

(o)

oTf
2-isobutyrylphenyl trifluoromethanesulfonate (4.68).
1-(2-Hydroxyphenyl)-2-methylpropan-1-one (9.60 g, 58.5 mmol, 1.0 equiv) was
dissolved in pyridine (58.0 mL, 720 mmol, 12.0 equiv) and cooled to 0 °C. Triflic
anhydride (19.8 g, 70.2 mmol, 1.2 equiv) was added dropwise. The reaction was warmed
up to rt and stirred for 12h. Ethyl acetate (150 mL) was added to the reaction it was
washed with aqueous CuSO,4 (50 mL x 4) and brine (100 mL x 1). The organic layer was
dried over MgSOQ, filtered and concentrated to give crude aryl triflate. Crude material
was purified by silica flash column chromatography using 5% ethyl acetate in hexanes to
give pure aryl triflate as yellow oil 4.68 (12.9 g, 75% yield). Spectral data match those

reported in the literature.*
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2-methyl-1-(2-(3-phenoxyprop-1-yn-1-yl)phenyl)propan-1-one (4.69).
Copper iodide (6.43 mg, 0.034 mmol, 0.01 equiv) and palladium tetrakis (39.0 mg, 0.034
mmol, 0.01 equiv) were added to a schlenk flask and vacuum/backfilled three times. This
was dissolved in DMF (12 mL) and added diisopropylamine (1.02 g, 10.1 mmol, 3 equiv)
aryl triflate 4.68 (1.00 g, 3.38 mmol, 1.0 equiv) and (prop-2-yn-1-yloxy)benzene (1.34 g,
10.1 mmol, 3.0 equiv). The resulting solution was heated to 80 °C for 16 hours. The
reaction was cooled to r.t and diluted with 30 mL of H,O. This was then extracted with
diethyl ether (3 x 40 mL). The combined organics were washed with 1M aqueous HCI
(50 mL), water (50 mL) and brine (50 mL). Afterwards, the organic layer was dried over
MgSO, filtered and concentrated to give crude alkyne. This was purified by silica flash
column chromatography using 3% ether in hexanes to give desired product 4.69 as an
orange oil (540 mg, 58% yield).
'H NMR (600 MHz, CDCl3) & 7.53 — 7.46 (m, 2H), 7.42 — 7.35 (m, 2H), 7.34 — 7.30 (m,
2H), 7.01 (ddd, J = 9.1, 7.0, 0.9 Hz, 3H), 4.94 (s, 2H), 3.53 (sept, J = 6.9 Hz, 1H), 1.09
(d,J=6.9, 6H).
C NMR (151 MHz, CDCl3) & 208.0, 157.6, 141.9, 133.8, 130.3, 129.5, 128.6, 127.7,
121.5,119.9, 114.9, 88.7, 85.4, 56.4, 38.9, 18.4.
FTIR (Neat film NaCl): 3063, 2971, 2932, 2871, 1691, 1598, 1589, 1494, 1211, 1033,
752, 590.

HR-MS (CI-MS) m/z: [M]+ Calc’d for CjoH;50, 278.1307; Found 278.1307.
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OPh
2-methyl-1-(2-(3-phenoxypropyl)phenyl)propan-1-one (4.70).
To a 25 mL roundbottom flask was added 10% Pd/C (70.4 mg, 0.066 mmol, 0.034 equiv)
and suspended in 8 mL of ethanol. To this was added alkyne 4.69 (540 mg, 1.94 mmol,
1.0 equiv) and the reaction was sparged with hydrogen gas for 10 minutes. After the
sparging, a new hydrogen balloon was attached and reaction stirred for 18 hours. At this
point, the reaction was filtered through celite and concentrated. The crude material was
purified by a short silica plug with 5% ether in hexanes to give pure ketone 4.70 as a light
yellow oil (230 mg, 1.94 mmol, 42% yield).
'H NMR (600 MHz, CDCls) & 7.53 (dd, J = 7.7, 1.3 Hz, 1H), 7.38 (td, J = 7.5, 1.3 Hz,
1H), 7.33 — 7.19 (m, 4H), 6.94 (td, J = 7.3, 1.1 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 4.00 (t,
J=6.2 Hz, 2H), 3.36 (sept, J = 6.9 Hz, 1H), 2.96 — 2.79 (m, 2H), 2.26 — 1.97 (m, 2H),
1.18 (d, /= 6.9 Hz, 6H).
C NMR (151 MHz, CDCl3) & 209.3, 158.9, 141.1, 138.6, 130.9, 130.7, 129.4, 127.6,
125.8, 120.5, 114.5, 67.0, 38.9, 31.3, 30.2, 18.7.
FTIR (Neat film NaCl): 3067, 2930, 2869, 1686, 1599, 1497, 1469, 1243, 1037, 976,
751, 591.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for C1oHa305 283.1698; Found 283.1700.

o}
o Ph 0 H
///\ Pd/C (zcat.)
Pd(PPh,),Cl, EtOH
oTf Cul, TEA A
70°C

Scheme 4.6 Scheme for synthesis of ketone 4.72
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2-methyl-1-(2-(3-phenylprop-1-yn-1-yl)phenyl)propan-1-one (4.71).

Ph(PPh3),Cl, (237 mg, 0.337 mmol) and Cul (64.2 mg, 0.337 mmol) were added into a
flame-dried Schlenk flask. Triethylamine (46 mL) and aryl triflate 4.68 (2.00 g, 6.74
mmol) were then added under nitrogen atmosphere. And at last prop-2-yn-1-ylbenzene
(2.52 mL, 20.2 mmol) was added and the reaction was heated at 70 °C overnight. The
reaction was cooled down to room temperature and quenched with saturated ammonium
chloride solution. The mixture was extracted with ethyl acetate three times, and the
combined organic phase was washed with water two times and brine. It was dried with
magnesium sulfate, filtered and concentrated to give the crude product. The crude
product was purified via flash column chromatography using 10% ethyl ether in hexanes
to give the product 4.71 as an oil (0.62 g, 35% yield).

'H NMR (400 MHz, CDCl3) § 7.51 (dd, J = 7.5, 1.4 Hz, 1H), 7.46 (dd, J = 7.5, 1.4 Hz,
1H), 7.37 (m, 6H), 7.26 (tt, J= 7.8, 1.6 Hz, 1H), 3.85 (s, 2H), 3.62 (sept, J = 6.9 Hz, 1H),
1.12 (d, /= 6.8 Hz, 6H).

C NMR (101 MHz, CDCl3) & 208.9, 142.2, 136.3, 133.5, 130.2, 128.6, 128.0, 127.8,
127.6, 126.8, 121.2,92.7, 81.0, 39.1, 26.0, 18.5.

FTIR (Neat film NaCl): 3386, 3063, 3030, 2972, 2932, 2873, 2199, 1768, 1690, 1593,
1454, 1214, 980, 757, 698.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C;9H;sONa 285.1255; Found 285.1243.
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2-methyl-1-(2-(3-phenylpropyl)phenyl)propan-1-one (4.72).
Alkyne 4.71 (0.750 g, 2.86 mmol) was dissolved in ethanol (50 mL). Pd/C (0.103 g,
0.0972 mmol, 10% Pd) was then added. Hydrogen gas was blown into the solution for a
while and the reaction was run under hydrogen atmosphere (1 atm) overnight. The
reaction solution was filtered through celite and concentrated to give the crude product.
The crude product was purified by flash chromatography with 4% ether in hexanes to
give the product 4.72 (0.63 g, 83% yield).
'H NMR (400 MHz, CDCl;) § 7.48 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.0 Hz, 1H), 7.31-
7.21 (m, 4H), 7.21-7.14 (m, 3H), 3.30 (sept, J = 6.9 Hz, 1H), 2.76 (m, 2H), 2.68 (t, J =
7.8 Hz, 2H), 1.93 (m, 2H), 1.16 (d, /= 6.9 Hz, 6H).
C NMR (101 MHz, CDCl3) & 209.6, 142.3, 141.7, 138.8, 130.7, 130.5, 128.5, 128.3,
127.4,125.8, 125.7, 39.1, 35.9, 33.5, 33.4, 18.7.

FTIR (Neat film NaCl): 3062, 3026, 2969, 2931, 2869, 1686, 1454, 1221, 976, 745, 633.

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C1oHa30 267.1749; Found 267.1750.

0

0 SH
CN 1. Mg, i-PrBr Ph”
©: 2. HCI S
- —_—
Na,CO.
F THF F 2LUs
DMF, 100°C

Scheme 4.7 Scheme for synthesis of ketone 4.74
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1-(2-fluorophenyl)-2-methylpropan-1-one (4.73).

Magnesium (0.602 g, 24.8 mmol) was put into a flame-dried three-neck flask equipped
with a condenser. THF (24 mL) was then added into the flask. 2-bromopropane (2.33 mL,
24.8 mmol) was added slowly into the flask to keep the solution under gentle reflux.
After the formation of the Grignard reagent, cooled the solution down to 0 °C and 2-
fluorobenzonitrile (2.21 g, 20.6 mmol) in THF (20 mL) was added dropwise. The
reaction was run overnight. After this the reaction was quenched with water and
concentrated hydrochloric acid to make the pH down to 1. Then it was extracted with
ethyl ether three times. The combined organic phase was washed with saturated sodium
bicarbonate solution and brine. It was dried with magnesium sulfate, filtered, and
concentrated to give the crude product. The crude product was purified via flash column
chromatography using 2% ethyl acetate in hexanes to give the product 4.73 as an oil

(1.35 g, 39.3% yield). Spectral data matched those reported in the literature.*®

vy

2-methyl-1-(2-(phenethylthio)phenyl)propan-1-one (4.74).
2-phenylethane-1-thiol (1.91 mL, 14.2 mmol), aryl fluoride 4.73 (1.18 g, 7.10 mmol),
sodium carbonate (3.01 g, 28.4 mmol) and DMF (7 mL) was added to a flask. The

solution was heated at 100 °C overnight. After this, ethyl acetate and water was added
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into the solution. After the separation, the organic phase was washed with water three
times and then washed with brine. The organic phase was dried with sodium sulfate and
concentrated to give the crude product. The crude product was purified with flash column
chromatography with 2% ethyl acetate in hexanes to give the product 4.74 as a pale-
yellow oil (0.53 g, 26% yield).

'H NMR (400 MHz, CDCl3) § 7.61 (d, J = 7.7 Hz, 1H), 7.41 (m, 2H), 7.30 (m, 2H), 7.22
(m, 4H), 3.44 (sept, /= 6.8 Hz, 1H), 3.15 (m, 2H), 2.94 (m, 2H), 1.20 (d, /= 6.9 Hz, 6H).
C NMR (101 MHz, CDCl3) & 207.3, 140.3, 138.3, 137.9, 131.2, 128.9, 128.6, 128.5,
128.1, 126.5, 124.8, 38.2, 35.0, 34.9, 18.8.

FTIR (Neat film NaCl): 3061, 3027, 2969, 2930, 2870, 1691, 1585, 1454, 1431, 1214,
1075, 974, 738, 697.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for CisHaOS 285.1313; Found 285.1323.

4.8.2.1.4 General Procedure for Tosylation of Ketones

A: The corresponding ketone (1 equiv) was dissolved in THF (0.33 M solution) and
cooled to 0 °C. To this was added a solution of potassium fert-butoxide (1.5 equiv) in
THF (1.0 M solution). This was stirred 1.5 hours and then tosic anhydride (1.5 equiv)
was added and the reaction was warmed up to rt. After 4 hours, the reaction mixture
(generally a thick slurry) was diluted with ethyl acetate. This was washed with water (x1)
and brine (x1) then dried over MgSQOs, filtered and concentrated to give crude vinyl

tosylate. This was purified by flash column chromatography to give pure vinyl tosylate.

B: Followed established literature procedure.’’ Inside a glovebox, LIHMDS (2.0 equiv)

was dissolved in dry toluene (0.9 M) inside a roundbottomflask which was then removed
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from the glovebox. To this was added distilled N,N-dimethylethylamine (DMEA, 2.0
equiv) and a 1M solution of ketone (1.0 equiv) in dry toluene. After stirring for 20
minutes, a 0.4 M solution of tosic anhydride (2.0 equiv) in DCM was added and this was
stirred for one hour at room temperature. The reaction was then diluted with diethyl ether
and 0.25 M aqueous NaOH. The layers were separated and the aqueous was extracted
with diethyl ether (x3). The combined organics were washed with brine, dried over
MgSOy, filtered and conc to give crude vinyl tosylate. This was purified by flash column

chromatography to give pure vinyl tosylate.

OTs

NTs

OMe
cyclohexylidene(2-((/V-(4-methoxyphenethyl)-4-
methylphenyl)sulfonamido)phenyl)methyl 4-methylbenzenesulfonate (4.75).
Synthesized according to general procedure 4.8.2.1.4B starting from 1.18 mmol of the
corresponding ketone 4.59. Crude product was purified via flash column chromatography
using 40% ether in hexanes to give vinyl tosylate 4.75 as a white solid (0.43 g, 56%
yield).
*NMR had poor resolution at room temperature, so NMRs are reported below at 50 °C.
'H NMR (500 MHz, CDCls, 50 °C) § 7.67 (d, J= 7.9 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H),
7.43 (br s, 1H), 7.31 (m, 2H), 7.26 (d, J = 6.6 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.96 (br

s, 1H), 6.83 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 3.76 (s, 3H), 3.59 (ddd, J =
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13.2, 5.5, 5.5 Hz, 1H), 3.38 (ddd, J = 12.2, 5.0, 5.0 Hz, 1H), 2.66 (ddd, J = 12.8, 5.4, 5.4
Hz, 1H), 2.44 (m, 2H), 2.43 (s, 3H), 2.31 (s, 3H), 2.29 (m, 1H), 2.12 (m, 1H), 2.03 (m,
1H), 1.67 (m, 2H), 1.54 (m, 4H).

13C NMR (126 MHz, CDCls, 50 °C) & 158.1, 144.2, 143.2, 139.2, 136.6, 136.5, 135.5,
134.4, 133.5, 130.5, 129.4, 129.3, 129.2, 129.1, 128.1, 127.9, 127.6, 113.8, 55.1, 53.0,
33.5,30.4, 28.5, 26.8, 26.6, 26.1, 21.3, 21.2.

FTIR (Neat film NaCl): 3029, 2971, 2928, 2855, 1611, 1597, 1512, 1364, 1175, 1157,
788, 656, 570, 552.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C3sH3sNOsS;Na 668.2117; Found 668.2093.

OTs

\
9

2-methyl-1-(2-(3-phenylpropyl)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate
(4.76).

Synthesized according to general procedure 4.8.2.1.4B starting from 2.37 mmol of the
corresponding ketone 4.72. Crude product was purified via flash column chromatography
using 20% ethyl acetate in hexanes to give vinyl tosylate 4.76 as a white solid (0.32 g,
32% yield).

'H NMR (400 MHz, CDCl3) § 7.33 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 7.4 Hz, 2H), 7.19 (m,
2H), 7.15 (m, 1H), 7.11 (d, J = 6.8 Hz, 2H), 7.07 (t, /= 7.4 Hz, 1H), 6.98 (d, J = 8.2 Hz,
2H), 6.97 (t, J = 6.2 Hz, 1H), 2.57 (m, 1H), 2.53 (t, J = 7.7 Hz, 2H), 2.34 (m, 1H), 2.29

(s, 3H), 1.93 (s, 3H), 1.68 (quint, J = 8.0 Hz, 2H), 1.57 (s, 3H).
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C NMR (101 MHz, CDCl3) & 143.9, 142.3, 142.0, 140.9, 134.5, 132.6, 132.3, 129.1,
128.8, 128.4, 128.3, 127.6, 127.0, 125.7, 125.2, 35.7, 32.6, 32.0, 21.5, 19.9, 18.4.

FTIR (Neat film NaCl): 3065, 3026, 2922, 2859, 1599, 1496, 1453, 1367, 1081, 990,
823, 810.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for CycH2303SNa 443.1657; Found 443.1649.

OTs

2-methyl-1-(2-(phenethylthio)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate
4.77).

Synthesized according to general procedure 4.8.2.1.4B starting from 1.20 mmol of the
corresponding ketone 4.74. Crude product was purified via flash column chromatography
using 40% ether in hexanes to give vinyl tosylate 4.77 as a pale yellow oil (0.29 g, 55%
yield).

'H NMR (400 MHz, CDCl3) & 7.46 (d, J = 8.4 Hz, 2H), 7.29 (m, 2H), 7.23 (m, 2H), 7.16
(m, 3H), 7.07 (m, 2H), 7.02 (d, J = 7.7 Hz, 2H), 2.97 (m, 2H), 2.79 (m, 2H), 2.29 (s, 3H),
1.92 (s, 3H), 1.60 (s, 3H).

C NMR (101 MHz, CDCl3) & 143.9, 140.3, 139.6, 137.7, 134.4, 133.5, 132.6, 129.1,
129.0, 128.6, 128.4, 128.2, 127.8, 127.3, 126.5, 124.8, 35.4,34.2, 21.5, 19.9, 18 .4.

FTIR (Neat film NaCl): 3062, 3032, 2918, 2856, 1598, 1496, 1454, 1364, 1176, 1086,
1071, 990, 823, 809, 792.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,sH,603S,Na 461.1221; Found 461.1209.
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OTs

NTs

NMe,

cyclohexylidene(2-((/V-(4-(dimethylamino)phenethyl)-4-
methylphenyl)sulfonamido)phenyl) methyl 4-methylbenzenesulfonate (4.78).
Synthesized according to general procedure 4.8.2.1.4B starting from 0.67 mmol of the
corresponding ketone 4.60. Crude product was purified via flash column chromatography
using 50% ether in hexanes with 5% triethylamine to give vinyl tosylate 4.78 as a white
solid (0.18 g, 41% yield).

*NMR had poor resolution at room temperature, so 'H NMR is reported below at 70 °C.
'H NMR (500 MHz, CDCls, 70 °C) § 7.69 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H),
7.43 (brs, 1H), 7.29 (m, 2H), 7.26 (d, J= 7.6 Hz, 2H), 7.08 (d, J= 7.9 Hz, 2H), 6.98 (d, J
= 6.6 Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.0 Hz, 2H), 3.56 (m, 1H), 3.39 (m,
1H), 2.90 (s, 6H), 2.61 (m, 1H), 2.49 (m, 1H), 2.43 (s, 3H), 2.40 (m, 1H), 2.31 (s, 3H),
2.28 (m, 1H), 2.11 (m, 1H), 2.04 (m, 1H), 1.69 (br s, 2H), 1.59 (br s, 2H), 1.50 (m, 2H).
BC NMR (126 MHz, CDCl3) § 149.3, 144.2, 143.4, 139.2, 136.7, 136.2, 135.5, 134.2,
133.6, 129.4, 129.4, 129.4, 129.3, 128.7, 128.3, 128.1, 127.8, 126.4, 125.5, 112.8, 53.2,
40.8,33.4, 30.6, 28.7,27.0,26.7,26.2,21.6, 21.6.

FTIR (Neat film NaCl): 3032, 2929, 2857, 1616, 1597, 1522, 1445, 1352, 1188, 1176,
1161, 1093, 807, 789, 572, 555.

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C37H43N205Sz 6592614, Found 659.2619.

285



OTs

NTs

Br
(2-((/V-(4-bromophenethyl)-4-
methylphenyl)sulfonamido)phenyl)(cyclopentylidene)methyl 4-
methylbenzenesulfonate (4.79).

Synthesized according to general procedure 4.8.2.1.4B starting from 1.75 mmol of the
corresponding ketone 4.58. Crude product was purified via flash column chromatography
using 40% ether in hexanes to give vinyl tosylate 4.79 as a white solid (0.72 g, 61%
yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 70 °C.
'H NMR (500 MHz, CDCls, 70 °C) § 7.63 (m, 4H), 7.48 (d, J = 7.4 Hz, 1H), 7.31 (m,
4H), 7.26 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.94 (d, J = 7.6 Hz, 1H), 6.83 (d,
J =17.8 Hz, 2H), 3.54 (m, 2H), 2.63 (m, 3H), 2.43 (s, 3H), 2.35 (s, 3H), 2.26 (m, 3H),
1.65 (br s, 4H).

C NMR (126 MHz, CDCls, 70 °C) & 144.3, 143.3, 141.9, 138.5, 137.6, 136.6, 135.2,
133.2,131.3, 130.3, 130.2, 130.1, 129.3, 129.2, 129.1, 129.0, 128.0, 128.0, 127.9, 120.0,
52.7,33.9,30.8, 30.1, 26.2, 25.8, 21.2, 21.2.

FTIR (Neat film NaCl): 3070, 3032, 2957, 2869, 1597, 1488, 1352, 1189, 1176, 1160,

806, 788, 659, 572, 553.
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HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for Cs;4H34BrNOsS;Na 702.0959; Found
702.0975.

OTs

CLO
cyclohexylidene(2-((4-methyl-N-(4-phenylbutyl)phenyl)sulfonamido)phenyl)methyl
4-methylbenzenesulfonate (4.80).

Synthesized according to general procedure 4.8.2.1.4A starting from 2.23 mmol of the
corresponding ketone 4.61. Crude product was purified via flash column chromatography
using 12% acetone in hexanes to give vinyl tosylate 4.80 as a white solid (0.75 g, 52%
yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 55 °C.
'H NMR (500 MHz, CDCls, 55 °C) § 7.65 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H),
7.37 (m, 1H), 7.28-7.21 (m, 6H), 7.16 (m, 1H), 7.13 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 6.8
Hz, 2H), 6.95 (m, 1H), 3.32 (m, 2H), 2.42 (m, 3H), 2.41 (s, 3H), 2.33 (s, 3H), 2.25 (m,
1H), 2.05 (m, 1H), 1.98 (m, 1H), 1.65 (m, 2H), 1.56-1.39 (m, 5H), 1.36-1.28 (m, 3H).

C NMR (126 MHz, CDCls, 55 °C) & 144.3, 143.2, 142.1, 139.2, 137.3, 136.5, 136.3,
135.7, 134.6, 133.6, 129.8, 129.3, 129.3, 129.2, 128.2, 128.2, 128.1, 128.1, 127.6, 125.7,
51.4,35.2,30.5, 28.6, 28.5, 27.5, 27.0, 26.7, 26.2, 21.4, 21 4.

FTIR (Neat film NaCl): 3027, 2926, 2854, 1598, 1486, 1447, 1364, 1188, 1176, 1158,
1093, 789, 571.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C37HsNOsS;Na 666.2324; Found 666.2312.
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OTs

NTs

(2-((/V-(2-chlorophenethyl)-4-methylphenyl)sulfonamido)phenyl)
(cyclohexylidene)methyl-4-methylbenzenesulfonate (4.1).

Synthesized according to general procedure 4.8.2.1.4A starting from 2.96 mmol of the
corresponding ketone 4.62. Crude product was purified via flash column chromatography
using benzene to give vinyl tosylate 4.1 as a white solid (0.66 g, 34% yield).

*NMR had poor resolution at room temperature, so 'H NMR is reported below at 70 °C
and °C NMR is reported below at 50 °C.

'H NMR (500 MHz, CDCls, 70 °C) § 7.71 (d, J = 7.8 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H),
7.44 (br s, 1H), 7.31 (m, 2H), 7.25 (m, 3H), 7.09 (m, 2H), 7.04 (d, J = 7.8 Hz, 3H), 6.97
(m, 1H), 3.60 (m, 1H), 3.44 (m, 1H), 2.79 (m, 1H), 2.59 (m, 1H), 2.49 (m, 1H), 2.43 (s,
3H), 2.32 (m, 1H), 2.26 (s, 3H), 2.10 (m, 2H), 1.68 (br s, 2H), 1.59 (br s, 2H), 1.51 (brs,
2H).

C NMR (126 MHz, CDCl;) & 144.4, 143.4, 139.0, 136.8, 136.39, 136.36, 135.6, 134.5,
134.1, 133.6, 130.9, 129.4, 129.3, 128.4, 128.0, 127.79, 127.76, 126.8, 50.8, 32.3, 30.6,
28.7,27.0,26.7,26.2,21.4,21.3.

FTIR (Neat film NaCl): 3066, 2973, 2928, 2855, 1597, 1475, 1444, 1356, 1176, 1160,
656, 571, 552.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for CssH3sCINOsS;Na 672.1621; Found
672.1607.
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OTs
OPh

2-methyl-1-(2-(3-phenoxypropyl)phenyl)prop-1-en-1-yl ~ 4-methylbenzenesulfonate
(4.81).

Synthesized according to general procedure 4.8.2.1.4B starting from 0.82 mmol of the
corresponding ketone 4.70. Crude product was purified via flash column chromatography
using 30% ether in hexanes to give vinyl tosylate 4.81 as a white solid (90 mg, 25%
yield).

'H NMR (500 MHz, CDCl;) & 7.36 (d, J = 8.4 Hz, 2H), 7.31 — 7.24 (m, 1H), 7.23 — 7.19
(m, 1H), 7.16 (td, J = 7.5, 1.6 Hz, 1H), 7.09 (td, J = 7.5, 1.4 Hz, 1H), 7.01 (t, J = 8.0 Hz,
3H), 6.93 (td, J= 7.4, 1.1 Hz, 1H), 6.84 (d, J = 7.7 Hz, 2H), 3.87 — 3.79 (m, 2H), 2.77 —
2.65 (m, 1H), 2.51 — 2.40 (m, 1H), 2.31 (s, 3H), 1.91 (s, 3H), 1.90 — 1.83 (m, 2H), 1.55
(s, 3H), 1.55 (s, 3H).

