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II. WHY THE WILSON LOOP INTEGRAL? 

Halpern, Jevicki, and Senjanovic have shown how the "classical 

quark particle" couples to quantum chromodynamics using a particle 

dynamics description of field theory. 3, 4 
I will amplifY on this and 

• the connection between Wilson loop integrals and Green's functions. 

For Simplicity scalar quarks will be used. 

Mesons consist of an SU(3)-color quark and antiquark. Gauge 

invariant vectors occurring in such a state are of the form 

t 
¢a(x) ¢a(x)Q or more generally 

(2.1) 

or some linear combination of the above folded into wave functions. 

Q is the physical vacuum. P stands for path ordered product. 

Analyzing mesons is thus reduced to analyzing the objects of Eq. (2.1). 

The propagator of two of these is 

(2.2 ) 

."' 
Using particle dynamics, neglecting quark-anti quark vacuum loops, and 

v omitting the annihilation graph of Figure la, Eq. (2.2) is 
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00 y(o)=y' x(1:)=x 

< QG I J II 
'-i" 

do [., Jj y i' Sex I 
J_ 

0 o . y(o)=y x(O)=x' 

( 0 1: 

>} J 
'2 2 [ ·2 2 
~- i x 

x exp (i m + - m 
4 

0 

x Tr [p eXP(ig1A'dt) J I QG) . (2.3 ) 

QG is the vacuum for a pure Yang-Mills theory. The path in the path­

ordered product is illustrated in Fig. Ib: it goes from y to y' 

along y(o), from y' to x', from x' to x along x(1:), a~d 

finally from x to y. The paths from y' to x' and x to y 

are the ones given in the wave function of Eq. (2.2). 

The relevant factor for mesons is 

(QG ITr [p exP(igp A 'dt) 1IQ
G). This provides a direct link between 

the meson propagator and Wilson loop integrals. For baryons one 

proceeds analogously. The relevant factor is 

(QG I E E 
Of3r 7I.~v 

[p exp(ig J A'dt)]w.. 

PI 

x (p exp(ig J 
P2 

A'dt) ]~~ 

. lc. [p exp(ig ~ A'dt) 1 I QG) • (2.4) 
Jrv 

c 
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ABSTRACT 
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I discu~s the proper procedure for a classical evaluation of 

a non-Abelian Wilson loop integral. The naive procedure is incorrect 

due to fluctuations in color, a phenomenon I call color zitterbewegung. 

A formalism for circumventing this complication is proposed. It is 

likely that the statistical mechanics of disorder theory is necessary 

in Wilson loop calculations. 

* This work was supported by the U. S. Department of Energy. 
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1. INTRODUCTION 

The Wilson loop integral
l 

is the principal test for quark 

confinement. More importantly, loop integrals enter directly in cal-

culating quark Green's functions, as shown in Section II. A thorough 

knowledge of such integrals is therefore important. In an Abelian 

theory, one understands completely how to apply the test and how it 

leads to the charge-anticharge static potential. For non-Abelian 

theories, one assumes a straightforward generalization: replace 

exp[ie PA'dtl by the trace of the analogous path ordered product. 

Its vacuum expectation value gives the quark-anti quark static potential. 

This paper will show that the evaluation procedure for non-Abelian 

theories differs vastly from the U(l) case. This can be seen by 

examining a few situations. In fact, the naive procedure leads to 

bizarre results, as demonstrated in Section III. What is the proper 

procedure? I present an ansatz in Section IV, and, in doing so, 

uncover an effect which drastically contrasts non-Abelian gauge theories 

from their Abelian counterparts. I call it color zitterbewegung. An 

understanding of this phenomenon is vital for an understanding of color 

in strong interactions. 

~is paper is closely related to the problem of defining 

2 classical chromodynamics which has been examined by several authors. 

