UC San Diego

Technical Reports

Title
Interaction of Virtual Machine with the Operating System

Permalink
https://escholarship.org/uc/item/7nd1940m|

Authors

Tati, Kiran
Voelker, Geoffrey M

Publication Date
2002-12-02

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/7nd1940m
https://escholarship.org
http://www.cdlib.org/

Interaction of Virtual Machine with the Operating System

Kiran Tati and Geoffrey M. Voelker
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-011/

{ktati, voelker}@cs.ucsd.edu

Abstract

As applications executing in virtual machine runtime
environments such as the Java Virtual Machine and
the .NET Common Language Runtime become more
prevalent on desktop operating systems, this trend
raises the interesting question of the best model for
supporting multiple applications in virtual machine
environments. A natural model is to execute each
application in its own virtual machine process. How-
ever, multiple applications could also be executed in a
single virtual machine process by leveraging the pro-
tection and security features of the programming lan-
guages used by the applications. Executing within
a single virtual machine process makes it easier to
share code and data and communicate among the
processes.

In this paper, we present an intermediate model
for supporting multiple applications in virtual ma-
chine environments for desktop operating systems.
We argue that applications should take advantage
of the protection features and resource management
provided by the operating system and execute each
application in its own virtual machine process. How-
ever, to facilitate code reuse, reduce application ini-
tialization time, and facilitate interprocess commu-
nication among applications in different virtual ma-
chines, we propose extending virtual machine imple-
mentations with the use of a shared class cache and
an efficient serialization implementation optimized
for local machine interprocess communication. To
demonstrate and evaluate our approach, we describe
the design and implementation of a shared class cache

and optimized class serialization in the Java virtual
machine, and evaluate our implementation using a
set of application and micro-benchmarks.

1 Introduction

The widespread adoption and use of the World Wide
Web has spawned a new class of Internet appli-
cations on client-server systems, from email to e-
commerce to down-loadable applets. To facilitate de-
velopment and deployment, new programming lan-
guages such as Java and C# and runtime environ-
ments such as the Java Virtual Machine (JVM) and
the .NET common language runtime (CLR) environ-
ment have been created to support the portability, se-
curity, and rapid development requirements of these
applications. Both Java and .NET are now widely
used to implement Web applications on servers, and
are increasingly being used for desktop applications
on clients as well. In particular, as Microsoft tran-
sitions more of its applications to the .NET CLR,
executing applications in a managed runtime envi-
ronment, or virtual machine, will become the norm
rather than the exception on client-side desktop op-
erating systems. As an extreme, if Microsoft adopts
the .NET CLR for all of its applications, then nearly
all applications executed on desktop computers will
execute within a virtual machine.

Extensive use of virtual machines for executing ap-
plications on desktop operating systems raises the in-
teresting question of the best model for supporting
those applications in virtual machine environments.
A natural model is to execute each application in

its own private virtual machine and operating sys-
tem process. This model requires no additional func-
tionality, and leverages the existing protection and
resource management mechanisms of the operating
system to isolate applications and manage resources
across applications. In contrast, a different model is
to execute many or all applications in a single virtual
machine process [3, 4, 5, 6, 8, 9]. In this model, the
protection and security provided by language features
are used to isolate and protect applications within
the same process address space. Once applications
share a virtual machine process, they can also poten-
tially share code (intermediate and/or native code)
to save memory and class initialization time [4] and
more efficiently communicate with each other, e.g.,
via regions supporting shared objects [5]. However,
sharing a single virtual machine makes it awkward to
incorporate native code [11], and leaves applications
vulnerable to bugs in the virtual machine protection
and security implementation [?].

In this paper, we present an intermediate approach
for supporting multiple applications in virtual ma-
chine environments for desktop operating systems.
We argue that applications should take advantage
of the protection features and resource management
provided by the operating system and execute each
application in its own virtual machine process. How-
ever, to facilitate code reuse, reduce application ini-
tialization time, and facilitate interprocess commu-
nication among applications in different virtual ma-
chines, we propose extending virtual machine imple-
mentations with the use of a shared class cache and
an efficient serialization implementation optimized
for local machine interprocess communication. To
demonstrate and evaluate our approach, we describe
the design and implementation of a shared class cache
and optimized class serialization in the Java virtual
machine, and evaluate our implementation using a
set of application and micro-benchmarks. From our
evaluation, we find that common Java applications
share up to 75% of their classes, and show that a
shared class cache can reduce application initializa-
tion time by up to 72-90%. We also show that a
class serialization implementation optimized for local
communication can reduce communication costs by
factors of 2.5-12.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the tradeoffs between executing mul-
tiple applications in single vs. multiple virtual ma-
chine environments. We then argue for an inter-
mediate approach that combines the advantages of
both models using class sharing and an efficient im-
plementation of serialization for low-overhead inter-
process communication. Section 3 then describes our
class sharing mechanism in detail, and demonstrates
its potential for improving class loading times. And
Section 4 describes our serialization mechanism and
evaluates its effectiveness at improving interprocess
communication. Finally, Section ?? summarizes our
model and results.

2 Single vs. Multiple VMs

There are two models for executing multiple Java ap-
plications. The first model is the single VM model
where all applications execute in a single virtual ma-
chine [3, 4, 5, 6]. The second model is the multiple
VM model where each application executes in a sep-
arate virtual machine [7, 8, 9].

The single VM model has better resource utiliza-
tion than the multiple VM model [4], thereby reduc-
ing the per-application overhead [5]. The single VM
model reduces application startup time, conserves
memory, and more easily provides efficient interpro-
cess communication [5]. The single VM model also
provides multitasking without underlying operating
system support, thus it could be used to execute ap-
plications on small devices such as PDAs and cell
phones that do not have a multitasking operating sys-
tem.

On the other hand, the multiple VM model pro-
vides strong protection for isolating applications and
provides an efficient environment to execute native
code 1. The single VM model can be extended to
a multiple process model to provide a safe environ-
ment for executing native code, albeit awkwardly and
inefficiently [11]. As a result, the single VM model
requires replication of some of the operating system
functionality at user level [4, 5, 6] to provide strong

INative code is code that is written in a language other
than a type-safe language.

application isolation. This duplication of functional-
ity unnecessarily adds extra cost to application execu-
tion time when compared to the multiple VM model.

