
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title

Scalable Image Informatics

Permalink

https://escholarship.org/uc/item/7nf7492x

Authors

Fedorov, Dmitry
Manjunath, BS
Lang, Christian
et al.

Publication Date

2023-12-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nf7492x
https://escholarship.org/uc/item/7nf7492x#author
https://escholarship.org
http://www.cdlib.org/

Scalable Image Informatics

Dmitry Fedorov, B. S. Manjunath, Christian A. Lang,
Kristian Kvilekval

Center for Multimodal Big Data Science and Healthcare
University of California, Santa Barbara

August 14, 2016

1 Introduction

Images and video play a major role in scientific discoveries. Significant new
advances in imaging science over the past two decades have resulted in new de-
vices and technologies that are able to probe the world at nanoscales to plane-
tary scales. These instruments generate massive amounts of multimodal imaging
data. In addition to the raw imaging data, these instruments capture additional
critical information – the metadata– that include the imaging context. Further,
the experimental conditions are often added manually to such metadata that
describe processes that are not implicit in the instrumentation metadata. De-
spite these technological advances in imaging sciences, resources for curation,
distribution, sharing and analysis of such data at scale, are still lacking. Robust
image analysis workflows have the potential to transform image-based sciences
such as biology, ecology, remote sensing, materials science and medical imag-
ing. In this context, this Chapter presents BisQue, a novel eco-system where
scientific image analysis methods can be discovered, tested, verified, refined and
shared amongst users on a shared, cloud based infrastructure. The vision of
BisQue is to enable large-scale, data driven scientific explorations. The follow-
ing sections will discuss the core requirements of such an architecture, challenges
in developing and deploying the methods, and will conclude with an application
to image recognition using deep learning.

1.1 Core Requirements

The development of BisQue is driven by the requirements of the scientific imag-
ing community. Figure 1 summarizes the core requirements that supports ubiq-
uitous access to multidimensional (5-D) images and other binary data types.

• Heterogeneous data: Typical scientific datasets are heterogeneous in na-
ture (e.g., multi-dimensional 3D volumes together with 1-D sequence in-
formation). A comprehensive solution to managing such data is critical
for discovery and innovation.

1

• Metadata integration: Contextual information in most scientific imag-
ing experiments are embedded in the associated metadata that describe
instrument-specific and experiment specific parameters.

• Large scale data management: Modern experiments are typically statisti-
cal in nature and thus require analyzing large datasets.

• Integrated data analysis: Further, most experiments carry carefully cu-
rated manual annotations and manipulations that are critical for further
computations.

• Integration with automated analytics: Equally critical is that the analysis
modules work closely with the data and metadata, and the results of such
analysis is integrated into the overall system for data mining.

• Provenance tracking: Integration of the data and methods will allow
provenance tracking towards enabling reproducible computations.

• Support for large-scale data analytics: This is critical for high-throughput
imaging applications that routinely generate large amounts of data.

• Support for easy integration of analysis modules: Most new experiments
are designed with new computational analysis in mind and thus require
support for easy integration of new and complex analysis routines.

• Support for indexing, searching and querying high-dimensional and graph
data. This is important as many commonly used multimodal features are
high-dimensional vectors and organizing such data is a major challenge
for pattern recognition and data mining methods.

• Developer support: In addition to the scientific users, an extensible sys-
tem should provide support for researchers outside of a chosen scientific
domain who would be able to contribute novel analytics and benefit from
testing/validating their methods on a diverse data. This is critical for
scientific knowledge discovery.

Towards addressing these above challenges, the BisQue image informatics
system has pioneered extensible image analysis on the web with full web stan-
dards compliance and large data support. BisQue introduced the schema-less
hierarchical and flexible data model for annotations so as to address the needs
of diverse labs/users which has proven most useful for storing heterogeneous
data and meta-data. The flexible annotations are a key element allowing rapid
integration of image analysis and its results into the system. BisQue is de-
signed from the ground-up to be scalable and deployable on cloud computing
infrastructure and BisQue can be easily deployed using Docker virtualization [8].
Deep learning and data analytics architectures are being integrated with BisQue,
thus harnessing the collective power of data and methods in order to derive new
insights.

2

Management

Ana
lys

is

Vis
ua

liza
tion

Mining

Annotations
Computations

5D images of any size
WebGL volume viewer
Many types: images,
molecules, PDFs, etc…
Plots and summaries

Multimodal: Textual, 5D
graphical, images, graph,
geometry
Semantic meaning

Large-scale & extensible
Automated UI
Docker deployments
Python, ITK, Matlab,
CellProfiler, DREAM.3D, …

250+ image formats
Everything on the web
Searchable & organizable

Figure 1: The development of BisQue is driven by the requirements of the
scientific imaging community. At the core is the data/feature infrastructure
that supports metadata resources and ubiquitous access to multidimensional
(5-D) images and other binary data types.

