
UC San Diego
Technical Reports

Title
Interaction of Virtual Machine with the Operating System

Permalink
https://escholarship.org/uc/item/7nd1940m

Authors
Tati, Kiran
Voelker, Geoffrey M

Publication Date
2002-12-02
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nd1940m
https://escholarship.org
http://www.cdlib.org/


Intera
tion of Virtual Ma
hine with the Operating System

Kiran Tati and Geo�rey M. Voelker

Department of Computer S
ien
e and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

fktati, voelkerg�
s.u
sd.edu

Abstra
t

As appli
ations exe
uting in virtual ma
hine runtime

environments su
h as the Java Virtual Ma
hine and

the .NET Common Language Runtime be
ome more

prevalent on desktop operating systems, this trend

raises the interesting question of the best model for

supporting multiple appli
ations in virtual ma
hine

environments. A natural model is to exe
ute ea
h

appli
ation in its own virtual ma
hine pro
ess. How-

ever, multiple appli
ations 
ould also be exe
uted in a

single virtual ma
hine pro
ess by leveraging the pro-

te
tion and se
urity features of the programming lan-

guages used by the appli
ations. Exe
uting within

a single virtual ma
hine pro
ess makes it easier to

share 
ode and data and 
ommuni
ate among the

pro
esses.

In this paper, we present an intermediate model

for supporting multiple appli
ations in virtual ma-


hine environments for desktop operating systems.

We argue that appli
ations should take advantage

of the prote
tion features and resour
e management

provided by the operating system and exe
ute ea
h

appli
ation in its own virtual ma
hine pro
ess. How-

ever, to fa
ilitate 
ode reuse, redu
e appli
ation ini-

tialization time, and fa
ilitate interpro
ess 
ommu-

ni
ation among appli
ations in di�erent virtual ma-


hines, we propose extending virtual ma
hine imple-

mentations with the use of a shared 
lass 
a
he and

an eÆ
ient serialization implementation optimized

for lo
al ma
hine interpro
ess 
ommuni
ation. To

demonstrate and evaluate our approa
h, we des
ribe

the design and implementation of a shared 
lass 
a
he

and optimized 
lass serialization in the Java virtual

ma
hine, and evaluate our implementation using a

set of appli
ation and mi
ro-ben
hmarks.

1 Introdu
tion

The widespread adoption and use of the World Wide

Web has spawned a new 
lass of Internet appli-


ations on 
lient-server systems, from email to e-


ommer
e to down-loadable applets. To fa
ilitate de-

velopment and deployment, new programming lan-

guages su
h as Java and C# and runtime environ-

ments su
h as the Java Virtual Ma
hine (JVM) and

the .NET 
ommon language runtime (CLR) environ-

ment have been 
reated to support the portability, se-


urity, and rapid development requirements of these

appli
ations. Both Java and .NET are now widely

used to implement Web appli
ations on servers, and

are in
reasingly being used for desktop appli
ations

on 
lients as well. In parti
ular, as Mi
rosoft tran-

sitions more of its appli
ations to the .NET CLR,

exe
uting appli
ations in a managed runtime envi-

ronment, or virtual ma
hine, will be
ome the norm

rather than the ex
eption on 
lient-side desktop op-

erating systems. As an extreme, if Mi
rosoft adopts

the .NET CLR for all of its appli
ations, then nearly

all appli
ations exe
uted on desktop 
omputers will

exe
ute within a virtual ma
hine.

Extensive use of virtual ma
hines for exe
uting ap-

pli
ations on desktop operating systems raises the in-

teresting question of the best model for supporting

those appli
ations in virtual ma
hine environments.

A natural model is to exe
ute ea
h appli
ation in

1



its own private virtual ma
hine and operating sys-

tem pro
ess. This model requires no additional fun
-

tionality, and leverages the existing prote
tion and

resour
e management me
hanisms of the operating

system to isolate appli
ations and manage resour
es

a
ross appli
ations. In 
ontrast, a di�erent model is

to exe
ute many or all appli
ations in a single virtual

ma
hine pro
ess [3, 4, 5, 6, 8, 9℄. In this model, the

prote
tion and se
urity provided by language features

are used to isolate and prote
t appli
ations within

the same pro
ess address spa
e. On
e appli
ations

share a virtual ma
hine pro
ess, they 
an also poten-

tially share 
ode (intermediate and/or native 
ode)

to save memory and 
lass initialization time [4℄ and

more eÆ
iently 
ommuni
ate with ea
h other, e.g.,

via regions supporting shared obje
ts [5℄. However,

sharing a single virtual ma
hine makes it awkward to

in
orporate native 
ode [11℄, and leaves appli
ations

vulnerable to bugs in the virtual ma
hine prote
tion

and se
urity implementation [?℄.

In this paper, we present an intermediate approa
h

for supporting multiple appli
ations in virtual ma-


hine environments for desktop operating systems.

We argue that appli
ations should take advantage

of the prote
tion features and resour
e management

provided by the operating system and exe
ute ea
h

appli
ation in its own virtual ma
hine pro
ess. How-

ever, to fa
ilitate 
ode reuse, redu
e appli
ation ini-

tialization time, and fa
ilitate interpro
ess 
ommu-

ni
ation among appli
ations in di�erent virtual ma-


hines, we propose extending virtual ma
hine imple-

mentations with the use of a shared 
lass 
a
he and

an eÆ
ient serialization implementation optimized

for lo
al ma
hine interpro
ess 
ommuni
ation. To

demonstrate and evaluate our approa
h, we des
ribe

the design and implementation of a shared 
lass 
a
he

and optimized 
lass serialization in the Java virtual

ma
hine, and evaluate our implementation using a

set of appli
ation and mi
ro-ben
hmarks. From our

evaluation, we �nd that 
ommon Java appli
ations

share up to 75% of their 
lasses, and show that a

shared 
lass 
a
he 
an redu
e appli
ation initializa-

tion time by up to 72{90%. We also show that a


lass serialization implementation optimized for lo
al


ommuni
ation 
an redu
e 
ommuni
ation 
osts by

fa
tors of 2.5{12.

The rest of this paper is organized as follows. Se
-

tion 2 dis
usses the tradeo�s between exe
uting mul-

tiple appli
ations in single vs. multiple virtual ma-


hine environments. We then argue for an inter-

mediate approa
h that 
ombines the advantages of

both models using 
lass sharing and an eÆ
ient im-

plementation of serialization for low-overhead inter-

pro
ess 
ommuni
ation. Se
tion 3 then des
ribes our


lass sharing me
hanism in detail, and demonstrates

its potential for improving 
lass loading times. And

Se
tion 4 des
ribes our serialization me
hanism and

evaluates its e�e
tiveness at improving interpro
ess


ommuni
ation. Finally, Se
tion ?? summarizes our

model and results.

2 Single vs. Multiple VMs

There are two models for exe
uting multiple Java ap-

pli
ations. The �rst model is the single VM model

where all appli
ations exe
ute in a single virtual ma-


hine [3, 4, 5, 6℄. The se
ond model is the multiple

VM model where ea
h appli
ation exe
utes in a sep-

arate virtual ma
hine [7, 8, 9℄.

The single VM model has better resour
e utiliza-

tion than the multiple VM model [4℄, thereby redu
-

ing the per-appli
ation overhead [5℄. The single VM

model redu
es appli
ation startup time, 
onserves

memory, and more easily provides eÆ
ient interpro-


ess 
ommuni
ation [5℄. The single VM model also

provides multitasking without underlying operating

system support, thus it 
ould be used to exe
ute ap-

pli
ations on small devi
es su
h as PDAs and 
ell

phones that do not have a multitasking operating sys-

tem.

On the other hand, the multiple VM model pro-

vides strong prote
tion for isolating appli
ations and

provides an eÆ
ient environment to exe
ute native


ode

1

. The single VM model 
an be extended to

a multiple pro
ess model to provide a safe environ-

ment for exe
uting native 
ode, albeit awkwardly and

ineÆ
iently [11℄. As a result, the single VM model

requires repli
ation of some of the operating system

fun
tionality at user level [4, 5, 6℄ to provide strong

1

Native 
ode is 
ode that is written in a language other

than a type-safe language.