BC NMR (126 MHz, CDCl3) § 158.9, 143.9, 141.1, 140.7, 134.5, 132.7, 132.3, 129.4,
129.1, 128.9, 128.8, 127.5, 127.2, 125.4, 120.5, 114.4, 66.8, 29.7, 29.1, 21.5, 19.8, 18.3.
FTIR (Neat film NaCl): 3065, 2923, 2870, 1600, 1497, 1367, 1245, 1177, 1080, 1037,
990.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for CasHz504SNa 459.1606; Found 459.1619.

OTs
N0
Ts
1-(2-((V-(2-methoxyethyl)-4-methylphenyl)sulfonamido)phenyl)-2-methylprop-1-en-

1-yl 4-methylbenzenesulfonate (4.43).
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Synthesized according to general procedure 4.8.2.1.4A starting from 6.39 mmol of the
corresponding ketone 4.63. Crude product was purified via flash column chromatography
using 40% ethyl acetate in hexanes to give vinyl tosylate 4.43 as a yellow solid (1.75 g,
52% yield).

'H NMR (400 MHz, CDCl3) § 7.66 — 7.53 (m, 4H), 7.41 — 7.37 (m, 1H), 7.33 — 7.21 (m,
4H), 7.18 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 7.7 Hz, 1H), 3.52 (t, J = 6.8 Hz, 2H), 3.37 —
3.28 (m, 1H), 3.25 — 3.14 (m, 1H), 3.12 (s, 3H), 2.41 (s, 3H), 2.37 (s, 3H), 1.72 (s, 3H),
1.60 (s, 3H).

C NMR (101 MHz, CDCls) & 144.57, 143.27, 138.65, 138.10, 136.38, 134.01, 133.62,
130.08, 129.93, 129.41, 129.28, 129.15, 128.20, 127.95, 69.28, 58.30, 50.21, 21.53,
21.49,20.31, 18.53.

FTIR (Neat film NaCl): 3072, 2986, 2923, 2882, 2815, 1597, 1486, 1360, 1176, 1160,
810, 792, 725.

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C27H32N0682 5301671, Found 530.1678.

2-methyl-1-(2-((4-methyl-N-phenethylphenyl)sulfonamido)phenyl)prop-1-en-1-yl 4-
methylbenzenesulfonate (4.82).

Synthesized according to general procedure 4.8.2.1.4A starting from 4.03 mmol of the
corresponding ketone 4.64. Crude product was purified via flash column chromatography
using 25% diethyl ether in hexanes to give vinyl tosylate 4.82 as a yellow solid (0.76 g,

33% yield).
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'H NMR (400 MHz, CDCl;) 8 7.65 — 7.59 (m, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.51 — 7.44
(m, 1H), 7.38 — 7.29 (m, 2H), 7.29 — 7.23 (m, 2H), 7.23 — 7.14 (m, 3H), 7.07 (d, J = 8.1
Hz, 2H), 6.93 (d, J = 6.5 Hz, 3H), 3.60 (d, J = 10.9 Hz, 1H), 3.36 (td, J = 13.0, 4.9 Hz,
1H), 2.73 (td, J = 12.7, 5.3 Hz, 1H), 2.48 (td, J = 12.7, 4.8 Hz, 1H), 2.42 (s, 3H), 2.29 (s,
3H), 1.81 (s, 3H), 1.65 (s, 3H).

13C NMR (101 MHz, CDCl3) & 144.5, 143.5, 139.0, 138.5, 137.9, 136.1, 134.1, 133.8,
130.2, 129.5, 129.4, 129.1, 128.6, 128.3, 128.2, 127.9, 126.3, 53.1, 34.5, 21.6, 21.5, 20.4,
18.69.

FTIR (Neat film NaCl): 3064, 3028, 2921, 1598, 1487, 1446, 1352, 1305, 1190, 1177,
1161, 1093, 1083, 814.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C3,H3sNOsS;Na 598.1698; Found 598.1689.

2-methyl-1-(2-((4-methyl-N-(3-phenylpropyl)phenyl)sulfonamido)phenyl)prop-1-en-
1-yl 4-methylbenzenesulfonate (4.83).

Synthesized according to general procedure 4.8.2.1.4A starting from 5.97 mmol of the
corresponding ketone 4.65. Crude product was purified via flash column chromatography
using 25% diethyl ether in hexanes to give vinyl tosylate 4.83 as a yellow solid (1.10 g,
31% yield).

'H NMR (400 MHz, CDCls) & 7.53 (app d, J = 8.2 Hz, 4H), 7.40 (s, 1H), 7.31 — 7.21 (m,

6H), 7.20 - 7.15 (m, 1H), 7.12 (d, /= 8.1 Hz, 2H), 7.03 (d, /= 6.9 Hz, 2H), 6.92 (s, 1H),
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3.41 —3.18 (m, 2H), 2.42 (s, 3H), 2.36 (t, J = 7.6 Hz, 2H), 2.33 (s, 3H), 1.80 (s, 3H), 1.76
~1.65 (m, 2H).

3C NMR (101 MHz, CDCl3) § 144. 5, 143.3, 140.9, 138.9, 138.0, 136.4, 134.1, 133.6,
129.9, 129.6, 129.3, 129.28, 129.26, 128.23, 128.21, 127.96, 127.91, 127.7, 125.8, 51.0,
32.9,29.1,21.5,21.4,20.3, 18.6.

FTIR (Neat film NaCl): 3063, 3027, 2971, 2932, 2871, 1694, 1596, 1495, 1348, 1161,
980, 700, 658, 576.

HR-MS (ESI-MS) m/z: [M+H]+ Calc’d for C33H36NOsS, 590.2035; Found 590.2061.

2-methyl-1-(2-((4-methyl-N-phenethylphenyl)sulfonamido)-4,5,6,7-
tetrahydrobenzo[b]thiophen-3-yl)prop-1-en-1-yl 4-methylbenzenesulfonate (4.84).
Synthesized according to a slightly modified general procedure 4.8.2.1.4B starting from
2.80 mmol of the corresponding ketone 4.66. Followed procedure with exception that 10
mL of PhAME was used for ketone solution and 14 mL DCM used for tosic anhydride due
to poor solubility of ketone. Crude product was purified via flash column
chromatography using 20% diethyl ether in hexanes to give vinyl tosylate 4.84 as a white
solid (390 mg, 22% yield).

'H NMR (500 MHz, CDCls, 70 °C) § 7.69 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H),
7.26 —7.19 (m, 7.7 Hz, 4H), 7.17 (app q, J = 7.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.00

(d, J=7.4 Hz, 2H), 3.65 (td, J = 12.8, 12.4, 5.4 Hz, 1H), 3.50 (td, /= 12.7, 5.0 Hz, 1H),
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2.86 (dd, J = 16.4, 5.5 Hz, 1H), 2.80 — 2.61 (m, 4H), 2.45 — 2.35 (m, 1H), 2.41 (s, 3H),
2.33(s,3H), 1.98 — 1.81 (m, 4H), 1.79 (s, 3H), 1.61 (s, 3H).

C NMR (126 MHz, CDCls, 70 °C) & 144.3, 143.5, 138.6, 136.8, 136.7, 135.2, 134.7,
134.6, 133.1, 131.1, 129.5, 129.5, 129.4, 128.7, 128.4, 128.3, 127.8, 127.4, 126.3, 54.2,
34.8,25.4,25.0,23.5,22.8,21.4,21.3, 20.0, 18.5.

FTIR (Neat film NaCl): 3199, 3063, 3028, 2932, 2858, 1598, 1453, 1351, 1176, 1162,
1092, 1059, 813, 661, 580, 547.

HR-MS (ESI-MS) m/z: [M+Nal+ Calc’d for C34H3,NOsS;Na 658.1732; Found 658.1712.

cyclohexylidene(2-((4-methyl-N-(2-(thiophen-2-
yDethyl)phenyl)sulfonamido)phenyl)methyl 4-methylbenzenesulfonate (4.85).
Synthesized according to general procedure 4.8.2.1.4A starting from 1.18 mmol of the
corresponding ketone 4.67. Crude product was purified via flash column chromatography
using 30% diethyl ether in hexanes to give vinyl tosylate 4.85 as a yellow solid (490 mg,
67% yield).

'H NMR (500 MHz, CDCls, 55 °C) § 7.67 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H),
7.42 (d, J="17.5 Hz, 1H), 7.35 — 7.23 (m, 5H), 7.15 — 7.04 (m, 2H), 6.93 (d, J = 7.5 Hz,
1H), 6.86 (dd, J = 5.1, 3.4 Hz, 1H), 6.60 (dd, J = 3.5, 1.2 Hz, 1H), 3.65 (ddd, J = 13.7,
12.0, 5.3 Hz, 1H), 3.46 (ddd, J = 13.8, 12.0, 5.0 Hz, 1H), 2.95 (ddd, J = 14.5, 12.2, 5.3
Hz, 1H), 2.75 (ddd, /= 14.5, 11.9, 4.9 Hz, 1H), 2.51 — 2.40 (m, 1H), 2.43 (s, 3H), 2.31 (s,

3H), 2.37 — 2.25 (m, 1H), 2.15 — 1.98 (m, 2H), 1.76 — 1.64 (m, 2H), 1.62 — 1.46 (m, 4H).
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C NMR (126 MHz, CDCls, 55 °C) & 144.4, 143.6, 140.8, 139.3, 136.8, 136.5, 135.6,
134.5, 133.7, 129.5, 129.4, 129.2, 128.3, 128.0, 127.9, 126.8, 125.0, 123.5, 52.9, 30.6,
28.7,27.0, 26.8, 26.3, 21.5.

FTIR (Neat film NaCl): 2930, 2925, 2856, 1492, 1356, 1175, 1093, 802, 573.

HR-MS (ESI-MS) m/z: [M+NH,]+ Calc’d for C33HssN,05S; 639.2021; Found 639.2044.

OTs
OO
cyclohexylidene(phenyl)methyl 4-methylbenzenesulfonate (4.86).
Synthesized according to general procedure 4.8.2.1.4A starting from 10.6 mmol of
cyclohexylphenylketone. Crude product was purified via flash column chromatography
using 1:5:94 triethylamine:ethyl acetate:hexanes to give vinyl tosylate 4.86 as a white
solid (1.01 g, 28% yield).
'H NMR (500 MHz, CDCl3) § 7.43 (d, J = 8.3 Hz, 2H), 7.13 (dt, J = 4.5, 0.9 Hz, 5H),
7.09 — 7.04 (m, 2H), 2.40 (dd, J = 6.9, 5.0 Hz, 2H), 2.34 (s, 3H), 2.17 (dd, J = 6.8, 5.0
Hz, 2H), 1.65 — 1.46 (m, 6H).
C NMR (126 MHz, CDCl;) & 144.0, 138.6, 134.4, 133.7, 133.5, 129.6, 129.1, 127.9,
127.8,127.7,29.9, 28.8, 27.7, 27.1, 26.2, 21.5.
FTIR (Neat film NaCl): 3057, 2929, 2854, 1599, 1446, 1368, 1187, 1176, 1002, 786,
700, 555.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C20H2,05S 342.1290; Found 342.1294.
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OTs

o
F
1-(4-fluorophenyl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate (4.87).
Synthesized according to general procedure 4.8.2.1.4A starting from 18.1 mmol of 1-(4-
fluorophenyl)-2-methylpropan-1-one. Crude product was purified via flash column
chromatography using 7% ether/hexanes to give vinyl tosylate 4.87 as a white solid (3.83
g, 66% yield).
'H NMR (400 MHz, CDCl3) § 7.46 (d, J = 8.3 Hz, 2H), 7.17 — 7.06 (m, 4H), 6.83 (t, J =
8.7 Hz, 2H), 2.36 (s, 3H), 1.88 (s, 3H), 1.73 (s, 3H).
BC NMR (126 MHz, CDCl;) & 162.2 (d, 'Je» = 248.1 Hz), 144.4, 140.1, 134.3, 131.3 (d,
*Jer=8.3 Hz), 130.0 (d, *Jr=3.2 Hz), 129.2, 127.8, 126.7, 114.7 (d, *Jcr = 21.6 Hz),
21.5,19.9, 19.0.
F NMR (376 MHz, CDCl;) & -112.9.
FTIR (Neat film NaCl): 3069, 2994, 2920, 2861, 1601, 1508, 1366, 1189, 1177, 1082,
995, 844, 784, 669.

HR-MS (CI-MS) m/z: [M]+ Calc’d for Ci7H;7FOsS 320.0883; Found 320.0883.

I OTs
@AO
cyclohexylidene(2-iodophenyl)methyl 4-methylbenzenesulfonate (4.88).

Synthesized according to general procedure 4.8.2.1.4A starting from 7.96 mmol of

cyclohexyl(2-iodophenyl)methanone. Crude product was purified via flash column
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chromatography using 15% ether/hexanes and then recrystallized from diethyl ether to
give vinyl tosylate 4.88 as a white solid (3.05 g, 82% yield).

'H NMR (500 MHz, CDCl3) § 7.62 (dd, J = 7.9, 1.2 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H),
7.22 (dtd, J = 15.9, 8.7, 8.0, 6.4 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 6.87 (td, /= 7.6, 1.9
Hz, 1H), 2.53 —2.43 (m, 1H), 2.38 (dd, J= 7.8, 5.2 Hz, 1H), 2.32 (s, 3H), 1.92 (t, J= 5.7
Hz, 2H), 1.65 (q, J = 6.0 Hz, 2H), 1.59 — 1.46 (m, 4H).

C NMR (126 MHz, , CDCls) & 143.9, 139.1, 138.9, 138.5, 135.1, 134.4, 132.8, 129.6,
129.0, 127.6, 127.3, 99.9, 30.1, 28.3, 27.4, 26.9, 26.2, 21.5.

FTIR (Neat film NaCl): 3064, 2927, 2853, 1598, 1460, 1448, 1431, 1364, 1307, 1257,
1232, 1209, 1188, 1175, 1117, 1095, 1051, 1018, 1002, 979, 827.

HR-MS (EI-MS) m/z: [M+Na]+ Calc’d for: 491.0154 Observed: 491.0143

Pd(OAc),
(o] P(tBu);
2-bromoanisole
NaOtBu

(2)-2-cyclohexyl-2-(2-methoxyphenyl)-1-phenylvinyl-4-methylbenzenesulfonate
(4.45).
Inside a glovebox, Pd(OAc), (30.0 mg, 0.134 mmol, 0.05 equiv), NaOtBu (385 mg, 4.01

mmol, 1.5 equiv) and tri-tert-butylphosphine (27.0 mg, 0.134 mmol, 0.05 equiv) were
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weighed into a dry schlenk flask. This was removed from the glovebox and the solids
were suspended in THF (3.0 mL). 2-Bromoanisole (500 mg, 2.67 mmol, 1 equiv) and 2-
cyclohexylacetophenone (595 mg, 2.94 mmol, 1.1 equiv) were sequentially added via
syringe. The reaction was heated for 16 hours at 80 °C. The reaction was quenched by
addition of 1M HCI (10 mL) and diethyl ether (10 mL). The layers were separated and
the aqueous layer extracted twice more with ether. Organics washed with brine, dried
over MgSO4, filtered and concentrated to give crude product. This was purified using
silica flash column chromatrography (7% acetone/hexanes) to give product as a viscous
yellow oil with some minor impurities (490 mg, ca. 59% yield). This was taken forward
to the tosylation step without further purification.

To a flame dried Schlenk flask was added KH (1.04 g, 7.78 mmol,
5 equiv, 30% w/w in mineral oil) followed by THF (3.5 mL). To this was added a
solution of ketone (480 mg, 1.56 mmol, 1.0 equiv) in THF (2 mL). This was heated to 75
°C for 16 hours. At this point, the reaction mixture was cooled to rt and Ts,O (762 mg,
2.33 mmol, 1.5 equiv) was added. The reaction was stirred at rt for an additional 5 hours
before being quenched with water. The product was extracted from the aqueous phase
with ether (3 x 25 mL). Combined organics washed with brine, dried over MgSO4,
filtered and concentrated to give crude product. Product was purified by silica flash
column chromatography (10-15% ether/hexanes) to give pure tosylate 4.45 as white solid
(160 mg, 22%). The Major isomer was determined by NOE experiments where an
interaction between the cyclohexyl methine C—H and the protons on the phenyl ring can

be observed.
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'H NMR (500 MHz, CDCls) & 7.46 — 7.38 (m, 2H), 7.31 — 7.28 (m, 4H), 7.08 (d, J = 8.2
Hz, 2H), 7.00 (dd, J = 7.4, 1.8 Hz, 1H), 6.97 (d, J = 8.1 Hz, 2H), 6.94 — 6.88 (m, 1H),
6.85 (d, J = 8.2 Hz, 1H), 3.75 (s, 3H), 2.55 — 2.41 (m, 1H), 2.33 (s, 3H), 1.80 (d, J= 12.9
Hz, 1H), 1.69 (d, J = 13.0 Hz, 2H), 1.49 (d, J = 16.2 Hz, 2H), 1.34 (dd, J = 12.5, 3.4 Hz,
1H), 1.22 — 1.13 (m, 1H), 1.09 — 1.01 (m, 1H), 0.95 — 0.79 (m, 2H).

BC NMR (126 MHz, CDCly) § 157.2, 143.5, 142.2, 135.2, 134.7, 134.1, 130.8, 129.7,
128.9, 128.5, 128.3, 127.9, 127.5, 125.2, 119.6, 110.8, 55.6, 41.3, 32.1, 30.2, 26.2, 26.0,
25.7,21.5.

FTIR (Neat film NaCl): 3062, 3029, 2929, 2853, 1598, 1493, 1371, 1189, 1177, 1003,
980, 824, 778, 698.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for CogH3004SNa 485.1762; Found 485.1765.

4.8.2.2 Intramolecular Friedel-Crafts reactions

R [LiT*[B(CgF5)s]~ (10 mol%)

R
| LiH (5 equiv) \ O
OTs 1,2-DCB, A o O

x%%n

Xn

Scheme 4.9 Representative Scheme for Friedel-Crafts reactions portrayed in Figure 4.1
In this section, procedures and characterization for the compounds in Figure 4.1 are
described.

4.8.2.2.1 General Procedure for Intramolecular Friedel-Crafts Reactions

In the glovebox, lithium tetrakis(pentafluorophenyl)borate (0.1 equiv), lithium hydride
(5.0 equiv), and vinyl tosylate (1.0 equiv) were dissolved into 1,2-dichlorobenzene to
generate a 0.0143 M solution for the vinyl tosylate. The reaction was heated under 140
°C overnight. The reaction solution was directly purified via flash column

chromatography using hexanes to get rid of 1,2-dichlorobenzene and then ethyl acetate to
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flush the remaining products off the column. Then the crude product was purified via

flash column chromatography again to get the pure product.

8-chloro-12-cyclohexylidene-5-tosyl-5,6,7,12-tetrahydrodibenzo|[b,e]azocine (4.2).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.231 mmol of the
corresponding vinyl tosylate 4.1. Crude product was purified via flash column
chromatography using 10% ethyl ether in hexanes to give the product 4.2 as a white
powder (0.080 g, 73% yield).

'H NMR (400 MHz, CDCl3) & 7.85 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.25 (m,
2H), 7.18 (m, 1H), 7.08 (m, 3H), 6.90 (d, J = 8.0 Hz, 1H), 4.31 (dd, /= 15.3, 6.9 Hz,
1H), 3.56 (dd, J = 14.9, 6.9 Hz, 1H), 3.36 (dd, /= 15.1, 9.4 Hz, 1H), 2.80 (dd, /= 15.3,
9.4 Hz, 1H), 2.46 (s, 3H), 2.21 (m, 2H), 2.06 (m, 2H), 1.87 (m, 1H), 1.57 (m, SH).

BC NMR (101 MHz, CDCls) 8 146.1, 145.4, 143.2, 140.5, 139.4, 139.2, 136.7, 133.9,
130.1, 130.0, 129.8, 128.7, 128.1, 127.8, 127.7, 127.6, 127.4, 127.3, 50.3, 33.7, 31.8,
31.5,28.1,27.8, 26.5, 21.6.

FTIR (Neat film NaCl): 3062, 2925, 2852, 1560, 1482, 1446, 1349, 1158, 1092, 569.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,gH23CINO,SNa 500.1427; Found
500.1436.
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12-(propan-2-ylidene)-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine (4.5).
Synthesized according to general procedure 4.8.2.2.1 at 140 °C for 36 hours starting from
0.050 mmol of the corresponding vinyl tosylate 4.82. Crude product was purified via
flash column chromatography using a gradient of 1-15% diethyl ether in hexanes to give
arene 4.5 as white solid (11.3 mg, 56% yield).
Performing the reaction on a 1 mmol scale of 4.82 in a Schlenk heating at 140 °C outside
the glovebox gave arene 4.5 as a white solid (265 mg, 66% yield)
*NMR had poor resolution at room temperature, so NMR spectra are reported below at
75 °C.
'H NMR (500 MHz, DMSO-ds, 75 °C) § 7.72 (d, J = 7.9 Hz, 2H), 7.41 (d, J= 8.0 Hz,
2H), 7.30 (dd, J=7.5, 1.7 Hz, 1H), 7.27 — 7.22 (m, 1H), 7.18 — 7.05 (m, 5H), 7.00 (d, J =
8.0 Hz, 1H), 4.26 — 4.06 (br s, 2H), 2.95 (br s, 5H), 2.40 (s, 3H), 1.69 (s, 3H), 1.56 (s,
3H).
C NMR (126 MHz, DMSO-ds, 75 °C) & 143.7, 143.5, 139.7, 138.9, 138.7, 134.5, 131.6,
130.5, 130.3, 128.9, 128.4, 127.8, 127.7, 127.3, 127.2, 51.5 (br s), 37.5 (br s), 21.9, 21 .4,
21.1.
FTIR (Neat film NaCl): 3065, 2955, 2923, 2854, 1738, 1599, 1484, 1447, 1348, 1325,
1159, 1092, 1020, 813, 717, 568, 549.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C55sHsNO,S 403.1606; Found 403.1620.
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13-(propan-2-ylidene)-5-tosyl-6,7,8,13-tetrahydro-SH-dibenzo[b,e]azonine (4.6).
Synthesized according to general procedure 4.8.2.2.1 at 140 °C for 36 hours starting from
0.050 mmol of the corresponding vinyl tosylate 4.83. Crude product was purified via
flash column chromatography using a gradient of 1-15% diethyl ether in hexanes to give
arene 4.6 as white solid (17.1 mg, 82% yield).

'H NMR (500 MHz, CDCl3) & 7.35 — 7.29 (m, 1H), 7.20 — 7.05 (m, 5H), 6.98 (dd, J =
14.7, 7.6 Hz, 2H), 4.11 — 3.93 (m, 1H), 3.52 — 3.25 (m, 2H), 2.74 — 2.55 (m, 1H), 2.14
(dt,J=10.2, 5.6 Hz, 1H), 1.73 (s, 3H), 1.70 — 1.66 (m, 1H), 1.60 (s, 3H).

C NMR (126 MHz, CDCl;) & 158.0, 142.4, 139.6, 137.5, 132.8, 131.7, 131.0, 129.1,
128.8, 127.9, 126.8, 125.9, 123.9, 122.3, 73.7, 31.6, 29.6, 21.4, 21.1.

FTIR (Neat film NaCl): 3062, 2973, 2920, 2859, 1597, 1483, 1445, 1350, 1161, 1083,
814, 754, 697.

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for CasHosNO,S 418.1841; Found 418.1840.

14-cyclohexylidene-5-tosyl-5,6,7,8,9,14-hexahydrodibenzo|b,e]azecine (4.7).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.100 mmol of the
corresponding vinyl tosylate 4.80. Crude product was obtained in 25% NMR yield after

first column to get rid of 1,2-DCB. This was then was purified via flash column
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chromatography using 10% ethyl ether in hexanes to give the product 4.7 in 25% NMR

yield.

12-(propan-2-ylidene)-7,12-dihydro-6H-dibenzo[b,e]thiocine (4.8).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.100 mmol of the
corresponding vinyl tosylate 4.77. Crude product was purified via flash column

chromatography using 5% ethyl ether in hexanes to give the product 4.8 as an oil in 46%

NMR vyield.

0%

12-(propan-2-ylidene)-5,6,7,12-tetrahydrodibenzo|a,d][8]annulene (4.9).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.250 mmol of the
corresponding vinyl tosylate 4.76. Crude product was purified via flash column
chromatography using 5% ethyl ether in hexanes to give the product 4.9 as a white
powder (50 mg, 81% yield).

'H NMR (400 MHz, CDCl3) § 7.20 — 7.01 (m, 8H), 2.87 (app d, J = 55.2 Hz, 4H), 2.26
(brs, 1H), 1.65 (s, 6H), 1.55 — 1.39 (m, 1H).

BC NMR (101 MHz, CDCl;) & 144.3, 140.7, 136.9, 129.7, 128.8, 127.9, 126.5, 126.4,

37.9 (br), 29.1 (br), 20.7.
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HR-MS (CI-MS) m/z: [M]+ Calc’d for C1sHag 248.1565; Found 248.1562.

