UCLA

Posters

Title

KNO 0: CENS Knowledge Transfer Overview

Permalink

https://escholarship.org/uc/item/7nc5z74x

Authors

J. Goldman D. Estrin W. Kaiser et al.

Publication Date

2006

Center for Embedded Networked Sensing

CENS Knowledge Transfer Overview

J. Goldman, D. Estrin, W. Kaiser, G. Pottie

Goals

1. Advance ENS Research

Influence the field

2. Enable New Observations of the Physical World

Spawn new real-world applications

3. Facilitate Commercialization of ENS **Technology**

Essential for wide adoption

Science applications

Use ENS to enable new discoveries in

terrestrial ecology contaminant monitoring aquatic microbial biology seismology

Stewardship applications

Use ENS to ensure

drinking water recreational spaces energy

safe secure affordable sustainable

KT activities are aligned with developmental trajectory of the technology Approach

Description of KT activity categories

- Scholarly dissemination: broadcasting theoretical & technological discoveries to ENS research community
- "Intra-actions": sharing of expertise between CENS CS/EE researchers and CENS science application researchers
- User community: activities aimed a building an external community of sensor network users
- Commercial products: activities aimed at generating products for purchase and use by people outside the center

KT strategy over time

- on: continual scholastic productivity; broad adoption of technology by ENS researchers
- : progressive success in fielding reliable "Intra-actions scientifically-relevant systems, followed by high rate of scientific return.
- User community: early engagement of thought leaders and early adopters, followed by more active cultivation of user base via training and new applications as technology matures
- Commercial products: initial opportunistic partnerships with vendors, followed by more intense activity as technology matures

Accomplishments and Plans

SenSys 2003

Scholarly Dissemination

- Over 400 Publications in under 4 years Including ENS textbook
- · CENS Annual Research
- Review
 - Attended by nearly 200
 - Over a dozen presentations and 60 posters

- Adoption of hardware & software architecture by hundreds of individuals and labs
- CENS-developed tools: EmStar, SOS
- Community-developed tools: TinyOS, Stargate

"Intra-actions"

- Scientific output through publications is key KT mechanism because it demonstrates the power of embedded sensing
- · First results from science applications have recently been published
- · Systems have recently reached a level of maturity that can support an increased rate of scientific output
- Our "intra-actions" serve as a model for working with external user communities

User Community

Environmental observatories

- Efficient mechanism for developing user community
- Mutually beneficial

- Formal and informal
 - To date, informal outreach to field stations and individual investigators
 - Planning for formal summer training institute

- Technological advances permit exploration of new applications
- Fueled by partnerships with scientific & environmental stewardship organizations

Commercial Products

Three CENS created

products are

commercially available.

- · MDA300 data acquisition board
- Cyclops mote-based imager
 - Agilent Technologies
- **ENSBox**

Currently developing relationships with additional vendors to capitalize on maturing systems such as NIMS