2



appli
ation isolation. This dupli
ation of fun
tional-

ity unne
essarily adds extra 
ost to appli
ation exe
u-

tion time when 
ompared to the multiple VM model.

We argue that the best approa
h for exe
uting mul-

tiple appli
ations in a virtual ma
hine environment

on a general purpose operating system is to run ea
h

appli
ation in a separate virtual ma
hine pro
ess as

in the multiple VM model, and extend the virtual

ma
hine to in
orporate features that provide the ad-

vantages of the single VM model in a multiple pro-


ess implementation. To motivate this intermediate

approa
h, the following se
tions des
ribe issues with

the single VM model, their performan
e impli
ations,

and how the multiple VM model 
an eÆ
iently ad-

dress them.

2.1 Native Code

Native 
ode is 
ode written in a language other than

a type-safe language, and is usually written in tra-

ditional unsafe languages su
h as C and C++. In

the Java Virtual Ma
hine, native 
ode 
an a

ess any

data in the pro
ess in whi
h it is exe
uting, whereas

Java byte 
ode is limited in addressability by the

strong type-safe properties of the language. Thus,

exe
uting the native 
ode of an appli
ation 
an be

harmful for other appli
ations in the single VMmodel

be
ause the native 
ode 
an a

ess and modify any

data of the other appli
ations that are running in

the same pro
ess. One solution to this problem is to

exe
ute the native 
ode only if it is trusted 
ode, oth-

erwise terminate the appli
ation; this solution is used

in the safe mode of the .NET environment. However,

running untrusted 
ode is still a problem for the sin-

gle VM model.

A solution for exe
uting untrusted 
ode in the sin-

gle VM model is to use another pro
ess to run the un-

trusted 
ode [11℄. In 
ontrast, the multiple VMmodel

runs the untrusted 
ode and appli
ation in the same

pro
ess. In the multiple VM model, the untrusted


ode 
an at worst harm itself be
ause it 
annot a
-


ess data in other appli
ations as ea
h appli
ation

has its own address spa
e. Hen
e, this solution uses

the same me
hanism, separate address spa
es, as the

multiple VM model to exe
ute untrusted native 
ode.

Interpro
ess 
ommuni
ation is used to 
ommuni-


ate between the appli
ation pro
ess and the pro
ess

running native 
ode in the single VM model. In-

terpro
ess 
ommuni
ation is very 
ostly be
ause of

the dramati
 in
rease in the number of swit
hes and

the 
ommuni
ation overhead. The overall e�e
t of

this overhead is an 8% - 880% in
rease in the exe
u-

tion time for the JVMSpe
98 ben
hmark appli
ations

in 
omparison with the multiple VM model [11℄. In

summary, the single VM model ultimately uses the

same me
hanism, the separate pro
ess address spa
e,

as the multiple VM model to exe
ute the native 
ode

safely, but with high overhead.

2.2 Unintended Resour
e Sharing

Even though the language type-safety prevents an

appli
ation from a

essing the data in other appli-


ations, a mali
ious or buggy appli
ation 
an easily

degrade another appli
ation's progress by allo
ating

all available memory or using all available �le han-

dles, network handles or, in general, 
onsuming any

operating system resour
e entirely in the single VM

model. Be
ause of these safety issues, the single VM

model requires rigid resour
e management [5, 6, 12℄.

Ka�eOS [5℄ and J-kernel [6, 12℄ provide su
h rigid

resour
e 
ontrol me
hanisms at the user level. How-

ever, the solution essentially re-implements the pro-


ess abstra
tion at user level [5℄. Again, the multiple

VM model does not have these safety issues be
ause

ea
h appli
ation exe
utes in its own address spa
e

and an appli
ation 
annot a

ess another appli
a-

tion's data. The overall overhead of this user level

pro
ess abstra
tion is up to a 7% in
rease to the

appli
ation exe
ution times for JVMSpe
98 ben
h-

mark programs in 
omparison with the multiple VM

model [5℄.

In a multi-user operating system, pro
ess owner-

ship is used to 
ontrol resour
e management. In the

single VM model, pro
ess ownership 
annot be used

to manage operating system resour
es be
ause all ap-

pli
ations are exe
uting in a single pro
ess. The mul-

tiple VM model does not have this problem. Any


on
eivable solution to this problem in the single VM

model requires the notion of ownership at user level

whi
h is essentially re-implementing the operating

system fun
tionality at user level. Thus, any solu-

tion to this problem will likely add overhead to the

appli
ation exe
ution time.

3



2.3 User Level Threads

User level threads pose another problem for the single

VM model. Some operating systems do not support

threads in the kernel. Hen
e, the virtual ma
hine

has to implement threads at the user level. In this

situation, the single VM model is very ineÆ
ient be-


ause of the mismat
h between this model's notion of


on
urren
y, threads in a single pro
ess, and the op-

erating system's notion of 
on
urren
y, pro
esses. In

e�e
t, the single VM model 
annot express the 
on-


urren
y well and thereby pays a signi�
ant penalty.

For example, in this situation a single page fault stops

all the appli
ations from exe
uting. In general, any

blo
king operation su
h as reading/writing �le, a
-


essing data from network, a

essing data from any

other blo
king devi
es by an appli
ation stops all

other appli
ations. On the other hand, the multiple

VM model notion of appli
ation mat
hes the operat-

ing system notion of appli
ation. Thus, the multiple

VM model eÆ
iently exploits the 
on
urren
y among

di�erent appli
ations to improve throughput [7℄.

2.4 Stati
 variable Semanti
s

A virtual ma
hine stores all the information about a


lass in a 
lass stru
ture. This information in
ludes

stati
 variables that are de�ned in the 
lass. In the

single VM model, all appli
ations share these 
lass

stru
tures, thereby sharing stati
 variables among ap-

pli
ations. Although this sharing saves memory, it

violates the semanti
s of stati
 variables that should

guarantee that ea
h appli
ation has its own 
opy of

stati
 variables. Be
ause of this sharing, some appli-


ations may produ
e in
orre
t results if the appli
a-

tion 
orre
tness depends on 
orre
t initial values of

stati
 variables. Hen
e, the single VM model has to

eliminate this sharing.

Solutions to this problem are to use a separate 
lass

loader for ea
h appli
ation [3℄, not to share 
lasses

that have stati
 variables [5℄, and providing a sepa-

rate 
opy of stati
 variables for ea
h appli
ation by

modifying the virtual ma
hine [4℄.

The 
lass loader is a me
hanism that provides mul-

tiple name spa
es for 
lass types in a single virtual

ma
hine. Hen
e, a user-de�ned 
lass loader [10℄ 
an

be used to provide a separate 
opy of stati
 variables

be
ause all 
lasses loaded by this 
lass loader are sep-

arate from other 
lasses in the virtual ma
hine. This

me
hanism is used in web browsers to exe
ute ap-

plets. This solves the problem of providing separate


opies of stati
 variables. However, it eliminates ad-

vantages su
h as a redu
tion in appli
ation startup

time and memory savings.

Another solution that 
hanges the virtual ma
hine

is to provide a separate 
opy to ea
h appli
ation. Un-

fortunately, this approa
h in
reases the appli
ation

exe
ution time 7% - 70% for JVMSpe
98 ben
hmark

appli
ations [3, 4℄. The multiple VM model need not

worry about this issue be
ause ea
h appli
ation has

its own 
opy of stati
 variables. Again, the single

VM model dupli
ates operating system fun
tionality

at the user level, thereby in
reasing the appli
ation

exe
ution time.

