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BIF is a new intermediate format for behavioral synthesis systems, based on annotated 
state tables . It is unique in supporting user control of the synthesis process by allowing 
specification of partial design structures, user-bindings and user modification of compiled 
designs. It captures synchronous and asynchronous behavior, permits hierarchy and con­
currency, and serves as a good interface to the user by linking be ha vi or and structure at 
each level of abstraction in the behavioral synthesis process . BIF's simple and uniform syn­
tax allows it to be used as an intermediate exchange format for various behavioral synthesis 
tools. 
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CHAPTER 1. 

Introduction 

1.1. Problem Description 

The task of high level synthesis spans the continuum from the automatic generation of 

a design, starting with a purely behavioral specification, down to the compilation of a com­

pletely specified structural design consisting of a set of components from a given library and 

their interconnections. In the first case (automatic generation) , the behavior is specified as 

a set of assignment statements to variables, possibly with timing constraints for input­

output pairs. There is no binding of operations to time or to functional units, no binding of 

variables to storage elements, and the description does not have any connectivity specified 

between storage and functional units. At the other extreme , compilation of structure con­

sists of mapping generic components (or components from one library) to components 

derived from another library . The main objective is optimization of that mapping to satisfy 

technology constraints such as time , area, power, testability, etc . 

The traditional view of behavioral synthesis ([GrKP85] [Thom86] [McPC88] etc .) 

assumes that the synthesis system automatically generates the structural design from a user 

specified abstract behavior. Such systems do not permit the user to interact in the design 

synthesis and evaluation loop. The major drawback with this approach is that the user 

cannot impose structural constraints (in the form of an initial design structure), or provide 

design hints (in the form of behavioral operators and variables bound to structural com­

ponents and connections) . The need for such user input is evidenced by the fact that 
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research in behavioral synthesis algorithms is still in its infancy. Existing algorithms for 

synthesis tasks like state allocation , component binding, etc . are either limited to certain 

narrow application areas (e .g. Digital Signal Processing applications), or use restrictive and 

simple models which fail to generate realistic designs (e.g. unit-delay , unit-cost models). 

Since the user cannot directly interact with the design process, it becomes difficult to incor­

porate the designer's knowledge and expertise for guiding the synthesis tasks . 

An attempt to rectify this drawback is described in [ThBR87], where "links" are main­

tained between the abstract behavioral entities (variables, operators) and the resultant 

structural design (state, component, connection). These links are a useful representation 

for performing multi-level simulation, enabling behavioral verification of the synthesized 

structure. But on closer examination, this behavior-to-structure linking does not really help 

the designer explore different design alternatives. If the synthesized design does not meet 

the constraints, the user is forced to re-synthesize the design automatically from the 

abstract behavior by changing some high level constraint . 

For instance, knowing that variable "A" in some statement of the behavior is bound 

to register Rl in state 2 of the synthesized design doesn't really help the user decide on how 

to improve the design; it merely serves as a debugging aid to verify the correctness of the 

synthesis algorithms that generated that particular design . Instead, what is really needed is 

a mechanism that permits the user to selectively specify the binding of certain behavioral 

va:i;iables and operators to specific structural components and connections. The user is then 

able to directly influence synthesis of the structural design to meet the desired constraints . 

Several requirements emerge from the previous discussion: 

September 19, 1989 Behavioral futermediate Format Page2 

r 

11 



(1) partial design specification: the user should be able to specify a partially designed 

structure as an initial constraint; the synthesis tools should then be able to complete 

the rest of the design. 

(2) user-bindings: the user should be able to selectively bind behavioral operations to par­

ticular states, behavioral operations to components, and behavioral variables to 

storage components (e.g. registers) or connections (e.g. buses, wires). 

(3) modification of compiled designs: the user should be able to modify a structural 

design during or after synthesis 1
. 

( 4) modification of synthesis tools: a consistent and readable intermediate format is 

required to enable the addition of new tools and the modification of existing syn thesis · 

tools; the format must allow description of the complete design with links to the 

behavior at each stage of the design process. 

In this report, we describe a new intermediate representation using annotated textual 

state tables which supports the above requirements. We will show how this representation 

can be used to describe the design at each level of abstraction in the synthesis process. It 

facilitates easy translation to and from the internal data structures of synthesis algorithms, 

thereby allowing interchangeability (and upgrading) of synthesis tools. It also serves as a 

useful linking mechanism between the behavior and the structure. Furthermore, users can 

interact with the representation at each of the intermediate levels, allowing for user 

modification of the partial designs. The state-table based format is flexible yet simple with 

an overall consistency throughout the levels of abstraction; designers will find this to be a 

1 Modification of compiled design is described in more detail in Section 5, User Interaction Scenarios. 
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convenient interface mechanism for interacting with a behavioral syn thesis system. Furth­

ermore, its model is general, since it can express hierarchy, concurrency, timing relation­

ships and asynchronous behavior in a single, unifying intermediate form. 
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CHAPTER 2. 

Behavioral Synthesis FranEwork 

2.1. Synthesis Tasks 

Behavioral synthesis is the process of mapping an abstract behavioral specification to 

a structural design that satisfies the behavior within some design constraints. The behavior 

is normally described by a sequence of language variables and operators, while the struc­

tural design is an interconnection of functional units and storage elements operating on a 

state-by-state basis. The functional units, storage and connection elements are normally . 

drawn (or allocated) from a given library. There are several behavior-to-structure mappings 

that comprise this synthesis task; these mappings are called bindings. Some of the impor­

tant synthesis tasks are mentioned below. 

Resource allocation is the task of determining the type and number of functional 

units, storage elements and connections to be used in the ensuing design. The allocated 

resources must satisfy the designer's high level constraints. 

State binding is the temporal assignment of operation sequences in the behavior to 

states of the structural design. A state, in this context, may be delimited by a clock or sig­

nal event. A signal event, associated mostly with asynchronous circuit behavior, refers to a 

change in a signal value. 

Unit binding is the task of assigning functional and storage units to particular 

behavioral operators and variables. 
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Connection binding is the task of providing connections between structural com­

ponents to effect the data transfers specified in the behavior. 

Control synthesis is the task of generating control logic which sequences the design 

through the final states of the design, and which produces control signals for performing 

operations within each state. 

Each of these tasks can be followed by an optimization phase, where, for instance, unit 

merging follows unit binding, or connection merging follows connection binding. These 

allocation, binding and optimization tasks are closely inter-related; there is no optimal ord­

ering of these tasks and current research in this area is still attempting to understand their 

interaction. This underscores the need for a standard intermediate format that captures 

the complete design at each of these levels. 

2.2. A Typical Synthesis Enviro:nrrnnt 

We will use the environment shown in Figure 1 as a representative synthesis frame­

work to show the utility of the intermediate form. The figure is organized into three 

columns: the synthesis tasks on the left, the user interface on the right, and the intermedi­

ate representation in the middle. The intermediate representation is composed of four basic 

components: the state table, the unit list, the connections list, and the symbol list. 

