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Abstract

Latent Class Analysis (LCA) is a probabilistic modelling algorithm that allows clustering of data 

and statistical inference. There has been a recent upsurge in the application of LCA in the fields of 

critical care, respiratory medicine, and beyond. In this review, we present a brief overview of the 

principles behind LCA. Further, in a stepwise manner, we outline the key processes necessary to 

perform LCA including some of the challenges and pitfalls faced at each of these steps. The 

review provides a one-stop shop for investigators seeking to apply LCA to their data.

Syndromic clinical conditions are frequently reliant on rigid, yet broad, definitions. This has 

led to considerable heterogeneity that is only just beginning to be appreciated across many 

medical disciplines. The attendant limitations of heterogeneity in poorly-defined clinical 

syndromes such as sepsis and acute respiratory distress syndrome (ARDS) seem intuitive.

(1–4) Emerging evidence, however, indicates that even in seemingly well-defined conditions 

such as asthma and chronic obstructive pulmonary disease, where comparatively greater 

clinical and biological uniformity are observed, heterogeneity may be an impediment to 

delivering effective and targeted therapy.(5–10)

Increasingly, to circumnavigate the “one size fits all” approach to management strategies, 

researchers are turning to analytic algorithms that allow the use of multiple indicators 

(variables) to identify homogeneous subgroups within these heterogeneous populations. 

Many such algorithms exist, and each confers its own unique analytical slant. One such 

approach, latent class analysis (LCA), has seen a marked increase in its use across many 

disciplines of medicine.(11–14) As one example, our research group has used LCA to 

consistently identify two phenotypes of ARDS across five randomized controlled trial (RCT) 

cohorts. These phenotypes have distinct clinical and biological features and divergent 

clinical outcomes.(9, 10, 15–17) Further, in secondary analyses of three RCTs, we observed 

differential treatment responses to randomized interventions in the two phenotypes.(10, 15, 
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16) Other investigators have used LCA and identified two phenotypes in sepsis associated 

acute kidney injury (AKI) with divergent clinical outcomes.(18, 19)

The purpose of this review is to describe the application of LCA to clinical research data, 

with an emphasis on key steps and errors to avoid. It is not intended as a technical treatise 

but rather as a practical guide. In addition, the manuscript will focus on some specific 

challenges that are unique to the data types used in clinical research. A recent review by 

McLachlan, Lee and Rathnayake is an excellent resource for those seeking a more technical 

review of latent class modelling.(20) A glossary of terms can be found in Table 1 that can be 

referenced throughout this manuscript.

What is Latent Class Analysis?

Finite mixture modeling, of which LCA is one of the most commonly used types, is a set of 

powerful tools that allow investigators to determine if unmeasured or unobserved groups 

exist within a population. The unobserved, or “latent”, groups are inferred from patterns of 

the observed variables or “indicators” used in the modelling.

Latent class analysis (LCA) is the label given to a form of finite mixture modeling where the 

observed indicators are all categorical.(21) Latent Profile Analysis is the term used for 

mixture modelling where the indicators are all numerical and continuous in their 

distribution. Both methods relate to the analysis of cross-sectional data. In instances where 

combinations of categorical and continuous class-defining indicators have been used, 

conventional nomenclature remains unestablished. For the sake of ease, we have applied the 

‘LCA’ label to such models, as the objectives remain to define class-based phenotypes. For 

the remainder of this manuscript, unless stated otherwise, the use of the term latent class 

analysis is applied broadly as a descriptor all forms of cross-sectional finite mixture models 

where the latent variable is categorical. Application of finite mixture models to longitudinal 

indicators and continuous latent variables are also well described and are summarized in 

Table 1.(17)

LCA models work on the assumption that the observed distribution of the variables is the 

result of a finite latent (unobserved) mixture of underlying distributions (Figure 1). Using a 

set of observed indicators, LCA models identify solutions that best describe these latent 

classes within which the indicators follow the same distribution. Whilst Bayesian methods 

for finite mixture modeling are also described, LCA solutions are often obtained using 

maximum likelihood estimates and are the primary focus of this review. Viewed simply, 

LCA is a probabilistic method of unsupervised clustering. Once identified, mathematically, 

the classes are homogeneous within, but distinct from each other. The basic mathematical 

principles and algorithms used in LCA modelling are detailed in the supplement.

Once the model has been fitted, the probability of class membership is estimated for each 

observation in the cohort. These probabilities can then be used to assign class. It is important 

to emphasize that an LCA model does not assign individuals to latent classes; rather, 

probabilities are generated for membership in all the identified classes in the model. This 
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distinction, whilst subtle, has important implications when interpreting the findings of the 

analysis (see section on classify then analyze).

LCA vs Cluster Analysis

Cluster analyses are sets of algorithms that, like LCA, are used to split populations into 

smaller groups with shared characteristics. Clustering algorithms, of which hierarchal and k-

means are two of the most popular, use an arbitrary distance measure to identify clusters. 