Overall, the single VM model either has to lose

fun
tionality or performan
e to exe
ute untrusted


ode, and it is not suitable for environments where

the underlying operating system does not support

threads in the kernel. The single VM model is also

not suitable for multi-user environment. Hen
e, the

single VM model is not suitable to run multiple appli-


ations on a general purpose operating system even

though it redu
es the appli
ation startup time, shares

resour
es at runtime, and provides eÆ
ient interpro-


ess 
ommuni
ation. A better approa
h is to use the

multiple VM model and try to a
hieve the single VM

model advantages in the multiple VM model. Note

that these advantages are not inherent to the sin-

gle VM model, and the following se
tions des
ribe

various te
hniques to a
hieve the single VM model

advantages in the multiple VM model.

3 Class Sharing

The degree of 
lass sharing among appli
ations is the

fra
tion of 
lasses that are 
ommon among two or

more simultaneously running appli
ations. In this

se
tion we show that the degree of 
lass sharing is

high for a set of 
ommon Java appli
ations, and

that ignoring this 
lass sharing property has signi�-


ant impa
t on appli
ation startup times. The single

VM model has the advantage of redu
ing appli
ation

4



Program Des
ription

JavaSound Simple audio player

gfa
tory 2D Obje
t plotter

i
eMail A mail 
lient

SwingSets Swing 
omponent browser

JVMSpe
98 Applet running

this ben
hmark

Table 1: Des
ription of sele
ted programs

startup time be
ause it shares 
lasses among appli-


ations, whereas the multiple VM model does not

have su
h an advantage. We then propose a new

te
hnique, a shared 
lass 
a
he, to redu
e appli
a-

tion startup times in the multiple VM model, and

demonstrate its e�e
tiveness.

We sele
ted some 
ommonly used Java programs to

understand available 
lass sharing. Table 1 presents

the des
ription of these programs. We modi�ed the

Sun HotSpot virtual ma
hine [13℄ to 
olle
t the in-

formation about 
lasses loaded by an appli
ation at

startup time. This information in
ludes the 
lass

name, its loader, and its size in memory. The modi-

�ed virtual ma
hine is used to run all appli
ations

listed in Table 1 without any options to identify

the 
lasses they load at startup time. We manu-

ally stopped appli
ations on
e they showed the initial

window be
ause we are interested only in 
lasses that

are loaded at the appli
ation startup time. Table 2

shows the number of 
lasses loaded by ea
h appli
a-

tion.

The degree of 
lass sharing for appli
ations x; y

is measured as the number of 
lasses y loads that

are already loaded by x. The degree of 
lass shar-

ing measures the number of appli
ation 
lasses that

are already loaded by previous appli
ations. For a

given number of appli
ations, average 
lass sharing

is measured as the average of 
lass sharing for all

permutations of appli
ations.

Table 3 presents average 
lass sharing for the ap-

pli
ations listed in Table 1. As expe
ted, the average


lass sharing in
reases with the number of already

loaded appli
ations. The main reason for this is that

all the programs use standard libraries. For these

Java programs, on average 77% of an appli
ation's

Program Number of

Classes Loaded

JavaSound 1263

gfa
tory 1586

i
eMail 1343

SwingSet2 1650

JVMSpe
98 1241

Table 2: Number of 
lasses loaded by programs

Number of Already Already loaded

already loaded loaded 
lasses in

programs 
lasses per
entage

1 882 62.3

2 1035 73.1

3 1075 75.9

4 1094 77.3

Table 3: Available sharing


lasses are already loaded if all of the four appli
a-

tions are exe
uted before this appli
ation. The 
lass

sharing in this environment is signi�
antly higher

than the available 
lass sharing in the web browser

environment [27℄.

3.1 The Experimental Environment

Table 4 presents the ma
hine 
on�guration and the

software used for the following experiments. All the

timings presented in this paper are average of ten

runs and an extra �ve runs are used to warmup the


a
he.

3.2 Class Loading Time and its Im-

pa
t on Appli
ation Startup Time

We de�ne appli
ation startup time as the time dif-

feren
e between appli
ation start time and the time

OS Windows 2000 5.00.2195 Servi
e Pa
k 1

CPU Intel Pentium 4, 1.6GHz

RAM 512MB

JVM Sun Server HotSpot Virtual Ma
hine 2.0

JDK Sun JDK 1.3.01

Table 4: Ma
hine Spe
i�
ation

5



it is ready to take the input from user. This startup

time in
ludes the pro
ess 
reation time, virtual ma-


hine initialization time, 
lass loading and initializa-

tion times, and the main thread exe
ution time to

draw the main window 
ompletely. The startup time

represents the user wait-time before the user 
an in-

tera
t with the appli
ation. All the sele
ted programs

have GUIs and these appli
ations do not a

ept any

input until they draw the initial window.

The Sun HotSpot virtual ma
hine is implemented

as a shared library and a startup program is used to

load this library. This startup program also initializes

the JVM, loads the appli
ation main 
lass, and then

passes 
ontrol to the appli
ation main method. This

initializing thread a
ts as the main thread for the

appli
ation. Usually GUI 
omponents 
reate other

threads to get user input. We modi�ed the startup

program to exit after the main thread �nishes its ex-

e
ution to measure the appli
ation startup time.

In order to measure the 
lass loading times, we

implemented a Java program that takes 
lass names

that are loaded by the appli
ation as input and mea-

sures the time to load these 
lasses. Using this pro-

gram, we measured the 
lass loading time for appli-


ations listed in Table 1. Figure 1 shows the results

of these 
lass loading times and appli
ation startup

times.

Ea
h bar in the �gure represents the overall ap-

pli
ation startup time and the lower part of the bar

indi
ates the 
lass loading time. Ea
h appli
ation is

asso
iated with two bars in the �gure. The �rst bar

is the appli
ation startup time when 
lass �les are

not in the �le 
a
he, and the se
ond bar is the ap-

pli
ation startup time when 
lass �les are in the �le


a
he. The appli
ation startup times are very high

for these appli
ations even on a fast ma
hine, and

these times are high even when 
lass �les are in the

�le 
a
he. Furthermore, the 
lass loading time is a

major 
omponent of appli
ation startup time when


lass �les are not in the �le 
a
he as it 
onstitutes

31% - 65% of appli
ation startup time.

We know that a signi�
ant number of appli
ation


lasses are already loaded by previous appli
ations

from the 
lass sharing experiments. Thus, one 
ould

exploit this available 
lass sharing to redu
e appli
a-

tion startup time. In fa
t, the single VM model very

0

2

4

6

8

10

12

14

16

18

S
w
in

gS
et

2

Ja
va

Sou
nd

gf
ac

to
ry

ic
eM

ail

T
im

e
 i

n
 s

e
c

o
n

d
s

Remaining application startup time

Class loading time

Figure 1: Class loading time impa
t on appli
ation

startup time

eÆ
iently eliminates the 
lass loading time be
ause

it shares 
lasses among all appli
ations and thereby

improves the appli
ation startup times. However, the

single VM model in
reases appli
ation total exe
u-

tion time be
ause of stati
 variable issue dis
ussed

in Se
tion 2.4. File 
a
hing is the only me
hanism

that 
an take advantage of 
lass sharing among ap-

pli
ations in the multiple VM model. The standard


ode sharing fa
ilities o�ered by the operating sys-

tem, shared libraries, 
annot take advantage of the


lass sharing be
ause the 
lass �le format is not in

the exe
utable format that is re
ognized by the op-

erating system to share 
ode a
ross pro
esses. Issues

in sharing dynami
 
ode generated by JITs are dis-


ussed in the related se
tion.

The virtual ma
hine initialization 
osts 
an be

eliminated by forking an existing Java appli
ation

pro
ess [7℄. The virtual ma
hine initialization time

is one of the 
omponents in the appli
ation startup

time. In the Java virtual ma
hine, this en
ompasses

pro
ess 
reation time, the interpreter generation, ini-

tializing the virtual ma
hine data stru
tures, and

loading approximately 250 standard 
lasses used by

the virtual ma
hine. Here onwards this optimization

is referred to as the IBM optimization. This opti-

mization eliminates approximately 1.5 se
onds from

6



the appli
ation startup time when 
lass �les are not

in the �le 
a
he, and 100 millise
onds when 
lass �les

are in the �le 
a
he. This optimization saves 10% -

20% of the appli
ation startup time when 
lass �les

are not in 
a
he, and 1% - 5% when all 
lass �les are

in �le 
a
he for the above mentioned appli
ations.

