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1.1

1.2

1.3

LIST OF FIGURES

Assembly strategy used in this manuscript. A lower-contiguity assembly
(Canu) is merged with a higher-contiguity assembly (DBG2OLC). The re-
sulting assembly is again merged with the Canu assembly. The genome is
then polished one or more times, here with nanopolish followed by Pilon.

Read length distribution for reads with quality scores greater than or equal to
7. Length is the sequence length after basecalling by Albacore, not the length
that aligned to the genome. (A) Distribution of read lengths less than 50
kb. (B) Distribution of reads 50 kb or greater. The longest read that passed
quality filtering was 380 kb. . . . . . . . ...
Dot plots showing colinearity of our assembled genomes with the current ver-
sion of the D. melanogaster reference genome. Red dots represent regions
where the assembly and the reference aligned in the same orientation; blue
dots represent regions where the genomes are inverted with respect to one
another. The vertical grid lines represent boundaries between chromosome
scaffolds in the reference assembly. Horizontal grid lines represent boundaries
between contig (A-C) or scaffolds (D) in the assemblies reported here. (A)
Plot of the Canu-only assembly against the reference genome. (B) Plot of the
hybrid DBG20OLC Nanopore and Illumina assembly against the reference. (C)
Plot of merged DBG20OLC and Canu assemblies showing a more contiguous
assembly than either of the component assemblies. (D) Bionano scaffolding
of the merged assembly resolves additional gaps in the merged assembly.

v

Page

16

28



1.4 QUAST was used to compare each assembly to the D. melanogaster reference

1.5

1.6

genome with selected statistics presented here. (A) Greater than 90% of
bases in the reference genome were aligned to each of our four assemblies.
(B) The contiguity of assembly blocks aligned to the reference. (C) Total
unaligned length includes contigs that did not align to the reference as well
as unaligned sequence of partially aligned contigs. (D) The number of contigs
that contain misassemblies in which flanking sequences are 1 kb apart, flanking
sequences overlap by 1 kb or more, or flanking sequences align to different
reference scaffolds. (E) Total count of misassemblies as described in (D). (F)
Local misassemblies include those positions in which a gap or overlap between
flanking sequence is less than 1 kb [(D) and (E) show those greater than 1
kb] and larger than the maximum indel length of 85 bp on the same reference
genome scaffold. (G) Misassemblies can be subdivided into relocations (a
single assembled contig aligns to the same reference scaffold but in pieces at
least 1 kb apart), inversions (at least one part of a single assembled contig
aligns to the reference in an inverted orientation), or translocations (at least
one part of a single assembled contig aligns to two different reference scaffolds).
Not all misassemblies are captured in these three categories. (H) Total SNPs
per assembly are shown and were not significantly different among assemblies.
(I) Indels per 100 kb can be divided into small indels (those ,5 bp) and large
indels (> 5 bp). Indels .85 bp are considered misassemblies and are shown in
panels D, E;or F. . . . . . .
Copy number increase in a 207-bp tandem array located inside the third exon
of Muc26B. (A) Three tracks showing Bionano assembly (top) with Nanopore
long reads (blue) and reference (Flybase) assembly (red) aligned to it. The
alignment gap in the reference assembly is due to the extra sequence copies in
the Bionano assembly. (B) Alignment dot plot between the reference sequence
possessing the tandem array to itself. (C) Alignment dot plot between the
genomic region possessing the tandem array in the Bionano assembly to itself.
As evidenced by the dot plot, the Bionano assembly has more repeats in this
region than the reference assembly in panel B. (D) Alignment dot plot between
the reference genomic region (x axis) shown in (B) and the corresponding
Bionano genomic region (y axis) shownin (C). . . . . . ... ... ... ...
Mitochondrial genome annotations generated by MITOS. (A) Annotation of
the reference mitochondrial genome. (B) Annotation of the mitochondrial
genome assembled in this project is identical to the reference except that nad4
and nad6 in the reference assembly were both annotated as two genes—mnad4
as nad4-a and nad4-b, and nad6 as nad6-a and nad6-b. . . . . . ... .. ..
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2.1
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2.3

24

A schematic showing the basic workflow and ideas behind HapSolo. The rect-
angles on the right illustrate the basic steps, including pre-processing (blue
rectangles), steps within HapSolo (red rectangles) and post-processing (green
rectangle). Some of the HapSolo steps include iterations to perform hill climb-
ing calculations, as described in the text and shown by the arrow. On the left,
step 1 shows the contigs from the primary assembly, and step 2 illustrates the
all-by-all alignment of contigs. Step 3 provides examples of some properties
of potential alignments. The metrics—ID, Q and QR—were defined to help
capture some of the variation among these conditions. Step 4 illustrates that
new primary assemblies are formed by dropping putative secondary contigs. .
A graph of the sorted performance of hill climbing over 5000 iterations, with
normalized Cost on the y-axis and the number of iterations on the x-axis. For
most of our analyses with HC, we performed 5000 iterations on each of 10
cores; here we are showing results from one core. The top right provides a
graph with altered scale for better visualization of Chardonnay and mosquito
results. . . . L
The cumulative assembly size (cdf) based on contigs. For Chardonnay (a)
and mosquito (b), the five lines depict: an unreduced assembly (-HapSolo
-HC), HapSolo applied with default parameter values and no hill climbing
(+HapSolo -HC) using BLAT or minimap2 (+Hap Solo +MM2 -HC), Hap-
Solo with random starting values and 50,000 iterations of hill climbing using
BLAT (+HapSolo +HC) or minimap2 (+HapSolo +MM2 +HC). For thorny
skate (c), three analyses were performed: an unreduced assembly (-HapSolo
-HC) and Hapsolo analyses based on minimaps 2 pairwise alignment with and
without hillclimbing. . . . . . . . .. .o oo
The cumulative assembly size (cdf ) based on scaffolds for a different species
in each row. The three rows represent analyses based on Chardonnay (a),
mosquito (b) and thorny skate (c) data. There are two graphs for each species;
the one on the left focuses on the chromosome length scaffold portion of the
assembly (number of scaffolds), while the one on the right is the complete
assembly on a log;g (number of scaffolds) scale. Each graph for Chardonnay
and mosquito have five lines and follow the key provided in the right-hand
graph in panel B for mosquito. The analyses are scaffolded genome based
on purge_dups (purge_dups + HiC), the unreduced assembly (-HapSolo -HC
+HiC), scaffold based on the HapSolo reduced assembly with BLAT prepro-
cessing and without hill climbing (+HapSolo -HC +HiC), and the scaffold
based on the HapSolo reduced assembly with BLAT preprocessing and with
hill climbing (+HapSolo +HC +HiC) and, finally, HapSolo reduced assem-
bly with hill climbing using minimap2 (+HapSolo +MM2 +HC +HiC). In all
graphs, the dotted line indicates the number of chromosomes for the species.
¢ Reports results for thorny skate, which did not include BLAT processing.
The HapSolo analyses are based on minimap2 alignments and presented with
(+HC) and without (-HC) hillclimbing. . . . . . ... .. ... ... ... ..
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3.1

3.2

3.3

3.4

(A) The cumulative sum assembly graph size (cdf) shows the size of the as-
semblies with the next largest consecutive contig (or scaffold) being added to
the sum along the x-axis. It illustrates cdf for the Hass contig assembly and
the drymifolia assembly - both of which were published previously - and the
two Gwen assemblies (C+H and scaffolded). (B) The annotation results for
the Gwen C+H assembly, showing the percentage of the genome attributable
to different types of transposable elements, including DNA transposons, un-
classified retroelements and Long Terminal Repeat (LTR) retroelements. The
percentage of the genome attributable to genes did not include the length of
Introns. . . ...
(A) A PCA analysis of SNP diversity, based on 33 accessions of avocado.
Each dot represents an individual, and the color of each dot represents an
historical classification of that individual, including Guatemalan x Mexican
(GxM) hybrids and Lowland x Guatemalan (LxG) hybrids. (B,C,D) Admix-
ture plots were generated using SNPs found in all of the contigs in the Gwen
C+H assembly. Plot (B) shows the inferred groups with K=2 groups; plot (C)
represents K=3, which is consistent with the three historical races; and (D)
represents K=4 groups, which was inferred to be the most likely number of
clusters. The K=4 groups include the three historical races and an emergent
group showing accessions closely related to Hass. . . . . . .. .. ... ...
A Manhattan plot showing the Fst values across all of the contiguous of the
C+H Gwen assembly, focusing on contrasts between the A-type (n=9) and
B-type (n=13) flowering samples. The top 1% (horizontal dashed line with a
value of 0.184121) of Fst peaks define 786 genes, all of which were annotated
functionally. Several of these genes are viable candidates for affecting flowering
type; we list four especially interesting genes in Table 3 and indicate their
location with an arrow on the Manhattan plot. . . . . ... ... ... ...
Coverage information for the flowering-type candidate gene SPA1 in contig
tig00020836. (A) The position of the gene region in the contig. (B) The
BED annotation of the Fst peak containing the SPA1 gene found in this
contig. (C) The annotation of the PaSPAI gene, which has two predicted
transcripts. (D) The annotation of LTR copia elements. (E) The annotation
of unknown /unclassified repeats. (F) Illumina read coverage of all type B
flowering types of avocados with an average read depth of \protect\unhbox\
voidb@x\protect\penalty\@M\{}160x at positions <6,665,000, and an aver-
age read depth of \protect\unhbox\voidb@x\protect\penalty\@M\{}40x
coverage at positions <6,675,000, showing a substantial drop in coverage (%)
on the right side of the gene. (G) Illumina read coverage of all type A flowering
types of avocados with an average read depth of \protect\unhbox\voidb@x\
protect\penalty\@M\{}300x at positions <6,665,000, and an average read
depth of \protect\unhbox\voidb@x\protect\penalty\@M\{}150x coverage
at positions <6,675,000, also showing a drop in coverage (%) of the right side
of the gene but not as drastic. . . . . . . .. ... ... ... ... ...
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ABSTRACT OF THE DISSERTATION

Comparative and Population Genomics
By
Edwin Solares
Doctor of Philosophy in Ecology and Evolutionary Biology
University of California, Irvine, 2021

Distinguished Professor Brandon Gaut, Chair

Structural variants (SVs) are large insertions, deletions, duplications, inversions or translo-
cation of sequences that vary among individuals or chromosomes. These SVs have been
shown to play a significant role in important phenotypic traits, but they have been difficult
to detect on a genome-wide scale until recently. They have long been known, however, to
be important to crop evolution. Fitting examples include the lack of branching in maize,
sex determination and berry color in grapes, and coloration in crops. Recent advances in
long-read sequencing have led to more continuous and accurate genomes, and empowered
scientist’s ability to identify these SVs, some of which, until recently, were believed to have
been due to single nucleotide polymorphisms. In my dissertation, I explored ways to pro-
duce more complete and continuous genomes across a broad range of species, which is a
necessary precursor for identification of SVs. I also explored SVs at population and indi-
vidual levels, with the ultimate goal of finding correlations between genetic mutations such
as SVs and important phenotypes. To do this I have applied novel uses of methods and
sequencing approaches, as well as created tools for reducing the noise in highly heterozy-
gous genomes. In the first chapter of my thesis, I explored the efficacy of reconstructing a
genome using low coverage and inexpensive - but inaccurate - sequencing reads, using a new
application of genome assembly methods. We were able to achieve a rapid low-cost reference

level assembly, as well as identify novel SVs. Chapter two of my thesis aimed to reduce the
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presence of alternative contigs from assembly of diploid genomes using novel methods, for
improving downstream analysis such as HiC scaffolding. This culminated in the release of
a new software package, HapSolo, that improved on current methods and used hill climbing
for optimization of parameters to purge and remove alternative contigs. The application of
HapSolo improved HiC scaffolding, resulting in a decrease in the total number of contigs,
higher scaffold N50’s and more continuous genome assemblies. In my final chapter, I have
applied the knowledge gained from my previous chapters to decipher the genome of avocado
and to examine standing genetic variation within the three major avocado ecotypes, using
resequencing data of three outgroups and 31 avocado accessions. Chapter three has the goal
of moving toward identifying SV’s among accessions that have implications for phenotypes,
as well as providing the scientific community with an annotated chromosome level scaffolded

assembly:.
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INTRODUCTION

Comparative and Population Genomics

Approximately 1.3 billion people worldwide experienced food insecurity at moderate levels in
2019 and in 2020, this number grew to 2.37 billion people, of which, 928 million faced severe
levels of food insecurity [55]. The predicted effects of climate change will only exacerbate the
issue [151, 150, 67, 66, 65, 53, 3| as our ability to grow food will be severely hindered due to
climate change [3]. Meanwhile, some of these effects can already be seen today. Currently,
crops such as Zea mays (maize), Persea americana (avocados), and Elaeis species (oil palms)
have seen an increase in demand, and are projected to continue to increase as our population
grows [153]. To date, this growing demand has accelerated the deforestation of the Amazon
Rainforest, water rights conflicts, and a fragile dependence on mono-cultures. In the past,
many of these issues have disproportionately impacted the poor and people of color [89]. This
only increases the urgency for critical advancements needed for crop yield improvements,
and an increase in quality and distribution to populations in need. Science will lead the way
and help resolve current and future food security issues, especially in a world with rapidly
changing climates and large fluctuations in maximum temperatures (Figure 1). A critical
foundation to crop improvement is a better understanding of genetic variation within crops

and the potential impacts of genetic variation on phenotypes.

To improve our understanding of genetic variation, we first need to understand how plants
have, and will adapt to changing environments. An important, yet poorly studied type of ge-
netic variation is structural variants (SVs), which are large insertions, deletions, duplications,
inversions or translocations of DNA sequences that vary among and between individuals and
populations [52]. SVs have been shown to play a significant role in phenotypic traits impor-
tant for adaptation, but until recently they have been difficult to detect on a genome-wide

scale [143, 99, 129, 63, 76, 36]. They have long been known to be important for crop evo-
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lution [174, 175, 161, 137, 33]. Several significant examples include the lack of branching in
maize2l, sex determination in grapes[175], and coloration in crops such as grapes[175] and

citrus[29].

Identifying SV’s benefits greatly from a nearly complete genome that is representative of the
genetic material from one parent at any given genome position. While reference chromosomes
need not be derived from one parent (i.e. complete haplotype), this is often preferred.
Frequently, reference assemblies are amalgams constructed from haplotypes derived from
both parents. Haploid genomes are crucial for downstream analysis (i.e. gene and repeat
annotation, evolutionary inference, scaffolding, etc), as many analyses and programs assume
a haploid reference. The use of a non-haploid genome would generate incorrect inferences
and results, as deviates significantly from the assumptions of such analyses. Indeed, it is
often possible to recover haplotypes from both parents, permitting researchers to identify

genetic variants between parents, allowing us to sample population variation [174, 175, 99].

In my dissertation, I aim to: (1) improve on methods for the curation of a more continuous
and complete genome that is also affordable, increasing it’s accessibility; (2) develop a tool
for purging duplicated or alternate haplotypes in order to isolate isolate a single haploid
reference genome; and, (3) apply these methods to a poorly understood perennial crop,
avocados, with potential for crop improvement, and identify regions of genetic variation
differing among populations of avocado that contain genes implicated in domestication and

adaptation.

In the first chapter of my thesis, I explore the efficacy in reconstructing a genome using low
coverage and inexpensive - but inaccurate - sequencing reads, using a new application of
genome assembly methods. Previously, most genome sequencing consisted of low cost high-
throughput short-read sequencing. This revolutionized our ability to assay genome-wide
sequence variation. These short reads allowed for identifying single nucleotide polymorphisms

(SNPs) and short insertion-deletion (indel) polymorphisms in unique genomic regions, but



failed to identify large repetitive portions of the genome [117, 155, 25, 62], leading to highly
fragmented and incomplete genomes and gene models [117, 155, 25, 62]), due to the amount
of repetitive content present. It is important to note the majority of sequence differences
between individuals is due to the presence of SV’s [52]. SVs are often longer than short
sequencing reads (generally 50-150 bp), meaning genotyping SVs is indirect and relies on
features of alignments to a reference genome such as divergent read mappings, split reads,
or elevated read coverage [103, 5]. However, comparisons of extremely contiguous de novo
genome assemblies from humans [71, 34] and Drosophila melanogaster [37] revealed that short
reads miss 40-80% of SVs. Consequently, methods not susceptible to the shortcomings of
short-read sequencing are essential to obtaining a more complete view of genome variation
[5]. Creating and comparing highly continuous and accurate de novo genome assemblies
overcome these limitations and allow us to dramatically improve our understanding of genetic
variation [5]. Resolving these difficult genomic regions would require longer reads with
sufficient read depth [109, 86, 26, 140]. Single Molecule Real-Time (SMRT) sequencing from
Pacific Biosciences (PacBio) and Nanopore sequencing from Oxford Nanopore Technologies
(ONT) provide such capabilities and are capable of reconstructing many of these repetitive
regions, leading to more accurate and continuous genomes [80, 21, 104, 76, 82]. However,
due to their high error rates (~10-15%), creating such genomes requires non-trivial coverage

(generally 30x or greater) [82, 36].

Sequencing using ONT reduces costs of sequencing and may produce reads that are hun-
dreds of kilobases in length [76]. To understand how effective assembly using ONT is when
applied to de novo genome assembly, we sequenced using ONT MinilON, and assembled the
genome of a well studied species, Drosophila melanogaster. This species already contains a
highly curated reference level assembly (ISO1) [70], and arguably the best metazoan genome
available. We followed and generalized an assembly merging approach [36] to combine mod-
est long-read coverage from a single ONT MinION flow cell (30x depth of coverage with an

average read length of 7,122 bp) and Illumina short-read data. This assembly resulted in


~

a highly contiguous and accurate genome assembly. We examine the structural differences
between our assembly and the published reference assembly of the same strain and observe
several candidate SVs, the majority of which are transposable element (TE) insertions and
copy-number variants (CNVs). These are mutations that must either be: 1) recent muta-
tions that occurred in the genome strain since it was sequenced; 2) segregating in the genome
strain due to incomplete isogeny; or 3) errors in one of the assemblies. In this study we were
able to achieve a rapid low-cost highly continuous and accurate reference level assembly, as

well as identify novel SVs.

Chapter two of my thesis aimed to reduce the presence of alternative contigs from assembly
of diploid genomes using novel methods, for improving downstream analysis such as Hi-C
scaffolding, annotation and inferences about evolution. In chapter one we analyzed a highly
homozygous sample allowing us to benchmark our methodology. Homozygous samples allow
for easier sequencing and reconstruction of the genome. For example, the first two plant
species targeted for reference quality genomes, Arabidopsis thaliana [172] and rice (Oryza
sativa) [60], were chosen due to their self-fertilizing nature and are therefore highly ho-
mozygous. Other early genomes, such as those from Caenorhabditis elegans and Drosophila
melanogaster [1, 2], were also based on inbred, highly homozygous materials. Recent sequenc-
ing of additional model and non-model species have continued to rely on near-homozygous
materials, either through inbreeding [143, 77] or by focusing on haploid tissue [44, 126]. This,
however, differs considerably from conditions outside of a lab setting. In the wild, samples

consist of unique genetic content from each parent making up two discrete haplotypes.

The reliance on homozygous samples is fading rapidly, however, for at least three reasons.
Firstly, it has become clear that inbred materials can misrepresent a genome’s natural state.
A dramatic illustration of this fact is that some lines of maize purged a significant 8% of
their genome in only six generations of self-fertilization [134]; in broader context, inbred

genomes tend to be smaller than those based on outbreeding species [120, 54]. Secondly,



many species of interest cannot be manipulated into a homozygous state easily. Many animals
fall into this category, such as mosquitoes [135], and domesticated cattle [99], as do many
perennial crops like grapes, which are highly heterozygous [175] and can be selfed, but only
with substantial fitness costs, limiting homozygosity [105]. Finally, some important features
and phenotypes—such as sex determination [100] and other important adaptations—can be

identified only by analyzing heterozygous samples.

Fortunately, the resolution of highly heterozygous regions, which often contain large struc-
tural variants, is now possible due to improvements in sequencing technologies and their
affordability. In theory, long-read sequencing technologies like those from PacBio and ONT
provide the capability to resolve distinct haplotypes in heterozygous regions, as they can
span these regions bridging loci containing their respective haplotypes, leading to the assem-
bly of reference-quality diploid genomes [143, 76, 36]. One limitation however, is when the
length of the reads cannot bridge multiple heterozygous loci, leading to ambiguity to their
origin of their respective haplotypes [42]. Several genomes based on highly heterozygous
materials have been published recently [175, 157, 42, 58, 81, 130, 128], with many additional

ongoing efforts.

Nevertheless, the assembly of heterozygous genomes still presents substantial challenges.
One of which is resolving distinct haplotypes in regions of high heterozygosity. Programs
that assemble long-reads, such as FALCON [42] and Canu [81], can mistakenly fuse distinct
haplotypes into the primary assembly. This haplotype-fusion not only produces genomes
with pseudo and alternate haplotypes, but also genomes that are much larger than the
expected genome size, requiring manual curation [128]. When haplotypes are fused, either
into the same contig (resulting in an amalgam of haplotypes) or as different contigs into the
primary assembly (alternate haplotypes), the increased size and complexity of the assembly
complicates down-stream approaches, such as scaffolding by Hi-C or optical mapping, variant

detection and calling, annotation and evolutionary inferences. In theory, FALCON-unzip



[42] solves some problems by identifying alternative (or ‘secondary’) haplotigs that represent
the second allele in a heterozygous region and then provides a primary assembly without

secondary contigs, but still containing pseudo haplotigs.