We argue that the best approach for executing mul-
tiple applications in a virtual machine environment
on a general purpose operating system is to run each
application in a separate virtual machine process as
in the multiple VM model, and extend the virtual
machine to incorporate features that provide the ad-
vantages of the single VM model in a multiple pro-
cess implementation. To motivate this intermediate
approach, the following sections describe issues with
the single VM model, their performance implications,
and how the multiple VM model can efficiently ad-
dress them.

2.1 Native Code

Native code is code written in a language other than
a type-safe language, and is usually written in tra-
ditional unsafe languages such as C and C++. In
the Java Virtual Machine, native code can access any
data in the process in which it is executing, whereas
Java byte code is limited in addressability by the
strong type-safe properties of the language. Thus,
executing the native code of an application can be
harmful for other applications in the single VM model
because the native code can access and modify any
data of the other applications that are running in
the same process. One solution to this problem is to
execute the native code only if it is trusted code, oth-
erwise terminate the application; this solution is used
in the safe mode of the .NET environment. However,
running untrusted code is still a problem for the sin-
gle VM model.

A solution for executing untrusted code in the sin-
gle VM model is to use another process to run the un-
trusted code [11]. In contrast, the multiple VM model
runs the untrusted code and application in the same
process. In the multiple VM model, the untrusted
code can at worst harm itself because it cannot ac-
cess data in other applications as each application
has its own address space. Hence, this solution uses
the same mechanism, separate address spaces, as the
multiple VM model to execute untrusted native code.

Interprocess communication is used to communi-
cate between the application process and the process

running native code in the single VM model. In-
terprocess communication is very costly because of
the dramatic increase in the number of switches and
the communication overhead. The overall effect of
this overhead is an 8% - 880% increase in the execu-
tion time for the JVMSpec98 benchmark applications
in comparison with the multiple VM model [11]. In
summary, the single VM model ultimately uses the
same mechanism, the separate process address space,
as the multiple VM model to execute the native code
safely, but with high overhead.

2.2 Unintended Resource Sharing

Even though the language type-safety prevents an
application from accessing the data in other appli-
cations, a malicious or buggy application can easily
degrade another application’s progress by allocating
all available memory or using all available file han-
dles, network handles or, in general, consuming any
operating system resource entirely in the single VM
model. Because of these safety issues, the single VM
model requires rigid resource management [5, 6, 12].

KaffeOS [5] and J-kernel [6, 12] provide such rigid
resource control mechanisms at the user level. How-
ever, the solution essentially re-implements the pro-
cess abstraction at user level [5]. Again, the multiple
VM model does not have these safety issues because
each application executes in its own address space
and an application cannot access another applica-
tion’s data. The overall overhead of this user level
process abstraction is up to a 7% increase to the
application execution times for JVMSpec98 bench-
mark programs in comparison with the multiple VM
model [5].

In a multi-user operating system, process owner-
ship is used to control resource management. In the
single VM model, process ownership cannot be used
to manage operating system resources because all ap-
plications are executing in a single process. The mul-
tiple VM model does not have this problem. Any
conceivable solution to this problem in the single VM
model requires the notion of ownership at user level
which is essentially re-implementing the operating
system functionality at user level. Thus, any solu-
tion to this problem will likely add overhead to the
application execution time.

2.3 User Level Threads

User level threads pose another problem for the single
VM model. Some operating systems do not support
threads in the kernel. Hence, the virtual machine
has to implement threads at the user level. In this
situation, the single VM model is very inefficient be-
cause of the mismatch between this model’s notion of
concurrency, threads in a single process, and the op-
erating system’s notion of concurrency, processes. In
effect, the single VM model cannot express the con-
currency well and thereby pays a significant penalty.
For example, in this situation a single page fault stops
all the applications from executing. In general, any
blocking operation such as reading/writing file, ac-
cessing data from network, accessing data from any
other blocking devices by an application stops all
other applications. On the other hand, the multiple
VM model notion of application matches the operat-
ing system notion of application. Thus, the multiple
VM model efficiently exploits the concurrency among
different applications to improve throughput [7].

2.4 Static variable Semantics

A virtual machine stores all the information about a
class in a class structure. This information includes
static variables that are defined in the class. In the
single VM model, all applications share these class
structures, thereby sharing static variables among ap-
plications. Although this sharing saves memory, it
violates the semantics of static variables that should
guarantee that each application has its own copy of
static variables. Because of this sharing, some appli-
cations may produce incorrect results if the applica-
tion correctness depends on correct initial values of
static variables. Hence, the single VM model has to
eliminate this sharing.

Solutions to this problem are to use a separate class
loader for each application [3], not to share classes
that have static variables [5], and providing a sepa-
rate copy of static variables for each application by
modifying the virtual machine [4].

The class loader is a mechanism that provides mul-
tiple name spaces for class types in a single virtual
machine. Hence, a user-defined class loader [10] can
be used to provide a separate copy of static variables

because all classes loaded by this class loader are sep-
arate from other classes in the virtual machine. This
mechanism is used in web browsers to execute ap-
plets. This solves the problem of providing separate
copies of static variables. However, it eliminates ad-
vantages such as a reduction in application startup
time and memory savings.

Another solution that changes the virtual machine
is to provide a separate copy to each application. Un-
fortunately, this approach increases the application
execution time 7% - 70% for JVMSpec98 benchmark
applications [3, 4]. The multiple VM model need not
worry about this issue because each application has
its own copy of static variables. Again, the single
VM model duplicates operating system functionality
at the user level, thereby increasing the application
execution time.

Overall, the single VM model either has to lose
functionality or performance to execute untrusted
code, and it is not suitable for environments where
the underlying operating system does not support
threads in the kernel. The single VM model is also
not suitable for multi-user environment. Hence, the
single VM model is not suitable to run multiple appli-
cations on a general purpose operating system even
though it reduces the application startup time, shares
resources at runtime, and provides efficient interpro-
cess communication. A better approach is to use the
multiple VM model and try to achieve the single VM
model advantages in the multiple VM model. Note
that these advantages are not inherent to the sin-
gle VM model, and the following sections describe
various techniques to achieve the single VM model
advantages in the multiple VM model.