2 Core Concepts

At its core, the BisQue system describes data objects (e.g., images, tables,
experiments) via trees of user-defined tuples of metadata, where each element in
the tree may be described with a user given name, value, type and units. There
are additional attributes controlled by the system enabling ownership and access
control, time of creation and access, ontological reference, etc. Annotation
tuples can simply be textual annotations as well as more complex graphical
annotations described via several multi-dimensional graphical primitives, such
as points, polylines, polygons, surfaces, and more complex shapes.

The metadata trees are called documents or resources and may describe 0, 1,
or many binary files accessible to the system. Each resource and tuples contained
within are addressable via Universal Resource Locators (URIs) allowing the
creation of links to sub-elements in each document. Types of these resources
and tuples suggest specific micro-services that can operate on referenced binary
resources and provide domain-specific operations.

All metadata documents are handled by the data service which is used to
orchestrate the query system and any other binary services. Other resource
types include an image resource, serviceable via an image service. Images can
be composed of one or multiple files and the metadata elements of the image
resource may describe the geometry and physical characteristics of these files
composing a multidimensional image. Furthermore, dense table data (such as
HDF5) can be serviced by a table service allowing slicing and dicing. Chemical
data (such as molecule SD files) can be serviced by a chemistry service providing
typical visualization and queries performed over molecular data.

The metadata resources are used not only to describe binary files but also
every other concept used in the system, such as users or module executions.
Internal and external APIs, micro-service communication and historical differ-

3

…

…

…

Blob/
Image 

Services

Data 
Services

Analysis 
Services

XM
L + binary

Feature/Classification Services
Extractors: Shape, Color, Location,Texture,etc...  

Deep learning classification/training

Index Services
Content indexing: Full text, graph, geometry, image content

Query Services
Query dialects and extensions: XPath, BICKER,...

Full text

Image similarity

Geometry

Graph

Figure 2: Bisque is implemented as a scalable and modular web-service. Image
Servers store and manipulate images. Data servers provide flexible metadata
storage. Extension servers house executable modules. The client server seam-
lessly integrates services across storage and processing hardware. Communica-
tion between various components is performed in a RESTful manner through
HTTP requests carrying XML and JSON. Backend servers seamlessly provide
access to local resources as well as large scalable resources like Amazon S3 or
iRODS for data storage or Condor grids for computation.

ences are also described with resource documents. The canonical representation
of the resource document is in XML due to the well described xpath/xquery in-
terfaces that allow slicing and dicing complex hierarchical documents. Services
can also represent metadata trees in other formats such as JSON or CSV when
exchanging uniform data in a more efficient manner. The dense data elements
can be described in the canonical XML representation (for exchange or index-
ing) but presenting many dense elements in such a form may be unwieldy. Thus
binary data formats are also used for exchange by specialized micro-services,
such as images or HDF-5.

The BisQue system orchestrates multiple micro-services providing access
control for asynchronous operations, users and user contributed analyses (Fig 2).
Services are tightly integrated with the system and have access to internal data
structures and scalability. User contributed analyses, called modules, execute
in a sand-boxed environment and only possess temporary user-level credentials
while executing. The module system on the other hand automatically scales
module executions based on available resources and module requirements.

4

Sharing and collaboration are extremely important for any scientific en-
deavor and the web nature of the BisQue system makes that easy. Flexible
data format support by the micro services optimizes data transfers for edit-
ing and visualization. Proximity to computational resources enables large scale
computations. In addition, the system keeps a complete record of all resultant
data, analysis code that produced it and users who ran it, guaranteeing strict
provenance and reproducibility of all of its data computed collaboratively.

2.1 Metadata graph

The hierarchical and flexible annotations enabled by BisQue allows user and
developers to rapidly contribute data, add annotations and integrate analysis
modules. Metadata trees can represent virtually any user-defined schema. Se-
mantic meaning for elements in the tree can be achieved by a simple user-defined
type or more rigorously by pointing to an ontology definition provided by some
service. Pointers (URIs) within documents are used extensively in order to
connect different resources. For example, an image may point to a microscope
definition document as well as a sample preparation document. Such links form
metadata graphs, allowing aggregated graph queries and also providing access
to specific binary micro-services.

This rich metadata representation is too expensive to represent very large
amounts of uniform (dense) data (millions or billions of elements) thus pointers
can be used to simply link a branch in the metadata tree to a dense data element.
Such elements are typically served by micro-services representing table data
(e.g., detected cells with computed features) or pixel data (e.g., image data or
segmented masks).