Consequently, determining the appropriate number of clusters is inherently subjective and 

hypothesis-free.(22–24) Cluster analysis separates the study units into different clusters, 

whereas LCA estimates the probability that a given study unit belongs to each of the 

different latent classes. As LCA is model-based, it generates fit statistics, which in turn 

allows statistical inference when determining the most appropriate number of clusters for a 

population. In comparison to cluster analyses, LCA is therefore considered a more 

statistically robust method of clustering.(24, 25)

Interestingly, Magidson and Vermunt studied the accuracy of LCA and k-means clustering in 

correctly identifying classes where true class membership was known but concealed during 

analyses. In this simulated study where data were generated preferentially to meet the 

assumptions for the k-means approach, thereby favouring it over LCA, they found that 

misclassification rate was approximately four times higher using k-means clustering 

compared to LCA.(26). A further advantage of a model-based classification algorithm is that 

the generation of posterior probabilities allows quantitative assessment of uncertainty of 

class membership. LCA also permits the usage of mixed data types for the class-defining 

variables, including different scaling, whereas many methods of clustering are limited to 

numeric and/or a single data type.(27)

A drawback of LCA is that it is computationally demanding.(24) This can be a limitation to 

how many indicators can be used for the modeling. Currently, the upper limit of how “big” 

the data can be for LCA remains unknown and is dependent on the processing power 

available. With current technology, using LCA for clustering large genetic sequencing data, 

for example, seems unfeasible. The limits of using LCA are, however, constantly being 

challenged.

Key Steps in Performing Latent Class Analysis

Figure 2 is an outline of the key steps involved in performing LCA. A summary of these 

steps can be found in Tables 2 – 4.

Step 1: Study Design (Table 2)

Observed indicator selection.—Which observed indicators to include in the model is a 

key decision. The adage of garbage-in-garbage-out holds. A clear rationale for the inclusion 

of any variable in the models should be presented, as observed indicators are the principal 

determinants of class characteristics. The indicators used for the analysis should, therefore, 

largely be dictated by the research question.
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For example, Siroux and colleagues used LCA to seek phenotypes of asthma that would 

allow better assessment of risk factors for asthma.(12) Consequently, they focused on using 

data pertaining to personal characteristics, disease course and treatment responsiveness as 

indicators in their model. Whereas, in our work with ARDS, the primary objective of the 

analysis was to derive subgroups that would enable novel biological and clinical insights. To 

that end, we selected biological and clinical variables that served as surrogates of biological 

pathways implicated in the pathogenesis of ARDS (e.g. inflammation, endothelial and 

epithelial injury) and/or were associated with disease severity in ARDS.(15, 16) It is worth 

noting that identified classes may not unequivocally link to the underlying biological 

pathway that the indicators purport to represent. To a large extent, this linkage would depend 

on the quality of the indicator (i.e. how good it is at separating the classes) and on how 

specific the indicator is as a surrogate of the biological pathway.

When dealing with critical care data, it is also important to consider the impact of including 

disease severity scores such as APACHE score or SOFA scores as class-defining variables, 

as often their component parts are many of the variables that may already be part of the 

model. For these reasons, in our practice we have not included these summary indicators in 

the modeling, but use their components instead. Lastly, as the usefulness of novel subgroups 

using LCA is often demonstrated by differential disease trajectories and clinical outcomes, 

including information on clinical outcomes as indicators may bias the clustering towards 

such measures and introduces a certain circularity to the analysis. Inclusion of such data 

should, therefore, be excluded during discovery-focused LCA.

Step 2: Data Set-up (Table2)

Examine the data.—As in any data analysis, the initial step is to examine the data 

carefully. One should check for extreme or implausible values. This step is important as 

LCA models can be sensitive to extreme values. Consider a multivariate distribution with a 

small but noticeable ‘bump’ at some point. As one keeps increasing the number of latent 

classes to be fit, the model may, in effect, declare that “bump” a class.

For continuous variables, one needs to examine their univariate distributions and transform 

those with noticeable non-normality towards a more normal distribution. Which 

transformation to use is arbitrary. We have used a log-transform but others, such as a square 

root, may work just as well. Similarly, examine the frequencies of categorical variables. 

Categories that have low frequencies are difficult to fit into a model, as there is limited 

distributional information in that space. In that case, one can collapse categories together. In 

our practice, categories with less than approximately 10% of the sample are excluded from 

the analysis. This cut-off is arbitrary; however, logically, a small category that is sufficiently 

unique can increase the probability of identifying a latent class exclusively based on this 

category. This approach would undermine the “latency” of the identified class. However, in 

some cases, small categories may be informative, e.g. when studying severe acute 

hypoxemic respiratory failure, whether a patient is on ECMO may be an infrequent but 

important predictor variable to consider.

A major challenge faced in our prior work was the wide range of scales used in the observed 

indicators. For example, age, body-mass index, P/F ratio, bilirubin and Angiopoietin-2 are 
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all measured on widely different scales. In theory, LCA models can accommodate a range of 

scales, but if the variances measure-to-measure vary widely, it becomes difficult to fit the 

models. Steinley and colleagues found that models performed best with normally distributed 

data with equal variance, and unequal variance led to a sharp decrease in accurate cluster 

identification.(28) Our ‘fix’ for this problem is to standardize all continuous variables by 

placing them on the same scale, such as a z-scale where the mean is set to zero and the 

standard deviation to one. Note that any linear standardization which constrains the 

variances to be similar in size should work. Whilst the standardization process is frequently 

a necessity for modelling with variables on different physical scales, when interpreting the 

results, it is worth considering that some informative variance is likely to be dampened due 

to this procedure. In instances where indicators on the same physical scale are being used of 

the modelling (e.g. univariate LCA), this standardization may not be necessary.