This optimization 
ertainly redu
es the appli
ation

startup time. However, there are still a signi�
ant

number of appli
ation-spe
i�
 
lasses (80% - 83%


lasses for appli
ations mentioned in Table 1) that

need to be loaded at appli
ation startup time and

this optimization 
annot eliminate this 
lass loading

time overhead.

From Figure 1, we see that the �le 
a
he redu
es

68% - 90% of the 
lass loading time in 
omparison

with the 
ase when �les are not in the �le 
a
he be-


ause of 
ostly I/O operations. This shows that some

form of 
a
hing is e�e
tive at redu
ing the appli
a-

tion startup time. However, the �le 
a
he may not

retain these 
lasses be
ause they 
an be 
ushed away

by other �le data [25℄. Class �les are very valuable to

redu
e the appli
ation startup times and they should

get higher priority than ordinary �les in the �le 
a
he.

Operating systems put exe
utable �les in the virtual

memory 
a
he, whi
h is separate from the �le 
a
he.

Hen
e, exe
utable �les get higher priority than the or-

dinary �les in the traditional operating system. How-

ever, 
lass �les do not get su
h a privilege in the

multiple VM model be
ause they are not part of the

virtual memory 
a
he. The following subse
tion de-

s
ribes a user level 
a
he me
hanism, shared 
lass


a
hing, that improves appli
ation startup time.

3.3 Class Ca
he

One solution to minimize the appli
ation startup

time is to 
reate a user level 
a
he to store appli-


ation 
lasses using the shared memory me
hanism

supported by the operating system. The virtual ma-


hine maps the shared region into its address spa
e as

part of its initialization. This 
lass 
a
hing puts the


lass 
ode into the virtual memory 
a
he. As a result,

these pages get the same priority as traditional 
ode

pages.

In JVMs, 
lasses are stored in the heap as a java

obje
t. The JVM 
onstru
ts this 
lass obje
t when it

needs to load a new 
lass. The 
lass loading involves

Appli
ation Single Multiple

startup VM Model VM model

Component Optimization Optimization

Virtual

Ma
hine Yes IBM

initialization Optimization


ost

Class

loading Yes Class

Times 
a
hing

Class

initialization No No

Time

Table 5: Appli
ation startup time 
omponents and

optimizations that eliminate or redu
e these 
osts in

both the single VM and multiple VM models

reading the 
lass �le, parsing the 
lass �le, verifying

the 
lass, and initializing stati
 variables. Ideally, one

would like to store these 
lass obje
ts in the shared

region so that all other appli
ations 
an share these


lasses and get the same bene�ts as the single VM

model provides for 
lass sharing. However, this ap-

proa
h has the same problems, su
h as stati
 variable

issues, as in the single VM model.

In our approa
h, the JVM stores 
lass summary

obje
ts in the 
lass 
a
he that is similar to the JVM


lass obje
t. The 
lass loading pro
ess is modi�ed

to look in the 
lass 
a
he �rst for the 
lass whenever

it needs to load a new 
lass. If the required 
lass

is in the 
lass 
a
he, it 
onstru
ts the 
lass obje
t

from the information stored in the 
lass 
a
he. If the


lass 
a
he does not have the required 
lass, the JVM

uses the regular method to load the ne
essary 
lass.

If the JVM loads the 
lass su

essfully, it also 
on-

stru
ts the summary obje
t and stores the summary

obje
t in the 
lass 
a
he. The JVM also skips the

veri�
ation phase whenever it loads a 
lass from the


lass 
a
he be
ause the 
lass is already veri�ed when

it enters the 
lass 
a
he. The 
lass summary obje
t

has all the information as in the 
lass �le and extra

information that is 
omputed as part of 
lass loading.

This extra information in
ludes the itable that is used

to speedup the interfa
e method lookups, the vtable

7



that is used to speedup the 
lass method lookups,

and the oop maps that are used at garbage 
olle
-

tion time to identify obje
t pointers in obje
ts of this


lass.

Our approa
h has two advantages over just relying

upon the �le system 
a
he. First, it saves spa
e in the

shared region be
ause the 
lass stru
ture is smaller

than the 
lass �le. Se
ond, it speeds up the 
lass

parsing time.

Our approa
h saved most of the 
lass loading time

as in the single VM model ex
ept the 
lass initial-

ization time that initializes stati
 variables. How-

ever, this 
lass initialization time 
annot be elimi-

nated even in the single VM model. The main rea-

son for this is that the 
lass initialization 
an exe
ute

any arbitrary user 
ode. Therefore, initial values of

stati
 variables depend on the entire virtual ma
hine

state. Hen
e, initial values of stati
 variables are not


a
hable. Our approa
h uses more memory than the

single VM approa
h to store the 
lass summary ob-

je
ts, but in the desktop environment main memory

is abundant. Hen
e, trading memory for performan
e

is justi�able. Table 5 summarizes the various 
ompo-

nents of appli
ation startup time and optimizations

that eliminate or redu
e these 
omponent 
osts in

both single and multiple VM models.

The 
lass 
a
he has a �nite amount of memory and

simple LRU is used as a repla
ement poli
y. Ca
he


oheren
e is implemented using the �le modi�
ation

event me
hanism supported by many operating sys-

tems, in
luding Windows 2000 and FreeBSD. An ex-

tra pro
ess is used to maintain the 
lass 
a
he. This

extra pro
ess is used to implement the IBM Opti-

mization to fork from a 
lean pro
ess running a bare

virtual ma
hine. Here onwards this pro
ess is referred

to as the skeleton pro
ess. Any virtual ma
hine pro-


ess 
an load the 
lass into the 
lass 
a
he and it

also informs the skeleton pro
ess about the loaded


lass. The skeleton pro
ess registers with the oper-

ating system to get the noti�
ation events whenever

any of the 
a
hed �les are modi�ed. The skeleton

pro
ess removes the modi�ed 
lass and all of its sub-


lasses from the 
a
he whenever it gets the modi�
a-

tion event for a 
lass. The skeleton pro
ess has to re-

move all sub
lasses of the modi�ed 
lass be
ause the

itable and vtable of sub
lasses depend on the modi-

�ed 
lass. If the operating system does not support

the �le modi�
ation event then we 
ould store the �le

modi�
ation time in the summary obje
t and this �le

modi�
ation time 
an be used to validate staleness of

the 
lass 
a
he summary obje
t.

3.3.1 Implementation status

We implemented this shared memory based 
lass


a
hing in the Sun HotSpot server virtual ma
hine

2.0 on the Windows 2000 operating system. Most

of the above design is implemented ex
ept for the

modi�
ation event me
hanism. In the 
urrent imple-

mentation only itables and vtables sizes are saved.

3.4 Results

The programs in Table 1 are used to show the eÆ
a
y

of 
lass 
a
hing on mi
ro-ben
hmarks that load only

appli
ation 
lasses and on appli
ation startup times.

Figure 2 shows the 
lass loading time for programs

in Table 1. Ea
h bar represents the appli
ation 
lass

loading time. The �rst, se
ond, third, and fourth

bars show the appli
ation 
lass loading time when


lass �les are not in the �le 
a
he, when 
lass �les are

in the �le 
a
he, when 
lass �les are in the �le 
a
he

but not in the 
lass 
a
he, and when 
lass �les are

loaded from the 
lass 
a
he, respe
tively. The 
lass

loading time when 
lass �les are in the 
lass 
a
he

and not in the �le 
a
he are shown again in Figure 2

for 
ompleteness. We did not show the 
lass loading


osts for the single VM model be
ause it eliminates

all of these 
osts. The 
lass 
a
he improves 
lass load-

ing times 72% - 90% 
ompared with the 
ase when


lass �les are not in the �le 
a
he and it improves

4% - 15% 
ompared with the 
ase when 
lass �les

are in �le 
a
he for the appli
ations in Table 1. As

expe
ted, the 
lass 
a
he improves the 
lass loading


osts dramati
ally 
ompared to the 
ase when �les

are not in the 
a
he. Furthermore, the 
lass 
a
he

improves 
lass loading time even 
ompared to the �le


a
he.

