
UC Irvine
ICS Technical Reports

Title
BIF : a behavioral intermediate format for high level synthesis

Permalink
https://escholarship.org/uc/item/7nf387m9

Authors
Dutt, Nikil D.
Hadley, Tedd
Gajski, Daniel D.

Publication Date
1989-09-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nf387m9
https://escholarship.org
http://www.cdlib.org/

BIF: - ,

A Behavioral Intermediate Format

Fo:r; High Level Synthesis

BY

Nikil D. putt,
Tedd Hadley

Daniel D. Gajski

Technicai Report 89-03 (Revised 9/19/89)

Information and Computer Science
University of California at Irvine

Irvine, CA 92717

Abstract

z
6 f f
t3
no .fr tJ3
l!.ev.

BIF is a new intermediate format for behavioral synthesis systems, based on annotated
state tables . It is unique in supporting user control of the synthesis process by allowing
specification of partial design structures, user-bindings and user modification of compiled
designs. It captures synchronous and asynchronous behavior, permits hierarchy and con­
currency, and serves as a good interface to the user by linking be ha vi or and structure at
each level of abstraction in the behavioral synthesis process . BIF's simple and uniform syn­
tax allows it to be used as an intermediate exchange format for various behavioral synthesis
tools.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

TABLE OF CONTENTS

CHAPTER

CHAPTER

1. Introduction 1

1.1. Problem Description :... 1

2 . Behavioral Synthesis Framework 5

2.1. Synthesis Tasks .. 5

2.2. A Typical Synthesis Environment ... 6

3. BIF : The Behavioral Intermediate Format 11

3.1. General Description 11

3 .2. Hierarchy 11

3.3. Concurrency 13

3.4. Asynchronous Behavior;.............................. 16

3.5. Interface Specification 18

3.6. Control/Data Implementation 19

4. Three Illustrative Examples :..... 21

4.1. Quotient Accumulator Example 21

4.2. Mixed Synchronous and Asynchronous Example 28

4.3. Asynchronous Bus Interface Example 35

5. User Interaction Scenarios 39

5.1. User Specified Structural Constraints 39

5.2. User Specified Bindings 40

5.3. Modification of Compiled Designs 41

5.4. State Table Modification 42

6. Summary 43

7. References 44

APPENDIX A. A Tutorial Introduction to BIF .. 46

A.l. General Description .. 46

A.2. Specific Descriptions of Each State Table Format 49

September 19, 1989 Behavioral Intermediate Format Pagei

APPENDIX B. BIF Table Syntax .. 51

B.l. Global Table Syntax 51

B.2. Concurrency Table Syntax 51

B.3. Operations Based State Table Syntax ;.............. 53
B.4. Unit Based State Table Syntax 59

B.5. Control Based State Table Syntax 64

APPENDIX C. Intermediate List Syntax 68

C.1. General Description 68 .
C.2. The Units List 68

C.3. The Connections List 68
C.4. The Symbols List 69

September 19, 1989 Behavioral Intermediate Fonnat Page ii

[

I

I I

I

LIST OF FIGl.JRES

Figure 1. A Typical Behavioral Synthesis Envirorurent .. 7

Figure 2. A Graphical Representation of Hierarchy 12

Figure 3. ffierarchy in BIF 14

Figure 4. A Graphical Representation of Concurrency 15

Figure 5. Cbncurrency in Bll' 1 7

Figure 6. Quotients Accumulator Behavior 22

Figure 7. Quotients Accumulator Initial Structure ... 23

Figure 8. Operations-Based State Table 25

Figure 9. Unit-Based State Table 27

Figure 10. lJBST Annotated Structure 27

Figure 11. Unit-Based State Table With Connections 29

Figure 12. UBCST Annotated Structure 30

Figure 13. Control-Based State Table .. 31 ·

Figure 14. CBST Annotated Structure .. 32

Figure 15. Quotients Accumulator with External Event 33

Figure 16. Operations-Based Event State Table 34

Figure 17. Schematic diagram of the Bus Interface 35

Figure 18. Timing diagram of the Bus Interface 36

Figure 0. Operations-Based State Table for the Bus Interface 38

Septembe.r 19, 1989 Behavioral Intermediate Format Page iii

CHAPTER 1.

Introduction

1.1. Problem Description

The task of high level synthesis spans the continuum from the automatic generation of

a design, starting with a purely behavioral specification, down to the compilation of a com­

pletely specified structural design consisting of a set of components from a given library and

their interconnections. In the first case (automatic generation) , the behavior is specified as

a set of assignment statements to variables, possibly with timing constraints for input­

output pairs. There is no binding of operations to time or to functional units, no binding of

variables to storage elements, and the description does not have any connectivity specified

between storage and functional units. At the other extreme , compilation of structure con­

sists of mapping generic components (or components from one library) to components

derived from another library . The main objective is optimization of that mapping to satisfy

technology constraints such as time , area, power, testability, etc .

The traditional view of behavioral synthesis ([GrKP85] [Thom86] [McPC88] etc .)

assumes that the synthesis system automatically generates the structural design from a user

specified abstract behavior. Such systems do not permit the user to interact in the design

synthesis and evaluation loop. The major drawback with this approach is that the user

cannot impose structural constraints (in the form of an initial design structure), or provide

design hints (in the form of behavioral operators and variables bound to structural com­

ponents and connections) . The need for such user input is evidenced by the fact that

September 19, 1989 Behavioral Intermediate Fonnat Page 1

research in behavioral synthesis algorithms is still in its infancy. Existing algorithms for

synthesis tasks like state allocation , component binding, etc . are either limited to certain

narrow application areas (e .g. Digital Signal Processing applications), or use restrictive and

simple models which fail to generate realistic designs (e.g. unit-delay , unit-cost models).

Since the user cannot directly interact with the design process, it becomes difficult to incor­

porate the designer's knowledge and expertise for guiding the synthesis tasks .

An attempt to rectify this drawback is described in [ThBR87], where "links" are main­

tained between the abstract behavioral entities (variables, operators) and the resultant

structural design (state, component, connection). These links are a useful representation

for performing multi-level simulation, enabling behavioral verification of the synthesized

structure. But on closer examination, this behavior-to-structure linking does not really help

the designer explore different design alternatives. If the synthesized design does not meet

the constraints, the user is forced to re-synthesize the design automatically from the

abstract behavior by changing some high level constraint .

For instance, knowing that variable "A" in some statement of the behavior is bound

to register Rl in state 2 of the synthesized design doesn't really help the user decide on how

to improve the design; it merely serves as a debugging aid to verify the correctness of the

synthesis algorithms that generated that particular design . Instead, what is really needed is

a mechanism that permits the user to selectively specify the binding of certain behavioral

va:i;iables and operators to specific structural components and connections. The user is then

able to directly influence synthesis of the structural design to meet the desired constraints .

Several requirements emerge from the previous discussion:

September 19, 1989 Behavioral futermediate Format Page2

r

11

(1) partial design specification: the user should be able to specify a partially designed

structure as an initial constraint; the synthesis tools should then be able to complete

the rest of the design.

(2) user-bindings: the user should be able to selectively bind behavioral operations to par­

ticular states, behavioral operations to components, and behavioral variables to

storage components (e.g. registers) or connections (e.g. buses, wires).

(3) modification of compiled designs: the user should be able to modify a structural

design during or after synthesis 1
.

(4) modification of synthesis tools: a consistent and readable intermediate format is

required to enable the addition of new tools and the modification of existing syn thesis ·

tools; the format must allow description of the complete design with links to the

behavior at each stage of the design process.

In this report, we describe a new intermediate representation using annotated textual

state tables which supports the above requirements. We will show how this representation

can be used to describe the design at each level of abstraction in the synthesis process. It

facilitates easy translation to and from the internal data structures of synthesis algorithms,

thereby allowing interchangeability (and upgrading) of synthesis tools. It also serves as a

useful linking mechanism between the behavior and the structure. Furthermore, users can

interact with the representation at each of the intermediate levels, allowing for user

modification of the partial designs. The state-table based format is flexible yet simple with

an overall consistency throughout the levels of abstraction; designers will find this to be a

1 Modification of compiled design is described in more detail in Section 5, User Interaction Scenarios.

September 19, 1989 Behavioral Intermediate Format Page3

convenient interface mechanism for interacting with a behavioral syn thesis system. Furth­

ermore, its model is general, since it can express hierarchy, concurrency, timing relation­

ships and asynchronous behavior in a single, unifying intermediate form.

September 19, 1989 Behavioral futermediate Format Page4

I I

I
I

CHAPTER 2.