The user typically specifies the behavior of the design in a behavioral specification 

language like VHDL [LiGa88] or EXEL [DuGa89]. The language compiler parses the input 

into a data structure which is captured in the first level of the intermediate form, by creat­

ing the the symbol list and a hierarchical operations table. In addition, if the user has 

September 19, 1989 Behavioral Intermediate Format Page 6 

I 
I 



State Table 

H1erarcn1cal 
Super 
State 

Based 

Un1 t 
Based 

Unit 
Based 
With 
Conns 

Control 
Based 

Unit List 

- - -

- - -

- - -

- - -

Conn List Symbol List 

- - - - - -

- - - - - -

- - - - - -

- - - - - -

Figure 1. A Typical Behavioral Synthesis Environ~nt 

I 

I Behavio r al 

I Input 
Spe c 

I 

Micro -
I arch t te e tu r e 

. :,1:: 
Captur e ···.:r · and 
Display 

I 

I 
.•.· ... : .. :. J:...: 

specified some structure along with the behavior, this structure is captured in the unit and 

connectivity lists. Since the designer may not know the optimal state encoding while 

describing the behavior, the input is naturally described using sequences of groups of opera-

tions. This description forms a multi-level hierarchy, where an operations group at one 
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level of hierarchy can be defined by a sequence of operations groups at a lower level. The 

lowest level of hierarchy consists of sequences of operations. Each operations group is much 

like a basic-block in a standard programming language; it may span several states depend­

ing upon the state encoding scheme used. We call an operations group a super-state, and 

we refer to this form as the hierarchical super-state table. This table describes the opera­

tions performed in each super-state, and the sequencing between super-states. 

The lowest level of hierarchy in the hierarchical super-state table is composed of 

sequences of operations arbitrarily allotted to states. These state assign men ts may be based 

on a behavioral view of the design. In the next level of design, we use a state allocator to 

"slice" the states into hardware states of the design. Operation sequences are assigned to 

specific states of the final design. This task is also called state scheduling in the literature 

[PaKn87] [PaGa87]. The op-based state table is generated by this syn thesis task. This table 

uses conditional triplets to capture the behavior of the design on a state-by-state basis. 

Each triplet describes the condition tested, the operations performed and the event­

controlled next state to be executed. The next state is entered only if the controlling event 

occurs. In synchronous designs the controlling event is the clock. Note that the previous 

hierarchy of super-states defined in the hierarchical super-state table is also represented in 

the ops-based state table. The only difference between the two is the operations-to-state 

assignments at the lowest level of hierarchy. At this point in the synthesis framework, the 

temporal ordering of operations has been fixed, but we have not specified how exactly these 

operations are to be performed in hardware; this is determined by the tasks of resource allo­

cation and binding. 
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Resource allocation determines the type and number of structural components needed 

to implement the structural design. These components are typically drawn from a generic 

library [Dutt88], which contains information about each type of component. Since buses 

are also treated as components, this task updates both the unit list and the connection list. 

Resource binding assigns speci fie instances of functional and storage components to 

abstract operations and variables in the op-based state table. At this point, the design is 

stored in the unit-based state table. This table uses triplets to describe the structural 

operation of the design on a state-by-state basis. Each triplet describes the unit generating 

the conditional, the units performing the conditional operations, and the event-controlled 

next state to be executed. The operations in the unit-based state table only specify which 

components are to be used as inputs for the operation; they do not specify the connection 

paths for these inputs. 

The task of connection binding adds these connection paths to the unit-based state 

table to create a unit-based state table with connections. This table describes the complete 

structure of the synthesized data path, but lacks the control signals for the components. 

Finally, the task of control generation creates control lines for every functional or 

storage unit that needs to be controlled. The control based state table captures this func­

tionality with triplets that describe the control lines conditionally activated in each state, 

and the subsequent event-controlled next state. 

At each level of the synthesis process, the appropriate synthesis task can be performed 

automatically (by a set of algorithms and rules), or can be performed manually by the user 

through the user interface. The user interface displays the units and connections in the 
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form of a schematic, and displays the state tables visually. This permits the user to 

comprehend the complete behavior and structure of the design at each level. 

Nate that we have introduced this particular framework progression solely for the pur­

pose of illustrating the use of the intermediate form. The tasks of state binding, resource 

allocation, unit binding, connection binding and control generation can be performed in 

different combinations; the annotated state tables described in this report can still be used 

as the intermediate exchange format between the various synthesis tasks, regardless of their 

order of in vocation. 
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CHAPTER 3. 

BIF : The Behavioral Internroiate Forim.t 

3.1. General Description 

The Behavioral Intermediate Format (BIF) makes use of modified state tables anno­

tated with a list of symbols, units, and connections to describe a design at each level of 

abstraction in the synthesis process. However, since the design spans several levels of 

abstraction (as illustrated in Figure 1) , we maintain a slightly different format for each 

abstraction level in the design process. 

The state tables and associated information lists are progressively updated as the syn­

thesis process proceeds. At each level of abstraction the user can, either directly or through 

the use of tools, modify the state table and/or any of the information lists. 

In this section, we will describe some of the features of BIF that make it useful for a 

large class of designs. Chapter 4 will illustrate the use of BIF with two annotated examples. 

3.2. Hierarchy 

Hierarchy is a useful method for handling complexity in describing, designing, and 

managing large designs. BIF supports the concept of hierarchy in the state table format by 

allowing each state in the hierarchy to be decomposed into a number of sub-states. Sta­

techarts [DrHa89] provide a method for representing this concept visually. Figure 2 shows 

how a state table is divided into levels of hierarchy to facilitate modular development and 
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Figure 2. A Graphical Representation of Hierarchy 

user comprehension of the overall design. 
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The highest level of hierarchy in Figure 2 is called TOP and the even ts reset and vdd 

cause a reentry into the initial state of 'IOP. TOP is composed of two states named A and 

B. A is the initial entry point for TOP, hence the events reset rising or vdd rising force TOP 

to enter state A. The event X rising forces a transition from state A to state B. When event 

X falls, control is again returned to A. 

A is itself composed of 3 states, the initial state being labeled 1. On reaching state 3 in 

A condition a returns the design to state 2 in A, while condition b forces an exit from A, 

and enters B at its initial state, 1. State B operates in a similar fashion. 

Figure 3 shows how BIF would represent the control portion of the design of Figure 2. 

The hierarchy is easily visualized by a multi-way tree of state tables with each state entry 

having at most one state table as an immediate descendant. Each state in the table at the 

highest level of hierarchy (TOP in this example) may be a parent node to a state table at a 

lower level (A and Bin this example). 

Events described in each table apply to all of the states of its descendants. For 

instance, the first en try in table TOP declares that even ts reset and vdd will effect a transi­

tion to the initial state if we are in any state of TOP. Since TOPs two states, A and B, 

subsume all states in the lower hierarchies, these two events apply to all states at all levels 

of hierarchies. 

3.3. Concurrency 

Concurrency is the notion of separate processes running in parallel. BIF supports this 

notion by allowing multiple processes of a design to operate concurrently at a particular 

September 19, 1989 Behavioral Intermediate Format Page 13 
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Figure 3. Hierarchy in BIF 

level of hierarchy. Each process is represented by a state table. Figure 4 shows a graphical 

representation of concurrency within a design . 
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reset rising 

TOP 

H 

A B 

c 

Figure 4. A Graphical Representation of Qmcurrency 

In this example, TOP is the highest level of hierarchy, composed of states H and C. 

The event reset causes a reentry into the initial state Hof TOP, regardless of the current 
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state. C is entered from H following event X falling. When X rises control is returned to H. 

His composed of concurrent substates A and B and entry into H passes control to the two 

state tables, A and B, simultaneously. 

Figure 5 shows how BIF represents the design of Figure 4. Table H indicates that its 

two states , A and B, run concurrently, and are further defined by the their descenden ts, 

tables A and B. 