Figure 3 shows the results of the appli
ation

startup time experiments. Ea
h bar in this �gure

shows the appli
ation startup time after applying

the IBM optimization. The �rst, se
ond, third, and

fourth bars show the appli
ation startup time when


lass �les are not in the �le 
a
he, when 
lass �les are

8



0

1

2

3

4

5

6

7

8

SwingSet2 JavaSound gfactory iceMail

C
la

s
s
 l

o
a
d

in
g

 t
im

e
 i

n
 s

e
c
o

n
d

s

with out file cache

with file cache

without class cache but with file cache

with class cache

Figure 2: Appli
ation 
lass loading times

0

2

4

6

8

10

12

14

16

18

SwingSet2 JavaSound gfactory iceMail

S
ta

rt
 u

p
 t

im
e
 i
n
 s

e
c
o
n
d
s

without file cache
with file cache
with out class cache but with file cache
with class cache
single VM model

Figure 3: Appli
ation startup times

0

5

10

15

20

25

ja
ck

co
m

pr
ess je

ss db

m
peg

aud
io

T
o

ta
l 
e

x
e

c
u

ti
o

n
 t
im

e
 i
n

 s
e

c
o

n
d

s

w ithout class cache

f irst time w ith class cache

second time w ith class cache

Figure 4: Exe
ution times for JVMSpe
98 ben
h-

mark programs

in the �le 
a
he, when 
lass �les are in the �le 
a
he

but not in the 
lass 
a
he, and when 
lass �les are

in the 
lass 
a
he, respe
tively. The �fth bar shows

the appli
ation startup time in the single VM model.

Class �les are loaded into the virtual ma
hine and

then the appli
ation main thread is exe
uted to mea-

sure its startup time in the single VM model. The

appli
ation startup time in the single VM model is

a 
onservative estimate only. This is a 
onservative

estimate be
ause the single VM model eliminates the


lass veri�
ation 
osts and we 
ould not eliminate

these veri�
ation 
osts in our approa
h.

The overhead of 
lass 
opying into the 
lass 
a
he

is 0.3% - 6% 
ompared with the 
ase when 
lass �les

are in the �le 
a
he and, as the �gure shows, this

overhead very small. This 
ost is a one time 
ost and

it is amortized over all appli
ations that load this


lass.

The 
lass 
a
he redu
es appli
ation startup time

38% - 69% 
ompared with the 
ase when 
lass �les

are not in the �le 
a
he. More importantly, this 
lass


a
he improves appli
ation startup time 2% - 21%


ompared with the 
ase when 
lass �les are in �le


a
he. We are 
omparing our approa
h with the �le


a
he be
ause the �le 
a
he time gives the best ap-

pli
ation startup time that 
ould be a
hieved using

existing me
hanisms. As previously mentioned, this

9



time is the most optimisti
 and may not always be

a
hieved. Our approa
h always performs better in


omparison with the �le 
a
he, the most optimisti



ase. However, 
lass 
a
hing is 9% - 38% more 
ostly

than the single VM model. As the �gure shows, the

appli
ation startup times using 
lass 
a
hing in the

multiple VM model is within the order of appli
ation

startup time in the single VM model.

We used the JVMSpe
98 ben
hmark programs

with the 
lass 
a
he to evaluate the performan
e im-

pli
ations of the 
lass 
a
he on long running pro-

grams. Figure 4 shows the total exe
ution time for

�ve of the spe
98 ben
hmark programs. We ran

ea
h spe
98 ben
hmark program (1) without the 
lass


a
he (the �rst bar for ea
h program shows this ex-

e
ution time), (2) with an empty 
lass 
a
he (the

se
ond bar), and (3) with all the required 
lasses in

the lass 
a
he (third bar). The JVMSpe
98 ben
h-

mark programs load very few 
lasses (around 300{

400). As expe
ted, the impa
t of 
lass 
a
hing is

very little (less than 1% improvement over the base


ase) and overhead of loading 
lass summary into the


lass 
a
he is also very little (less than 1%).

4 Inter Pro
ess Communi
a-

tion

The single VM model 
laims to have the most eÆ-


ient interpro
ess 
ommuni
ation among appli
ation

be
ause it allows appli
ations to pass obje
t refer-

en
es among themselves [5℄. However, in pra
ti
e this

is not always possible be
ause of data 
oheren
e is-

sues. Most of the appli
ations on the desktop are

developed independently. Hen
e, passing an obje
t

referen
e to another appli
ation may lead to a state

where both appli
ations trying to a

ess the obje
t

at the same time may 
orrupt obje
t data, thereby

hampering the 
orre
tness of both appli
ations.

One solution is to make all methods of a 
lass syn-


hronized if there is a possibility of passing an obje
t

of the 
lass to another appli
ation. This solution is

not feasible be
ause one has to implement syn
hro-

nization on all methods of a serializable 
lass, whi
h

de
reases the appli
ation performan
e unne
essarily

and is not possible for older appli
ations that did

not have these syn
hronized methods implemented

already.

Thus, even in the single VM model, independently

developed appli
ations require some form of 
opying

to pass obje
ts [4℄. The easiest way is to use the

Java serialization. However, the single VM model 
an

implement a more eÆ
ient serialization me
hanism.

There are two me
hanisms for 
opying obje
ts in

the Java environment and they are Java serialization

and 
loning. Java serialization serializes an obje
t

and all obje
ts that 
an be a

essed from the obje
t

into a stream, and the same me
hanism 
an be used

to re
onstru
t an obje
t from the stream. Cloning is

another me
hanism to 
opy obje
ts within one JVM.

Cloning simply 
opies the obje
t but does not 
opy

the all obje
ts that are a

essible from the given ob-

je
t. For simple array types that do not refer to any

other obje
ts, 
loning and serialization are the same

in terms of fun
tionality.

In this se
tion, we 
ompare the Java standard se-

rialization with 
loning for 
opying simple array ob-

je
ts to show that serialization is very ineÆ
ient for

lo
al 
ommuni
ation. The simple array type obje
ts

are the easiest obje
ts to serialize and serialization

needs to do at least the same amount of work for se-

rializing any other obje
t types. Hen
e, serialization

eÆ
ien
y results for the simple array type are also

appli
able to other obje
t types. Comparing the se-

rialization 
ost with the 
loning 
ost for simple array

types estimates the amount of overhead of serializa-

tion. We emphasize again that, even in the single

VM model, 
loning is not useful for 
opying obje
ts

that have referen
es to other obje
ts be
ause it does

not perform a deep 
opy and it does not provide any

data prote
tion. On the other hand, serialization is

designed to 
opy obje
ts se
urely a
ross appli
ations.

Hen
e, serialization has to be used to 
opy obje
ts

between appli
ations in both single and multiple VM

models.