Behavioral Synthesis FranEwork

2.1. Synthesis Tasks

Behavioral synthesis is the process of mapping an abstract behavioral specification to

a structural design that satisfies the behavior within some design constraints. The behavior

is normally described by a sequence of language variables and operators, while the struc­

tural design is an interconnection of functional units and storage elements operating on a

state-by-state basis. The functional units, storage and connection elements are normally .

drawn (or allocated) from a given library. There are several behavior-to-structure mappings

that comprise this synthesis task; these mappings are called bindings. Some of the impor­

tant synthesis tasks are mentioned below.

Resource allocation is the task of determining the type and number of functional

units, storage elements and connections to be used in the ensuing design. The allocated

resources must satisfy the designer's high level constraints.

State binding is the temporal assignment of operation sequences in the behavior to

states of the structural design. A state, in this context, may be delimited by a clock or sig­

nal event. A signal event, associated mostly with asynchronous circuit behavior, refers to a

change in a signal value.

Unit binding is the task of assigning functional and storage units to particular

behavioral operators and variables.

Septanber 19, 1989 Behavioral Intermediate Fonnat Page5

Connection binding is the task of providing connections between structural com­

ponents to effect the data transfers specified in the behavior.

Control synthesis is the task of generating control logic which sequences the design

through the final states of the design, and which produces control signals for performing

operations within each state.

Each of these tasks can be followed by an optimization phase, where, for instance, unit

merging follows unit binding, or connection merging follows connection binding. These

allocation, binding and optimization tasks are closely inter-related; there is no optimal ord­

ering of these tasks and current research in this area is still attempting to understand their

interaction. This underscores the need for a standard intermediate format that captures

the complete design at each of these levels.

2.2. A Typical Synthesis Enviro:nrrnnt

We will use the environment shown in Figure 1 as a representative synthesis frame­

work to show the utility of the intermediate form. The figure is organized into three

columns: the synthesis tasks on the left, the user interface on the right, and the intermedi­

ate representation in the middle. The intermediate representation is composed of four basic

components: the state table, the unit list, the connections list, and the symbol list.

The user typically specifies the behavior of the design in a behavioral specification

language like VHDL [LiGa88] or EXEL [DuGa89]. The language compiler parses the input

into a data structure which is captured in the first level of the intermediate form, by creat­

ing the the symbol list and a hierarchical operations table. In addition, if the user has

September 19, 1989 Behavioral Intermediate Format Page 6

I
I

State Table

H1erarcn1cal
Super
State

Based

Un1 t
Based

Unit
Based
With
Conns

Control
Based

Unit List

- - -

- - -

- - -

- - -

Conn List Symbol List

- - - - - -

- - - - - -

- - - - - -

- - - - - -

Figure 1. A Typical Behavioral Synthesis Environ~nt

I

I Behavio r al

I Input
Spe c

I

Micro -
I arch t te e tu r e

. :,1::
Captur e ···.:r · and
Display

I

I
.•.· ... : .. :. J:...:

specified some structure along with the behavior, this structure is captured in the unit and

connectivity lists. Since the designer may not know the optimal state encoding while

describing the behavior, the input is naturally described using sequences of groups of opera-

tions. This description forms a multi-level hierarchy, where an operations group at one

September 19, 1989 Behavioral Intermediate Format Page 7

level of hierarchy can be defined by a sequence of operations groups at a lower level. The

lowest level of hierarchy consists of sequences of operations. Each operations group is much

like a basic-block in a standard programming language; it may span several states depend­

ing upon the state encoding scheme used. We call an operations group a super-state, and

we refer to this form as the hierarchical super-state table. This table describes the opera­

tions performed in each super-state, and the sequencing between super-states.

The lowest level of hierarchy in the hierarchical super-state table is composed of

sequences of operations arbitrarily allotted to states. These state assign men ts may be based

on a behavioral view of the design. In the next level of design, we use a state allocator to

"slice" the states into hardware states of the design. Operation sequences are assigned to

specific states of the final design. This task is also called state scheduling in the literature

[PaKn87] [PaGa87]. The op-based state table is generated by this syn thesis task. This table

uses conditional triplets to capture the behavior of the design on a state-by-state basis.

Each triplet describes the condition tested, the operations performed and the event­

controlled next state to be executed. The next state is entered only if the controlling event

occurs. In synchronous designs the controlling event is the clock. Note that the previous

hierarchy of super-states defined in the hierarchical super-state table is also represented in

the ops-based state table. The only difference between the two is the operations-to-state

assignments at the lowest level of hierarchy. At this point in the synthesis framework, the

temporal ordering of operations has been fixed, but we have not specified how exactly these

operations are to be performed in hardware; this is determined by the tasks of resource allo­

cation and binding.

September 19, 1989 Behavioral Intermediate Format Page8

Resource allocation determines the type and number of structural components needed

to implement the structural design. These components are typically drawn from a generic

library [Dutt88], which contains information about each type of component. Since buses

are also treated as components, this task updates both the unit list and the connection list.

Resource binding assigns speci fie instances of functional and storage components to

abstract operations and variables in the op-based state table. At this point, the design is

stored in the unit-based state table. This table uses triplets to describe the structural

operation of the design on a state-by-state basis. Each triplet describes the unit generating

the conditional, the units performing the conditional operations, and the event-controlled

next state to be executed. The operations in the unit-based state table only specify which

components are to be used as inputs for the operation; they do not specify the connection

paths for these inputs.

The task of connection binding adds these connection paths to the unit-based state

table to create a unit-based state table with connections. This table describes the complete

structure of the synthesized data path, but lacks the control signals for the components.

Finally, the task of control generation creates control lines for every functional or

storage unit that needs to be controlled. The control based state table captures this func­

tionality with triplets that describe the control lines conditionally activated in each state,

and the subsequent event-controlled next state.

At each level of the synthesis process, the appropriate synthesis task can be performed

automatically (by a set of algorithms and rules), or can be performed manually by the user

through the user interface. The user interface displays the units and connections in the

SeptEmher 19, 1989 Behavioral Intermediate Fonnat Page 9

form of a schematic, and displays the state tables visually. This permits the user to

comprehend the complete behavior and structure of the design at each level.

Nate that we have introduced this particular framework progression solely for the pur­

pose of illustrating the use of the intermediate form. The tasks of state binding, resource

allocation, unit binding, connection binding and control generation can be performed in

different combinations; the annotated state tables described in this report can still be used

as the intermediate exchange format between the various synthesis tasks, regardless of their

order of in vocation.

September 19, 1989 Behavioral Intermediate Fonnat Page 10

I
I

CHAPTER 3.

BIF : The Behavioral Internroiate Forim.t

3.1. General Description

The Behavioral Intermediate Format (BIF) makes use of modified state tables anno­

tated with a list of symbols, units, and connections to describe a design at each level of

abstraction in the synthesis process. However, since the design spans several levels of

abstraction (as illustrated in Figure 1) , we maintain a slightly different format for each

abstraction level in the design process.

The state tables and associated information lists are progressively updated as the syn­

thesis process proceeds. At each level of abstraction the user can, either directly or through

the use of tools, modify the state table and/or any of the information lists.

In this section, we will describe some of the features of BIF that make it useful for a

large class of designs. Chapter 4 will illustrate the use of BIF with two annotated examples.

3.2. Hierarchy

Hierarchy is a useful method for handling complexity in describing, designing, and

managing large designs. BIF supports the concept of hierarchy in the state table format by

allowing each state in the hierarchy to be decomposed into a number of sub-states. Sta­

techarts [DrHa89] provide a method for representing this concept visually. Figure 2 shows

how a state table is divided into levels of hierarchy to facilitate modular development and

September 19, 1989 Behavioral Intermediate Fonnat Page 11

reset rising vdd rising

TOP

A

B

Figure 2. A Graphical Representation of Hierarchy

user comprehension of the overall design.

September 19, 1989 Behavioral Intermediate Format

Ing

Page 12

I

The highest level of hierarchy in Figure 2 is called TOP and the even ts reset and vdd

cause a reentry into the initial state of 'IOP. TOP is composed of two states named A and

B. A is the initial entry point for TOP, hence the events reset rising or vdd rising force TOP

to enter state A. The event X rising forces a transition from state A to state B. When event

X falls, control is again returned to A.

A is itself composed of 3 states, the initial state being labeled 1. On reaching state 3 in

A condition a returns the design to state 2 in A, while condition b forces an exit from A,

and enters B at its initial state, 1. State B operates in a similar fashion.

Figure 3 shows how BIF would represent the control portion of the design of Figure 2.

The hierarchy is easily visualized by a multi-way tree of state tables with each state entry

having at most one state table as an immediate descendant. Each state in the table at the

highest level of hierarchy (TOP in this example) may be a parent node to a state table at a

lower level (A and Bin this example).

Events described in each table apply to all of the states of its descendants. For

instance, the first en try in table TOP declares that even ts reset and vdd will effect a transi­

tion to the initial state if we are in any state of TOP. Since TOPs two states, A and B,

subsume all states in the lower hierarchies, these two events apply to all states at all levels

of hierarchies.