A critical feature of mixture modeling is that there is an assumption of “local independence” 

within class.(29) This assumes that within latent classes, observed variables are independent 

of each other. Violation of this assumption can introduce bias to model parameters and lead 

to misclassification errors.(30) Simulated studies have shown that violation of this 

assumption led to lower accuracy of model fit statistics with an overestimation of the true 

number of classes.(31) The problem, however, is that it is unclear how strong of a correlation 

is tolerable and what effects bending this assumption has on model fit.

Our advice is to examine the correlation matrix of the candidate variables and serially 

eliminate one in any pair where strong correlation is observed. It is important to test the 

correlations in the final form that the variables will enter the model, e.g. after log 

transformation. Correlation coefficients greater than 0.5 should be examined carefully for 

their impact on the modelling. Whilst an arbitrary cut-off, in our experience, coefficients > 

0.5 can influence the modelling and fit statistics. In particular, multicollinear variables 

should be minimized to avoid data redundancy, as they are likely to result in emergence of 

spurious latent classes and poorly converging models.(32) In critical care, multiple colinear 

variables are frequently encountered; for example, systolic blood pressure is usually 

correlated with diastolic blood pressure, or C-reactive protein may be correlated with 

erythrocyte sedimentation rate.

If colinear variables are deemed too important to exclude outright, we conduct sensitivity 

analyses by excluding each of those variables and repeating the LCA. If this process leads to 

major changes in class composition or model fit statistics, then we eliminate the least 

informative variable. Next, to investigate local independence, re-examine the correlations 

among observed indicators within each of the classes once a model has been selected. Once 

again, for locally dependent variables, sensitivity analyses should be performed to determine 

impact of removing each variable. As an alternate strategy, if two locally dependent 

indicators are felt to be too important to lose, it is possible to relax the assumptions of 

conditional independence by allowing the two variables to be correlated in the model.(33)

Sample size.—The sample size required to adequately fit an LCA model varies with a 

number of factors. Broadly speaking, there are two important aspects when considering 

adequacy of sample size necessary to conduct LCA. First, is the sample adequate to detect 
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the “true” number of latent classes? High-quality indicators, i.e. those that are highly 

effective at separating the classes (entropy), will necessitate a smaller sample size. Likewise, 

if the smallest class in the model is relatively big, then less sample size is required. Nylund 

et al in simulated modelling found that Information Criteria (see section on fit indices 
below) and likelihood-tests accurately identified the correct models when N = 500 or N = 

1000; but not when N = 200.(34) These findings are further supported by the extensive 

simulation work conducted by Wuprts and Geiser.(35) They found that models with less than 

an N of 70 were ‘not feasible’ and models based on sample less than 100 should be 

interpreted with great caution. Lo, Mendell and Rubin showed that their eponymous test for 

model fit was insufficiently powered when the sample size was less than 300.(36) In 

summary, LCA can be considered a ‘large sample’ method; with sample sizes of greater than 

500, models and fit statistics have been shown to consistently perform with high accuracy.

(37) With smaller sample sizes, particularly when N < 300, the results are less reliable.(38) 

For analyses where N < 300, we would recommend using Monte Carlo simulations to 

determine adequacy of power.(39) These simulation studies should also be considered in 

studies where N > 300 but < 500 if there are issues with model fit or convergence.

Second, one must consider whether the sample size within the latent classes will have 

sufficient statistical power to detect differences in the pre-determined metric of interest (i.e. 

clinical outcomes) and that the difference is of sufficient magnitude to be meaningfully 

interpreted. More traditional approaches of power calculations can be used to determine this.

Dealing with Missing Data.—While LCA can be estimated in the presence of missing 

data, the greater the data sparseness due to missingness, the more difficult the estimation 

process. The pattern and magnitude of missing data will impact modelling. Swanson et al 

conducted LCA in a simulation study and found that the accuracy of Information Criteria 

were worse when the data were not missing at random compared to when missing at 

random.(31) Similarly, model fit statistics in both missing data patterns were worse when the 

total missing data was 20% compared to 10%. These errors in identification of the 

appropriate class were amplified when the sample size was smaller. Similarly, Wolf et al in 

simulation studies found that in models with 20% missing data required an approximate 

increase of 50% in their sample size.(40)

Three methods are widely used to deal with missing variables when performing LCA: 

deletion, multiple imputation, and full information maximum likelihood (FIML). The issue 

with listwise or pairwise deletion (i.e. complete cases analysis) is that large swathes of data 

can be lost in the context of sparse and sporadic missingness. In general, this is the least 

preferred of the three methods and should seldom be used.(41) In relation to LCA, the other 

two methods have their own inherent advantages and disadvantages, and both approaches 

work on the assumption that the data are missing at random. Multiple imputation (MI) 

involves creating several permutations of solutions for the missing variable using the 

available data. The main advantage of MI is that once the dataset has been generated, it can 

be used across several models. Further limitations of this approach are that multiple 

permutations of the dataset are produced, the datasets are generated at random with new 

each run containing variations in the imputed data compared to the prior, and imputing 

mixed data types with this method can be complicated.(42)
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FIML does not actually impute the data; instead it uses all the data, both complete and 

incomplete, to estimate parameters of the model. The FIML approach is specific to the 

model where it is applied and has be shown to be an efficient method for handling missing 

data for modelling algorithms such as LCA.(43) A limitation of FIML method for dealing 

with missing data is that it is computationally complex. Having said that, FIML is now 

available in most software packages that are used for LCA and is our preferred choice for 

handling missing data. In general, missing data should be kept to a minimum, and the 

analyst should consider re-fitting models by first removing variables where missing values 

are high. In addition, difference in population characteristics between missing and non-

missing observations should be presented, and a sensitivity analysis should be presented if 

imputation or deletion are used to handle missing data.