Table 6 shows the time to 
opy a simple integer ar-

ray using various 
opying me
hanisms. All the times

in the table are mi
rose
onds. The integer array size

is varied from 1 to 256KB. The se
ond 
olumn shows


opying 
osts for 
loning and the third 
olumn shows

the 
opying 
osts for standard serialization with a �le

as a stream bu�er. Be
ause using a �le introdu
es

10



size 
loning Serialization Serialization

using a File using byte

array

1 0.010 0.282 0.122

2 0.010 0.280 0.114

4 0.010 0.300 0.122

8 0.008 0.292 0.117

16 0.010 0.329 0.127

32 0.010 0.308 0.149

64 0.009 0.336 0.164

128 0.010 0.395 0.224

256 0.013 0.336 0.137

512 0.018 0.354 0.157

1024 0.018 0.438 0.212

2048 0.028 1.137 0.297

4096 0.053 2.405 0.489

8192 0.083 2.855 1.472

16384 0.653 5.553 1.605

32768 0.899 13.73 6.330

65536 1.237 24.47 6.612

131072 7.058 50.11 15.33

262144 14.57 90.57 24.15

Table 6: Serialization 
osts for simple Int Arrays

(times are in mi
rose
onds)

overhead, we also implemented a simple byte-array-

based stream bu�er to eliminate operating system in-

terferen
e. The fourth 
olumn shows 
opying 
osts

for standard serialization with the byte-array-based

stream bu�er. Cloning is one operation to 
reate a

new 
opy of an obje
t in the same pro
ess whereas

serialization requires two operations, namely readOb-

je
t, writeObje
t, to do the same. All timings for se-

rialization in Table 6 are the 
ombined 
ost of read-

Obje
t and writeObje
t operations.

As expe
ted, serialization using the �le performed

the worst of all three me
hanisms. However, 
loning

performed an order of magnitude better than serial-

ization. Cloning performed 6 - 41 times better than

the standard serialization with the �le as bu�er, and

1.6 - 22 times better than the standard serialization

with byte array as a bu�er. This shows the need

for eÆ
ient 
opying me
hanisms in both single and

multiple VM models.

Mu
h of previous resear
h approa
hed this prob-

lem in the remote method invo
ation (RMI) 
ontext

be
ause serialization is a major overhead in RMI. A

ni
e summary of the previous work in this area is pre-

sented in [15℄. The major overhead in serialization is


opying 
osts to 
opy the data among di�erent bu�ers

and the usage of 
ostly 
lass introspe
tion primitives

to get obje
t type information and data. For exam-

ple, the standard serialization 
opies the data three to

four times among di�erent bu�ers to serialize a simple

array type depending on the stream bu�er. Not sur-

prisingly, most of improved implementations [15, 16℄

used their own bu�ering me
hanisms to redu
e 
opy-

ing 
osts.

The 
lass introspe
tion 
ost 
an be avoided by us-

ing 
ustomized marshaling 
ode to marshal the ob-

je
t data [16℄. However, this requires support from

the 
ompiler to generate the marshaling 
ode for ea
h

serializable 
lass. Hen
e, this optimization is not

feasible in pra
ti
e be
ause existing appli
ations do

not have this 
ode built-in and re-
ompilation is not

always possible be
ause their sour
e 
ode may not

available for many appli
ations.

The Java virtual ma
hine (JVM) �rst 
opies the

simple type array into the C-heap area and then it

returns the address of this 
opy to the native 
ode

to a

ess simple array type elements. This extra


opy is eliminated if the JVM simply returns the

start address of the simple type array rather than

the 
opied array address [15℄. Hen
e, this approa
h

redu
es 
opying 
osts very e�e
tively for basi
 type

arrays. It thereby redu
es the serialization 
osts dra-

mati
ally for them.

However, this approa
h intera
ts very poorly with

garbage 
olle
tion that moves obje
ts. It has to delay

the garbage 
olle
tion until it �nishes 
opying the ar-

ray to another bu�er be
ause garbage 
olle
tion may

move the Java obje
t that invalidates the address re-

turned by the JVM for an array. At present, most

JVMs use stop-the-world garbage 
olle
tion and this

o

urs only at 
ertain points. Hen
e, one 
an delay

the garbage 
olle
tion in the 
urrent JVMs. However,


on
urrent garbage 
olle
tion poses a serious threat

to the 
orre
tness of this approa
h be
ause garbage


olle
tion 
an happen at any time. Note that .NET

11



uses 
on
urrent garbage 
olle
tion and soon JVMs

are also going to implement 
on
urrent garbage 
ol-

le
tion to minimize the garbage 
olle
tion 
ost [26℄.

Hen
e, this approa
h is not appli
able in the virtual

ma
hines that use 
on
urrent garbage 
olle
tion even

though it minimizes the 
opying 
osts for simple ar-

ray types.

The type information returned by 
lass introspe
-

tion methods 
an be 
a
hed to redu
e 
lass intro-

spe
tion 
osts. However, the Sun JDK1.3 also uses

these optimizations in its serialization. Thus, we just

simply 
ompare our approa
h with the Sun JDK1.3

serialization implementation to evaluate the merits of

our approa
h.

4.1 Serialization

We argue that the best way to minimize 
opying and


lass introspe
tion 
osts is to implement serialization

in the virtual ma
hine where all the needed informa-

tion to serialize an obje
t is a

essible 
heaply. Class

introspe
tion 
osts are minimized be
ause the virtual

ma
hine maintains information about 
lass �elds in

a very 
ompa
t way and we 
an use this informa-

tion dire
tly if the serialization is implemented in the

virtual ma
hine. Bu�ering 
osts are also minimized

be
ause obje
ts 
an be a

essed dire
tly in the vir-

tual ma
hine without going through the native inter-

fa
e that requires an extra 
opy. The virtual ma
hine

also provides handles, an indire
t referen
e to obje
ts,

for obje
ts that are preserved during garbage 
olle
-

tion. Hen
e, all the issues of in
orre
tness due to

garbage 
olle
tion are eliminated by using these han-

dles. Note that this is not possible if the serialization

is implemented in native 
ode. Salient features of

our serialization design are des
ribed in the following

paragraphs.

Shared memory is the most eÆ
ient interpro
ess


ommuni
ation method for passing data between ap-

pli
ations on a single ma
hine be
ause this elimi-

nates operating system interferen
e on
e the shared

memory region is established. Hen
e, we use shared

memory to transfer the data between appli
ations.

Our implementation uses shared memory as a sim-

ple queue with lo
k primitives to syn
hronize the

reader and the writer pro
esses. The write pointer

points to the free lo
ation in the bu�er and the read

pointer points to the next available data position in

the bu�er.

Serialization usually uses a small bu�er to serial-

ize small obje
ts in order to minimize the frequent

usage of relatively high-
ost interpro
ess 
ommuni-


ation primitives. Shared memory is also 
ostly for

passing small data frequently be
ause of syn
hroniza-

tion. We avoided these bu�ering and syn
hronization


osts by using shared memory as a temporary bu�er.

The shared memory is a

essed by two pro
esses only

and in ea
h of these pro
esses only one thread is able

to a

ess the shared memory be
ause of Java syn
hro-

nized methods. A thread reserves a small portion and

uses that as a temporary bu�er whenever it needs to


opy small data. The important point is that this

reservation does not move the read/write pointer so

that the other pro
ess does not a

ess the temporary

bu�er until this thread releases the bu�er. Sin
e the

thread has ex
lusive a

ess to the temporary bu�er, it

does not require any syn
hronization while it a

esses

the bu�er. As a result, it minimizes the 
ost of syn-


hronization. It also minimizes 
opying 
osts be
ause

only one 
opy is needed. The thread releases the tem-

porary bu�er on
e it �lls the temporary bu�er or it


ompletes the serialization. This release also moves

the read/write pointer so that the other pro
ess 
an

a

ess the data as a big 
hunk of data.

Serialization �rst determines the serializable �elds

of an obje
t and then starts serializing those �elds.

The JVM primitive to a

ess �eld attributes is 
ostly

and required every time the obje
t is serialized. We

minimized these 
osts by 
a
hing the identity of seri-

alizable �elds of a 
lass. We 
reate a small array that

has information about serializable �elds of a 
lass

when we �rst serialize an obje
t of the 
lass. This

array is stored in the 
lass stru
ture to use in the

subsequent serialization of an obje
t of this 
lass.

Though we fo
used on eÆ
ient serialization for the

multiple VM model, our approa
h also redu
e seri-

alization 
osts in the single VM model. Our serial-

ization is amenable to further improvements in the

single VM model, and we des
ribe one of them here.