Although we cannot trivially separate out pseudo haplotigs without additional information,
it is an easier, albeit still difficult, problem to identify and remove alternative contigs during
assembly. Some suggested solutions for removing alternate contigs, like Redundans [121],
identify secondary contigs via similarities between contigs [121] and removes the shorter of
two contigs that share some pre-defined level of similarity. Another approach, Purge Hap-
lotigs [132] uses sequence coverage as a criterion to identify regions with two haplotypes
[132]. The reasoning behind Purge Haplotigs is that alternative alleles in a heterozygous
region should have only half the raw sequence coverage of homozygous regions of a single
individual as coverage is expected to be uniform across the genome. Accordingly, the algo-
rithm proceeds by first remapping raw reads to contigs, then flagging contigs with lower than
expected read depth, and finally re-mapping and removing low-coverage contigs from the pri-
mary haplotype-fused assembly. A more recent approach, implemented in the purge_dups
tool [63], builds on the coverage-based approach of Purge Haplotigs, and has been shown
to be superior based on a few exemplar assemblies [63]. In this study, we sought a slightly
different approach, named HapSolo, by identifying and removing potential secondary and
alternate haplotigs. Our approach is similar to Redundans, in that it begins with an all-
by-all pairwise alignment among contigs and uses features of sequence alignment as a basis
to identify potential alternative haplotigs. However, HapSolo is unique in exploring the pa-
rameter space of alignment properties to optimize the primary assembly, using features of

BUSCO [141] scores as the optimization target.

This culminated in the release of a new software package, HapSolo [144], that improved
on current methods and used hill climbing for optimization of parameters to purge and

remove contigs representing alternative haplotypes. The application of HapSolo improved



Hi-C scaffolding relative to purge_dups, resulting in a decrease in the total number of contigs,

higher scaffold N50’s and more continuous genome assemblies.

In my third and final chapter, I apply the knowledge gained from my previous chapters
to decipher the genome of avocado and to examine standing genetic variation within the
three major avocado ecotypes, using resequencing data of three outgroups and 31 avocado

accessions.

Avocado (Persea americana Mill.) is a perennial, subtropical crop that is in ever-increasing
demand. In the United States, per capita avocado consumption has tripled over the last
two decades. Demand in the U.S. is met partly by domestic production, but principally by
imports from Mexico and elsewhere. Mexico is currently the largest producer of avocado
where the crop is worth an estimated $2.5 billion per year [127], but other major producers
include the Dominican Republic, Peru, Chile, Indonesia, Israel and Kenya (http://www.fao.
org/faostat/en/#data/QC/visualize). Although the popularity of avocados is primarily

a 20th century phenomenon [138], it has quickly grown to be a global commodity.

Remarkably, avocado cultivation is dominated by a single variety (Hass) that represents ~90%
of cultivation world-wide [127]. All Hass trees are derived clonally from a tree patented by
seed in 1935. Despite the shockingly narrow genetic base of agricultural production, avocado
sensu lato is quite genetically diverse. Some of this diversity stems from the fact that there
are three domesticated botanical races: P. americana var. americana Mill (which we will
call the ‘Lowland’ race in recognition that the previously accepted name of West Indian is
inaccurate as most are found in lowland coastal areas of the Yucatan peninsula and Central
America), var. drymifolia Blake (the Mexican race), and var. guatemalensis Williams (the
Guatemalan race) [18]. The strikingly different fruit morphologies among the races suggest
that they may have been domesticated separately, a conjecture supported by genetic data
[56, 11, 127]. One practical consequence is that each race likely contains separate alleles

and/or genes of interest for crop improvement, due to their different domestication histories
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and ecology. Another consequence is that hybridization between races can produce unique
allelic combinations, potentially leading to agronomically useful hybrid offspring. Hass is,
in fact, one example; although its precise breeding history is not known, genetic evidence
shows that it is a hybrid between Guatemalan and Mexican races [138, 40, 127]. Avocados
also require long growing periods prior to producing fruit (5 to 8 years before production);
[85], requiring substantial space, water, and financial resources [10]. Additionally, avocado is
predominantly out-crossing, due to synchronous dichogamy. There are two flowering types
in this system: A and B. Type A trees are female (receptive to pollen) in the morning and
shed pollen as males in the afternoon of the following day. In contrast, type B trees are male
in the morning of the first day and female in the afternoon of the next day. The system
is complicated by the fact that there is some leakiness of flower type that depends on the
environmental cues [47]. As a result of these complications, avocado breeding has historically
relied on open-pollinated and inter-racial hybridization to the extent that most individual

varieties lack accurate breeding records [48, 11, 139].

These complications argue that genomics and molecular breeding are central for the con-
tinued improvement of avocado. For example, molecular markers for flowering types may
be particularly useful, because type B avocados are crucial for pollination but typically less
productive than type A varieties [47]. Recently, Rendon-Ayana et al. (2019) made an impor-
tant contribution toward molecular breeding by producing draft genomes of Hass and a wild
Mexican accession (P. americana ssp. drymifolia). Using the Hass reference, Rendon-Ayana
et al. (2019) also explored the hybrid history of Hass and a few aspects of the evolutionary
genomics of avocado. Nonetheless, several important features of the evolutionary genomics
of avocado remain unexplored, including characterizing diploid chromosomes in this highly
heterozygous ancestor, using sweep mapping to identify potential regions of agronomic in-
terest, and focusing on genomic diversity in the context of interesting traits, like A vs. B

flowering types and change in skin color due to ripening.



In the study described in my third chapter, we produce and assemble the genome of the
Gwen variety and use that genome as a reference for evolutionary analyses. Gwen has also
been the subject of intensive breeding efforts for three decades. Our Gwen genome vastly
improves contiguity relative to the Hass genome, providing a better platform to explore the
evolutionary genomics of avocado. More specifically, we intend to use the data outlined in
this chapter to focus on four sets of questions. First, what does the Gwen genome tell us
about patterns of heterozygosity within an avocado accession? Genomic analysis of highly
heterozygous grape (Vitis vinifera), another perennial clonally propagated crop, revealed
that as many as one in seven genes are hemizygous, perhaps due to structural mutations
that have accrued during clonal propagation [175]. Is avocado similar? Second, we use
the Gwen genome as a reference to explore genetic diversity within avocado, specifically to
recapitulate the three races and to assess the hybrid origin of well-known cultivars. This last
question builds on several previous investigations of genetic diversity [11, 40, 39] but extends
the work to a genomic scale. Third, we investigate features of avocado domestication. Do
the three races demonstrate a cost of domestication - i.e., an accumulation of deleterious
alleles - relative to wild accessions, as is common for domesticates [57, 110]? And do the
three racial groups share regions of selective sweeps consistent with parallel selection on genic
regions associated with specific traits? Finally, we investigate genetic diversity between the
A and B flowering types, with the goal of identifying genomic regions that may contribute
to synchronous dichogamy. We believe many of these differences are due to the presence
and absence of SV’s. In particular we find an SV with implications for flowering time in

avocados.



Chapter 1

Rapid low-cost assembly of the
Drosophila melanogaster reference
genome using low-coverage, long-read

sequencing

1.1 Abstract

Accurate and comprehensive characterization of genetic variation is essential for decipher-
ing the genetic basis of diseases and other phenotypes. A vast amount of genetic variation
stems from large-scale sequence changes arising from the duplication, deletion, inversion, and
translocation of sequences. In the past 10 years, high-throughput short reads have greatly
expanded our ability to assay sequence variation due to single nucleotide polymorphisms.
However, a recent de novo assembly of a second Drosophila melanogaster reference genome

has revealed that short read genotyping methods miss hundreds of structural variants, in-

10



cluding those affecting phenotypes. While genomes assembled using high-coverage long reads
can achieve high levels of contiguity and completeness, concerns about cost, errors, and low
yield have limited widespread adoption of such sequencing approaches. Here we resequenced
the reference strain of D. melanogaster (ISO1) on a single Oxford Nanopore MinION flow
cell run for 24 hr. Using only reads longer than 1 kb or with at least 30x coverage, we
assembled a highly contiguous de novo genome. The addition of inexpensive paired reads
and subsequent scaffolding using an optical map technology achieved an assembly with com-
pleteness and contiguity comparable to the D. melanogaster reference assembly. Comparison
of our assembly to the reference assembly of ISO1 uncovered a number of structural variants
(SVs), including novel LTR transposable element insertions and duplications affecting genes
with developmental, behavioral, and metabolic functions. Collectively, these SVs provide a
snapshot of the dynamics of genome evolution. Furthermore, our assembly and comparison
to the D. melanogaster reference genome demonstrates that high-quality de novo assembly

of reference genomes and comprehensive variant discovery using such assemblies are now

possible by a single lab for under $1,000 (USD).

1.2 Introduction

The characterization of comprehensive genetic variation is crucial for the discovery of mu-
tations affecting phenotypes. In the last 10 years, the exponential decline in cost of high-
throughput short-read sequencing has revolutionized our ability to assay genome-wide se-
quence variation. Short reads excel at identifying single nucleotide polymorphisms (SNPs)
and short insertion-deletion (indel) polymorphisms in unique genomic regions. However, the
majority of the sequence difference between individuals is caused by duplications, deletions,
inversions, or translocation of sequences—collectively known as structural variants (SVs) [52].

SVs are often longer than short sequencing reads (generally 50-150 bp), meaning genotyping
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of SVs is indirect and relies on features of alignments to a reference genome such as diver-
gent read mappings, split reads, or elevated read coverage [103, 5]. However, comparisons
of extremely contiguous de novo genome assemblies from humans [71, 34] and Drosophila
melanogaster [37] revealed that short reads miss 40-80% of SVs. Consequently, methods
that are not susceptible to the shortcomings of short-read sequencing are essential to obtain
a more complete view of genome variation [5]. We propose one approach—comparison of
contiguous and accurate de novo genome assemblies—that would overcome these limitations

and drastically improve our understanding of genetic variation [5].

Although short reads have been used extensively for de novo genome assembly, they fail to
resolve repetitive regions in genomes, leaving errors and gaps while assembling such regions
[117, 155, 25]. Such fragmented draft-quality assemblies are therefore poorly suited for iden-
tification of SVs [5] and lead to incomplete and/or missing gene models [62]. Theoretical
considerations of the genome assembly problem predict that, with sufficient read depth and
length, genome assemblies can resolve even difficult regions [109, 86, 26, 140]. Consistent with
this, long reads produced by Single Molecule Real-Time sequencing from Pacific Biosciences
(PacBio) and Nanopore sequencing from Oxford Nanopore Technologies (ONT) provide data
capable of achieving remarkably contiguous de novo genome assemblies [80, 21, 104, 76, 82].
However, due to high error rates (~10-15%), generation of reliable assemblies with these
reads requires non-trivial coverage (generally 30x or greater) [82, 36]. Nevertheless, until
recently, long-read methods have required prohibitively expensive reagents, and technologies
like PacBio also require substantial capital investment related to the housing and mainte-
nance of equipment necessary to perform the sequencing. Combined with concerns about
high error rates, widespread adoption of long-molecule sequencing for de novo assembly and

variant detection has been tentative.

Sequencing using ONT may produce reads that are hundreds of kilobases in length [76],

though their application to de movo assembly of reference-grade multicellular eukaryotic
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genomes is not yet routine. To understand how effective assembly using ONT is when ap-
plied to de novo genome assembly of a metazoan like Drosophila, we measured the contiguity,
completeness, and accuracy of a de novo assembly constructed with ONT reads [143]. To
accomplish this, we resequenced the D. melanogaster reference genome strain (ISO1) using
the ONT MinlON and compared the resulting assembly with the latest release of the D.
melanogaster reference assembly [70], which is arguably the best metazoan reference genome
available. We followed an assembly merging approach [36] to combine modest long-read
coverage from a single ONT MinlON flow cell (30x depth of coverage with an average read
length of 7,122 bp) and [llumina short-read data. This assembly resulted in a highly con-
tiguous and accurate genome assembly. Notably, with this approach, the majority of the
euchromatin of each chromosome arm is represented by a single contiguous sequence (con-
tig). Collectively, the assembly recovered 97.7% of Benchmarking Universal Single Copy
Orthologs (BUSCOs). This is similar to the 98.3% BUSCOs recovered in the most recent
release of the D. melanogaster genome (version 6.16). Scaffolding of the assembly with
Bionano optical maps led to further improvements in contiguity. Finally, we examined the
structural differences between our assembly and the published assembly of the same strain
and observed several candidate SVs, the majority of which are transposable element (TE)
insertions and copy-number variants (CNVs). These are mutations that must be either: 1)
recent mutations that occurred in the genome strain since it was sequenced; 2) segregating

in the genome strain due to incomplete isogeny; or 3) errors in one of the assemblies.

Overall, we show that high-quality de novo genome assembly of D. melanogaster genomes is
feasible using low-cost ONT technology, enabling an assembly strategy that can be applied
broadly to metazoan genomes. This strategy will make high-quality reference assemblies ob-
tainable for species lacking reference genomes. Moreover, de novo assemblies for population
samples of metazoan species is now feasible, opening the door for studying evolutionary and

functional consequences of structural genetic variation in large populations.
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1.3 Methods

Stocks

The ISO1 D. melanogaster reference stock used for both Nanopore and Illumina sequencing
was obtained from the BDGP in 2014 [70]. All flies were kept on standard cornmeal-molasses

medium and were maintained at 25°.
DNA isolation and quantification

DNA for Nanopore sequencing was isolated from males and females using the Qiagen Blood
& Cell Culture DNA Mini Kit. Briefly, 60-80 flies were placed in two 1.5-mL Eppendorf
Lo-Bind tubes and frozen in liquid nitrogen before being homogenized using a pestle in 250
nL of Buffer G2 with RNAse. 750 uL. of Buffer G2 and 20 pL of 20 mg/mL proteinase K was
then added to each tube and incubated at 50° for 2 hr. After 2 hr, each tube was spun at
5,000 RPM for 5 min, and the supernatant was removed and placed in a new 1.5-mL Lo-Bind
tube and vortexed for 10 sec. The supernatant from both tubes was then transferred onto
the column and allowed to flow through via gravity. The column was washed 3x with wash
buffer and eluted twice with 1 mL of elution buffer into two 1.5-mL Lo-Bind tubes. 700 nul of
isopropanol was added and mixed via inversion before being spun at 14,000 RPM for 15 min
and 4°. The supernatant was removed and the pellet was washed with 70% ethanol, then
spun at 14,000 RPM for 10 min at 4°. The supernatant was removed and 25 pL of ddH,O
was added to each tube and allowed to sit at room temperature for 1 hr. Both tubes were
then combined into one. DNA was quantified on a Nanodrop and Qubit. DNA for [llumina
sequencing was isolated from males and females using the Qiagen DNeasy Blood and Tissue

Kit according to the manufacturer’s instructions and quantified on a Qubit.
Library preparation, sequencing, and basecalling

For Nanopore sequencing, 1.5 pg of DNA (5.49 pL of 273 ng/ul. DNA) was used to prepare a
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1D sequencing library (SQK-LSK108) according to the manufacturer’s instructions, including
the FFPE repair step. The 75-ul library was then immediately loaded onto a R9.5 flow cell
prepared according to the manufacturer’s instructions and run for approximately 24 hr.
Basecalling was completed using ONT Albacore Sequencing Pipeline Software version 2.0.2.

Reads collected during the mux phase of sequencing were not included.

For Mlumina sequencing, ~600-bp fragments were generated from 500 ng of DNA using a
Covaris S220 sonicator. Fragments of 500-700 bp were selected using a Pippin and libraries
were prepared using a KAPA High Throughput Library Preparation kit and Bio Scientific
NEXTflex DNA Barcodes. The library was pooled with others and run as a 150-bp paired-
end run on a single flow cell of an Illumina NextSeq 500 in medium-output mode using RTA

version 2.4.11. bcl2fastq2 v2.14 was then run in order to demultiplex reads and generate

FASTQ files.
Genome assemblies

Canu [82] release v1.5 was used to assemble the ONT reads. Canu was run with default pa-
rameters in grid mode (Sun Grid Engine) using ONT reads >1 kb and a genome size of 130
Mb. To generate the De Bruijn graph contigs for the hybrid assembly, we used Platanus [78§]
v1.2.4 with default settings to assemble 67x of Illumina paired-end reads obtained from the
DPGP (http://www.dpgp.org/dpgp2/DPGP2.html) [119]. The hybrid assembly was gener-
ated with DBG20OLC [168] using contigs from the Platanus assembly and the longest 30x
ONT reads. DBG20OLC settings (options: k 25 AdaptiveTh 0.01 KmerCovTh 2 MinOverlap
35 RemoveChimera 1) were similar to those used for PacBio hybrid assembly of ISO1 [36],
except that the k-mer size was increased to 25 and the MinOverlap to 35 to minimize the
number of misassemblies. The consensus stage of DBG20LC was run with PBDAG-Con
[41] and BLASR [35]. Separately, minimap v0.2-r123 (using a minimizer size window of 5,
FLOAT fraction of minimizers of 0, and min matching length of 100) and miniasm v0.2-r123

(using default settings) were also used to assemble only the ONT reads [90].
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Figure 1.1: Assembly strategy used in this manuscript. A lower-contiguity assembly (Canu)
is merged with a higher-contiguity assembly (DBG20OLC). The resulting assembly is again
merged with the Canu assembly. The genome is then polished one or more times, here with
nanopolish followed by Pilon.

The Canu and DBG20OLC assemblies were merged using quickmerge [36]. First, the two as-

semblies were merged using the DBG20LC assembly as the query and the Canu assembly as

the reference. Thus, the first quickmerge run (options: hco 5.0 ¢ 1.5 1 2900000 m1 20000)

filled gaps in the DBG20LC assembly using sequences from the Canu assembly, giving prefer-

ence to the Canu assembly sequences at the homologous sequence junctions. The contigs that

are unique to the Canu assembly were incorporated in the final assembly by a second round of

quickmerge. In the second quickmerge run (options: hco 5.0 ¢ 1.5 1 2900000 m1l 20000 ),

the merged assembly from the previous step was used as the reference assembly, and the Canu

assembly was used as the query assembly (Figure 1).

Assembly polishing

Assembly polishing was performed two ways. First, nanopolish version 0.7.1 [97] was run
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using the recommended settings with reads longer than 1 kb. Prior to running nanopolish,
the merged genome assembly was indexed using bwa, and ONT reads were aligned to the
genome using bwa mem. The resulting bam file was then sorted, indexed, and filtered for
alignments of size larger than 1 kb using samtools 1.3 [94]. Nanopolish was then run with a
minimum candidate frequency of 0.1. Following nanopolish, we polished the assembly twice
with Pilon [158] v1.16. For Pilon, we aligned 44x 150-bp and 67x 100-bp Illumina paired-end
reads to the assembly using bowtie2 [136] and then ran Pilon on the sorted bam files using

default settings.
Bionano scaffolding

Bionano optical map data were collected following Chakraborty et al. [37]. ISO1 embryos
less than 12 h old were collected on apple juice/agar Petri dishes, dechorionated using 50%
bleach, rinsed with water, then stored at -80°. DNA was extracted from frozen embryos
using the Animal Tissue DNA Isolation kit (Bionano Genomics, San Diego, CA). Bionano
Irys optical data were generated and assembled with IrysSolve 2.1 at Bionano Genomics. We
then merged the Bionano assembly with the final merged assembly contigs using IrysSolve,

retaining Bionano assembly features when the two assemblies disagreed.
BUSCO analysis

We used BUSCO v1.22 to evaluate completeness and accuracy of all ISO1 assemblies [141].
We used the Diptera database, which contains 2,799 highly conserved genes, to estimate

assembly completeness.
Assembly comparision and quality metrics

Assemblies were compared using alignment dot plots. For dot plots, assembled genomes
were aligned to the reference D. melanogaster genome (r6.16) using nucmer (using options:

minmatch 100, mincluster 1000, diagfactor 10, banded, diagdiff 5) [83]. The re-
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sulting delta alignment files were used to create the dot plots either with mummerplot (using
options: {fat{filter{ps) or ggplot. QUAST v4.5.0 was used to compare each generated
assembly to the contig reference genome assembly (D. melanogaster v6.16) for completeness
and errors. QUAST was run in GAGE mode on contigs larger than 1 kb and with the refer-
ence assembly as fragmented, as it was originally the scaffolded assembly [136, 64]. GAGE
was run on two types of reference assembly: the full reference assembly, and only the part of
the reference assembly comprising ordered and oriented contigs on chromosome arms (i.e.,
Muller elements) and the mitochondrial sequence. Quality score analysis was performed by
aligning our Illumina short reads against each genome assembly using Bowtie. The num-
ber of variants were summed and divided by the total number of bases (following Berlin et
al. 2015) and also by the total number of bases aligned: P.,.., = Variants/(TotalBases),
where Total Bases represents the total number of bases in the assembly or the total aligned
bases (following Koren et al. 2017). These values are proxies for the probability of er-

ror and are used to calculate the QV score for each assembly according to the relation:

QV =-10- lOglOPerror-

A modified pipeline originally published in McCoy et al. (2014) and modified following
Berlin et al. (2015) and Koren et al. (2017) was used (this pipeline relies on release 5.57
naming conventions) for calculating total genome reconstruction. Nucmer was used to align
each assembly to the FlyBase 5.57 reference, and then separated and merged by euchromatic
and heterochromatic regions for each chromosome arm using BEDtools [124]. Gene and TE
reconstruction was completed similar to Berlin et al. (2015). For measuring the accuracy of
gene models and TE reconstruction, both releases 5.57 and 6.16 of the reference were used.
Fasta files containing all genes and separately, TEs for both releases were downloaded from
FlyBase. In total, 17,730 gene models and 5,392 transposons from release 6.16, as well as
17,294 gene models and 5,409 transposons from release 5.57 were aligned to each genome
assembly independently using nucmer. Nucmer was used to align each gene and transposon

fasta file to each assembly independently. Alignments greater than 0%, 99% and equal to
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Total reads 593,354

Average read length 7,122 bp
Total bases seuenced 4,184,159,334
Genome Coverage 30.2x
Reads > 1 kb 530,466
Genome coverage in reads > 1 kb 29.9x
Reads > 10 kb 145,634
Genome coverage in reads > 10 kb 17.5x

Table 1.1: Statistics of reads used for genome assembly: Only reads with quality scores > 7
were used. A genome size of 140 Mb was used for all calculations.