2.2 Versioning, Provenance and Queries

The provenance of scientific data is also important for multi-user environments
(such as laboratories and companies) in order to ensure the validity and re-
producibility of scientific discoveries. At the same time the nature of scientific
process is based on experimentation and thus involves a lot of trial and error.
The BisQue system solves these concerns with versioned metadata documents
and strict system-controlled analysis provenance that both encourages experi-
mentation and guarantees strict provenance of analysis results.

The metadata system preserves all the changes to the metadata by storing
validity time intervals for each data item. This information allows the recreation
of any document at any point in time, historical queries and the representation
of changes via delta documents.

All analysis executions are described by a system-controlled Module Execution
Document (MEX) that contains pointers to an exact module being used for com-
putation, all input elements, such as pointers to input resources (e.g., images,
tables) and explicit module parameters. They also contain all the produced
outputs either explicitly or by linking. In addition, module documents identify

5

the exact state of the source code or binary algorithm at module execution time
by additionally storing a source code repository reference.

Document versioning enables user correction of automatically produced re-
sults and provides an exact change that could be useful for improvement of auto-
mated methods. This system thus ensures strict provenance of every produced
resultant data element and encourages experimentation. Additionally, prove-
nance paired with strict versioning of analysis code guarantees reproducibility
of all the computed results.

The BisQue system encourages storing of different types of data needed to
describe an experiment. In order to derive scientific insights from these het-
erogeneous data a query system able to handle multi-modal data is required.
BisQue’s unified query system uses a SPARQL-like query language that provides
an abstraction from the underlying data stores and indices and allows expression
of complex queries over graphs of metadata documents. Depending on the avail-
ability of indices and the amount of data queried, the query system can decide
to execute a query by pushing it down into an underlying relational database
(e.g., PostgreSQL) or it may decide to run it via brute-force computation in a
distributed fashion (e.g., aggregating millions of data items via Apache Spark).
These two approaches require very different computational infrastructure and
algorithmic support.

The BisQue system allows each micro-service responsible for its data-type to
contribute one or more indices/summarizers for the unified query system based
on expandable functions. The query system will in turn dispatch queries to
specific sub-indices and later aggregate them into one single answer. The data
service keeps track of all the available indices and sends them updates whenever
a document changes. Each index decides whether the update is relevant to their
indexable data-type and whether to update its indices instantaneously or queue
them for a later batch update. Such indices/summaries cover as varied data
types as full text, metadata graph, ontological terms, graphical annotations
geometry, image-based similarity, molecular scaffold similarity, and statistical
summaries of numerical dense data.

For more complex data analytics requirements that can not be easily ex-
pressed with BisQue’s query language or that are provided as program code
(e.g., in Matlab, Python or C), BisQue’s analysis module system can be uti-
lized. BisQue modules can be parallelized on a computational cluster in a
Map-Reduce or in a more complex Directed Acyclic Graph (DAG) fashion in
order to maximize parallelism. Each execution can in turn utilize any scalable
micro-service and their indices. The orchestration of the distributed module
execution, data/code shipment, and result collection is handled transparently
by the module system.

3 Basic micro-services

BisQue is designed following common web techniques and benefits from the
available hardware and software infrastructure. Cloud infrastructure, RESTful

6

APIs, light-weight virtual machines, HTTP scalability and caching are all used
by BisQue. Another design motif utilized throughout the system is lazy evalu-
ation paired with extensive caching as it offers fine grained control of dispatch
and reduces overall computations by skipping unneeded work.

3.1 Uniform metadata representation and query orches-
tration: data service

The main service within the BisQue system is the data service responsible for
storage, access and query orchestration over the metadata documents. The data
service may restrict access to certain elements of system-defined documents such
as user descriptions or module execution documents. These schema restrictions
and enforcements are provided by type specific micro-services and are orches-
trated by the data service. User defined or system-unknown types will not
provoke any specialized behaviour or restrictions and thus allow natural system
extensions. Extensible, type-driven user interface elements are described later
in the appropriate section. The data service is also responsible for converting
metadata documents to/from XML, JSON and other formats.

The most important orchestration function of the data service is in multi-
modal queries. The data service provides XPath-like and SPARQL-like (“BQR”)
query languages supporting extended functionality by accessing multiple index-
ers via plug-in functions. While both languages allow slicing and dicing of large
hierarchical documents, XPath is more expressive for tree-structured queries
(e.g., “get all descendant nodes of this node”) while BQR is more expressive for
graph-structured queries (e.g., “find nodes in documents linked by this docu-
ment”). In fact, the XPath query processor builds on the BQR query processor,
whereby reducing code complexity.