3.3. Concurrency

Concurrency is the notion of separate processes running in parallel. BIF supports this

notion by allowing multiple processes of a design to operate concurrently at a particular

September 19, 1989 Behavioral Intermediate Format Page 13

TABLE: TOP

STATE EVENT NEXT STATE

ANY reset rising TABLE TOP

vdd rising TABLE TOP

• A x rising B

B x falling A

TABLE: A I .

STATE CONDITION NEXT ST ATE

• l <true J 2 p

2 <true) 3 -
TABLE: B I 3 a 2

b TABLE B STATE CONDITION NEXT ST AT E

... ... ~ ·''~~::-~~:;~;"'.·=".'.;..; :..... ... ~ :.::.:: ... -..: . . .;.•:; .. •.,..;.· . •' • l <true J 2

2 <true) 3

3 <true) TABLE A STATE 3

Figure 3. Hierarchy in BIF

level of hierarchy. Each process is represented by a state table. Figure 4 shows a graphical

representation of concurrency within a design .

September 19, 1989 Behavioral Intermediate Fonnat Page 14

1.

I
I
I
I

reset rising

TOP

H

A B

c

Figure 4. A Graphical Representation of Qmcurrency

In this example, TOP is the highest level of hierarchy, composed of states H and C.

The event reset causes a reentry into the initial state Hof TOP, regardless of the current

September 19, 1989 Behavioral mtermediate Format Page 15

state. C is entered from H following event X falling. When X rises control is returned to H.

His composed of concurrent substates A and B and entry into H passes control to the two

state tables, A and B, simultaneously.

Figure 5 shows how BIF represents the design of Figure 4. Table H indicates that its

two states , A and B, run concurrently, and are further defined by the their descenden ts,

tables A and B.

3.4. Asynchronous Behavior

Traditionally, a state table is composed of entries which indicate what actions are per­

formed in each state, the conditions under which those actions are to occur, and the next

state to proceed to after completion of the actions . This idea assumes that a single unique

event always triggers the transition from one state to the next. Thi.s is a valid assumption

only if we make the restriction that our designs are to be synchronous and controlled by a

single clock. To adapt state tables to represent asynchronous designs and/or multiple clock­

ing schemes we must include a field that specifically describes the event that activates the

next state. For the state table format used in BIF we associate each next-state with an

event that causes the transition. Taken together, we call this pair the event-controlled next

state. BIF uses a separate event column in the state tables to describe the event condition

which activates the next state. The user may also include a specification of a time-out in

case the event does not occur. A time-out controlled next state is specified by labeling the

event signal with a duration value and the keyword timeout, and including the appropriate

next state.

September 19, 1989 Behavioral Intermediate Format Page 16

I

TABLE : TOP

STATE EVENT NEXT ST A TE

ANY re se t r ising TABLE TOP

.. . H x r 1 s Ing c

c x r 1s1n9 H
I

- TABLE: C ---
H STATE CONDITION NEXT ST ATE

TABLE: H I • 1 <true) 2

CONCURRENT ST A TE 2 <true J 1

r· A .

B - ' -
·~ ~ ; , ,

TABLE : A ll
STATE CONDITION NEXT ST ATE

I • 1 <true J 2
~,

2 <true J
TABLE: B

1

,...-..:,.: < :~..::!'..:·:~;:\.'".:..:.::-:· · ~·:t:.•:..:-:-'.;.:..:·:· .[, • •:.·:w-:..:··· ··, .. STATE CONDITION NEXT ST ATE
:

• 1 <true) 2

2 <true) I

Figure 5. Concurrency in BIF

Chapter 4 will illustrate the use of the event-controlled next state with an asynchro-

nous design example.

September 19, 1989 Behavioral Inte.rmediate Fonnat Page 17

Very often, in both synchronous and asynchronous designs, certain events apply to

every state. A simple machine reset, for example, would require that the design proceed to

a prespecified state, regardless of the current state, on the rising edge of the reset event.

To represent this in BIF , we provide a "wild-card" state specifier which matches all states

in the current level of hierarchy. The event-controlled next state entry in that state applies

to all states.

In synchronous designs, the system clock is the default event that sequences the design

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous

and asynchronous behavior, the clock can be used as an explicit event to indicate states

that are entered synchronously.

3.5. Interface Specification

If a particular design receives events and control signals from the outside world, it may

be necessary to describe these signals so that synthesis tools can verify the correctness of

the design or make appropriate modifications. This information can also involve descrip­

tions of interface protocols to allow some degree of interface synthesis .

In a situation where a signal, originating from outside a target design's representation,

interacts with that design, BIF must be able to describe certain attributes of the signal.

Information about the duration of the signal may be important if it is known that the signal

shows pulse characteristics. If the signal is a clock, then information about the frequency

and rise/ fall time is important. If a group of signals interact with the design in a

predefined manner, a protocol can be specified. For instance:

September 19, 1989 Behavioral Intermediate Fonnat Page 18

I

X: ... (INTERFACE: active high, pulse, duration: 30ns) ... ;

Y: ... (INTERFACE: active low, edge-triggered handshake) ... ,

CLOCK!: ... (INTERFACE: frequency: 60ns, rise: lOns, fall: lOns) ... ;

Here, the keyword INTERFACE, in the symbols list, introduces a number of attributes for

each signal, X, Y, and CLOCK! . For X, active high means that the signal is enabled high,

pulse indicates that the signal remains high for an amount of time defined by its originator,

and duration gives the amount of time the signal remains high. For Y, active low means

that the signal is enabled low, and level-triggered handshake indicates that the sender of. Y

expects an acknowledge signal before it enables Y again. CLOCKl's interface description

shows its frequency and rise and fall time duration.

Interface specifications make it possible for synthesis tools to modify the representation

to ensure correct design. X, in the previous example, is high for a duration of 30ns. If a par­

ticular synthesis tool determines that X's pulse may be missed by the target design, it may

be necessary to insert a latch between X and our target design to ensure that the signal is

caught. In Y's interface description, edge-triggered handshake is specified, which contains

the implicit notion of an acknowledging signal from the target design which follows the

edge transitions of Y. Again, a particular syn thesis tool will identify this case and ensure

that an acknowledging signal exists and interacts appropriately with Y.

3.6. Omtrol/Data Irq>lerrentation

BIF allows the user (or a syn thesis system) to specify how conditionals are to be imple­

mented in the resulting design. Conditionals that are specified in the condition field of a

September 19, 1989 Behavioral Intermediate Fonnat Page 19

BIF state table are assumed to be implemented in control, while conditionals (such as IF

statements) specified in the operation field of a BIF statement are implemented in the data

path. This notion is similar to EXEL's interpretation of conditional evaluation [DuGa89) .

This gives the user (or a synthesis system) direct control over how to implement the condi­

tionals, and also provides a mechanism for exercising control/data trade offs.

Septembe.r 19, 1989 Behavioral Intermediate Format Page 20

I

CHAPTER 4.

Three illustrative Examples

4.1. Quotient Accunrulator ~le

In this section, we will use a simple example to illustrate the basic format of the anno-

tated state tables at each level in the design process. A brief tutorial of the intermediate

form is described in Appendix I, while the detailed syntax is given in Appendix II.

Figure 6 shows a :flowchart for a design that performs the function:

!REG
~ (LIMIT div i)
i=l

The design accumulates the sum of all quotients for an externally specified value (LIMIT),

with respect to every number equal to and below the value set in an internal register IREG.

In this specification, we assume that the user has already specified the states of the

machine. The initial structure specified by the user is shown in Figure 7. LPORT is the

port through which the external limit is specified, while TPORT and DPORT are used to

output the accumulated sum and a flag signifying the end of the task. Internally, the user

has specified the several components and connections: registers IREG, CREG, DONE and

LIMIT; the counter TICK; and the connections between ports LPORT, TPORT, DPORT

and LIMIT, TICK and DONE respectively. IREG is set to a pre-determined start value for

the algorithm, while CREG functions as a temporary register, and TICK keeps track of the

accumulated quotients. LIMIT is loaded with the external value with respect to which the

Septanber 19, 1989 Behavioral Intermediate Format Page 21

State 0

State 1

State 2

State 3

f rn1nr~ -.. -- ..-.-.~~---------------------------------

DONE= 1
DPORT =DONE
TPORT =TICK

LIMIT = LPORT
DONE= 0
SET(IREG)
TICK= 0

CREG = IREG

FALSE TRUE

!REG = IREG - 1 CREG = IREG + CREG
TICK = TICK + 1

Figure 6. Quotients Accumulator Behavior

Septanher 19, 1989 Behavioral Intermediate Format Page 22

I

LPORT
.. : .. Q :

DPQRT
CREG DONE -----;.o

IREG

Lll\.1IT

TICK (Counter)

TPORT

Figure 7. Quotients Accumulator Initial Structure

accumulated quotients is to be computed. DONE indicates the status of the completed

task.