3 Class Sharing

The degree of class sharing among applications is the
fraction of classes that are common among two or
more simultaneously running applications. In this
section we show that the degree of class sharing is
high for a set of common Java applications, and
that ignoring this class sharing property has signifi-
cant impact on application startup times. The single
VM model has the advantage of reducing application

Program Description
JavaSound | Simple audio player
gfactory 2D Object plotter
iceMail A mail client
SwingSets Swing component, browser
JVMSpec98 | Applet running

this benchmark

Table 1: Description of selected programs

startup time because it shares classes among appli-
cations, whereas the multiple VM model does not
have such an advantage. We then propose a new
technique, a shared class cache, to reduce applica-
tion startup times in the multiple VM model, and
demonstrate its effectiveness.

We selected some commonly used Java programs to
understand available class sharing. Table 1 presents
the description of these programs. We modified the
Sun HotSpot virtual machine [13] to collect the in-
formation about classes loaded by an application at
startup time. This information includes the class
name, its loader, and its size in memory. The modi-
fied virtual machine is used to run all applications
listed in Table 1 without any options to identify
the classes they load at startup time. We manu-
ally stopped applications once they showed the initial
window because we are interested only in classes that
are loaded at the application startup time. Table 2
shows the number of classes loaded by each applica-
tion.

The degree of class sharing for applications x,y
is measured as the number of classes y loads that
are already loaded by xz. The degree of class shar-
ing measures the number of application classes that
are already loaded by previous applications. For a
given number of applications, average class sharing
is measured as the average of class sharing for all
permutations of applications.

Table 3 presents average class sharing for the ap-
plications listed in Table 1. As expected, the average
class sharing increases with the number of already
loaded applications. The main reason for this is that
all the programs use standard libraries. For these
Java programs, on average 77% of an application’s

Program Number of
Classes Loaded
JavaSound 1263
gfactory 1586
iceMail 1343
SwingSet2 1650
JVMSpec98 1241

Table 2: Number of classes loaded by programs

Number of Already | Already loaded
already loaded loaded classes in
programs classes percentage
1 882 62.3
2 1035 73.1
3 1075 75.9
4 1094 77.3

Table 3: Available sharing

classes are already loaded if all of the four applica-
tions are executed before this application. The class
sharing in this environment is significantly higher
than the available class sharing in the web browser
environment [27].

3.1 The Experimental Environment
Table 4 presents the machine configuration and the
software used for the following experiments. All the
timings presented in this paper are average of ten
runs and an extra five runs are used to warmup the
cache.

3.2 Class Loading Time and its Im-

pact on Application Startup Time

We define application startup time as the time dif-
ference between application start time and the time

0S Windows 2000 5.00.2195 Service Pack 1
CPU | Intel Pentium 4, 1.6GHz

RAM | 512MB

JVM | Sun Server HotSpot Virtual Machine 2.0
JDK | Sun JDK 1.3.01

Table 4: Machine Specification

it is ready to take the input from user. This startup
time includes the process creation time, virtual ma-
chine initialization time, class loading and initializa-
tion times, and the main thread execution time to
draw the main window completely. The startup time
represents the user wait-time before the user can in-
teract with the application. All the selected programs
have GUIs and these applications do not accept any
input until they draw the initial window.

The Sun HotSpot virtual machine is implemented
as a shared library and a startup program is used to
load this library. This startup program also initializes
the JVM, loads the application main class, and then
passes control to the application main method. This
initializing thread acts as the main thread for the
application. Usually GUI components create other
threads to get user input. We modified the startup
program to exit after the main thread finishes its ex-
ecution to measure the application startup time.

In order to measure the class loading times, we
implemented a Java program that takes class names
that are loaded by the application as input and mea-
sures the time to load these classes. Using this pro-
gram, we measured the class loading time for appli-
cations listed in Table 1. Figure 1 shows the results
of these class loading times and application startup
times.

Each bar in the figure represents the overall ap-
plication startup time and the lower part of the bar
indicates the class loading time. Each application is
associated with two bars in the figure. The first bar
is the application startup time when class files are
not in the file cache, and the second bar is the ap-
plication startup time when class files are in the file
cache. The application startup times are very high
for these applications even on a fast machine, and
these times are high even when class files are in the
file cache. Furthermore, the class loading time is a
major component of application startup time when
class files are not in the file cache as it constitutes
31% - 65% of application startup time.

We know that a significant number of application
classes are already loaded by previous applications
from the class sharing experiments. Thus, one could
exploit this available class sharing to reduce applica-
tion startup time. In fact, the single VM model very

18

16 m Remaining application startup time

14 mClass loading time

Time in seconds

o

o M A OO ® O N
”]

Figure 1: Class loading time impact on application
startup time

efficiently eliminates the class loading time because
it shares classes among all applications and thereby
improves the application startup times. However, the
single VM model increases application total execu-
tion time because of static variable issue discussed
in Section 2.4. File caching is the only mechanism
that can take advantage of class sharing among ap-
plications in the multiple VM model. The standard
code sharing facilities offered by the operating sys-
tem, shared libraries, cannot take advantage of the
class sharing because the class file format is not in
the executable format that is recognized by the op-
erating system to share code across processes. Issues
in sharing dynamic code generated by JITs are dis-
cussed in the related section.

The virtual machine initialization costs can be
eliminated by forking an existing Java application
process [7]. The virtual machine initialization time
is one of the components in the application startup
time. In the Java virtual machine, this encompasses
process creation time, the interpreter generation, ini-
tializing the virtual machine data structures, and
loading approximately 250 standard classes used by
the virtual machine. Here onwards this optimization
is referred to as the IBM optimization. This opti-
mization eliminates approximately 1.5 seconds from

the application startup time when class files are not
in the file cache, and 100 milliseconds when class files
are in the file cache. This optimization saves 10% -
20% of the application startup time when class files
are not in cache, and 1% - 5% when all class files are
in file cache for the above mentioned applications.
This optimization certainly reduces the application
startup time. However, there are still a significant
number of application-specific classes (80% - 83%
classes for applications mentioned in Table 1) that
need to be loaded at application startup time and
this optimization cannot eliminate this class loading
time overhead.