The data service notifies all the known indexers about any changes to a meta-
data document. Indexers make a decision on whether to immediately update
themselves or queue their update in an asynchronous fashion. Some index-
ers may require resource-intensive computations of feature descriptors and thus
asynchronous updates would be preferred. Each indexer maintains their own
data structures needed to efficiently answer specific queries (e.g., an R-tree in-
dex structure for low-dimensional nearest neighbor queries). The BQR language
provides primitives to query specific indexes and on linking them with the other
parts of the query (e.g., “find documents linking cells that are very similar in
shape to this cell”).

3.2 Scalability of micro-services and analysis

There are multiple scalability approaches required by the BisQue components.
Services utilize three basic scalability mechanisms. The first one scales micro-
services themselves in order to support a large number of concurrent users.
This technique utilizes standard web technologies for load detection and request
distribution. Cloud technologies allow automated scale-up and down of service
machines based on current user load.

7

Curated module
access to large compute

Published module
community rating

Private module
development, collaboration

Figure 3: The BisQue module development life-cycle.

The second mechanism allows services to off-load a slow operation when a
response time-out is exhausted over to the background asynchronous processing
system. It is required due to some operations being computationally expensive
(e.g., complex data analytics queries). In this case a service will respond with
a document indicating the operation is still in progress and provide a return
URL where a response can eventually be obtained. The requester can then
periodically poll to check if the result is ready.

The third mechanism is specifically designed for user-contributed analysis
and utilizes a slower but massively scalable cluster dispatch mechanism. Com-
pute jobs (i.e., modules) are scheduled to one or more cluster nodes based on
their hardware and software requirements. This is discussed in more detail in
Section 4.3.

3.3 Analysis extensions: module service

The module service enables users to easily contribute their own analyses (e.g.,
image classification and recognition methods) and allows dispatching these anal-
yses to the available computational infrastructure (ee Section 4 for more details.)
The module service operates on two system-defined resource types:

1. module description documents that define formal inputs and outputs of
the algorithm, user interfaces, source code location and version along with
other descriptors;

2. module execution documents that describe a particular execution, values
of its inputs and outputs, execution status and initial and final date and
time.

Since modules are described by metadata documents they can be shared with
collaborators as well as published for community participation, these modules
can later be curated by the system administrator as demonstrated on Figure 3.

Module execution is initialized by passing a document templated from mod-
ule definition and containing required input values. A developer can permit
automatic data-parallel execution by simply defining an iterable input param-
eter. A more complex execution can be achieved by passing a DAG document
composed of multiple module execution templates.

Automatically parallelized execution is only allowed in batch mode where all
the required inputs are defined a priori. Interactive analysis on the other hand

8

has only partial inputs initially and will request additional user inputs via the
user interface while running until the end of the execution is reached. Such a
module may remain executing and waiting for input parameters for a prolonged
period of time.

Additionally, the module service provides mechanisms to monitor currently
executing modules and it facilitates communication between the user interface
and its running module code.

3.4 Uniform representation of heterogeneous storage sub-
systems: blob service

Modern institutions already utilize large storage systems, often they manage
multiple different systems and often those systems are read-only. Moreover,
individual users also use several storage services. To further complicate matters,
data storage is available at different speeds with different price points. It may
be advantageous to store old data in a cheaper but slower system while keeping
most current data elements in a much faster but more expensive system.

BisQue allows bringing disparate storage mechanisms together and enabling
annotation and analysis of data stored within those systems. The blob service
handles multiple storage systems and their authentication via extensible drivers
that can handle large local file systems and enterprise solutions like iRODS,
Amazon S3, Box, Google Drive and others. The blob service also handles local
caching of these resources for improved multiple access performance.

Metadata documents describing files located in remote storage systems sim-
ply store URIs that define a driver, a specific attached store and a path to the
file. This allows annotating large amounts of resources without ever moving any
bytes until those bytes are required for visualization or analysis.

Another benefit of this descriptory mechanism is with cold storage. Ele-
ments located or moved to cold storage can be rapidly found using metadata
descriptors without access to bytes. Moreover, caching of derivative results may
enable fast partial visualization, for example, image service may provide pixel
preview without accessing original data by caching derivative thumbnails.

3.5 Uniform access and operations over data files: image
service and table service

Accessing bytes does not yet allow accessing functional information since scien-
tific data is typically stored in a multitude of proprietary formats. Providing
uniform access to those formats is another goal of a truly interoperable system.