3.4. Asynchronous Behavior 

Traditionally, a state table is composed of entries which indicate what actions are per­

formed in each state, the conditions under which those actions are to occur, and the next 

state to proceed to after completion of the actions . This idea assumes that a single unique 

event always triggers the transition from one state to the next. Thi.s is a valid assumption 

only if we make the restriction that our designs are to be synchronous and controlled by a 

single clock. To adapt state tables to represent asynchronous designs and/or multiple clock­

ing schemes we must include a field that specifically describes the event that activates the 

next state. For the state table format used in BIF we associate each next-state with an 

event that causes the transition. Taken together, we call this pair the event-controlled next 

state. BIF uses a separate event column in the state tables to describe the event condition 

which activates the next state. The user may also include a specification of a time-out in 

case the event does not occur. A time-out controlled next state is specified by labeling the 

event signal with a duration value and the keyword timeout, and including the appropriate 

next state. 
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Figure 5. Concurrency in BIF 

Chapter 4 will illustrate the use of the event-controlled next state with an asynchro-

nous design example. 
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Very often, in both synchronous and asynchronous designs, certain events apply to 

every state. A simple machine reset, for example, would require that the design proceed to 

a prespecified state, regardless of the current state, on the rising edge of the reset event. 

To represent this in BIF , we provide a "wild-card" state specifier which matches all states 

in the current level of hierarchy. The event-controlled next state entry in that state applies 

to all states. 

In synchronous designs, the system clock is the default event that sequences the design 

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous 

and asynchronous behavior, the clock can be used as an explicit event to indicate states 

that are entered synchronously. 

3.5. Interface Specification 

If a particular design receives events and control signals from the outside world, it may 

be necessary to describe these signals so that synthesis tools can verify the correctness of 

the design or make appropriate modifications. This information can also involve descrip­

tions of interface protocols to allow some degree of interface synthesis . 

In a situation where a signal, originating from outside a target design's representation, 

interacts with that design, BIF must be able to describe certain attributes of the signal. 

Information about the duration of the signal may be important if it is known that the signal 

shows pulse characteristics. If the signal is a clock, then information about the frequency 

and rise/ fall time is important. If a group of signals interact with the design in a 

predefined manner, a protocol can be specified. For instance: 
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X: ... (INTERFACE: active high, pulse, duration: 30ns) ... ; 

Y: ... (INTERFACE: active low, edge-triggered handshake) ... , 

CLOCK!: ... (INTERFACE: frequency: 60ns, rise: lOns, fall: lOns) ... ; 

Here, the keyword INTERFACE, in the symbols list, introduces a number of attributes for 

each signal, X, Y, and CLOCK! . For X, active high means that the signal is enabled high, 

pulse indicates that the signal remains high for an amount of time defined by its originator, 

and duration gives the amount of time the signal remains high. For Y, active low means 

that the signal is enabled low, and level-triggered handshake indicates that the sender of. Y 

expects an acknowledge signal before it enables Y again. CLOCKl's interface description 

shows its frequency and rise and fall time duration. 

Interface specifications make it possible for synthesis tools to modify the representation 

to ensure correct design. X, in the previous example, is high for a duration of 30ns. If a par­

ticular synthesis tool determines that X's pulse may be missed by the target design, it may 

be necessary to insert a latch between X and our target design to ensure that the signal is 

caught. In Y's interface description, edge-triggered handshake is specified, which contains 

the implicit notion of an acknowledging signal from the target design which follows the 

edge transitions of Y. Again, a particular syn thesis tool will identify this case and ensure 

that an acknowledging signal exists and interacts appropriately with Y. 

3.6. Omtrol/Data Irq>lerrentation 

BIF allows the user (or a syn thesis system) to specify how conditionals are to be imple­

mented in the resulting design. Conditionals that are specified in the condition field of a 
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BIF state table are assumed to be implemented in control, while conditionals (such as IF 

statements) specified in the operation field of a BIF statement are implemented in the data 

path. This notion is similar to EXEL's interpretation of conditional evaluation [DuGa89) . 

This gives the user (or a synthesis system) direct control over how to implement the condi­

tionals, and also provides a mechanism for exercising control/data trade offs. 
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CHAPTER 4. 

Three illustrative Examples 

4.1. Quotient Accunrulator ~le 

In this section, we will use a simple example to illustrate the basic format of the anno-

tated state tables at each level in the design process. A brief tutorial of the intermediate 

form is described in Appendix I, while the detailed syntax is given in Appendix II. 

Figure 6 shows a :flowchart for a design that performs the function: 

!REG 
~ (LIMIT div i) 
i=l 

The design accumulates the sum of all quotients for an externally specified value (LIMIT), 

with respect to every number equal to and below the value set in an internal register IREG. 

In this specification, we assume that the user has already specified the states of the 

machine. The initial structure specified by the user is shown in Figure 7. LPORT is the 

port through which the external limit is specified, while TPORT and DPORT are used to 

output the accumulated sum and a flag signifying the end of the task. Internally, the user 

has specified the several components and connections: registers IREG, CREG, DONE and 

LIMIT; the counter TICK; and the connections between ports LPORT, TPORT, DPORT 

and LIMIT, TICK and DONE respectively. IREG is set to a pre-determined start value for 

the algorithm, while CREG functions as a temporary register, and TICK keeps track of the 

accumulated quotients. LIMIT is loaded with the external value with respect to which the 
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State 0 

State 1 

State 2 

State 3 

f rn1nr~ ......... -.. -- ..-.-.~~---------------------------------

DONE= 1 
DPORT =DONE 
TPORT =TICK 

LIMIT = LPORT 
DONE= 0 
SET(IREG) 
TICK= 0 

CREG = IREG 

FALSE TRUE 

!REG = IREG - 1 CREG = IREG + CREG 
TICK = TICK + 1 

Figure 6. Quotients Accumulator Behavior 
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LPORT 
.............................................................................. : .. Q .......... ... .. ..... ... ...................................... .. .. ............. .... : 

DPQRT 
CREG DONE -----;.o 

IREG 

Lll\.1IT 

TICK (Counter) 

TPORT 

Figure 7. Quotients Accumulator Initial Structure 

accumulated quotients is to be computed. DONE indicates the status of the completed 

task. 

In state 0 of the behavior, we load the LIMIT register with the value on LPORT, clear 

DONE and TICK, and set IREG to the predetermined value. 
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States 1 and 2 describe a nested loop, where the outer loop decrements IREG by one , 

and the inner loop computes the quotient of LIMIT with respect to the current value of 

IREG. 

When IREG is equal to 0, the task is completed. DONE is set to 1 and is asserted on 

DP ORT, while the accumulated sum in TICK is sent out on TPORT. 

4.1.1. The Operations-Based State Table Format 

Since the input behavior already has states assigned to it, we capture initial behavior 

using the operations-based state table (OBST). The OBST contains triplets for each state, 

describing the condition tested, conditional operations performed, and the next state infor-

mation. 

Figure 8 shows the operations-based state table for the example shown in Figure 6. In 

this example, the user has also specified a partial structure consisting of the external ports 

and a few registers. This structure is stored in the symbol list and the unit list of the 

OBST. The structure is identical to that of Figure 7, since no additional units or connec-

tions have been allocated. 

4.1.2. The Unit-Based State Table Without Connections 

The task of unit allocation and unit binding assigns additional components (if neces-

sary) and binds operations in the OBST to specific units. The output of this phase is the 

unit-based state table without connections (UBST). Each triplet in this table describes the 

condition tested, the unit name and the operation performed by the unit, the list of inputs 
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Present State Condition (Value) Actions Next State 

0 LIMIT= LPORT 

- TRUE DONE= o 1 

SET(IREG) 

TICK= o 

TRUE DONE= 1 3 

1 IREG == 0 

FALSE CREG = IREG 2 

TRUE CREG = CREG + IREG 2 

TICK = TICK + 1 

2 CREG <=LIM 

FALSE IREG = IREG - 1 1 

3 .... 