The fact that these authors are forced into sophisticated approache& 

is probably due to color zitterbewegung and probably indicates a tacit 

awareness of the phenomenon. Actually, these authors may be providing 

different ways of dealing with this phenomenon. In this piper I would 

like to make this phenomenon manifest and suggest an alternative 

avenue of attack. 
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The Pi are made up of three parts as indicated in Fig. 2. For 

example, PI consists of an initial state path PI 0, appearing in 

the initial baryon wavefunction; a piece Pl(Xl(Tl )) over which one 

integrates, and a final state path and occur in 

the Green's function to be evaluated. 

The quark confinement criterion i,s 

exp[-C(area)J 

where the loop encompasses a large area. Contrary to one's intuition, 

the evaluation of (2.5) is tricky. The naive evaluations of the next 

~an lead to strange consequences. 

III. mUATION OF MOTION FOR THE GAUGE FIELDS 

IN THE IRESENCE OF A WilSON LOOP 

The equations of motion are easily obtained for A r in the 
I-l 

presence of a Wilson loop. Iarametrize the curve by the variable, T, 

so that X(T) traces out the path in space-time. The equation of 

motion is 

Tr [ P exp(ig 

x Tr~ [p =p(ig 1 AOx dT) 1 

x [P=P(ig 1 AOXdT)lf 0 

,:\0: are the Gell-Mann matrices of SU(3). Equation (3.1) has an 

unusual property. [p exp(ig i A·x dT)1 is an element of SU(3), 

o 
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--> 

hence of the form 
--> :\ 

exp(i 0: • 2" ). When substituted into Eq. (3.1) one 

gets a complex current source! For SU(2) color, for example, the 

current is pure imaginary. What is happening? Such a result would be 

horrendous for unified models of weak and electromagnetic interactions 

since the derivation of Eq. (3.1) holds for the generators surviving 

spontaneous symmetry breaking. The photon would couple to a complex 

current. What has gone wrong? Consider the simple situation where 

A(x) is restricted to be proportional to ;:. Then 

,. 
)( I exp(ig 

l 

1 J A3.x dT) - exp(-ig 

o 

)( y[ 1 + exp(ig 

1 J A3 ·x dT)] • 
o 

(3.2 ) 

From Eq. (3.2), it is clear one has averaged over the three charge 

states of ;:. If instead of summing over these three terms, one 

restricts oneself to say the 11 term (Le., Tr M = ~ Moo -->~l)' 
0: 

then one obtains a respectable current. In this simple example, it 

is clear what one should do. Replace 

< T+ =p(1. J AOdd]) by t <[ P =p(i. J AOdt)L,> ' 
(3.3 ) 

calculate three equations of motion, determine the appropriate classical 



solutions, and then add the contributions. Only in this manner can one 

obtain the classical (or semiclassical) approximation. One must 

calculate saddle pOints before taking traces. Of course, if one knew 

the functional integrals over A exactly, the distinction between the 

above two procedures would disappear, however, when doing perturbation 

theory or semiclassical methods one is expanding about a saddle point: 

the above distinction is essential. Does the solution for this simple 

case work in general? The answer is no and leads one to the concept 

of color zitterbewegung. 

IV. COLOR ZITTERBElillHJNG 

The replacement [Eq. (3.3)] fails in non-trivial cases. There 

is a physical reason for this. Color may flicker (i.e. sudden change 

from one color to another) at some point along a curve because of 

colored gluons. These gluons can carry color from one point on the 

curve to another. In general, color will be changing rapidly so that 

Wilson loops present a very disordered physical process similar to the 

one dimensional Ising model. In this respect, non-Abelian gauge 

theories differ greatly from Abelian ones. 