Due to their size, an important goal is to keep the data as close as possible
to the computational infrastructure used to analyze and visualize the data. For
example, an image viewer can only show a number of pixels available on the
screen which is usually a tiny fraction of pixels available in the scientific image
itself. At the same time, the visualization process typically needs to access a
much larger number of pixels in order to compute the required view of the data.
Similarly, visualization of a numeric table with a billion rows only needs to show

9

a few hundred rows at a time. Thus the bandwidth required for preparation of
the view is much larger than the view itself allowing remote viewers. Analysis
of these data, on the other hand, typically requires access to most of the bytes
and thus faster access is desired.

BisQue utilizes micro-services responsible for a specific logical data type.
These services reside in data centers on fast hardware with very good network
connectivity and typically on the same local network with the institutional data
storage (e.g., CyVerse Atmosphere+iRODS or Amazon EC2+S3). Each service
is able to handle multiple formats while providing a single uniform API offering
all the functionality needed for visualization and analysis. In the following, we
describe in more detail services that provide access to the most basic data types
used in image informatics workflows.

3.5.1 Image service

The image service provides access to the most important data type in image
informatics: images. It offers support for more than 250 image formats by
combining most widely used decoding and encoding libraries: our own C++
libbioimage, OpenSlide, Imaris Convert, BioFormats, FFmpeg, GDCM, and
others. This allows BisQue to support a wide gamut of life-sciences imaging
modalities from 5D fluorescence, large EM connectomics data, behavioral video
data, underwater imagery, GIS aerial and satellite imagery, medical imaging
CT/MRI/ultrasound to histopathology whole slide imaging.

There is a large number of typical image processing operations that can
be requested in any sequence on input data. They include slicing and dicing,
extracting tiles and resolutions, transformations of colors, bit depths, geometric
and spatial, intensity projections, interpolations, fusions, histogram operations
and many others. All these operations are considered views of original image
data and never modify the original pixels.

Another very important function of the image service is to extract and
present in a uniform manner metadata embedded in image files. Most modern
microscopes embed a large amount of acquisition and instrument parameters
that can be useful for data interpretation and processing.

Many other services use image service for image data, such as feature service,
image content indexing, classification and others.

3.5.2 Table service

Another common data type used in bio-imaging is the dense numeric table.
They are commonly used to store features extracted from images, like cells with
many measured parameters, numeric descriptors and other data. Table service
provides uniform access to most common formats like CSV, HDF-5, Excel as
well as other services like Paradigm4 SciDB. Typical operations provided via
the RESTful API are slicing and dicing and various transformations. Large
numbers of graphical annotations can also be stored in these dense formats and
later used for further computations or visualized at varying scale-levels.

10

4 Analysis modules

Facilitating analysis within a database framework was the original BisQue mo-
tivation, and BisQue is unique in terms of providing such an integrated stor-
age, analysis and visualization environment. There are many disparate analysis
packages widely used in life-sciences. Bringing them all together in a simple
integrated manner along with custom analysis routines proves very useful to
create custom workflows. The BisQue system makes it easy to rapidly script
custom analysis and run at a large scale, it also allows creating complex and
custom user interfaces shareable with collaborators. In the following we will
describe ways of bringing custom and already available analysis modules to the
system.

4.1 Python and Matlab scripting

Python has gained large popularity in the scientific community and offers a
large number of high quality libraries from native SciPy to easy-to-use python
bindings for libraries such as the ITK [6]. Matlab has been a popular language
for a while and there are many libraries available to its users. Bringing these
under the same umbrella may save a lot of development and validation time.
BisQue offers an elegant way to bring these analyses from experimentation to
large scale execution.

Any user can request a special authentication token for local analysis which
can then be used for an interactive remote session in any of the programming
languages. BisQue offers APIs for both Python and Matlab that simplify most
aspects of communication with the system. Interactive session permits a devel-
oper to explore the system while using small data portions. Finalized scripts
can easily be converted to BisQue modules and used for large scale processing.

4.2 Pipeline support

Instead of using low-level programming language logic, many scientific analysis
tools rely on higher-level “execution pipelines” to describe the specific logic in
which analysis steps are performed and what data flows from one step to the
next. BisQue allows importing pipelines as first-order resources that can be
annotated, searched, and viewed. Like with other supported resources, BisQue
preserves the original pipeline files. Examples of supported pipelines include
Dream.3D for materials science [5] and CellProfiler for biology [2].

Imported pipelines can contain placeholders for parameters to be filled in
by the user when starting the module execution. The module user interface
renders each of the placeholders as a run parameter and instantiates the pipeline
accordingly before execution starts. As with other BisQue modules, these input
parameters are preserved for later inspection as part of the module execution
documents.