Figure 8. Operations-Based State Table 

used for the operation, and the next state information. Figure 9 shows the UBST for the 

design after unit allocation and binding. Figure 10 is a schematic displayed from the unit 

and connection lists associated with the UBST. Note that at this point in the design, all 

the components have been allocated to the design by the synthesis system, but no connec-

tions have been generated. 
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I 
I 

i . 
I 
I 

Present State 

0 

1 

2 

3 

September 19, 1989 

Condition (Value) Actions Next State 

LIMIT(REG; Ops: LOAD; 

lnps: LPORT) 

TRUE DONE(REG; Ops: CLEAR) 1 

IREG(REG; Ops: SET) 

TICK(COUNTER; Ops: CLEAR) 

NOR(GNOR_GATE; Ops: GNOR; 

lnps: IREG.OQ) 

TRUE DONE(REG; Ops: SET) 3 

NOR.00 == 1 

FALSE CREG(REG; Ops: LOAD; 2 

lnps: IREG.OQ) 

ALUl(ALU; Ops: ADD 

lnps: CREG.OQ, IREG.OQ) 

CREG(REG; Ops: LOAD; 

TRUE lnps: ALUl.00) 2 

TICK(COUNTER; Ops: UP) 

CMPl(CMP; Ops: LEQ; lnps: 

CREG.OQ, LIMIT.OQ) 

CMPl.OLEQ == 1 

ALUl(ALU; Ops: DEC 

lnps: IREG.OQ) 

FALSE IREG(REG; Ops: LOAD; 1 

lnps: ALUl.00) 

NOR(GNOR_GATE; Ops: GNOR; Inps: 

IREG.OQ) 

.... 

Figure 9. Unit-Based State Table 
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LP ORT 

..... ........... ................... .. ............................................ 0 ...... .............................. ............... ..................... ...... .... : 

CONTROL 
UNIT 

ACLEAR IO 

CLO AD 
CREG 

OQ 

, 
IO 

CLOAD LllVllT 
OQ 

IO I1 

Cl\1Pl 

OEQ 

A CLEAR 

TICK (Counter) 
CUP 00 

TPORT 

Figure 10. UBST Annotated Structure 

4.1.3. The Unit-Based State Table With Omnections 

I I 

DPQRT 

;2:0NE oQ .... ------;aa~O 

ASET IO 

IREG 
CLO AD OQ 

ALUl 
00 

The task of connection binding traverses the UBST to determine the connections 

required to effect data transfers between various components in the design. The unit-based 

state table with connections (UBCST) is created after connection binding is performed. 
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The resulting design describes the complete data path excluding control signals for units 

and registers. For our running example, Figure 11 shows the UBST for the design after 

unit allocation and binding. Figure 12 shows the complete data path schematic generated 

from the unit and connection lists associated with the UBCST. 

4.1.4. The Control-Based State Table 

The control-based state table (CBST) is created in preparation for the task of control 

compilation. Like the previous state table, each entry is a triplet which describes the condi­

tion tested, the control signals asserted on that condition, and the next state information. 

Figure 13 shows the CBST for the design after control generation, while Figure i4 shows 

the schematic of this complete design generated from the unit and connection lists. The 

complete synthesized design is now represented by the CBST annotated with the unit and 

connection lists. 

4.2. l\1i.xed Synchronous and Asynchronous Example 

In synchronous designs, the system clock is the default event that sequences the design 

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous 

and asynchronous behavior, the clock can be used as an explicit event to indicate states 

that are entered synchronously. 

We will use a modified version of the quotients accumulator shown in Figure 6 to illus­

trate the use of an op-based event state table. Figure 15 shows a flowchart describing a 
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Presm.t State Condition (Value) Actions Next State 

0 LIMIT(REG; Ops: LOAD; Inps: LPORT) 

TRUE DONE(REG; Ops: CLEAR) 1 

IREG(REG; Ops: SET) 

TICK( COUNTER; Ops: CLEAR) 

NOR(GNOR_GATE; Ops: GNOR; 

Inps: IREG.OQ) 

TRUE DONE(REG; Ops: SET) 3 

1 NOR.00 == 1 

CREG(REG; Ops: LOAD; 

Inps: MUX2.00) 

FALSE CMPl(CMP; Ops: LEQ; Inps: 2 

CREG.OQ, LIMIT.OQ) 

MUX2(MUX; Ops: IO; Inps: IREG.OQ) 

MUXl(MUX; Ops: IO; Inps: CREG.OQ) 

ALUl(ALU; Ops: ADD 

Inps: MUXl.00, IREG.OQ) 

TRUE CREG(REG; Ops: LOAD; 2 

Inps: MUX2.00) 

TICK( COUNTER; Ops: UP) 

CMPl( CMP; Ops: LEQ; Inps: 

CREG.OQ, LIMIT.OQ) 

MUX2(MUX; Ops: Il; Inps: ALUl.00) 

2 CMPl.OLEQ == 1 

MUXl(MUX; Ops: Il; Inps: IREG.OQ) 

ALUl(ALU; Ops: DEC; Inps: MUXl.00) 

FALSE IREG(REG; Ops: LOAD; Inps: ALUl.00) 1 

NOR(GNOR_GATE; Ops: GNOR: 

Inps: IREG.OQ) 

Figure 11. Unit-Based State Table With Connections 
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LP ORT 

................................................... ............................... 0 ....................... ........ ................. ... ................. .. ....... .. ... : 

ACLEAR n PqRT I 
DONEoc;i--~~--~-() 

ASET 

CONTROL 

UNIT 

ACLEAFl 
CREG 

CWAD OQ 

IO 

CLOAD LI1\1IT 
OQ 

IO Il 

CTvIPl 

OEQ 

A CLEAR 

TICK (Counter) 
CUP 00 

ASET IO 

IREG 
CLO AD OQ 

... .. ............................................................................................................................. ..................................... 

TPORT 

Figure 12. UBCST Annotated Structure 
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Present State Omdition (Value) Actions Next State 

0 LIMIT.CLOAD = 1 

TRUE DONE.ACLEAR = 1 1 

IREG.ASET = 1 

TICK.ACLEAR = 1 

TRUE DONE.ASET = 1 2 

1 NOR.OD== 1 

FALSE CREG.CLOAD = 1 3 

MUX2.CIO = 1 

MUXl.CIO = 1 

TRUE ALUl.CADD = 1 2 

CREG.CLOAD = 1 

TICK.CUP= 1 

MUX2.Cll = 1 

2 CMPLOLEQ == 1 

MUXl.Cll = 1 

FALSE ALUl.CDEC = 1 1 

IREG.CLOAD = 1 

3 .... 

Figure 13. Control-Based State Table 
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·········································································································································································· . . . . 

LP ORT 

r--- --------
r-- A CLEAR IO I 

I CREG I r-I I r- CLO AD OQ I I 
I 
I 

I I I 

I 
I r----- -------- ...I I 

I 
I 

I -------- --' I r----
I I I r--- -------- ---------, I I I I -------- L--
I I I I 

r- --------, 
I I I I 

I I 
I I I IO L---I I I ...I I I I r CLO AD LllWT 

I I 
_,.I I I I I I oq __ ...1 

I I 
I I ____ .J I I 

I I I CONTRDL 
_____ ..,1 

I I 

UNIT --- ---...I I 

--------' 

--------- ---- ----------, 
-----------------------, I 

--, IO II 

-, I 
I I 
I I 
I I 
I I 

Cl\1Pl 

OEQ 
I I I 
L----t-L-------.J 

I I 
I I 
I I 
I I 
I L----- ACLEAR 

1 TICK (Counter) 
L------ CUP 00 

I I 
I I 
I I 
I I 
I I 
I L---

L--- --

A CLEAR 

DONE oq 
ASET 

ASET IO 

IBEG 
CLO AD OQ 

I 
I 
I 
I 
I 
I 
I 

-------------------- ------------------------------...! 