In state 0 of the behavior, we load the LIMIT register with the value on LPORT, clear

DONE and TICK, and set IREG to the predetermined value.

September 19, 1989 Behavioral Intermediate Format Page 23

States 1 and 2 describe a nested loop, where the outer loop decrements IREG by one ,

and the inner loop computes the quotient of LIMIT with respect to the current value of

IREG.

When IREG is equal to 0, the task is completed. DONE is set to 1 and is asserted on

DP ORT, while the accumulated sum in TICK is sent out on TPORT.

4.1.1. The Operations-Based State Table Format

Since the input behavior already has states assigned to it, we capture initial behavior

using the operations-based state table (OBST). The OBST contains triplets for each state,

describing the condition tested, conditional operations performed, and the next state infor-

mation.

Figure 8 shows the operations-based state table for the example shown in Figure 6. In

this example, the user has also specified a partial structure consisting of the external ports

and a few registers. This structure is stored in the symbol list and the unit list of the

OBST. The structure is identical to that of Figure 7, since no additional units or connec-

tions have been allocated.

4.1.2. The Unit-Based State Table Without Connections

The task of unit allocation and unit binding assigns additional components (if neces-

sary) and binds operations in the OBST to specific units. The output of this phase is the

unit-based state table without connections (UBST). Each triplet in this table describes the

condition tested, the unit name and the operation performed by the unit, the list of inputs

September 19, 1989 Behavioral Intermediate Format Page 24

1.
'I

I

I

Present State Condition (Value) Actions Next State

0 LIMIT= LPORT

- TRUE DONE= o 1

SET(IREG)

TICK= o

TRUE DONE= 1 3

1 IREG == 0

FALSE CREG = IREG 2

TRUE CREG = CREG + IREG 2

TICK = TICK + 1

2 CREG <=LIM

FALSE IREG = IREG - 1 1

3

Figure 8. Operations-Based State Table

used for the operation, and the next state information. Figure 9 shows the UBST for the

design after unit allocation and binding. Figure 10 is a schematic displayed from the unit

and connection lists associated with the UBST. Note that at this point in the design, all

the components have been allocated to the design by the synthesis system, but no connec-

tions have been generated.

September 19, 1989 Behavioral mtermediate Format Page 25

I
I

i .
I
I

Present State

0

1

2

3

September 19, 1989

Condition (Value) Actions Next State

LIMIT(REG; Ops: LOAD;

lnps: LPORT)

TRUE DONE(REG; Ops: CLEAR) 1

IREG(REG; Ops: SET)

TICK(COUNTER; Ops: CLEAR)

NOR(GNOR_GATE; Ops: GNOR;

lnps: IREG.OQ)

TRUE DONE(REG; Ops: SET) 3

NOR.00 == 1

FALSE CREG(REG; Ops: LOAD; 2

lnps: IREG.OQ)

ALUl(ALU; Ops: ADD

lnps: CREG.OQ, IREG.OQ)

CREG(REG; Ops: LOAD;

TRUE lnps: ALUl.00) 2

TICK(COUNTER; Ops: UP)

CMPl(CMP; Ops: LEQ; lnps:

CREG.OQ, LIMIT.OQ)

CMPl.OLEQ == 1

ALUl(ALU; Ops: DEC

lnps: IREG.OQ)

FALSE IREG(REG; Ops: LOAD; 1

lnps: ALUl.00)

NOR(GNOR_GATE; Ops: GNOR; Inps:

IREG.OQ)

....

Figure 9. Unit-Based State Table

Behavioral futermediate Format Page 26

I

LP ORT

..... 0 :

CONTROL
UNIT

ACLEAR IO

CLO AD
CREG

OQ

,
IO

CLOAD LllVllT
OQ

IO I1

Cl\1Pl

OEQ

A CLEAR

TICK (Counter)
CUP 00

TPORT

Figure 10. UBST Annotated Structure

4.1.3. The Unit-Based State Table With Omnections

I I

DPQRT

;2:0NE oQ ------;aa~O

ASET IO

IREG
CLO AD OQ

ALUl
00

The task of connection binding traverses the UBST to determine the connections

required to effect data transfers between various components in the design. The unit-based

state table with connections (UBCST) is created after connection binding is performed.

September 19, 1989 Behavioral Intermediate Format Page 27

The resulting design describes the complete data path excluding control signals for units

and registers. For our running example, Figure 11 shows the UBST for the design after

unit allocation and binding. Figure 12 shows the complete data path schematic generated

from the unit and connection lists associated with the UBCST.

4.1.4. The Control-Based State Table

The control-based state table (CBST) is created in preparation for the task of control

compilation. Like the previous state table, each entry is a triplet which describes the condi­

tion tested, the control signals asserted on that condition, and the next state information.

Figure 13 shows the CBST for the design after control generation, while Figure i4 shows

the schematic of this complete design generated from the unit and connection lists. The

complete synthesized design is now represented by the CBST annotated with the unit and

connection lists.

4.2. l\1i.xed Synchronous and Asynchronous Example

In synchronous designs, the system clock is the default event that sequences the design

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous

and asynchronous behavior, the clock can be used as an explicit event to indicate states

that are entered synchronously.

We will use a modified version of the quotients accumulator shown in Figure 6 to illus­

trate the use of an op-based event state table. Figure 15 shows a flowchart describing a

September 19, 1989 Behavioral Intermediate Format Page 28

I
I

Presm.t State Condition (Value) Actions Next State

0 LIMIT(REG; Ops: LOAD; Inps: LPORT)

TRUE DONE(REG; Ops: CLEAR) 1

IREG(REG; Ops: SET)

TICK(COUNTER; Ops: CLEAR)

NOR(GNOR_GATE; Ops: GNOR;

Inps: IREG.OQ)

TRUE DONE(REG; Ops: SET) 3

1 NOR.00 == 1

CREG(REG; Ops: LOAD;

Inps: MUX2.00)

FALSE CMPl(CMP; Ops: LEQ; Inps: 2

CREG.OQ, LIMIT.OQ)

MUX2(MUX; Ops: IO; Inps: IREG.OQ)

MUXl(MUX; Ops: IO; Inps: CREG.OQ)

ALUl(ALU; Ops: ADD

Inps: MUXl.00, IREG.OQ)

TRUE CREG(REG; Ops: LOAD; 2

Inps: MUX2.00)

TICK(COUNTER; Ops: UP)

CMPl(CMP; Ops: LEQ; Inps:

CREG.OQ, LIMIT.OQ)

MUX2(MUX; Ops: Il; Inps: ALUl.00)

2 CMPl.OLEQ == 1

MUXl(MUX; Ops: Il; Inps: IREG.OQ)

ALUl(ALU; Ops: DEC; Inps: MUXl.00)

FALSE IREG(REG; Ops: LOAD; Inps: ALUl.00) 1

NOR(GNOR_GATE; Ops: GNOR:

Inps: IREG.OQ)

Figure 11. Unit-Based State Table With Connections

Septe:nber 19, 1989 Behavioral Internroi.ate Format Page 29

LP ORT

... 0 :

ACLEAR n PqRT I
DONEoc;i--~~--~-()

ASET

CONTROL

UNIT

ACLEAFl
CREG

CWAD OQ

IO

CLOAD LI1\1IT
OQ

IO Il

CTvIPl

OEQ

A CLEAR

TICK (Counter)
CUP 00

ASET IO

IREG
CLO AD OQ

...

TPORT

Figure 12. UBCST Annotated Structure

September 19, 1989 Behavioral Intermediate Format Page 30

I

Present State Omdition (Value) Actions Next State

0 LIMIT.CLOAD = 1

TRUE DONE.ACLEAR = 1 1

IREG.ASET = 1

TICK.ACLEAR = 1

TRUE DONE.ASET = 1 2

1 NOR.OD== 1

FALSE CREG.CLOAD = 1 3

MUX2.CIO = 1

MUXl.CIO = 1

TRUE ALUl.CADD = 1 2

CREG.CLOAD = 1

TICK.CUP= 1

MUX2.Cll = 1

2 CMPLOLEQ == 1

MUXl.Cll = 1

FALSE ALUl.CDEC = 1 1

IREG.CLOAD = 1

3

Figure 13. Control-Based State Table

September 19, 1989 Behavioral futermediate Format Page 31

I

··

LP ORT

r--- --------
r-- A CLEAR IO I

I CREG I r-I I r- CLO AD OQ I I
I
I

I I I

I
I r----- -------- ...I I

I
I

I -------- --' I r----
I I I r--- -------- ---------, I I I I -------- L--
I I I I

r- --------,
I I I I

I I
I I I IO L---I I I ...I I I I r CLO AD LllWT

I I
_,.I I I I I I oq __ ...1

I I
I I ____ .J I I

I I I CONTRDL
_____ ..,1

I I

UNIT --- ---...I I

--------'

--------- ---- ----------,
-----------------------, I

--, IO II

-, I
I I
I I
I I
I I

Cl\1Pl

OEQ
I I I
L----t-L-------.J

I I
I I
I I
I I
I L----- ACLEAR

1 TICK (Counter)
L------ CUP 00

I I
I I
I I
I I
I I
I L---

L--- --

A CLEAR

DONE oq
ASET

ASET IO

IBEG
CLO AD OQ

I
I
I
I
I
I
I

-------------------- ------------------------------...!