. OMe
-

TsN
12-cyclohexylidene-10-methoxy-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocine
(4.10).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.050 mmol of the
corresponding vinyl tosylate 4.75. Crude product was purified via flash column
chromatography using 10% ethyl ether in hexanes to give the product 4.10 as a white
powder (0.018 g, 76% yield).
*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in
DMSO-db6.
'H NMR (500 MHz, DMSO-d6, 75 °C) & 7.73 (d, J= 7.6 Hz, 2H), 7.41 (d, J= 7.8 Hz,
2H), 7.32 (d, J=7.6 Hz, 1H), 7.23 (dd, J=7.5, 7.5 Hz, 1H), 7.12 (ddd, /= 7.6, 7.6, 1.6
Hz, 1H), 6.98 (d, /= 8.2 Hz, 1H), 6.93 (d, /= 8.0 Hz, 1H), 6.68 (s, 1H), 6.65 (d, J= 8.2
Hz, 1H), 4.41 (brs, 1H), 3.68 (s, 3H), 3.21 (brs, 1H), 2.75 (br s, 1H), 2.48 (m, 1H), 2.41
(s, 3H), 2.16-2.02 (m, 2H), 2.02-1.90 (m, 2H), 1.74 (br s, 1H), 1.58-1.44 (m, SH).
C NMR (126 MHz, DMSO-d6, 75°C) § 158.6, 143.6, 139.9, 139.0, 138.9, 131.4, 131.2,
131.1, 130.4, 130.2, 128.4, 127.8, 127.6, 114.8, 112.3, 55.6, 52.0, 36.9, 31.7, 31.3, 27.9,
27.6,26.5,21.4.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C2oH3NO;SNa 496.1922; Found 496.1930.
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10-bromo-12-cyclopentylidene-5-tosyl-5,6,7,12-tetrahydrodibenzo(b,e]azocine (4.11).
Synthesized according to general procedure 4.8.2.2.1 starting from 0.050 mmol of the
corresponding vinyl tosylate 4.79. Crude product was purified via flash column
chromatography using 10% ethyl ether in hexanes to give the product 4.11 as a white
powder (0.020 g, 79% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in
DMSO-db6.

'H NMR (500 MHz, DMSO-d6, 75 °C) & 7.73 — 7.59 (m, 2H), 7.38 (dd, J= 7.6, 1.7 Hz,
3H), 7.33 (s, 1H), 7.28 (dd, J= 8.1, 2.2 Hz, 1H), 7.25 (t, /= 7.5 Hz, 1H), 7.15 (td, J =
7.7, 1.6 Hz, 1H), 7.06 (d, J = 8.1 Hz, 2H), 3.82 (br s, 2H), 2.99 (br s, 2H), 2.39 (s, 3H),
2.23 (brs, 2H), 2.00 (br s, 2H), 1.64 (app s, 4H). **CH2 next to nitrogen is very broad
and hard to see/integrate

C NMR (126 MHz, DMSO-d6, 75 °C) & 142.9, 138.9, 132.1, 130.5, 129.68, 129.4,
129.2,128.9, 127.2, 126.8, 119.3, 50.5 (br), 35.9 (br), 30.8, 30.6, 29.6, 25.6, 25.5, 20.6.
HR-MS (ESI-MS) m/z: [M+Na]" Calc’d for C»7H,sBrNO,SNa 530.0765; Found

530.0781.
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12-cyclohexylidene-N,N-dimethyl-5-tosyl-5,6,7,12-tetrahydrodibenzo[b,e]azocin-10-
amine (4.12).

Synthesized according to general procedure 4.8.2.2.1 starting from 0.050 mmol of the
corresponding vinyl tosylate 4.78. Crude product was purified via flash column
chromatography using 10% ethyl ether in hexanes to give the product 4.12 as a white
powder (0.015 g, 62% yield).

*NMR had poor resolution at room temperature, so NMRs are reported below at 75 °C in
DMSO-db6.

'H NMR (500 MHz, DMSO-ds, 75 °C) § 7.75 (d, J = 7.8 Hz, 2H), 7.43 (d, J= 7.8 Hz,
2H), 7.33 (d, J=7.6 Hz, 1H), 7.24 (t,J = 7.6 Hz, 1H), 7.13 (t, /= 7.9 Hz, 1H), 6.95 (d, J
= 8.0 Hz, 1H), 6.88 (dd, J= 8.3, 2.5 Hz, 1H), 6.56 — 6.35 (m, 2H), 4.19 — 4.09 (m, 1H),
3.20 (d,J=12.0 Hz, 1H), 2.83 (d, J=2.7 Hz, 7TH), 2.74 — 2.64 (m, 1H), 2.42 (d, J=2.8
Hz, 3H), 2.18 — 1.92 (m, 4H), 1.59 — 1.45 (m, 6H).

C NMR (126 MHz, DMSO-ds, 75 °C) & 149.2, 142.7, 139.0, 138.3, 137.5, 131.13,
130.1, 129.5, 129.4, 127.5, 126.7, 125.9, 112.2, 110.5, 51.5 (br), 36.0 (br), 30.9, 30.5,

27.2,26.8,25.7,20.5.

TsN
11-cyclohexylidene-6-tosyl-4,5,6,11-tetrahydrobenzo[b]thieno[3,2-e]azocine (4.13).
Synthesized according to general procedure 4.8.2.2.1 at 140 °C for 20 hours starting from

0.050 mmol of the corresponding vinyl tosylate 4.85. Crude product was purified via
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flash column chromatography using a gradient of 0-30% diethyl ether in hexanes to give
arene 4.13 as white solid (16.5 mg, 73% yield).

'H NMR (500 MHz, CDCl) & 7.79 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.26 —
7.20 (m, 2H), 7.14 — 7.04 (m, 1H), 6.92 (d, /= 5.1 Hz, 1H), 6.88 — 6.82 (m, 1H), 6.77 (d,
J=5.1Hz, 1H), 4.15 (ddd, J = 14.5, 5.5, 2.1 Hz, 1H), 3.48 (ddd, J = 15.8, 10.5, 2.1 Hz,
1H), 2.98 (dd, J = 14.4, 10.3 Hz, 1H), 2.81 (dd, J=15.7, 5.3 Hz, 1H), 2.46 (s, 3H), 2.27 —
2.14 (m, 3H), 2.12 (dd, J = 8.4, 4.4 Hz, 1H), 1.87 — 1.79 (m, 1H), 1.73 — 1.65 (m, 1H),
1.63 — 1.48 (m, 4H).

C NMR (126 MHz, Chloroform-d) & 145.9, 143.2, 142.0, 141.0, 139.3, 138.4, 135.0,
130.3, 130.2, 129.6, 128.6, 128.1, 127.6, 127.4, 125.5, 120.8, 51.4, 32.0, 31.6, 31.1, 28.4,
27.9, 26.6, 21.5.

FTIR (Neat film NaCl): 3062, 2921, 2851, 1598, 1483, 1343, 1157, 1094, 864, 737, 726,

661.

13-(propan-2-ylidene)-7-tosyl-5,6,7,9,10,11,12,13-
octahydrobenzo|e]benzo[4,5]thieno[2,3-b]azocine (4.14).

Synthesized according to general procedure 4.8.2.2.1 at 120 °C for 20 hours starting from
0.050 mmol of the corresponding vinyl tosylate 4.84. Crude product was purified via
flash column chromatography using a gradient of 1-20% diethyl ether in hexanes to give

arene 4.14 as white solid (19.6 mg, 85% yield).
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'H NMR (500 MHz, CDCl3) & 7.84 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.21 —
7.04 (m, 4H), 4.26 (dd, J=15.1, 7.1 Hz, 1H), 3.41 (dd, J = 15.0, 9.7 Hz, 1H), 3.00 — 2.71
(m, 2H), 2.71 — 2.47 (m, 4H), 2.44 (s, 3H), 1.86 — 1.79 (m, 2H), 1.75 (s, 3H), 1.75 — 1.67
(m, 2H), 1.60 (s, 3H).

3C NMR (126 MHz, CDCls) & 143.6, 143.4, 143.1, 139.1, 137.8, 134.8, 133.7, 132.9,
132.7, 130.4, 129.6, 128.9, 128.39, 127.6, 126.8, 126.7, 51.7, 38.9, 25.1, 25.0, 23.3, 22.7,
21.6,21.3, 21.0.

FTIR (Neat film NaCl): 3059, 2986, 2929, 2857, 2843, 1484, 1441, 1341, 1159, 1091,
731, 659, 545.

HR-MS (ESI-MS) m/z: [M+Na]+ Calc’d for C,7H29NO,S,Na 486.1537; Found 486.1538.

13-(propan-2-ylidene)-6,7,8,13-tetrahydrodibenzo[b,e]oxonine (4.15).

Synthesized according to general procedure 4.8.2.2.1 at 140 °C for 48 hours starting from
0.050 mmol of the corresponding vinyl tosylate 4.81. Crude product was purified via
flash column chromatography using a gradient of 0-4% diethyl ether in hexanes to give
arene 4.15 as colorless oil (8.6 mg, 65% yield).

'H NMR (500 MHz, CDCl3) § 7.32 (d, J = 5.7 Hz, 1H), 7.20 — 7.05 (m, 5H), 6.98 (dd, J
=14.7, 7.6 Hz, 2H), 4.05 — 3.98 (m, 1H), 3.45 — 3.31 (m, 2H), 2.66 (d, J = 12.9 Hz, 1H),

2.14 (tt, J=9.8, 4.1 Hz, 1H), 1.73 (s, 3H), 1.72 — 1.65 (m, 1H), 1.60 (s, 3H).
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C NMR (126 MHz, CDCl3) & 157.9, 142.3, 139.6, 137.5, 132.7, 131.7, 131.0, 129.1,
128.8,127.9, 126.7, 125.9, 123.9, 122.3, 73.6, 31.6, 29.5, 21.4, 21.0.

FTIR (Neat film NaCl): 3062, 3017, 2923, 2857, 1598, 1570, 1483, 1445, 1380, 1238,
1061, 754, 741, 630.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C19H,00 264.1514; Found 264.1512.

4.8.2.3 Intermolecular Friedel-Crafts reactions

In this section, the procedures and characterization data for reactions in Figure 4.2 are
highlighted.

4.8.2.3.1 General Procedure

Inside a well-kept glovebox, to an oven dried dram vial with a magnetic stir bar was
added LiF; (16.5 mg, 0.02 mmol, 0.1 equiv). To this was added LIHMDS (50.2 mg, 0.3
mmol, 1.5 equiv). To this was added trifluorotoluene (2 mL), and arene (5 equiv) and
allowed to prestir for 5 minutes. Substrate (0.2 mmol, 1.0 equiv) was added and the
reaction was allowed to stir at specified temperature. Upon completion of reaction, the
reaction mixture was removed from the glovebox and diluted with ether. This was pushed
through a plug of silica gel in a pipette. This was concentrated to give the crude material.

The crude material was purified by silica flash chromatography to give the pure product.

O
F
2-(1-(4-fluorophenyl)-2-methylprop-1-en-1-yl)-1,4-dimethylbenzene (4.17)

Synthesized according to general procedure 4.8.2.3.1 from 0.20 mmol of vinyl tosylate

4.87 and p-xylene. Heated for 3 hours at 70 °C. Crude product was purified via silica
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column chromatography (0.5% ether/hexanes) to give product 4.17 as a colorless oil
(44.0 mg, 87% yield).

'H NMR (400 MHz, CDCl3) & 7.19 — 7.12 (m, 2H), 7.07 (d, J = 7.6 Hz, 1H), 7.00 — 6.90
(m, 4H), 2.32 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H), 1.64 (s, 3H).

BC NMR (126 MHz, CDCLs) 8 161.0 (d, 'Jer=244.7 Hz), 142.6, 138.1 (d, *Jcr=3.4
Hz), 134.9 (Jcr, J=17.4 Hz), 132.8, 131.3, 130.9 (d, *Jcr= 7.7 Hz), 130.4, 129.9,
127.3,114.5 (d,J=21.0 Hz), 22.4, 21.6, 20.9, 19.2.

F NMR (376 MHz, CDCl;) 8 -116.9.

FTIR (Neat film NaCl): 3040, 2985, 2920, 2858, 1600, 1504, 1447, 1221, 846, 809, 517

HR-MS (CI-MS) m/z: [M]+ Calc’d for CigHoF 254.1471; Found 254.1477.

2-(cyclohexylidene(phenyl)methyl)-1,4-dimethylbenzene (4.18)

Synthesized according to general procedure 4.8.2.3.1 from 0.20 mmol of vinyl tosylate
4.86 and p-xylene. Heated for 3 hours at 70 °C. Crude product was purified via silica
column chromatography (hexanes) to give product 4.18 as a colorless oil (41.7 mg, 75%
yield).

'H NMR (400 MHz, CDCl3) & 7.26 (td, J= 7.1, 1.6 Hz, 2H), 7.19 — 7.13 (m, 3H), 7.04
(d, J=8.2 Hz, 1H), 6.96 (dd, J=5.7, 2.1 Hz, 2H), 2.40 — 2.33 (m, 2H), 2.31 (s, 3H), 2.14

(s, 3H), 2.06 — 2.00 (m, 2H), 1.74 — 1.48 (m, 6H).
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C NMR (126 MHz, CDCl;) § 142.5, 141.8, 138.9, 134.7, 133.2, 132.9, 130.5, 129.7,
127.7,127.2, 125.8, 32.6, 31.5, 28.7, 28.3, 26.8, 21.0, 19.4.
FTIR (Neat film NaCl): 3077, 3054, 2920, 1598, 1493, 1442, 1178, 804, 730, 691.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C;1Ha4 276.1878; Found 276.1875.

P
®
(2)-(1-(2,5-dimethylphenyl)but-1-ene-1,2-diyl)dibenzene (4.19)

Synthesized according to general procedure 4.8.2.3.1 from 0.20 mmol of corresponding
vinyl tosylate®” and p-xylene. Heated for 3 hours at 70 °C. Crude product was purified via
silica column chromatography (0.5% ether/hexanes) to give product 4.19 as a yellow oil
(51.1 mg, 82% yield) as a 3:1 Z:E ratio of olefin isomers. These isomers could be
separated by semi-preparative reverse phase HPLC (90:10 MeCN:water) to give
analytically pure samples of each isomer.

Characterization data of major isomer 4.19Z.:

'H NMR (400 MHz, CDCl3) & 7.35 — 7.29 (m, 2H), 7.29 — 7.20 (m, 3H), 7.18 — 7.00 (m,
5H), 6.89 — 6.65 (m, 3H), 2.59 (s, 2H), 2.13 (d, /= 0.8 Hz, 3H), 2.01 (s, 3H), 1.01 (t,J =
7.4 Hz, 3H).

C NMR (101 MHz, CDCl3) § 142.6, 142.5, 142.4, 142.2, 138.2, 134.1, 132.7, 131.9,
129.6, 129.1, 128.9, 127.9, 127.4, 127.0, 126.3, 126.0, 27.9, 20.8, 19.8, 13.9.

FTIR (Neat film NaCl): 3077, 3054, 3018, 2960, 2922, 1598, 1493, 1441, 698.

HR-MS (CI-MS) m/z: [M]+ Calc’d for CasHas 312.1878; Found 312.1882.
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Characterization data of minor isomer 4.19E:

'H NMR (400 MHz, CDCl3) § 7.22 — 7.07 (m, 7H), 7.04 — 6.94 (m, 4H), 6.92 — 6.85 (m,
2H), 2.37 (s, 3H), 2.34 — 2.24 (m, 2H), 2.15 (s, 3H), 0.84 (t, J = 7.5 Hz, 3H).

C NMR (126 MHz, CDCls) & 142.3, 141.9, 141.5, 137.8, 134.8, 132.8, 130.3, 130.4,
130.1, 129.7, 127.8, 127.6, 127.2, 126.2, 125.3,29.1, 21.1, 19.4, 12.8.

FTIR (Neat film NaCl): 3078, 3054, 3016, 2964, 2923, 2871, 1597, 1492, 1442, 807,

759, 696.

2-(cyclohexylidene(phenyl)methyl)-4-isopropyl-1-methoxybenzene (4.20)

Synthesized according to general procedure 4.8.2.3.1 from 0.20 mmol of vinyl tosylate
4.86 and 4-isopropylanisole. Heated for 15 hours at 70 °C. Purified by silica flash column
chromatography (0.1:5.0:94.9 triethylamine:benzene:hexanes) to give pure product 4.20
as colorless oil (51.3 mg, 80% yield).

'H NMR (500 MHz, CD,Cl,) & 7.30 — 7.24 (m, 2H), 7.22 — 7.20 (m, 2H), 7.19 — 7.15 (m,
1H), 7.09 (dd, J = 8.5, 2.4 Hz, 1H), 7.00 (d, /= 2.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H),
3.69 (s, 3H), 2.86 (hept, J = 6.9 Hz, 1H), 2.27 (tdd, J = 13.3, 9.4, 4.8 Hz, 2H), 2.07 (dtdd,
J=16.3,12.7,7.5,4.3 Hz, 2H), 1.74 — 1.55 (m, 6H), 1.24 (d, /= 6.9 Hz, 6H).

BC NMR (126 MHz, CD,Cl,) 8 155.0, 142.9, 140.7, 139.4, 132.1, 130.7, 129.4, 129.1,

127.6,125.7,125.2, 111.2, 55.6, 33.2, 32.6, 31.6, 28.6, 28.3, 26.9, 24., 23.9.
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FTIR (Neat film NaCl): 3078, 3053, 2957, 2923, 2851, 2883, 1600, 1493, 1242, 1031,
699.

HR-MS (CI-MS) m/z: [M]+ Calc’d for Cy3HasO 320.2140; Found 320.2147.

4.8.2.4 Intermolecular allylation reactions

In this section, the procedures and characterization data for reactions in Figure 4.4 are

highlighted.

4.8.2.4.1 Synthesis of allyl silanes

Allyltrimethylsilane and Methallyltrimethylsilane were purchased from Sigma Aldrich.

AN sile,

(E£)-but-2-en-1-yltrimethylsilane (4.89)

(E)-Crotyltrimethylsilane was synthesized according to literature procedures.

Spectral data matched those reported in the literature.*®

4.8.2.4.2 General procedure for allylation

Inside a well-kept glovebox, to an oven dried dram vial with a magnetic stir bar was
added LiFy (16.5 mg, 0.02 mmol, 0.1 equiv). To this was added LIHMDS (50.2 mg, 0.3
mmol, 1.5 equiv). To this was added trifluorotoluene (2 mL), and allylsilane (1.5-3
equiv). Substrate (0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at
70 °C for 12 hours. Upon completion of reaction, the reaction mixture was removed from

the glovebox and diluted with ether. This was pushed through a plug of silica gel in a
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pipette. This was concentrated to give the crude material. The crude material was purified

by silica flash chromatography to give the pure product.

1-fluoro-4-(2-methylhexa-2,5-dien-3-yl)benzene (4.27)

Synthesized according to general procedure 4.8.2.4.2 from vinyl tosylate 4.86 and
allyltrimethylsilane. Purified by silica flash column chromatography (hexanes) to give
pure product 4.27 as colorless oil (32.0 mg, 84% yield).

'H NMR (300 MHz, CDCl3) & 7.10 — 7.02 (m, 2H), 7.03 — 6.92 (m, 2H), 5.72 (ddt, J =
16.6,10.2, 6.3 Hz, 1H), 5.02 — 4.94 (m, 1H), 4.93 (t, /= 1.6 Hz, 1H), 3.12 - 3.03 (m,
2H), 1.81 (s, 3H), 1.58 (s, 2H).

BC NMR (126 MHz, CDCls) & 161.32 (d, 'Jep = 244.0 Hz), 139.89 (d, *Jcr= 3.3 Hz),
135.91, 131.45, 130.50 (d, *Jc = 7.7 Hz), 129.78, 114.99, 114.79 (d, *Jc +=21.1 Hz),
39.27,22.32,20.39.

F NMR (282 MHz, CDCl3) & -117.26.

FTIR (Neat film NaCl): 3079, 2987, 2910, 2860, 1889, 1601, 1507, 1221, 1157, 912,
836, 550.

HR-MS (CI-MS) m/z: [M]+ Calc’d for Cy3H;sF 190.1158; Found 190.1161.
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(1-cyclohexylidenebut-3-en-1-yl)benzene (4.28)

Synthesized according to general procedure 4.8.2.4.2 from 0.20 mmol of vinyl tosylate
4.86 and allyltrimethylsilane. Purified by silica flash column chromatography (hexanes)
to give pure product 4.28 as colorless oil (38.5 mg, 90% yield). Spectral data matched

thos reported in the literature.”

1-(1-cyclohexylidenebut-3-en-1-yl)-2-iodobenzene (4.29)

Synthesized according to general procedure 4.8.2.4.2 from 0.20 mmol of vinyl tosylate
4.88 and allyltrimethylsilane. Purified by silica flash column chromatography (hexanes)

to give pure product 4.29 as colorless oil (66.0 mg, 97% yield).

'"H NMR (500 MHz, CDCL,) & 7.84 (dd, J=7.9, 1.2 Hz, 1H), 7.30 — 7.22 (m, 1H), 7.00
(dd,J =7.6,1.8 Hz, 1H), 6.90 (td, J = 7.6, 1.7 Hz, 1H), 5.80 — 5.71 (m, 1H), 4.98 — 4.90
(m, 2H), 3.33 (ddd, J = 15.1, 6.1, 1.7 Hz, 1H), 2.75 (dd, J = 15.2, 7.1 Hz, 1H), 2.39 —
2.27 (m, 2H), 1.80 (dd, J = 7.3, 4.8 Hz, 2H), 1.76 — 1.64 (m, 1H), 1.64 — 1.51 (m, 4H),
145133 (m, 1H).

3C NMR (126 MHz, CDCL,) & 148.0, 138.8, 138.2, 135.9, 131.7,130.2, 127.7, 127 6,
115.0, 100.6,37.4,32.2,30.0,27.8,27.7,26.8.

FTIR (Neat film NaCl): 3074, 3058, 2922, 2851, 2663, 1914, 1831, 1459, 1445, 1427,

1012, 991, 909, 737.
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HR-MS (CI-MS) m/z: [M]+ Calc’d for C1gHol 338.0531; Found 338.0534.

(1-cyclohexylidene-3-methylbut-3-en-1-yl)benzene (4.30)

Synthesized according to general procedure 4.8.2.4.2 from vinyl tosylate 4.86 and
methyallyltrimethylsilane. Purified by silica flash column chromatography (hexanes) to
give pure product 4.30 as colorless oil (35.0 mg, 77% yield).

'H NMR (300 MHz, CDCl3) & 7.30 — 7.26 (m, 1H), 7.25 — 7.23 (m, 1H), 7.21 — 7.14 (m,
1H), 7.12 - 7.07 (m, 2H), 4.74 — 4.62 (m, 2H), 3.05 (s, 2H), 2.30 — 2.22 (m, 2H), 2.09 —
2.00 (m, 2H), 1.69 (d, J= 0.6 Hz, 3H), 1.64 — 1.55 (m, 4H), 1.52 — 1.42 (m, 2H).

BC NMR (126 MHz, CDCl;) & 144.2, 143.7, 138.2, 129.3, 129.0, 127.9, 125.9, 111.0,

42.4,32.3,31.1, 28.7, 28.4, 27.0, 23.0.

(1-cyclohexylidene-2-methylbut-3-en-1-yl)benzene (4.31)

Synthesized according to general procedure 4.8.2.4.2 from vinyl tosylate 4.86 and silane
4.89. Purified by silica flash column chromatography (hexanes) to give pure product 4.31

as colorless oil (27.0 mg, 60% yield).
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'H NMR (500 MHz, CDCl3) § 7.36 — 7.23 (m, 2H), 7.24 — 7.14 (m, 1H), 7.06 — 6.90 (m,
2H), 5.77 (ddd, J = 17.0, 10.2, 6.3 Hz, 1H), 4.98 —4.89 (m, 2H), 3.63 (tt, J= 6.8, 1.6 Hz,
1H), 2.35 (td, J= 5.7, 3.0 Hz, 2H), 1.83 — 1.77 (m, 2H), 1.65 — 1.59 (m, 2H), 1.58 — 1.52
(m, 2H), 1.44 — 1.34 (m, 2H), 0.95 (d, J = 7.0 Hz, 3H).

BC NMR (126 MHz, CDCls) & 143.09, 141.42, 136.42, 134.89, 130.02, 127.56, 125.88,
112.48, 38.96, 32.92, 30.31, 28.67, 28.66, 27.15, 18.96.

FTIR (Neat film NaCl): 3055, 3076, 3018, 2966, 2922, 2851, 2663, 1942, 1873, 1820,
1632, 1449, 1442, 1071, 997, 908, 1724, 701

HR-MS (CI-MS) m/z: [M]+ Calc’d for C17Hj, 226.1721; Found 226.1722.

1-(2,4-dimethylhexa-2,5-dien-3-yl)-4-fluorobenzene (4.32)

Synthesized according to a modified general procedure 4.8.2.4.2 from vinyl tosylate 4.86
and silane 4.87 using 1,2-DFB as solvent instead of trifluorotoluene. Reaction finished
after 3 hours at 70 °C. Purified by silica flash column chromatography (pentane) to give

pure product 4.30 as colorless oil (33.3 mg, 81% yield).

4.8.2.5 Trapping vinyl cations with silyl ketene acetals (SKAs)

In this section, the procedures and characterization data for reactions in Figure 4.6 are

highlighted.

4.8.2.5.1 Synthesis of silyl ketene acetals
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)\(OTMS

OMe
((1-Methoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (4.90)
Synthesized according to literature procedures. Spectral data matched those reported in

the literature.*

)\roms

OEt
((1-Ethoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (4.91)
Synthesized according to literature procedures. Spectral data matched those reported in

the literature.*!

4.8.2.5.2 General procedure

Inside a well-kept glovebox, to an oven dried dram vial with a magnetic stir bar was
added LiFy (16.5 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene (2 mL),
and SKA (3 equiv). Substrate (0.2 mmol, 1.0 equiv) was added and the reaction was
allowed to stir at 70 °C for 12 hours. Upon completion of reaction, the reaction mixture
was removed from the glovebox and diluted with ether containing a small amount of
triethylamine. This was pushed through a plug of triethylamine treated silica gel in a
pipette. This was concentrated to give the crude material. The crude material was purified
by silica flash chromatography on triethylamine treated silica gel to give the pure

product.
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OEt

Ethyl 2,2,4-trimethyl-3-phenylpent-3-enoate (4.39)

Synthesized according to general procedure 4.8.2.5.2 from corresponding vinyl tosylate
and SKA 4.91. Purified by silica flash column chromatography (0.1:3:96.9
triethylamine:diethyl ether:hexanes) to give pure product 4.39 as colorless oil (35.0 mg,
77% yield).