11

4.3 Complex module execution descriptors

The BisQue module execution document allows the specification of directed
acyclic execution graphs where each step is run only when the nodes of all in-
coming edges have completed execution. A simple example is a graph with a
pre-run phase to perform some pre-processing, followed by five parallel runs of
the main analysis phase, followed by a post-run phase to collect and summarize
results. Computer-based analysis of scientific data oftentimes requires analysis
steps to be run with many input parameter combinations in order to understand
the effect on the generated output. For this purpose, BisQue’s module execu-
tion system allows to specify parameter ranges and automatically executes the
module instances in parallel, one for each parameter combination.

Depending on the underlying compute cluster system and the module exe-
cution graph, BisQue may either orchestrate the execution itself or may push
it down to the cluster scheduler. An example for the latter is the execution of
a DAG of tasks by the Condor task scheduler. In either case, the system has
to ensure to schedule tasks only to nodes that are consistent with the task’s
requirements (e.g., sufficient main memory, availability of GPUs). The use of
Docker containerization technology allows the utilization of heterogeneous clus-
ters, without the need to configure or pre-install software on each node.

Since the parallel instances may update the BisQue metadata store at any
time, care has to be taken to ensure that the data remains consistent without
sacrificing parallelism. For example, the XML document describing the module
run may contain many subsections (one for each parameter combination). Since
they are independent of each other, they can be updated in parallel without
locking the entire document. For this purpose, the module execution relies
heavily on the proper concurrency control of the underlying data service.

5 Building on the concepts: sparse images

Image mosaics (montages) are very popular with microscopists to augment the
instrument’s field of view. They have become a requirement for studies in con-
nectomics by generating images of at very large scales. Microscopes equipped
with automated stages and embedded vibrotomes can produce volumetric im-
ages iteratively slicing the tissue and providing an approximate location of an
image in the physical volume. Light-sheet microscopes paired with modern
clearing techniques enable scientists to image and study whole organs. In all of
these cases, microscopes produce a large number of images possibly with their
approximate locations in 3D space.

The typical workflow is to undergo a heavy processing by refining the lo-
cation of each block within the volume using automatic image registration and
subsequently produce a large dense image by geometrically transforming each
input block into the output discrete volume before the whole image can be vi-
sualized and analyzed. The desire to keep the original images typically means
doubling the storage requirement as well as a difficulty to immediately identify

12

which portion of the final volume do these images correspond to.
In contrast, BisQue utilizes a more dynamic and lazy approach by describing

a “sparse” image composed of references to original images along with associ-
ated geometric transformations. Such a structure can represent a very complex
multi-dimensional image. It can be rapidly imported and visualized in the sys-
tem. Each image block in this construct can be independently transformed by
scalable image services while the client-side image viewer decides what portions
to present on the screen.

Moreover, “sparse” images can grow and change over time as, for example,
additional data blocks are acquired by the microscope. Thus allowing visualizing
large mosaics as they are being acquired and/or geometrically refined. BisQue
supports this by using a “mosaic” metadata document and a specialized service
called Montager which operates on a mosaic type to refine transformations, gen-
erate fused overlapping pixels for visualization and eventually generate a large
densified image in a background asynchronous process. Montager uses image
service extensively to create transformed derivatives of input image blocks and
the feature service to compute point descriptors for geometric transformation
refinements.

6 Feature Services and Machine Leaning

Image recognition often requires basic feature extraction. More recently, deep
learning based pattern recognition techniques have demonstrated highly promis-
ing results in various computer vision applications. BisQue supports a diversity
of feature computations through its feature service, and the next release of
BisQue will include integration with deep learning architectures for scalable
computations.

6.1 Feature service

The BisQue feature service is responsible for the computation of numeric feature
descriptors in a scalable and validated manner. It offers more than 100 com-
monly used numerical descriptors (HTD, EHD, SCD, DCD, SIFT, SURF, HAR,
Wavelet Histogram, Radon Coefficients, Chebishev Statistics, ...) [12] computed
on image derivatives (provided by the image service) as well as graphical annota-
tions. In order to guarantee correctness we have integrated, validated, corrected
and rewritten code from multiple well know libraries: OpenCV [1], Mahotas [3],
MPEG7 [7], WndChrm [10]. This provides a basic building block for any clas-
sifier in taking care of the training/testing dataset creation. The same service
can later be used at classification time to compute descriptors for data to be
classified. The demonstration of this approach is available as “Botanicam” clas-
sification and training modules [11].

13

ModelDeep 
Learner

Multimodal
Query
Selector

Images
Annotations

AnnotationsDeep 
LearnerModelImages

Learning
pipeline

Recognition
pipeline

BisQue services GPU cluster

Figure 4: Deep learning training and classification pipelines.