D oRT
0

...
TPORT

Figure 14. CBST Annotated Structure

Septenber 19, 1989 Behavioral Intermediate Fonnat Page 32

I
I

Stat e 0

State 1

EVENT: START== riJing

State 2

State 3

DONE= 1
DPORT =DONE
TPORT =TICK

LilvlIT = LPORT
DONE= 0
SET(IREG)
TICK= 0

EVENT: (dock)

CREG =IREG

EVENT: (clock)

FALSE TRUE

IREG = IREG - 1 CREG = IREG + CR.EG
TICK = TICK + 1

Figure 15. Quotients Accumulator with External Event

EVENT: (dock)

EVENT: (clock)

similar quotients accumulator which begins operation only when the signal on the port

September 19, 1989 Behavioral Intermediate Format Page 33

START rises. State 0 of the design is entered when this event occurs . Subsequently, states

1 and 2 are synchronous with respect to the clock and therefore use the system clock as the

default event.

Figure 16 shows the operations-based event state table for this new quotients accumu-

lator behavior. The table has an extra column which describes the event triggering entry

into the next event-state. State 0 in this table is entered only on the event START

Present State Condition (Value) Actions Next State Next State Event

0 - TRUE - 1 START== RISING

LIMIT = LPORT

1 - TRUE DONE= 0 2 (clock)

SET(IREG)

TICK= 0

TPORT =TICK

TRUE DONE= 1 1 START== RISING

2 IREG == 0 DPORT =DONE

FALSE CREG =!REG 3 (clock)

TRUE CREG = CREG + !REG 3 (clock)

TICK = TICK + 1

3 CREG <=LIM

FALSE !REG = !REG - 1 2 (clock)

Figure 16. Operations-Based Event State Table

September 19, 1989 Behavioral Intermediate Fonnat Page34

I
I

RISING, while states 1 and 2 have the clock as the default events.

4.3. Asynchronous Bus Interface ~le

Figure 17 shows a schematic of the bus interface section of a typical memory board.

AB us MemReq BusReq BusAck DataRdy DB us

............. ·······························

DEC

l\.1Rint

ABR LD R

s

LAT

R

Enable

ENA DBR

.. ···

ADDR MR DATA

Figure 17. Schematic diagram of the Bus Interface

Septenber 19, 1989 Behavioral Intermediate Fonnat Page 35

The timing diagram is show in Figure 18 We will first describe the bus protocol and then

show how we can represent this asynchronous design in BIF.

The bus interface has three ports that connect to a ROM array: ADDR, which drives

the address inputs of the ROMS; l\1R, connected to the chip select lines; and DATA, which

receives the ROM output data. The rest of the ports connect to the external bus. ABus is

connected to the address lines of the external bus, DBus is connected to the data lines, and

the remaining signals participate in the bus handshaking logic. All of the bus handshaking

MemReq

BusAck

MR

ADDR

I BusReq 1

I

~ r--
175 Ins

DB us

DataRdy

Figure 18. Timing diagram of the Bus Interface

September 19, 1989 Behavioral Intermediate Format Page 36

I

signals are active low.

The memory access cycle begins when ~mReq goes low and bits 16 to 18 of the

address on ABus match the board number. This combination of events causes decode DEC

to drive the on-board signal l\.1Rint high. l\.1Rint drives the load input of the address latch

AB~ the trigger input of the timing element TJ\1R, and the buffer :rvIBQ.

l\1RQ drives the chip select inputs of the ROMS. The Tl\.1R output Done goes high

175 ns after the rising edge of l\1R.int and falls again as soon as :rvIRint drops. Thus the

request for the bus is delayed until 175 ns after the ROM address lines are set up.

Done holds BusReq low until BusAck is received from the bus master. The bus signal

BusAck is inverted and then anded with Done to set LATCH. LATCH's output drives .

RDY, and at the same time enables the tristate outputs of DBR. The data inputs of DBR

are driven by the ROM data outputs. The DBR outputs will remain enabled until BusAck

rises again, resetting LATCH.

Figure 19 shows the operations-based state table for the bus interface. Since the

design is completely asynchronous all states are exited on either external event MemReq

and BusAck. There is no clock.

State 1 shows the conditional test for the board id (BOARDJD is a constant defined

in the symbols list). The condition is only tested if IVfemReq falls. If the condition is false

then the design waits in that state until l\1emReq falls again. If the board id matches the

address bits then the bus interface performs as described above.

In state 1, the action of setting BusR.eq low is described in terms of delay with respect

to the event ~mReq falling. This captures the requirement that the signal BusReq be

September 19, 1989 Behavioral Inte.rmediate Fonnat Page 37

Present State Condition (Value) Actions Next State Next State Evmt

DBus = 'X'

DataRdy = 1

0 - TRUE 1 MemReq =FALLING

BusReq = 1

MR= O

TRUE Addr = ABus 2 BusAck =FALLING

BusReqk delay 175ns after

MernReq FALLING) = O

1 ABus{16 .. 18} == BOARDJD

FALSE - 1 MemReq· = FALLING

BusReq = 1

2 - TRUE DBus =DATA 3 MemReq =RISING

DataRdy = 0

MR= 1

3 - TRUE Addr = 'X' 0 BusAck = RISING

Figure 0. Operations-Based State Table for the Bus Interface

delayed 17 5ns after lY.JemReq is enabled.

September 19, 1989 Behavioral fute.rmediate Format Page 38

I

CHAPTER 5.

User Interaction Scenarios

The annotated state table representation described in this report serves as a standard

exchange format for use by various synthesis tasks. This format not only permits

modification, upgrading and replacement of the tools for various synthesis tasks, but also

provides a "manual override" feature by allowing the user to perform any or all of these

synthesis tasks manually. This is a unique advantage of the state table representation over

flowgraph-based representations , which only capture the abstract behavior, or netlist-based

representations, which capture pure structure. In this chapter we describe several user .

interaction scenarios that demonstrate the utility of the state table format as a convenient

intermediate representation.

5.1. User Specified Structural Constraints

Quite often, the designer may want to specify some initial hardware allocation or some

partial design structure as a starting point for the synthesis tasks. By doing this, the user is

specifying structural constraints before the task of synthesis begins.

5.1.1. Partial Resource Allocation

If the, user partially allocates resources such as a certain number of functional units,

storage elements and buses, these resources are stored in the unit list. These pre-specified

units constrain the task of resource allocation (see Figure 1).

September 19, 1989 Behavioral futermediate Format Page 39

5.1.2. Partial Design Structure

The user may wish to specify a partial design structure consisting of an in terconnec­

tion of pre-allocated functional units, storage elements and buses. The components in the

partial design are stored in the unit list, while the connections are captured in the connec­

tion list. This partial design constrains both the task of resource allocation and connection

binding .

5.2. User Specified Bindings

In addition to specifying partial resources and their connections, the user may wish to

selectively bind certain behavioral operations and variables to components and connections.

This is useful, for instance, when the designer has determined the critical path in the

design, and wants to force the binding of fast components along the critical path in the

behavior. Some input behavioral languages like EXEL [DuGa89] have special constructs

that allow the user to selectively bind resources to abstract variables and operations.

This type of binding is a user specified behavior-to-structure "link" that must be used

as a constraint through all the synthesis levels. The pre-allocated components constrain the

resource allocation task, while the user-bindings constrain both the resource and connection

binding tasks. We represent each such binding explicitly in the state table by annotating

the corresponding behavioral variable or operator with the structural component or connec­

tion it is bound to.

September 19, 1989 Behavioral Intermediate Format Page 40

I
I

5.3. Modification of Cofi1liled Designs

An experienced designer who sees the structure generated by an automatic syn thesis

system can, quite often, identify parts of the synthesized structure that are inefficient,

unrealistic or which just seem odd to the experienced eye. The designer may want to

correct the design by manually modifying parts of the compiled structural design. This

type of user modification is a unique feature supported by BIF; existing behavioral syn-

thesis systems do not permit such modifications.

A typical example would be an automatically synthesized structure where a register A

is cleared by loading the value "O" from a constant register 1. If the register A is loaded

through another source, the design also has a mux at the input to register A to switch

between the two sources. For this design, the designer would like to modify the generated

design manually by replacing loading of the zero register with the activation of the asyn-

chronous clear input on the register. This eliminates the zero register, as well as the mux at

the input to register A.