'H NMR (300 MHz, CDCl,) 6 7.33 — 7.27 (m, 2H), 7.25 — 7.20 (m, 1H), 7.08 — 7.01 (m,
2H), 4.19 (q,J = 7.1 Hz, 2H), 1.67 (s, 3H), 1.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.16 (s,
6H).

“C NMR (126 MHz, CDCl;) 6 179.2, 142.7,138.7,130.1, 129.5, 128.0, 126.1, 60.7,

459,27.6,239,209, 14 4.

OEt

Ethyl 3-cyclohexylidene-2,2-dimethyl-3-phenylpropanoate (4.40)

Synthesized according to general procedure 4.8.2.5.2 from vinyl tosylate 4.86 and SKA
4.91. Purified by silica flash column chromatography (0.1:3:96.9 triethylamine:diethyl
ether:hexanes) to give pure product 4.40 as colorless oil (47.0 mg, 82% yield).

'H NMR (300 MHz, CDCl,) 6 7.33 — 7.26 (m, 2H), 7.25 — 7.20 (m, 1H), 7.10 — 7.00 (m,
2H),4.17 (q,J =7.1 Hz,2H), 2.11 (m, 2H), 1.78 — 1.66 (m, 2H), 1.58 — 1.45 (m, 4H),

142-134(q,J=6.1Hz,2H),1.30 (t,/=7.1 Hz, 3H), 1.15 (s, 6H).
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“C NMR (126 MHz, CDCl;) 6 179.5, 142.3,138.2,135.8,129.5, 127.9, 126.1, 60.7,

45.6,33.8,31.3,28.4,28.1,27.6,26.8, 14 4.

OMe

Methyl 3-cyclohexylidene-2,2-dimethyl-3-phenylpropanoate (4.41)

Synthesized according to general procedure 4.8.2.5.2 from vinyl tosylate 4.86 and SKA
4.90. Purified by silica flash column chromatography (0.1:5:94.9 triethylamine:diethyl
ether:hexanes) to give pure product 4.41 as colorless oil (43.5 mg, 80% yield).

'HNMR (500 MHz, CDCl,) 6 7.33 — 7.26 (m, 2H), 7.24 — 7.16 (m, 1H), 7.13 — 6.95 (m,
2H), 3.73 (s, 3H), 2.09 —-2.07 (m, 2H), 1.74 — 1.68 (m, 2H), 1.57 — 1.44 (m, 4H), 1.40 —
1.32 (m, 2H), 1.15 (s, 6H).

“C NMR (126 MHz, CDCl;) 6 180.1, 142.1, 138.3,135.6,129.5,127.9, 126.1,52 2,
45.6,33.8,31.2,28.4,28.0,27.6,26.8.

FTIR (Neat film NaCl): 3054, 3018, 2974, 2924, 2852, 1728, 1457, 1443, 1249, 1137,
1129, 774, 761, 703,

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for Ci5Has05 273.1855; Found 273.1846.

OMe

F

Methyl 3-(4-fluorophenyl)-2,2,4-trimethylpent-3-enoate (4.42)
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Synthesized according to general procedure 4.8.2.5.2 from vinyl tosylate 4.87 and SKA
4.90. Purified by silica flash column chromatography (0.1:3:96.9 triethylamine:diethyl
ether:hexanes) to give pure product 4.42 as colorless oil (21.0 mg, 42% yield).
'HNMR (300 MHz, CDCl,) 6 7.04 — 6.96 (m, 4H), 3.73 (s, 3H), 1.65 (s, 3H), 1.36 (s,
3H), 1.15 (s, 6H).

“C NMR (126 MHz, CDCl,) 6 179.6,161.5 (d, 'J. =2442 Hz), 138.3 (d,*J. ,=3.4
Hz), 137.6,131.1,131.0 (d,*J. ,=7.6 Hz), 1149 (d,*J. = 21.0 Hz), 52.3,45.9,27.6,
23.9,20.7.

F NMR (282 MHz, CDCl,) & -116.94.

FTIR (Neat film NaCl): 2976, 2948, 2873, 1731, 1601, 1506, 1251, 1220, 1138, 844,
584,337

HR-MS (CI-MS) m/z: [M+H]+ Calc’d for CisH0FO; 251.1447; Found 251.1445.

4.8.2.6 Vinyl ether synthesis
In this section, the procedures and characterization data for reactions in Figure 4.7 and

Figure 4.8 are highlighted.

4.8.2.6.1 Intramolecular vinyl ether synthesis

\
o]
),
Ts
5-(propan-2-ylidene)-1-tosyl-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepane (4.44).

Synthesized according to general procedure 4.8.2.2.1 at 160 °C for 36 hours starting from

0.050 mmol of the corresponding vinyl tosylate 4.43. Crude product was purified via

320



flash column chromatography using a gradient of 1-30% diethyl ether in hexanes to give
arene 4.44 as white solid (15.8 mg, 92% yield).

'H NMR (400 MHz, CDCl;)  7.60 (dd, J = 7.8, 1.4 Hz, 1H), 7.53 (d, J = 8.3 Hz, 2H),
7.35@d,J="7.7,1.7 Hz, 1H), 7.26 (td,J= 7.7, 1.7 Hz, 1H), 7.17 (d, J= 8.1 Hz, 2H), 7.13
(dd, J=17.5, 1.7 Hz, 1H), 3.85 (br s, 2H), 3.78 (t, J = 4.7 Hz, 2H), 2.38 (s, 3H), 1.44 (s,
3H), 1.27 (s, 3H).

C NMR (101 MHz, CDCls) & 145.6, 142.9, 137.7, 135.8, 133.5, 131.6, 130.9, 129.2,
128.8, 127.5, 127.3, 65.0, 50.5, 21.4, 20.1, 16.7.

FTIR (Neat film NaCl): 3065, 2922, 2856, 1598, 1483, 1448, 1345, 1156, 1088, 677,
657, 546.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C1oHaNO3S 343.1242; Found 343.1234.

3-cyclohexyl-2-phenylbenzofuran (4.46)

Inside a well-kept glovebox, to an oven dried dram vial with a magnetic stir bar was
added LiFy (8.3 mg, 0.01 mmol, 0.1 equiv). To this was added trifluorotoluene (1 mL),
Vinyl tosylate 4.45 (46.3 mg, 0.1 mmol, 1.0 equiv) was added and the reaction was
heated to 70 °C for 5 hours. The reaction mixture was removed from the glovebox and
diluted with ether. This was pushed through a plug silica gel in a pipette and concentrated
to give the crude material. The crude material was purified by silica flash
chromatography (2% ether/hexanes) give the pure product 4.46 as a white solid (24.4 mg,

88% vield).
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'"H NMR (400 MHz, CDCl;) & 7.85 — 7.79 (m, 1H), 7.73 — 7.68 (m, 2H), 7.57 — 7.48 (m,
3H), 7.46 — 7.40 (m, 1H), 7.30 (ddd, /= 8.3, 7.2, 1.4 Hz, 1H), 7.26 — 7.21 (m, 1H), 3.10
(it, J=12.2, 3.5 Hz, 1H), 2.10 — 1.99 (m, 2H), 1.97 — 1.78 (m, 5H), 1.54 — 1.35 (m, 3H).
13C NMR (101 MHz, CDCl3) 5 154.47, 150.35, 131.47, 128.84, 128.56, 128.23, 127.95,
123.81, 121.88, 121.58, 121.02, 111.32, 35.95, 32.32, 26.80, 26.20.

FTIR (Neat film NaCl): 3085, 3062, 2926, 2852, 1598, 1454, 1369, 1257, 1138, 744,
696.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C2Ha00 276.1514; Found 276.1509.

4.8.2.6.2 General procedure for intermolecular vinyl ether synthesis

Inside a well-kept glovebox, to an oven dried dram vial with a magnetic stir bar was
added LiFy (16.5 mg, 0.02 mmol, 0.1 equiv). To this was added LIHMDS (50.2 mg, 0.30
mmol, 1.5 equiv), trifluorotoluene (2 mL), and methyl ether (5 equiv). Substrate (0.2
mmol, 1.0 equiv) was added and the reaction was allowed to stir at specified temperature.
Upon completion of reaction, the reaction mixture was removed from the glovebox and
diluted with ether containing a small amount of triethylamine. This was pushed through a
plug of triethylamine treated silica gel in a pipette. This was concentrated to give the
crude material. The crude material was purified by silica flash chromatography on

triethylamine treated silica gel to give the pure product.

0
font

1-(1-(Cyclohex-1-en-1-yloxy)-2-methylprop-1-en-1-yl)-4-fluorobenzene (4.47)
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Synthesized according to general procedure 4.8.2.6.2 from 0.20 mmol of vinyl tosylate
4.87 and 1-methoxycyclohex-1-ene. Crude was purified on silica flash column
chromatography (0.3:1:98.7 triethylamine:diethyl ether:hexanes) to give pure product
4.47 as colorless oil (37.8 mg, 77% yield).

'H NMR (500 MHz, CD,Cl,) & 7.34 (dd, J = 8.7, 5.7 Hz, 2H), 7.01 (t, J = 8.8 Hz, 2H),
4.65 (ddt,J=4.1,2.8, 1.4 Hz, 1H), 2.07 (ddt, J= 6.5, 4.5, 1.8 Hz, 2H), 1.89 (dp, /= 6.2,
2.0 Hz, 2H), 1.78 (s, 3H), 1.75 (s, 3H), 1.65 — 1.59 (m, 2H), 1.51 — 1.40 (m, 2H).

BC NMR (126 MHz, CD,Cl,) 8 161.8 (d, 'Jc s =245.6 Hz), 152.1, 142.5, 132.9 (d, *Jc
=3.3 Hz), 130.7 (d, *Jcr=7.9 Hz), 120.4, 114.5 (d, *Jc = 21.4 Hz), 98.8, 27.4, 23 4,
22.9,22.5,19.6, 18.1.

F NMR (282 MHz, CD,Cl,) § -115.5.

FTIR (Neat film NaCl): 3057, 2988, 2929, 2859, 2842, 1673, 1603, 1507, 1224, 1149,
1136, 840, 789.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C1gH;oFO 246.1420; Found 246.1412

S N
0
1-Fluoro-4-(2-methyl-1-(octyloxy)prop-1-en-1-yl)benzene (4.48)
Synthesized according to a modified general procedure 4.8.2.6.2 from 0.20 mmol of vinyl
tosylate 4.86 and methyloctylether where 1,2-DFB was used as solvent instead of

trifluorotoluene. Purified crude by silica flash column chromatography (0.2%

triethylamine/hexanes) to give pure product 4.48 as a yellow oil (38.8 mg, 65% yield).
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& 'H NMR (500 MHz, CDCL,) & 7.37 — 7.27 (m, 4H), 7.25 (app s, 1H), 3.35 (t, /= 6.6
Hz, 2H), 2.42 (dd, J = 6.9, 4.7 Hz, 2H), 2.19 — 2.00 (m, 2H), 1.54 (tdt, J = 22.6, 12.0, 5.0
Hz, 8H), 1.35 — 1.20 (m, 10H), 0.87 (t, /= 7.0 Hz, 3H).

13C NMR (126 MHz CDCl3) & 145.5, 136.0, 129.6, 127.8, 127.3, 123.8, 69.4, 31.8, 29.9,
29.8,29.4,29.2,28.2,27.8,27.6, 26.9, 26.0, 22.6, 14.1.

FTIR (Neat film NaCl): 2955, 2925, 2856, 1669, 1602, 1506, 1224, 1154, 1142, 841,
812.

HR-MS (CI-MS) m/z: [M]+ Calc’d for C5;H3,0 300.2453; Found 300.2456

07NN
m
F

(Cyclohexylidene(octyloxy)methyl)benzene (4.49)

Synthesized according to a modified general procedure 4.8.2.6.2 from 0.20 mmol of vinyl
tosylate 4.87 and methyloctylether where 1,2-DFB was used as solvent instead of
trifluorotoluene. Purified by silica flash column chromatography (0.5:1:98.5
triethylamine:diethyl ether:hexanes) to give pure product 4.49 as a yellow oil (22.8 mg,
41% yield).

'H NMR (500 MHz, CDCl3) & 7.30 — 7.27 (m, 2H), 7.02 (dd, J=9.7, 7.8 Hz, 2H), 3.35
(t,J=6.6 Hz, 2H), 1.83 (s, 3H), 1.63 (s, 3H), 1.58 — 1.51 (m, 2H), 1.35 — 1.20 (m, 10H),
0.87 (t,J= 6.9 Hz, 3H).

BC NMR (126 MHz, CDCLs) & 161.9 (d, 'Je = 246.2 Hz), 146.9, 132.1 (d, *Jcr=3.4
Hz), 131.1 (d, *Jcr=8.0 Hz), 115.9, 114.8 (d, *Jcr=21.3 Hz), 69.4, 31.8, 29.8, 29 4,

29.2,26.1,22.6,19.7,17.7, 14.1.

324



F NMR (282 MHz, CDCl;) & -114.63.

FTIR (Neat film NaCl): 3057, 3021, 2954, 2922, 2852, 1662, 1599, 1444, 1211, 1121,

775, 700.

HR-MS (CI-MS) m/z: [M]+ Calc’d for CisHa7FO 278.2046; Found 278.2046.
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4.9 Spectra Relevant to Chapter Four:

Vinyl Tosylates as Vinyl Cation Precursors Enable Broad Heterocycle Synthesis, as
well as Intermolecular Trapping by Carbon and Oxygen Based Nucleophiles
(Unpublished Work)

Zhenqi Zhao, Chloe G. Williams, Stasik Popov, Lee Joon Kim, Jonathan Wong, and

Hosea M. Nelson
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Figure 4.10 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.58.
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Figure 4.11 "H NMR (500 MHz, CDCl;, 70 °C) of compound 4.59.
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Figure 4.12 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.59.
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Figure 4.13 "H NMR (500 MHz, CDCl;, 60 °C) of compound 4.60.
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Figure 4.14 °C NMR (126 MHz, CDCl;, 60 °C) of compound 4.60.
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Figure 4.17 "H NMR (500 MHz, CDCl;, 50 °C) of compound 4.62.
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Figure 4.19 "H NMR (500 MHz, CDCl;, 70 °C) of compound 4.63.
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Figure 4.20 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.63.
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Figure 4.22 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.64.
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Figure 4.24 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.65.
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Figure 4.25 "H NMR (500 MHz, CDCls, 70 °C) of compound 4.66.
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Figure 4.26 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.66.
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Figure 4.27 "H NMR (600 MHz, CDCl;) of compound 4.67.
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Figure 4.28 °C NMR (151 MHz, CDCls) of compound 4.67.
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Figure 4.29 'H NMR (600 MHz, CDCl;) of compound 4.69.
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Figure 4.30 °C NMR (151 MHz, CDCls) of compound 4.69.
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Figure 4.32 °C NMR (151 MHz, CDCls) of compound 4.70.
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Figure 4.33 "H NMR (400 MHz, CDCl;) of compound 4.71.
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Figure 4.34 °C NMR (101 MHz, CDCls) of compound 4.72.
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Figure 4.35 "H NMR (400 MHz, CDCl;) of compound 4.72.
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Figure 4.36 °C NMR (101 MHz, CDCls) of compound 4.72.
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Figure 4.37 "H NMR (400 MHz, CDCl;) of compound 4.74.
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Figure 4.38 °C NMR (101 MHz, CDCls) of compound 4.74.
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Figure 4.39 "H NMR (500 MHz, CDCl;, 50 °C) of compound 4.75
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Figure 4.40 °C NMR (126 MHz, CDCls, 50 °C) of compound 4.75.
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Figure 4.41 'H NMR (400 MHz, CDCl;) of compound 4.76.
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Figure 4.42 °C NMR (101 MHz, CDCls) of compound 4.76.
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Figure 4.43 "H NMR (400 MHz, CDCl;) of compound 4.77.
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Figure 4.44 °C NMR (101 MHz, CDCls) of compound 4.77.
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Figure 4.45 "H NMR (500 MHz, CDCl;, 70 °C) of compound 4.78

0655'L2
9922'92
962/°92-\
Boo.@
0959'82
0.45°0€
Leseee
vIE80F

Lolees—

00v8ZhL—
85£5'GZ)
%Eﬂ/
250821
z0Le'8Z) 7
92621
imwmmg
9eZV 621
1009°€E}]
amaiﬁ
851656l
62.1°9¢1
1YL 9g)]
0691 '6€ 41
LZiverl]
8ler il
1957671

80 60 40 20

100
ppm
Figure 4.46 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.78.
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Figure 4.47 "H NMR (500 MHZPCDCl;, 70 °C) of compound 4.79
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Figure 4.49 "H NMR (500 MHz, CDCl;, 55 °C) of compound 4.80
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Figure 4.50 °C NMR (126 MHz, CDCl;, 55 °C) of compound 4.80.
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Figure 4.51 "H NMR (500 MHz, CDCl;s, 70 °C) of compound 4.1
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Figure 4.52 °C NMR (126 MHz, CDCls, 50 °C) of compound 4.1.
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Figure 4.53 "H NMR (500 MHz, CDCl;) of compound 4.81
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Figure 4.54 °C NMR (126 MHz, CDCls) of compound 4.81.
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Figure 4.55 "H NMR (400 MHz, CDCls) of compound 4.43
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Figure 4.56 °C NMR (101 MHz, CDCls) of compound 4.43.
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Figure 4.58 °C NMR (101 MHz, CDCls) of compound 4.82.
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Figure 4.59 "H NMR (400 MHz, CDCls) of compound 4.83
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Figure 4.60 °C NMR (101 MHz, CDCls) of compound 4.83.
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Figure 4.61 "H NMR (500 MHz, CDCl;, 70 °C) of compound 4.84
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Figure 4.62 °C NMR (126 MHz, CDCls, 70 °C) of compound 4.84.
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Figure 4.63 "H NMR (500 MHz, CDCl;, 55 °C) of compound 4.85
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Figure 4.64 °C NMR (126 MHz, CDCls, 55 °C) of compound 4.85.
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Figure 4.65 "H NMR (500 MHz, CDCl;) of compound 4.86
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Figure 4.66 °C NMR (126 MHz, CDCls) of compound 4.86.
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Figure 4.68 °C NMR (126 MHz, CDCls) of compound 4.87.
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Figure 4.69 "H NMR (500 MHz, CDCl;) of compound 4.88.

€919°le
€50¢'9¢
€¥96'9¢~\
€6 _.vNNM
vaw.wm\
011708

00v6'66—

cvv0'6ct

[FAC N TARN
798L°¢C 1~
Y8YEVEL-T

¥6170°GEL
Ly8Y'8EL \

LA YEAN
0cv9'Le _,/

1116'8€1
¥Scl'6€1
cLLE'EVL

il

140

100 80 60 40 20

120

180 160
ppm
Figure 4.70 °C NMR (126 MHz, CDCls) of compound 4.88.
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Figure 4.71 '"H NMR (500 MHz, CDCl;) of compound 4.45.
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Figure 4.72 °C NMR (126 MHz, CDCls) of compound 4.45.
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Figure 4.73 "H NMR (400 MHz, CDCls) of compound 4.2.
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Figure 4.74 °C NMR (101 MHz, CDCl3) of compound 4.2.
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Figure 4.75 "H NMR (500 MHz, DMSO-ds, 75 °C) of compound 4.5.
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Figure 4.76 °C NMR (126 MHz, DMSO-ds, 75 °C) of compound 4.5.
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Figure 4.77 "H NMR (500 MHz, CDCls) of compound 4.6.
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Figure 4.78 °C NMR (126 MHz, CDCls) of compound 4.6.
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Figure 4.79 "H NMR (400 ¥ffiz, CDCls) of compound 4.9.
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Figure 4.80 °C NMR (101 MHz, CDCl;) of compound 4.9.
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Figure 4.81 'H NMR (500 MHz, DMSO-ds, 75 °C) of compound 4.10.
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Figure 4.82 °C NMR (126 MHz, DMSO-ds, 75 °C) of compound 4.10.
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Figure 4.84 °C NMR (126 MHz, DMSO-ds, 75 °C) of compound 4.11.
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Figure 4.85 'H NMR (500 MHz, DMSO-ds, 75 °C) of compound 4.12.
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Figure 4.86 °C NMR (126 MHz, DMSO-ds, 70 °C) of compound 4.12.
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Figure 4.87 "H NMR (500 MHz, CDCl;) of compound 4.13.
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Figure 4.88 °C NMR (126 MHz, CDCls) of compound 4.13.
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Figure 4.89 'H NMR (500 MHz, CDCl;) of compound 4.14.
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Figure 4.90 °C NMR (126 MHz, CDCls) of compound 4.14.
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Figure 4.91 'H NMR (500 MHz, CDCl;) of compound 4.15.
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Figure 4.92 °C NMR (126 MHz, CDCls) of compound 4.15.
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Figure 4.93 "H NMR (400 MHz, CDCls) of compound 4.17.
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Figure 4.94°C NMR (126 MHz, CDCl3) of compound 4.17.
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Figure 4.96 'H NMR (400 MHz, CDCl;) of compound 4.18.
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Figure 4.97 °C NMR (126 MHz, CDCls) of compound 4.18.
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Figure 4.98 "H NMR (400 MHz, CDCl;) of compound 4.19Z.
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Figure 4.99 °C NMR (101 MHz, CDCls) of compound 4.19Z.
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Figure 4.100 '"H NMR (400 MHz, CDCls) of compound 4.19E.
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Figure 4.101 °C NMR (126 MHz, CDCls) of compound 4.19E.
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Figure 4.102 '"H NMR (500 MHz, CD,Cl,) of compound 4.20.
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Figure 4.103 °C NMR (126 MHz, CD,Cl,) of compound 4.20.
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Figure 4.104 "H NMR (300 MHz, CDCl;) of compound 4.27.
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Figure 4.105 °C NMR (126 MHz, CDCl;) of compound 4.27.
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Figure 4.106 °F NMR (282 MHz, CDCls) of compound 4.27.
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Figure 4.107 "H NMR (300 MHz, CDCl3) of compound 4.28.
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Figure 4.108 '"H NMR (300 MHz, CDCl3) of compound 4.29.
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Figure 4.109 °C NMR (126 MHz, CDCl;) of compound 4.29.
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Figure 4.114 "H NMR (300 MHz, CDCl;) of compound 4.39.
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Figure 4.115 °C NMR (126 MHz, CDCl;) of compound 4.39.
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Figure 4.116 '"H NMR (300 MHz, CDCl3) of compound 4.40.
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Figure 4.117 °C NMR (126 MHz, CDCl;) of compound 4.40.

2209
=£02
Te0y
702

F00'c

S9Y0°L
06Y0°Z]
¥290°L]
$590°L1
6502 £
9802 £
YL L
6812 LY
vETT Ly
9/22 1|
€9€2 LA

< 200'¢

il

10

ppm
Figure 4.118 '"H NMR (500 MHz, CDCl3) of compound 4.41.
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Figure 4.120 '"H NMR (300 MHz, CDCl;) of compound 4.42.
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Figure 4.123 '"H NMR (400 MHz, CDCl3) of compound 4.44.
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Figure 4.125 "H NMR (400 MHz, CDCl3) of compound 4.46.
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Figure 4.127 '"H NMR (500 MHz, CD,Cl,) of compound 4.47.
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Figure 4.131 °C NMR (126 MHz, CDCl;) of compound 4.48.
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Figure 4.134 °F NMR (282 MHz, CDCls) of compound 4.49.
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CHAPTER FIVE

Catalytic Carbon—Carbon Bond Forming Reactions of Vinyl Cations: A Field Guide
(Unpublished Work)

Stasik Popov, Benjamin Wigman, Jonathan Wong, Kendall N. Houk and Hosea M. Nelson

5.1 Abstract

Over the course of multiple years of vinyl cation research focused on C—C bond
forming reactions, there have been many trials and tribulations; these include but are not
limited to unstable vinyl cation precursors, unreactive vinyl cation precursors, and vinyl
cation precursors that rearrange or go through non-productive unimolecular pathways upon
ionization. Furthermore, we have seen cases where different catalytic systems are better
suited for different types of vinyl triflates. This chapter aims to summarize some of our key
findings/observations in order to aid the practicing organic chemist in utilizing some of our

developed methodology as a useful disconnection in a retrosynthetic analysis.

5.2 Introduction

Since our initial discovery of the reactivity of aryl cations in 2016, our lab has studied
the fundamental reactivity of dicoordinate carbocations with aliphatic and aromatic C-H
bonds.' > These reactive species exhibit exquisite reactivity, as they are able to engage
unactivated C-H bonds to forge new C—C bonds. This newfound reactivity presented a
promising synthetic method for C—C bond formation using earth abundant main group
catalysts. Initially, we looked at silylium-carborane reagents (Chapter 2) for vinyl cation
generation and ensuing reactivity (Figure 5.1a).> More recently, efforts have been focused on

broadening the synthetic utility of this methodology. This led to the development of Li-WCA
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(LiFy0)* or Li-urea' (Chapter 3) catalysts in order to achieve C—C bond forming reactions of
vinyl cations (Figure 5.1bc). While these efforts are described in more detail along with their
respective mechanisms (Figures 2.3 and 3.2) in Chapter 2 and 3, the purpose of this study is
to further highlight the advantages and disadvantages of the different catalytic systems and
serve as an aid to the practicing organic chemist who might desire to utilize vinyl cations as a

synthon in a retrosynthesis.

a Chapter 2: silylium-catalyzed, reductive conditions

[Ph30]+[CHB11C|11] (cat.)
Et3Si—H

b Chapter 3: lithium-catalyzed, basic conditions

[PhsCl*[B(CgFs)4]™ (cat.)
O‘ LIHMDS _

¢ Chapter 3: urea-catalyzed, basic conditions

RJLR
C

at.)
(Het)A,.)\g\ > (Het)Ar

Figure 5.1 Summary of the silylium (a) and lithium (b,c) based systems
for C—C bond forming reactlons of vinyl cations

or

\
(e
s

8.