Special case of missing data: Molecular epidemiology.—Research biomarkers 

present a challenge to modeling when there are limits to the level of assay detection, both 

below and above. One could set such values to missing (as in, we don’t know the value), but 

that approach discards information unnecessarily. Once an assay has been optimized, there is 

little to be done when the value in question is “above level of detection” other than to set the 

value to that limit. When the sample is below the lower limit of detection (LLD), there are 

several potential options including data truncation where the value is ignored, insert zero or 

a value just above 0, single imputation with the value to the LLD or LLD/2, use more 

sophisticated methods of multiple imputation.(44) The strategy used to replace this data are 

largely driven by the amount of missingness but may have considerable consequences if not 

approached thoughtfully. In particular with LCA, where model parameters are estimated 

based on the distribution of an indicator replacing the LLD to extreme values, such as 0 or 

0.1, can have profound impact on the models and the cluster they identify. The effect each of 

these will have depends on the range of values and how far zero is from the lower limit of 

detection. For example, in values where the lower level of detection is some distance from 0, 

setting these values to 0 or 0.1 would lead to significant changes in the distribution of the 

data that may have detrimental effects to model fitting and convergence (see Figure 3a). In 

contrast, when the lower limit of detection is closer to 0, the same imputation will have a 

less profound effect (Figure 3b). On the proviso that the levels of censored values are low, 

for the purposes of LCA modeling, using LLD/2 or LLD would be the more preferable 

approach to imputation and is known to perform well in setting of low-levels of censored 

values.(45)

A second consideration is about how best to impute missing data when research biomarkers 

are missing. In particular, as in the case of molecular epidemiological studies where 

measurements are likely to contain large amounts of data with extreme values, multiple 

imputation becomes more challenging, and analysis of FIML may be more suitable and in 

some instances completed case analysis may also be preferable.(46) Uncertainty in 

imputation of extreme values of protein biomarker that are important in separating the 

identified classes is likely to lead to misclassification, thereby, undermining the content and 

construct validity of the said biomarker and its association with the identified latent classes.

(47)
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Step 3: Fitting Models to the Data

Once the indicators have been selected and processed, the next step is to fit the models to the 

data. Multiple models consisting of k-classes are fit to the data. Usually, the first model 

consists of a single class (k = 1) and sequential models, each with one more class than the 

prior, are fit. Usually, as sample size increases, models with increasing complexity (i.e. 

greater number of classes) should be fitted to the cohort. As model complexity increases, the 

number of observations in each class will inevitably get smaller. Further, complex models 

may become harder to fit, potentially decreasing its generalizability. The correct number of 

models to fit to the data will largely be dictated by the sample size, number and quality of 

indicators used in the model, and what an acceptable size may be for the smallest class. For 

each model that is fit to the data, parameters are estimated based on maximum likelihoods 

(see Table 1 for definition) and numerous fit statistics are generated. In addition, the 

algorithm will generate a posterior probability for belonging to all the latent classes in the 

model for individual observations. There are several key features that may indicate a poorly 

fit model and require careful analysis of the data. These are summarized in Table 5. It is 

always worthwhile considering that the studied data may not have underlying latent classes 

or that the extreme values observed (i.e. classes with small observations) are truly 

representative of the population. In such instances it is imperative that the investigators 

repeat their analysis in a second independent cohort to corroborate their findings.

Step 4: Evaluating the Models- Selecting Optimal Number of Classes (Table 3)

Once the models are fit, selecting the optimal number of classes is obviously the main 

decision one has to make in the analysis. The basic approach is to select the model with the 

fewest number of classes that best fits the data. The trick is deciding what is the “best” fit. 

There are several factors to consider and, just as a jacket can fit in one dimension, such as 

sleeve length, but not in another, so too can models fit by one criterion but not in others. The 

best fitting model may not capture the underlying structure of the data, or the data may not 

have a clear, well-separated set of underlying distributions. Note that best fit does not always 

mean a good fit.

The key measures of determining the best model that fits the population are Bayesian 

information criteria (BIC), sample-size adjusted BIC (SABIC), the Lo-Mendel-Rubin and 

Vuong- Lo-Mendel-Rubin (p-value), and the size of the smallest class.(48) As one fits more 

parameters to a model, in this case more classes, the better the model will fit the sample of 

data but tend towards overfitting. An over-fit model is less generalizable and less likely to 

replicate.(49) That is, as model complexity increases, it becomes more unique to the sample 

and less generalizable to the population.

Fit Indices: The Information Criteria (IC) statistics are derived from maximum likelihood 

values of a fitted model. The two most frequently used measures, BIC and Akaike 

Information Criteria (AIC), are designed to strike a balance between accuracy and over-

fitting. In both measures, a decreasing value indicates better model fit. A key difference 

between the two measures is that BIC heavily penalizes the addition of parameters to the 

model in relation to the sample size, where the larger the sample size the greater the penalty.