100% similarity were reported.
Structural variant detection

Large (>100 bp) SVs were detected by aligning the Bionano scaffolds to the FlyBase [50]
reference assembly using MUMmer v3.23 (nucmer -maxmatch) [83] and then annotating
the disagreements between the assemblies as indels and duplications using SVMU v0.2beta
(commit 4e65e95) [37]. Insertions overlapping with Repeatmasker 4.0.7 [142] annotated TEs
were annotated as TE insertions. SVs were validated with at least two ONT reads spanning
the entire genomic feature containing the SVs plus 200 bp on both sides of the SV. TEs
were inferred to be segregating when corrected long reads supporting the TE insertions were
contradicted by other reads showing absence of the TE. For validation with spanning long
reads, we aligned Canu-corrected ONT reads to the FlyBase and Bionano assemblies using
BLASR (v 1.3.1) [35] and the sorted alignment bam files were visually examined with IGV
[152].

Mitochondrial genome identification

The mitochondrial genome was identified by using BLAST [6] to compare our final assembly
(the Bionano assembly) against the mitochondrial genome from r6.16 of the D. melanogaster
genome. A single contig was identified (tig00000438_pilon_pilon_obj) with 99% identity to

the reference mitochondrial genome. This contig contained two copies of the mitochondrial
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genome in tandem (assembly duplications of circular genomes are not uncommon when doing
assembly with long-read data), therefore the first 16,806 and last 2,104 nucleotides were
removed from the contig. We used MITOS [22] with default settings, metazoan reference,
and invertebrate genetic code to annotate both the reference mitochondrial genome and our

assembled mitochondrial genome.
Data availability

The Illumina and basecalled ONT data generated in this study has been uploaded to
the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) un-
der bioproject PRJNA433573. Genomes assembled in this study are available at https:
//github.com/danrdanny/Nanopore_IS01. Releases 6.16 and 5.57 of the D. melanogaster
genome used in this study are available on FlyBase (http://www.flybase.org). Bioinfor-
matic scripts used in this pipeline are available at https://github.com/esolares/DMI1.
Original data underlying this manuscript can be accessed from the Stowers Original Data
Repository at http://www.stowers.org/research/publications/1ibpb-1268. Supple-

mental material available at Figshare: https://doi.org/10.25387/g3.6813398.

1.4 Results

Sequencing results

A 1D sequencing library was loaded onto a release 9.5 flow cell and run for approximately
24 hr (see Methods), generating a total of 663,784 reads. Basecalling was performed with
Albacore 2.0.2, with 593,354 (89%) of all reads marked as “pass” (reads having a quality
score > 7) and an average fragment length of 7,122 bp (Table 1, Figure 2). The read N50 for
those that passed filter was 11,840, with 41 reads longer than 50 kb and a maximum read
length of 379,978 bp (Figure S1).
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Figure 1.2: Read length distribution for reads with quality scores greater than or equal to
7. Length is the sequence length after basecalling by Albacore, not the length that aligned
to the genome. (A) Distribution of read lengths less than 50 kb. (B) Distribution of reads
50 kb or greater. The longest read that passed quality filtering was 380 kb.
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Genome assembly

ONT-only assembly using minimap/miniasm: To evaluate ONT data for de novo
genome assembly, we performed an ONT-only assembly using minimap and miniasm [90].
Together, these programs allow for rapid assembly and analysis of long, error-prone reads.
We generated an assembly with a total size of 132 Mb, with 208 contigs and a contig N50
of 3.8 Mb (N50 is the length of the contig such that 50% of the genome is contained within
contigs that are equal to or longer than this contig) (Table 2). Evaluation of an alignment
dot plot between this assembly and the D. melanogaster reference genome revealed high
correspondence between our assembly and the reference genome (Figure S2). However,
BUSCO analysis of the minimap assembly found only 0.5% of expected single-copy genes
present—much lower than the BUSCO score of 98.3% obtained from the current release of
the D. melanogaster genome (Table 3). BUSCO analysis evaluates the presence of universal
single-copy orthologs as a proxy of completeness. Such a low BUSCO score as found in the
minimap assembly is unlikely to be measuring low completeness, but rather suggests a high

rate of errors that disrupt the genes, making them difficult to properly assay.

ONT-only assemblies using Canu: We also generated an ONT-only assembly with
Canu using only reads longer than 1 kb. Alignment dot plots for the assembled genome
and the D. melanogaster reference genome also revealed large colinear blocks between this
assembly and the reference, indicating only one large misassembly on chromosome 2L (this
misassembly was broken prior to merging and polishing) (Figure 3A). The Canu assembly was
marginally less contiguous (contig N50 = 3.0 Mb) than the minimap assembly, but resulted
in a higher BUSCO score of 67.7% (Table S1). The errors in the Canu assembly and the low
BUSCO score are consequences of inherently high error rate of ONT reads. However, due
to the higher accuracy and completeness of the Canu assembly compared to the minimap

assembly, we used the ONT-only Canu assembly for the remainder of our analysis.

Hybrid assembly using ONT and Illumina reads: Modest coverage assemblies of
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PacBio long reads can exhibit high contiguity when a hybrid assembly method involving II-
lumina reads is used [36]. Therefore, we examined whether such assembly contiguity improve-
ments also occur when ONT long reads are supplemented with Illumina paired-end reads.
We performed a hybrid assembly using DBG20LC with the longest 30x ONT reads and
contigs from a De Bruijn graph assembly constructed with 67x of Illumina paired-end data.
To optimize the parameters, we performed a gridsearch on four parameters (AdaptiveTh,
KmerSize, KCovTh and MinOverlap), yielding 36 genome assemblies. We used a range of
values recommended by the authors for low-coverage assemblies and verified our KmerSize
by looking at meryl’s kmer histogram and found it coincided with a value that represented
a 99% fraction of all k-mers (http://kmer.sourceforge.net/wiki/index.php/Getting_
Started_with_Meryl). We selected the best genome based on colinearity and largest N50.
The best hybrid assembly was substantially more contiguous (contig N50 = 9.9 Mb) than
the ONT-only Canu assembly (contig N50 = 3.0 Mb), had large blocks of contiguity with the
reference (Figure 3B), yet had lower BUSCO scores (47.7% compared to the 67.7% observed

in the Canu assembly) (Table 3).

Merging of Canu and DBG20OLC assemblies: We have previously shown that merg-
ing assemblies constructed using only PacBio long reads with hybrid assemblies constructed
with PacBio long reads and Illumina paired-end short reads results in a considerably more
contiguous assembly than either of the two component assemblies alone [36]. To examine
the effect of assembly merging on assemblies created with ONT long reads, we merged the
ONT-only Canu assembly with the DBG20LC assembly with two rounds of quickmerge (see
Methods). The merged assembly (contig N50 = 18.6 Mb) was more contiguous than both
the Canu and the DBG20OLC assemblies alone (Table 2), exhibiting large-scale colinearity
with the reference genome as seen in the dot plot (Figure 3C). As expected, the BUSCO

score of the merged assembly (58.2%) fell between the two component assemblies (Table 3).

Assembly quality
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Name Genome size (bp) Contigs Largest contig (bp) N50 (bp) L50
FlyBase 16.16* 142,573,024 2.442 97.905,053 21,485,538 3
MiniMap 131,856,353 208 16,991,501 3,866,686 9
DBG20OLC 131,359,678 339 13,129,070 9,907,730 6
Canu 139,205,737 295 14,326,064 2,971,262 11
QuickMerge 2x 138,130,519 250 25,434,901 18,616,266 4
QM2x Nanopolish 139,303,903 250 25,367,201 18,818,677 4
QM2x NP + Pilon x2 140,153,080 250 25,783,280 18,923,871 4
QuickMerge 2x Bionano 142,817,829 231 98,580,427 21,305,147 3

Table 1.2: Genome assembly statistics. *Values are for scaffolds, not contigs.

Polishing: A high number of SNP and indel polymorphisms in all of our assemblies is
consistent with other de novo assemblies created with noisy long reads with high error
rates [97, 36]. Such errors typically lead to error-ridden genic sequence that can give the
appearance that many important genes are missing (Table 3; Table S1). Many of these errors
can be fixed via assembly polishing, and a number of assembly polishing tools exist. We
chose to employ two: nanopolish, which performs consensus-based error correction using
ONT reads [97], and Pilon, which performs error correction using Illumina reads [158].
This approach of applying long-read consensus correction followed by short-read polishing
has resulted in BUSCO scores comparable to that of the FlyBase reference genome (e.g.,

Chakraborty et al. 2016 and Chakraborty et al. 2018).

To evaluate this approach for ONT data, we evaluated three different polishing approaches:
one using nanopolish alone, one using only two rounds of Pilon, and one using one round
of nanopolish followed by two rounds of Pilon (see Methods). Applying nanopolish alone
recovered only 79%, 79.2%, and 78.5% complete BUSCOs for the hybrid, ONT-only, and the
merged assemblies, respectively (Table S2), suggesting that polishing with ONT reads alone
only partially improved assembly quality. On the other hand, polishing all three assemblies
twice with Pilon alone fixed a large number of errors as evidenced by improved BUSCO
scores of the resulting assemblies [141] (Table 3). The merged assembly was polished once
with nanopolish, then twice with Pilon, resulting in nearly all complete BUSCOs (97.9%)

being present in our polished assembly, comparable to that of the reference assembly (98.3%)

24



(Table S2). Variation in BUSCO scores generally tracked the method of polishing more than
the type of assembly. However, the hybrid assembly did recover a slightly different subset
of BUSCOs than the ONT-only assembly, leading to a slightly higher number of BUSCOs

being recovered in the final merged assembly.

QUAST/GAGE metrics of quality: The QUAST output comparing the Canu, DBG20LC,
merged, and Bionano genome assemblies against the D. melanogaster reference shows that
the quickmerge assembly resulted in intermediate error rates and discordance as compared to
the component assemblies (Figure 4). All four assemblies exhibited approximately the same
number of SNP and indel errors less than 5 bp, whereas the DBG20OLC assembly resulted
in approximately 20% more indels greater than 5 bp in size than the Canu assembly (Figure
4H-1, Table S3, Table S4). Among ONT assemblies, the Canu assembly exhibited superior
accuracy and fewer misassemblies, although our quickmerge assembly was nearly as good.
When mismatches are measured on a phred scale, the ONT assemblies range in quality from
32 to 33, which is lower than the score of 37 from a PacBio assembly with threefold more
data [82] (Table S3, Table S4). Canu also exhibited the lowest raw contiguity for an ONT
assembly as measured by N50/NG50 and L50/LG50. The N50 for our merged assembly (19
Mb) exceeded that of Canu (3 Mb) and was nearly double that of DBG20LC (10 Mb), while
maintaining large-scale colinearity with the reference (Figure 3C). However, Canu outper-
forms the merging approach when considering the contiguity of error-free alignment blocks as
demonstrated by the NA50 and NGA50 for Canu, which are greater than that of quickmerge
(Table S3). We also observe that half of the assemblies accrue in fewer error-free alignments
for Canu than for quickmerge, resulting in slightly lower values in LA50 and LGA50 for
Canu than quickmerge (Table S3). As a consequence, when evaluating which approach to
employ, we advise users to carefully weigh the tradeoffs between large-scale contiguity and
local misassembly and sequence errors and to tailor their decision to the biological questions
being addressed. For example, in creating a reference for QTL mapping, there might be

a strong preference for high long-range contiguity even at the cost of local misassemblies.
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Name Single copy  Duplicate Fragmented Missing Complete
FlyBase r6.16 2,749 (98.2%) 14 (0.5%) 22 (0.8%) 14 (0.5%) 2,763
MiniMap 14 (0.5%) 0 (0.0%) 31 (1.1%) 2,754 (98.4%) 14

(
DBG20LC 1,332 (47.6%) 3 (0.1%) 557 (19.9%) 907 (32.4%) 1,335
Canu 1,884 (67.3%) 11 (0.2%) 557 (19.9%) 347 (12.4%) 1,895
QuickMerge (QM) 2x 1,623 (58.0%) 6 (0.3%) 560 (20.0%) 610 (21.8%) 1,629
QM 2x Nanopolish (NP) 2,189 (78.2%) 8 (0.3%) 400 (14.3%) 202 (7.2%) 2,197
QM 2x NP + Pilon x2 2,726 (97.4%) 14 (0.5%) 39 (1.6%) 20 (0.7%) 2,740
QM 2x Pilon x2 2,718 (97.1%) 14 (0.5%) 45 (1.4%) 22 (0.8%) 2,732
QM 2x Bionano 2,715 (97.0%) 15 (0.5%) 40 (1.4%) 29 (1.0%) 2,730
QM 2x Bionano All 2,720 (97.2%) 16 (0.6%) 40 (1.4%) 23 (0.8%) 2,736

Table 1.3: Busco scores demonstrating genome quality before or after polishing.

On the other hand, when avoiding misassemblies is paramount (as might be the case when
characterizing the structure of individual loci), one could make the argument in favor of less

long-range contiguity in exchange for fewer misassemblies.

Finally, the low-coverage ONT dataset presented here performed surprisingly well compared
to a PacBio dataset three times larger [80, 82] in terms of contiguity (N50, NA50, L50, LA50),
completeness (genome fraction), and accuracy (identity, SNPs, InDels, translocations, etc.)
(Table S3). In all measures, the merged assembly performed almost as well as the much
higher coverage PacBio assembly from Koren et al. (2017). Importantly, however, the GAGE
corrected N50 of Koren et al. (2017) was substantially larger than the ONT assemblies, likely

due to its superior coverage (Table S3, Table S4).

Completeness: reconstructing genes, TEs, and chromosome arms: We next
evaluated the completeness of the assemblies by assessing the reconstruction of elements
in the genome, including genes, TEs, and chromosome arms. For all following metrics,
Canu and the final Quickmerge assembly performed similar to one another, with DBG20LC
performing somewhat worse. As a result, remaining comparisons will be made between the
final Quickmerge ONT assembly and the PacBio assembly produced by Koren et al. 2017,

which we use as a standard of comparison.
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Our final assembly contained 96.37% of release 6.16 genes greater than 99% complete as
compared to 98.4% for the Koren et al. (2017) assembly (Table S5). However, our final
assembly was able to reconstruct only 72.71% of gene models compared to 88.14% for the
Koren et al. (2017) assembly when only 100% complete gene models are considered (Table
S5). Transposon reconstruction followed the same pattern with a 6.66% and a 15.51%
difference in counts between the two assemblies for those with greater than 99% identity
and complete reconstruction, respectively, with both favoring the higher-coverage PacBio

assembly:.

Muller element (chromosome arm) reconstruction was more similar between the ONT and
PacBio assemblies for the euchromatic regions, with an average difference of 0.47% and a
maximum difference of 0.94% in the X chromosome (Table S5). The largest difference was in
the number of alignments. Bionano and quickmerge assemblies covered the Muller elements
in fewer segments than the Koren et al. (2017) assembly, though they exhibited less total
chromosome coverage. The differences were more apparent in the heterochromatic scaffolds,
as our final assembly contained less coverage than the Koren et al. (2017) assembly, with an
average deficit of 4.44% coverage and a maximum deficit of 7.89% across all heterochromatic
scaffolds linked to Muller elements (Table S6). The difference in the Y chromosome was the
largest, as expected, for our relatively low coverage of mixed sex flies compared to the high

coverage of all males for Koren et al. (2017).

Base quality: We aligned Illumina short reads to measure the sequencing error rate follow-
ing Berlin et al. (2015). The proportion of reads successfully mapped to assemblies varied
from 93.5 to 94.6%. The aligned reads resulted in QV scores ranging from 40.2 to 41.1. A
slightly different approach used by Koren et al. (2017) yielded very similar QV scores in the
range of 40.1-40.2 (Table S7), suggesting that our assembly was of relatively high quality in

areas where reads align well.

Bionano scaffolding
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Figure 1.3: Dot plots showing colinearity of our assembled genomes with the current version
of the D. melanogaster reference genome. Red dots represent regions where the assembly and
the reference aligned in the same orientation; blue dots represent regions where the genomes
are inverted with respect to one another. The vertical grid lines represent boundaries between
chromosome scaffolds in the reference assembly. Horizontal grid lines represent boundaries
between contig (A-C) or scaffolds (D) in the assemblies reported here. (A) Plot of the Canu-
only assembly against the reference genome. (B) Plot of the hybrid DBG20LC Nanopore and
[lumina assembly against the reference. (C) Plot of merged DBG20LC and Canu assemblies
showing a more contiguous assembly than either of the component assemblies. (D) Bionano
scaffolding of the merged assembly resolves additional gaps in the merged assembly.
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Bionano fragments, which are substantially longer than ONT reads, can be used for scaf-
folding contigs across repetitive regions. We generated 81,046 raw Bionano fragments (20.5
Gb) with an average fragment length of 253 kb. To use these fragments for scaffolding, we
first created a Bionano assembly (509 maps, haploid assembly size = 145 Mb) using 78,397
noise-rescaled fragments (19.9 Gb, mean fragment length 253 kb). At 145 Mb, the Bionano
assembly is comparable to the reference assembly size (144 Mb). The Bionano maps were
used to scaffold the merged assembly. The resulting scaffolded assembly was more contiguous
(N50 = 21.3 Mb) than the unscaffolded contigs without substantially changing the number
of SNP and indel errors (Figure 3D; Tables S1, S3-S4). Bionano scaffolding of our assembled
genome did not change BUSCO scores (Table 3).

Structural variants

One advantage of high quality de novo assemblies is that they permit comprehensive detec-
tion of large (> 100 bp) SVs. Highly contiguous assemblies, such as the one generated here,
allow comparisons between two or more assemblies, revealing novel SVs and facilitating the
study of their functional and evolutionary significance. Although we sequenced the refer-
ence genome stock, structural differences between our stock and the published assembly are
expected due to error, but also to new mutations—especially for TEs, which are the most
dynamic structural components of the genome. Indeed, such mutations have been observed
in substrains of ISO1 before [171, 108, 125]. Similarly, our assembly revealed the presence of
34 new TE insertions and 12 TE losses compared to the reference genome assembly. Among
the 34 TE insertions, 50% (17/34) are LTR TEs comprising chiefly of copia (5/17) and roo
elements (6/17). Interestingly, 29% (10/34) of the TE insertions are defective hobo elements
that lack an average of 1.7 kb of sequence (base pairs 905-2510 of full-length hobo are absent)
from the middle segment of the element encoding the transposase. However, alignment of
long reads to the assembly regions harboring the TE insertions revealed that 6/34 insertions

are not fixed, but are segregating in the strain (Table S2). The high insertion rate of the LTR
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Figure 1.4: QUAST was used to compare each assembly to the D. melanogaster reference
genome with selected statistics presented here. (A) Greater than 90% of bases in the reference
genome were aligned to each of our four assemblies. (B) The contiguity of assembly blocks
aligned to the reference. (C) Total unaligned length includes contigs that did not align to
the reference as well as unaligned sequence of partially aligned contigs. (D) The number
of contigs that contain misassemblies in which flanking sequences are 1 kb apart, flanking
sequences overlap by 1 kb or more, or flanking sequences align to different reference scaffolds.
(E) Total count of misassemblies as described in (D). (F) Local misassemblies include those
positions in which a gap or overlap between flanking sequence is less than 1 kb [(D) and
(E) show those greater than 1 kb] and larger than the maximum indel length of 85 bp on
the same reference genome scaffold. (G) Misassemblies can be subdivided into relocations
(a single assembled contig aligns to the same reference scaffold but in pieces at least 1 kb
apart), inversions (at least one part of a single assembled contig aligns to the reference in
an inverted orientation), or translocations (at least one part of a single assembled contig
aligns to two different reference scaffolds). Not all misassemblies are captured in these three
categories. (H) Total SNPs per assembly are shown and were not significantly different
among assemblies. (I) Indels per 100 kb can be divided into small indels (those ,5 bp) and
large indels (> 5 bp). Indels .85 bp are considered misassemblies and are shown in panels
D, E, or F.
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and hobo elements in this single strain mirrors the recent spread of LTR and hobo elements
in D. melanogaster populations [116, 118, 24]. As expected, the majority (27/34) of the new
TE insertions are located within introns, because insertions within exons generally result in
gene disruption. Nonetheless, we found five genes (Ance, Pka-C1, CG31826, CG43446, and
I1p6) in which new TEs have inserted within exons (Table S2). We also found 12 TEs present
in the reference assembly that are missing from our final scaffolded assembly, among which
six are LTR TEs (five 297 elements and one roo element). The high rate of insertion and
loss of LTR elements underscores their dynamic evolutionary history in the D. melanogaster
genome. Because TEs can be locally unique, the presence or absence of such events does
not pose a fundamental limitation to assembly when reads are long enough to span the TEs.
Consequently, we predict most of these events to be new mutations rather than errors in

assembly:.