D oRT 
0 

....................................................................................................................................................................... 
TPORT 

Figure 14. CBST Annotated Structure 
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Stat e 0 

State 1 

EVENT: START== riJing 

State 2 

State 3 

DONE= 1 
DPORT =DONE 
TPORT =TICK 

LilvlIT = LPORT 
DONE= 0 
SET(IREG) 
TICK= 0 

EVENT: (dock) 

CREG =IREG 

EVENT: (clock) 

FALSE TRUE 

IREG = IREG - 1 CREG = IREG + CR.EG 
TICK = TICK + 1 

Figure 15. Quotients Accumulator with External Event 

EVENT: (dock) 

EVENT: (clock) 

similar quotients accumulator which begins operation only when the signal on the port 
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START rises. State 0 of the design is entered when this event occurs . Subsequently, states 

1 and 2 are synchronous with respect to the clock and therefore use the system clock as the 

default event. 

Figure 16 shows the operations-based event state table for this new quotients accumu-

lator behavior. The table has an extra column which describes the event triggering entry 

into the next event-state. State 0 in this table is entered only on the event START 

Present State Condition (Value) Actions Next State Next State Event 

0 - TRUE - 1 START== RISING 

LIMIT = LPORT 

1 - TRUE DONE= 0 2 (clock) 

SET(IREG) 

TICK= 0 

TPORT =TICK 

TRUE DONE= 1 1 START== RISING 

2 IREG == 0 DPORT =DONE 

FALSE CREG =!REG 3 (clock) 

TRUE CREG = CREG + !REG 3 (clock) 

TICK = TICK + 1 

3 CREG <=LIM 

FALSE !REG = !REG - 1 2 (clock) 

Figure 16. Operations-Based Event State Table 

September 19, 1989 Behavioral Intermediate Fonnat Page34 

I 
I 



RISING, while states 1 and 2 have the clock as the default events. 

4.3. Asynchronous Bus Interface ~le 

Figure 17 shows a schematic of the bus interface section of a typical memory board. 

AB us MemReq BusReq BusAck DataRdy DB us 

............. ······························· ................................................................... ......................................... . 

DEC 

l\.1Rint 

ABR LD R 

s 

LAT 

R 

Enable 

ENA DBR 

............................................ ··································································································· .............. . 

ADDR MR DATA 

Figure 17. Schematic diagram of the Bus Interface 
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The timing diagram is show in Figure 18 We will first describe the bus protocol and then 

show how we can represent this asynchronous design in BIF. 

The bus interface has three ports that connect to a ROM array: ADDR, which drives 

the address inputs of the ROMS; l\1R, connected to the chip select lines; and DATA, which 

receives the ROM output data. The rest of the ports connect to the external bus. ABus is 

connected to the address lines of the external bus, DBus is connected to the data lines, and 

the remaining signals participate in the bus handshaking logic. All of the bus handshaking 

MemReq 

BusAck 

MR 

ADDR 

I BusReq 1 

I 

~ r--
175 Ins 

DB us 

DataRdy 

Figure 18. Timing diagram of the Bus Interface 
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signals are active low. 

The memory access cycle begins when ~mReq goes low and bits 16 to 18 of the 

address on ABus match the board number. This combination of events causes decode DEC 

to drive the on-board signal l\.1Rint high. l\.1Rint drives the load input of the address latch 

AB~ the trigger input of the timing element TJ\1R, and the buffer :rvIBQ. 

l\1RQ drives the chip select inputs of the ROMS. The Tl\.1R output Done goes high 

175 ns after the rising edge of l\1R.int and falls again as soon as :rvIRint drops. Thus the 

request for the bus is delayed until 175 ns after the ROM address lines are set up. 

Done holds BusReq low until BusAck is received from the bus master. The bus signal 

BusAck is inverted and then anded with Done to set LATCH. LATCH's output drives . 

RDY, and at the same time enables the tristate outputs of DBR. The data inputs of DBR 

are driven by the ROM data outputs. The DBR outputs will remain enabled until BusAck 

rises again, resetting LATCH. 

Figure 19 shows the operations-based state table for the bus interface. Since the 

design is completely asynchronous all states are exited on either external event MemReq 

and BusAck. There is no clock. 

State 1 shows the conditional test for the board id (BOARDJD is a constant defined 

in the symbols list). The condition is only tested if IVfemReq falls. If the condition is false 

then the design waits in that state until l\1emReq falls again. If the board id matches the 

address bits then the bus interface performs as described above. 

In state 1, the action of setting BusR.eq low is described in terms of delay with respect 

to the event ~mReq falling. This captures the requirement that the signal BusReq be 
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Present State Condition (Value) Actions Next State Next State Evmt 

DBus = 'X' 

DataRdy = 1 

0 - TRUE 1 MemReq =FALLING 

BusReq = 1 

MR= O 

TRUE Addr = ABus 2 BusAck =FALLING 

BusReqk delay 175ns after 

MernReq FALLING) = O 

1 ABus{16 .. 18} == BOARDJD 

FALSE - 1 MemReq· = FALLING 

BusReq = 1 

2 - TRUE DBus =DATA 3 MemReq =RISING 

DataRdy = 0 

MR= 1 

3 - TRUE Addr = 'X' 0 BusAck = RISING 

Figure 0. Operations-Based State Table for the Bus Interface 

delayed 17 5ns after lY.JemReq is enabled. 
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CHAPTER 5. 

User Interaction Scenarios 

The annotated state table representation described in this report serves as a standard 

exchange format for use by various synthesis tasks. This format not only permits 

modification, upgrading and replacement of the tools for various synthesis tasks, but also 

provides a "manual override" feature by allowing the user to perform any or all of these 

synthesis tasks manually. This is a unique advantage of the state table representation over 

flowgraph-based representations , which only capture the abstract behavior, or netlist-based 

representations, which capture pure structure. In this chapter we describe several user . 

interaction scenarios that demonstrate the utility of the state table format as a convenient 

intermediate representation. 

5.1. User Specified Structural Constraints 

Quite often, the designer may want to specify some initial hardware allocation or some 

partial design structure as a starting point for the synthesis tasks. By doing this, the user is 

specifying structural constraints before the task of synthesis begins. 

5.1.1. Partial Resource Allocation 

If the, user partially allocates resources such as a certain number of functional units, 

storage elements and buses, these resources are stored in the unit list. These pre-specified 

units constrain the task of resource allocation (see Figure 1 ). 
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5.1.2. Partial Design Structure 

The user may wish to specify a partial design structure consisting of an in terconnec­

tion of pre-allocated functional units, storage elements and buses. The components in the 

partial design are stored in the unit list, while the connections are captured in the connec­

tion list. This partial design constrains both the task of resource allocation and connection 

binding . 

5.2. User Specified Bindings 

In addition to specifying partial resources and their connections, the user may wish to 

selectively bind certain behavioral operations and variables to components and connections. 

This is useful, for instance, when the designer has determined the critical path in the 

design, and wants to force the binding of fast components along the critical path in the 

behavior. Some input behavioral languages like EXEL [DuGa89] have special constructs 

that allow the user to selectively bind resources to abstract variables and operations. 

This type of binding is a user specified behavior-to-structure "link" that must be used 

as a constraint through all the synthesis levels. The pre-allocated components constrain the 

resource allocation task, while the user-bindings constrain both the resource and connection 

binding tasks. We represent each such binding explicitly in the state table by annotating 

the corresponding behavioral variable or operator with the structural component or connec­

tion it is bound to. 
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5.3. Modification of Cofi1liled Designs 

An experienced designer who sees the structure generated by an automatic syn thesis 

system can, quite often, identify parts of the synthesized structure that are inefficient, 

unrealistic or which just seem odd to the experienced eye. The designer may want to 

correct the design by manually modifying parts of the compiled structural design. This 

type of user modification is a unique feature supported by BIF; existing behavioral syn-

thesis systems do not permit such modifications. 