(50) BIC, therefore, favours simpler models (fewer classes) compared to the AIC. Whereas, 
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as N increases, the AIC has a tendency to select more complex models (more classes), as the 

best fitting because sample size is not a determining factor in its estimation.(51) To that end, 

Nylund, et al. (34) using simulations concluded that BIC tends to perform better than AIC 

especially when N is large. BIC tends to performs poorly when the sample size is modest 

because of a high probability of extracting too few classes and may be outperformed by the 

AIC.(52) In these circumstances, when the sample size is known to be small (< 300), it is 

advisable to present both the AIC and BIC.

In the case where there is a mix of categorical and continuous variables and the continuous 

ones are normally distributed, Morgan found that BIC worked best at identifying the correct 

number of classes when most of the variables are continuous.(53) He also demonstrated that 

the sample size-adjusted BIC works well in such data types. These findings were in line with 

Nylund and colleagues.(34) Further, when assessing the best model fit, particularly in large 

datasets with many indicators, additional classes can often lead to a consistent decrease in 

the IC, favouring the more complex model. In such instances, it is helpful to plot the IC to 

seek a point of inflection or plateauing (elbow plot; Figure 4).

Testing for number of classes.—In addition to indexing model fit, there are tests 

comparing a model with k classes to one with k-1 classes. Developed by Lo, Mendell and 

Rubin (36) based on work by Vuong (54) the VLMR test assumes multivariate normality, 

and it is not clear how sensitive the p-value is to violation of that assumption. It is also 

possible to use a bootstrapped p-value, although its validity outside of normally distributed 

data remains unknown.(55) In a Monte Carlo simulation of LCA using only categorical 

indicators, Nylund and colleagues found that the bootstrapped test (BLMR) consistently 

outperformed the simple Lo-Mendell-Rubin test (LMR).(34) Again in simulation studies 

with latent profile analysis (continuous indicators), Tein and colleagues found that the 

BLMR had higher statistical power than LMR, although both tests performed well at 

detecting the true class.(56) In our practice, across multiple analyses with real-life data 

consisting of a mixture of categorical and continuous indicators, we have found that the 

BLMR consistently favours k classes over k - 1 class to the point of being of limited value.

Step 4: Evaluate the Models

Class Numbers, Size and Separation—It is important to remember not to rely too 

heavily on p-values, as they are only one index of model fit. It is also important to consider 

the relative size of the smallest latent class. A model with a small class is often a model with 

too many classes. That is, a small class may be the result of some sort of ‘quirk’ in the data. 

It is also important to determine the validity of the ‘latency’ of these smaller classes by 

examining the chief determinants of class-membership, as often they may be driven solely 

by extreme values of a single-variable rendering the LCA model superfluous for their 

classification. For example, in a cohort of patients with sepsis, a small class with few 

observations may be driven almost entirely by neutropenia. Whilst mathematically 

legitimate, this class provides little additional biological or clinical information that cannot 

be simply extracted using the neutrophil count. As models with increasing numbers of 

classes are fit to the data, one also runs the danger of over-extracting classes that may be 

unique to the dataset. Entropy, a measure of class separation, can be informative of how well 
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the clusters differentiate and should be presented for each model. Again, the model with the 

highest entropy may not necessarily represent the best fitting model. Theoretically, an over-

fit model would have higher entropy, and therefore, the absolute values of entropy should 

not be used as a metric to determine the optimal model. A low entropy, however, can be 

informative of a poor class separation and warrants closer inspection of the models and the 

quality of the indicators used to derive them (see Table 5).

Biological and Clinical Insights—When determining the optimal number of classes in a 

population, it is important to bring one’s substantive knowledge and expertise to the process. 

The separation of the classes should be meaningful from either a clinical or a biological 

stand-point or both. Fundamentally, the utility of the classes identified by the best fitting 

model often requires the discretion of the investigators. It may be that the biological or 

clinical insight gleaned from classes identified by a statistically worse fitting model may 

supersede the primacy of the model with the ‘best’ fit statistics. The best model should, 

however, be selected prior to linking the outcome variables of interest to the classes 

identified. Concealing the outcome variable used as a metric to gauge successful clustering 

from the model selection procedure allows an unbiased approach to model evaluation. 

Further, it is also important to be mindful that choosing a model that is not statistically the 

best fitting may compromise the likelihood of replicating the model beyond the data from 

which they were generated. In such instances, external validation of the identified classes 

becomes all the more essential. Finally, when evaluating LCA models where the fit statistics 

suggest that none of the models fit the population or the 1-class model is the best fit, it is 

important to acknowledge that this may be the ground truth. In such instances, it may be that 

the studied population does not have “latent” classes or that the indicators are of insufficient 

quality to distinguish these classes.

Step 5: Interpreting the Final Model

When assessing the validity of the final model, it is important to consider its robustness. 