From Figure 1, we see that the file cache reduces
68% - 90% of the class loading time in comparison
with the case when files are not in the file cache be-
cause of costly I/O operations. This shows that some
form of caching is effective at reducing the applica-
tion startup time. However, the file cache may not
retain these classes because they can be flushed away
by other file data [25]. Class files are very valuable to
reduce the application startup times and they should
get higher priority than ordinary files in the file cache.
Operating systems put executable files in the virtual
memory cache, which is separate from the file cache.
Hence, executable files get higher priority than the or-
dinary files in the traditional operating system. How-
ever, class files do not get such a privilege in the
multiple VM model because they are not part of the
virtual memory cache. The following subsection de-
scribes a user level cache mechanism, shared class
caching, that improves application startup time.

3.3 Class Cache

One solution to minimize the application startup
time is to create a user level cache to store appli-
cation classes using the shared memory mechanism
supported by the operating system. The virtual ma-
chine maps the shared region into its address space as
part of its initialization. This class caching puts the
class code into the virtual memory cache. As a result,
these pages get the same priority as traditional code
pages.

In JVMs, classes are stored in the heap as a java
object. The JVM constructs this class object when it
needs to load a new class. The class loading involves

Application Single Multiple
startup VM Model VM model
Component | Optimization | Optimization
Virtual
Machine Yes IBM
initialization Optimization
cost
Class
loading Yes Class
Times caching
Class
initialization No No
Time

Table 5: Application startup time components and
optimizations that eliminate or reduce these costs in
both the single VM and multiple VM models

reading the class file, parsing the class file, verifying
the class, and initializing static variables. Ideally, one
would like to store these class objects in the shared
region so that all other applications can share these
classes and get the same benefits as the single VM
model provides for class sharing. However, this ap-
proach has the same problems, such as static variable
issues, as in the single VM model.

In our approach, the JVM stores class summary
objects in the class cache that is similar to the JVM
class object. The class loading process is modified
to look in the class cache first for the class whenever
it needs to load a new class. If the required class
is in the class cache, it constructs the class object
from the information stored in the class cache. If the
class cache does not have the required class, the JVM
uses the regular method to load the necessary class.
If the JVM loads the class successfully, it also con-
structs the summary object and stores the summary
object in the class cache. The JVM also skips the
verification phase whenever it loads a class from the
class cache because the class is already verified when
it enters the class cache. The class summary object
has all the information as in the class file and extra
information that is computed as part of class loading,.
This extra information includes the itable that is used
to speedup the interface method lookups, the vtable

that is used to speedup the class method lookups,
and the oop maps that are used at garbage collec-
tion time to identify object pointers in objects of this
class.

Our approach has two advantages over just relying
upon the file system cache. First, it saves space in the
shared region because the class structure is smaller
than the class file. Second, it speeds up the class
parsing time.

Our approach saved most of the class loading time
as in the single VM model except the class initial-
ization time that initializes static variables. How-
ever, this class initialization time cannot be elimi-
nated even in the single VM model. The main rea-
son for this is that the class initialization can execute
any arbitrary user code. Therefore, initial values of
static variables depend on the entire virtual machine
state. Hence, initial values of static variables are not
cachable. Our approach uses more memory than the
single VM approach to store the class summary ob-
jects, but in the desktop environment main memory
is abundant. Hence, trading memory for performance
is justifiable. Table 5 summarizes the various compo-
nents of application startup time and optimizations
that eliminate or reduce these component costs in
both single and multiple VM models.

The class cache has a finite amount of memory and
simple LRU is used as a replacement policy. Cache
coherence is implemented using the file modification
event mechanism supported by many operating sys-
tems, including Windows 2000 and FreeBSD. An ex-
tra process is used to maintain the class cache. This
extra process is used to implement the IBM Opti-
mization to fork from a clean process running a bare
virtual machine. Here onwards this process is referred
to as the skeleton process. Any virtual machine pro-
cess can load the class into the class cache and it
also informs the skeleton process about the loaded
class. The skeleton process registers with the oper-
ating system to get the notification events whenever
any of the cached files are modified. The skeleton
process removes the modified class and all of its sub-
classes from the cache whenever it gets the modifica-
tion event for a class. The skeleton process has to re-
move all subclasses of the modified class because the
itable and vtable of subclasses depend on the modi-

fied class. If the operating system does not support
the file modification event then we could store the file
modification time in the summary object and this file
modification time can be used to validate staleness of
the class cache summary object.

3.3.1 Implementation status

We implemented this shared memory based class
caching in the Sun HotSpot server virtual machine
2.0 on the Windows 2000 operating system. Most
of the above design is implemented except for the
modification event mechanism. In the current imple-
mentation only itables and vtables sizes are saved.

3.4 Results

The programs in Table 1 are used to show the efficacy
of class caching on micro-benchmarks that load only
application classes and on application startup times.
Figure 2 shows the class loading time for programs
in Table 1. Each bar represents the application class
loading time. The first, second, third, and fourth
bars show the application class loading time when
class files are not in the file cache, when class files are
in the file cache, when class files are in the file cache
but not in the class cache, and when class files are
loaded from the class cache, respectively. The class
loading time when class files are in the class cache
and not in the file cache are shown again in Figure 2
for completeness. We did not show the class loading
costs for the single VM model because it eliminates
all of these costs. The class cache improves class load-
ing times 72% - 90% compared with the case when
class files are not in the file cache and it improves
4% - 15% compared with the case when class files
are in file cache for the applications in Table 1. As
expected, the class cache improves the class loading
costs dramatically compared to the case when files
are not in the cache. Furthermore, the class cache
improves class loading time even compared to the file
cache.