Dt

This study represents an amalgamation of observations and insight obtained by
performing these reactions over multiple years in addition to new, carefully designed
experiments and computations to tease out the advantages and limitations of several catalytic
systems. First, an in depth discussion of several features of vinyl cations and their precursors
are discussed. The reactivity of vinyl cations with different nucleophilic C—H bond donors is
presented and analyzed. After this analysis, we discuss the advantages and disadvantages of

the silylium-WCA and the Li-WCA/Li-urea systems and how to choose which one to use.
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5.3 Geometrical and Strain Effects on Vinyl Cation Stability

Vinyl cations are similar to allenes in that they prefer to adopt an sp-hybridized linear
geometry in order to keep the positive charge inside an empty p orbital.>” It has been well
precedented in early solvolytic studies that acyclic vinyl sulfonates as well as those derived
from medium/large-sized cycloalkanones underwent solvolysis much faster than their smaller
ring counterparts (Figure 5.2).° For example, cyclopentenyl nonaflate (5.2) undergoes
solvolysis to cyclopentenyl cation 5.6 in aqueous ethanol twenty times slower than its
cyclohexenyl counterpart (5.3 to 5.7).” On the other hand, cyclohexenyl cation (5.7)
generation is 13000 times slower than that of cycloheptenyl cation (5.8). This is due to the
fact that smaller ring sizes make the bond angle of the vinyl cation smaller and more deviated
from linearity (180°). One exception to this rule is cyclobutenyl cation (5.5), which exhibits

%11 Barring this exception, acyclic/linear

non-classical character, giving it additional stability.
vinyl cations are generally much more stable and easier to generate than their cyclic

counterparts.

5.1 5.2 5.3 5.4

aq. aq.
EtOH EtOH
A A
® ®: @
ko 55 5.6 5.7 5.8
3700 0.05 1 13000

Figure 5.2 Relative ionization rates of different cyclic nonaflates

5.4 Substituent Effects on Vinyl Cations
While ring size has a large effect on the ionization barrier of a vinyl triflate, we have
also observed that adding substituents on the alkene of the vinyl triflate can also have

profound effects on both the ionization barrier as well as the reactivity of the generated vinyl
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cations.'>!?

In some cases, substitution can yield unimolecular rearrangements, which can
generate product mixtures and obviate synthetically useful C—C bond forming reactions
regardless of the catalytic system chosen.

We have noticed several types of substrates that react in a different manner than the
expected C—H insertion or Friedel-Crafts pathways. In our 2018 report’, we noted that 2- or
6-substituted cyclohexenyl triflates never led to successful insertion products, likely as a
result of intramolecular decomposition pathways. Here, we looked at two possible methyl
substitution patterns of the parent cyclohexenyl cation: the 2- and 6- methyl substitutent.
Substitution at either position gave a great degree of stabilization to the vinyl cation, likely
due to the electron-rich nature of the methyl group (Figure 5.3). Furthermore, these groups
likely have a steric buttressing effect that promote ionization of the leaving group from the
vinyl halide/pseudohalide precursor.'” 6-Methyl cyclohexenyl cation (5.10) is almost 14
kcal/mol less uphill from its vinyl triflate precursor than the parent cyclohexenyl cation (5.7),
while 2-methylcyclohexenyl cation (5.9) is around 4 kcal/mol less uphill than the parent
system 5.7. These cations have been studied in the past in solvolytic reactions in polar protic

12,14 .
7 Later 1n

media and have been observed to undergo various unimolecular rearrangements.
the chapter, we will revisit these substitution patterns and how these cations react under

catalytic WCA conditions in nonpolar media (see Chapter 5.7).

® ((-Bj/Me Me\((aj
5.7 5.9 5.10
22.4 kcal/mol 18.7 kcal/mol 8.7 kcal/mol

Figure 5.3 Substituted and unsubstituted vinyl cation relative energies
Values reported are AG relative to the vinyl triflate precursor

5.5 C-H Donor Effects
While the ring size of the vinyl cation precursor seems to be one of the predominant

features that determines the success or failure of a vinyl cation C—C bond forming reaction,
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the identity of the nucleophilic partner can play a large role as well. There have been two
main classes of C—H bond donors that undergo these types of reactions: alkane C—H bonds
and arene

C—H bonds. In general, we have observed that Friedel-Crafts type reactions have a broader
scope than alkane C—H insertion reactions both in silylium and lithium-based systems.' This
occurs for a few reasons. First, benzene and other arene solvents often provide a better degree
of solubility in all of our catalytic systems than alkane solvents do. Secondly, arene solvents
can likely stabilize the vinyl cation through cation-rm interactions, which might lead to a lower
ionization barrier.” Lastly, the key C—C bond-forming event is often much more facile with
arenes than with alkanes. Arenes often proceed through a Friedel-Crafts mechanism followed
by rearrangement whereas alkanes proceed through a direct C—H insertion. Figure 5.4 depicts
a sample computational study looking at cyclohexenyl cation (5.7) performing a C—C bond
forming reaction with benzene or pentane.'® For the C—H insertion reaction with pentane,
there is a 5.3 kcal/mol transition state energy for the key C—C bond forming event leading to
the alkylated cation 5.11. On the other hand, Friedel-Crafts with benzene proceeds as a
barrierless, highly exothermic event, leading to Wheland intermediate 5.12, which rapidly
rearomatizes to give benzylic cation 5.13. Experimentally, we can often perform Friedel-
Crafts reactions with stoichiometric amounts of arenes in alkane solvents due to this

. 1,3
discrepancy.

AG:I:- +5.3 @ barr/erless

-1 C-H Insertion AG 00 Friedel-Crafts

AGt=+9.5 H
2 subsequent é
1,2-hydride shifts

5.12 5.13
AG=-23.0 AG=-50.4

Figure 5.4 C-H Insertion vs Friedel-Crafts pathways of cyclohexenyl! cation
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5.6 Vinyl Triflate Stability

Lastly, we wanted to highlight the inherent instability of certain vinyl triflates that can
hamper retrosynthetic planning. Over the years, we have attempted to synthesize a variety of
substrates that are unstable to purification on silica gel and often decompose during
distillations due to their thermal instability. We found that cyclic vinyl triflates (5-8
membered) exhibited good stability for purification and storage. Acyclic vinyl triflates
derived from simple aliphatic ketones were silica stable, but needed to be stored in a freezer
for long-term storage they would undergo slight decomposition and discoloration over time
(colorless to yellow/orange). Initially, we were attracted to converting acetophenone
derivatives to vinyl triflates, as these would yield 1,1-diarylalkane or 1,l-diarylalkene
scaffolds after performing intermolecular Friedel-Crafts reactions.'”'”'® We observed,
however, when subjecting electron-neutral or electron-rich acetophenone derivatives to
common triflating conditions, the ensuing vinyl triflates were incredibly unstable, especially
to silica gel chromatography. The parent acetophenone triflate 5.15 could only be purified by
vacuum distillation at low temperatures, because upon excessive heating it violently
decomposed into a black tar.'® Furthermore, even upon storage at — 30 °C in a glovebox
freezer, discoloration was observed over time. Even the halogenated acetophenones (like
5.16) yielded relatively unstable vinyl triflates that were often used without column
chromatography to avoid decomposition.'” These substrates are more easily accessible
depending on the electron withdrawing nature of the arene (Figure 5.5). For example,
trifluoromethylsubstituted arylvinyl triflate 5.17 is column stable and can be stored
indefinitely in the freezer. One example of an unstable vinyl triflate is the p-
butoxyacetophenone derivative 5.14, which was clearly observed in the crude reaction

mixture by 'H NMR but was never recovered after attempted chromatographic purification.
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As mentioned in Chapter 4, one way to overcome this issue is to synthesize vinyl tosylates

for more electron-rich systems where the vinyl triflate might be unstable.

Bealealealion

5.14
Hammet Parameter oy,
~=0.27 0.00 0.23 0.54
not stable stable

Figure 5.5 Vinyl triflate stability correlated to Hammett parameters
This concludes the broad overview of various features of the vinyl cation electrophiles
and the C—H donor nucleophiles that will permeate through the reactions shown later in this

chapter.

5.7 C-C Bond Forming Reactions of Vinyl Cations Under Silylium Conditions
Silylium-WCA salts are among the strongest Lewis acids known in chemistry. They
have been used to generate a variety of unstable cationic intermediates both catalytically and

stoichiometrically.**>*

Here we will look at the reaction that our lab developed (Chapter 2)
and how it applies to a variety of systems.’ First, we will look at intermolecular Friedel-
Crafts using benzene as solvent. These reactions are chosen as a model case study for two

reasons: 1) the reagents commonly used in these reactions are soluble in benzene and 2) there

are no chemoselectivity issues as there are with substituted arenes.

oTf [PhsCT*[CHB4Cly4]~ (2 mol%) Ph
R)ﬁ/R‘ Et,SiH (1.5equv) R)\(R‘
benzene (0.1M)
Rz RZ
5.18 5.19 5.21 5.22 5.23 5.24
64% yield 84% yield 71 % yleld 71% yield 43% yield 58% yield 85% yield

Figure 5.6 Silylium-catalyzed Friedel-Crafts reactions of vinyl triflates
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Five, six, and seven-membered ring-bearing vinyl triflates were all ionized smoothly
and yielded the corresponding phenylcycloalkanes 5.18-5.20 in 64%, 84%, and 74% yield
respectively. However, cyclopentenyl triflate required 6 days of heating at 70 °C in order to
go to full conversion whereas the reaction with cyclohexenyl triflate went to completion after
2 hours at 30 °C. Under identical conditions, cycloheptenyl triflate was converted to
phenylcycloheptane almost instantly at 30 °C. Cyclooctenyl triflate was omitted in this study
because of its propensity to undergo rapid intramolecular transannular C—H insertion.” We
also explored bicyclic systems. To this end, the a-suberone and a-tetralone derived vinyl
triflates were reacted with the silylium conditions in benzene solvent to yield phenylated
products 5.21 and 5.22 in 43% and 71% yield respectively. Here, similar effects were
observed where the smaller tetralone-derived system required heating for 2 days at 60 °C,
whereas the suberonyl system only required one hour at 30 °C. Notably, when comparing the
tetralone and cyclohexanone-derived vinyl triflates, it is clear that the cyclohexenyl triflate
ionizes more easily despite the expected resonance stabilization from the aryl ring. This is
likely due to the strain imposed by the fused benzene ring, which prevents the vinyl cation-
bearing carbon from distorting closer to linearity. Lastly, acyclic vinyl triflates were
explored: 4-bromophenylvinyl triflate and butenyl triflate yielded the phenylated alkanes 5.23
and 5.24 in 58% and 85% yield respectively after one hour at 30 °C. Notably, this chemistry
can even work at —40 °C in chloroform solvent with benzene as a stoichiometric additive (5—
10 equiv).’ In conclusion, the silylium-WCA system can be utilized for Friedel-Crafts
reactions of any ring size system (as long as there are no heteroatoms).

Next, we decided to survey the same substrates for intermolecular C—H insertion
reactions with cyclohexane. After performing reactions with differentially substituted vinyl
triflates under the previously optimized intermolecular cyclohexane insertion conditions, we

saw that a much narrower range of substrates were competent for this reaction compared to
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that of intermolecular Friedel-Crafts. We observed successful insertion with cyclohexenyl
triflate, benzosuberonyl triflate, and butenyl triflate to yield cyclohexylated adducts 5.26,
5.27, and 5.30 in 84%, 51%, and 85% yield, respectively (Figure 5.7). On the other hand, all
other triflates failed to yield any C—H insertion products 5.25, 5.28, or 5.29.

oTf [PhsCI*[CHB4Cly4]™ (2 mol%) Cy

R)ﬁ/R‘ Et,SiH (1.5 equiv) . R)\/R‘

cyclohexane (0.1M), 30-80 °C

Ry R,
(o
Cy cy Yy Cy Cy
. A
5.25 5.26 5.27 5.28 5.29 5.30

0% yield 84% yield 51% yield 0% yield 0% yield 85% yield

(29% C1, 22% C2)

Figure 5.7 Silylium-catalyzed C-H insertion reactions of vinyl triflates
Looking at the substrates that failed to deliver any product, we can see that they fall
into two distinct categories. First, vinyl triflates that would yield extremely unstable vinyl
cations, such as cyclopentenyl triflate, are likely too hard to ionize in cyclohexane solvent
due to lack of any stabilizing solvent-cation interactions, in contrast to the cation-mw
interactions that benzene can provide."” The second category of unsuccessful substrates is
that which yields stable vinyl cations, such as the precursor to 5.29. These cations are likely
too stable to undergo productive insertion and, while they are ionized under these reaction
conditions, they yield unidentified decomposition products instead. Mayr and coworkers
investigated highly stabilized vinyl carbocations that were sluggish to react even with
relatively strong nucleophiles.” Perhaps in these systems, the barrier to break the C—H bond
of cyclohexane is just too disfavored. In these systems, there seems to be a good middle
ground where the vinyl triflates precursors can not be too hard to ionize, but also should not

yield vinyl cations too stable to undergo productive insertion reactions.
In conclusion, silylium-WCA-mediated reactions are effective for all ring sizes
explored here (5-8) for intermolecular Friedel-Crafts reactions and can also perform C—H

insertion reactions with some acyclic substrates as well as 6- or 7-membered cyclic vinyl
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cations. One big drawback is that this system has poor heteroatom compatibility as has been

: . : : 3,5,20,21
demonstrated in various reports, including those from our group.”"”

In general,
hydrocarbon substituents as well as some halides are tolerated under this catalytic manifold,

but no Lewis basic groups.

5.8 C—C Bond Forming Reactions of Vinyl Cations Under Lithium Conditions

In this section, we investigate the limitations of the Li-WCA system. This system has
proven to be much more heteroatom compatible”, but the ionizing power of this system is less
than that of silylium due to the decreased Lewis acidity when compared to silylium. We again
start this investigation with intermolecular solvolytic Friedel-Crafts reactions in benzene. It is

important to note that throughout our experiments, Li-urea/LiF, systems showed very similar

oTf [PhaCI*{B(CgFs)al™ (5 mol%) Ph
R)ﬁ/m LiHMDS (1.5 equiv) . R)ﬁ/R‘
benzene (0.1M)
Rz RZ
o Ph Ph Ph Ph Ph
Ph
® PN
Br
5.31 5.32 5.33 5.34 5.35 5.36 5.37

0%yield  16%yield  60% yield 65% yield 0% yield 87% yield 29% yield

(1.64:1 E:2)
Figure 5.8 Lithium-catalyzed Friedel-Crafts reactions of vinyl triflates

reactivity and ionization power for various vinyl triflates. For clarity, we will mainly focus on
LiF, in this discussion, but these trends also hold true for the Li-urea system.

First, looking at simple cycloalkenyl triflates, we observed that smaller rings had
more difficulty ionizing with the five-, six- and seven-membered ring vinyl triflates yielding
styrenes 5.31-5.33 in 0%, 16% and 60% yield respectively. These three results not only
demonstrate the correlation of ring size with reactivity of vinyl triflates, but also the marked
difference in ionizing power between the silylium-WCA conditions and the Li-WCA
conditions. Moving on to bicyclic systems, the tetralone derived vinyl triflate failed to yield

any arylated product 5.35 even at elevated temperatures, while the benzosuberonyl derivative
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gave styrene 5.34 in 65% yield after two hours at 70 °C. Lastly, exposure of acyclic vinyl
triflates to these conditions gave styrenes 5.36 and 5.37 in 87% and 29% yield respectively.
Notably, these reactions reached full conversion at room temperature in under a day in both
cases (2 hours and 20 hours respectively for 5.36 and 5.37). The low yield of styrene 5.36 can
be attributed to alkyne and allene formation from deprotonation of the intermediate vinyl
cation. This elimination pathway often plagues these basic conditions, and in order to get
high yielding reactions with acyclic substrates, fully substituted vinyl triflates must be used.
In general the lithium-WCA system works reliably for large ring sizes (7+) as well as acyclic
systems in terms of ionization.

Given the improved heteroatom compatibility of the Li-WCA system, we wanted to
explore more synthetically relevant Friedel-Crafts reactions, where arenes were used
stoichiometrically instead of as solvent. To this end, we decided to investigate the
transformation of styrenyl triflate 5.16 to diarylalkane 5.38 under lithium-mediated
conditions with p-xylene as the reaction partner. Starting off, a variety of solvents were
explored using 5 equivalents of p-xylene as a reaction partner (Figure 5.9). Here, as
previously mentioned, we observed that the arene nucleophile outcompetes cyclohexane as
the solvent (75% yield). Additionally, other electron-poor arenes were used as solvents with
no deleterious nucleophilic attack. o-Dichlorobenzene and o-difluorobenzene yielded alkene
5.38 in 34 and 80% yield respectively. Trifluorotoluene proved to be the optimal solvent,
giving nearly quantitative yield (95%) with 5 equivalents of the arene nucleophile.
Dichloromethane performed modestly, yielding the product in 45% yield; 49% of the starting
material remained likely due to the decomposition of LIHMDS base with solvent over time.
Generally, electron poor arenes, alkanes, and halogenated solvents are suitable solvents for

these reactions, with arenes performing the best. Other common polar solvents such as
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acetonitrile and THF yield no product, presumably due to poisoning/coordination of the

Lewis basic solvents to the Lewis acidic lithium center. Using the

OTF  [PhyCI*[B(CeFs)al (5 mol%) G
LiIHMDS (1.5 equiv)
p-xylene (x equiv) o
Br solvent
Br

5.16 5.38
x =5, 1,2-DCB: 34% yield x = 5. MeCN: 0% yield

x=5 1,2-DFB: 80% yield x =5 cyclohexane: 75% yield
x=5 DCM: 45% yield (49% SM) x =1 PhCFj3: 35% yield

x=5 THF: 0% yield x =2 PhCFj3. 52% vyield

x = 5: PhCF3: 95% yield

F3C O
OTt  [PhCIB(CoFs)al” (5 mol%)
LiIHMDS (1.5 equiv) o //
/@ PhCF,4 o O + /@/
Br Br

5.16 5.39 Br 5.40
not observed major

Ot [PhyCI[B(CeFs)al™ (5 mol%) O

LiHMD. . i
X i S (1.5 equiv) - ~
PhCF5 O
F3C
3 F;C

5.41 5.42
83% yield

Figure 5.9 Further studies on intermolecular Friedel-Crafts reactions
of vinyl triflates under Li-WCA conditions

optimal solvent trifluorotoluene, we attempted to perform the reaction using only one or two
equivalents of p-xylene, which furnished the product in 35% and 52% yield respectively.
While these reactions performed well with electron-rich arene reaction partners, using an
electron deficient arene such as trifluorotoluene failed to yield any styrene product 5.39 even
when the arene was used as solvent. This is again due to the troublesome elimination pathway
that is favorable under these basic conditions and the major product was found to be 4-
bromophenylacetylene (5.40). However, synthesis and ensuing reaction of dimethyl vinyl
triflate 5.41 under identical conditions furnish the tetrasubstituted olefin product 5.42 in 83%
yield as a single isomer.”® This underscores the importance of substitution to prevent the
alkyne formation pathway. Despite this limitation, this method to allows facile access

sterically hindered, tetrasubstituted olefins.
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oTf [PhsCI*[B(CgFs)al™ (5 mol%) Cy
R Ry LiHMDS (1.5 equiv) - R Ry
cyclohexane (0.1M)

5 b b o

5.43 5.44 5.45 5.46 5.47
0% vyield 0% yield 21% yield 0% vyield 0% vyield

Figure 5.10 Lithium-catalyzed intermolecular C—H insertion reactions of vinyl triflates

Next, we exposed several vinyl triflates to the previously optimized LiF,, conditions.
In the case of benzosuberonyl triflate, intermolecular C—H insertion with cyclohexane was
observed giving styrene 5.45 in 21% yield (Figure 5.9). In the case of cyclopentenyl triflate,
cyclohexenyl, and tetralone-derived triflate, no cyclohexylation was observed even after
heating > 120 °C for extended periods of time. 4-Bromoacetophenone derived vinyl triflate
failed to deliver any desired product under these conditions; only 4-bromoacetylene (5.40)
was observed, likely due to deprotonation of the vinyl cation by LIHMDS. Overall, we found
that intermolecular C—H insertion was very limited with the Li-WCA catalytic system. These
results are not surprising since the ionizing power of the Li-WCA has already been shown to
be weaker than that of silylium-WCA, and for acyclic substrates, the deprotonation of the
vinyl cation intermediate to yield alkyne/allene type products largely outcompetes
intermolecular alkane C—H insertion.

In conclusion, the Li-WCA system has its advantages in its improved heteroatom
compatibility (see Chapter 3 for more details) and in non-solvolytic Friedel-Crafts reactions;
however, intermolecular C-H insertion remains highly challenging in this system.
Furthermore, this system is largely incapable in generating strained vinyl cations (ring size <
7) and works best for medium-sized ring systems as well as substituted acyclic systems in

which alkyne formation is disfavored or impossible.

405



5.9 Vinyl Cation Rearrangement Reactions

After gaining some new insights into our catalytic systems, we wanted to revisit some
of the substituted cyclic vinyl cations and see how they would react under WCA catalysis in
non-polar media. First, we explored the reactivity of allylic substituents adjacent to the
triflate. Exposure of acyclic vinyl triflate 5.48, bearing two phenyl groups and a methyl group
next to the triflate, to standard silylium conditions in cyclohexane yielded the substituted
indane products 5.49 in 59% yield. No detectable amount of the expected cyclohexylated
insertion product 5.50 was observed (Figure 5.10a). Additionally, a similar type of reactivity

was observed under the lithium-catalyzed conditions utilizing allylically substituted vinyl

a Reactivity of allylic substituted vinyl triflates

oTf [PhsCI*[CHB Cly1] (2 mol%) c1 Cy
Ph Et;SiH (1.5 equiv) Ph
Ph P c2 e ’ Ph Ph = C2 >
cyclohexane A
5.48 5.49 5.50
59% yield, 1.25:1 d.r. not observed
oTf
Ph [PhsCIH[B(CgF5) (5 mol%) — Ph —Ph
cs LiHMDS (1.5 equiv) . /i
ct > C2 c2
cyclohexane c3 c3
5.51 5.52 5.53

13% yield 9% yield

b Relative energies of allylic substituent migrations

{ AG (kcal/mol) Me 1+
H

441 ©\
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, 24, \ :
/' ,,—6\ ' @Me
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/I "v “‘ \‘
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00 e SN observed rearrangement
® Me aMelf T ‘®
5.10

Figure 5.11 Computational and experimental studies of vinyl triflates bearing allylic substituents
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triflate 5.51. Rather than the expected cyclohexylated product, ring contraction products 5.52
and 5.53 were observed in 15% and 8% yield, respectively. To gain mechanistic insight into
this reaction pathway, we performed computational studies (Figure 5.10b). We believed that
these products were being generated by allylic group migrations. A model system was
chosen, starting with methylated cyclohexenyl cation 5.10. Methyl migration (blue) was
observed to be the most energetically costly transoformation, with a transition state energy of
44.1 kcal/mol. In comparison, hydride migration (red) had a transition state barrier of 24.6
kcal/mol and the most facile pathway was found to be ring contraction (green), with a barrier

of only 1.0 kcal/mol.

a) Reactivity of 2-substituted cyclohexenyl triflates

oTf
[PhgCI*[CHB14Cly4] (5 mol%) (Ph.CI'[B .
3 (CeFs5)4l™ (5 mol%)
iPrgSiH (1.5 equiv) LiIHMDS (1.5 equw)
E>—< cyclohexane benzene E>_<

5.54 5.55 5.56
relat/ve ratio: 2: 1 43% vyield 39% yield
[PhsCI*[CHB4;Cly4]™ (5 mol%) [PhsCI*[B(CgF5)4]~ (5 mol%)
iPraSiH (1.5 equiv) | LiIHMDS (1.5 equiv)
E>_< cyclohexane OTf benzene E>_<
relative ratio: 1.76:1 5.57 5% yield 62% yield

b) Proposed mechanism of rearrangement of 2-substituted vinyl cations

A

AG (kcal/mol) 28
® TSt
©/ 00 . . ®
' —l
[ ] -3.5

Figure 5.12 Mechanistic studies of 2-substituted vinyl triflates. Experimental studies (a) and computational investigations (b).
Next, we investigated 2-substituted cyclic vinyl triflates, as these substrates have been
. . . . 12 .
previously reported to undergo ring contraction reactions. - Interestingly, exposure of 2-

methylcyclohexenyl triflate 5.54 to standard LiF,p conditions in benzene solvent yielded
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styrene products 5.55 and 5.56 in 43% and 39% yield, respectively (Figure 5.11a).
Observation of cyclohexene 5.55 is surprising given the much greater stability of acyclic
vinyl cations compared to cyclohexenyl cations. Subjecting the exocyclic vinyl triflate 5.57 to
identical reaction conditions yielded products 5.55 and 5.56 in 5% and 62% yield. Although
the yield of the cyclohexene product is much lower in this case, it still suggests that
equilibration to the seemingly less stable cyclohexenyl cation via ring expansion is occuring.
Performing intermolecular C-H insertion into cyclohexane solvent under reductive silylium-
WCA conditions yields a diastereomeric mixture of methylbicyclohexyl 5.58 and
trialkylmethane 5.59 in a 2:1 or 1.76:1 ratio depending on which enol triflate was used as the
starting material. The very similar product distribution can perhaps be rationalized by the
relatively slow alkane C—C bond forming step compared to that of benzene, which might
allow the system to freely equilibrate between the cyclohexenyl cation and the ring
contracted acyclic cation IN1 (Figure 5.11B). The product distribution can be considered an
outcome of Curtin-Hammett kinetics.