6.2 Connoisseur service for deep learning

The Connoisseur service is an integrated training and classification solution for
image recognition based on deep learning. Connoisseur uses Convolutional Neu-
ral Networks (CNNs) in order to create a model directly from training data
without feature selection. This enables any domain scientist to create a special-
ized classifier model directly from annotated still or video imagery without the
need to know the engineering intricacies of classifier design. Any of the BisQue’s
organizational and filtering functions to choose the training dataset, and could
possibly include all of the available data. Connoisseur presents all classes found
within the selected data and then shows how well it did against the automat-
ically chosen testing part (never seen by the training) of the dataset. At this
point a scientist can choose to discard certain classes if their performance was
below the required level.

During classification, each sample is given a confidence score computed from
multiple measurements performed in a vicinity of the location of interest. This
measure is adjustable by the user to skip low confidence samples. Automated
annotations can be validated and modified by the human expert creating more
data. These new samples can then be used to improve the model over time,
thus a model is a dynamic object that is constantly updated.

Not surprisingly, one of the more time consuming parts of the training pro-
cess is the preparation of the training, testing and validation datasets. All image
data must be in a specific format and size as defined by the training model which
usually means extraction of small patches around annotated regions, possibly
resizing those patches, ensuring the same color space and profile as well as pixel
depth in bytes. Considering hundreds of annotations per image this operation
will be repeated millions of times per typical datasets. This embarrassingly par-
allel processing is ideally handled by the scalable BisQue image service. Here,
multiple asynchronous background Connoisseur processes are requesting the im-
age derivatives following the metadata found in the identified set and writing
the training database in parallel.

Once the training database is created, a single multi-GPU server is used
to effectively train the model. A typical dataset could be trained in a matter
of a few hours on a modern 4-GPU (nVidia TitanX) server using the BisQue
asynchronous background processing facility.

14

A model metadata document is created to describe model files. This includes
the classes detected in the identified dataset, numbers of samples per class, and
their accuracies and errors once the training is done. This model document will
be updated with every consecutive training session.

Once the model is trained, data classification is quite efficient and is em-
barrassingly parallel. The slowest process here is the initialization of the GPU
library and loading of the CNN model into the GPU memory. A typical CNN
model’s size is about 500MB (depending on the network topology) and therefore
multiple models can be loaded at the same time.

6.3 Connoisseur module for domain experts

The Connoisseur classification module offers a user-friendly interface, parallel
execution over datasets and permanent storage and provenance of resulting an-
notations. A user can choose a dataset to classify, a pre-trained model and a
classification mode. There are three classification modes offered by Connoisseur.

The first one creates uniformly or randomly distributed point annotations.
It is designed to automate the widely used percent cover technique. Each auto-
mated point is marked with an accuracy measure and allows visual selection of
the desired level.

The second mode is a fast Voronoi partitioning of the image. It is useful
for object-environment co-occurrence questions. For example, brittle stars over
mud versus rock in underwater images or cancer cells near fat or blood vessels
in microscopy data.

While the previous two methods produce graphical annotations (vector data),
the third one produces a mask image with a higher quality but slower semantic
segmentation where the image is partitioned in classified regions. Each region
has an associated accuracy measure and can also be pruned to a desired level.

7 Application Example: Annotation and Clas-
sification of Underwater Images

Here we briefly describe an example application to marine sciences. Researchers
at the Marine Science Institute at UCSB are using BisQue to store, manage, an-
notate and develope automated analysis techniques for the Marine Biodiversity
Observation Network (MBON) project. Figure 5 shows the BisQue annota-
tion interface configured for percent cover with 100 sample points. The types
(species) of annotations (visible in the right side text widget) are user-defined
and can grow and change as needed over time. This enables continuous evolution
of the annotations to fit the evolving needs of the project.

It is desired to have many annotators due to the number of training images
required. A typical dataset may contain about 300 different classes of interest
and thus would need hundreds of thousands of training annotations. The BisQue
UI allows spitting a dataset among a number of annotators. Further it also
facilitates validation and accepting the annotations by an independent expert.

15

Figure 5: Manual annotation interface configured for percent cover with 100
points. The types (species) of annotations (visible in the right side widget)
are user-defined and can grow and change as needed over time. This enables
continuous evolution of the annotations to fit the evolving needs of the project.

One particular study included a dataset of over 2,000 underwater images
and manually annotated for percent coverage of sessile species. Each image
contained 100 annotated locations amounting to > 200K data points with over
30 species. Over 80% of these data points are covered by the 11 most abundant
classes. We obtained 85% classification accuracy on these 11 classes using two
different feature aggregation techniques, one using CRF based models and the
other using a K-NN classification with dropout regularization [9]. The Con-
noisseur based deep learning technique demonstrated an even higher average
accuracy of 94.73% with an error of 3.65% on the same dataset [4], demonstrat-
ing the power of state-of-the-art CNN approaches.