These kinds of changes are handled very cleanly in BIF. Structural changes to the

compiled design are updated in the unit list and the connection list. Since there is no

guarantee that the design will still function correctly after user-modification, the behavior

must be verified on this new design structure by simulation. If the simulation does not

satisfy the intended behavior, the complete synthesis process must be restarted from the

beginning, using the user specified structural changes as an additional structural constraint.

1 The design model behind most existing synthesis tools cannot handle asynchrony, and hence cannot generate
the asynchronous signal required to clear the register.

September 19, 1989 Behavioral Intermediate Fonnat Page 41

If the designer modifies the synthesized design by changing the unit list, the synthesis

process must start from the state binding phase. If only the connections have been

modified in the structure, then resynthesis can begin at the connection binding phase.

5.4. State Table Modification

If we allowed complete freedom for the user to perform any or all of the syn thesis tasks

in the design process, the user could modify the state table in addition to the unit and con­

nection lists.

Since this type of modification can easily cause the behavior of the design to be

violated, state table modification must immediately be followed by a simulation to verify

that the functionality of the original specificatio!1 has not changed. Following verification,

syn thesis tasks can begin from the level where the user change is effected.

For instance, if the user modifies the op-based state table, we first require a

verification of the new op-based state table. If the behavior of the new table is unchanged,

we use this new state table as a starting point for the ensuing synthesis tasks of resource

allocation, resource binding, connection binding and control generation.

September 19, 1989 Behavioral Intermediate Format Page 42

I
I

CHAPI'ER 6.

Sunnnary

In this report, we described BIF, an intermediate representation format that captures

the complete behavior and structure of a design at each level of the behavioral syn thesis

process. This representation obviates the need to maintain complex behavior-to-structure

links from the abstract behavior down to the final structure, by capturing these links only

where necessary: at each level of the design process.

BIF can express hierarchy, concurrency, timing relationships, asynchronous behavior,

and interface protocols in a single, unifying intermediate format.

BIF is an intermediate form which supports several novel design scenarios:

specification of partial design structures, user binding of behavioral constructs to structural

elements, and user modification of compiled designs. This permits syn thesis tools to be

interchanged, and also allows the user to manually replace the task of a synthesis tool.

The resulting design paradigm allows an evolution towards completely automatic syn­

thesis, where synthesis tasks that are not fully understood may be performed manually by a

designer, while well understood tasks are performed using synthesis algorithms. Synthesis

algorithms can therefore be easily incorporated, modified, upgraded or replaced as neces­

sary.

Septanber 19, 1989 Behavioral Intermediate Format Page 43

I

CHAPTER 7.

References

[ChGa89] G. D. Chen and D. D. Gajski, "An Intelligent Component Database for
Behavioral Synthesis," Technical Report (in preparation), U .C. Irvine, February, 1989.

[DrHa87] D. Druzinsky and D. Harel, "Using Statecharts for Hardware Description," Proc.
ICCAD, Nov. 1987.

[DuGa89] N. D. Dutt and D. D. Gajski, "A Language for Interactive Behavioral Synthesis,"
Ninth International Symposium on Computer Hardware Description Languages
(CHDL89), Washington D.C., June, 1989.

[Dutt88] N. D. Dutt, "GENUS: A Generic Component Library for High Level Synthesis,"
Technical Report 88-22, University of California at Irvine, September, 1988.

[GrKP85] J. Granacki, D. Knapp, A. Parker, "The ADAM Advanced Design Automation
System: Overview, Planner and Natural Language Interface," 22nd Design Automation
Conference (June, 1985).

[LiGa88a] Y.-L. Lin and D. D. Gajski, "LES: A Layout Expert System," IEEE Trans. on
Computer-Aided Design, Vol. CAD-7, Number 8, Aug. 1988.

[LiGa88b] J. S. Lis and D. D. Gajski, "Synthesis from VHDL," Proc. ICCD , Oct. 1988 ,

[McPC88] M.C. McFarland, A.C. Parker and R. Camposano, "Tutorial on High Level Syn­
thesis," 25th Design Automation Conference, July 1988

[PaGa86] B. Pangrle, D. Gajski, "Slicer: A State Synthesizer for Intelligent Silicon Compila­
tion" Proceedings ICCAD86 Santa Clara, CA, (Oct, 1986).

[PaKn87] P.G. Paulin and J.P. Knight, "Force Directed Scheduling in Automatic Data
Path Synthesis," Proc. 24th IEEE Design Automation Conference, Miami, FL, June 1987.

[PaPM86] A. C. Parker, J. Pizarro, M. Milnar, "MAHA: A Program for Datapath Syn­
thesis" 23rd Design Automation Conference IEEE, Las Vegas, NV (July, 1986).

[THBR87] D. E. Thomas, R. L. Blackburn and J. V. Rajan, "Linking the Behavioral and
Structural Domains of Representation for Digital System Design," IEEE Trans. CAD, Vol.
CAD-6, No. 1, January 1987.

[Thom86] D. E. Thomas, "Automatic Data path Synthesis," Design Methodologies, (S.

September 19, 1989 Behavioral Intermediate Format Page 44

I
I

Goto, editor), Chapter 13, Elsevier Science Publishers, 1986.

[VaGa88] N. Vander Zanden and D. D. Gajski, "MILO: A Microarchitecture and Logic
Optimizer," Proc. 25th D. A. C., Anaheim, CA, June 1988.

September 19, 1989 Behavioral Inte.rmedi.ate Format Page 45

APPENDIX A.

A Tutorial Introduction to BIF

A.1. General I>escription

This section is devoted to a syntactical description of the text-based form for state
table representation. The row-column approach to state table display (e.g. Figure 4) does
not work well for text viewers or editors. It is necessary to provide an alternate format that
is easy to enter or edit using a common text editor such as vi or emacs . This format depicts
row entries as successive vertical entries in a text file with corresponding key words
representing the various state table constructs.

Each of the four state tables has a common structural format composed of a constant
ordering of keywords and delimiters.

• Table Identifier

At the beginning of a given table there is a keyword which identifies which of the four
state tables it is.

OPS_BASED /* operations-based. * /
/* table en tries * /

UNIT_BASED_NC /* unit-based without connections. * /
/* table entries * /

UNIT_BASED /*unit-based with connections. * /
/* table en tries * /

CONTROL_BASED / * control-based. * /
/* table en tries * /

• State Entries

Following the table identifier are any number of state entries composed of the keyword
STATE, a colon (':'), a number identifying the state, a possible unconditional action entry,
and a number of triplets . describing the conditions, the actions to be performed in that
state, and the next state, along with an optional event for the next state. Commas (',')
separate all entries following state number, and a semicolon (';') terminates the list of
entries. (The ellipses (' ... ') in all of the following examples indicate entries omitted for rea­
dability).

STATE: 2
... ,
... ,

September 19, 1989

/ * state two. * /
/* first entry * /
/* nth entry * /

Behavioral Intermediate Format Page 46

I

... ; / * last en try * /
• Unconditional Action Entry

The unconditional action entry specifies an action that is to always take place in that
state. It is delimited by curly brackets ('{}') and is composed of the keyword
UNCOND_A.CTIONS, a colon, and a list of actions in a format identical to the actions list
in a triplet entry (See below).

{
UNCOND_ACTIONS:

}

• Triplets

Each triplet is delimited by curly brackets and is composed of three parts: condition,
actions, and next state information.

{

}

COND: ... ;
ACTIONS: ... ;
NXTSTATE: ... ;

• Conditions

/* condition * /
/ * actions * /
/* next state * /

Conditions are indicated by the keyword COND, a colon, an expression possibly
enclosed in parentheses(()), and a semicolon.

COND: (...); /* Expression is represented by ellipsis * /

• Expressions

The expression in the condition is any kind of logical construct that will evaluate to
either TRUE (non-zero) or FALSE (zero). (Keywords true and :fhlse are legitimate expres­
sions). Currently, sum-of-products form of boolean equations, comparison to constants, and
equality checks against constants are allowed, with variables having slightly different mean­
ings in the operations-based state table form. Operators are too numerous to describe here.
See appendix B for a BNF description of expressions and operators.

COND: (X OR Y); /* Operations-based state table * /

COND: (X ORY > 4); /* Operations-based state table*/

COND: (AUl.SUM > 64); / * any other state table * /

COND: (AUl.sum AND CMPl.ogt); /*any other state table * /

Septanber 19, 1989 Behavioral Internmiate Format Page 47 I

I

I

• Else Expression

The else special-case is evaluated uniquely among the expressions. If the expression in
a condition is the keyword ELSE then · all conditions in previous triplets up to a previous
ELSE expression (or the beginning of the state entry) are considered to be relevant to this
condition. That is, if all previous conditions fail then the ELSE condition evaluates to
TRUE. If one or more previous conditions do not fail then the ELSE condition evaluates to
FALSE. (NOTE: This may require restructuring of the entries by the user to ensure correct
condition grouping).