To illustrate how the replacement given by Eq. (3.3) fails 

consider Fig. 3. Let Xo be the starting and ending point of the 

path ordered product occurring in Eq. (3.3). Let Y be some 

intermediate point and let a be the corresponding value of T, that 

is, x(a) = y. Break up the path ordered product into two products: 

fp exp ig 
L 

r 
lP exp ig 

" 'P exp ig JJCo A.dtl 
J(3a 

y 

(0; not summed). (4.1) 

Terms for which ~ I 0; can be considered as processes where color has 

changed from 0; to ~ between the points Xo and y. The saddle 

point for a particular 0; is 

rPeXPig 
l 

+ 

x 

1 

f o 

1 
x·A dT 1 

+xx 

4 o (x - X(T)) [ J 1")..7 
P exp ig A·x dT J (~) 

0;0 01] 
o 

P exp ig f A·x dT 1 [p exp ig 
T 1]~ 

1 1 
J A'x dT j 
a (3a 

1 

g I dT Xv 04(x - X(T)) [p exp ig 

a 

P exp ig l A·x dT] (")..;) 
J ~o 01] 
a 

(0; not summed). 

1 

[p exp ig J A·x dT 

T 

(4.2 ) 

,./ 
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Equation (4.2), like Eq. (3.2), can be interpreted as an averaging over 

colors, ~, at the point y. Like Eq. (3.2) it can lead to complex 

currents. The solution to this problem is the same: pull the 

summation over ~ outside, evaluate each of the three saddle points, 

and then add their contributions . 

In general, color zitterbewegung may occur anywhere along the 

curve. For a lattice approximating segmented OJrve with N products, 

the proper procedure is to calculate the saddle point for a given 

configuration of color and sum over all possibilities. To explicitly 

write this becomes cumbersome and I leave it as an exercise. There 

would be 3N saddle point contributions for SU(3). Contrast this 

with a U(l) N theory where only 1 = 1 contribution occurs. There 

will be an enhancement compared to the Abelian case. Perturbation 

theory about the trivial vacuum A = 0 would be suppressed compared 

to non-zero A since, wri~ exp(ig A-LX) ~ 1 + ig A·LX , there 

would be only a single zero'th order term (in g), N first order 

N terms, etc., compared to 3 terms for a random A • 

A lattice approximation is unsatisfactory from a calculational 

point of view because N must go to infinity and summations become 

awkward to do. There is, however, a formalism which neatly takes the 

limit N -+ 00 and performs the summations automatically. It uses 

4 5 anticommuting variables. One may write' 

Tr ( P exp ig f A'x d'f] L~ fJs~tfj~ ~(O) 
0 ex 

~ J 
1 

! x exp ~('f-)~t('f)d'f + ig f ~('f-) A"x ~t('f)dt 1)ex(l) . 

l 0 0 

(4.3) 
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Equation (4.3) is a functional integral over anticommuting variables. 

At each '0 there are three ~ 's and three ~t's (ex = 1, 2, 3). ex ex 

Summation in (4.3) is implied ~bat is, 

'0 means 'f-E: the anti-

commuting variables are not multiplied at the same '0 point. 

Take the vacuum expectation value of (4.3) and extract the 

anticommuting functional integral: 

< Tr l P exp(ig f A'dt)] ) rl (0) ~ (1) ex ex 

x exp( I ~('f-) i} t('f)d'f) 

o 

1 

x (eXP(ig J ~('f-) A-x ~t('f) d'f) ) 

o 
(4.4) 

The equation of motion for A becomes 

(4.5 ) 

The proper procedure is to first solve Eq. (4.7) treating the anti­

commuting variables as c-number sources. This will give a saddle 

point contribution to (exp(ig ~ ~('f-) A'x ~t('f)d'f» yielding an 

effection action for the ~'s. The integral over anticommuting 

variables must then be solved. One must proceed in 'the prescribed 

order. It is not possible to evaluate the ~ integral first. This 
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procedure is the way to obtain the correct quark-antiquark potential. 