Multiple random starts should be used to demonstrate sufficient replication of the maximum 

likelihood.(57) It is also important to inspect the classes to ensure that they are not merely 

reflective of scaled groupings of a single observed indicator. If a given dataset has only one 

class (in other words, there is no underlying mixtures of distributions), there may be some 

indication that a k-class model fits the data. However, when the profiles are plotted, they 

roughly form a set of parallel lines (Figure 5). This finding probably suggests that a single 

sample has been coerced into k levels, such as low, medium and high severity where k is the 

number of classes one asked the algorithm to fit. This phenomenon is known as the Salsa 

effect (mild, medium and hot levels of spice). It may still be possible that these classes are 

distinct, but emergence of such parallel lines should be considered a strong indicator of this 

phenomenon, and the results should be interpreted cautiously.

Classify then analyze—When working with LCA models, it is not uncommon to 

perceive the classifications as absolute and error-free. In reality, individual posterior 

probabilities for class assignment are estimated. This uncertainty of class membership 

should be incorporated into analyses that compare differences between classes, particularly 

when class membership is uncertain. There are several practical advantages to using a 
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classification system rather than probability outputs to determine the validity of the latent 

class, not least that it simplifies the clinical decision-making process. In our practice, we use 

a probability cut-off of ≥ 0.5 to assign class. If the model fits well, and the entropy is large 

enough, the probabilities will be close to 1.0 for one class and close to 0 for the others. In 

such circumstances, the loss of information introduced by this “classify-analyze” approach 

will be minimal, limiting the chance of miss-classification. In instances where class-

membership carries greater uncertainty, Lanza and Rhoades found this simplistic approach 

was less conducive to detecting heterogeneous treatment effect compared to more complex 

model-based approaches, due to high misclassification rates.(58)

Comparing Classes—When interpreting differences between classes, it is important to 

keep in mind that there is a circularity when doing so based on indicators used to fit the 

model in the first place. The algorithms used in LCA separate classes using these indicators. 

Finding that the classes differ on most variables is, therefore, uninformative. What is 

informative, however, is exploring indicators that are most divergent among the classes, as 

this helps to characterize the phenotype of each class. Those variables that are not different 

can, paradoxically, also provide useful insights into the studied population. For example, in 

LCA in ARDS, common respiratory variables are not important determinants of class-

membership, even though clinical outcomes are vastly divergent between the classes.(15) 

This finding suggests that the classes identified in LCA ARDS populations are based on 

factors beyond the variables that are used to clinically define the syndrome and that novel 

prognostic information is captured by these classes that cannot be extracted from respiratory 

variables on their own.

External Validation: A key component to demonstrating the validity of classes or 

subgroups identified using algorithms such as LCA is to demonstrate their reproducibility in 

external datasets.(59, 60) A study that replicates the findings using the same predictor 

variables in a second, independent, population that greatly increases generalizability and 

impact of the identified classes. There are two distinct questions to address when validating 

LCA models in an external cohort. First, does the best fitting model in the validation cohort 

have the same number of classes as the best fitting model in the primary analysis? Second, if 

the same number of classes emerge, are the characteristics of the classes similar to the one 

identified in the primary model? When assessing similarities between classes across cohorts, 

frequently the answer may be self-evident. In instances where the similarities are less 

pronounced or subjective, investigators should consider building parsimonious classifier-

models using the a select few top discriminating variables from the primary model and 

evaluate its performance accuracy in the validation cohort.

When critically appraising a study using LCA, this reproducibility and robustness of the 

identified classes should be a key component. Figure 6 is a step-wise framework on the 

critical appraisal of LCA.

Summary

LCA is a powerful analytical tool that allows model-based clustering of heterogeneous 

populations. Moreover, unlike other methods of clustering, it permits objective testing of 
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model fit. As the field grows with increasing computational power and data complexity, it is 

likely that LCA will become more commonplace and our understanding of optimal 

conditions, interpretation and novel application of these algorithms will evolve. In this 

review, we have presented a brief and current guide on how to approach LCA using clinical 

and biological data, outlining some of the key steps and pitfalls. It is our hope that it will aid 

investigators and grow the application of these techniques, further enhancing our 

understanding of medicine and these powerful analytical tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of “hidden” or latent classes in a population where the data are normally 

distributed. The black lines show the density of distribution in the whole population, the 

dotted lines represent two latent classes (blue and red). The presence of latent classes within 

a population is a central assumption to the modelling algorithms of latent class analysis.
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Figure 2. 
Schematic of the stepwise approach for performing latent class analysis.
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Figure 3. 
Histogram demonstrating the impact of imputation strategies for biomarker assay 

quantification values that were below the lower limit of detection (LLD). For each presented 

biomarker the values were imputed as either as (I) LLD; (II) LLD/2; (III) LLD = 0 (IV) LLD 

= 0.1. 3A: Represents z-score transformation and log-transformed data for Surfactant 

Protein-D, where there were 7 out of 587 values below the LLD (84.5 ng/mL). 3B: 

Represents z-score transformation and log-transformed data for Intercellular Adhesion 

Molecule-1, where there were 7 out of 587 values below the LLD (2.3 ng/mL).
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Figure 4: 
Example of an Elbow plot used for evaluating the Bayesian information criteria (BIC) or 

other indices of model-fitting. The red arrow indicates the “elbow”, where further increases 

in model complexity (i.e. more classes) does not yield the same decreases in BIC (lower 

values suggest a better fitting model. These values are from unpublished data from prior 