{

},
{

},
{

};

COND: (X != O);
/* next state and actions * /

COND: (Y != O);

COND: (E);

/* next state and actions * /

/* TRUEonlyifX==O and Y==O */
/* next state and actions * /

• Next State Specification

The state to proceed to after completing the list of actions is indicated by the keyword
NXTSTATE, a colon , a state number, an optional event specification and a terminating
semicolon.

NXTSTATE: 4; / * Proceed to state 4 after actions * /

• Events

The optional event triggering the next state transition is specified by the keyword
EVENT followed by a colon and an expression using the EXEL [DuGa88] syntax form for
asynchronous event timing. For sequential designs where states are activated by the clock
the keyword CLOCK can be used.

NXTSTATE: 4, EVENT: GPORT == rising;

NXTSTATE: 5, EVENT: CLOCK;

Note that omitting the event specification for the next state implies a transition on the
next clock.

• Actions List

Septanber 19, 1989 Behavioral Intennediate Fonnat Page 48

Actions to perform in a given state are indicated by the keyword ACTIONS, a colon ,
and a comma separated action list terminated by a semicolon.

ACTIONS:
... ,
.. . ,
... ,

• Actions

/* First action * /
/ * nth action * /
/ * Last action * /

The specification format for a single action is differs among the four state table for­
mats. See the specification for each table format under heading Actions.

Fields or entries that are not used in a particular state table can be left blank, or the
keyword null can be used.

C-style commenting (i.e. /* comment * /) is allowed anywhere in the state table.

A.2. Specific Descriptions of F.ach State Table Forrrnt

A.2.1. Operations-based State Table

The operations-based state table describes actions to be performed in each state in
terms of assignment statements. Variable names are not bound to units and instead
represent values to be input and output at various stages of the design. • Actions

Actions, listed following the keyword ACTIONS, are expressions, variables, and con­
stants combined by logical or arithmetical operators. See the EXEL [DuGa88) input
language description for a complete description of the expression format.

ACTIONS:
x = y + 32,
X{0 .. 3} = 0,
Z = X * Y;

/ * Addition * /
/ * Selector function * /
/ * Multiplication * /

Unique to the operations based table is component binding specifications. Optionally
immediately following any variable name can be a component name surrounded by curly
brackets. This will be interpreted to mean that that variable will be represented by that
component in that particular action.

A.2.2. Unit-based State Table With and Without Umnections

Both the unit-based state table (UBCST) and the unit-based state table without con­
nections (UBST) have the same syntax. Their differences are conceptual and external only.

September 19, 1989 Behavioral Internroiate Format Page 49

• Actions

Actions, listed following the keyword ACTIONS in the state table, are represented by
a unit name followed by a group of attributes delimited by parentheses.

ACTIONS:
CNT2 (...), /* Counter named CNT2 * /
MUXl (...), /* Multiplexor named MUXl * /
ALUl (...); /*ALU named ALUl * /

• Unit Attributes

Unit attributes describe a unique unit name, the operations performed by the unit,
and the inputs to the unit. They are listed within the parentheses as unit name, semicolon,
the keyword OPS, a colon, a list of operations corresponding to control input names, a
semicolon, the keyword INPS, a colon, and a list of output pin names from other units.

CNT (counter; OPS: inc,dec; INPS: AL Ul.sum, CTR.I[O])

• Pin NaIIEs

Pin names are formed by concatenating the actual pin name of the unit with the .
unique unit name.

COND: (AL Ul.sum == 0) /* unit-based state table * /

A.2.3. Control-based State Table

The control-based state table describes actions in terms of the values of each unit's
control input lines. At each state the pin names of each unit are given with the values they
are to assume in that state, either 1 or 0.

ACTIONS:
ADDl.carryin = 0,
ALUl.czero = 1,
ALU2.crinhi = 1,
SHFl.cen = 1;

September 19, 1989 Behavioral Internroiate Format Page 50

I
I

B.1. Global Table Syntax

File

file

File Tables

file_ ta bl es

File Table

file_table

table_header

APPENDIX B.

BIF Table Syntax

file_tables ';'

file_table I file_tables ';' file_table

table_header '{' table '}' I
table_header '{' concurren t_table '}'

TABLE identifier I
TABLE identifier':' STATE identifier
OF TABLE identifier

B.2. Concurrency Table Syntax

Concurrency Table

concurren t_table

Concurrent States

con curren t_sta tes

Concurrent State

CONCURRENT '{' concurrent_states '}'

concurrent_state I concurrent_states ','
concurren t_sta te

September 19, 1989 Behavioral Intermediate Fonnat Page 51

i
I

I

concurren t_state STATE ':' state

September 19, 1989 Behavioral Intermediate Format Page 52 I
I
I

B.3. Operations Based State Table Syntax

State Table

table table.J.dent entries ';'

State Table Identifier

ta ble_id en t OPSJJASED

State Table Entries

en tries en try I en tries ';' en try

Single State Table Entry

entry

Present State

state

STATE ':' state triplets I
STATE':' state UC_A.CTIONS
uncond_actions triplets

identifier

Unconditional Actions

un con d_ac tions action I uncond_actions ',' action

Triplets

triplets: triplet I triplets ',' triplet

Single Triplet

triplet

September 19, 1989

empty I
'{'
COND ':' condition ';'
ACTIONS ':'actions ';'
next_state_event ';'
'}'

Behavioral Internroiate Fonnat Page 53

I

Next State Information

next_state_even t:

Next State

next_state

NXTSTATE ':' next_state
NXTSTATE ':'state; event

TABLE identifier' ,' STATE identifier

Asynchronous Event

event EVENT ':' cond_expr

Condition

condition '(' cond_expr ')'

Condition Expression

cond_expr variable compare_op expr I pinname compare_op expr I
booLexpr

Compare Operation Types

compare_op '=='I'!=' I'<' I'>' I'<=' I'>='

Actions

actions action I actions ',' action

Single Action

action empty I unit_action I ops_action

Unit Based Action

Septm:iber 19, 1989 Behavioral Intermediate Format Page 54

I
I

uni t_action comp_name '(' comp_type ';'operations ';'inputs ')'

Operations Based Action

ops_action simple_assign I cond_assign

Simple Assignment

sim p le_assign variable ':=' expr

Conditional Assignment

cond_assign IF cond_expr THEN simple_assign

Component Name

comp_name identifier

Component Type

comp_type

Operations

operations

identifier

empty I OPS ':' op_list

Operations List

op_list op I op_list ',' op

Single Operation

op

Operation Type

op_ type

Septembe.r 19, 1989

empty I op_type

identifier

Behavioral Intermediate Format Page 55

Inputs

inputs empty I INPS ' :' inp-1.ist

Input List

inp_list: input I inp_list ','input

Single Input

input empty I variable I pinname

Expression

expr arith_expr I booLexpr I shift_expr

Arithmetic Expression

arith_expr '(' arith_expr ')' I
arith_expr '+' arith_expr I arith_expr '-' arith_expr I
arith_expr '*' arith_expr I arith_expr '/' arith_expr I
variable I pinname I dig_seq

Boolean Expression

booLexpr lgbLexpr I btbLexpr

Logical Boolean Expression

lgbLexpr '(' lg bLexpr ')' I
lgbLexpr LAND gbl_expr I lgbl_expr LOR gbLexpr I
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbl_expr I
lgbLexpr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I
variable I pin name I dig_seq

Bitwise Logical Boolean Expression

btbLexpr

September 19, 1989

'(' btbLexpr ')' I
btbLexpr '&' btbLexpr I btbl_expr 'I' btbLexpr I
btbLexpr , ... , btbLexpr I btbLexpr ,_, btbLexpr I

Behavioral Intermediate Format Page 56

I

btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I
btbLexpr '"-' btbLexpr I
variable I pinname I dig_seq

Shi ft Expression

shift_expr '(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
variable I pinname I dig_seq

Variable

variable value_ident

Pin Name

pin name comp_name '.' portnarne

Port Name

portname value_ident

Port or Variable Identifier

value_ident identifier I
identifier '[' dig_seq ']' I
identifier '{' dig_seq ' .. ' dig_seq '}' I
identifier '{' bound_component '}'

Bound Component

boun d_com ponen t identifier

Identifier

Lex Format: [a-zA-Z][a-zA-Z0-9_]*

identifier IDENTIFIER

Digit Sequence

September 19, 1989 Behavioral Inte.rmecliate Format Page 57

I

I

Lex Format: [0-9xX]+

dig_seq DIGSEQ

Septembe.r 19, 1989 Behavioral Intermediate Format Page 58

I
I
I
I
I
I
I

B.4. Unit Based State Table Syntax

State Table

table table_ident entries ';'