Figure 3 shows the results of the application
startup time experiments. Each bar in this figure
shows the application startup time after applying
the IBM optimization. The first, second, third, and
fourth bars show the application startup time when
class files are not in the file cache, when class files are

Class loading time in seconds

Start up time in seconds

mwith out file cache

mwith file cache

Owithout class cache but with file cache
Owith class cache

SwingSet2 JavaSound gfactory iceMail

Figure 2: Application class loading times

18 4

16 4

14

12 4

10 4

mwithout file cache
mwith file cache
Owith out class cache but with file cache

— Owith class cache

msingle VM model

SwingSet2 JavaSound gfactory iceMail

Figure 3: Application startup times

25 @ w ithout class cache

§ m first time w ith class cache

o 20 -

3 Osecond time w ith class cache

w

C

p 15 4

E

§ 10 4

5

(8]

<

s 54

s

o

= o L

N 2 0 o
& 9 S N
4 & @ $
Q >
06\ Qé)
© <

Figure 4: Execution times for JVMSpec98 bench-
mark programs

in the file cache, when class files are in the file cache
but not in the class cache, and when class files are
in the class cache, respectively. The fifth bar shows
the application startup time in the single VM model.
Class files are loaded into the virtual machine and
then the application main thread is executed to mea-
sure its startup time in the single VM model. The
application startup time in the single VM model is
a conservative estimate only. This is a conservative
estimate because the single VM model eliminates the
class verification costs and we could not eliminate
these verification costs in our approach.

The overhead of class copying into the class cache
is 0.3% - 6% compared with the case when class files
are in the file cache and, as the figure shows, this
overhead very small. This cost is a one time cost and
it is amortized over all applications that load this
class.

The class cache reduces application startup time
38% - 69% compared with the case when class files
are not in the file cache. More importantly, this class
cache improves application startup time 2% - 21%
compared with the case when class files are in file
cache. We are comparing our approach with the file
cache because the file cache time gives the best ap-
plication startup time that could be achieved using
existing mechanisms. As previously mentioned, this

time is the most optimistic and may not always be
achieved. Our approach always performs better in
comparison with the file cache, the most optimistic
case. However, class caching is 9% - 38% more costly
than the single VM model. As the figure shows, the
application startup times using class caching in the
multiple VM model is within the order of application
startup time in the single VM model.

We used the JVMSpec98 benchmark programs
with the class cache to evaluate the performance im-
plications of the class cache on long running pro-
grams. Figure 4 shows the total execution time for
five of the spec98 benchmark programs. We ran
each spec98 benchmark program (1) without the class
cache (the first bar for each program shows this ex-
ecution time), (2) with an empty class cache (the
second bar), and (3) with all the required classes in
the lass cache (third bar). The JVMSpec98 bench-
mark programs load very few classes (around 300-
400). As expected, the impact of class caching is
very little (less than 1% improvement over the base
case) and overhead of loading class summary into the
class cache is also very little (less than 1%).

4 Inter Process Communica-

tion

The single VM model claims to have the most effi-
cient interprocess communication among application
because it allows applications to pass object refer-
ences among themselves [5]. However, in practice this
is not always possible because of data coherence is-
sues. Most of the applications on the desktop are
developed independently. Hence, passing an object
reference to another application may lead to a state
where both applications trying to access the object
at the same time may corrupt object data, thereby
hampering the correctness of both applications.

One solution is to make all methods of a class syn-
chronized if there is a possibility of passing an object
of the class to another application. This solution is
not feasible because one has to implement synchro-
nization on all methods of a serializable class, which
decreases the application performance unnecessarily
and is not possible for older applications that did

not have these synchronized methods implemented
already.

Thus, even in the single VM model, independently
developed applications require some form of copying
to pass objects [4]. The easiest way is to use the
Java serialization. However, the single VM model can
implement a more efficient serialization mechanism.

There are two mechanisms for copying objects in
the Java environment and they are Java serialization
and cloning. Java serialization serializes an object
and all objects that can be accessed from the object
into a stream, and the same mechanism can be used
to reconstruct an object from the stream. Cloning is
another mechanism to copy objects within one JVM.
Cloning simply copies the object but does not copy
the all objects that are accessible from the given ob-
ject. For simple array types that do not refer to any
other objects, cloning and serialization are the same
in terms of functionality.

In this section, we compare the Java standard se-
rialization with cloning for copying simple array ob-
jects to show that serialization is very inefficient for
local communication. The simple array type objects
are the easiest objects to serialize and serialization
needs to do at least the same amount of work for se-
rializing any other object types. Hence, serialization
efficiency results for the simple array type are also
applicable to other object types. Comparing the se-
rialization cost with the cloning cost for simple array
types estimates the amount of overhead of serializa-
tion. We emphasize again that, even in the single
VM model, cloning is not useful for copying objects
that have references to other objects because it does
not perform a deep copy and it does not provide any
data protection. On the other hand, serialization is
designed to copy objects securely across applications.
Hence, serialization has to be used to copy objects
between applications in both single and multiple VM
models.

Table 6 shows the time to copy a simple integer ar-
ray using various copying mechanisms. All the times
in the table are microseconds. The integer array size
is varied from 1 to 256 KB. The second column shows
copying costs for cloning and the third column shows
the copying costs for standard serialization with a file
as a stream buffer. Because using a file introduces

10

size cloning | Serialization | Serialization
using a File | using byte

array
1 0.010 0.282 0.122
2 0.010 0.280 0.114
4 0.010 0.300 0.122
8 0.008 0.292 0.117
16 0.010 0.329 0.127
32 0.010 0.308 0.149
64 0.009 0.336 0.164
128 0.010 0.395 0.224
256 0.013 0.336 0.137
512 0.018 0.354 0.157
1024 0.018 0.438 0.212
2048 0.028 1.137 0.297
4096 0.053 2.405 0.489
8192 0.083 2.855 1.472
16384 | 0.653 5.553 1.605
32768 | 0.899 13.73 6.330
65536 1.237 24.47 6.612
131072 | 7.058 50.11 15.33
262144 | 14.57 90.57 24.15

Table 6: Serialization costs for simple Int Arrays
(times are in microseconds)

overhead, we also implemented a simple byte-array-
based stream buffer to eliminate operating system in-
terference. The fourth column shows copying costs
for standard serialization with the byte-array-based
stream buffer. Cloning is one operation to create a
new copy of an object in the same process whereas
serialization requires two operations, namely read Ob-
ject, writeObject, to do the same. All timings for se-
rialization in Table 6 are the combined cost of read-
Object and writeObject operations.

As expected, serialization using the file performed
the worst of all three mechanisms. However, cloning
performed an order of magnitude better than serial-
ization. Cloning performed 6 - 41 times better than
the standard serialization with the file as buffer, and
1.6 - 22 times better than the standard serialization
with byte array as a buffer. This shows the need
for efficient copying mechanisms in both single and

multiple VM models.