A typical example would be an automatically synthesized structure where a register A 

is cleared by loading the value "O" from a constant register 1. If the register A is loaded 

through another source, the design also has a mux at the input to register A to switch 

between the two sources. For this design, the designer would like to modify the generated 

design manually by replacing loading of the zero register with the activation of the asyn-

chronous clear input on the register. This eliminates the zero register, as well as the mux at 

the input to register A. 

These kinds of changes are handled very cleanly in BIF. Structural changes to the 

compiled design are updated in the unit list and the connection list. Since there is no 

guarantee that the design will still function correctly after user-modification, the behavior 

must be verified on this new design structure by simulation. If the simulation does not 

satisfy the intended behavior, the complete synthesis process must be restarted from the 

beginning, using the user specified structural changes as an additional structural constraint. 

1 The design model behind most existing synthesis tools cannot handle asynchrony, and hence cannot generate 
the asynchronous signal required to clear the register. 
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If the designer modifies the synthesized design by changing the unit list, the synthesis 

process must start from the state binding phase. If only the connections have been 

modified in the structure, then resynthesis can begin at the connection binding phase. 

5.4. State Table Modification 

If we allowed complete freedom for the user to perform any or all of the syn thesis tasks 

in the design process, the user could modify the state table in addition to the unit and con­

nection lists. 

Since this type of modification can easily cause the behavior of the design to be 

violated, state table modification must immediately be followed by a simulation to verify 

that the functionality of the original specificatio!1 has not changed. Following verification, 

syn thesis tasks can begin from the level where the user change is effected. 

For instance, if the user modifies the op-based state table, we first require a 

verification of the new op-based state table. If the behavior of the new table is unchanged, 

we use this new state table as a starting point for the ensuing synthesis tasks of resource 

allocation, resource binding, connection binding and control generation. 
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CHAPI'ER 6. 

Sunnnary 

In this report, we described BIF, an intermediate representation format that captures 

the complete behavior and structure of a design at each level of the behavioral syn thesis 

process. This representation obviates the need to maintain complex behavior-to-structure 

links from the abstract behavior down to the final structure, by capturing these links only 

where necessary: at each level of the design process. 

BIF can express hierarchy, concurrency, timing relationships, asynchronous behavior, 

and interface protocols in a single, unifying intermediate format. 

BIF is an intermediate form which supports several novel design scenarios: 

specification of partial design structures, user binding of behavioral constructs to structural 

elements, and user modification of compiled designs. This permits syn thesis tools to be 

interchanged, and also allows the user to manually replace the task of a synthesis tool. 

The resulting design paradigm allows an evolution towards completely automatic syn­

thesis, where synthesis tasks that are not fully understood may be performed manually by a 

designer, while well understood tasks are performed using synthesis algorithms. Synthesis 

algorithms can therefore be easily incorporated, modified, upgraded or replaced as neces­

sary. 
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APPENDIX A. 

A Tutorial Introduction to BIF 

A.1. General I>escription 

This section is devoted to a syntactical description of the text-based form for state 
table representation. The row-column approach to state table display (e.g. Figure 4) does 
not work well for text viewers or editors. It is necessary to provide an alternate format that 
is easy to enter or edit using a common text editor such as vi or emacs . This format depicts 
row entries as successive vertical entries in a text file with corresponding key words 
representing the various state table constructs. 

Each of the four state tables has a common structural format composed of a constant 
ordering of keywords and delimiters. 

• Table Identifier 

At the beginning of a given table there is a keyword which identifies which of the four 
state tables it is. 

OPS_BASED /* operations-based. * / 
/* table en tries * / 

UNIT_BASED_NC /* unit-based without connections. * / 
/* table entries * / 

UNIT_BASED /*unit-based with connections. * / 
/* table en tries * / 

CONTROL_BASED / * control-based. * / 
/* table en tries * / 

• State Entries 

Following the table identifier are any number of state entries composed of the keyword 
STATE, a colon (':'), a number identifying the state, a possible unconditional action entry, 
and a number of triplets . describing the conditions, the actions to be performed in that 
state, and the next state, along with an optional event for the next state. Commas (',') 
separate all entries following state number, and a semicolon (';') terminates the list of 
entries. (The ellipses (' ... ') in all of the following examples indicate entries omitted for rea­
dability). 

STATE: 2 
... , 
... , 
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/ * state two. * / 
/* first entry * / 
/* nth entry * / 
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... ; / * last en try * / 
• Unconditional Action Entry 

The unconditional action entry specifies an action that is to always take place in that 
state. It is delimited by curly brackets ('{}') and is composed of the keyword 
UNCOND_A.CTIONS, a colon, and a list of actions in a format identical to the actions list 
in a triplet entry (See below). 

{ 
UNCOND_ACTIONS: 

} 

• Triplets 

Each triplet is delimited by curly brackets and is composed of three parts: condition, 
actions, and next state information. 

{ 

} 

COND: ... ; 
ACTIONS: ... ; 
NXTSTATE: ... ; 

• Conditions 

/* condition * / 
/ * actions * / 
/* next state * / 

Conditions are indicated by the keyword COND, a colon, an expression possibly 
enclosed in parentheses(()), and a semicolon. 

COND: ( ... ); /* Expression is represented by ellipsis * / 

• Expressions 

The expression in the condition is any kind of logical construct that will evaluate to 
either TRUE (non-zero) or FALSE (zero). (Keywords true and :fhlse are legitimate expres­
sions). Currently, sum-of-products form of boolean equations, comparison to constants, and 
equality checks against constants are allowed, with variables having slightly different mean­
ings in the operations-based state table form. Operators are too numerous to describe here. 
See appendix B for a BNF description of expressions and operators. 

COND: (X OR Y); /* Operations-based state table * / 

COND: (X ORY > 4); /* Operations-based state table*/ 

COND: (AUl.SUM > 64); / * any other state table * / 

COND: (AUl.sum AND CMPl.ogt); /*any other state table * / 
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• Else Expression 

The else special-case is evaluated uniquely among the expressions. If the expression in 
a condition is the keyword ELSE then · all conditions in previous triplets up to a previous 
ELSE expression (or the beginning of the state entry) are considered to be relevant to this 
condition. That is, if all previous conditions fail then the ELSE condition evaluates to 
TRUE. If one or more previous conditions do not fail then the ELSE condition evaluates to 
FALSE. (NOTE: This may require restructuring of the entries by the user to ensure correct 
condition grouping). 

{ 

}, 
{ 

}, 
{ 

}; 

COND: (X != O); 
/* next state and actions * / 

COND: (Y != O); 

COND: (E); 

/* next state and actions * / 

/* TRUEonlyifX==O and Y==O */ 
/* next state and actions * / 

• Next State Specification 

The state to proceed to after completing the list of actions is indicated by the keyword 
NXTSTATE, a colon , a state number, an optional event specification and a terminating 
semicolon. 

NXTSTATE: 4; / * Proceed to state 4 after actions * / 

• Events 

The optional event triggering the next state transition is specified by the keyword 
EVENT followed by a colon and an expression using the EXEL [DuGa88] syntax form for 
asynchronous event timing. For sequential designs where states are activated by the clock 
the keyword CLOCK can be used. 

NXTSTATE: 4, EVENT: GPORT == rising; 

NXTSTATE: 5, EVENT: CLOCK; 

Note that omitting the event specification for the next state implies a transition on the 
next clock. 

• Actions List 

Septanber 19, 1989 Behavioral Intennediate Fonnat Page 48 



Actions to perform in a given state are indicated by the keyword ACTIONS, a colon , 
and a comma separated action list terminated by a semicolon. 