We also performed calculations on the 2-substituted vinyl cation arylation pathway to
probe these product distributions. Computationally, we did indeed observe that the acyclic
ring contracted vinyl cation IN1 was more stable than the parent cyclohexenyl cation 5.9 by
3.5 kcal/mol (Figure 5.11b). However, an energy barrier of 2.8 kcal/mol existed to achieve
this ring contraction, whereas coordination of benzene solvent to the vinyl cation was an
enthalpically barrierless transformation, IN2*. This may explain the discrepancy between the
observed and expected product ratio in these transformations. Additionally the low barrier of
interconversion between ring contracted exocyclic cation IN1 and cyclohexenyl cation 5.9
can also explain how starting from the cyclopentenyl triflate 5.58 still yields some of the

cyclohexenyl-trapped product 5.55 or 5.58. Lastly, during exploration of these reactions, we
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observed that these 2- or 6- substituted cyclic substrates tend to ionize much more easily than
the non-substituted cyclohexenyl triflate as predicted computationally (Figure 5.3).
5.10 Conclusion

The user guide presented in this chapter is geared for synthetic chemists both in
academic and industrial settings who are looking to construct C—C bonds via C—H insertion
or Friedel-Crafts chemistry of vinyl cations. Specifically, for those planning syntheses with
limited personal experience of vinyl cation generation and reactivity, we hope that this field
guide will highlight some limitations and successes of different catalytic systems that will
save both time and resources by offering a good starting point for optimizations and a better
guide for retrosynthetic analysis. Additionally, we hope that the new
experiments/computations presented herein shed light on the precise nature of the

rearrangements of differentially substituted vinyl cations as a whole.
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5.11 Experimental Section
5.11.1 Materials and Methods

Unless otherwise stated, all reactions were performed in an MBraun glovebox under
nitrogen atmosphere with < 0.5 ppm O; levels. All glassware and stir-bars were dried in a 160
°C oven for at least 12 hours and dried in vacuo before use. All liquid substrates were either
dried over CaH; or filtered through dry neutral aluminum oxide. Solid substrates were dried
over P,Os. All solvents were rigorously dried before use. Benzene, o-dichlorobenzene, and
toluene were degassed and dried in a JC Meyer solvent system and stored inside a glovebox.
Cyclohexane, fluorobenzene, and n-hexane were distilled over potassium. Chlorobenzene
was distilled over sodium. o-Difluorobenzene was distilled over CaH,. Pentane was distilled
over sodium-potassium alloy. Chloroform was dried over CaH, and stored in a glovebox.
Triethylsilane and triisopropylsilane were dried over sodium and stored inside a glovebox.
Closo-Carborane catalysts were prepared according to literature procedure.’’ [Li] [B(CsFs)s]
and [K]'[B(C¢Fs)s] salts were synthesized according to literature procedure.27 Preparatory
thin layer chromatography (TLC) was performed using Millipore silica gel 60 Fs4 pre-coated
plates (0.25 mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica gel
(230-400 mesh) was used for flash chromatography. AgNOs-Impregnated silica gel was
prepared by mixing with a solution of AgNO; (150% v/w of 10% w/v solution in
acetonitrile), removing solvent under reduced pressure, and drying at 120 °C. NMR spectra
were recorded on a Bruker AV-300 (‘H, "F), Bruker AV-400 (‘H, "°C, "F), Bruker DRX-
500 (‘H), and Bruker AV-500 ('H, "°C). "H NMR spectra are reported relative to CDCls (7.26
ppm) unless noted otherwise. Data for 'H NMR spectra are as follows: chemical shift (ppm),
multiplicity, coupling constant (Hz), integration. Multiplicities are as follows: s = singlet, d =
doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet

of doublet, td = triplet of doublet, m = multiplet. °C NMR spectra are reported relative to
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CDCl; (77.0 ppm) unless noted otherwise. GC spectra were recorded on an Agilent 6850
series GC using an Agilent HP-1 (50 m, 0.32 mm ID, 0.25 mm DF) column. GCMS spectra
were recorded on a Shimadzu GCMS-QP2010 using a Restek XTI-5 (50 m, 0.25 mm ID,
0.25 mm DF) column interface at room temperature. IR Spectra were record on a Perkin
Elmer 100 spectrometer and are reported in terms of frequency absorption (cm™). High
resolution mass spectra (HR-MS) were recorded on a Waters (Micromass) GCT Premier
spectrometer, a Waters (Micromass) LCT Premier, or an Agilent GC EI-MS, and are reported
as follows: m/z (% relative intensity). Purification by preparative HPLC was done on an
Agilent 1200 series instrument with a reverse phase Alltima C;g (5Sm, 25 c¢cm length, 1 cm

internal diameter) column.

5.11.2 Experimental Procedures
5.11.2.1 Preparation of Vinyl Triflate Substrates
The synthesis and spectra of vinyl trifate precursors to the compounds shown in Figures 5.6—

5.10 is reported in Chapter 2 and Chapter 3 as well as a report from our group.”

O oTf
O

3,3-diphenylbut-1-en-2-yl trifluoromethanesulfonate (5.48)

3,3-Diphenylbutan-2-one (750 mg, 3.34 mmol, 1 equiv) was dissolved in anhydrous DCM
(10 mL). 2-chloropyridine (418 mg, 3.68 mmol, 1.1 equiv) was added and the solution was
cooled to 0 °C. To this was added triflic anhydride (1.13 g, 4.10 mmol, 1.2 equiv). The
resulting solution was allowed to warm up to room temperature and stir until for 12 hours.

The reaction was quenched by adding water (30 mL) and diethyl ether (30 mL). The layers
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were separated and the aqueous layer was extracted twice more with ether (2 x 30 mL). The
combined organics were washed with brine, dried over MgSQOy, filtered and concentrated to
give crude product. Purified by silica flash column chromatography (0.2% triethylamine in
hexanes) to give product 5.48 as a yellow oil (130 mg, 11% yield).

'H NMR (500 MHz, CDCl3) & 7.38 — 7.34 (m, 4H), 7.33 — 7.29 (m, 2H), 7.29 — 7.26 (m, 4H),
5.44 (d, J=4.2 Hz, 1H), 4.86 (d, J= 4.3 Hz, 1H), 2.04 (s, 3H).

BC NMR (126 MHz, CDCl3) § 160.9, 143.5, 128.3, 128.1, 127.2, 118.2 (q, 'Je_r= 319.8 Hz),
105.2, 53.4, 26.6.

F NMR (282 MHz, CDCl;) & -74.7.

FTIR (Neat film NaCl): 3061, 3026, 2991, 2927, 1653, 1600, 1494, 1446, 1417, 1405, 1377,
1251, 1208, 1156, 1139, 1095, 1065, 1028, 930, 880, 848, 792, 759, 719, 699.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;7H,sF50:S 356.0694; Found 356.0682.

L om

1-methyl-1,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate (5.51).

In a flame dried roundbottom flask, the 2-methyl-2-phenylcyclohexanone (1.16 g, 6.16 mmol,
1 equiv) was dissolved in THF (13 mL) and cooled to —78 °C. To this solution was added a
solution of LIHMDS (1.16 g, 6.93 mmol, 1.12 equiv) in THF (4 mL). This was stirred for 45
minutes at —78 °C. Finally, a solution of PhNTf, (2.34 g, 6.55 mmol, 1.06 equiv) in THF (6
mL) was added dropwise and the reaction was allowed to warm up to r.t overnight. After the
reaction was done, it was concentrated and then to it was added brine (30 mL) and ethyl
acetate (30 mL). Layers were separated and aqueous was extracted twice more with ethyl
acetate (2 x 30 mL). Combined organics were dried over MgSO4, filtered and concentrated to

yield crude as orange oil. The crude was purified by flash column chromatography
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(0.2:4.8:95 triethylamine:ether:hexanes) to give the pure vinyl triflate 5.51 as colorless oil
(1.63 g, 83% yield).

'H NMR (500 MHz, CDCl3) § 7.35 — 7.32 (m, 4H), 7.26 — 7.22 (m, 1H), 6.00 (td, J=4.1, 1.7
Hz, 1H), 2.30 (ddt, J = 7.0, 4.9, 2.8 Hz, 2H), 2.00 (ddd, J = 13.3, 6.6, 2.8 Hz, 1H), 1.93 —
1.83 (m, 1H), 1.61 (d, /= 1.8 Hz, 3H), 1.60 — 1.55 (m, 1H), 1.51 — 1.40 (m, 1H).

BC NMR (126 MHz, CDCls) & 153.1, 144.5, 128.3, 126.6, 126.3, 118.3, 1182 (q, 'Jer =
319.5 Hz), 43.6, 41.4, 24.9,24.7, 17.9.

F NMR (282 MHz, CDCl;) § —74.9.

FTIR (Neat film NaCl): 3062, 3028, 2979, 2942, 2881, 1601, 1583, 1496, 1458, 1446, 1410,
1248, 1203, 1138, 1032, 1012, 950, 916, 888, 835, 780, 762, 700.

HR-MS (ESI-MS) m/z: [M+NH,]+ Calc’d for C14H;sNF305S 338.1038; Found 338.1029.

OTf

ef

2-methylcyclohex-1-en-1-yl trifluoromethanesulfonate (5.54)
Synthesized according to literature procedures. Spectral data matched those reported in the

literature.”®

OTf

1-cyclopentylideneethyl trifluoromethanesulfonate (5.57)

I-cyclopentylethan-1-one (1000 mg, 8.92 mmol, 1 equiv) was dissolved in anhydrous DCM
(27 mL). 2-chloropyridine (1.11 g, 9.81 mmol, 1.1 equiv) was added and the solution was
cooled to 0 °C. To this was added triflic anhydride (3.02 g, 10.7 mmol, 1.2 equiv). The

resulting solution was allowed to warm up to room temperature and stir until for 12 hours.
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The reaction was quenched by adding saturated aqueous NaHCO; (50 mL) and diethyl ether
(50 mL). The layers were separated and the aqueous layer was extracted twice more with
ether (2 x 50 mL). The combined organics were washed with brine, dried over MgSQO,,
filtered and concentrated to give crude product. Purified by silica flash column
chromatography (0.2:2.8:97 triethylamine:diethyl ether:hexanes) to give product 5.57 as a
colorless oil (725 mg, 33% yield).

'H NMR (500 MHz, CDCls) § 2.44 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.4 Hz, 2H), 2.02 (s, 3H),
1.72 (dq, J=18.5, 7.2 Hz, 4H).

BC NMR (126 MHz, CDCls) & 137.6, 135.9, 118.4 (q, 'Jer = 319.4 Hz), 30.1, 29.9, 26.7,
26.4,17.4.

F NMR (282 MHz, CDCls) 8 -75.2.

FTIR (Neat film NaCl): 2953, 2866, 1721, 1451, 1421, 1212, 1144.

HR-MS (ESI-MS) m/z: [M]" Calc’d for CsH; F305S 244.0381; Found 244.0388.

5.11.2.2 Intermolecular Friedel-Crafts reactions with silylium-carborane
This section outlines procedures used for Figure 5.6. Spectral data and procedures for

compounds 5.18-5.20, 5.22, and 5.24 are reported in the experimental section of Chapter 2.

5.11.2.2.1 General Procedure

In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged with
[Ph;C] THCB,Cl;1]” (0.02 equiv.) and this was dissolved in benzene (enough to make a 0.1
M solution of vinyl triflate). Triethylsilane (1.5 equiv.) along with a magnetic stirring bar
were added to the mixture and was shaken until it turned colorless. At this point, vinyl triflate
(1.0 equiv.) was added to the reaction and it stirred for 0.1-48 hours at 30-75 °C (see

substrates for specific details). Upon completion, the reaction mixture was pushed through a
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short plug of silica gel. Volatiles were removed under reduced pressure. Some substrates
needed further purification by silica column chromatography (see below) or preparative high

pressure liquid chromatography (HPLC).

@
O

5-phenyl-6,7,8,9-tetrahydro-5/-benzo[7]annulene (5.21)

Synthesized according to general procedure 5.11.2.2.1. A dram vial was charged with
[Ph;C] THCB,,Cl;1]” (1.53 mg, 0.002 mmol) and this was dissolved in benzene (1.0 mL).
Triethylsilane (17.4 mg, 0.150 mmol) and a magnetic stirring bar were added respectively to
the mixture and stirred for 10 minutes. Corresponding vinyl triflate (29.2 mg, 0.100 mmol, 1
equiv) was added to the reaction and stirred for 1 hour at 30 °C. The reaction was removed
from the glovebox plugged through silica with ether. Volatiles were removed under reduced
pressure to give product 5.21 in 71% NMR yield. Purified crude product by silica flash
column chromatography (1.5% ether/hexanes) and then further purified by reverse phase
semi-preparative HPLC (98:2 MeCN:water) to give compound 5.21 as colorless oil. *This
sample still has a small amount of impurity remaining.

'H NMR (500 MHz, CDCl3) § 7.34 (t, J = 7.6 Hz, 2H), 7.28 — 7.23 (m, 2H), 7.21 — 7.17 (m,
2H), 7.17 = 7.13 (m, 1H), 7.10 (t, J = 7.3 Hz, 1H), 7.02 (t, /= 7.5 Hz, 1H), 6.66 (d, J = 7.5
Hz, 1H), 4.28 (d, J = 10.0 Hz, 1H), 2.93 (dd, J = 14.1, 10.5 Hz, 1H), 2.78 (dd, J = 14.2, 8.3
Hz, 1H), 2.22 - 2.07 (m, 2H), 2.04 — 1.98 (m, 1H), 1.91 — 1.78 (m, 2H), 1.60 — 1.51 (m, 2H).
PC NMR (126 MHz, CDCl3) § 145.29, 144.70, 142.88, 129.59, 128.49, 128.40, 128.37,
128.25,126.07, 125.95, 49.79, 36.45, 33.92, 30.01, 27.79.

HR-MS (EI-MS) m/z: [M]" Calc’d for C17H 5 222.1409; Found 222.1415.
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1-bromo-4-(1-phenylethyl)benzene (5.23).

Synthesized according to general procedure 5.11.2.2.1. A dram vial was charged with
[Ph;C] THCB,,Cl;1]” (0.8 mg, 0.001 mmol) and this was dissolved in benzene (0.5 mL).
Triethylsilane (8.7 mg, 0.0750 mmol) and a magnetic stirring bar were added respectively to
the mixture and stirred for 10 minutes. Corresponding vinyl triflate 5.16 (16.6 mg, 0.050
mmol, 1 equiv) was added to the reaction and stirred for 1 hour at 30 °C. The reaction was
plugged through silica in the glovebox with hexanes. Volatiles were removed under reduced
pressure to give product 5.23 in 74% NMR yield. Purified crude product by silica flash
column chromatography (hexanes) to give pure compound 5.23.

NMR spectra match those reported in literature.*

5.11.2.3 Intermolecular C—H insertion reactions with silylium-carborane

This section outlines procedures used for Figure 5.7. Spectral data and procedures for
compounds 5.26 and 5.30 are reported in the experimental section of Chapter 2. All 0%
yielding reactions did not show any product by GC-MS or crude NMR when following

general procedure below with appropriate vinyl triflate precursor.

5.11.2.3.1 General Procedure
In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged with
[Ph3;C] THCB,Cl;1]” (0.05 equiv) and this was suspended in cyclohexane (enough to make a

0.1 M solution of vinyl triflate). Triethylsilane (1.5 equiv) along with a magnetic stirring bar
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were added to the mixture and was shaken until it turned colorless. At this point, vinyl triflate
(1.0 equiv) was added to the reaction and it stirred at 30—75 °C (see substrates for specific
details). Upon completion, the reaction mixture was pushed through a short plug of silica gel
inside the glovebox and washed with hexanes. The solution was brought out and volatiles
removed under reduced pressure. Some substrates needed further purification by silica
column chromatography (see below) or preparative high pressure liquid chromatography

(HPLC).

5.27a 5.27b
5-cyclohexyl-6,7,8,9-tetrahydro-5/-benzo[7]annulene (5.27a) and 6-cyclohexyl-6,7,8,9-
tetrahydro-5H-benzo[7]annulene (5.27b)

Synthesized according to general procedure 5.11.2.3.1. A dram vial was charged with
[Ph;C] THCB,,Cl;1]” (3.8 mg, 0.005 mmol) and this was dissolved in benzene (0.5 mL).
Triethylsilane (17.4 mg, 0.150 mmol) and a magnetic stirring bar were added respectively to
the mixture and stirred for 10 minutes. Corresponding vinyl triflate (29.2 mg, 0.10 mmol, 1
equiv) was added to the reaction and stirred for 0.5 hours at 30 °C. The reaction removed
from the glovebox and plugged through silica with ether. Volatiles were removed under
reduced pressure to give products 5.27a and 5.27b in 29% and 22% NMR yield respectively.
Purified crude product by silica flash column chromatography (hexanes) to give a mixture of
isomers 5.27a and 5.27b. Separation of regioisomers was performed with semi-preparative

HPLC (95:5 MeCN:water) to give pure 5.27a and 5.27b as colorless oils.

Characterization for 5.27a
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'H NMR (500 MHz, CDCl3) § 7.13 — 6.96 (m, 4H), 3.03 — 2.93 (t, J = 13.0 Hz, 1H), 2.66 (dd,
J=14.5, 6.4 Hz, 1H), 2.45 (td, J = 6.9, 6.5, 3.4 Hz, 1H), 2.07 — 1.96 (m, 2H), 1.96 — 1.86 (m,
2H), 1.83 — 1.70 (m, 3H), 1.66 — 1.52 (m, 3H), 1.48 — 1.36 (m, 1H), 1.25 (ddd, J = 29.6, 14.7,
8.1 Hz, 2H), 1.17 — 1.06 (m, 2H), 0.96 — 0.84 (m, 1H), 0.79 (dd, J = 12.0, 3.3 Hz, 1H).

BC NMR (126 MHz, CDCl;) & 145.1, 141.9, 130.8, 130.1, 125.7, 125.4, 53.1, 36.5, 32.8,
31.1,29.1,28.4, 26.6, 26.5, 26.1.

FTIR (Neat film NaCl): 3059, 3014, 2920, 2850, 2669, 1490, 1447, 1368, 1318, 1266, 1211,
1188, 1159, 1106, 1080, 1033, 977, 939, 756, 746, 549.

HR-MS (ESI-MS) m/z: [M]" Calc’d for Ci7Ha4 228.1878; Found 228.1876.

Characterization for 5.27b

'H NMR (500 MHz, CDCl3) 8 7.16 — 7.12 (m, 4H), 2.91 — 2.75 (m, 3H), 2.70 (d, J = 14.1 Hz,
1H), 2.01 — 1.95 (m, 1H), 1.94 — 1.88 (m, 1H), 1.85 — 1.62 (m, 6H), 1.51 — 1.41 (m, 1H), 1.40
—1.18 (m, 6H), 1.16 — 1.07 (m, 1H).

BC NMR (126 MHz, CDCl;) & 143.2, 142.4, 129.1, 128.7, 125.9, 125.8, 43.8, 40.2, 36.4,
35.5,29.7,27.4, 26.85, 26.83, 26.80.

FTIR (Neat film NaCl): 3062, 3016, 2919, 2849, 1603, 1493, 1449, 1351, 1050, 927, 909,
894, 749, 734, 726.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;7H»4 228.1878; Found 228.1873.
5.11.2.4 Intermolecular Friedel-Crafts reactions with LiF,,
This section outlines procedures used for Figure 5.8 and 5.9. 0% yielding reactions (5.31

and 5.35) did not show any formation of desired product by NMR or GC-MS.

5.11.2.4.1 General Procedure
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In a well kept glovebox, (H,0O, O, < 0.5 ppm), a dram vial was charged with TritylF, (0.05
equiv, 0.0025 mmol). Benzene (0.5 mL) was added followed by LiHMDS (12.5 mg, 0.075
mmol, 1.5 equiv). Vinyl triflate (0.050 mmol, 1.0 equiv) was added and the reaction was
allowed to stir at 30—80 °C. The reaction progress was closely monitored by TLC and/or GC.
Upon completion of reaction, the mixture was diluted with ether and pushed through a plug
of silica gel in a pipette. This was concentrated to give the crude material. The crude material

was purified by silica flash chromatography to give the pure product.

(
C

1-phenylcyclohex-1-ene (5.32)

Synthesized according to general procedure 5.11.2.4.1. In a well kept glovebox, (H,O, O, <
0.5 ppm), a dram vial was charged with TritylFy (0.05 equiv, 0.0025 mmol). Benzene (0.5
mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). cyclohexenyl
triflate (11.5 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80
°C for 24 hours. At this point, the mixture was diluted with ether and pushed through a plug
of silica gel in a pipette. This was concentrated to give the 5.32 in 16% NMR yield. The
crude material was purified by silica flash chromatography (hexanes) to give the pure product

5.32 as colorless oil. Spectral data matched those reported in the literature.*

®
O

1-phenylcyclohept-1-ene (5.33)
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Synthesized according to general procedure 5.11.2.4.1. In a well kept glovebox, (H,0, O, <
0.5 ppm), a dram vial was charged with TritylFy (0.05 equiv, 0.0025 mmol). Benzene (0.5
mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). cycloheptenyl
triflate (12.2 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 50
°C for 2 hours. At this point, the mixture was diluted with ether and pushed through a plug of
silica gel in a pipette. This was concentrated to give the 5.33 in 60% NMR yield. The crude
material was purified by silica flash chromatography (hexanes) to give the pure product 5.33
as colorless oil. This material also contained ~4% 1-benzylcyclohex-1-ene from a vinyl

cation rearrangement. Spectral data matched those reported in the literature.>

(
L

9-phenyl-6,7-dihydro-5/-benzo[7]annulene (5.34)

Synthesized according to general procedure 5.11.2.4.1. In a well kept glovebox, (H,0, O, <
0.5 ppm), a dram vial was charged with TritylFy (0.05 equiv, 0.0025 mmol). Benzene (0.5
mL) was added followed by LiIHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). benzosuberonyl
triflate (14.6 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 70
°C for 2 hours. At this point, the mixture was diluted with ether and pushed through a plug of
silica gel in a pipette. This was concentrated to give the 5.34 in 65% NMR yield. The crude
material was purified by silica flash chromatography (1% ether/hexanes) to give the pure

product 5.34 as colorless oil. Spectral data matched those reported in the literature.’’
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1-bromo-4-(1-phenylvinyl)benzene (5.35)

Synthesized according to general procedure 5.11.2.4.1. In a well kept glovebox, (H,O, O, <
0.5 ppm), a dram vial was charged with TritylFy (0.05 equiv, 0.0025 mmol). Benzene (0.5
mL) was added followed by LIHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). Vinyl triflate 5.16
(16.6 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 30 °C for
2 hours. At this point, the mixture was diluted with ether and pushed through a plug of silica
gel in a pipette. This was concentrated to give product 5.35 in 87% NMR yield. The crude
material was purified by silica flash chromatography (hexanes) to give the pure product 5.35

as colorless oil. Spectral data matched those reported in the literature.”

NS
1.64:1 E:Z

(2)-but-2-en-2-ylbenzene (5.36)

Synthesized according to general procedure 5.11.2.4.1. In a well kept glovebox, (H,O, O, <
0.5 ppm), a dram vial was charged with TritylFy (0.05 equiv, 0.0025 mmol). Benzene (0.5
mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5 equiv). But-2-en-2-yl
triflate (10.2 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 30
°C for 20 hours. At this point, the mixture was diluted with ether and pushed through a plug
of silica gel in a pipette. This was concentrated to give product 5.36 in 29% NMR yield
(18:11 E:Z). These compounds were somewhat volatile, so no further purification or attempts

to separate isomers was performed. Spectral data matched those reported in the literature.>
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2-(1-(4-bromophenyl)vinyl)-1,4-dimethylbenzene (5.38)

Synthesized according to a modified general procedure 5.11.2.4.1. In a well kept glovebox,
(H20, O, < 0.5 ppm), a dram vial was charged with Trityl-F» (0.05 equiv, 0.0025 mmol).
Solvent (0.5 mL) was added followed by LIHMDS (12.5 mg, 0.075 mmol, 1.5 equiv) and p-
xylene (26.5 mg, 0.250 mmol, 5 equiv). Vinyl triflate 5.16 (16.6 mg, 0.050 mmol, 1.0 equiv)
was added and the reaction was allowed to stir at 30 °C until the reaction stopped progressing
as seen by GC-FID. At this point, the mixture was diluted with ether and pushed through a
plug of silica gel in a pipette. This was concentrated to give product 5.38 in XX% NMR yield
(varies with solvent, see Figure 5.9). The crude product was purified by silica flash column
chromatography (hexanes) to give pure product 5.38 as colorless oil.

'H NMR (400 MHz, CDCls) § 7.41 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.08 (d, J =
1.2 Hz, 2H), 7.03 (s, 1H), 5.75 (d, J = 1.3 Hz, 1H), 5.21 (d, J = 1.3 Hz, 1H), 2.35 (s, 3H),
2.00 (s, 3H).

C NMR (101 MHz, CDCl3) § 148.5, 140.8, 139.6, 135.2, 132.8, 131.4, 130.6, 130.1, 128.4,
128.1, 121.5, 115.2, 20.9, 19.6.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C 6H;sBr 286.0357; Found 286.0353.

e
A

1-(1-(4-bromophenyl)vinyl)-3-(trifluoromethyl)benzene (5.39)
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Attempted to be synthesized according to general procedure 5.11.2.4.1 starting with vinyl
triflate 5.16 and using trifluorotoluene as solvent yielded no 5.39 as product. Only 4-

bromophenylacetlyene 5.40 was observed in the GC-FID and crude NMR.