Additionally, we identified several duplications present in our assembly. For example, a tan-
dem duplication of a ~9-kb segment has created partial copies of the genes infertile crescent
(ifc) and little imaginal discs (lid). Another ~2-kb tandem duplication has created partial
copies of the genes CG10137 and CG33116 (Table S8). Apart from CNVs affecting single
copy sequences, our assembly also uncovered copy number increases in tandem arrays with
potential functional consequences. For example, we observed copy number increase in a
tandem array of a 207-bp segment within the third exon of the chitin-binding protein gene
Muc26B. While CNVs such as this have been challenging to identify and validate in the past,
at least two Nanopore reads spanning this entire tandem array support the presence of a
tandem duplication at this position (Figure 5). Unlike TEs, classifying such tandem events
as errors stemming from shorter Sanger reads or an actual mutation is difficult without the

access to the original material from which the Sanger data were derived.
Mitochondrial genome identification and identity

After assembly, merging, polishing, and scaffolding, we used BLAST [6] to identify the mi-
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Figure 1.5: Copy number increase in a 207-bp tandem array located inside the third exon of
Muc26B. (A) Three tracks showing Bionano assembly (top) with Nanopore long reads (blue)
and reference (Flybase) assembly (red) aligned to it. The alignment gap in the reference
assembly is due to the extra sequence copies in the Bionano assembly. (B) Alignment dot
plot between the reference sequence possessing the tandem array to itself. (C) Alignment
dot plot between the genomic region possessing the tandem array in the Bionano assembly
to itself. As evidenced by the dot plot, the Bionano assembly has more repeats in this
region than the reference assembly in panel B. (D) Alignment dot plot between the reference
genomic region (x axis) shown in (B) and the corresponding Bionano genomic region (y axis)
shown in (C).
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Figure 1.6: Mitochondrial genome annotations generated by MITOS. (A) Annotation of the
reference mitochondrial genome. (B) Annotation of the mitochondrial genome assembled in
this project is identical to the reference except that nad4 and nad6 in the reference assembly

were both annotated as two genes—mnad4 as nad4-a and nad4-b, and nad6 as nad6-a and
nad6-b.

tochondrial genome. Using the published D. melanogaster mitochondrial genome as the
subject, we identified one 38,261-bp contig with nearly 100% identity to the reference mi-
tochondrial genome. The first 16,806 and last 2,100 nucleotides of this contig were 99.6%
identical to the reference mitochondrial genome, while the middle 19,228 nucleotides were
98% identical to the reference mitochondrial genome. This suggests that our assembled mi-
tochondrial genome had been duplicated during assembly, which commonly occurs when as-
sembling circular genomes using long sequencing reads. For the tandem assembled genomes,
nearly all of the SNP and indel polymorphisms occurred in the last 4,000 nucleotides of the

reference genome.

To determine if all genes and features that are present in the reference mitochondrial genome
were present in our assembled genome, we annotated both genomes using MITOS [22]. Both
assemblies were annotated nearly identically, with MITOS reporting that both assemblies
were missing the origin of replication for the L region (OL) (Figure 6). The Nanopore

assembly also resulted in two split genes not observed in the reference genome assembly:
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nad4 and nad6 were each annotated as two continuous genes rather than one single gene.

1.5 Discussion

Drosophila melanogaster was the first genome assembled using a whole-genome shotgun
(WGS) strategy [112, 2]. This successful proof-of-principle led to the prevalence of the WGS
sequencing approach as a tool in virtually all subsequent metazoan genome assembly projects
[87, 160, 60, 170, 8, 59, 68]. While improvements in sequencing technology have led to a
precipitous drop in the cost of sequencing [162], stagnation and even regression of read lengths
resulted in highly fragmented and incomplete assemblies [5]. Furthermore, complementary
approaches (like hierarchical shotgun sequencing and other clone-based approaches) were
required to obtain nearly complete and highly contiguous reference genomes, which adds

complexity, cost, and time to assembly projects.

Short reads provided by next generation sequencing technologies present limitations to what
a pure WGS assembly approach can accomplish [5, 113]. The advent and development of
long-read sequencing technologies has led to dramatic increases in read length, permitting as-
semblies that span previously recalcitrant repetitive regions. Early implementations of these
technologies produced reads longer than previous short-read technologies yet still shorter
than relatively common repeats, while the cost and error rate remained high compared to
the short-read approaches. However, continued improvements in read length overcame many
of these difficulties, permitting nearly complete, highly contiguous metazoan genome assem-
blies with only a WGS strategy [80, 21, 82]. Such approaches led to assemblies comparable
in completeness and contiguity to release 6 of the D. melanogaster genome assembly [70] for
approximately $10,000 USD [36, 37]. However, even with the rapid development of these
approaches, substantial capital investment in the form of expensive instrumentation and

dedicated genome facility staff was required.
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Here, we report an independent resequencing and assembly of the D. melanogaster reference
strain, ISO1, for less than $1,000 USD in sequencing costs and without the need for extensive
capital or personnel investment. The resulting assembly before scaffolding is comparable to
release 6 of FlyBase in terms of contiguity and completeness (18.9 Mbp contig N50 and 97.1%
complete single copy BUSCOs). We achieved this using 4.2 Gbp of sequence from a single
Oxford Nanopore flow cell in conjunction with Illumina short-read data. Such reduction
in complexity and cost permits a small team of scientists to shepherd a sequencing project
from sample to near-reference-quality assembly in a relatively short amount of time. The
addition of optical mapping data permitted ordering and orientation of the contigs, yielding

an assembly nearly as contiguous as the published reference (scaffold N50 of 21.3 Mbp).

Comparing this assembly to the FlyBase reference genome shows that it is both accurate
(21 mismatches/100 kbp, 36 indels/100 kbp) and colinear (Figure 3D, Figure 4, Table S3).
Most of the small-scale differences are expected to be errors introduced by the noisy Oxford
Nanopore reads that escaped correction via polishing. It is possible that some of these errors
are SVs, which are expected to accumulate because the ISO1 stock has been maintained in the
laboratory for approximately 350 generations (assuming 20 gen/year) since initial sequencing
in 2000. This allows for the accumulation of new mutations by genetic drift, including ones
reducing fitness [12]. Due to the high contiguity in the euchromatic region, our assembly
facilitates detection of such euchromatic SVs. Several apparent “assembly errors” in our
Bionano assembly are due to TE indels that are supported by spanning long reads. We found
28 homozygous euchromatic TE insertions, which are predominantly LTR and defective hobo
elements, suggesting a high rate of euchromatic TE insertions (~0.08 insertion/gen). That we
observed a predominance of LTR and hobo elements among the new TE insertions mirrors
their recent spread in D. melanogaster populations [116, 118, 24, 49]. The abundance of
defective hobo elements among the new insertions is particularly interesting given that these

hobo elements lack the transposase enzyme necessary for mobilization.
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Although most novel TE insertions were found in introns, five were found within exons: the 5
prime UTR of Ance, CG31826, and Ilp6; the 3 prime UTR of Pka-C1; and the coding region
of CG43446. Similarly, TE loss primarily involved LTR TEs, including loss of TEs from the
5 prime UTR of the genes Snoo and CG1358. We also observed copy number increases both
in unique sequences as well as in tandem arrays (Table S8), with one duplication creating a
new copy of the entire coding sequence of the gene lid. Collectively, our assembly provides
a snapshot of ongoing genome structure evolution in a metazoan genome, which is often

assumed to be approximately invariant for experimental genetics.

A crucial feature of this work is that it is performed in a strain used to generate one of
the highest quality reference genomes available, ensuring that our inferences can be judged
against a high-quality standard. This approach allowed us to demonstrate that assembly
with modest amounts of long-molecule data paired with inexpensive short-read data can yield
highly accurate and contiguous reference genomes with minimal expenditure of resources.
This demonstration opens myriad opportunities for high-quality genomics in systems with
limited resources for genome projects. Moreover, we can now conceive of studying entire
populations with high-quality assemblies capable of resolving repetitive structural variants,

something previously unattainable with short-read sequencing alone.
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Chapter 2

HapSolo: An optimization approach
for removing secondary haplotigs
during diploid genome assembly and

scaffolding

2.1 Abstract

Background

Despite marked recent improvements in long-read sequencing technology, the assembly of
diploid genomes remains a difficult task. A major obstacle is distinguishing between alterna-
tive contigs that represent highly heterozygous regions. If primary and secondary contigs are
not properly identified, the primary assembly will overrepresent both the size and complexity

of the genome, which complicates downstream analysis such as scaffolding.
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Results

Here we illustrate a new method, which we call HapSolo, that identifies secondary contigs and
defines a primary assembly based on multiple pairwise contig alignment metrics. HapSolo
evaluates candidate primary assemblies using BUSCO scores and then distinguishes among
candidate assemblies using a cost function. The cost function can be defined by the user
but by default considers the number of missing, duplicated and single BUSCO genes within
the assembly. HapSolo performs hill climbing to minimize cost over thousands of candidate
assemblies. We illustrate the performance of HapSolo on genome data from three species:
the Chardonnay grape (Vitis vinifera), with a genome of 490 Mb, a mosquito (Anopheles
funestus; 200 Mb) and the Thorny Skate (Amblyraja radiata; 2650 Mb).

Conclusions

HapSolo rapidly identified candidate assemblies that yield improvements in assembly metrics,
including decreased genome size and improved N50 scores. Contig N50 scores improved by
35%, 9% and 9% for Chardonnay, mosquito and the thorny skate, respectively, relative to
unreduced primary assemblies. The benefits of HapSolo were amplified by down-stream
analyses, which we illustrated by scaffolding with Hi-C data. We found, for example, that
prior to the application of HapSolo, only 52% of the Chardonnay genome was captured in
the largest 19 scaffolds, corresponding to the number of chromosomes. After the application
of HapSolo, this value increased to ~84%. The improvements for the mosquito’s largest
three scaffolds, representing the number of chromosomes, were from 61 to 86%, and the
improvement was even more pronounced for thorny skate. We compared the scaffolding
results to assemblies that were based on PurgeDups for identifying secondary contigs, with

generally superior results for HapSolo.
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2.2 Introduction

Traditionally, reference genomes have been produced from genetic materials that simplify
assembly; for example, the first two plant species targeted for reference quality genomes,
Arabidopsis thaliana [172] and rice (Oryza sativa) [60], were chosen in part because they
naturally self-fertilize and are therefore highly homozygous. Other early genomes, such as
those from Caenorhabditis elegans and Drosophila melanogaster [1, 2], were also based on
inbred, highly homozygous materials. Recent sequencing of additional model and non-model
species have continued to rely on near-homozygous materials, either through inbreeding

[143, 77] or by focusing on haploid tissue [44, 126].

The reliance on homozygous materials is fading rapidly, however, for at least three reasons.
The first is that it has become clear that inbred materials can misrepresent the natural state
of genomes. A dramatic illustration of this fact is that some lines of maize purged 8% of their
genome in only six generations of self-fertilization [134]; more generally, inbred genomes tend
to be smaller than those based on outbreeding species [120, 54]. The second is that many
species of interest cannot be easily manipulated into a homozygous state. Many animals fall
into this category, such as mosquitoes [135], as do many perennial crops like grapes, which
are highly heterozygous [175] and can be selfed but only with substantial fitness costs that
limits homozygosity [105]. Finally, some important features and phenotypes—such as sex
determination [100] and other important adaptations—can only be identified by analyzing

heterozygous samples.

Fortunately, the resolution of highly heterozygous regions, which often contain large struc-
tural variants, is now possible due to improvements in sequencing technologies and their af-
fordability. In theory, long-read sequencing technologies, like those from Pacific Biosciences
and Oxford Nanopore, provide the capability to resolve distinct haplotypes in heterozygous

regions, leading to the assembly of reference-quality diploid genomes [143, 76, 36]. Several
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genomes based on highly heterozygous materials have been published recently [175, 157, 42,

58, 81, 130], with many additional efforts ongoing.

Nevertheless, the assembly of heterozygous genomes still presents substantial challenges.
One challenge is resolving distinct haplotypes in regions of high heterozygosity. Programs
that assemble long-reads, such as FALCON and Canu [81], can fuse distinct haplotypes
into the primary assembly. This haplotype-fusion produces genomes that are much larger
than the expected genome size. When haplotypes are fused, either into the same contig or as
different contigs into the primary assembly, the increased size and complexity of the assembly
complicates down-stream approaches, such as scaffolding by Hi-C or optical mapping. In
theory, FALCON-unzip [42] solves some problems by identifying alternative (or ‘secondary’)
haplotigs that represent the second allele in a heterozygous region and then providing a

primary assembly without secondary contigs.

It remains a difficult problem to identify and remove alternative contigs during assembly, but
there are some suggested solutions. For example, Redundans identifies secondary contigs via
similarities between contigs [121] and removes the shorter of two contigs that share some pre-
defined level of similarity. Another approach, PurgeHaplotigs uses sequence coverage as a
criterion to identify regions with two haplotypes [132]. The reasoning behind PurgeHaplotigs
is that alternative alleles in a heterozygous region should have only half the raw sequence
coverage of homozygous regions. Accordingly, the algorithm proceeds by first remapping
raw reads to contigs, then flagging contigs with lower than expected read depth, and finally
re-mapping and removing low-coverage contigs from the primary haplotype-fused assembly.
A more recent approach, implemented in the purge_dups tool [63], builds on the coverage-
based approach of PurgeHaplotigs. Purge_dups has been compared to PurgeHaplotigs and

is superior based on a few exemplar assemblies [63].

Here we report another strategy, which we call HapSolo [144], to identify and remove poten-

tial secondary haplotigs. Our approach is similar to Redundans, in that it begins with an all-
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by-all pairwise alignment among contigs and uses features of sequence alignment as a basis to
identify potential alternative haplotigs. However, HapSolo is unique in exploring the parame-
ter space of alignment properties to optimize the primary assembly, using features of BUSCO
scores as the optimization target. Here we detail the approach and implementation of Hap-
Solo, demonstrate that it efficiently identifies primary versus secondary haplotigs and show
that it improves Hi-C based scaffolding outcomes relative to purge_dups. HapSolo has been

implemented in python and is freely available (https://github.com/esolares/HapSolo).

2.3 Methods

Pre-processing

Our method begins with the set of contigs from genome assembly. In theory, HapSolo
will work for any set of contigs from any assembler and from any sequencing type (i.e.,
short-read, long-read or merged assemblies). Given the set of contigs, the first steps are
to size sort the contigs and then to perform an all-by-all pairwise alignment among all
contigs (Fig. 1, steps 1 and 2), using each contig as both a reference and a query. In
theory, pre-processing alignments can be performed with any algorithm, with the HapSolo

implementation supporting either BLAT [79, 92] or minimap2 [91] input files.
Steps within HapSolo

HapSolo imports alignment results into a PANDAS (https://pandas.pydata.org/) dataframe
to form a table with rows representing pairs of aligned contigs and columns containing de-
scriptive statistics for each pairwise comparison (Fig. 1, step 3). Columns include the percent
nucleotide identity between contigs (I D), a metric similar to those used in previous haplotig
reduction programs; the proportion of the query contig length that aligns to the reference

contig (Q), which is included to recognize that alignments can be clipped; and the ratio of
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the proportion of the query aligned to the reference relative to the proportion of the reference
aligned to the query (QR). QR is considered because it reflects properties of aligned length
and potential structural variant differences between contigs. A downside of QR is that it
can reach values > 1.0, as longer variants may exist in either the query or the reference, and
it is also non-symmetric. To compensate for this we include a symmetric value, which we
define as QR = e - —log2(QR). The four parameters— ID, (), QR and Q R'—are the basis
for filtering query contigs from the table and defining them as putative secondary contigs.

For simplicity, however, we will emphasize QR, because QR’ is dependent on QQR.

In addition to the alignment table, HapSolo generates a table of BUSCO properties [141]
for each contig. This BUSCO analysis is performed on each contig of the assembly prior
to running HapSolo’s reduction algorithm. To perform these analyses, contigs are split into
individual FAStA files and then BUSCO v3.0.2 is run on each contig separately so that they
can be evaluated in parallel. Ultimately, the BUSCO table generated by HapSolo contains a
list of complete (C) and fragmented (F) BUSCO genes for each contig. This table is integral

for rapidly evaluating potential candidate assemblies.

Given the alignment table and the BUSCO table, HapSolo begins by assigning threshold
values for ID, () and QQR, which we denote as I Dy, Qr and QQRr. The threshold values
can be assigned randomly, with set default values or with values defined by the user. The
threshold values are applied to the alignment table to identify query contigs for purging. To
be removed, a query contig must be in a pairwise alignment that satisfies three conditions:
(1) an ID value > I D7; (2) a @ value > Qr; and (3) a QR value that falls within the range
min(QRr,QR}) and max(QRy,QR/). After purging query contigs, HapSolo calculates the
number of Fragmented (F'), Missing (M), Duplicated (D) and Single-Copy (S) BUSCO genes
across all of the primary contigs that remain in the candidate assembly, based on values in

the BUSCO table. It then calculates the Cost of the candidate assembly as:
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Figure 2.1: A schematic showing the basic workflow and ideas behind HapSolo. The rectan-
gles on the right illustrate the basic steps, including pre-processing (blue rectangles), steps
within HapSolo (red rectangles) and post-processing (green rectangle). Some of the HapSolo
steps include iterations to perform hill climbing calculations, as described in the text and
shown by the arrow. On the left, step 1 shows the contigs from the primary assembly, and
step 2 illustrates the all-by-all alignment of contigs. Step 3 provides examples of some prop-
erties of potential alignments. The metrics—ID, Q and QR—were defined to help capture
some of the variation among these conditions. Step 4 illustrates that new primary assemblies
are formed by dropping putative secondary contigs.



Cost = (91M + 92D + 093F)/94S

where 6y, 05, 05, and 0, are weights that can vary between 0.0 and 1.0. Weights can be
assigned by users; for all of our analyses below, we employ weights of 0.0 for ' and 1.0 for

M, D and S.

We then employ hill climbing to minimize Cost (Fig. 1). Once Cost is calculated with
random starting values, I Dy, Qr and QQ Rt are modified at each iteration by a randomized
step in the positive direction, which in turn defines a new set of primary contigs for a new
cost evaluation. The steps consist of a fixed increment, which can be set by the user but is set
to 0.0001 by default, multiplied by a random value sampled from U(0,1). As such, HapSolo
utilizes a randomized forward walking agent to traverse the search space. If Cost does not
change with new parameter values for a specified number of steps or if parameters increase
past their maximum limits of I Dy = Qr = 1.00, then HapSolo assigns new random values of
IDr, Qr and QRy. The process is repeated for n total iterations, and the iteration(s) with
the smallest Cost are used to define the final set of primary contigs. When there are multiple
solutions that minimize Cost, we retain all unique solutions; these additional solutions can
be exported by the user for post-processing steps and evaluation. The values that determine
the behavior of this minimization—e.g., the threshold for the number of consecutive cost
plateaus, the number of x unique best candidate assemblies retained, the increase in step

size by a fixed value, and the total number of iterations—can be set by the user.

To retain candidate assemblies with the smallest Cost, we implemented a unique priority
queue (UPQ). The UPQ maintains a maximum number of z best assemblies, where x can be
set by the user. The UPQ initially takes a list of one set of values, the score, primary contigs
and other assembly information. The UPQ then takes the number of primary contigs for
each of the candidate assemblies and sorts them by size. It then compares only the candidate

assemblies of the same size, because assemblies of unequal size cannot be the same assembly.
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Therefore our algorithm, in order to reduce the number of contig set comparisons, only
compares contig sets of the same size. Once it is established that the candidate assemblies of
the same number of contigs are equal, only the candidate assembly with the lowest score is
saved. The list is then sorted by score and returned. This allows retention of the max score
of the best x number of assemblies by looking at the score of the last candidate assembly
in the list, giving O(1) access to this value. Sorting takes O(z - log(x)), where x is the best
number of candidate assemblies to return, giving our UPQ a time complexity of O(x-log(x)).
Since we can instantaneously access the worst of the x candidate assemblies, we then perform
an integer comparison of the score of our current candidate assembly with the worst score
of our best x number of assemblies, reducing our computational time complexity. Only
assemblies with the same or lower scores than the worst candidate assembly are then added
to our UPQ. This reduces our total time complexity to O(i -z -log(x)) where ¢ is the number
of iterations which produce scores lower than our max of z, and x is the number of best

candidate assemblies to keep.
Post-processing

Once HapSolo converges on a set (or z sets) of primary contigs that minimize Cost, the
contig set is employed for post-processing to evaluate the candidate assembly. Specifically,
we run QUAST v4.5 [64] and BUSCO 3.0.2 on the set of primary contigs that represent
the best (or set of x best) candidate assemblies. QUAST measures basic genome assembly
statistics, such as, N50, total assembly length, L50 and the largest contig size. Although not
part of the HapSolo method, we provide scripts that run QUAST and BUSCO to output

their results into a single score file.
Implementation and requirements

HapSolo has been implemented and optimized for Python 2.7, but it is also supported under

Python 3. However, we recommend using Python 2.7, for faster run times. HapSolo requires
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the input of a contig assembly (as a FAStA file), the location of a directory for individual
contig BUSCO results, and the input of pairwise alignments. It currently supports either
BLAT or minimap2 alignment output files (PSL or PAF or compressed PSL.gz or PAF.gz
file).