An example of the uniform percent cover classification automation at 95%
confidence is presented in the Figure 6. Different classes are shown in different
colors. Figure 7 shows an example result for the third mode of classification
that results in segmented regions for the same 95% confidence.

8 Summary

We presented an extensible image informatics platform, BisQue, for reproducible
multimodal data analytics. While the initial motivation for BisQue came from
the life sciences, these requirements cut across most scientific imaging applica-
tions. Some of the recent applications include marine sciences, materials science,
medical imaging and health care. BisQue is unique in its integration of multi-

16

modal databases with data analytics, making it possible to track the data and
its processing, including provenance on the methods themselves. BisQue adopts
the state of the art in web based analytics and cloud computing, making it
easy for the end users to immediately take advantage of the latest methods. At
the same time it enables researchers in computer vision, pattern recognition and
machine learning to work with diverse types of data at scale. BisQue is available
as a core service through the CyVerse cyber infrastructure (http://cyverse.org)
as well as open source for download.

Figure 6: Automated point annotations imitating percent cover annotations at
95% confidence.

References

[1] G. Bradski. Opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[2] A. Carpenter, T. Jones, M. Lamprecht, C. Clarke, I. Kang, O. Friman, D. Guertin,
J. Chang, R. Lindquist, J. Moffat, P. Golland, and D. Sabatini. Cellprofiler:
image analysis software for identifying and quantifying cell phenotypes. Genome
Biology, 7(R:100), Oct. 2006.

[3] L. P. Coelho. Mahotas: Open source software for scriptable computer vision.
CoRR, abs/1211.4907, 2012.

[4] D. Fedorov, K. Kvilekval, B. Manjunath, and R. Miller. Bisque: cloud-based
system for management, annotation, visualization, analysis and data mining of
underwater and remote sensing imagery. In Poster at Ocean Sciences Meeting,
New Orleans, LA, Feb 2016.

17

Figure 7: Semantic segmentation of at 95% confidence.

[5] M. A. Groeber and M. A. Jackson. Dream.3d: A digital representation en-
vironment for the analysis of microstructure in 3d. Integrating Materials and
Manufacturing Innovation, 3(1):1–17, 2014.

[6] B. Lowekamp, D. Chen, L. Ibanez, and D. Blezek. The design of simpleitk.
Frontiers in Neuroinformatics, 7:45, 2013.

[7] B. Manjunath, P. Salembier, and T. Sikora. Introduction to MPEG-7: Multimedia
Content Description Interface. John Wiley & Sons, Inc., New York, NY, USA,
2002.

[8] D. Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 2014(239), Mar. 2014.

[9] A. Rahimi, D. Fedorov, S. Sunderrajan, B. Manjunath, R. Miller, B. Doheny,
and H. Page. Marine biodiversity classification using dropout regularization. In
Workshop on Computer Vision for Analysis of Underwater Imagery: International
Conference on Pattern recognition, Stockholm, Sweden, Aug 2014.

[10] L. Shamir, N. Orlov, D. M. Eckley, T. J. Macura, J. Johnston, and I. G. Goldberg.
Wndchrm - an open source utility for biological image analysis. Source Code for
Biology and Medicine, 3, 2008.

[11] C. Wheat, D. Fedorov, G. Abdollahian, and K. Kvilekval. Botanicam: The plant
recognizer, 2008. http://bisque.ece.ucsb.edu/module_service/Botanicam/.

[12] C. Wheat, D. Fedorov, and K. Kvilekval. Feature service, 2010. http://bisque.
ece.ucsb.edu/features/list.

18

http://bisque.ece.ucsb.edu/module_service/Botanicam/
http://bisque.ece.ucsb.edu/features/list
http://bisque.ece.ucsb.edu/features/list

	Introduction
	Core Requirements

	Core Concepts
	Metadata graph
	Versioning, Provenance and Queries

	Basic micro-services
	Uniform metadata representation and query orchestration: data service
	Scalability of micro-services and analysis
	Analysis extensions: module service
	Uniform representation of heterogeneous storage sub-systems: blob service
	Uniform access and operations over data files: image service and table service
	Image service
	Table service

	Analysis modules
	Python and Matlab scripting
	Pipeline support
	Complex module execution descriptors

	Building on the concepts: sparse images
	Feature Services and Machine Leaning
	Feature service
	Connoisseur service for deep learning
	Connoisseur module for domain experts

	Application Example: Annotation and Classification of Underwater Images
	Summary