(7

1-(2-methyl-1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)-3-(trifluoromethyl)benzene
(5.42)

Synthesized according to a modified general procedure 5.11.2.4.1. In a well kept glovebox,
(H20, Oz < 0.5 ppm), a dram vial was charged with TritylF, (0.05 equiv, 0.0025 mmol).
Trifluorotoluene (0.5 mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5
equiv). Vinyl triflate 5.41 (17.4 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was
allowed to stir at 30 °C for 2 hours. At this point, the mixture was diluted with ether and
pushed through a plug of silica gel in a pipette. This was concentrated to give product 5.42 in
83% NMR yield. The crude material was purified by silica flash chromatography (hexanes)
to give the pure product 5.35 as colorless oil.

'H NMR (500 MHz, CDCl3) & 7.55 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.44 — 7.35
(m, 2H), 7.28 (d, J= 7.6 Hz, 1H), 7.24 (d, J= 8.1 Hz, 2H), 1.82 (s, 3H), 1.81 (s, 3H).

BC NMR (126 MHz, CDCl3) & 146.1, 143.1, 134.8, 134.2, 133.2, 130.5 (q, Jc_r = 32.3 Hz),
130.1, 128.6 (q, *Jer = 32.3 Hz), 128.6, 126.4 (q, J = 3.7 Hz), 125.1 (q, 'Jer = 3.8 Hz),
124.2 (q, 'Jer=273.2 Hz), 124.1 (q, 'Jer = 273.2 Hz), 123.3 (q, 'Je_r = 3.9 Hz), 22.5.

F NMR (376 MHz, CDCl;) & -62.4, -62.5.

HR-MS (EI-MS) m/z: [M]" Calc’d for C1gsH 4Fs 344.1000; Found 344.1012.

5.11.2.5 Intermolecular C—-H insertion reactions with LiF,,
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This section outlines procedures used for Figure 5.9. All 0% yielding reactions did not show
any product by GC-MS or crude NMR when following general procedure below with

appropriate vinyl triflate precursor.

5.11.2.5.1 General Procedure

In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged with TritylF, (0.05
equiv, 0.0025 mmol). Cyclohexane (0.5 mL) was added followed by LiHMDS (12.5 mg,
0.075 mmol, 1.5 equiv). Vinyl triflate (0.050 mmol, 1.0 equiv) was added and the reaction
was allowed to stir at 30—80 °C. The reaction progress was closely monitored by TLC and/or
GC. Upon completion of reaction, the mixture was diluted with ether and pushed through a
plug of silica gel in a pipette. This was concentrated to give the crude material. The crude

material was purified by silica flash chromatography to give the pure product.

@
O

9-cyclohexyl-6,7-dihydro-5/-benzo[7]annulene (5.45)

Synthesized according to a modified general procedure 5.11.2.5.1. In a well kept glovebox,
(H20, O, < 0.5 ppm), a dram vial was charged with TritylF, (2.3 mg, 0.05 equiv, 0.0025
mmol). Cyclohexane (2.0 mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5
equiv). benzosuberonyl triflate (14.6 mg, 0.050 mmol, 1.0 equiv) was added and the reaction
was allowed to stir at 70 °C for 1 hour. At this point, the mixture was diluted with ether and
pushed through a plug of silica gel in a pipette. This was concentrated to give the crude
material in 21% NMR yield. The crude material was purified by silica flash chromatography

(hexanes) to give product 5.45.
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"H NMR (500 MHz, CDCls) § 7.25 — 7.21 (m, 2H), 7.19 — 7.12 (m, 2H), 5.84 (td, J= 7.3, 1.4
Hz, 1H), 2.50 (t, J = 7.1 Hz, 2H), 2.37 (t, J = 11.5 Hz, 1H), 2.02 (p, J = 7.1 Hz, 2H), 1.81 —
1.71 (m, 5H), 1.69 (d, J= 13.1 Hz, 1H), 1.37 — 1.09 (m, 6H).

3C NMR (500 MHz, CDCL3) & 147.1, 141.9, 141.4, 128.4, 126.2, 125.9, 125.8, 122.1, 43.5,
34.5,33.0, 32.0, 26.9, 26.6, 24.2.

HR-MS (EI-MS) m/z: [M]" Calc’d for C17Ha; 226.1721; Found 226.1711.

5.11.2.6 Vinyl Cation Rearrangement Reactions

In this section, procedures and data pertinent to Figures 5.10 and 5.11 are shown.

=0

1.25:1dr.

(15,25)-1-methyl-2-phenyl-2,3-dihydro-1//-indene (5.49)

In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was charged with
[Ph;C] THCB,,Cl;1]” (0.8 mg, 0.001 mmol, 0.05 equiv) and this was suspended in
cyclohexane (0.5 mL). Triethylsilane (1.5 equiv) along with a magnetic stirring bar were
added to the mixture and was shaken until it turned colorless. At this point, vinyl triflate 5.48
(17.8 mg, 0.050 mmol, 1.0 equiv) was added to the reaction and it stirred at 60 °C for 12
hours. Upon completion, the reaction mixture was pushed through a short plug of silica gel
inside the glovebox and washed with hexanes. The solution was brought out and volatiles
removed under reduced pressure. Reaction was purified by silica flash chromatography
(hexanes) to give 5.49 as a colorless oil (6.1 mg, 59% yield.). This was a 1.25:1 mixture of
diastereomers of the cis and trans indanes. Spectral data for the mixture matched reported

spectral data for pure diastereomers.***’
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O O
9, 9,

5.52 5.53
(1-(cyclopent-1-en-1-yl)vinyl)benzene (5.52) and (2)-(1-(cyclopent-2-en-1-
ylidene)ethyl)benzene (5.53)

Synthesized according to a modified general procedure 5.11.2.5.1. In a well kept glovebox,
(H20, O, < 0.5 ppm), a dram vial was charged with TritylF, (2.3 mg, 0.05 equiv, 0.0025
mmol). Benzene (0.5 mL) was added followed by LiHMDS (12.5 mg, 0.075 mmol, 1.5
equiv). Triflate 5.51 (16.0 mg, 0.050 mmol, 1.0 equiv) was added and the reaction was
allowed to stir at 70 °C for 1 hour. At this point, the mixture was diluted with ether and
pushed through a plug of silica gel in a pipette. This was concentrated to give the crude
material in 13% and 9% NMR yield of 5.52 and 5.53 respectively. The crude material was
purified by silica flash chromatography (hexanes) to give pure product 5.52 and pure product
5.53 as colorless oils.

Characterization data for 5.52

'H NMR (500 MHz, CDCl3) & 7.36 — 7.23 (m, 5H), 5.58 (d, J= 5.9 Hz, 1H), 5.16 (d, J = 5.8
Hz, 1H), 5.08 (d, J = 5.8 Hz, 1H), 2.60 (d, J = 7.6 Hz, 3H), 2.44 (d, /= 7.5 Hz, 3H), 1.99 (q,
J=17.4 Hz, 2H).

BC NMR (126 MHz, CDCLs) & 146.6, 143.5, 142.2, 131.4, 128.5, 127.8, 127.1, 113.6, 33.5,
32.9,23.3.

FTIR (Neat film NaCl): 3079, 3056, 3023, 2951, 2926, 2867, 2844, 1619, 1588, 1572, 1493,
1464, 1311, 1027, 957, 886, 828, 772, 698.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C3H4 170.1096; Found 170.1099.

Characterization data for 5.53
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10:1 mix of Z:E isomers. Major Isomer reported below

'H NMR (500 MHz, CDCl3) & 7.31 (t, J = 7.6 Hz, 3H), 7.27 — 7.22 (m, 3H), 7.21 — 7.17 (m,
1H), 6.35 — 6.29 (m, 1H), 6.13 — 6.01 (m, 1H), 2.64 — 2.60 (m, 2H), 2.59 — 2.55 (m, 2H), 2.05
(s, 3H).

C NMR (126 MHz, CDCl3) & 144.2, 143.7, 137.7, 132.2, 128.1, 127.9, 125.9, 124.9, 31.9,
28.6, 21.0.

FTIR (Neat film NaCl): 3076, 3054, 3022, 2923, 2846, 1598, 1572, 1492, 1442, 1375, 1260,
1142, 1080, 1062.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C3H4 170.1096; Found 170.1094.

Ph
@/ : Ph
5.55 5.56

6-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (5.55) and (1-cyclopentylideneethyl)benzene
(5.56)

(From vinyl triflate 5.54). Synthesized according to a modified general procedure 5.11.2.5.1.
In a well kept glovebox, (H,0, O, < 0.5 ppm), a dram vial was charged with TritylF (4.6
mg, 0.05 equiv, 0.005 mmol). Benzene (1.0 mL) was added followed by LIHMDS (25.1 mg,
0.150 mmol, 1.5 equiv). Triflate 5.54 (24.4 mg, 0.100 mmol, 1.0 equiv) was added and the
reaction was allowed to stir at 80 °C for 1 hour. At this point, the mixture was diluted with
ether and pushed through a plug of silica gel in a pipette. This was concentrated to give the
crude material in 43% and 39% NMR yield of 5.55 and 5.56 respectively. These compounds
were unable to be separated by neither silica column chromatography nor reverse phase

HPLC.

427



(From vinyl triflate 5.57). Synthesized according to a modified general procedure 5.11.2.5.1.
In a well kept glovebox, (H,0, O, < 0.5 ppm), a dram vial was charged with TritylF (4.6
mg, 0.05 equiv, 0.005 mmol). Benzene (1.0 mL) was added followed by LIHMDS (25.1 mg,
0.150 mmol, 1.5 equiv). Triflate 5.57 (24.4 mg, 0.100 mmol, 1.0 equiv) was added and the
reaction was allowed to stir at 80 °C for 15 minutes. At this point, the mixture was diluted
with ether and pushed through a plug of silica gel in a pipette. This was concentrated to give
the crude material in 5% and 62% NMR yield of 5.55 and 5.56 respectively. Crude material
was purified by flash column chromatography to give a small amount of pure 5.56 for
characterization.

Characterization of 5.56

*Material contains ~5% of the disubstituted olefin isomer as well.

'H NMR (500 MHz, CDCl3) § 7.35 — 7.29 (m, 2H), 7.24 (dd, J = 8.2, 1.5 Hz, 2H), 7.22 —
7.17 (m, 1H), 2.37 (ddq, J = 7.3, 5.8, 1.5 Hz, 2H), 2.26 (ddq, J = 8.7, 5.2, 1.8 Hz, 2H), 2.01
(p,J=1.7Hz, 3H), 1.74 (p, /= 7.0 Hz, 2H), 1.61 (p, J= 7.0 Hz, 2H).

BC NMR (126 MHz, CDCl;) & 144.9, 140.3, 127.8, 127.7, 126.2, 125.6, 32.6, 31.5, 27.4,
26.4,20.9.

FTIR (Neat film NaCl): 3055, 3021, 2951, 2936, 2834, 1598, 1492, 1375, 1279, 1230, 1130,
1061, 1048, 1026, 951, 761.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C;3H6 172.1252; Found 172.1248.

Because we could not purify 5.55 from the reaction mixtures, an authentic sample was
prepared via a Suzuki coupling. In a 2 dram vial were combined Pd(dppf)Cl, (8.99 mg, 0.012
mmol, 0.06 equiv), KF (35.7 mg, 0.614 mmol, 3 equiv) and phenylboronic acid (27.5 mg,
0.225 mmol, 1.1 equiv). To this was added dry, degassed THF (1 mL) and vinyl triflate 5.54

(50.0 mg, 0.205 mmol, 1.0 equiv). The vial was sealed and heated at 45 °C for 2 days. At this
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point, the reaction was plugged through silica with ether and concentrated to give crude
product. The crude was purified by silica flash colum chromatography to give pure 5.55 as
colorless oil (8.5 mg, 24% yield). Notably, the spectral data for this pure sample matched
with crude spectral data for experiments outlined above.

Characterization of 5.56

'H NMR (500 MHz, CDCl3) § 7.31 (t,J = 7.5 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.14 (d, J =
7.6 Hz, 2H), 2.30 — 2.18 (m, 2H), 2.07 (s, 1H), 1.74 — 1.65 (m, 3H), 1.55 (s, 3H).

BC NMR (126 MHz, CDCl3) & 144.4, 132.3, 129.1, 128.4, 127.9, 125.8, 31.9, 31.6, 23.5,

23.1,20.7.
Cy
f :\/ :CV
5.58 5.59

2-methyl-1,1'-bi(cyclohexane) (5.58) and (1-cyclopentylethyl)cyclohexane (5.59)
**Reactions were performed with triisopropylsilane in place of triethylsilane in order to make
GC-FID analysis easier.

(From vinyl triflate 5.54). In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was
charged with [Ph;C] [HCB;Cl;;]” (0.8 mg, 0.001 mmol, 0.05 equiv) and this was suspended
in cyclohexane (0.5 mL). Triisopropylsilane (11.9 mg, 0.075 mmol, 1.5 equiv) along with a
magnetic stirring bar were added to the mixture and was shaken until it turned colorless. At
this point, vinyl triflate 5.54 (12.2 mg, 0.050 mmol, 1.0 equiv) was added to the reaction and
it stirred at 30 °C for 12 hours. Upon completion, the reaction mixture was pushed through a
short plug of silica gel inside the glovebox and washed with hexanes. The solution was
brought out and volatiles removed under reduced pressure to give a mixture of 5.59 and the
diastereoemers of 5.58 as a colorless oil (7.9 mg, 87% yield.). These compounds could not be

separated from each other. GC overlays of this reaction, the next reaction and authentic
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samples will be shown below. GC-FID shows a relative ratio of 2:1 for 5.58:5.59 (area of
both diastereomers of 5.58 were added) and an equivalent extinction coefficient for all three

compounds is assumed.

FID1 A, (08-15-20-1 2020-09-15 16-13-57\SP-20-0149A-Gude D)
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Figure 5.13 GC FID spectrum of crude reaction mixture showing ~2:1 ratio of 5.58 (left and
right) : 5.59 (middle)

(From vinyl triflate 5.57). In a well kept glovebox, (H,O, O, < 0.5 ppm), a dram vial was
charged with [Ph;C] [HCB,;Cl;;]” (0.8 mg, 0.001 mmol, 0.05 equiv) and this was suspended
in cyclohexane (0.5 mL). Triisopropylsilane (11.9 mg, 0.075 mmol, 1.5 equiv) along with a
magnetic stirring bar were added to the mixture and was shaken until it turned colorless. At
this point, vinyl triflate 5.54 (12.2 mg, 0.050 mmol, 1.0 equiv) was added to the reaction and
it stirred at 30 °C for 12 hours. Upon completion, the reaction mixture was pushed through a
short plug of silica gel inside the glovebox and washed with hexanes. The solution was
brought out and volatiles removed under reduced pressure to give a mixture of 5.59 and the
diastereoemers of 5.58 as a colorless oil (6.9 mg, 77% yield.). These compounds could not be
separated from each other. GC overlays of this reaction, the next reaction and authentic
samples will be shown below. GC-FID shows a relative ratio of 1.76:1 for 5.58:5.59 (area of
both diastereomers of 5.58 were added) and an equivalent extinction coefficient for all three

compounds is assumed.

430



FID1 A, (09-15-20-1 2020-09-15 16-13.57\5P-20-01498-cude D)

1207
1007 g .
3 s g
s0- g H
Lo
40
20|
o
; : v :
& o7 55 sbs

# Time Area Height Width __Area% Symmetry

[1] see4 | 51.9 | 50.4 0.0132_| 28.768 | 1.043_ |
[2]
(EN

579 | 65 | 76.6 0.0139 | 36.048 | 0942 |
5842 | 63.5 | 68.8 0.01%6 | 35184 | 113 |

File
[ GC-File [SP-20-01498-rude.D

Figure 5.14 GC FID spectrum of crude reaction mixture showing ~1.76:1 ratio of 5.58 (left

and right) : 5.59 (middle)

Cy

o

2-methyl-1,1'-bi(cyclohexane) (5.58)

Because this compound could not be purified from the reaction mixtures above, an authentic
sample was prepared. Magnesium (1.716 g, 70.6 mmol, 2 equiv) was added to a to a 500 mL
3-neck flask equipped with a reflux condenser. This was suspended in ether (140 mL) and
bromocyclohexane (6.91 g, 42.4 mmol, 1.2 equiv) was slowly added. Solution was initiated
with heat gun (Turns cloudy upon initiation) and stirred for 2 hours at room temperature.
Reaction was cooled to 0 and 2-methylcyclohexanone (3.96 g, 35.3 mmol, 1 equiv) in ether
(25 mL) was added dropwise 30 minutes via addition funnel. Upon full addition, the ice bath
was removed and reaction stirred overnight at room temperature. Reaction was quenched
with sat. NH4CI (100 mL). The layers were separated and aqueous was extracted with ether
(3 x 100 mL). Combined organics were washed with brine, dried over MgSQy, filtered and
concentrated to give crude alcohol. This was purified by silica flash column chromatography
(5% ether/hexane to 15% ether/hexane) to give pure alcohol as a mixture of diastereomers

(2.20 g, 32% yield, ca. 5:1 d.r.)
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To a 100 mL roundbottom flask was added triphenylsilane (3.50 g, 13.4 mmol, 1.2
equiv) and dissolved in DCM (48 mL). The alcohol (2.20 g, 11.2 mmol, 1 equiv) was added
followed by trifluoroacetic acid (7.67 g, 67.2 mmol, 6 equiv) and the reaction was stirred at
room temperature for 48 hours. At this point, potassium carbonate (10.84 g) was added and
the reaction mixture was filtered and concentrated. Crude reaction mixture was purified by
silica flash column chromatography using AgNOs impregnated silica gel (hexanes) to give
pure 5.58 as a colorless oil (1.10 g, 54% yield, ca. 1.25:1 d.r.)

Diagnostic peaks: one isomer 'H NMR (400 MHz, CDCl3) & 0.86 (d, J = 6.5 Hz, 3H)

other isomer '"H NMR (400 MHz, CDCl;) & 0.81 (d, J = 7.2 Hz, 3H).

Carbon peaks for both isomers: BC NMR (101 MHz, CDCls) 6 49.8, 45.9, 39.4, 38.5, 36.5,
34.1, 34.0, 32.0, 31.1, 30.4, 28.5, 27.4, 27.22, 27.13, 27.10, 26.84, 26.80, 26.63, 26.61, 26.4,
23.8,20.6, 20.1, 12.0.

FTIR (Neat film NaCl): 2919, 2850, 2669, 1446, 1377, 1348, 1311, 1266, 1176, 1065, 1032,
1012, 981, 892, 849.

HR-MS (EI-MS) m/z: [M]" Calc’d for Ci3Ha4 180.1878; Found 180.1887.

O

5.59

(1-cyclopentylethyl)cyclohexane (5.59)

Because this compound could not be purified from the reaction mixtures above, an authentic
sample was prepared. Magnesium (743 mg, 30.6 mmol, 2 equiv) was added to a to a 500 mL
3-neck flask equipped with a reflux condenser. This was suspended in ether (62 mL) and
bromocyclohexane (2.99 g, 18.4 mmol, 1.2 equiv) was slowly added. Solution was initiated
with heat gun (Turns cloudy upon initiation) and stirred for 2 hours at room temperature.

Reaction was cooled to 0 and 1-cyclopentylethan-1-one (1.72 g, 15.3 mmol, 1 equiv) in ether
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(15 mL) was added dropwise 30 minutes via addition funnel. Upon full addition, the ice bath
was removed and reaction stirred overnight at room temperature. Reaction was quenched
with sat. NH4CI (40 mL). The layers were separated and aqueous was extracted with ether (3
x 40 mL). Combined organics were washed with brine, dried over MgSO,, filtered and
concentrated to give crude alcohol. This was purified by silica flash column chromatography
(5% ether/hexane to 15% ether/hexane) to give pure alcohol as colorless oil (330 mg, 11%

yield)

To a 25 mL roundbottom flask was added triphenylsilane (525 mg, 2.02 mmol, 1.2
equiv) and dissolved in DCM (7.3 mL). The alcohol (330 mg, 1.68 mmol, 1 equiv) was added
followed by trifluoroacetic acid (1.15 g, 10.1 mmol, 6 equiv) and the reaction was stirred at
room temperature for 48 hours. At this point, potassium carbonate (1.63 g) was added and the
reaction mixture was filtered and concentrated. Crude reaction mixture was purified by silica
flash column chromatography using AgNO; impregnated silica gel (hexanes) to give pure

5.59 as a colorless oil (145 mg, 48% yield).

"H NMR (500 MHz, CDCl3) & 1.79 — 1.69 (m, 4H), 1.69 — 1.63 (m, 2H), 1.62 — 1.55 (m, 3H),
1.54 — 1.41 (m, 3H), 1.41 — 1.34 (m, 1H), 1.25 (dt, J = 12.5, 3.3 Hz, 1H), 1.22 — 1.02 (m, 6H),

0.94 (qd, J= 12.4, 3.5 Hz, 1H), 0.78 (d, J = 6.9 Hz, 3H).

C NMR (126 MHz, CDCl;) § 44.1, 43.9, 41.2, 32.2, 31.3, 31.1, 27.2, 27.0, 26.9, 26.8, 25.3,

25.2.

FTIR (Neat film NaCl): 2922, 2867, 2851, 2667, 1448, 1379, 1349, 1318, 1293, 1264, 1172,
1154, 1054, 1034, 999, 890, 506.

HR-MS (EI-MS) m/z: [M]+ Calc’d for C,3Ha4 180.1878; Found 180.1874.
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Figure 5.15 GC FID spectrum of crude reaction mixture showing overlay of authentic 5.58

(top), authentic 5.59 (2nd), and reaction mixtures from mechanistic studies (bottom spectra)
5.11.3 Computational Methods

5.11.3.1 General computational methods

All calculations were carried out with the Gaussian 16°° software package. Geometries,
Hirshfeld charges, molecular orbitals, and energies of ground states and transition states were
calculated with the ©®B97X-D’ functional and the 6-311+G(d,p) basis set. A CPCM>®
implicit solvent model in benzene. Frequency calculations were carried out at the same level
of theory to ensure that stationary points were truly minima or saddle points on the potential
energy surface. Intrinsic reaction coordinate (IRC) calculations were carried out at this level
of theory to confirm all transition states connected reactants and products. Conformational
searches were carried out using the CREST conformer-rotamer ensemble sampling tool®,

version 2.7.1 with XTB version 6.2 RC2 (SAW190805)*.