Much of previous research approached this prob-
lem in the remote method invocation (RMI) context
because serialization is a major overhead in RMI. A
nice summary of the previous work in this area is pre-
sented in [15]. The major overhead in serialization is
copying costs to copy the data among different buffers
and the usage of costly class introspection primitives
to get object type information and data. For exam-
ple, the standard serialization copies the data three to
four times among different buffers to serialize a simple
array type depending on the stream buffer. Not sur-
prisingly, most of improved implementations [15, 16]
used their own buffering mechanisms to reduce copy-
ing costs.

The class introspection cost can be avoided by us-
ing customized marshaling code to marshal the ob-
ject data [16]. However, this requires support from
the compiler to generate the marshaling code for each
serializable class. Hence, this optimization is not
feasible in practice because existing applications do
not have this code built-in and re-compilation is not
always possible because their source code may not
available for many applications.

The Java virtual machine (JVM) first copies the
simple type array into the C-heap area and then it
returns the address of this copy to the native code
to access simple array type elements. This extra
copy is eliminated if the JVM simply returns the
start address of the simple type array rather than
the copied array address [15]. Hence, this approach
reduces copying costs very effectively for basic type
arrays. It thereby reduces the serialization costs dra-
matically for them.

However, this approach interacts very poorly with
garbage collection that moves objects. It has to delay
the garbage collection until it finishes copying the ar-
ray to another buffer because garbage collection may
move the Java object that invalidates the address re-
turned by the JVM for an array. At present, most
JVMs use stop-the-world garbage collection and this
occurs only at certain points. Hence, one can delay
the garbage collection in the current JVMs. However,
concurrent garbage collection poses a serious threat
to the correctness of this approach because garbage
collection can happen at any time. Note that .NET

11

uses concurrent garbage collection and soon JVMs
are also going to implement concurrent garbage col-
lection to minimize the garbage collection cost [26].
Hence, this approach is not applicable in the virtual
machines that use concurrent garbage collection even
though it minimizes the copying costs for simple ar-
ray types.

The type information returned by class introspec-
tion methods can be cached to reduce class intro-
spection costs. However, the Sun JDK1.3 also uses
these optimizations in its serialization. Thus, we just
simply compare our approach with the Sun JDK1.3
serialization implementation to evaluate the merits of
our approach.

4.1

We argue that the best way to minimize copying and
class introspection costs is to implement serialization
in the virtual machine where all the needed informa-
tion to serialize an object is accessible cheaply. Class
introspection costs are minimized because the virtual
machine maintains information about class fields in
a very compact way and we can use this informa-
tion directly if the serialization is implemented in the
virtual machine. Buffering costs are also minimized
because objects can be accessed directly in the vir-
tual machine without going through the native inter-
face that requires an extra copy. The virtual machine
also provides handles, an indirect reference to objects,
for objects that are preserved during garbage collec-
tion. Hence, all the issues of incorrectness due to
garbage collection are eliminated by using these han-
dles. Note that this is not possible if the serialization
is implemented in native code. Salient features of
our serialization design are described in the following
paragraphs.

Shared memory is the most efficient interprocess
communication method for passing data between ap-
plications on a single machine because this elimi-
nates operating system interference once the shared
memory region is established. Hence, we use shared
memory to transfer the data between applications.
Our implementation uses shared memory as a sim-
ple queue with lock primitives to synchronize the
reader and the writer processes. The write pointer
points to the free location in the buffer and the read

Serialization

12

pointer points to the next available data position in
the buffer.

Serialization usually uses a small buffer to serial-
ize small objects in order to minimize the frequent
usage of relatively high-cost interprocess communi-
cation primitives. Shared memory is also costly for
passing small data frequently because of synchroniza-
tion. We avoided these buffering and synchronization
costs by using shared memory as a temporary buffer.
The shared memory is accessed by two processes only
and in each of these processes only one thread is able
to access the shared memory because of Java synchro-
nized methods. A thread reserves a small portion and
uses that as a temporary buffer whenever it needs to
copy small data. The important point is that this
reservation does not move the read/write pointer so
that the other process does not access the temporary
buffer until this thread releases the buffer. Since the
thread has exclusive access to the temporary buffer, it
does not require any synchronization while it accesses
the buffer. As a result, it minimizes the cost of syn-
chronization. It also minimizes copying costs because
only one copy is needed. The thread releases the tem-
porary buffer once it fills the temporary buffer or it
completes the serialization. This release also moves
the read/write pointer so that the other process can
access the data as a big chunk of data.

Serialization first determines the serializable fields
of an object and then starts serializing those fields.
The JVM primitive to access field attributes is costly
and required every time the object is serialized. We
minimized these costs by caching the identity of seri-
alizable fields of a class. We create a small array that
has information about serializable fields of a class
when we first serialize an object of the class. This
array is stored in the class structure to use in the
subsequent serialization of an object of this class.

Though we focused on efficient serialization for the
multiple VM model, our approach also reduce seri-
alization costs in the single VM model. Our serial-
ization is amenable to further improvements in the
single VM model, and we describe one of them here.
One copy is required in the multiple VM model to
transfer data from one process to another. The only
way to eliminate this copy is to somehow share an ap-
plication’s garbage collected heap space so that one

process can create Java objects in another process
and write directly into those new objects. However,
this sharing of garbage collected heap space leads to
security problems that are similar to the native code
problems in the single VM model. However, in the
single VM model, all applications share the garbage
collected heaps and the native code has access to cre-
ate and write into the other application’s garbage
collected heap. Thus, our serialization can easily be
modified to remove this one copy required in the mul-
tiple VM model to improve the serialization for the
single VM model.

4.2 Implementation status

We implemented the serialization optimization and
the required classes to use it. The shared mem-
ory based stream buffers are also implemented. At
present, the shared memory stream is using the mu-
tex primitives provided by the JVM; ideally, we
would want to use the operating system provided syn-
chronization primitives directly. In our experiments,
the reader and writer threads are running in a sin-
gle JVM. Thus, these synchronization primitives are
enough for the correctness. We still need to imple-
ment the support for the serializable and externaliz-
able interfaces that are used to customize the serial-
ization process.