Many problems in statistical mechanics can be expressed in 

6 
terms of anticommuting functional integrals. After obtaining the 

effective anticommuting variable action, it may be possible to relate 

(4.4) to a one dimensional statistical mechanics problem. One expects 

long-ranged interactions since gauge potentials "connect" distant 'r 

points. One also expects a disorder phenomenon corresponding to 

zitterbewegung in color. Equation (4.4) is thus probably related to 

a dimer or Ising model with long-ranged interactions. 

V. CONCLUSION 

Color zitterbewegung is a new phenomenon in non-Abelian gauge 

theories. Dynamically it will result in color bremsstrahhng. In QED 

a charged IRrticle must accelerate to emit radiation. In QCD a 

charged IRrticle need not accelerate since a sudden change in color 

produces a sudden change in the current. This leads to the emission 

of soft gluons. The dynamical behavior of color bremsstrahlung will 

thus determine the long-ranged zitterbewegung force. It is possible 

that such a force can lead to confinement. The next step will be to 

obtain numerical estimates of this force. 

ACKNOWLEDGMENT 

I would like to thank K. Bardakci for reading the draft and 

making several useful suggestions. This paper resulted as an offshoot 

of work currently being done with him. I would like to thank him for 

providing a stimulating background of problems. 

-12-

FOOTNOTES AND REFERENCES 

1. K. G. Wilson, Phys. Rev. D10, 2455 (1974). 

2. S. K. Wong, Nuovo Cimento 55A, 689 (1970); 

A. P. Balachandran, Per Salamonson, Bo-Strure Skagerstam, and 

Jan-Olov Winnberg, Phys. Rev. Dl5, 2308 (1977); 

L. Brink, P. Di Vecchia, and P. Howe, Nucl. Phys. Bll8, 76 (1977); 

A. Barducci, R. Casalbuoni, and L. Lusanna, Nucl. Phys. B124, 93 

(1977); s. Adler, Phys. Rev. Dl7, 3213 (1978); 

A. P. Balachandran, S. Borchardt, and A. stern, Phys. Rev. D17, 

3247 (1978); R. Giles and L. McLerran, talk given at LBL. 

This is a popular topic: additional references may be found in 

the above. 

3. M. B. Halpern and P. Senjanovi~, Phys. Rev. Dl5, 1655 (1977); 

M. B. Halpern and W. Siegel, Phys. Rev. Dl6, 2486 (1977). 

4. M. B. Halpern, A. Jevicki, and P. Senjanovic, Phys. Rev. D16, 2476 

(1977). 

5. S. Samuel, J. Math. Phys. 19, 1438 (1978). In this IRper the 

terminology continuous matrix product is used in lieu of IRth 

ordered product. 

6. S. Samuel, The Use of Anticommuting Functional Integrals in 

Statistical Mechanics, IRpers in preIRration. 



~ C\J 
~ I'-

L{) 
"--' -

I )( ex:> c 
CD 
I'-

~ ..J 
£D b x -. t<\ ........, 

0 . 
bD 
.r! 

I )( 
)( Ii! 

\.0 
r-I 

I 

II 

:>. 



0. 

-13-

FIGURE CAPI'IONS 

Figure lao This is a quark-anti quark annihilation graph. The light 

line represents the quark trajectories. The solid lines 

are the path ordered products occurring in the initial and 

final meson wavefunctions. 

Figure lb. The initial quark begins at y, travels along the light 

Figure 2. 

Figure 3. 

line, and is destroyed at y'. The antiquark is created 

at x and proceeds to x, where it is annihilated. This 

diagram represents the meson-meson propagator. 

This is the baryon-antibaryon propagator. Three quarks 

emerge and proceed along three paths (i = 1,2,3) 

until they are destroyed. are the path 

ordered products occurring in the initial and final baryon 

wa vefunctions. 

This is a path ordered product beginning at x 
o 

and ending 

at x~. The trace is not to be taken. The product can be 

written as two products, one from Xo to y and one from 

In Eq. (4.2) two terms result: one when 

X(~) comes before y (as illustrated here) and one when 

x(~) comes after y. 
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