ACTIONS: 
... , 
.. . , 
... , 

• Actions 

/* First action * / 
/ * nth action * / 
/ * Last action * / 

The specification format for a single action is differs among the four state table for­
mats. See the specification for each table format under heading Actions. 

Fields or entries that are not used in a particular state table can be left blank, or the 
keyword null can be used. 

C-style commenting (i.e. /* comment * /) is allowed anywhere in the state table. 

A.2. Specific Descriptions of F.ach State Table Forrrnt 

A.2.1. Operations-based State Table 

The operations-based state table describes actions to be performed in each state in 
terms of assignment statements. Variable names are not bound to units and instead 
represent values to be input and output at various stages of the design. • Actions 

Actions, listed following the keyword ACTIONS, are expressions, variables, and con­
stants combined by logical or arithmetical operators. See the EXEL [DuGa88) input 
language description for a complete description of the expression format. 

ACTIONS: 
x = y + 32, 
X{0 .. 3} = 0, 
Z = X * Y; 

/ * Addition * / 
/ * Selector function * / 
/ * Multiplication * / 

Unique to the operations based table is component binding specifications. Optionally 
immediately following any variable name can be a component name surrounded by curly 
brackets. This will be interpreted to mean that that variable will be represented by that 
component in that particular action. 

A.2.2. Unit-based State Table With and Without Umnections 

Both the unit-based state table (UBCST) and the unit-based state table without con­
nections (UBST) have the same syntax. Their differences are conceptual and external only. 
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• Actions 

Actions, listed following the keyword ACTIONS in the state table, are represented by 
a unit name followed by a group of attributes delimited by parentheses. 

ACTIONS: 
CNT2 ( ... ), /* Counter named CNT2 * / 
MUXl ( ... ), /* Multiplexor named MUXl * / 
ALUl ( ... ); /*ALU named ALUl * / 

• Unit Attributes 

Unit attributes describe a unique unit name, the operations performed by the unit, 
and the inputs to the unit. They are listed within the parentheses as unit name, semicolon, 
the keyword OPS, a colon, a list of operations corresponding to control input names, a 
semicolon, the keyword INPS, a colon, and a list of output pin names from other units. 

CNT (counter; OPS: inc,dec; INPS: AL Ul.sum, CTR.I[O]) 

• Pin NaIIEs 

Pin names are formed by concatenating the actual pin name of the unit with the . 
unique unit name. 

COND: (AL Ul.sum == 0) /* unit-based state table * / 

A.2.3. Control-based State Table 

The control-based state table describes actions in terms of the values of each unit's 
control input lines. At each state the pin names of each unit are given with the values they 
are to assume in that state, either 1 or 0. 

ACTIONS: 
ADDl.carryin = 0, 
ALUl.czero = 1, 
ALU2.crinhi = 1, 
SHFl.cen = 1; 
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B.1. Global Table Syntax 

File 

file 

File Tables 

file_ ta bl es 

File Table 

file_table 

table_header 

APPENDIX B. 

BIF Table Syntax 

file_tables ';' 

file_table I file_tables ';' file_table 

table_header '{' table '}' I 
table_header '{' concurren t_table '}' 

TABLE identifier I 
TABLE identifier':' STATE identifier 
OF TABLE identifier 

B.2. Concurrency Table Syntax 

Concurrency Table 

concurren t_table 

Concurrent States 

con curren t_sta tes 

Concurrent State 

CONCURRENT '{' concurrent_states '}' 

concurrent_state I concurrent_states ',' 
concurren t_sta te 
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concurren t_state STATE ':' state 
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B.3. Operations Based State Table Syntax 

State Table 

table table.J.dent entries ';' 

State Table Identifier 

ta ble_id en t OPSJJASED 

State Table Entries 

en tries en try I en tries ';' en try 

Single State Table Entry 

entry 

Present State 

state 

STATE ':' state triplets I 
STATE':' state UC_A.CTIONS 
uncond_actions triplets 

identifier 

Unconditional Actions 

un con d_ac tions action I uncond_actions ',' action 

Triplets 

triplets: triplet I triplets ',' triplet 

Single Triplet 

triplet 

September 19, 1989 

empty I 
'{' 
COND ':' condition ';' 
ACTIONS ':'actions ';' 
next_state_event ';' 
'}' 
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Next State Information 

next_state_even t: 

Next State 

next_state 

NXTSTATE ':' next_state 
NXTSTATE ':'state; event 

TABLE identifier' ,' STATE identifier 

Asynchronous Event 

event EVENT ':' cond_expr 

Condition 

condition '(' cond_expr ')' 

Condition Expression 

cond_expr variable compare_op expr I pinname compare_op expr I 
booLexpr 

Compare Operation Types 

compare_op '=='I'!=' I'<' I'>' I'<=' I'>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I unit_action I ops_action 

Unit Based Action 
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uni t_action comp_name '(' comp_type ';'operations ';'inputs ')' 

Operations Based Action 

ops_action simple_assign I cond_assign 

Simple Assignment 

sim p le_assign variable ':=' expr 

Conditional Assignment 

cond_assign IF cond_expr THEN simple_assign 

Component Name 

comp_name identifier 

Component Type 

comp_type 

Operations 

operations 

identifier 

empty I OPS ':' op_list 

Operations List 

op_list op I op_list ',' op 

Single Operation 

op 

Operation Type 

op_ type 

Septembe.r 19, 1989 

empty I op_type 

identifier 
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Inputs 

inputs empty I INPS ' :' inp-1.ist 

Input List 

inp_list: input I inp_list ','input 

Single Input 

input empty I variable I pinname 

Expression 

expr arith_expr I booLexpr I shift_expr 

Arithmetic Expression 

arith_expr '(' arith_expr ')' I 
arith_expr '+' arith_expr I arith_expr '-' arith_expr I 
arith_expr '*' arith_expr I arith_expr '/' arith_expr I 
variable I pinname I dig_seq 

Boolean Expression 

booLexpr lgbLexpr I btbLexpr 

Logical Boolean Expression 

lgbLexpr '(' lg bLexpr ')' I 
lgbLexpr LAND gbl_expr I lgbl_expr LOR gbLexpr I 
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbl_expr I 
lgbLexpr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I 
variable I pin name I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr 

September 19, 1989 

'(' btbLexpr ')' I 
btbLexpr '&' btbLexpr I btbl_expr 'I' btbLexpr I 
btbLexpr , ... , btbLexpr I btbLexpr ,_, btbLexpr I 

Behavioral Intermediate Format Page 56 

I 



btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I 
btbLexpr '"-' btbLexpr I 
variable I pinname I dig_seq 

Shi ft Expression 

shift_expr '(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
variable I pinname I dig_seq 

Variable 

variable value_ident 

Pin Name 

pin name comp_name '.' portnarne 

Port Name 

portname value_ident 

Port or Variable Identifier 

value_ident identifier I 
identifier '[' dig_seq ']' I 
identifier '{' dig_seq ' .. ' dig_seq '}' I 
identifier '{' bound_component '}' 

Bound Component 

boun d_com ponen t identifier 

Identifier 

Lex Format: [a-zA-Z][a-zA-Z0-9_]* 

identifier IDENTIFIER 

Digit Sequence 
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Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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B.4. Unit Based State Table Syntax 

State Table 

table table_ident entries ';' 

State Table Identifier 

table_ident UNITJ3ASED 

State Table Entries 

en tries entry I entries ';'entry 

Single State Table Entry 

entry STATE ':'state triplets I STATE':' state UC_ACTIONS 
uncond_actions triplets 