Species and data

The data for the assemblies for V. vinifera (cultivar Chardonnay) [175], A. funestus (mosquito)
[58], and A. radiata (thorny skate) [128] were downloaded from public databases (see Data
Availability). As mentioned, the contig assemblies were based on PacBio data. The chro-
mosome number for each species was found in various sources [58, 128, 75]. The P. leucopus

data were published in [98].
Pre-processing

For each genome, pre-processing prior to application of HapSolo consisted of all-by-all pair-
wise contig alignments, as described above. For this study, we used BLAT v35 [92] and
minimap2 [91]. BLAT was run with default options after the reference was compressed into
2 bit format, and it was run using each contig as a separate query to reduce run time.
Although not technically a feature of HapSolo, our github release provides a script to run
Blat v35 [92] using this parallel approach. After running on individual contigs, the resulting
PSL files were concatenated into a single PSL file for input into HapSolo. Minimap2 was
used to compare feasibility and results between aligners; it was employed with the options

“-P -k19 -w2 -Al -B2 -01,6 -E2,1 -s200 -z200 -N50 -min-occ-floor = 100”.

Assemblies, Hi-C data and scaffolding HapSolo was applied to with default parameters
of 0.70 for I D7, Q7 and Q) R7; hill climbing started with random values of I Dy, Q7 and QR
and then minimized Cost using hill climbing over 50,000 iterations. In HapSolo, BUSCO is
run in geno mode on each contig using the orthoDB9 datasets and the AUGUSTUS species
option. BUSCO v.3.0.2 relies on BLAST v.2.2.31+, AUGUSTUS v3.3, and BRAKER v1.9.
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We obtained short-read Hi-C data from online public databases for scaffolding [175, 58]
(see Data Availability). The Hi-C sequencing data were mapped to their respective as-
semblies using BWA [92]. The scaffolding of raw assembly and HapSolo processed assem-
blies were processed with the 3D de novo assembly pipeline v180419 [51], available from
https://github.com/theaidenlab/3d-dna/. We ran QUAST v4.5 [64] for our post pro-
cessing example and to assess performance during program development. For Fig. 2 and
Additional file 1: Figure S1, the normalized value was calculated by first subtracting the min-
imum observed Cost min(Cost) from the observed Cost. The numerator [Cost-min(Cost)]

was then divided by [max(Cost)-min(Cost)].
Computational resources and processing

For runtime analyses, HapSolo was run on dual CPU Intel E5-2696 V2 Nodes containing
512 GB of RAM. The Blat, minimap2 and BUSCO pre-processing steps were run on these
same nodes, but also one the UC Irvine High Performance Computing Cluster, Extreme
Science and Engineering Discovery Environment [154], San Diego Supercomputer Center

Comet [107] and Pittsburgh Supercomputing Center Bridges [114] clusters.
Availability of data and materials

Vitis wvinifera data: NCBI under the BioProject ID PRJIJNA550461. Anopheles funestus
data: NCBI under the BioProject ID PRJNA494870. Amblyraja radiata data: Genbank
ID GCA_010909765.1, https://vgp.github.io/genomeark/Amblyraja_radiata/. Per-
omyscus leucopus data: Genbank ID GCA_004664715.2. Software: https://github.com/
esolares/HapSolo. Publication Version: https://github.com/esolares/HapSolo/releases/

tag/v0.1
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2.4 Results

Primary assemblies

We illustrate the application and results of HapSolo on three diploid genome data sets. The
three-including the Chardonnay grape ( Vitis vinifera), the Anopheles mosquito (A. funestus)
and the Thorny Skate (Amblyraja radiata)—represent a range of expected genome sizes, at
490 Mb [131], 200 Mb [58] and 2560 Mb (https://vgp.github.io/genomeark/Amblyraja_
radiata/), respectively. The three datasets also represent a range of raw sequence coverage
(at 58x, 240x, and 128x, respectively), and two different assembly methods—i.e., a hybrid
assembly for Chardonnay [175] and Falcon_Unzip for both mosquito [58] and thorny skate
[128]. The sequencing data are based on the Pacific Biosciences (PacBio) sequencing plat-
form, but HapSolo should be applicable to any contig assembly drafted from any long-read

assembler.

For pre-processing, we utilized pairwise alignments with BLAT and minimap2 for the Chardon-
nay and mosquito data. To limit run time, we applied BLAT to the Chardonnay and
mosquito data without long contigs (>10 Mb) as queries, because we reasoned that >10
Mb contigs are unlikely to represent alternative haplotigs (see “Methods” section). These
long contigs were included as references, however, so that they are represented in pairwise
alignments. We used only minimap2 for the larger skate genome, due to prohibitively long

run times with BLAT.

For each species, we applied HapSolo with and without hill climbing and compared the
outcomes to the original unreduced assembly. Table 1 provides assembly statistics, and it
illustrates improvements from the unreduced assembly, to the assembly without hill climbing
(-HC) based on default values, and finally to the assembly with hill climbing (+HC), which
is based on random starting values and 50,000 iterations. Focusing on Chardonnay, for

example, the primary contig genome size declined 13% from the unreduced assembly to the -
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Species Chardonnay Mosquito Thorny Skate?

Assembly  No HapSolo HapSolo No HapSolo HapSolo No HapSolo HapSolo
Type HapSolo®-HCP +HC®  Hap- -HC +HC Hap- -HC +HC
Solo Solo

# of Con- 2,072 1,369 1,155 1,073 674 666 16,218 14,494 12,937
tigs

Contig 655.2 569.3 539.0 212.0 200.4 200.0 3,229.4 3,147.8 3,031.3
Assembly

Size (Mb)

Largest 11.6 11.6 11.6 7.6 7.6 7.6 34 34 3.4

Contig
(MDb)

Contig 1.1 1.3 1.4 0.6 0.7 0.7 0.4 0.4 0.5
N50 (Mb)

Contig 141 106 95 86 7 77 2,022 1,928 1,800
L50

Table 2.1: Contig assembly statistics for three primary assemblies for each of the three
species.

# Results in this column are based on the primary assembly without application of HapSolo.
> Results in this column are based on application of HapSolo without hill climbing (-HC)
and with default parameters of ID, Q and QR = 0.70.

¢ Results in this column are based on application of HapSolo with 50,000 cycles of hill
climbing (+HC).

4 Results for HapSolo were generated using minimap2. Chardonnay and mosquito statistics
are based on BLAT

HC assembly and another 5% from the -HC assembly to the +HC assembly. Not surprisingly,
as genome size decreased, so did the number of contigs included in the assembly, which fell
from 2072 to 1369 (-HC) to 1155 (+HC). Moreover, contig N50 increased by 35% from
1.066 Mb to 1.441 Mb. Similar results were achieved after applying HapSolo to contigs from
mosquito and thorny skate (Table 1). For both assemblies, the number of contigs, L50 and
genome size decreased, while the contig N50 improved by 9% for both mosquito and the
thorny skate. We note, however, that hill climbing did not increase N50 for the mosquito
assembly much beyond that achieved by applying HapSolo for one iteration with its default

values, suggesting that the default values performed well by this measure with this dataset.
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Figure 2.2: A graph of the sorted performance of hill climbing over 5000 iterations, with
normalized Cost on the y-axis and the number of iterations on the x-axis. For most of our
analyses with HC, we performed 5000 iterations on each of 10 cores; here we are showing re-
sults from one core. The top right provides a graph with altered scale for better visualization
of Chardonnay and mosquito results.

Although N50 did not decline for the mosquito data, our implementation of hill climbing re-
duced Cost, as we expected, with the expected effects on BUSCO scores. Figure 2 illustrates
a sorted representation of Cost, showing that lower Costs were identified. The behavior of
hill climbing is dependent on the assembly, starting values for the three parameters (I Dy,
Q7 and QRyr), and the number of local minima in the Cost function. Nonetheless, substan-
tial improvements occurred within the first 1000 iterations for all three datasets (Additional
file 1: Figure S1), with only minor improvements thereafter. Overall, the improvement in
Cost suggests value in applying hill climbing to new data sets, especially given that the

computational requirements are minor (see below).

Table 2 complements information about Cost by reporting BUSCO scores. HapSolo achieved
its principal goal, which is to generally increase the representation of single copy (S) BUSCO
genes and decrease duplicated (D) genes in reduced compared to unreduced assemblies.

Note the differences between the -HC and +HC assemblies, because in some cases the -HC
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No HapSolo HapSolo (-HC) HapSolo (+HC)

Species GS? BUSCO? @GS BUSCO @GS BUSCO
Chardonnay  655.2  (C:1357 569.3  (C:1356 539.0 C:1357
S:1004 S:1152 S:1205
D:353 D:204 D:152
Mosquito 212.0  (C:2640 200.4  C:2609 200.0 C:2621
S:2493 S:2548 S:2566
D:147 D:61 D:55
Thorny Skate 3229.4 (C:2091 3147.8 (C:2087 3031.3 (C:2080
S:1651 S:1675 S:1715
D:440 D:412 D:365

Table 2.2: Starting and ending BUSCO values for the three species for primary contig
assemblies.

@ Genome Size (GS) based on the sum of all contigs for the primary assembly

> Busco based on all contigs prior to the application of HapSolo. The three values represent
the complete (C), the single (S) and duplicated (D) BUSCO genes

assembly had more single copy genes but at the cost of also having more duplicated genes.

Thus, the +HC option can produce assemblies with lower Cost but with fewer BUSCO genes.

Figure 3 plots the cumulative contig assembly length for the three assemblies for each of
the three species, and it illustrates two important points. First, HapSolo reduced the total
assembly length primarily by removing numerous contigs of small size. Second, differences
between the -HC and +HC reduced assemblies were more evident for some species (e.g.,
thorny skate) than for others (e.g., Chardonnay). Nonetheless, when there were differences,

hill climbing decreased both assembly size (Table 1) and Cost (Table 2).
Hi-C scaffolding results

HapSolo focuses on the improvement of primary assemblies, but there are potential ad-
vantages for removing haplotigs for downstream operations like scaffolding. Failing to re-

move duplicate haplotigs can cause false joins between duplicate haplotigs or lead to non-
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Figure 2.3: The cumulative assembly size (cdf) based on contigs. For Chardonnay (a) and
mosquito (b), the five lines depict: an unreduced assembly (-HapSolo -HC), HapSolo applied
with default parameter values and no hill climbing (+HapSolo -HC) using BLAT or minimap2
(+Hap Solo +MM2 -HC), HapSolo with random starting values and 50,000 iterations of
hill climbing using BLAT (+HapSolo +HC) or minimap2 (+HapSolo +MM2 +HC). For
thorny skate (c), three analyses were performed: an unreduced assembly (-HapSolo -HC) and
Hapsolo analyses based on minimaps 2 pairwise alignment with and without hillclimbing.

parsimonious joins between duplicate haplotigs and adjacent single copy regions. Here we
illustrate the advantage of running HapSolo on primary assemblies prior to Hi-C scaffold-
ing. For these analyses, the unreduced assembly and both reduced assemblies (i.e., -HC
and +HC) were scaffolded using the 3D-DNA pipeline [164], resulting in more continuous
assemblies overall. We compared the improvements of the two scaffolded HapSolo assemblies
against the unreduced scaffolded assembly (Table 3). Gains in improvements to the largest
scaffold were clear across all assemblies relative to the unreduced assembly. For example, the
largest scaffold increased by 1.71x (-HC) and 1.91x (+HC) for Chardonnay and by 1.22x
(-HC) and 2.18x (+HC) for mosquito (Table 3).

Figure 4 illustrates the distribution of scaffolds for each of the three species under various
HapSolo implementations. For each scaffold we measured the proportion of the genome that
was contained in the k largest scaffolds, where k is the haploid number of chromosomes for
each species. For example, Chardonnay has 19 chromosomes, and the 19 largest scaffolds
based on the unreduced assembly represented 52% of the genome size. Following HapSolo
haplotig reduction, the largest 19 scaffolds encompassed up to 93% of the total expected

genome size of 490 Mb. Similar improvements were identified for the two other species,
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with mosquito improving from 61.9 to 85.7% and thorny skate from 31.5 to 106.3%. The
observation that 106.3% of the thorny skate is contained in the largest k scaffolds indicates
that the expected genome size is incorrect or that there is a need for additional purging of

haplotigs.

HapSolo scaffolded assemblies were always demonstrably superior to the unreduced scaf-
folded assemblies for all three species, but the additional value of hill climbing varied among
datasets. The value of hill climbing was clear for the mosquito, where the first 3 scaffolds
(representing k=3 chromosomes) represented ~68% of genome with scaffolded -HC assembly
versus 86% for the +HC reduced assembly. In contrast, hill climbing produced a disadvan-
tage for Chardonnay (k=19, 92.6% -HC vs. 88.0% +HC) and only a small improvement
for thorny skate (k=49, 104.7% -HC vs. 106.3% +HC). This being said, our metric based
on the proportion of the genome in the k largest scaffolds is imperfect. For example, some-
thing as simple as a single split chromosome representing two metacentric arms could have
a large effect on the metric. We therefore also examined other metrics, like the percentage
of the genome encompassed in >10 Mb scaffolds and the longest scaffold. The largest differ-
ences were again due to application of HapSolo, with sometimes relatively minor differences

associated with hill climbing (Table 3).

Finally, we focused on results based on comparing the two pre-processing alignment algo-
rithms, BLAT and minimap2. We applied both algorithms to Chardonnay and mosquito. For
mosquito, the results were similar with either aligner, but the BLAT results were markedly
superior for Chardonnay (Figs. 3, 4). We do not know the cause of the discrepancy with
Chardonnay, but we note that it is a genome that contains extensive structural variation
between haplotypes, such that ~15% of genes are estimated to be in a hemizygous state
[175]. We suspect that minimap2 often failed to extend alignments beyond large insertion
and deletion events, even though we applied it with low gap and extension penalties sub-

stantially (see “Methods” section). Minimap2 is, however, highly preferable for run times,
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and it can be applied easily to gigabase-scale genomes like thorny skate.
Comparing HapSolo to an alternative method

Other algorithms have been devised to identify and remove alternative haplotigs [121, 63,
132]. In the publication of purge_dups, Guan et al. [63] compared its performance to Purge-
Haplotigs and found it to be generally superior. We compared HapSolo to purge_dups,
focusing on scaffolding results after Hi-C analysis. Figure 4 indicates that HapSolo generally
led to better scaffolded assemblies than purge_dups, but with some caveats. For example, the
HapSolo-based Chardonnay assembly was superior to the purge_dups assembly when BLAT
was used to perform pre-processing. In this case, the percentage of the genome with >10
Mb scaffolds was 97.7% for HapSolo versus 67.4% purge_dups, with a 32% improvement in
largest scaffold (Table 4). However, purge_dups performed similarly to HapSolo for Chardon-
nay when pairwise alignments were based on minimap2 (Fig. 4). For mosquito, purge_dups
performed more poorly than HapSolo with either pre-processing aligner, as long as hill climb-
ing was included in HapSolo analysis. Finally, for the larger thorny skate genome, HapSolo
with hill climbing outperformed purge_ dups (Fig. 4), resulting in a higher proportion of
genomes in k scaffolds, more large (>10 Mb) scaffolds, and a 26% larger ‘largest scaffold’
(Table 4). Overall, HapSolo performed as well or better than purge_dups, based on the three

exemplar datasets.
Applying HapSolo to a genome with low heterozygosity

HapSolo was designed to address a specific problem: the assembly of highly heterozygous
genomes with divergent haplotigs. We chose our three exemplars to represent the problem.
But how does HapSolo perform on less heterozygous genomes? We applied HapSolo to the
mouse, Peromyscus leucopus, a mammalian genome from a single diploid individual with
low (0.33%) heterozygosity [98]. In samples with low heterozygosity, alternative haplotigs

are less likely to exist, and hence we expect fewer benefits with the application of HapSolo.
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Species Chardonnay Mosquito Thorny Skate'

Assembly  No HapSolo HapSolo No HapSolo HapSolo No HapSolo HapSolo
Type HapSolo*-HCP +HC®  Hap- -HC +HC Hap- -HC +HC
Solo Solo

# of Scaf- 1,332 2,748 2,403 1,211 603 611 14,238 12,269 10,009
folds

% of 52.0% 89.0% 84.0% 61.9% 68.3% 85.7% 31.5% 104.7% 106.3%
Genome

in k

largest

scaffolds®®

% of 44.0% 94.0% 94.0% 93.5% 94.7% 94.1%  40.4% 103.3% 105.5%
Genome

in  Scaf-

folds

>10Mb®

Scaffold 656.1 570.4 540.1 212.5 200.8 200.3 3,240 3,158 3,039
Assembly
Size (Mb)

Scaffold 7.2 235 207 379 415 416 621 655  69.8
N50
(MB)

Scaffold 28 11 11 3 3 2 16 35 13
L50

Table 2.3: Scaffolded assembly statistics after Hi-C analysis on HapSolo assemblies, for three
primary assemblies for each of three species

# Results in this column were based on the primary assembly without application of HapSolo
b Results in this column were based on application of HapSolo without hill climbing (-HC)
and default parameters of ID, Q and QR

¢ Results in this column were based on application of HapSolo with 50,000 cycles of hill
climbing (+HC)

4 Percentage of genome in the largest k scaffolds, where k is equal to the number of chromo-
somes expected for each species

¢ Percentages normalized using expected genome sizes of 490 Mb, 200 Mb and 2560 Mb for
chardonnay, mosquito and thorny skate respectively

f Results for HapSolo were generated using minimap?2
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HapSolo Scaffold Cumulative Length Graph
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Figure 2.4: The cumulative assembly size (cdf ) based on scaffolds for a different species
in each row. The three rows represent analyses based on Chardonnay (a), mosquito (b)
and thorny skate (¢) data. There are two graphs for each species; the one on the left
focuses on the chromosome length scaffold portion of the assembly (number of scaffolds),
while the one on the right is the complete assembly on a logyp (number of scaffolds) scale.
Each graph for Chardonnay and mosquito have five lines and follow the key provided in the
right-hand graph in panel B for mosquito. The analyses are scaffolded genome based on
purge_dups (purge_dups + HiC), the unreduced assembly (-HapSolo -HC +HiC), scaffold
based on the HapSolo reduced assembly with BLAT preprocessing and without hill climbing
(+HapSolo -HC +HiC), and the scaffold based on the HapSolo reduced assembly with BLAT
preprocessing and with hill climbing (+HapSolo +HC +HiC) and, finally, HapSolo reduced
assembly with hill climbing using minimap2 (+HapSolo +MM2 +HC +HiC). In all graphs,
the dotted line indicates the number of chromosomes for the species. ¢ Reports results for
thorny skate, which did not include BLAT processing. The HapSolo analyses are based on
minimap2 alignments and presented with (+HC) and without (-HC) hillclimbing.
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Species® Chardonnay Mosquito Thorny Skate

Assembly HapSolo  purge_dups HapSolo  purge_dups HapSolo  purge_dups
Type +HCP +HC +HC*
# of Scaffolds 2,403 294 611 635 10,009 1,534

% of Genome 88.0% 58.5% 85.7% 83.7% 106.3% 86.8%
in &k largest

scaffolds®

% of Genome 97.7% 67.4% 94.1% 92.7% 105.6% 86.0%
in Scaffolds

>10Mb?

Scaffold As- 540.1 470.4 200.4 200.3 3,039.3 2,251.4
sembly  Size

(Mb)

Largest Scaf- 36.5 24.9 95.0 74.1 250.5 184.1
fold (MB)

Scaffold Nb’0 20.7 12.7 41.6 51.2 69.8 61.7

(MB)

Scaffold L50 11 15 2 2 13 11

Table 2.4: Comparison of scaffolded assemblies after Hi-C analysis, based on HapSolo and
purge_dups primary assemblies

@ Data for HapSolo are based on BLAT alignments for Chardonnay and mosquito, and min-
imap2 alignments for thorny skate

b Results in the +HC columns are based on application of HapSolo with 50,000 cycles of hill
climbing (+HC)

¢ Percentage of genome in the largest k scaffolds, where k is equal to the number of chromo-
somes expected for each species. Percentages are normalized using expected genome sizes of
490 Mb, 200 Mb and 2560 Mb for Chardonnay, mosquito and thorny skate respectively

4 Percentages normalized using expected genome sizes of 490 Mb, 200 Mb and 2560 Mb for
chardonnay, mosquito and thorny skate respectively

¢ Results for HapSolo were generated using minimap2
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Indeed, we found no benefit. Comparing results between the reference assembly and the
HapSolo assembly (with minimap 2 and hill climbing), we found similar proportions of
the genome encompassed in 10 Mb scaffolds (96.8% vs. 95.7%) and a substantially smaller
proportion of the genome encompassed in k=24 chromosomes (88.5% vs. 71.1%) (Additional
file 1: Table S1). The HapSolo assembly was, however, largely contiguous with the reference
assembly (Additional file 1: Figure S2). Interestingly, purge_dups did not find any alternative
contigs on this assembly and ultimately failed with an error, so we are unable to compare

its performance.

In addition to the low heterozygosity, the P. leucopus genome has a low percentage of
duplicated BUSCOs relative to the complete set of BUSCOs, at 2.1% (Additional file 1:
Table S1). In contrast, Chardonnay, mosquito and thorny skate have 26.0%, 5.5% and
21.0%, respectively (Table 2). Perhaps unsurprisingly, given this statistic, mosquito exhibits
the least dramatic improvements in assembly statistics after application of HapSolo (Table 3).
These observations suggest that there are lower limits at which HapSolo becomes ineffective
and perhaps even detrimental. Based on the data we have analyzed, we suggest that ~5%
may be a lower limit for the proportion of duplicated BUSCOs. Heterozygosity is likely to
define another lower limit. Given that heterozygosity is 0.33% for P. leucopus, we expect
that HapSolo will not be useful for the assembly of human genomes, because species-wide
human heterozygosity is 0.05% [30]. Our results nonetheless suggest that HapSolo is likely

to be a helpful tool for assemblies with a high number of duplicate BUSCOs.
Execution time and memory efficiency

To measure runtime, HapSolo was run on dual CPU Intel E5-2696 V2 nodes containing 512
GB of RAM and storage attached via a 40Gbe Infiniband connection. CPU runtime depends
on the number of iterations, but it is also dependent on the data and parameter values. We
measured runtime across the datasets, measuring different configurations in terms of the

number of cores and the number of iterations per core (Additional file 1: Table S2). Under
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the conditions we used for empirical data (i.e., hill climbing on 10 cores with 5000 iterations
per core), the total time was>10 min for both Chardonnay and mosquito but substantially
longer at 13 h and 45 min for the much larger thorny skate. Note that memory usage was
dependent on the size of the alignment file and independent of the number of iterations,
because HapSolo stores alignments in memory for rapid filtering at each step during hill
climbing. Nonetheless, the memory and speed requirements are such that HapSolo can be

run on a laptop or desktop computer.