5.11.3.2 Computed Energies

Imaginary

Structure E(benzene) AG(benzene) | G(benzene) | AH(benzene) | H(benzene) | Frequency
cyclohexenyl-Tf -1604.55038 0.223545 -1604.326836 0.302283 -1604.248098
cyclohexenyl-cation -233.727802 0.104736 -233.623066 0.140212 -233.587589
6-sub-Tf -1643.867363 0.253457 -1643.613906 0.331883 -1643.535479
6-sub-cation -273.061978 0.129847 -272.932131 0.169466 -272.892512
2-sub-Tf -1643.872889 0.25352 -1643.619368 0.331761 -1643.541128
2-sub-cation -273.052173 0.130712 -272.921462 0.170417 -272.881756

TS-contraction -273.06187 0.131253 -272.930617 0.169243 -272.892628 -77.984
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cont-allylic -273.10613 0.130781 -272.975349 0.169995 -272.936135
TS-6-hydride-shift -273.018741 0.125856 -272.892886 0.165004 -272.853738 -1071.226
6-methyl-allylic -273.127673 0.13347 -272.994203 0.171214 -272.956459
TS-6-methyl-shift -272.991523 0.129674 -272.861849 0.167713 -272.823811 -321.053
1-methyl-allylic -273.114294 0.1321 -272.982194 0.170516 -272.943777
benzene -232.222753 0.073635 -232.149119 0.106384 -232.116369
TS1 -273.047101 0.130119 -272.916982 0.169459 -272.877642 -190.036
IN1 -273.054903 0.127843 -272.92706 0.1692 -272.885703
IN2? -505.328554 0.231148 -505.097406 0.280839 -505.047715
IN2° -505.324053 0.230046 -505.094008 0.280077 -505.043976
TS2* -505.326209 0.230625 -505.095584 0.27972 -505.046489 -32.837
TS2" -505.319301 0.228734 -505.090567 0.278902 -505.040399 -31.653

5.11.3.3 Cartesian Coordinates
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cyclohexenyl-Tf

oot T T ETHITITOQOITI IO TTOZITTOQOROONNOTITOOOOOT T OIZT T O

4.131056
4.341455
4.745042
4.482628
5.549810
4.274421
3.675372
2.223230
1.826521
2.649542
2.465679
2.349538
0.398856
-0.432669
-0.055381
-1.838486
-2.817605
-2.659998
-3.057341
-1.618810
-3.229933
-4.465765
-4.832838
-4.427803
-5.186315
-1.939796
-1.878294
-2.501663
-0.934128
-0.238676
-1.095359
-0.476162
0.997184
1.508396
3.753009
4.073372

0.920588
-0.446815
-1.501529
-2.391259
-1.806647
-0.917368

0.349434

1.588774

-0.026330
0.735461
0.208134

-1.406438

-1.463560

-2.166335

-1.721020

-1.366027

-0.581122
0.052925

-0.461747
1.094250

-0.339123
0.549652
0.479186
0.231657
-1.254239

-1.172883

-0.233518

-1.276188

-1.991962

-0.818795
0.126203

-0.744983

-1.600233

-2.665580

-2.534971

-3.585768

-2.804702
2.312157
3.071890
2.305855

2.685521

-1.765129

-2.781492

-1.173008

clohexenyl-cation

0.933050
1.222889
0.209000
0.249076
0.338971
-1.227080
-1.148288
-0.530723

0.851973
0.093974
1.723249
0.297467
0.074726
1.058772
-0.963888
-0.811076
0.174250
1.242292
2.192022
1.385809
0.343135
-0.632701
-2.003293
-0.260595
0.275652
2.113069
2.504236
2.427353
2.562877
-0.424727
-0.018199
-1.513785
-0.163459
-0.535873
-1.619194
-0.346246
-0.131898
0.018261
-0.615462
1.308528
-0.226932
-1.521969
-1.217614
-1.826238

0.297451
-0.305383
0.131127
-0.498302
1.172513
0.015429
-0.050055
-0.116846
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2.297065
2.034594
-1.542630
-0.377367
-0.749615
0.896175
1.681183

-sub-Tf

3.722532
4.019547
3.563758
2.206874
1.657304
2.219980
1.973742
2461622
0.911420
2.392040
1.729987
0.334606
-0.913105
-1.155334
-0.888200
-0.976306
-2.327796
-3.266511
-2.072580
-2.495049
0.726997
0.792662
0.974360
1.473677
-1.367292
-2.324419
-0.587692
-1.434513
-2.231584
-2.179424
-3.384121
-1.994561
1.685524
3.540879
4.270514
5.087866
3.507736
4.097511

-0.773150
-0.490541
-2.109734
1.235128
2.224534
0.947388
1.625240

-0.348172
0.630089
0.070090

-0.565355

-0.831469

-0.641735

-1.850771

-1.684764

-2.015453

-2.759214
0.231382

-1.462362

-0.593326
-0.279589
0.557205

2.404496
2.739950
2.273784
2.391352
3.820466
2.867374

3.956726

2441671

2.544915

2.757091

2.317938
2.374967
3.839503

-1.744272

-2.875603

-1.142369

-1.920793

-0.817006
0.854664

-0.684163
0.852171
1.579224
0.036258

0.673387
-1.109108
-0.003427
-1.396131

0.008650

1.386516
-0.064427

-0.915950
0.217882
1.566195
1.482557
0.310359
-1.063366
-1.970232
-2.932807
-2.156224
-1.528702
-1.515599
0.314527
0.599889
1.970677
-0.361294
-0.278780
0.934073
0.624633
1.937055
0.986432
0.269292
0.354501
1.244966
-0.459796
-2.046367
-2.336435
-2.709366
-2.193716
-0.106451
0.548080
0.077234
-1.382601
2.400080
2.327811
1.931665
0.253337
0.026933
-1.867234

437



H

4.242942

-1.294229

6-methyl-cation
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-1.286832
-0.143790
1.059417
1.393183
1.968273
1.039168
-0.128736
0.188918
-0.850330
0.666189
1.564814
2.626400
2.593728
-2.306116
-1.826937
-2.940856
-2.939496
-1.683923

-methyl-Tf

-3.204657
-3.720594
-3.337419
-3.805979
-4.858329
-3.292375
-3.675595
-2.313239
-1.489436
-1.712919
-1.129252
-1.346135
-0.197863
1.085383
1.683302
0.797230
0.661156
0.974755
0.227088
1.966330
0.920721
-1.075812
-1.791104
-1.285406
-1.231547

-0.245892
-0.967308
-1.301336
-2.326540
-0.091315
1.104589
1.050215
1.075526
1.843349
1.124438
2.046690
-0.252193
0.003920
-0.073598
0.060784
0.786608
-0.962002
-0.252707

1.512372
2.322030
1.686438
0.172184
0.120574
-0.635701
-0.044023
0.304037
1.002927
1.562886
0.994905
2.592682
1.389631
0.532062
0.204273
-0.572062
-2.414924
-2.994646
-2.616587
-2.704051
-4.088067
-2.598493
-2.239748
-3.656145
-2.053677

-0.726490

0.500316
0.292858
-0.009052
-0.121533
-0.191926
-0.385169
0.589340
1.630211
0.388135
-1.412050
-0.211823
-1.046723
0.700740
-0.602805
-1.573300
-0.385472
-0.643985
1.514422

-1.457591
-0.931507
-2.526828
-1.043727
-1.330017
-1.576071
0.463100
1.016856
0.248401
-1.114351
-1.849391
-1.142921
0.812845
0.666403
1.916731
-0.297739
-0.397735
1.328071
2.029226
1.681737
1.342163
-0.995805
-0.252458
-1.183916
-1.929752
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1.983961
1.995945
1.807992
2.969128
2.207619
1.602368
2.430680
3.321736
-2.016582
-1.096884
-1.952873
-2.842888
-3.898224
-4.413573

-1.837895
-1.078185
0.385850
0.514243
0.976648
1.087347
0.114214
-1.223294
-1.558867
-1.515548
2.575239
2967731
2.957969
2.904790
-1.554891
-1.140824
-2.873260
-1.817650

S-contraction

-1.373309
-0.181532
0.998501
1.218473
2.004903
1.143688
-0.038407
0.243732
-0.764286
0.778046
1.690672
2.637065

-2.793193
-3.868764
-2.275826
-2.511967
1.672807
1.971380
2.747506
1.017194
-0.159193
0.256847
-1.251806
0.121512
-1.084229
0.562079

-methyl-cation

0.040648
1.210302
1.234564
1.531628
1.898231
-0.178063
-0.987065
-1.402271
-1.695445
-2.117215
-0.277141
0.237622
0.225630
-1.313280
2.142502
1.166762
-0.000315
0.078031

-0.239729
-0.852830
-1.285221
-2.341420
-0.177255
1.072243
1.018073
1.045654
1.799614
1.135699
1.993529
-0.379664

-1.626152
-1.828263
-2.572012
-1.246768
-0.329429
-1.455642
0.384337
-0.559490
2.409867
2.819211
2.435312
3.068370
0.723857
1.002880

0.308030
-0.302122
0.124629
1.168508
-0.510051
0.005230
-0.065031
-0.119764
-1.114029
0.649153
0.012365
-0.866578
0.902464
0.006699
0.009361
-1.392664
-0.030420
1.397527

0.501791
0.315806
-0.002189
-0.106825
-0.204164
-0.381267
0.581508
1.631992
0.357525
-1.408558
-0.166879
-1.069768
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6-methyl-allylic

C

on

2.655779
-2.361033
-1.873233
-2.930900
-3.061574
-1.750639

t-allylic
-1.629438
-0.287545

0.181878
-0.445977

1.646793

2.091971

0.877276

0.959348

0.754294

2.302223

2.993951

2.067669

1.900669
-2.770855
-2.519107
-3.337356
-3.457188
-1.879021

1.839402
2.172843
2.738410
0.882929
0.453190
1.471618
-0.278045
-0.952767
0.096986
1.216353
1.787719
-1.026664
-0.078529
-1.047966
-2.343612
-3.103030
-2.215510
-2.672494

-0.115787
-0.032616
-0.005044

0.882954
-0.872098
-0.159436

-0.590514
-0.272103
1.029155
1.913802
1.075170
-0.365838
-1.239971
-1.620188
-2.097852
-0.450286
-0.647589
1.859685
1.375789
0.323778
1.382021
0.096964
0.081024
-1.651441

S-6-hydride-shift

0.014194
-0.104619
0.145981
1.230676
1.479178
2.095001
1.035714
1.892843
0.890956
-1.265171
-2.000931
-0.215667
-1.170305
-1.181020
-0.125849
0.295995
0.557757
-1.092702

0.673902
-0.611680
-1.585667
-0.448501
-0.595417

1.519365

-0.002902
-0.055431
-0.034274
-0.013595
-0.079581
0.233810
-0.138506
-1.161468
0.523199
1.302233
-0.306714
0.554984
-1.112595
0.068379
0.042260
0.981337
-0.752693
-0.005913

-0.417508
-1.449355
0.192823
-0.270826
-1.244431
0.042417
0.738353
0.734481
1.752360
0.154354
0.703204
0.237998
0.050815
1.094497
-0.469044
0.190447
-1.313847
-0.847449

1.896374 0.100079  0.159241
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2.147712
2.853420
1.192918
1.740516
1.173281
-0.236104
-0.248160
-0.806318
1.055678
1.547159
-0.985725
-0.308287
-0.872694
-2.455023
-2.734231
-2.834880
-2.924798

1.168572
2.087186
0.660999
1.531371
2.276548
2.027347
0.364233
0.654682
0.122561
0.321959
0.804576
-0.928249
-0.893309
-1.740172
-1.471048
-1.492616
-2.793155
-1.823515

-methyl-allylic

-1.162759
-1.484882
-1.413659
-1.844262
-1.773945
-2.903555
-1.162879
-1.485055
-1.413860

0.042377
0.261257
-1.163434
-2.051058
-1.167002
-1.214242
-1.380240
-2.047164
1.302407
2271515
0.049749
1.268459
2.187307
-0.004370
-0.360921
-0.752874
0.964913

S-6-methyl-shift

-1.065569
-1.644387
-1.249847
0.500241
0.594104
0.754636
1.480612
2.208506
2.070974
-1.098701
-1.186140
0.855399
-0.493158
-0.424686
-1.424035
0.258225
-0.374075
1.467203

-1.248211
-2.159943
-1.434388
-0.000072
-0.000086
-0.000120
1.248147
2.159813
1.434378

1.233239
-0.343923
-0.319292
-0.002726
-1.413801

0.207078

1.299232
-0.212328
0.014979

0.047100

0.015838
-0.109049
-0.213435
-0.007190
-1.011250

0.693211

0.155055

0.411549
0.355099
1.355867
0.282803
-0.506852
1.221350
0.015282
-0.751279
0.903246
-0.779242
-1.750487
-0.473471
-0.749249
0.727525
1.066639
1.543441
0.468181
-0.516385

-0.154748
0.358702
-1.215376
0.386730
1.478261
0.131191
-0.154718
0.358820
-1.215313
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S1

Z

0.303759
0.853246
0.303662
1.033086
2.531467
2.961366
2.833509
2.961378
0.853007

enzene

-1.140911
0.119601
1.260460
1.140876

-0.119540

-1.260486

-2.029934
0.212705
2.242738
2.029980

-0.212781

-2.242705

-2.044643
-1.267913
0.164015
0.237977
0.815097
1.354299
0.212614
-1.154697
-1.337797
-1.277095
2.782210
3.061469
3.056762
3.314824
-1.688095
-1.250167
-3.027101
-2.181185

1.918673
1.920920
0.530505
0.172353

-1.171191
-2.098611
1.171281
0.000086
0.000013
0.885643
-0.001469
-0.884318
2.098779

-0.796733
-1.386411
-0.589688
0.796783
1.386416
0.589634
-1.417685
-2.466815
-1.049100
1.417619
2.466808
1.049169

0.075215
1.118461
1.062331
1.237221
1.724197
-0.334903
-0.784116
-1.302179
-1.696878
-2.110820
-0.050941
0.562889
0.461734
-1.002209
2.075115
1.109778
-0.177845
0.016188

-0.715384
0.720422
1.252536
2.073215

-0.111030
-0.265177
-0.111048
0.029365
0.135561
-0.335068
1.186017
-0.337530
-0.265211

0.000001
-0.000018
0.000018
-0.000002
-0.000015
0.000013
0.000000
-0.000013
0.000016
0.000004
-0.000015
0.000023

0.225634
-0.314030
0.219477
1.290137
-0.349464
-0.030229
-0.031504
-0.079016
-1.081186

0.642504
-0.014648
-0.872467

0.908975
-0.064787

0.005922
-1.406507
-0.232567

1.305334

-0.262575
0.248499
-0.126700
0.492610

442



CEETTEOIEEDEERETOO00000CIODIOERETOCIOOSEIZIIDIDIOERTITZO00OD

0.490501
-0.358119
-1.621710
-3.035854
-3.469688
-3.462883
-3.269098

0.538600

0.177587

0.516645

2.702527

2.048880

2.710512

2.024574

23
-0.262101
-2.753774
-3.078180
-3.485733
-2.731796
-3.643892
-2.726503
-1.491445
-1.494873
-1.474900
-0.237375

0.645010
-0.150393
-1.439620

1.969741

2.854301

2.879177

2.013897

1.019069

1.032739

1.984819

3.584864

3.627892

2.057244

0.673344

0.586592
-1.558620
-1.815113
-0.665476
-2.389860

2b

1.558253
-0.000889
-0.026529
-0.014226
-0.353406
-0.503290

1.065336
-1.253181
-2.085448
-1.542619

1.336854

0.740856
-1.329811
-0.736437

0.174380
0.156503
0.283513
0.715613
-1.320887
-1.797189
-1.429536
-1.983018
-1.891294
-3.049549
-1.328926
-1.751179
-1.560563
0.872072
0.073555
-0.638709
-0.538245
0.268220
1.039088
0.951490
0.035709
-1.269857
-1.093216
0.385884
1.947992
1.731849
2.358020
2.686393
2.899199
2.654980

-1.175122
0.005864
0.002431

-0.004016
0.938744

-0.881735

-0.093707
0.141524

-0.460191
1.195085

-0.196863
1.333834
0.167465

-1.350290

0.108153
-0.094087
-1.138320

0.497440

0.274051
-0.089799

1.363525

-0.308472
-1.400685
-0.076701

0.262598
-0.216707

1.329698
-0.014247
-1.441789
-0.700099

0.733098

1.384731
0.649733
-0.797633
-2.523222
-1.192361

1.284919

2460153

1.124678
-1.395767
-0.047889

0.967576
-0.353617
-0.689697
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S2

-3.622715
-3.375181
-1.921132
-1.430891
-1.886373
0.102134
-1.245417
-2.290127
-2.073040
-2.260401
0.587610
1.661334
0.107017
0.342319
-3.462232
-4.063475
-3.822733
-4.462540
1.015255
1.020114
2.213749
3.297700
3.298249
2.215628
0.364297
0.355020
2.229312
4.198563
4.198495
2.230118

1.677217
2.889984
2.881164
3.199752
3.605581
1.533493
0.432817
0.393583
0.226749
-0.463721
1.588618
1.988497
2.279198
0.632643
3.817735

0.495297
-0.956479
-1.197532
-2.034019
-1.417029
0.393276
0.123927
1.186531
2.070686
1.517751
1.811760
1.878358
2.302098
2.366756
-1.061197
-1.663897
0.549795
0.955509
-0.744333
-0.860361
-0.475544
-0.014964
0.098635
-0.254904
-1.382833
-1.559731
-0.611471
0.240749
0.438398
-0.221787

-1.907686
-1.266462
0.237928
0.458344
0.741089
0.893770
0.144072
-1.355567
-1.804279
-1.652863
2.392945
2.708593
2.765695
2.893981
-1.697190

0.186235
-0.231262
0.196191
-0.305421
1.275134
-0.011178
0.014795
-0.129075
0.474182
-1.178057
-0.125519
-0.275041
-0.974440
0.782914
-1.316618
0.230000
1.260161
-0.333105
0.778285
-0.669444
-1.392940
-0.727890
0.706875
1.433940
1.361037
-1.155713
-2.466687
-1.272827
1.204541
2.515868

-0.548185
0.114898
-0.128460
-1.155906
0.520435
0.073586
0.208579
0.065521
1.054050
-0.548293
0.134988
1.104480
-0.625676
-0.018422
-0.267520
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2.864140
1.695125
1.691276
-3.185125
-2.495257
-1.458857
-0.964560
-1.787211
-2.856992
-4.021043
-2.800957
-0.934056
-0.724908
-1.495725
1-13.453527

-3.789593
-3.417622
-1.938745
-1.401095
-1.854380
-0.112847
-1.390466
-2.548968
-2.450749
-2.588464
0.404612
1.275982
-0.356733
0.708442
-3.517610
-4.039021
-3.944725
-4.697982
0.983583
1.490991
2778172
3.653814
3.270941
1.980745
0.438742
0.788633
3.128941
4.677419
3.999158

-1.466753
-2.994098
-1.692123
-0.557956
0.289465
1.039884
0.843654
-0.003832
-0.685782
-1.132218
0.373611
1.749418
1.781629
-0.093559
-1.325879

0.349518
-1.134802
-1.142018
-2.011773
-1.166752

0.556378

0.176733

1.037417

2.080435

1.019042

1.854394

1.699496

2.353289

2.536342
-1.527389
-1.747066

0.679938

0.573790
-0.432874
-1.127122
-0.959257
-0.192824
0.412227
0.291410
-1.126645
-1.734264
-1.420851
-0.068700

0.966637

1.191992
-0.437793
-1.622533
-0.467576
-1.337607
-0.840114

0.520435

1.388576

0.900210
-0.854097
-2.371928
-1.469539

1.025741

2.429194

1.536708

0.096051
0.074134
0.488598
0.101974
1.583285
-0.042539
-0.021816
-0.489081
-0.184434
-1.585212
-0.592417
-1.236550
-1.190697
0.209043
-0.942722
0.728590
1.128182
-0.464302
0.517104
-0.667321
-1.100287
-0.320088
0.893888
1.310870
1.169888
-1.227854
-2.013786
-0.659214
1.470930

445



5.12 Spectra Relevant to Chapter Five:

Catalytic Carbon—Carbon Bond Forming Reactions of Vinyl Cations: A Field Guide

(Unpublished Work)

Stasik Popov, Benjamin Wigman, Jonathan Wong, Kendall N. Houk and Hosea M. Nelson
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Figure 5.16 '"H NMR (500 MHz, CDCl;) of compound 5.48.
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Figure 5.17 °C NMR (126 MHz, CDCls) of compound 5.48.
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Figure 5.18 °F NMR (282 MHz, CDCls) of compound 5.48.
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Figure 5.21 ”F NMR (282 MHz, CDCl3) of compound 5.51.
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Figure 5.25 "’F NMR (282 MHz, CDCl;) of compound 5.57.
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Figure 5.26 "H NMR (500 MHz, CDCl;) of compound 5.21.
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Figure 5.27 °C NMR (126 MHz, CDCls) of compound 5.21.
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Figure 5.28 "H NMR (500 MHz, CDCls) of compound 5.27a.
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Figure 5.29 °C NMR (126 MHz, CDCls) of compound 5.27a.
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Figure 5.30 'H NMR (500 MHz, CDCls) of compound 5.27b.

996.'92
6928'92
65v8'92
0v0v 22
AV
86 B.m&
816€9E \
zZi61°0p
188L°€Y

Nowh.mN_.V
6G/8'Gcl
omNh.wN—N
LL0L'6C}

192¥'eri~
YOLL'EVL

200 180 160 140 120 100 80 60 40 20
ppm
Figure 5.31 °C NMR (126 MHz, CDCls) of compound 5.27b.
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Figure 5.32 'H NMR (300 MHz, CDCl;) of compound 5.33.
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Figure 5.33 '"H NMR (500 MHz, CDCl;) of compound 5.34.

455



¥eor's
cvor's

mrwv.m\

1E8Y'G
8912/
00221
9/22 /1
602/ 1
YR
222 Ly
1628
£92€°/
20882
2eee L
2ree L]
09827
¥6€8°L]
80ve L
82ve L
8eve L
YSve LT
19v8°/]
G8ve /|
Nwmm.g
8EGEL|
95GEL |
G2ov'L
159%°
YeLY'L
99/

L

Br

— Fooe

M »00'¢

—— T96Y

M T

10

ppm
Figure 5.34 "H NMR (600 MHz, CDCl;) of compound 5.35.
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Figure 5.38"°C NMR (126 MHz, CDCls) of compound 5.42.
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Figure 5.40 "H NMR (500 MHz, CDCl;) of compound 5.45.
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Figure 5.41 °C NMR (126 MHz, CDCls) of compound 5.45.
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Figure 5.43 "H NMR (500 MHz, CDCl;) of compound 5.52.
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Figure 5.44 °C NMR (126 MHz, CDCls) of compound 5.52.
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Figure 5.45 "H NMR (500 MHz, CDCl;) of compound 5.53.
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Figure 5.48 °C NMR (126 MHz, CDCls) of compound 5.55.
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Figure 5.49 "H NMR (500 MHz, CDCl;) of compound 5.56.
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Figure 5.50 °C NMR (126 MHz, CDCls) of compound 5.56.
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H NMR (500 MHz, CDCls) of compound 5.58.
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Figure 5.52 °C NMR (126 MHz, CDCls) of compound 5.58.
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H NMR (500 MHz, CDCls) of compound 5.59.

465

Figure 5.53

10




220 200 180 160 140 120 100 80

|

Figure 5.54 °C NMR (126 MHz, CDCls) of compound 5.59.

466



5.13 Notes and References

(1) Bagdasarian, A. L.; Popov, S.; Wigman, B.; Wei, W.; Lee, W.; Nelson, H. M. Org. Lett.
2020, 22, 7775-7779.

(2) Wigman, B.; Popov, S.; Bagdasarian, A. L.; Shao, B.; Benton, T. R.; Williams, C. G.; Fisher,
S. P.; Lavallo, V. L.; Houk, K. N.; Nelson, H. M. J. Am. Chem. Soc. 2019, 141, 9140-9144.

(3) Popov, S.; Shao, B.; Bagdasarian, A. L.; Benton, T. R.; Zou, L.; Yang, Z.; Houk, K. N_;
Nelson, H. M. Science 2018, 361, 381-387.

(4) Popov, S.; Shao, B.; Bagdasarian, A. L.; Wigman, B; Nelson, H. M. Synlett, 2020, 31, 1851—
1856.

(5) Shao, B.; Bagdasarian, A. L.; Popov, S.; Nelson, H. M. Science 2017, 355, 1403—1407.

(6) Weber, J.; Yoshimine, M.; McLean, A. D. J. Chem. Phys. 1976, 64, 4159-4164.

(7) Weber, J.; McLean, A. D. J. Am. Chem. Soc. 1976, 98, 875-876.

(8) Hargrove, R. J.; Stang, P. J. Tetrahedron 1976, 32, 37-41.

(9) Subramanian, L. R.; Hanack, M. Chem. Ber. 1972, 105, 1465—-1470.

(10) Subramanian, L. R.; Hanack, M. J. Org. Chem. 1977, 42, 174-175.

(11) Subramanian, L. R.; Hanack, M. Angew. Chem. 1972, 84, 714715

(12) Schleyer, P. V. R.; Pfeifer, W. D.; Bahn, C. A.; Bocher, S.; Harding, C. E.; Hummel, K.;
Hanack, M.; Stang, P. J. J. Am. Chem. Soc. 1971, 93, 1513—-1516.

(13) Hanack, M.; Carnahan, E. J.; Krowczynski, A.; Schoberth, W.; Subramanian, L. R.;
Subramanian, K. J. Am. Chem. Soc. 1979, 101, 100-108.

(14) Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. Vinyl Cations (Academic

Press, 1979)

467



(15) Kim, D.; Hu, S.; Tarakeshwar, P.; Kim, K. S.; Lisy, J. M. J. Phys. Chem. A 2003, 107,
1228-1238.

(16) See Supplementary Information file of reference 3

(17) Hills, C. J.; Winter, S. A.; Balfour, J. A. Drugs 1998, 55, 813-820.

(18) McRae, A. L.; Brady, K. T. Expert Opin. Pharmacother. 2001, 2, 883—892.

(19) See Supplementary Information file of reference 1

(20) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011,
332,574-5717.

(21) Allemann, O.; Baldridge, K. K.; Siegel, J. S. Org. Chem. Front. 2015, 2, 1018-1021.

(22) Douvris, C.; Ozerov, O. Science 2008, 321, 1188—1190.

(23) Duttwyler, S.; Douvris, C.; Fackler, N. L. P.; Tham, F. S.; Reed, C. A.; Baldridge, K. K.;
Siegel, J. S. Angew. Chem. Int. Ed. 2010, 49, 7519-7522.

(24) Reed, C. A. Acc. Chem. Res. 2010, 43, 121-128.

(25) Byrne, P. A.; Kobayashi, S.; Wurthwein, E.; Ammer, J.; Mayr, H. J. Am. Chem. Soc. 2017,
139, 1499-1511.

(26) Li, J.; Ma, Y.; Lu, Y.; Liu, Y.; Liu, D.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1146-1153.
(27) Kuprat, M.; Lehmann, M.; Shulz, A; Villinger, A. Organometallics, 2010, 29, 1421-1427
(28) Jana, N.; Zhou, F.; Driver, T. G. J. Am. Chem. Soc. 2015, 137, 6738-6741.

(29) Mahajani, N. S.; Chisholm, J. D. J. Org. Chem. 2018, 83, 4131-4139.

(30) Bour, C.; Gandon, V.; Li, Z. Chem. Commun. 2020, 56, 6507—-6510.

(31) Stavber, G.; Zupan, M.; Stavber, S.; Tetrahedron Lett. 2006, 47, 8463—-8466.

(32) Jian, H.; Shen, Z.; Zhang, S. J. Org. Chem. 2020, 56, 9182-9185.

(33) Han, M.; Pan, H.; Li, P.; Wang, L. J. Org. Chem. 2020, 85, 5825-5837.

(34) Dai, Y.; Feng, X.; Du, H. Org. Lett. 2019, 21, 6884—6887.

468



(35) Sarnpitak, P.; Trongchit, K.; Kostenko, Y.; Sathalalai, S.; Gleeson, P. M.; Ruchirawat, S.;
Ploypradith, P. J. Org. Chem. 2013, 78, 8281-8286.

(36) Gaussian 16, Revision C.01. Frisch, M. J et al. Gaussian, Inc., Wallingford CT (2016).

(37) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.

(38) Barone, V.; Cossi, M. J. Phys. Chem. 4, 1998, 102, 1995-2001.

(39) Grimme, S.; Bannwarth, C.; Dohm, S.; Hansen, A.; Pisarek, J.; Pracht, P.; Seibert, J.; Neese,
F. Angew. Chem. Int. Ed. 2017, 56, 14763—14769.

(40) Grimme, S.; Bannwarth, C.; Shushkov, P. A. J. Chem. Theory Comput. 2017, 13, 1989—

2009.

469