ARDS studies.
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Figure 5: Illustration of the “Salsa effect” in latent class analysis using simulated data. The 
indicators of the identified classes when plotted on a graph they run parallel to each other, 
suggesting that the identified classes are merely representative of scales of severity of these 
variables.
ICAM-1 = Intercellular Adhesion Molecule-1, IL = Interleukin Ang-2 = Angiopoetin-2, 

sTNFR-1 = Soluble tumor necrosis factor receptor-1.
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Figure 6. 
Key steps and consideration when critically evaluating a latent class analysis study.
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Table 1

Glossary of terms and their description (alphabetically ordered)

Terms Description

Akaike Information 
Criterion (AIC)

An index of how well a model fits which seeks to balance the complexity of the model against the sample size. 
The AIC is calculated using the maximum likelihood estimate. The AIC penalizes models as the number of 
parameters increases. The size of this penalty is constant.

Bayesian Information 
Criterion (BIC)

An index of how well a model fits which seeks to balance the complexity of the model against the sample size. 
The BIC is calculated using the maximum likelihood estimate (includes sample-size adjusted BIC). The BIC also 
penalizes models as the number of parameters increases; however, this penalty increases as the sample size 
increases.

Entropy
A measure of separation between latent classes. Higher entropy denotes better class separation. It is calculated 
using sample size, number of classes, and posterior probabilities. Note that an over-fit model will have high 
entropy so this should not be used for model selection.

Factor Analysis / 
Complete Factor 
Analysis

Principal component analysis where the 1’s in the diagonal of the correlation matrix are replaced by an estimate 
of the communality of the variable.

Full information 
maximum likelihood 
(FIML)

A method of finding the maximum likelihood solution in the presence of missing data.

Growth mixture 
modeling

A form of mixture modeling used to find latent paths in longitudinal data. Growth, as in monotonic increase, is 
not a requirement.

Hidden Markov Model / 
Latent Transition 
Analysis

A form of statistical modeling used to model changes in categories over time where the groups or categories are 
not directly observed.

Indicators The variables used in a finite mixture model which generated the observed distribution.

Latent Class Analysis A form of mixture modeling where all indicator variables are categorical or, in our usage, a mix of categorical 
and continuous.

Latent Profile Analysis A form of mixture modeling where all indicator variables are continuous.

Latent Variable A variable that cannot be directly observed, such as membership in a class.

Local Independence The concept that variables are independent of each other within a latent class.

Local Maxima A likelihood value that is not the true likelihood—analogous to mistaking the top of a foothill for the top of the 
mountain.

Maximum Likelihood Maximum likelihood estimation/solution is the process of estimating model parameters such that the resultant 
model generates values that are most likely to represent actual observed values.

Mixture Modeling A form of statistical modeling that can be used to identify latent groupings within a dataset.

Model Parameter
These are internal component parts of a model that define its composition. Parameters are estimated using the 
training data, and once estimated, they are constant. The simplest example of a model parameter is coefficients 
generated in a regression equation.

Monte-Carlo Estimation
Computational algorithms that use repeated and random sampling to estimate expected values in simulated data 
where direct calculations are not feasible. In LCA, Monte-Carlo simulations studies can be used to determine 
power or to estimate model performance under varied conditions.

Multiple Imputation
Approach to handling missing data where the missing values are replaced using algorithms that account for the 
variance of the data and multiple such data sets are imputed. Results from each dataset are combined for the final 
analysis.

Posterior Probability The probability of class membership for each observation after the model has been fit.

Principal Components 
Analysis A mathematical method of data reduction where N variables are replaced by a smaller set of components.

Salsa Effect Forcing a single population into separate latent classes which are just spread along a single spectrum or variable.

Vuong- Lo-Mendel-
Rubin (VLMR) test A test of the probability that a k-class model fits the data better than a k-1 class model.
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Table 2.

Summary of key steps and recommendations when setting up the data to perform Latent class analysis.

Step Description Recommendation Presentation

Study 
Design & 
Data Set-
up

Indicator 
Selection

The indicators selected 
will dictate the nature 
of the clusters.

- Select indicators based on research question.
- Exclude indicators that are composite of 
other indicators in the model.
- Exclude outcome data as indicators.

- Present clear rationale for 
indicator selection.

Data 
Processing

Transforming data to 
minimize extreme 
scales is more likely to 
yield informative 
classes.

- Categorical variables: Consider collapsing 
categories with less than 10% of the sample.
- Non-parametric data should be transformed 
such that they are normally distributed and 
uniformly scaled.

- Clearly describe the 
procedures used for data 
transformation and 
collapsing of categories.

Local 
Independence

Assumes that within 
class, observed 
indicators are 
independent.

- Test correlation of indicator variables in the 
complete dataset and within each class.
- Consider removing one or more indicator if 
there is collinearity.
- If a single pair is highly correlated consider 
relaxing the assumption.(31)

- Present the correlation 
coefficients of the most 
highly correlated indicators.
- Clearly describe any 
variables that were excluded 
from the analysis.

Sample Size Power sample to:
1. Determine the true 
number of classes.
2. Detect pertinent 
differences between the 
classes.

- When N < 300 it is recommended to perform 
Monte Carlo simulation to determine 
adequacy of sample size.(38)
- Standard power calculations should be 
performed to determine the sample size 
needed to detect significant inter-class 
differences.