JVM allocation primitives always return zero-filled
memory. This initialization could be eliminated in
reading the simple array types because we know that
this entire array is going to be initialized by serializa-
tion with correct values immediately. We did not im-
plement this optimization in the current implemen-
tation because it required significant changes to the
allocation primitives even though this optimization
clearly improves the read serialization cost.

4.3 Results

In this section, we compare our serialization opti-
mization to the standard JVM serialization with file
and shared memory as stream buffers. The file buffer
is representative of the case where the operating sys-
tem is involved in the communication and shared
memory is representative of the case where operat-
ing system is not involved in communication. By
comparing results for these two buffering mechanisms

13

25
Standard serialization with file as a buffer
(]
2 20 Standard serialization with shared memory as a
3 buffer
$ 15 4 —x—New serialization with shared memory as a buffer
o
S
= 10 A
£
g s
F M/
[e e I o e B e
N ™ o > © b 0 X © v
D A R g
N © q/fo

Number of elements in integer array

Figure 5: Serialization cost to read simple Integer
array

80

70 4 —e— Cloning

60 | —+— Standard serialization with file as a buffer

50 1 —=— Standard serialization with shared memory as a

40 | buffer)
—=— New serialization with shared memory as a buffer

Time in Microseconds

30
20
10 4

0 AA‘AAA‘A‘A‘A‘A‘A‘ .

N) © 3 © ™ 0) © »

N ©) 4) Nel > O

Q Q > 2] PN

v o <

& o
v
Number of eliments in integer array

Figure 6: Serialization cost to write simple Integer
array

900

—m=— Standard serialization with file as a buffer

800 Standard serialization with share memory as a buffer

700 4 Standard serialization with customized marshalling routines with
shared memory as a buffe

fer
600 —x— New serialization with shared memory as a buffer

500 -
400 -

300 -

Time in Microseconds

200 -

100

e

1 2 3 4 5 6 7 8 9 10 1 12 18 14 15
Binary tree Hieght

Figure 7: Serialization cost to read binary Tree

140
—e— Standard serialization with file as a buffer

120 4 —+— Standard serialization with shared memory as a buffer

—=— Standard serialization with customized marshalling routines and
with shared memory as a buffer

——— New serialization with shared memory as a buffer

100 4

80

60

Time in Microseconds

40 -

20

Binary t ree Height

Figure 8: Serialization cost to write binary Tree

we show that communication that requires operat-
ing system involvement performs very poorly. This
validates our choice of buffering mechanism, shared
memory. We chose simple a type array and binary
tree to evaluate various serialization mechanisms.
These two types represent simple and complex ob-
ject types. Since these two types are two ends of the
spectrum, we claim that results for other type of ob-
jects are also similar to the results presented in this
section.

Figure 5 shows serialization costs to read a simple
integer array from the stream. As expected, standard
serialization with shared memory buffer performs an
order of magnitude better than the standard serial-
ization with file buffer. The main reason for this is
that file buffer requires one extra copy and system
call overhead. The new serialization performed ex-
tremely well, and it reduces the serialization costs by
6 - 21 times in comparison with standard serialization
with a file buffer as a stream buffer. It also reduces
the serialization costs by 2.5 - 12.5 times compared
with the standard serialization using shared memory
as a stream buffer.

Figure 6 shows the serialization costs for writing a
simple integer array into the stream. These results
are very similar to the serialization costs for read-
ing objects. We also compared our serialization with
cloning because it is the best copying mechanism that
is available in the single VM model for basic type ar-
rays. We assumed the read cost for cloning is zero

14

because cloning is one operation and we characterize
the entire cloning cost as a writing cost. One interest-
ing point is that our combined read and write serial-
ization costs performed better than cloning for larger
integer arrays. In cloning, the JVM marks cards that
are used in garbage collection once it copied the array
irrespective of the array type. This operation added
additional overhead to cloning, and our serialization
eliminates this cost for basic type arrays because we
know that basic type arrays do not have any object
references. As expected, our serialization performed
much better than the standard serialization.

Figure 7 and Figure 8 show the read and write
serialization costs for a complete binary tree with in-
tegers as data in each node. Our optimized serializa-
tion performed an order of magnitude better than the
standard serialization. In these figures, we also com-
pared our approach with the customized marshaling
code using a shared memory based buffering serial-
ization. As explained earlier, customized marshaling
routines reduces class introspection costs. However,
the customization only marginally improves the cost
over the standard serialization.

Our new serialization improves serialization costs
an order of magnitude over standard serialization for
both types of objects because of better buffering and
more efficient primitives to access object data and
type information. Since these two object types rep-
resent two ends of the spectrum of different kinds
of objects, we expect that our serialization will also
perform similarly for other types of objects.

5 Conclusions

In this paper, we presented an intermediate model
for supporting multiple applications in virtual ma-
chine environments for desktop operating systems.
We argue that applications should take advantage
of the protection features and resource management
provided by the operating system and execute each
application in its own virtual machine process. How-
ever, to facilitate code reuse, reduce application ini-
tialization time, and facilitate interprocess commu-
nication among applications in different virtual ma-
chines, we proposed extending virtual machine imple-

mentations with the use of a shared class cache and an
efficient serialization implementation optimized for
local machine interprocess communication.

To explore the feasibility of our model, we designed
and implemented a shared class cache and optimized
class serialization in the Java virtual machine. To
demonstrate its effectiveness, we evaluated our im-
plementation using a set of common Java applica-
tions and micro-benchmarks. From our evaluation,
we find that common Java applications share up to
75% of their classes, and show that a shared class
cache can reduce application initialization time by up
to 72-90%. We also show that a class serialization im-
plementation optimized for local communication can
reduce communication costs by factors of 2.5-12.

We note that our class sharing cache stores class
data structure and byte code only. The code gener-
ated by JIT compilers is not shared in our current
implementation, and the overhead of JIT compila-
tion could be minimized by caching partial results of
previous compilations [14]. Another solution to re-
duce this overhead is to share the compiled code as
described in [2]. The code generated by the JIT com-
piler is very specific to the current execution of the
program and classes loaded till that time. Hence, the
JIT generated code may not be optimum code for an-
other application. A more detailed study is needed
to understand effectiveness of re-usability of JIT gen-
erated code.

Finally, we note that Java RMI could be modified
to take advantage of our serialization to improve its
performance. A similar study showed that 2 - 8 times
improvement for small benchmarks [1].