2.5 Discussion

We have presented an implementation, HapSolo, that is focused on improving primary as-
semblies by removing alternative haplotigs. In theory, the HapSolo package can be applied
to any set of contigs from any assembly algorithm. The approach implemented in HapSolo
is intended to replace laborious manual curation [37], and it follows some of the logic of ex-
isting programs, like Redundans [121], PurgeHaplotigs [132] and purge_dups [63]. However,
HapSolo differs from competing programs by at least three features. First, it utilizes multiple
alignment metrics, so that it is not reliant only on percent identity (/D). The goal of these
multiple metrics is to better discriminate among some situations that may yield high iden-
tity scores but nevertheless lead to the retention of different contigs in the primary assembly
(Fig. 1). Second, when the hill climbing option is utilized, HapSolo relies on a maximiza-
tion scheme based on BUSCO values. The underlying assumption is that maximizing the
number of single-copy BUSCOs establishes more complete and less repetitive genomes. We
emphasize that this is an assumption common to the genomics community, because most
new genomes are reported with BUSCO scores to reflect their completeness and quality.
Third, an important feature of HapSolo is the ability to modify the Cost function, so that

the user may choose to weigh duplicated BUSCO genes less heavily or perhaps even ignore
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them altogether. This flexibility may prove useful for some applications. For example, it
may be useful to ignore costs related to duplicated BUSCO genes when assembling polyploid

genomes and instead focus only on complete and fragmented genes.

We have illustrated some of the performance features of HapSolo by applying it to data from
three species that differ in genome size and complexity: Chardonnay grape, a mosquito, and
the thorny skate. The common feature of these species is that diploid assembly is neces-
sary. For all three species, we compared the unreduced primary assembly to two HapSolo
assemblies, one that used default values (-HC) and one that used hill climbing minimization
(+HC). Both HapSolo assemblies reduced genome size and markedly improved standard
statistics like N50 (Table 1 and Fig. 3). The +HC contig assembly was generally better
than the -HC assembly, but not always; the most substantial differences occurred between

the unreduced assembly and either of the two HapSolo assemblies.

Our reduced assemblies scaffolded faster than unreduced assemblies and also led to more
contiguous genomes. For each of our three species, the cumulative genome length associated
with first k scaffolds (where k is the chromosome number) was much larger based on reduced
vs. unreduced assemblies. The percentage of the genome contained in chromosome length
scaffolds increased by at least 25% (Table 3). We conclude that in highly heterozygous
samples that potentially have a large number of alternative haplotigs, some reduction step
is critical for curating a primary assembly and for downstream scaffolding. This is true even
when the primary assemblies are from FALCON_Unzip [42] which has already (in theory
but perhaps not always in practice) identified secondary haplotigs. We further advocate for
the use of the hill climbing feature in HapSolo, because the computational cost is relatively
small but the gains can be large (Fig. 3). Finally, we find that BLAT tends to outperform
minimap2 as the pre-processing aligner and advocate for its use. However, it can be time

prohibitive on large genomes, and hence HapSolo includes support for minimap?2.
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2.6 Conclusions

Based on the data in this paper, HapSolo generally led to similar or better outcomes than
purge_dups [63], another recently published method to identify and remove haplotigs. That
is not to say, however, that HapSolo cannot be improved. We can see three obvious areas
for future growth. The first is to consider coverage statistics, which represents a point of
departure between our approach and that of both Purge Haplotigs and purge_ dups. We
predict, but do not yet know, that the inclusion of coverage with our existing alignment
statistics could lead to more accurate inferences. A second area of improvement may be to
implement alternative maximization algorithms, such as simulated annealing. Finally, it may
also be possible to include additional features in the calculations of Cost. Our present reliance
on BUSCOs has the advantages of speed and wide acceptance in the genomics community.
However, depending on the initial assembly, it is likely that some contigs do not contain a
BUSCO gene, are therefore not considered in Cost and do not form the approximation of
threshold parameters (I Dy, Qr and QRr). It is not yet clear what additional features could
be included in the Cost function, but identifying contigs containing an over-representation

of shared k-mers is one possibility.
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Chapter 3

A new avocado reference genome
provides insight into genome
evolution and the genetic basis of

important traits

3.1 Abstract

Long-read sequencing technologies have allowed researchers to characterize genomes with in-
creasing accuracy, leading to a greater understanding of the genetic basis of phenotypes and
adaptation. However, many economically important crops lack suitable genomic tools and
annotations. This has been the case for the avocado (Persea americana), a perennial crop
with high nutritive content. To help address the need for genomic approaches in avocado, we
created a reference genome from the Gwen varietal, which is closely related to the agronom-

ically dominant Hass varietal and is a current focus of breeding programs. We produced a
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1,032Mb genome assembly with an N50 of 3.37Mb and a BUSCO score of 91%; we also scaf-
folded the assembly using a genetic map. In addition to producing a scaffolded reference, we
resequenced 21 avocados that represented both the three botanical races of P. americana and
also three additional closely related outgroup species. Using these data, along with previ-
ously published datasets, we: i) characterized the repeat content of the Gwen genome, which
constitutes 61% of the genome ii) built a genome annotation with 60,151 genes, which is 2x
more than a previous annotation of the fragmented Hass genome assembly, iii) investigated
population structure among our sample of 31 avocados, and iv) performed pairwise com-
parisons of different groups of avocados to identify genomic regions of high differentiation.
The pairwise comparisons included two kinds of contrasts. The first was between botanical
races; we reasoned that genomic regions of high differentiation may contain genes that affect
the phenotypic traits that differ between races. Using this approach, we identified numer-
ous candidate genes of potential agronomic importance with gene ontology functions that
included stress responses, disease resistance, and water osmoregulation. The second contrast
was between accessions with differing flowering types that define synchronous dichogamy in
avocado. Our analyses of flowering types identified candidate genes hypothesized to affect

flower development and circadian rhythms.

3.2 Introduction

Avocado (Persea americana Mill.) is a perennial, subtropical crop that is in ever-increasing
demand. In the United States, for example, per capita avocado consumption has tripled
over the last two decades. Demand in the U.S. is met partly by domestic production but
principally by imports from Mexico and elsewhere. Mexico is currently the largest producer
of avocado, where the crop is worth an estimated $2.5 billion per year (Rendén-Anaya et al.

2019), but other major producers include the Dominican Republic, Peru, Chile, Indonesia,
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Israel and Kenya (http://www.fao.org/faostat/en/#data/QC/visualize). Although the
popularity of avocados is primarily a 20th century phenomenon [138], it has quickly grown

to be a global commodity.

Remarkably, avocado cultivation is dominated by a single variety (Hass) that represents
90% of cultivation world-wide [127]. All Hass trees are derived clonally from a tree patented
in 1935. Despite the shockingly narrow genetic base of agricultural production, avocado
sensu lato is quite genetically diverse. Some of this diversity stems from the fact that there
are three domesticated botanical races: P. americana var. americana Mill (which we will
call the ‘Lowland’ race in recognition that the previously accepted name of West Indian is
inaccurate), var. drymifolia Blake (the Mexican race), and var. guatemalensis Williams
(the Guatemalan race) [18]. The strikingly different fruit morphologies among the races
suggest that they may have been domesticated separately, a conjecture supported by genetic
data [56, 11, 127]. One practical consequence is that each race likely contains separate
alleles and/or genes of interest for crop improvement, due to their different domestication
histories. Another consequence is that hybridization between races can produce unique allelic
combinations, potentially leading to agronomically useful hybrid offspring. Hass is, in fact,
one example; although its precise breeding history is not known, genetic evidence shows that

it is a hybrid between Guatemalan and Mexican races [138, 40, 127].

The high demand for, and economic importance of, avocados motivates breeding efforts, but
breeding remains challenging for at least three reasons. First, avocado is a large tree that
matures slowly (5 to 8 years before production; [85], requiring substantial space, water, and
financial resources [10]. A second major obstacle is the reproductive system. A single tree
typically produces more than one million flowers, of which only 0.1% or fewer yield mature
fruit [47, 48, 17], making controlled pollinations virtually impossible [38]. Finally, avocado is
predominantly out-crossing, due to synchronous dichogamy. There are two flowering types

in this system: A and B. Type A trees are female (receptive to pollen) in the morning and
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shed pollen as males in the afternoon of the following day. In contrast, type B trees are male
in the morning of the first day and female in the afternoon of the next day. The system
is complicated by the fact that there is some leakiness of flower type that depends on the
environmental cues [47]. As a result of these complications, avocado breeding has historically
relied on open-pollinated and inter-racial hybridization to the extent that most individual

varieties lack accurate breeding records [48, 11, 139].

These complications argue that genomics and molecular breeding are central for the con-
tinued improvement of avocado. For example, molecular markers for flowering types may
be particularly useful, because type B avocados are crucial for pollination but typically less
productive than type A varieties [47]. Recently, Rendon-Ayana et al. (2019) made an im-
portant contribution toward molecular breeding by producing draft genomes of Hass and a
wild Mexican accession (P. americana ssp. drymifolia). They anchored the Hass assem-
bly to a genetic map and ultimately produced a reference genome with 512 scaffolds and a
genome size of 419 Mb. Using this reference, Rendon-Ayana et al. (2019) also explored the
hybrid history of Hass and a few aspects of the evolutionary genomics of avocado. Nonethe-
less, several important features of the evolutionary genomics of avocado remain unexplored,
including characterizing diploid chromosomes in this highly heterozygous ancestor, using
sweep mapping to identify potential regions of agronomic interest, and focusing on genomic

diversity in the context of interesting traits, like A vs. B flowering types.

Here we produce and assemble the genome of the Gwen variety and use that genome as
a reference for evolutionary analyses. Gwen is a grandchild of Hass with similar flavor
characteristics [163] but with higher yields and better fruit storage on the tree [20, 19].
Accordingly, Gwen has been the subject of intensive breeding efforts for three decades. Our
Gwen genome vastly improves contiguity relative to the Hass genome, providing a better
platform to explore the evolutionary genomics of avocado. More specifically, we intend to

use the data outlined in this chapter to focus on four sets of questions. First, what does the
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Gwen genome tell us about patterns of heterozygosity within an avocado accession? Genomic
analysis of highly heterozygous grape ( Vitis vinifera), another perennial clonally propagated
crop, revealed that as many as one in seven genes are hemizygous, perhaps due to structural
mutations that have accrued during clonal propagation [175]. Is avocado similar? Second, we
use the Gwen genome as a reference to explore genetic diversity within avocado, specifically
to recapitulate the three races and to assess the hybrid origin of well-known cultivars. This
last question builds on several previous investigations of genetic diversity [11, 40, 39] but
extends the work to a genomic scale. Third, we investigate features of avocado domestication.
Do the three races demonstrate a cost of domestication - i.e., an accumulation of deleterious
alleles - relative to wild accessions, as is common for domesticates [57, 110]7 And do the
three racial groups share regions of selective sweeps consistent with parallel selection on genic
regions associated with specific traits? Finally, we investigate genetic diversity between the
A and B flowering types, with the goal of identifying genomic regions that may contribute

to synchronous dichogamy.

3.3 Methods

Sample Preparation and Sequencing protocols

The avocado variety chosen for sequencing was Gwen, a grandchild of Hass which has been
central to the University of California Riverside breeding program. High molecular weight
genomic DNA (gDNA) was isolated from young leaf materials using the method of [42]. To
avoid the co-precipitation of polysaccharides and phenolics with DNA, they were reduced in a
pre-washing step with sorbitol. The purity, quantity and integrity of DNA were assessed with
a Nanodrop 2000 spectrophotometer (Thermo Scientific, IL, USA), a Qubit 2.0 Fluorometer
together with the DNA High Sensitivity kit (Life Technologies, CA, USA), and by pulsed-field

gel electrophoresis. SMRTbell libraries were prepared as described in [101] and sequenced
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on a PacBio RS II (Pacific Biosciences, CA, USA) using P6-C4 chemistry (DNA Technology

Core Facility, University of California, Davis).
Genome Assembly, Polishing and Scaffolding

We assembled Gwen Pacific Biosciences (PacBio) SMRT reads with Canu version 2.1, using
default settings and including all reads. Once assembled, polishing was performed with
PacBio GenomicConsensus v2.33. Two passes of GenomicConsensus were run, followed by
two additional passes with Pilon v1.23 [159], using default parameters and 19x coverage of
short read Illumina sequencing data. HapSolo v0.1 was then run on the assembly using
default parameters and 50,000 iterations [144], producing the “C+H assembly”. The genetic
map based on a Gwen x Fuerte (G x F) cross [10] was used for orienting assembly contigs
into 12 scaffolds. To assemble scaffolds, the G x F map markers were aligned to the Gwen
C-+H assembly using NCBI BLAST v2.2.31+ [7]. A custom python script was then used to
order the alignments based on linkage group ID and c¢M distance, using only the alignments
with the highest percent identity and e-value score to identify contig order. This approach
may not lead to proper orientation of contigs, such that contigs with unclear orientation were
marked with an asterisk in the scaffolding annotation file. When the orientation of a contig
could not be determined, it was placed in the ‘4’ (or positive) direction. All contigs were
bridged using 20,000 N’s as spacers, so that the spacing would not interfere with analyses
that used 20kb windows. MUMmer 3.32 [84] was used to check overlap between contigs, but

none could be found.
Gene and Transposable Element Annotation

Repeat annotation was based on RepeatModeler v2.0.1 in conjunction with RepeatMasker
v4.1.1. The build can be found as a singularity image at http://github.com/esolares/
singularityimages. RepeatModeler was run prior to RepeatMasker to generate a repeat

database for avocados, since a closely related species was not readily available. This repeat
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database was built using the option BuildDatabase on the Gwen H+C assembly. Repeat-
Modeler was then run using the database built by the previous execution with the option
LTRStruct and run in multi-core mode using the option -pa. The subsequent output files

were then used in the RepeatMasker step using the following options

-pa ${CORES} -s -lib ${GWENBUILTDATABASE} -a -poly -ace -excln -html
_gff -dir ${OUTDIR} ${ GWENGENOME}

where the lib option coincides with the repeat library built during the RepeatModeler step,
the variables CORES, OUTDIR and GWENGENOME contain the total number of cores
requested, the output directory in absolute form, and the Gwen assembly as a fasta file.
The Gwen genome was then soft masked using Bedtools v2.29.2 using the maskfasta run
option. The resultant soft masked fasta file was used for all subsequent analysis, including
gene annotation. We recreated the TE annotation gtf file using the fasta.out file in the
RepeatMask output folder, because the original gtf file did not contain the repeat class/family

column.

For gene annotation, we mapped the paired end RNASeq reads from previous studies
[166, 72, 13] using HiSat2 version 2.2.1 on the repeat masked genome. The resultant BAM
files were merged and indexed using Samtools v1.10 [95, 14], which was used to gener-
ate hints for the BRAKER v2.1.6 [69] + Augustus [148, 149, 147] v3.4.0 pipeline. The
BRAKER pipeline was used in default mode for RNASeq data, with an additional option for
softmasked reference assemblies (—softmasking), with avocado as the species option. This op-
tion allowed the BRAKER and Augustus to generate the annotation using only the RNASeq
mapped data. The BRAKER Augustus image was built using the developers docker script
as a reference; dependencies were then built into the image manually. The docker images
were created using docker v20.10.0 and imported into singularity v3.7.1 and are available at

http://github.com/esolares/singularityimages.
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Functional annotations and Gene Ontology analyses were performed with Blast2GO v6.01
[43].  Genes were extracted from the Gwen assembly, based on the gene annotation gff
file, excluding (as possible pseudogenes) any genes that have exons overlapping TE’s. The
remaining gene sets were then mapped to the NCBI_NR, SwissProt and uniref90 databases
using NCBI’s blastx, blastx-fast option. A Protein family search was also performed using
an InterPro scan. These results were then merged into a single annotation for GO mapping,
with results based on default options. Functional annotation was also performed using the
EggNOG online web submission page (http://eggnogh.embl.de/#/app/home). Genes were

submitted as nucleotide fasta files using experimental evidence for functional annotation.

Diversity Samples and Sequencing We collected leaf tissue for a total of 20 P. americana
accessions and three outgroups (Table S1). For each sample, genomic DNA was extracted
from leaf samples with the Qiagen DNeasy plant kit. Paired-end sequencing libraries were
constructed with an insert size of 300 bp according to the Nextera Flex (Illumina, Inc) library
preparation protocol. Libraries were sequenced using the Illumina NovaSeq platform with
cycles to a target coverage of 25X. Raw sequencing data have been deposited in the Short
Read Archive at NCBI under BioProject ID: PRJNAT758103. We also used Illumina raw
reads for 13 accessions that were published previously [127] and downloaded from the Short

Read Archive at NCBI.
SNP Calling and Fst Analyses

Short reads were mapped to both the H4+C assembly using BWA version 0.7.17 [93] and
realigned and recalibrated using GATK v3.7 [102]. Alignment filtering was done using
BCFTools v1.10.2 [46] using parameters -s LowQual -e ‘%0QUAL<20 || DP>32". SNPs
were calculated using the GATK Haplotype pipeline using version 3.7. PCA results were
generated using VCFTools v0.1.17 git commit 954607 [45], and PLINK v1.9 [123]. Avocado
samples missing over 50% of data were filtered out, and outgroups missing over 75% of data

filtered out, resulting in the removal of three samples from the dataset of Rendén-Anaya et
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al. 2019. The PCA was performed on two datasets: with and without the outgroup sample.
The admixture plots and analyses were performed with ANGSD version 0.930 (build Jan 6,
2020 13:30:06). VCFTools was used for the conversion of PLINK results to the BEAGLE
format. The online version of CLUMPACK (http://clumpak.tau.ac.il/bestK.html) was
used for identifying the best number of groups (K) for admixture plots across K=1 to 10,

each with 10 replicates.

For calculating Fst between groups, we focused on 20kb non-overlapping windows and used
PLINK to calculate Fst values. Groups were created using accessions that contained ;80%
assignment to the Guatemalan, Lowland or Mexican races. For pairwise comparisons between
groups, negative Fst values were set to 0.0. We identified Fst windows as peaks when they
were within the top 1% tail of the Fst distribution. These windows were then intersected
with our gene annotation using Bedtools2 intersect run command with the option -wa, which
allows for the preservation of the original gene coordinates. GO pathways for the genes were
then generated using Blast2GO, and putative gene functions were retrieved from EggNog

results.

3.4 Results

Gwen Genome Assembly and Characterization

Gwen Genome Assembly compared to Hass and P. americana var. drymifolia: We isolated
high weight DNA from Gwen avocado leaves and sequenced using the long-read Pacific Bio-
sciences (PacBio) platform (see Methods). We generated a total of 81.2G bases, equivalent
to roughly 90x coverage, based on the expected 1C genome size of 896Mb [9]. We assembled
the PacBio reads using Canu (v 2.1), producing a genome of 1,456Mb with 5,122 contigs.

This represents an assembly, however, that includes both of the alternative haplotypes in
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diploid Gwen. We therefore applied HapSolo [144], a tool designed for identifying primary
haplotypes within a diploid assembly, which removes putative secondary contigs (or hap-
lotigs). The Canu+HapSolo (C+H) genome resulted in a primary assembly of 1,032M bases,
a longest contig of 17Mb, a BUSCO score of 91% and an N50 of 3.37M bases, which was a
2.4-fold improvement over the unreduced Canu assembly (Table 1). Another useful measure
of an assembly is the percentage of the assembly that is encompassed in the largest x contigs,
where x represents the number of chromosomes (which is 12 for 1C P. americana). For the
C+H assembly, this percentage was 17% - i.e.,the 12 largest contigs represented 17% of the

genome.

To improve contiguity, we anchored and scaffolded the C4+H assembly using a published
genetic map, based on a cross between Gwen and Fuerte [10]. Scaffolding vastly increased
contiguity and ultimately resulted in 12 scaffolds that were assigned to 12 linkage groups.
Scaffold N50 improved 18-fold (to 61.9Mb) over the 3.37Mb contig N50, and the 12 largest
scaffolds represented 78% of the expected genome size. (Table 1). Scaffolding may have
incurred a cost, however, because the total size of the scaffolded assembly was 703Mb,
which is 22% smaller than the expected haploid size of 896Mb. Although each chromosome
could be identified, we interpret this reduction in size to imply that scaffolding missed the
incorporation of contigs, perhaps for reasons related to the density of the genetic map. In
this context, it is worth noting that the Hass primary assembly decreased substantially in
size when it was anchored to a genetic map [127] - e.g., only 47% of the Hass assembly could
be anchored, resulting in a scaffolded genome of 421.7Mb. Hence our scaffolded genome is

nearly double the size of the previous avocado reference.