One 
opy is required in the multiple VM model to

transfer data from one pro
ess to another. The only

way to eliminate this 
opy is to somehow share an ap-

pli
ation's garbage 
olle
ted heap spa
e so that one

12



pro
ess 
an 
reate Java obje
ts in another pro
ess

and write dire
tly into those new obje
ts. However,

this sharing of garbage 
olle
ted heap spa
e leads to

se
urity problems that are similar to the native 
ode

problems in the single VM model. However, in the

single VM model, all appli
ations share the garbage


olle
ted heaps and the native 
ode has a

ess to 
re-

ate and write into the other appli
ation's garbage


olle
ted heap. Thus, our serialization 
an easily be

modi�ed to remove this one 
opy required in the mul-

tiple VM model to improve the serialization for the

single VM model.

4.2 Implementation status

We implemented the serialization optimization and

the required 
lasses to use it. The shared mem-

ory based stream bu�ers are also implemented. At

present, the shared memory stream is using the mu-

tex primitives provided by the JVM; ideally, we

would want to use the operating system provided syn-


hronization primitives dire
tly. In our experiments,

the reader and writer threads are running in a sin-

gle JVM. Thus, these syn
hronization primitives are

enough for the 
orre
tness. We still need to imple-

ment the support for the serializable and externaliz-

able interfa
es that are used to 
ustomize the serial-

ization pro
ess.

JVM allo
ation primitives always return zero-�lled

memory. This initialization 
ould be eliminated in

reading the simple array types be
ause we know that

this entire array is going to be initialized by serializa-

tion with 
orre
t values immediately. We did not im-

plement this optimization in the 
urrent implemen-

tation be
ause it required signi�
ant 
hanges to the

allo
ation primitives even though this optimization


learly improves the read serialization 
ost.

4.3 Results

In this se
tion, we 
ompare our serialization opti-

mization to the standard JVM serialization with �le

and shared memory as stream bu�ers. The �le bu�er

is representative of the 
ase where the operating sys-

tem is involved in the 
ommuni
ation and shared

memory is representative of the 
ase where operat-

ing system is not involved in 
ommuni
ation. By


omparing results for these two bu�ering me
hanisms

0

5

10

15

20

25

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

Number of elements in integer array

T
im

e
 i

n
 M

ic
ro

s
e
c
o

n
d

s

Standard serialization with file as a buffer

Standard serialization with shared memory as a

buffer
New serialization with shared memory as a buffer

Figure 5: Serialization 
ost to read simple Integer

array

0

10

20

30

40

50

60

70

80

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

Number of eliments in integer array

T
im

e
 i
n

 M
ic

ro
s

e
c
o

n
d

s Cloning

Standard serialization with file as a buffer

Standard serialization with shared memory as a

buffer
New serialization with shared memory as a buffer

Figure 6: Serialization 
ost to write simple Integer

array

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary tree Hieght

T
im

e
 i

n
 M

ic
ro

s
e
c
o

n
d

s

Standard serialization with file as a buffer

Standard serialization with share memory as a buffer

Standard serialization with customized marshalling routines with

shared memory as a buffer
New serialization with shared memory as a buffer

Figure 7: Serialization 
ost to read binary Tree

13



0

20

40

60

80

100

120

140

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary t ree Height

T
im

e
 i

n
 M

ic
ro

s
e
c
o

n
d

s

Standard serialization with file as a buffer

Standard serialization with shared memory as a buffer

Standard serialization with customized marshalling routines and

with shared memory as a buffer

New serialization with shared memory as a buffer

Figure 8: Serialization 
ost to write binary Tree

we show that 
ommuni
ation that requires operat-

ing system involvement performs very poorly. This

validates our 
hoi
e of bu�ering me
hanism, shared

memory. We 
hose simple a type array and binary

tree to evaluate various serialization me
hanisms.

These two types represent simple and 
omplex ob-

je
t types. Sin
e these two types are two ends of the

spe
trum, we 
laim that results for other type of ob-

je
ts are also similar to the results presented in this

se
tion.

Figure 5 shows serialization 
osts to read a simple

integer array from the stream. As expe
ted, standard

serialization with shared memory bu�er performs an

order of magnitude better than the standard serial-

ization with �le bu�er. The main reason for this is

that �le bu�er requires one extra 
opy and system


all overhead. The new serialization performed ex-

tremely well, and it redu
es the serialization 
osts by

6 - 21 times in 
omparison with standard serialization

with a �le bu�er as a stream bu�er. It also redu
es

the serialization 
osts by 2.5 - 12.5 times 
ompared

with the standard serialization using shared memory

as a stream bu�er.

Figure 6 shows the serialization 
osts for writing a

simple integer array into the stream. These results

are very similar to the serialization 
osts for read-

ing obje
ts. We also 
ompared our serialization with


loning be
ause it is the best 
opying me
hanism that

is available in the single VM model for basi
 type ar-

rays. We assumed the read 
ost for 
loning is zero

be
ause 
loning is one operation and we 
hara
terize

the entire 
loning 
ost as a writing 
ost. One interest-

ing point is that our 
ombined read and write serial-

ization 
osts performed better than 
loning for larger

integer arrays. In 
loning, the JVM marks 
ards that

are used in garbage 
olle
tion on
e it 
opied the array

irrespe
tive of the array type. This operation added

additional overhead to 
loning, and our serialization

eliminates this 
ost for basi
 type arrays be
ause we

know that basi
 type arrays do not have any obje
t

referen
es. As expe
ted, our serialization performed

mu
h better than the standard serialization.

Figure 7 and Figure 8 show the read and write

serialization 
osts for a 
omplete binary tree with in-

tegers as data in ea
h node. Our optimized serializa-

tion performed an order of magnitude better than the

standard serialization. In these �gures, we also 
om-

pared our approa
h with the 
ustomized marshaling


ode using a shared memory based bu�ering serial-

ization. As explained earlier, 
ustomized marshaling

routines redu
es 
lass introspe
tion 
osts. However,

the 
ustomization only marginally improves the 
ost

over the standard serialization.

Our new serialization improves serialization 
osts

an order of magnitude over standard serialization for

both types of obje
ts be
ause of better bu�ering and

more eÆ
ient primitives to a

ess obje
t data and

type information. Sin
e these two obje
t types rep-

resent two ends of the spe
trum of di�erent kinds

of obje
ts, we expe
t that our serialization will also

perform similarly for other types of obje
ts.

5 Con
lusions

In this paper, we presented an intermediate model

for supporting multiple appli
ations in virtual ma-


hine environments for desktop operating systems.

We argue that appli
ations should take advantage

of the prote
tion features and resour
e management

provided by the operating system and exe
ute ea
h

appli
ation in its own virtual ma
hine pro
ess. How-

ever, to fa
ilitate 
ode reuse, redu
e appli
ation ini-

tialization time, and fa
ilitate interpro
ess 
ommu-

ni
ation among appli
ations in di�erent virtual ma-


hines, we proposed extending virtual ma
hine imple-

14



mentations with the use of a shared 
lass 
a
he and an

eÆ
ient serialization implementation optimized for

lo
al ma
hine interpro
ess 
ommuni
ation.

To explore the feasibility of our model, we designed

and implemented a shared 
lass 
a
he and optimized


lass serialization in the Java virtual ma
hine. To

demonstrate its e�e
tiveness, we evaluated our im-

plementation using a set of 
ommon Java appli
a-

tions and mi
ro-ben
hmarks. From our evaluation,

we �nd that 
ommon Java appli
ations share up to

75% of their 
lasses, and show that a shared 
lass


a
he 
an redu
e appli
ation initialization time by up

to 72{90%. We also show that a 
lass serialization im-

plementation optimized for lo
al 
ommuni
ation 
an

redu
e 
ommuni
ation 
osts by fa
tors of 2.5{12.