- Present clear rationale for 
the sample size and any 
power calculations 
performed.

Handling 
Missing Data

Approaches for missing 
data:
1. Full information 
maximum likelihood
2. Multiple Imputation

- Full information maximum likelihood and 
multiple imputation are recommended 
methods of dealing with missing data.
- Lower levels of research biomarker assay 
detection (LLD) impute either LLD, LLD/2, or 
multiple imputation.(44)

- Present methods used for 
handling missing data.
- Present differences in 
indicators and outcomes 
between missing and 
complete cases.
- Sensitivity analysis with 
missing data / non-imputed 
data.
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Table 3.

Summary of key steps and recommendations when determining the optimal number of classes that best fit the 

population. AIC, BIC, SABIC, LMR, VLMR, BLMR.

Step Description Recommendation Presentation

Optimal 
Class 
Selection

Fit Indices AIC, BIC, 
SABIC

- For most analyses, we recommend using 
BIC and/or sample adjusted BIC.(32)
- For analyses with small sample size (< 300) 
and/or multiple classes in the final model, use 
both AIC and BIC.(50)

- All indices used for model 
selection should be presented in the 
fit statistics table.
- Both AIC and BIC should be 
presented if N < 300

Model Testing LMR, VLMR, 
BLMR

- VLMR should be used to test if a model 
with k classes is better than model with k-1 
class.(34, 52)
- In models with mixed indicator data types 
the BLMR is not recommended.

- All model statistical tests should 
be presented with a significance 
level of p < 0.05.
- Clearly present the clinical or 
biological rationale for selecting a 
model where the p values may not 
be significant.

Model 
Characteristics

Number of 
classes, the size 
of the smallest 
class and class 
separation are 
important 
determinant of 
model fit

- Classes with small N’s should be evaluated 
to determine whether outliers of a single 
indicator may be determining the class.
- Models consisting of numerous small 
classes are less likely to be externally 
generalizable than models with fewer, well-
distributed, classes.

- Present the fit statistics and the 
number of observations in each 
class of all the models used in the 
analysis
- Present the entropy of all the 
models in the analysis
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Table 4.

Summary of key steps and recommendations when interpreting the final model.

Step Description Recommendation Presentation

Interpreting 
Final Model

Convergence A form of internal 
validation where the 
maximum likelihood for 
each model is generated 
using random starts.

- Multiple random starts are recommended 
(minimum 50) to replicate the maximum 
likelihood at least 20 times.
- Increase number of starts with models 
with increased complexity.(55)
- If likelihoods are not replicated evaluate 
data structure and type. Consider rejecting 
model if maximum likelihoods are not 
rejected.

- Confirm that maximum 
likelihood was replicated at 
least 20 times for all models 
in the analysis
- Presenting the maximum 
likelihood is optional as the 
AIC and BIC are generated 
using this value

Classification Probabilities generated 
by the model are used to 
classify each observation 
to a class.

- Probabilities cut-offs to assign class 
should be determined a priori.
- If the entropy of the model is low with 
poor class separation, the uncertainty of 
class membership should be incorporated in 
the analysis.

- Present the probability 
distribution of the classes in 
the optimal model that best 
describes the population 
(final model).

Salsa Effect This refers to the 
coercion of classes to fit 
a population that may 
not have latent classes.

- Examine the distributions of the indicator 
variables to see if they suggest a single 
population has been spread out along a 
continuum.

- Not applicable.

Outcome 
Measures

To demonstrate that the 
identified classes are of 
value, certain key 
variables are shown to 
differ between the 
classes.

- A priori key discriminant outcome 
measures should be described in the 
analysis plan.
- Investigators should be blinded from these 
outcome measures when determining the 
best fitting model.

- An a priori analysis plan 
should describe the likely 
metric that will be used to 
determine differences 
between the latent classes 
and gauge their clinical 
utility.
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Table 5.

Features that should alert investigators to a potentially poor fitting latent class analysis models and their 

corresponding trouble-shooting solutions to improve model fit.

Features suggesting poor fitting models Trouble-shooting

Failure to obtain multiple replications of 
maximum likelihood

- Increase the number of random starts
- Check the scale of the continuous predictor variables are appropriately transformed and 
uniformly scaled
- Check distribution of variables and seek extreme outliers
- If models fail to replicate the maximum likelihood consider rejecting the model

Minor perturbation of indicators leading to 
large changes in the model fit statistics 
and/or VLMR values

- Check correlation between indicators
- Check correlation between indicators within each class
- Check if the data transformation/imputation of the continuous indicators has led to extreme 
scaling of important variables (see Figure 3)

A two class model comprising of a class 
with less than 15% of the sample
or
Models comprising three or more classes 
contain a class(es) with less than 10% of 
the sample

- Check to ensure that a single indicator is not the pre-dominant determinant of the classes
- If a single variable determines the class:
- Check the scale of the continuous predictor variables are appropriately transformed and scaled
- Consider rejecting the model
- Validate the findings in an independent cohort

Models with low entropy - Assess the quality of the indicators:
- Examine the entropy of individual indicators. The variables may be of insufficient quality to 
separate the classes
- Consider adding novel, higher quality, indicators to the model

Note: the presented solutions may be helpful in rectifying poor model fit, when interpreting these features, however, it must always be considered 
that a given population may not have underlying latent classes.
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