State Table Identifier

table_ident UNITJ3ASED

State Table Entries

en tries entry I entries ';'entry

Single State Table Entry

entry STATE ':'state triplets I STATE':' state UC_ACTIONS
uncond_actions triplets

Present State

state identifier

Unconditional Actions

uncond_actions action I uncond_actions ','action

Triplets

triplets: triplet I triplets ',' triplet

Single Triplet

triplet

September 19, 1989

empty I
'{'
COND ':' condition ';'
ACTIONS ':' actions ';'
next_state_event ';'
'}'

Behavioral Intermediate Format Page 59

Next State Information

next_state_event

Next State

next_state

NXTSTATE ':' next_state
NXTSTATE ':'state; event

TABLE identifier',' STATE identifier

Asynchronous Event

event EVENT ':' cond_expr

Condition

condition '(' cond_expr ')'

Condition Expression

cond_expr pinname compare_op expr I booLexpr

Compare Operation Types

compare_op '=='I'!=' I'<' I'>' I'<=' I'>='

Actions

actions action I actions ',' action

Single Action

action empty I comp_name '(' comp_type ';' operations ';' inputs ')'

Component Name

comp_name identifier

Component Type

SeptEnlher 19, 1989 Behavioral Intermediate Format Page 60

I

I
I

comp_type identifier

Operations

operations empty I OPS ':' op_list

Operations List

op_list op I op_list ',' op

Single Operation

op empty I op_type

Operation Type

op_ type identifier

Inputs

inputs empty I INPS ':' inp_list

Input List

inp_list: input linp_list ', ' input

Single Input

input empty I pinname

Expression

expr arith_expr I booLexpr I shift_expr

Arithmetic Expression

arith_expr '(' arith_expr ')' I
arith_expr '+' arith_expr I arith_expr '-' arith_expr I

September 19, 1989 Behavioral Intermediate Format Page 61

arith_expr '* ' arith_expr I arith_expr '/ ' arith_expr I
pinnarne I dig_seq

Boolean Expression

booLexpr lgbLexpr I btbLexpr

Logical Boolean Expression

lgbLexpr '(' lg bLexpr ')' I
lgbl_expr LAND gbl_expr I lgbl_expr LOR gbLexpr I
lgbl_expr LNOT gbLexpr I lgbLexpr LNAND gbl_expr I
lgbl_expr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I
pinname I dig_seq

Bitwise Logical Boolean Expression

btbLexpr '(' btbl_expr ')' I
btbl_expr '& ' btbLexpr I btbl_expr 'I' btbLexpr I
btbl_expr '"'' btbLexpr I btbLexpr ,_, btbLexpr I
btbLexpr ,_ &' btbLexpr I btbl_expr '-I' btbLexpr I
ht bLexpr , ... _' btbLexpr I
pinname I dig_seq

Shi ft Expression

shift_expr

An Name

pinname

'(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
pinname I dig_seq

cornp_name '.' value_ident

Port or Variable Identifier

value....ident

Identifier

SeptEmher 19, 1989

identifier I identifier '[' dig_seq ']' I
identifier '{' dig_seq ' .. ' dig_seq '}'

Behavioral Intermediate Format Page 62 I
I
I

Lex Format: [a- zA-Z][a-zA-Z0-9_]*

identifier IDENTIFIER

Digit Sequence

Lex Format: [0-9xX]+

dig_seq DIGSEQ

September 19, 1989 Behavioral Intermediate Format Page 63

B.5. Control Based State Table Syntax

State Table

table table_ident entries ';'

State Table Identifier

table_ident CONTROL_BASED

State Table Entries

entries entry I entries ' ;' entry

Single State Table Entry

entry STATE':' state triplets I STATE':' state UC_A.CTIONS
uncond_actions triplets

Present State

state identifier

Unconditional Actions

uncond_actions action I uncond_actions , , , action

Triplets

triplets: triplet I triplets ','triplet

Single Triplet

triplet

September 19, 1989

empty I
'{'
COND ':' condition ';'
ACTIONS ':' actions ';'
next_state_event ';'
'}'

Behavioral Intermediate Fonnat Page 64

- i
I

Next State Information

next_state_event

Next State

next_state

NXTSTATE ':' next_state
NXTSTATE ':'state; event

TABLE identifier',' STATE identifier

Asynchronous Event

event EVENT ':' cond_expr

Condition

condition '(' cond_expr ')'

Condition Expression

cond_expr pinname compare_op expr I booLexpr

Compare Operation Types

compare_op '=='I'!=' I'<' I'>' I'<=' I '>='

Actions

actions action I actions ',' action

Single Action

action empty I pinname ':=' dig_seq

Expression

expr arith_expr I booLexpr I shift_expr

Arithmetic Expression

September 19, 1989 Behavioral Intennrliate Format Page 65

arith_expr '(' arith_expr ')' I
arith_expr '+ ' arith_expr I arith_expr '- ' arith_expr I
arith_expr '* ' arith_expr I arith_expr '/ ' arith_expr I
pinname I dig_seq

Boolean Expression

booLexpr lgbl_expr I btbLexpr

Logical Boolean Expression

lgbl_expr '(' lgbLexpr ')' I
lgbl_expr LAND gbLexpr I lgbl_expr LOR gbLexpr I
lgbl_expr LNOT gbLexpr I lgbLexpr LN AND gbl_expr I
lgbl_expr LXOR gbLexpr I lgbLexpr LXNOR gbl_expr I
pinname I dig_seq

Bitwise Logical Boolean Expression

btbLexpr '(' btbl_expr ')' I
btbLexpr '&' btbLexpr I btbl_expr 'I' btbLexpr I
btbLexpr 'A' btbLexpr I btbLexpr ,_, btbl_expr I
btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I
btbLexpr ,A_, btbLexpr I
pinname I dig_seq

Shi ft Expression

shift_expr

.Pi,n Name

pinname

'(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
pinname I dig_seq

comp_name '.' value_iden t

Port or Variable Identifier

value_ident

September 19, 1989

identifier I identifier '[' dig_seq ']' I
identifier '{' dig_seq ' .. ' dig_seq '}'

Behavioral Intermediate Format Page 66

Identifier

Lex Format: [a-zA-Z][a-zA-Z0-9_]*

identifier IDENTIFIER

Digit Sequence

Lex Format: [0-9xX]+

dig_seq DIGSEQ

Septenber 19, 1989 Behavioral Intermediate Format Page 67

APPENDIX C.

Interrrediate List Syntax

C.1. General Description

This section describes, briefly, the textual format for the three lists: the units, connec­
tions, and symbols lists, associated with each state table format (see Figure 1)

C.2. The Units List

Recall that if the user partially allocates resources such as a certain number of func­
tional units, storage elements and buses, these resources are stored in the unit list. The unit
list is simply a list of unit names with details of the parameters used to instantiate the unit
from a generic library such as GENUS [Dutt88]. For instance:

LU_l, LU_2: GC_COJ\1PILER....N.Afv1E: LU, GC_INPUT_WIDTH: 8,
GC_NUNLFUNCTIONS:3, GC_FUNCTION_LIST: AND, NAND, NOR.

This fragment describes two components, LU_l and LU-2., defined to be 8 bit logic units
that have the functions "AND", "NAND", and "NOR".

C.3. The Omnections List

The connections lists was previously described as a method for storing a partial design
structure consisting of interconnections of pre-allocated units. Though any structural net­
list, VHDL, for example, would serve to accommodate this information, we have opted to
define a simple format, compatible with the units list, that describes connections both by
associating component pin names with nets and nets with component pin names. The fol­
lowing describes a simple connection list:

COlVIPONENTS {
LU_l,
INPUTS (Nl => IO, N2 => 11, ...),
OUTPUTS (N3 => 00, N4 => 01, ...);

LU_2,
INPUTS (N3 => IO, N4 => Il, ...),
OUTPUTS (...);

September 19, 1989 Behavioral Intermediate Fonnat Page 68

I

I I

} NETS {
N3: SOURCE (LU_l.00), SINK (LU_2.IO, ...);
N4: SOURCE (LU_l.01), SINK (LU_2.Il, ...);

}

Each component instance has an entry in the COJ\1PONENTS field describing the
connections between each of its input and output pins and net junctions within the
design. The NETS field describes connections between net junctions and component
pins. Although this may seem redundant this makes the task of examining and/or
restructuring the design from the connections list simpler and faster.

C.4. The Symbols List

The symbol list serves the function of a symbol table in a traditional co~piler. It lists
vertically all the names used in the operations fields of BIF descriptions , and horizontally
the attributes associated with each name. For example:

R1 : (SYM_type : COMPONENT)
A : (SYM_type: VARIABLE, NUMJ3ITS: 16)

September 19, 1989 Behavioral Intermediate Fonnat Page 69