We compared our new Gwen genome to the existing Hass and drymifolia assemblies using
standard descriptive genome statistics. The Gwen assembly was superior in most respects,
including N50, longest contigs (or scaffolds), BUSCO scores, and the proportion of the

genome captured in the 12 largest fragments (Table 1). We plotted the cumulative density
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function of contigs and scaffolds for the three genomes (Figure 1A), providing a virtual
comparison among the genomes and illustrating that far more of the Gwen assembly is
captured in the largest 12 scaffolds (or contigs) - i.e., 78% for Gwen vs. 4.2% and 2.7% for

the Hass and drymifolia assemblies produced previously [127].

Genome Annotation: We annotated the C+H and scaffolded assemblies by first focusing on
TEs. After applying RepeatModeler and RepeatMasker (see Methods), we found 61% of
the Gwen genome consisted of repetitive elements. Of the 68%, 52% were Long Terminal
Repeat (LTR) retroelements, with more than half being Gypsy elements and 40% being
unknown repeats (Figure 1B). We then annotated genes by mapping paired-end short-read
RNAseq data from previous studies [166, 72, 13] to the C+H and scaffolded assemblies
and applied BRAKER2 [69, 27, 147, 149, 148], which automates training of the prediction
tools GeneMark-EX [28] and AUGUSTUS and integrates RNASeq information into the gene

predictions.

As expected, the gene annotation results differed between the two assemblies, with 57,916
genes on the scaffolded assembly and 87,617 in the C+H assembly. These numbers decrease
to 41,237 and 60,151, respectively, when predicted genes were filtered to remove all genes
with predicted exons that overlap with annotated TEs. We compared these numbers to
the annotation of the Hass genome [127], which reported two values: an initial value of
33,378 genes based on both evidence-based and de-novo prediction and a second value of
24,616 genes based on extensive filtering. Unfortunately, the filtered gene set is not publicly
available, so we took the annotation of 33,378 and filtered them to remove duplicates, which

yielded 25,211 Hass genes base on our analyses.

Our numbers of annotated genes are nonetheless 1.67 and 2.55-fold more than the 25,211
Hass genes, for the scaffolded and H+C assemblies. The reasons for these discrepancies
are not entirely clear, but we can think of four. First, our genome is more contiguous

and complete, although it seems unlikely that this alone would lead to 2-fold more gene
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models. Second, we have employed different RNAseq data than the previous study [127],
because their RNAseq data is not publicly available. Our three data sources included a
recent dataset that was likely unavailable for the Hass reference analysis [13]. The third
is differences in the annotation pipeline, which could lead to different results. Finally, we
expect that the Hass gene predictions are too conservative based on our own analyses and a
recent transcriptome analysis that infers 63,420 unigenes [32], a number much closer to our
gene annotation results. Note, however, that despite the different number of predicted genes
between the Hass and Gwen analyses, there is complete overlap, because 100% of the 25,211

Hass genes were present in our Gwen annotation.
Analysis of P. americana Genetic Structure:

Classification of races and hybrid varieties: Given the Gwen reference genome, we performed
a preliminary study of genetic variation and evolutionary genomics across avocado. To do
so, we amassed a resequencing dataset of 34 accessions with at least 14x coverage (Table 2;
Table S_Accessions). Eleven of these accessions came from previous publications [127]; the
remaining 24 accessions, including three outgroup species (P. hintonii, P. donnell-smithi and
Ocatea boranthea), are original to this study. Overall, the sample of 34 accessions were chosen
to: i) represent the three botanical races of avocado, ii) sample both flowering types and
iii) include historically important cultivars to complement previous studies about potential

hybrid origins [39].

Given resequencing data, we mapped reads to the C+H reference and identified 36,250,941
SNPs within avocados and 54,465,536 SNPs when the outgroups were included. SNPs were
then subjected to two types of clustering analysis — PCA and Admixture analysis — to define
groups of accessions based on whole genome data. We first applied the PCA to the P.
americana data without outgroups. The results verified many of the expected groupings
among accessions but with a few surprises (Figure 1A). The expected groupings included

clusters that represent previously identified Mexican, Guatemalan and Lowland races. There
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were, however, several accessions that were located between groups on the PCA - e.g., Velvick
- that hint at their expected hybrid origins (Table 2). A mild surprise came from the location
of Hass and Gwen on the PCA. Hass clustered more closely to Guatemalan accessions than
was expected of an accession that has been previously defined as ;50% Mexican by Rendon-
Anaya et al [127] and 58% Guatemalan by Chen et al. [39]. Consistent with the placement
of Hass, its grandchild Gwen also clustered near Guatemalan accessions, which is again
consistent with previous inferences that it is primarily from race guatemalensis. Important
varieties like Bacon and Zutano have been inconsistently inferred or assigned as hybrids [39]

but appear to have had a hybrid origin based on our whole genome analyses (Figure 1A).

For completeness, we also applied PCA to a dataset that included four outgroup taxa (Ta-
ble 2; Figure S1). These analyses demonstrated that the genetic placement of three of the
outgroups (P. donnell-smithi, P. hintonii, Ocotea boranthea) was consistent with their ex-
pected outgroup status. However, the fourth potential outgroup (P. schiedeana) clustered
well within the avocado ingroup, even though it has been used as an outgroup in evolutionary
analyses [127]. Our clustering of P. schiedeana within the ingroup is consistent with pre-
vious evidence suggesting that P. schiedeana may hybridize with avocado [11]. Altogether,
our PCA results suggest that P. schiedeana should not be used as an outgroup for future

evolutionary analyses.

In addition to PCA, we investigated relationships among accessions using admixture mapping
with K = 2 to 5 clusters. The most highly supported analysis contained four groups: the
three previously-recognized races (Lowland, Mexican, Guatemalan) and a series of cultivars
related to Gwen and Hass. This last group includes Mendez, a somatic mutation of Hass
[73, 138]. We suspect that this last group is recognized in part by sampling several closely
related varieties, which may have biased the analysis. Nonetheless, the admixture map
identifies other accessions with putative hybrid histories, including Velvick, Fuerte, Bacon,

Zutano and others. One especially interesting finding is that an accession (CH-CR-25), which
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has been thought to represent a new racial ecotype - var. costaricensis - [127] is likely to be

a hybrid between the Lowland and the Guatemalan groups.
Identifying regions of chromosomal differentiation between races

To investigate one potential feature of domestication among the three races, we assigned
individuals to a specific race when their assignment exceeded 80% per group (i.e., Q; > 0.8)
[31, 156]. This constructed samples of n=3, n=5 and n=10 for the Mexican, Lowland and
Guatemalan races, respectively. For these three sets of samples, which represent potentially
distinct domestication events, we investigated divergence between groups based on F'st, ap-
plied to 20kb windows across the contigs of the H+C reference. The purpose of this analysis
was to identify genomic regions that differ in allelic frequencies between samples, which has
the potential to reflect regions of the genome that were under different selective pressures
during separate domestication events. These regions may contain genes that contribute to

agronomic differences between races.

We began, for example, with a contrast between the Lowland (n=5) and Guatemalan (n=10)
races. We calculated Fst based on 20kb non-overlapping windows along each contig, ulti-
mately focusing on regions that include the top 1% of Fst scores (Figure S_manhattan). For
this pairwise comparison, we identified 514 peaks containing 756 genes. We expect that this
gene set is enriched for genes that differentiate the two races, including genes that contribute
to agronomic traits that vary between the two races. Consistent with this expectation, the
gene set contained gene with gene ontology (GO) functions that included putative agronomic
functions, such as stress response, root meristem activity due to different ion availability,
disease resistance, the control of volatile compound (VOCs) release in flowers, water stress
response and osmoregulation, and affects on flowering time and promotion. We have high-
lighted genes that we deem to be particularly interesting in Table 3. Three of the genes
in Fst peaks have homologs in Arabidopsis thaliana that affect flowering initiation and de-

velopment and could, presumably, affect differentiation of flowering patterns between races.
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Another gene is associated with fruit ripening.

We repeated this analysis for the Lowland (n=>5) vs. Mexico (n=3) and for the Mexico
(n=3) vs. Guatemalan (n=10) pairs. Focusing again on the top 1% of Fst peaks (Figure
S_manhattan), we find that these two comparisons resulted in 773 and 716 genes within
regions of high differentiation. These genes again included a variety of GO functions, some
of which may contribute to differences in agronomic traits between races. These functions
include herbivory resistance, flowering time regulation, resistance to fungal pathogens, pol-
linator VOC release, stress response pathways, biosynthesis of carotenoids, and flowering
promotion, along with others. Altogether, these genes constitute a preliminary list of genes
that may deserve additional study for potentially driving divergence — and alternative agro-

nomic traits — among domestication groups.
Investigating potential causative loci that discriminate A and B flowering types

Finally, several of our accessions had known flowering types, with samples of n=13 A types
and n=9 B types (Table 2). Importantly, within each flowering type, the samples traversed
at least three of the four groups identified by admixture mapping. For example, the A types
included samples from each of the three races (Mexican, Guatemalan and Lowland), the
Hass/Gwen group, and hybrids. Given the distribution of A and B types across groups,
we reasoned that contrasting these two samples are unlikely to be overly confounded by
historical groups but instead may provide insights into genomic regions that contribute to

this interesting phenotype.

To do so, we performed Fst analyses between the two groups, producing a Manhattan plot
with peaks of differentiation between types (Figure 3). Focusing again on the top 1% peaks,
we found 786 genes in these differentiated regions. Several genes had functions related
to reproduction, including pollen germination, anther development, ovule development and

pollen production. However, arguably the most interesting genes include those that affect
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the flowering time and circadian rhythms. Table 4 highlights four such genes, with homologs
of A. thaliana VOZ1 and SPA1 among the most interesting. The former (VOZ1) regulates
FLC, a transcription factor that functions as a repressor of floral transition and contributes
to temperature compensation of the circadian clock. Given that A- and B-type flowerings
respond to some extent to environmental cues, the potential implication of FLC regulation
in A vs. B differentiation seems reasonable. SPA1 contributes to the regulation of circadian

rhythms in flowering processes, which is again consistent with A- vs. B-type differences.

We further hypothesized that differences between A- and B-types could be detectable as
structural variants between types. We performed a preliminary test of this hypothesis by
investigating sequencing coverage separately for A and B samples across the P. americana
SPA1 homolog (Figure 4). We initially found there was a drop in PacBio coverage of
reads mapping to the 3’ of SPAI relative to the 5" end. After further investigation, we
found that the coverage of Illumina paired end reads mapped to the Gwen C+H genome
differed significantly by flowering type (Figure 4). Analysis of the physical reads showed an
intriguing pattern: breaks in coverage for avocado accessions between the last three exons
with flowering type B at the 3’ end (Figure 4), with no such pattern for A type accessions.
This result suggests that there are consistent differences between A- and B-type accessions
in this region and further suggests (but by no means proves) that SPA1 could have a role
in synchronous dichogamy. Further research will need to investigate the impact of this gene

in avocado flowering.

3.5 Discussion

We have completed the assembly and annotation of a complex, diploid plant genome, rep-
resenting the Gwen accession of P. americana. Our Gwen genome is more complete and

contiguous than previously published avocado genomes [127], with better BUSCO, N50 and
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other summary statistics (Table 1). We ultimately produced two assemblies. The C+H
assembly is contig-based that we reduced for potential alternative haplotypes using HapSolo
[144]. HapSolo is one of a handful of methods designed to aid the assembly of diploid genomes
[133, 122, 63| by identifying and removing alternative haplotypes. HapSolo optimizes the
assembly with respect to the number of complete, singleton BUSCO genes and generally
outperforms competing methods [144]. However, its effectiveness (and that of other meth-
ods) likely depends on the evolutionary distance between haplotypes, and it also depends
on the accuracy of BUSCO characterization. The size of the C+H assembly, at 1,032Mb,
suggests that some alternative haplotigs may still be present in the assembly, given that the

expected avocado 1C genome size is ~900 Mbp.

We used the C+H assembly to build the second assembly, which is a scaffold of contigs
that was guided by information from a genetic map of Gwen x Fuerte offspring [10]. This
scaffolded assembly approaches chromosome level, with the longest 12 scaffolds representing
78% of the expected genome size. However, it suffers from at least two drawbacks that must
be kept in mind. First, the use of genetic maps for scaffolding can introduce biases both from
the mapping methods and from the identity of cultivars used in the crosses. In this case, we
also suspect that the map is not quite dense enough to fully scaffold the genome, given that
the assembly size decreased from 1,032Mb in the C+H assembly to 730Mb in the scaffolded
assembly. Second, scaffolding by genetic maps provides insights into the order of contigs,
but often lacks information about contig orientation. When contig orientation is ambiguous,
it may be difficult to study large structural variants, such as inversions between accessions
that may affect phenotype [175]. For this reason, we hope to eventually scaffold the Gwen
genome using Hi-C or Bionano optical maps. These methods will not only help correct errors
in contig orientation but may also help resolve difficult-to-assemble repeat-regions. Despite
these two drawbacks, we again have to accentuate that our Gwen genome is far superior
to previously available P. americana genomes and that our scaffolded version (at 730Mb) is

likely much more complete than the 421Mb Hass genome, which was also scaffolded with a
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genetic map [127] (Table 1, Figure 1A).

We generated the Gwen genome as a platform for evolutionary genomics and also for down-
stream breeding applications. Both goals are aided by accurate genome annotation. We first
annotated the genome for repeats, identifying 65% of the genome that consists of repetitive
elements (Figure 1B). This proportion is not particularly large or notable for plant genomes,
especially given that some larger plant genomes (like maize) consist of ;80% transposable
elements [146]. After masking for annotated repetitive elements, we predicted genes using
publicly available RN Aseq software and the BRAKER pipeline (see Methods). We predicted
57,916 genes on the scaffolded assembly and 87,617 in the C+H assembly, both of which are
two-fold more than the 25,211 predicted on the Hass genome. These results initially led
us to believe that our approaches had predicted too many genes, despite their reliance on
experimental (RNAseq) evidence. If we do have too many genes, some are likely coding
regions of transposable elements that were missed by our repeat annotation pipeline. Others
are likely to be pseudogenes; we attempted to minimize this category by removing any gene
with exons that overlapped with annotated TE’s, but of course this has the potential the
downside of removing actual genes with function [61, 143]. Nonetheless, while it is certainly
possible that we have over-predicted coding regions, our results are more in keeping with a
recent transcriptome analysis that predicted 63,000 genes in avocado [32]. We thus suspect
that the 25,000 genes annotated on the Hass genome do not represent the complete avocado
gene space. That said, the Hass gene annotations appear to be accurate, because all 25,211

genes are present within our annotation set.

Given the Gwen assemblies and annotations, we used the Gwen as a reference for preliminary
evolutionary genomic analyses. These analyses were facilitated by a sample of 33 high cov-
erage (>14x) accessions that were chosen to represent the three botanical races of avocado.
With the ultimate goal of learning more about the history of the three independent domesti-

cation events and the differences among them, our first task was to identify SNPs and then to
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evaluate genetic relationships among accessions. Both PCA and admixture analyses clearly
differentiated among the three botanical races (Figure 2), but they also provided insights
into the hybrid origins of some cultivars, representing the first whole genome insights into
hybrid origins for most samples. Many of our results confirmed results based on microsatel-
lite and other marker types [11, 40, 39]. For example, many of the accessions in our sample
(like Zutano and Bacon) were previously thought to be hybrids, and we have confirmed those
inferences here. However, our results also offered some surprises, most notably about the
history of Hass, which was traditionally thought to be of Guatemalan origin [11, 39] but
has been inferred to be roughly 50% Guatemalan and 50% Mexican from genetic analyses
[39, 127]. In our analyses, Hass groups with other Guatemalan accessions (Figure 2A) and

is identified as 100% Guatemalan in admixture analyses with K=3 (Figure 2C).

One prosaic explanation for these results could be that we have mislabelled our Hass ac-
cession; we think this unlikely because Hass groups with other accessions that are its close
relatives (e.g., Gwen and Mendez) (Figure 2). A more nuanced interpretation is that admix-
ture analyses are heavily dependent on the samples used in analyses, and this may affect the
assignment of groups with K=4 (Figure 2D). One simple expediency will be to down-sample
the number of Hass’ close relatives and then repeat admixture analyses to see if K=4 is still
the most likely grouping. Nonetheless, both sets of our clustering analyses (i.e., PCA and
admixture; Figure 2) suggest that the history of Hass - the most cultivated accession in the
world - has not yet been well characterized by genetic analyses. If our results are correct,
then it begs the question: why are our results so different from previous inferences? One of
the analyses [39] was based on four nuclear loci, which is (in retrospect) a genomic region
small enough to provide potentially misleading results. The more recent work on the Hass
genome [127] mapped the potential origin of each chromosomal region, so there were few
genomic limits to these analyses. However, the Rendon-Anaya et al. (2019) study included
few (n=11) samples; this sampling could give misleading results if it did not sufficiently

represent the breadth of genetic diversity in P. americana sensu lato. As we have shown,
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their sample also included an inappropriate outgroup. Ultimately, we cannot yet ascribe a
definitive cause to differences among studies, but it is possible that more analysis of our ex-
isting data (e.g., chromosome painting and analysis of regions that are identical by descent)

could prove illuminative.

The admixture analysis permitted the definition of “pure” groups - i.e., accessions that ex-
ceeded 80% assignment to one of the three traditional botanical races. This group definition
was necessary to remove potential hybrids, but it had the unfortunate effect of greatly reduc-
ing the size of the Mexican and Lowland samples (Table 2). Given low sample sizes, we must
recognize the high variance associated with analyses like comparisons of Fst between groups.
We nonetheless applied Fst to investigate genomic regions of high differentiation between
races (Figure S2), with the rationale that regions of high differentiation house genes that
contribute to divergent traits among races. Using this approach, we have identified hundreds
of plausible candidate genes with potential functions in salt tolerance, drought resistance,
climate adaptation, fruit ripening and other physiological responses (Table 3). Our next
steps will be to confirm that these are highly divergent regions (using Dxy or similar) and to
complement these inferences to search for signals of selective sweeps. It may also be fitting to
infer structural variants, which can provide additional signals for localized genomic regions
of high divergence. Any remaining candidates will have to be evaluated using experimental

or genetic techniques.

Finally, we also applied the same Fst approach to A- vs B- type flower, yielding potentially
exciting results. Several flowering time genes were identified among the 800 genes located in
peaks of differentiation (Figure 3), including a regulator of FLC and a gene known to affect
circadian rhythms in flowering (Table 4). This last gene (PaSPA1) exhibits an intriguing
difference in sequence coverage between A- and B-type accessions (Figure 4), suggesting
that a structural variant may differentiate the alleles of the two different flowering types.

Nonetheless, these candidate genes - like those identified between botanical races - need to
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be subjected to additional evolutionary and genetic analyses to better evaluate the strength
of their candidacy. It is exciting, however, to speculate that it may be possible to identify
genes that contribute to flowering type, because they will be of both fundamental biological

interest and also because they may have practical breeding utility.

3.6 Tables and Figures

Gwen + Hap- | Gwen Scaffolds | Hass Contigs | drymifolia Contigs
Solo Contigs
Assembly Size (Mb) 1,032 703 913 823
Number of Fragments | 989 12 8,135 42,722
Largest Fragment | 17,080 85,354 2,811 4,611
(kb)
Percent of Assembly | 17.00% 78.20% 2.74% 4.32%
in 12 Largest Frag-
ments
Percent of Assembly | 17.00% 78.20% 0.00% 0.00%
in Fragments > 10 Mb
N50 (Mb) 3.37 61.89 0.30 0.32
L50 176 5 770 502
BUSCO (%) 90.7 87.9 84.9 86.3

Table 3.1: Assembly Metrics for two Gwen assemblies, the Hass assembly and the drymifolia
assembly:.
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Historical Classification

Gwen + Accessions!?

Mexican (n = 8)

001-01, 069-02, Bacong, Ganterg™, Pequeno
Charly*, Topa Topaa™, Zutanop

Guatemalan (n = 14)

Anaheim,, Carlsbady, CH-G-7, CH-G-10,
CH-G-11, Gweny *, Lindag, Lyong, Nabalg™*,
Nimliohg, Reedp™*, Tafto*, Thilleg*, Velvick,
Hassp *

Lowland (‘West Indies’) (n

4)

23-6*, Simmondspa*, VC26,4*, Waldiny *

Hybrid (n =7)

Fairchildy, Fuerteg, Hassy, Mendez,,
Pinkerton,, Gweny, CH-CR-25

Outgroups (n = 4)

P. schiedeana, P. donnell-smithi, P. hin-
tonii, Ocotea boranthea

Table 3.2: A list of accessions used in diversity studies. Additional details are provided in

Table S1

1 Accessions with an asterisk (*) represent samples that were assignable to one of the three
historical races based on an assignment that exceeded 80% (i.e., Qi > 0.8). These are the
accessions used to compare Fst values between groups.
2 Accessions with a superscripted A or B represent the A and B flowering type samples that

we used in analyses.
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Gene! Homolog? Homolog Function? Reference?

jg81425, jg86221, jg46538 | SGR (Capsicum annuum,) Triggers chlorophyll | [23, 15]
degradation during leaf
senescence and fruit

ripening

jgl6644 ACCO (Persea americana) Fruit ripening via ethy- | N/A
lene biosynthesis

jg36084 CRY1 (Arabidopsis thaliana) | Photoreceptor that con- | [96, 4]

trol floral initiation and
regulates other light re-
sponses

jg114403, jg48881, jg74004 | PCFS4 (Arabidopsis thaliana) | Promotes flowering | [173, 165]
through the preemRNA

processing of flowering
time genes

jg97581, jgh1837, jghbh93, | NACS5 (Arabidopsis thaliana) | Transcription factor | [115, 169]
jg46613 that acts as a floral
Iepressor.