We note that our 
lass sharing 
a
he stores 
lass

data stru
ture and byte 
ode only. The 
ode gener-

ated by JIT 
ompilers is not shared in our 
urrent

implementation, and the overhead of JIT 
ompila-

tion 
ould be minimized by 
a
hing partial results of

previous 
ompilations [14℄. Another solution to re-

du
e this overhead is to share the 
ompiled 
ode as

des
ribed in [2℄. The 
ode generated by the JIT 
om-

piler is very spe
i�
 to the 
urrent exe
ution of the

program and 
lasses loaded till that time. Hen
e, the

JIT generated 
ode may not be optimum 
ode for an-

other appli
ation. A more detailed study is needed

to understand e�e
tiveness of re-usability of JIT gen-

erated 
ode.

Finally, we note that Java RMI 
ould be modi�ed

to take advantage of our serialization to improve its

performan
e. A similar study showed that 2 - 8 times

improvement for small ben
hmarks [1℄.

Referen
es

[1℄ K. Pala
z, G. Czajkowski, L. Daynes, and J.

Vitek, \In
ommuni
ado: EÆ
ient Communi
a-

tion for Isolates", In Pro
eedings of Obje
t-

Oriented Programming, Systems, Languages

and Appli
ations, Seattle, WA. (Nov. 2002).

[2℄ G. Czajkowski, L. Daynes, and N. Nystrom,

\Code sharing Among Virtual ma
hines", In

ECOOP, Malaga, Spain, (Jun. 2002).

[3℄ G. Czajkowski, \Appli
ation Isolation in the

Java Virtual Ma
hine", In Pro
eedings of ACM

Conferen
e on Obje
t-Oriented Programming,

Systems, Languages and Appli
ations, Min-

neapolis, MN, (O
t. 2000).

[4℄ G. Czajkowski, L. Daynes, \Multi-tasking with-

out 
ompromise: a Virtual Ma
hine Approa
h",

In Pro
eedings of Obje
t-Oriented Program-

ming, Systems, Languages and Appli
ations,

Tampa, FL. (O
t. 2001).

[5℄ G.Ba
k, W.C. Hsieh, and J. Lepreau. \Pro-


esses in Ka�eOS: Isolation, resour
e manage-

ment, and sharing in Java", In Fourth Sympo-

sium on Operating Systems Design and Imple-

mentation, (O
t. 2000).

[6℄ G. Czajkowski, C-C. Chang, C. Hawblitzel, D.

Hu, T. von Ei
ken \Resour
e Management for

Extensible Internet Servers", In Eighth ACM

SIGOPS European Workshop Support for Com-

posing Distributed Appli
ations Sintra, Portu-

gal, (Sep. 1998).

[7℄ D. Dillenberger, R. Bordawekar, C. W. Clark,

D. Durand, D. Emmes, O. Gohda, S. Howard,

M. F. Oliver, F. Samuel, and R. W. St. John,

\Building a Java virtual ma
hine for server ap-

pli
ations: The Jvm on OS/390", In IBM Sys-

tems Journal, Volume 39, Number 1, 2000.

[8℄ Dahlia Malkhi, Mi
hael Reiter, Avi Rubin, \Se-


ure Exe
ution of Java Applets using a Remote

Playground", In IEEE Symposium on Se
urity

and priva
y, Oakland, CA, (May 1998).

[9℄ Trent Jaeger, Jo
hen Liedtke, and Nayeem Is-

lam, \Operating System Prote
tion for Fine-

Grained Programs", In Seventh USENIX Se
u-

rity Symposium, (Jan. 1998).

[10℄ S. Liang and G. Bra
ha, \Dynami
 
lass load-

ing in the Java Virtual Ma
hine", In Pro
eed-

ings of Obje
t-Oriented Programming, Systems

Languages and Appli
ations, (O
t. 1998).

[11℄ G. Czajkowski, L. Daynes, M. Wol
zko, \Au-

tomated and Portable Native Code Isolation",

15



In Pro
eedings of the 12th IEEE International

Symposium on Software Reliability Engineering,

Hong-Kong, (Nov. 2001).

[12℄ J. Lepreau, P. Tullmann. \Nested Java pro-


esses: OS stru
ture for mobile 
ode", In Eighth

ACM SIGOPS European Workshop Support

for Composing Distributed Appli
ations Sintra,

Portugal, (Sep. 1998).

[13℄ Mi
hael Pale
zny, Christopher Vi
k, and Cli�

Cli
k, \The Java HotSpot Server Compiler", In

Java Virtual Ma
hine Resear
h and Te
hnology

Symposium, Monterey, California, (Apr. 2001).

[14℄ Chandra Krintz and Brad Calder, \Using An-

notations to Redu
e Dynami
 Optimization

Time", In ACM SIGPLAN 2001 Conferen
e on

Programming Language Design and Implemen-

tation (PLDI), (June 2001).

[15℄ Fabian Breg, Constantine D. Poly
hronopou-

los, \Java Virtual Ma
hine Support for Obje
t

Serialization", In Java Grande/ISCOPE 2001

Spe
ial Issue of Con
urren
y and Computa-

tion:Pra
ti
e and Experien
e.

[16℄ Mi
hael Philippsen, Bernhard Hauma
her.

\More EÆ
ient Obje
t Serialization", In Work-

shop on Java for Parallel and Distributed Com-

puting, (1999).

[17℄ J. Hummel, A. Azevedo, D. Kolson, and A.

Ni
olau, \Annotating the Java Byte
odes in

Support of Optimization", In Journal Con
ur-

ren
y:Pra
ti
e and Experien
e, Vol. 9(11), (Nov.

1997).

[18℄ P. Pominville, F. Qian, R. Vallee-Rai, L. Hen-

dren, and C. Verbrugge, \A Framework for Op-

timizing Java Using Attributes." In Sable Te
h-

ni
al Report No. 2000-2, (2000)

[19℄ O. Babaoglu and W. Joy, \Converting a swap-

based system to do paging in an ar
hite
ture

la
king page-referen
ed bits." In Pro
eedings of

the Eight Symposium on Operating Systems

Prin
iples, Pa
i�
 Grove, CA, (De
. 1981).

[20℄ Sun JDK1.4 new IO APIs,

http://java.sun.
om/j2se/1.4/do
s/guide/nio/index.html,

(2002).

[21℄ Tim Lindholm and Frank Yellin, The Java

TM

Ma
hine Spe
i�
ation, se
ond edition, Addison-

Wesley Publishers (1999).

[22℄ Mi
rosoft .NET Environment,

http://www.mi
rosoft.
om/net/

[23℄ J. C. Brustoloni and P. Steenkiste, \E�e
ts of

bu�ering semanti
s on I/O performan
e", In

Pro
. 2nd USENIX Symp. on Operating Systems

Design and Implementation, Seattle WA, (O
t.

1996).

[24℄ V. Pai, P. Drus
hel, and W. Zwaenepoel, \IO-

Lite: A uni�ed I/O bu�ering and 
a
hing sys-

tem", In Pro
. of the 3rd Symposium on Oper-

ating Systems Design and Implementation, New

Orleans, LA, (Feb. 1999).

[25℄ A. Wang, H. Kuenning, P. Reiher, J. Popek.

\Conquest: Better Performan
e Through a

Disk/Persistent-RAM Hybrid File System", In

Pro
. of the 2002 USENIX Annual Te
hni
al

Conferen
e, Monterey, (June 2002).

[26℄ T. Domani and et al., \Implementing an on-the-


y garbage 
olle
tor for Java", in Pro
. of the

ACM SIGPLAN Symposium on Memory Man-

agement, (2000).

[27℄ Marie T. Conte, Andrew R. Tri
k, John C. Gyl-

lenhaal, and Wen-mei W. Hwu, \A Study of

Code Reuse and Sharing Chara
teristi
s of Java

Appli
ations", In Workshop on Workload Char-

a
teristi
s, Mi
ro-31, (Nov. 1998).

16