Present State 

state identifier 

Unconditional Actions 

uncond_actions action I uncond_actions ','action 

Triplets 

triplets: triplet I triplets ',' triplet 

Single Triplet 

triplet 

September 19, 1989 

empty I 
'{' 
COND ':' condition ';' 
ACTIONS ':' actions ';' 
next_state_event ';' 
'}' 
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Next State Information 

next_state_event 

Next State 

next_state 

NXTSTATE ':' next_state 
NXTSTATE ':'state; event 

TABLE identifier',' STATE identifier 

Asynchronous Event 

event EVENT ':' cond_expr 

Condition 

condition '(' cond_expr ')' 

Condition Expression 

cond_expr pinname compare_op expr I booLexpr 

Compare Operation Types 

compare_op '=='I'!=' I'<' I'>' I'<=' I'>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I comp_name '(' comp_type ';' operations ';' inputs ')' 

Component Name 

comp_name identifier 

Component Type 
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comp_type identifier 

Operations 

operations empty I OPS ':' op_list 

Operations List 

op_list op I op_list ',' op 

Single Operation 

op empty I op_type 

Operation Type 

op_ type identifier 

Inputs 

inputs empty I INPS ':' inp_list 

Input List 

inp_list: input linp_list ', ' input 

Single Input 

input empty I pinname 

Expression 

expr arith_expr I booLexpr I shift_expr 

Arithmetic Expression 

arith_expr '(' arith_expr ')' I 
arith_expr '+' arith_expr I arith_expr '-' arith_expr I 
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arith_expr '* ' arith_expr I arith_expr '/ ' arith_expr I 
pinnarne I dig_seq 

Boolean Expression 

booLexpr lgbLexpr I btbLexpr 

Logical Boolean Expression 

lgbLexpr '( ' lg bLexpr ')' I 
lgbl_expr LAND gbl_expr I lgbl_expr LOR gbLexpr I 
lgbl_expr LNOT gbLexpr I lgbLexpr LNAND gbl_expr I 
lgbl_expr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I 
pinname I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr '(' btbl_expr ')' I 
btbl_expr '& ' btbLexpr I btbl_expr 'I' btbLexpr I 
btbl_expr '"'' btbLexpr I btbLexpr ,_, btbLexpr I 
btbLexpr ,_ &' btbLexpr I btbl_expr '-I' btbLexpr I 
ht bLexpr , ... _' btbLexpr I 
pinname I dig_seq 

Shi ft Expression 

shift_expr 

An Name 

pinname 

'(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
pinname I dig_seq 

cornp_name '.' value_ident 

Port or Variable Identifier 

value....ident 

Identifier 

SeptEmher 19, 1989 

identifier I identifier '[' dig_seq ']' I 
identifier '{' dig_seq ' .. ' dig_seq '}' 
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Lex Format: [a- zA-Z][a-zA-Z0-9_]* 

identifier IDENTIFIER 

Digit Sequence 

Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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B.5. Control Based State Table Syntax 

State Table 

table table_ident entries ';' 

State Table Identifier 

table_ident CONTROL_BASED 

State Table Entries 

entries entry I entries ' ;' entry 

Single State Table Entry 

entry STATE':' state triplets I STATE':' state UC_A.CTIONS 
uncond_actions triplets 

Present State 

state identifier 

Unconditional Actions 

uncond_actions action I uncond_actions , , , action 

Triplets 

triplets: triplet I triplets ','triplet 

Single Triplet 

triplet 

September 19, 1989 

empty I 
'{' 
COND ':' condition ';' 
ACTIONS ':' actions ';' 
next_state_event ';' 
'}' 
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Next State Information 

next_state_event 

Next State 

next_state 

NXTSTATE ':' next_state 
NXTSTATE ':'state; event 

TABLE identifier',' STATE identifier 

Asynchronous Event 

event EVENT ':' cond_expr 

Condition 

condition '(' cond_expr ')' 

Condition Expression 

cond_expr pinname compare_op expr I booLexpr 

Compare Operation Types 

compare_op '=='I'!=' I'<' I'>' I'<=' I '>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I pinname ':=' dig_seq 

Expression 

expr arith_expr I booLexpr I shift_expr 

Arithmetic Expression 
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arith_expr '( ' arith_expr ')' I 
arith_expr '+ ' arith_expr I arith_expr '- ' arith_expr I 
arith_expr '* ' arith_expr I arith_expr '/ ' arith_expr I 
pinname I dig_seq 

Boolean Expression 

booLexpr lgbl_expr I btbLexpr 

Logical Boolean Expression 

lgbl_expr '(' lgbLexpr ')' I 
lgbl_expr LAND gbLexpr I lgbl_expr LOR gbLexpr I 
lgbl_expr LNOT gbLexpr I lgbLexpr LN AND gbl_expr I 
lgbl_expr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I 
pinname I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr '(' btbl_expr ')' I 
btbLexpr '&' btbLexpr I btbl_expr 'I' btbLexpr I 
btbLexpr 'A' btbLexpr I btbLexpr ,_, btbl_expr I 
btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I 
btbLexpr ,A_, btbLexpr I 
pinname I dig_seq 

Shi ft Expression 

shift_expr 

.Pi,n Name 

pinname 

'(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
pinname I dig_seq 

comp_name '.' value_iden t 

Port or Variable Identifier 

value_ident 
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identifier I identifier '[' dig_seq ']' I 
identifier '{' dig_seq ' .. ' dig_seq '}' 
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Identifier 

Lex Format: [a-zA-Z][a-zA-Z0-9_]* 

identifier IDENTIFIER 

Digit Sequence 

Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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APPENDIX C. 

Interrrediate List Syntax 

C.1. General Description 

This section describes, briefly, the textual format for the three lists: the units, connec­
tions, and symbols lists, associated with each state table format (see Figure 1) 

C.2. The Units List 

Recall that if the user partially allocates resources such as a certain number of func­
tional units, storage elements and buses, these resources are stored in the unit list. The unit 
list is simply a list of unit names with details of the parameters used to instantiate the unit 
from a generic library such as GENUS [Dutt88]. For instance: 

LU_l, LU_2: GC_COJ\1PILER....N.Afv1E: LU, GC_INPUT_WIDTH: 8, 
GC_NUNLFUNCTIONS:3, GC_FUNCTION_LIST: AND, NAND, NOR. 

This fragment describes two components, LU_l and LU-2., defined to be 8 bit logic units 
that have the functions "AND", "NAND", and "NOR". 

C.3. The Omnections List 

The connections lists was previously described as a method for storing a partial design 
structure consisting of interconnections of pre-allocated units. Though any structural net­
list, VHDL, for example, would serve to accommodate this information, we have opted to 
define a simple format, compatible with the units list, that describes connections both by 
associating component pin names with nets and nets with component pin names. The fol­
lowing describes a simple connection list: 

COlVIPONENTS { 
LU_l, 
INPUTS (Nl => IO, N2 => 11, ... ), 
OUTPUTS (N3 => 00, N4 => 01, ... ); 

LU_2, 
INPUTS (N3 => IO, N4 => Il, ... ), 
OUTPUTS ( ... ); 
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I I 

} NETS { 
N3: SOURCE (LU_l.00), SINK ( LU_2.IO, ... ); 
N4: SOURCE (LU_l.01), SINK ( LU_2.Il, ... ); 

} 

Each component instance has an entry in the COJ\1PONENTS field describing the 
connections between each of its input and output pins and net junctions within the 
design. The NETS field describes connections between net junctions and component 
pins. Although this may seem redundant this makes the task of examining and/or 
restructuring the design from the connections list simpler and faster. 

C.4. The Symbols List 

The symbol list serves the function of a symbol table in a traditional co~piler. It lists 
vertically all the names used in the operations fields of BIF descriptions , and horizontally 
the attributes associated with each name. For example: 

R1 : (SYM_type : COMPONENT) 
A : (SYM_type: VARIABLE, NUMJ3ITS: 16) 
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