Table 3.3: A partial list of candidate genes found in peaks of Fst differentiation between
Guatemalan and Mexican samples.

I Gene number in Gwen annotation file.

2 A homolog to the gene, as identified by functional analyses with SwissProt, with the species
in which the homolog was identified.

3 The inferred function of the homolog.

4 Citations to studies that describe homolog function.
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Gene! Homolog? Homolog Function? Reference?

jg92492 VOZ1 (Arabidopsis thaliana) | Regulates  Flowering | [106, 167]
Locus C' (FLC)

jg63228 SPA1 (Arabidopsis thaliana) | Controls normal pho- | [176, 88, 74, 16]
toperiodic flowering
and regulates circadian
rhythms

jg46090, jg46091 CCR1 (Petunia hybrida) Biosynthesis of volatile | [111]
compounds in flowers

7269989 EOBI (Petunia hybrida) Transcription factor for | [145]
volatile compounds in
flowers

Table 3.4: Particularly interesting candidate genes found in Fst peaks between samples of
A- and B-type flowering accession.

I Gene number in Gwen annotation file.

2 A homolog to the gene, as identified by functional analyses with SwissProt, with the species
in which the homolog was identified.

3 The inferred function of the homolog.

4 Citations to studies that describe homolog function.
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Avocado Assembly Cumulative Length Graph
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Figure 3.1: (A) The cumulative sum assembly graph size (cdf) shows the size of the assem-
blies with the next largest consecutive contig (or scaffold) being added to the sum along the
x-axis. It illustrates cdf for the Hass contig assembly and the drymifolia assembly - both of
which were published previously - and the two Gwen assemblies (C+H and scaffolded). (B)
The annotation results for the Gwen C+H assembly, showing the percentage of the genome
attributable to different types of transposable elements, including DNA transposons, unclas-
sified retroelements and Long Terminal Repeat (LTR) retroelements. The percentage of the
genome attributable to genes did not include the length of introns.
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Avocado PCA and Admixture Analyses

Avocado PCA Analysis B Avocado Admixture Plot K=2
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Figure 3.2: (A) A PCA analysis of SNP diversity, based on 33 accessions of avocado. Each
dot represents an individual, and the color of each dot represents an historical classifica-
tion of that individual, including Guatemalan x Mexican (GxM) hybrids and Lowland x
Guatemalan (LxG) hybrids. (B,C,D) Admixture plots were generated using SNPs found in
all of the contigs in the Gwen C+H assembly. Plot (B) shows the inferred groups with K=2
groups; plot (C) represents K=3, which is consistent with the three historical races; and (D)
represents K=4 groups, which was inferred to be the most likely number of clusters. The
K=4 groups include the three historical races and an emergent group showing accessions
closely related to Hass.
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Avocado TypeA v TypeB Fst Manhattan plot
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Figure 3.3: A Manhattan plot showing the Fst values across all of the contiguous of the
C+H Gwen assembly, focusing on contrasts between the A-type (n=9) and B-type (n=13)
flowering samples. The top 1% (horizontal dashed line with a value of 0.184121) of Fst peaks
define 786 genes, all of which were annotated functionally. Several of these genes are viable
candidates for affecting flowering type; we list four especially interesting genes in Table 3
and indicate their location with an arrow on the Manhattan plot.
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Figure 3.4: Coverage information for the flowering-type candidate gene SPA1 in contig
tig00020836. (A) The position of the gene region in the contig. (B) The BED annota-
tion of the Fst peak containing the SPAI gene found in this contig. (C) The annotation
of the PaSPA1 gene, which has two predicted transcripts. (D) The annotation of LTR
copia elements. (E) The annotation of unknown/unclassified repeats. (F) Illumina read
coverage of all type B flowering types of avocados with an average read depth of ~160x at
positions <6,665,000, and an average read depth of ~40x coverage at positions <6,675,000,
showing a substantial drop in coverage (1) on the right side of the gene. (G) Illumina read
coverage of all type A flowering types of avocados with an average read depth of ~300x at
positions <6,665,000, and an average read depth of ~150x coverage at positions <6,675,000,
also showing a drop in coverage () of the right side of the gene but not as drastic.
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CONCLUSION

Comparative and Population Genomics

With the accelerating detrimental effects of climate change, and our ever growing population,
a strong solid foundation and understanding of the genetic basis of phenotypic variation
that currently exists in food crops is essential for our future and survival. This requires
the curation and availability of good genomic tools for researchers seeking to solve these
important problems. In short, more contiguous genomes of food crops are required in order
to accelerate crop improvement for their adaptation and efficiency in a rapidly changing

climate.

In my dissertation I sought to (1) improve on methods for the curation of a more continuous
and complete genome that is also affordable making it also more accessible, (2) develop a tool
for purging of duplicated or alternate haplotypes in order to isolate these complete/pseudo
haplotypes and (3) apply these methods to a poorly understood perennial crop with potential
for crop improvement, avocados, and identify regions of genetic variation that differ among
populations of avocado that contain genes implicated in domestication and adaptation. This
work can be replicated by other researchers and applied to other species important for

improving food security.

In the first chapter, I described resequencing of Drosophila melanogaster, the first genome
assembled using a whole-genome shotgun (WGS) strategy [112, 2]. The original sequenc-
ing of this species became a proof-of-principle genome assembly [112, 2| that led to the
prevalence of the WGS sequencing approach as a tool in virtually all subsequent metazoan
genome assembly projects [87, 160, 60, 170, 8, 59, 68]. Although improvements in sequencing
technologies has lowered the cost of sequencing [162], the reduced size and length of reads

has resulted in limitations, such as highly fragmented and incomplete genome assemblies
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[5, 113]. Even with more advanced approaches (e.g. hierarchical shotgun sequencing and
other clone-based approaches) that aided in building nearly complete and highly contigu-
ous reference genomes, they still add complexity, cost and time to assembly projects. This
however was changed with the development of new long-read sequencing technologies that
drastically improved read lengths, allowing for reads to span entire regions of the genome
that were once impossible to resolve. Over time, these long reads improved in accuracy,
length and throughput, but with error-rates and costs that were still higher than short read
sequencing. Additionally, further developments were made that made it possible to overcome
many of the difficulties associated with long-read sequencing, and has led to nearly complete
and highly contiguous metazoan genome assemblies using only a whole genome sequencing
(WGS) strategy [80, 21, 82]. This however still incurred a significant cost as it required the
hiring of highly skilled staff, and a large investment into the platform. For example, the
recent resequencing of D. melanogaster and other Drosophila species ranged in the 10’s of
thousands of dollars [70, 36, 37]. This cost would only double if one were to sequence a het-
erozygous diploid individual, as it would require twice as much sequencing for a genome of
similar size as Drosophila, let alone sequencing a larger and /or multiple genomes. Such costs
make it difficult for research groups to answer important questions that require a reference
level assembly. Many of which could be due to the presence of SV’s [36, 37, 175]. In this first
chapter, we sought to produce a reference level assembly with a small group of researchers,
and at a fraction of the cost, ~$1,000, while still retaining completeness, accuracy and conti-
guity expected from a reference level assembly. By utilizing novel applications of published
genome assembly methods [36] and inexpensive long noisy reads, we were able to do just
that. With our approach, we were able to identify over 99% of genes but also discovered
novel SV’s, while preserving over 90% of highly conserved single copy genes (BUSCO’s). We
achieved this by using 4.2 Gbp of sequencing data from a single Oxford Nanopore flowcell in
conjunction with short-read Illumina data. Using this data we utilized the assembly merging

approach [36] and polished our assembly using accurate short-reads [159]. Our published as-
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sembly exhibited a N50 of 21.3 Mbp which is comparable to the N50 of the FlyBase release
6 of reference assembly (18.9 Mbp) [112, 2], which is considered the gold standard for the
D. melanogaster research community. Further comparisons of our assembly to the FlyBase
reference genome assembly showed that our assembly was both accurate (21 mismatches/100
kbp, 36 indels/100 kbp) and collinear. Many of these errors could be attributed to errors
introduced by the noisy ONT reads that escaped polishing, but also due to SV’s that have
accumulated over time in a laboratory environment for approximately 350 generations (as-
suming 20 generations/year) since the initial sequencing in 2000. These mutations (including
deleterious mutations) can easily be explained by genetic drift [12]. In our assembly we found
28 homozygous euchromatic TE insertions (evidenced by long-reads spanning these regions),
which are predominantly LTR and defective hobo elements, suggesting a high rate of euchro-
matic TE insertions (~0.08 insertion/gen). The observation of a predominance of LTR and
hobo elements among the new TE insertions mirrors their recent spread in D. melanogaster
populations [116, 118, 24, 49] in previous studies. The abundance of defective hobo elements
among the new insertions is particularly interesting given that these hobo elements lack the
transposase enzyme necessary for mobilization. Collectively, our assembly provides a snap-
shot of ongoing genome structure evolution in a metazoan genome, which is often assumed

to be approximately invariant for experimental genetics.

A crucial feature of this work is that it is performed in a strain used to generate one of
the highest quality reference genomes available, ensuring that our inferences can be judged
against a high-quality standard. This approach allowed us to demonstrate that assembly with
modest amounts of long-molecule data paired with inexpensive short-read data can yield
highly accurate and contiguous reference genomes with minimal expenditure of resources
(by an order of magnitude lower). This demonstration opens a myriad opportunities for
high-quality genomics in systems with limited resources for genome projects. Moreover,
we can now conceive of studying entire populations with high-quality assemblies capable of

resolving repetitive structural variants, something previously inconceivable and unattainable
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with short-read sequencing alone.

In the second chapter of my thesis, we expanded upon methods used in chapter 1 for applica-
tion to more heterozygous samples, specifically, chardonnay wine grapes. As more contiguous
genomes are important for obtaining near complete annotations, improved scaffolding and
evolutionary inferences, which are all essential for producing genomic resources for crops,
understanding population structure and identifying regions of high divergence that contain
genes implicated in domestication and adaptation. This led to the construction of a genome
assembly with an assembly size nearly double that of the expected size [175]. We were
however able to correct this by removing contigs matching alignment thresholds designed to
identify alternate haplotypes, as indicated by contigs containing duplicate BUSCO’s, and
applying them genome wide. This required the development of a novel approach which
could be generalized and applied to any metazoan species. The result of this work led to
the capture of SV’s and homozygous loci implicated in berry color and sex determination
[175]. Since the amount of heterozygosity is different and specific to each species, popula-
tion, and individual, we sought to create an algorithm that could customize a specific set of
thresholds that would be tailored to each sample for purging of alternate haplotypes. This
optimization was possible using a variant of Hill Climbing, “Random Forward Walking Hill
Climbing”, along with alignment parameters that could encompass different aspects present
in heterozygous loci containing, SNP’s; indels and SV’s (ID, @ and QR). Our approach
is able to capture these properties by approximating these parameters (ID, @ and QR) by
classifying contigs with high similarity and containing another BUSCO already present in
another contig. We optimized and approximated these alignment parameters using a linear
formula that minimizes the number of duplicate, missing and fragmented BUSCQO’s, while
maximizing the number of single copy BUSCO’s. Once these parameters are optimized,
these new values are set as thresholds for the removal of contigs matching said thresholds,
genomewide. This approach, albeit imperfect, was comparable to or better than previously

published methods, purge_dups [63], from species across three separate taxa with varying
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genome sizes. This led to improvements in scaffold N50 (63%, 0%, 13%), largest scaffolds
(47%, 28%, 36%), and proportion of assembly in k (where k represents the number of chro-
mosomes per species) largest scaffolds (50%, 2%, 22%) for mosquito, chardonnay grapes and

the thorny skate respectively when compared to purge_dups.

Overall, we successfully identified many alternative contigs, thereby reducing the noise that
has plagued heterozygous genomes for the past several years, and matched or out performed
the best tool currently available across multiple taxa, leading to increased performance of
downstream analysis such as Hi-C scaffolding, annotation and evolutionary inferences. That
is not to say, however, that HapSolo cannot be improved. We can see three obvious areas for
further improvement. The first is to consider coverage statistics, which represents a point
of departure between our approach and that of both Purge Haplotigs [132] and purge_dups.
We predict, but do not yet know, that the inclusion of coverage with our existing alignment
statistics could lead to more accurate inferences, but it is possible that it could reduce
the bias dependence of species that perform poorly using BUSCO’s. A second area of
improvement may be to implement alternative optimization algorithms, such as simulated
annealing. Finally, it may also be possible to include additional features in the calculations
of Cost. Our present reliance on BUSCQO'’s has the advantages of speed and wide acceptance
in the genomics community. However, depending on the initial assembly, it is likely that
some contigs do not contain a BUSCO gene, and are therefore not considered in calculating
Cost, thereby not contributing to the approximation of threshold parameters (I Dy, Qr, and
QRr). It is not yet clear what additional features could be included in the Cost function,

but identifying contigs containing an over-representation of shared k-mers is one possibility.

In my last and final chapter, we take the knowledge gained from the first two chapters
and apply it to a highly complex, heterozygous and interesting diploid perennial food crop,
representing the Gwen accession of P. americana (avocado), as resequence 21 accessions

of avocado using short-read sequencing. We create a highly contiguous decoupled genome
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assembly, annotate it’s genetic features, surpassing contiguity and accuracy of previously
published avocado genomes [127], reconstruct the population structure of avocados, as well
as identify regions of the genome that differ significantly between groupings of avocado
accessions containing unique phenotypes. These regions contain genes implicated in climate
adaption, disease resistance, agronomic importance and flowering time. We also identified
an SV present in one of the flowering time loci that is present in type A avocados but absent
in type B avocados. In this study we produce two genomes, an assembly generated using
Canu [82] which was reduced/decoupled (C+H) using methods from chapter 2, HapSolo
[144], and a scaffolded assembly containing contigs from the C+H assembly using a genetic
map from a previous study [10]. The C+H assembly at approximately 1 Gbp suggests some
alternative haplotigs may still be present as the expected 1C genome of avocados is ~900
Mbp. The scaffolded assembly approaches chromosome level, with the longest 12 scaffolds
representing 78% of the expected genome size, whereas the previously published avocado
scaffolded assembly only represented approximately half of the expected genome size in its
entirety. One issue with our scaffolding approach is that it can introduce biases both from
the mapping methods and from the identity of the cultivars used in the crosses. In this case
the genetic map was generated using crosses between Gwen and Fuerte. We also believe that
the decrease of the scaffolded assembly size from 1 Gbp in the C+H assembly to 730 Mbp in
the scaffolded assembly could also be due to the lack of density in the genetic map. Another
issue lies in orientation of the contigs in the scaffolds, as scaffolding by genetic maps often
lacks information about contig orientation. When contig orientation is ambiguous, it may
pose a problem to the study of large structural variants, such as inversions between accessions
that may affect phenotype [175]. For this reason, we hope to eventually scaffold the Gwen
genome using Hi-C or Bionano optical maps. These methods will not only help correct errors
in contig orientation but may also help resolve difficult-to-assemble repeat-regions. Despite
these two drawbacks, we again have to accentuate that our Gwen genome is far superior

to previously available P. americana genomes and that our scaffolded version (at 730Mb) is
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likely much more complete than the 421Mb Hass genome, which was also scaffolded with a

genetic map [127].

One particular interesting aspect of our genome is the presence of repeats. We found that
~65% of the genome consists of repetitive elements. This proportion is not particularly
large or notable for plant genomes, especially given that some larger plant genomes (like
maize) consist of >80% transposable elements [146]. After masking for annotated repetitive
elements, we predicted genes using publicly available RNAseq software and the BRAKER
pipeline (see Methods). We predicted 57,916 genes on the scaffolded assembly and 87,617 in
the C+H assembly, both of which are two-fold more than the 25,211 predicted on the Hass
genome. Although it is certainly possible that we have over-predicted coding regions, our
results are more in keeping with a recent transcriptome analysis that predicted ~63,000 genes
in avocado [32]. We thus suspect that the ~25,000 genes annotated on the Hass genome do
not represent the complete avocado gene space. That said, the Hass gene annotations appear

to be accurate, because all 25,211 genes are present within our annotation set.

Given the Gwen assemblies and annotations, we used the Gwen as a reference for prelimi-
nary evolutionary genomic analyses. These analyses were facilitated by a sample of 33 high
coverage (>14x) accessions that were chosen to represent the three botanical races of avo-
cado. With the ultimate goal of learning more about the history of the three independent
domestication events and the differences among them, our first task was to identify SNPs and
then to evaluate genetic relationships among accessions. Both PCA and admixture analyses
clearly differentiated among the three botanical races, but they also provided insights into
the hybrid origins of some cultivars, representing the first whole genome insights into hybrid
origins for most samples. Many of our results confirmed results based on microsatellite and
other marker types [11, 40, 39]. For example, many of the accessions in our sample (like
Zutano and Bacon) were previously thought to be hybrids, and we have confirmed those

inferences here. However, our results also offered some surprises, most notably about the
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history of Hass, which was traditionally thought to be of Guatemalan origin [11, 39] but
has been inferred to be roughly 50% Guatemalan and 50% Mexican from genetic analyses
[39, 127]. In our analyses, Hass groups with other Guatemalan accessions and is identified
as 100% Guatemalan in admixture analyses with K=3. One prosaic explanation for these
results could be that we have mislabelled our Hass accession; we think this unlikely because
Hass groups with other accessions that are its close relatives (e.g., Gwen and Mendez). A
more nuanced interpretation is that admixture analyses are heavily dependent on the sam-
ples used in analyses, and this may affect the assignment of groups with K=4. One simple
expediency will be to down-sample the number of Hass’ close relatives and then repeat ad-
mixture analyses to see if K=4 is still the most likely grouping. Nonetheless, both sets of our
clustering analyses (i.e., PCA and admixture) suggest that the history of Hass - the most
cultivated accession in the world - has not yet been well characterized by genetic analyses.
If our results are correct, then it begs the question: why are our results so different from
previous inferences? One of the analyses (Chen et al. 2009) was based on four nuclear loci,
which is (in retrospect) a genomic region small enough to provide potentially misleading
results. The more recent work on the Hass genome [127] mapped the potential origin of
each chromosomal region, so there were few genomic limits to these analyses. However, the
Rendon-Anaya et al. (2019) study included few (n=11) samples; this sampling could give
misleading results if it did not sufficiently represent the breadth of genetic diversity in P.
americana sensu lato. As we have shown, their sample also included an inappropriate out-
group. Ultimately, we cannot yet ascribe a definitive cause to differences among studies, but
it is possible that more analysis of our existing data (e.g., chromosome painting and analysis

of regions that are identical by descent) could prove illuminative.

The admixture analysis permitted the definition of “pure” groups - i.e., accessions that ex-
ceeded 80% assignment to one of the three traditional botanical races. This group definition
was necessary to remove potential hybrids, but it had the unfortunate effect of greatly reduc-

ing the size of the Mexican and Lowland samples (n=14, 8 and 4 for G, M and L). Given low
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sample sizes, we must recognize the high variance associated with analyses like comparisons
of Fst between groups. We nonetheless applied Fst to investigate genomic regions of high
differentiation between races, with the rationale that regions of high differentiation house
genes that contribute to divergent traits among races. Using this approach, we have identi-
fied hundreds of plausible candidate genes with potential functions in salt tolerance, drought
resistance, climate adaptation, fruit ripening and other physiological responses. Our next
steps will be to confirm that these are highly divergent regions (using Dxy or similar) and to
complement these inferences to search for signals of selective sweeps. It may also be fitting to
infer structural variants, which can provide additional signals for localized genomic regions
of high divergence. Any remaining candidates will have to be evaluated using experimental

or genetic techniques.

Finally, we also applied the same Fst approach to A-type vs B-type flower, yielding poten-
tially exciting results. Several flowering time genes were identified among the 800 genes
located in peaks of differentiation, including a regulator of FLC and a gene known to affect
circadian rhythms in flowering. This last gene (PaSPA1) exhibits an intriguing difference
in sequence coverage between A- and B-type accessions, suggesting that a structural variant
may differentiate the alleles of the two different flowering types. Nonetheless, these candi-
date genes - like those identified between botanical races - need to be subjected to additional
evolutionary and genetic analyses to better evaluate the strength of their candidacy. It is
exciting, however, to speculate that it may be possible to identify genes that contribute to
flowering type, because they will be of both fundamental biological interest and also because

they may have practical breeding utility.

Our climate is rapidly changing, with higher maximum temperatures (Figure 1), extreme
weather conditions and longer drought periods. Many of which will have a detrimental effect
on areas important for food production across the globe. Some of which we are experiencing

at the time of writing this. These reasons highlight the importance and imperative of having
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better genomic tools, which are vital for understanding the relationship between genetics
and phenotypic variation. Thes requires more continuous, complete, accurate and haplotype
decoupled genome assemblies for identifying SV’s among haplotypes, individuals and pop-
ulations. With a better understanding of the genetic variation of SVs and their effects on
adaptive traits in crops, we can peer into this unknown and provide critical information for
downstream application to crop improvement. Not only will this information be important
for future breeding programs for further improvement of avocados, but our methods can be
not only used and replicated across food crops, but also across other species facing hurdles
in adapting to a rapidly changing climate. For example, with this knowledge, the scientific
community can not only replicate this work in other species but also accelerate adaptation
of species with more informed and focused breeding programs, but also introduce genetic
mutations using methods such as CRISPR. These genetic mutations can in theory acceler-
ate the adaptation of species to rapidly changing environments. Science, more specifically,
comparative genomics along with population genetics of SVs will help pave the way to a
better understanding of the evolution and adaptation of crops, and other species in general,
at the genetic level. This will help give insights to understanding the phenotypic plasticity

in traits important for adaptation to a broader range of environments.
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