References

[1] K. Palacz, G. Czajkowski, L. Daynes, and J.
Vitek, “Incommunicado: Efficient Communica-
tion for Isolates”, In Proceedings of Object-
Oriented Programming, Systems, Languages
and Applications, Seattle, WA. (Nov. 2002).

G. Czajkowski, L. Daynes, and N. Nystrom,
“Code sharing Among Virtual machines”, In
ECOOP, Malaga, Spain, (Jun. 2002).

15

[3] G. Czajkowski, “Application Isolation in the
Java Virtual Machine”, In Proceedings of ACM
Conference on Object-Oriented Programming,
Systems, Languages and Applications, Min-
neapolis, MN, (Oct. 2000).

[4] G. Czajkowski, L. Daynes, “Multi-tasking with-
out compromise: a Virtual Machine Approach”,
In Proceedings of Object-Oriented Program-
ming, Systems, Languages and Applications,

Tampa, FL. (Oct. 2001).

G.Back, W.C. Hsieh, and J. Lepreau. “Pro-
cesses in KaffeOS: Isolation, resource manage-
ment, and sharing in Java”, In Fourth Sympo-
sium on Operating Systems Design and Imple-
mentation, (Oct. 2000).

[5]

[6] G. Czajkowski, C-C. Chang, C. Hawblitzel, D.
Hu, T. von Eicken “Resource Management for
Extensible Internet Servers”, In Eighth ACM
SIGOPS European Workshop Support for Com-
posing Distributed Applications Sintra, Portu-

gal, (Sep. 1998).

[7] D. Dillenberger, R. Bordawekar, C. W. Clark,
D. Durand, D. Emmes, O. Gohda, S. Howard,
M. F. Oliver, F. Samuel, and R. W. St. John,
“Building a Java virtual machine for server ap-
plications: The Jvm on 0S/390”, In IBM Sys-

tems Journal, Volume 39, Number 1, 2000.

Dahlia Malkhi, Michael Reiter, Avi Rubin, “Se-
cure Execution of Java Applets using a Remote
Playground”, In IEEE Symposium on Security
and privacy, Oakland, CA, (May 1998).

8]

Trent Jaeger, Jochen Liedtke, and Nayeem Is-
lam, “Operating System Protection for Fine-
Grained Programs”, In Seventh USENIX Secu-
rity Symposium, (Jan. 1998).

[10] S. Liang and G. Bracha, “Dynamic class load-
ing in the Java Virtual Machine”, In Proceed-
ings of Object-Oriented Programming, Systems

Languages and Applications, (Oct. 1998).

G. Czajkowski, L. Daynes, M. Wolczko, “Au-
tomated and Portable Native Code Isolation”,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

In Proceedings of the 12th IEEE International
Symposium on Software Reliability Engineering,
Hong-Kong, (Nov. 2001).

J. Lepreau, P. Tullmann. “Nested Java pro-
cesses: OS structure for mobile code”, In Eighth
ACM SIGOPS European Workshop Support
for Composing Distributed Applications Sintra,
Portugal, (Sep. 1998).

Michael Paleczny, Christopher Vick, and CIiff
Click, “The Java HotSpot Server Compiler”, In
Java Virtual Machine Research and Technology
Symposium, Monterey, California, (Apr. 2001).

Chandra Krintz and Brad Calder, “Using An-
notations to Reduce Dynamic Optimization
Time”, In ACM SIGPLAN 2001 Conference on

Programming Language Design and Implemen-
tation (PLDI), (June 2001).

Fabian Breg, Constantine D. Polychronopou-
los, “Java Virtual Machine Support for Object
Serialization”, In Java Grande/ISCOPE 2001
Special Issue of Concurrency and Computa-
tion:Practice and Experience.

Michael Philippsen, Bernhard Haumacher.
“More Efficient Object Serialization”, In Work-
shop on Java for Parallel and Distributed Com-
puting, (1999).

J. Hummel, A. Azevedo, D. Kolson, and A.
Nicolau, “Annotating the Java Bytecodes in
Support, of Optimization”, In Journal Concur-

rency:Practice and Experience, Vol. 9(11), (Nov.
1997).

P. Pominville, F. Qian, R. Vallee-Rai, L. Hen-
dren, and C. Verbrugge, “A Framework for Op-
timizing Java Using Attributes.” In Sable Tech-
nical Report No. 2000-2, (2000)

0. Babaoglu and W. Joy, “Converting a swap-
based system to do paging in an architecture
lacking page-referenced bits.” In Proceedings of
the Eight Symposium on Operating Systems
Principles, Pacific Grove, CA, (Dec. 1981).

16

[20] Sun JDK1.4 new I0 APIs,
http://java.sun.com/j2se/1.4/docs/guide/nio/inde
(2002).

[21] Tim Lindholm and Frank Yellin, The Java®™
Machine Specification, second edition, Addison-
Wesley Publishers (1999).

[22] Microsoft .NET Environment,
http://www.microsoft.com/net/

[23] J. C. Brustoloni and P. Steenkiste, “Effects of
buffering semantics on I/O performance”, In
Proc. 2nd USENIX Symp. on Operating Systems
Design and Implementation, Seattle WA, (Oct.
1996).

[24] V. Pai, P. Druschel, and W. Zwaenepoel, “IO-
Lite: A unified I/O buffering and caching sys-
tem”, In Proc. of the 3rd Symposium on Oper-

ating Systems Design and Implementation, New
Orleans, LA, (Feb. 1999).

[25] A. Wang, H. Kuenning, P. Reiher, J. Popek.
“Conquest: Better Performance Through a
Disk/Persistent-RAM Hybrid File System”, In
Proc. of the 2002 USENIX Annual Technical
Conference, Monterey, (June 2002).

[26] T. Domani and et al., “Implementing an on-the-
fly garbage collector for Java”, in Proc. of the
ACM SIGPLAN Symposium on Memory Man-
agement, (2000).

[27] Marie T. Conte, Andrew R. Trick, John C. Gyl-
lenhaal, and Wen-mei W. Hwu, “A Study of
Code Reuse and Sharing Characteristics of Java
Applications”, In Workshop on Workload Char-
acteristics, Micro-31, (Nov. 1998).

