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ABSTRACT

The pricing equation of Ross' (1976) APT mode) is derived Jsing
estimable parameters. Estimation errors are discussed in the frame-
work of elementary perturbation analysis. Theoretically, a simple
link is provided among the mean-variance efficient set mathematics,
mutual fund separations, discrete and continuous time CAPM, option
pricing model, term structure of interest rate, capital budgeting,

portfolio ranking, Modigliani Miller theorems with the APT.
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1. Introduction

Since the introduction of the arbitrage pricing theary (APT) by
Ross [36, 37], the theory has gained theoretic importance because of
its simplicity and its performance under empirical scrut'iny.1 Yet
practical applications of its pricing equation have been partially
hampered by difficulties in estimating the unknown “factors." In
this paper, we shall address the estimation problem in the framework
of elementary perturbation theory. In addition, a simple link is
provided among the mean-variance efficient set mathematics, mutual
fund separation, discrete and continuous time CAPM, option pricing
model, term structure of interest rates, capital budgeting, portfolio
ranking, the Modigliani-Miller theorems and the APT.

We begin by reviewing the main results of the APT. Assume
asset markets are perfectly competitive and frictionless, and indiv-
iduals believe that returns on assets are generated bya k-factor

model, i.e., the return on the ith asset can be written as:

PL R EL A bgS b8 ey (1)

where Ei is the expected return; Ej, j=1, ..., k, are the mean
2ero factors common to all assets; bij is the sensitivity of the
return on asset i to the fluctuations in factor j; and ;i is the
"unsystematic" risk component idiosyncratic to the ith asset with
E{;iléj} = 0 for all j. 1In equilibrium, the expected return on

the ith asset is given by:2

Ej = %g ¥ Mbyqp by et by (2)



If there exists a riskless (or a "zero beta") asset, then its return
will be Ap: Equation (2) implies that the expected return on any asset
i can be written as a linear combination of expected returns on any
arbitrary but fixed set of k + 1 linearly independent assets,3 pro-
vided that the k + 1 expected returns of those assets can be indepen-
dently estimated.

An unsuspecting practitioner who regresses returns of asset i
on returns of the k + 1 assets to get Ei will find the results totally
disastrous. The reason is that the variances of the idiosyncratic
terms are not sma114 and they show up in the coefficient matrix of
the normal equation when using simple least square regression.
This problem can be partially alleviated by forming large portfolios,
but .unfortunately, the formation process in general would introduce
a more subtle difficulty which we shall discuss in greater detail in
section IV.

Nevertheless, our ‘ntuition is correct that Ei can be expressed
in terms of expected returns of k + 1 linearly independent assets.
In section II, we shall derive some basic results. In section III,
we shall comment on the inheritability of the many applications of
CAPM by the APT. Finally, in section 1V, we shall analyze the
sources of and the remedies for errors in estimating the pricing

equation of the APT. Some mathematical derivations and related

issues are discussed in the appendices.



11. The Pricing Equation

Suppose there are n assets and k factors in the economy aqd
we possess the covariance matrix of m assets, where n >> m >> k.
Assume further that within the m assets there exist k + 1 linearly
independent assets. Then using the method of factor analysis and
principle components,5 we can determine the bij's, i=1, ... ,m
and j =1, . . . ,k corresponding to a set of factors {31, N .,Sk}.
The set {S], .. ";k} is not unique in the sense that any isomorphic
Jinear transformation of the set can serve equally well as the k
factors, but the bij's that we get correspond to the same fixed set of facotrs.
If the return generating process is given in terms of an arbitrary
set of k factors, then there exists a unique linear transformation
that takes this‘arbitrary set of factors into the fixed set that
the obtained bijls correspond to. Further, even though we do not know the
identity of the factors, with proper normalization, the variances of the ;j’
i =1, ... ,k are known and given as the factor scores (eigenvalues)
corresponding to the factor loadings (eigenvectors), and the covar-
jance between any two distinct factors in the set is zero. Note
that the converse is not true, i.e., it is not true generally that
the variances of an orthogonal set of factors are eigenvalues.
These assertions are proved in Appendix A. Define cjz H Var(éj).
Aspects of obtaining clean estimates of the ojz's and bij's are dis-
cussed in section IV.

Obviously all our problems are solved if we can locate all the

n assets in the economy and devise a fast enough algorithm to decompose

the n x n covariance matrix. Since this is currently impossible,



we shall resort to an alternative scheme to manufacture “betas" from
known "betas".

Theorem: Let ;1; i=1, ... ,k+1 be the returns of k + 1 linearly

L, 1 =1, . Lk 4+,

J
be the return of the pth asset,

independent assets (portfolios) such that bi

1, . . sk are known. Let rp

pFEI, =1, .

(1)

., kK + 1 with Cov(ep, si) = 0,

1f Cov(rp, ri) is known for 1 =1, . . . ,k, then bp1, .
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Since the coefficient matrix is nonsingular, (bp], .

can be uniquely determined.

(i)

have the same expected returns (i.e.

(2) holds).

(3)

In equilibrium, all portfolios with the same set of betas will

To construct a

portfolio from the k + 1 assets that possess the same betas as the

pth asset, we solve
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The last equation ensures that the investment proportions
(xy, . . .ix ,q) add up to unity. Again since the coefficient matrix
is non-singular, the solution (x1, .. .,xk+1) is unique and
Ep= B+ ot gE QED

Take the k + ISt asset to be the riskless asset (or a zero
beta portfolio). Define (E - xo)' to be the k dimensional row vector

whose ith component is Ei = Ay Cov(rp, r) to be the column vector

whose ith component is Cov(; , ;1) and V to be the matrix whose (i, j)

P

. 2 2 . .
element is bi1bj1°1 ... +bikbjk°k . With some algebraic man
ipulations (carried out in Appendix A), the pricing equation of the

APT can be written as:

£y =g+ (E-ag) VT Cov (rp. 7). (5)

Equation (5) is the general k-factor pricing equation in terms of
any k + 1 linearly independent assets or portfolios. The last term
on the right hand side, i.e., the inner product of "risk premium”
with “risk factors," exhibits the linear risk-return relationship

of the model.



It is immediately apparent from (1) and (5) that the market
model (see Fama [10], p. 37) is a special case of the APT. Indeed,
letting k = 1 and ; = ;m - Em, we obtain the well known pricing

equation:

- aged)™ coviry, 7). (6)

E = Ag * (€ n

p m

Before proceeding to tie together various asset pricing models,
it might be illuminating to digress and consider the following line
of reasoning that leads to the traditioﬁ;1 Sharpe [42] - Lintner [26]
- Merton [28] CAPM, with the restriction being placed on the asset
price distribution (rather than on the utility functions).

For any period t, there exists an ex ante mean-variance effic-
ient frontier for risky assets. Let p be any portfolio and
q be the portfolio on the efficient frontier that has the same

expected return as p. Consider

we have
E(h) = 0 (7a)

and from the efficient set mathematics (for a concise description,

- - 2 -
11 [34 N = = s ’ h
see Ro11 [34]), Cov(rp rq) % Cov(rq rq) ence

-

- -

Cov(h, rq) =0 (7b)

However, h is not a noise term. To be a noise term (see Rothschild

and Stiglitz [39], Ross [38]), we must have

E(B]rq) =0 for all " (7¢)



which is weaker than independent (between " and h) but stronger
than uncorrelated. If (7c) is true, then the mean-variance effic-
jent frontier is the relevant investment opportunity set for all risk

6 If a riskless asset exists, then the

averse utility maximizers.
relevant frontier becomes a straight line. In either case,
there is two fund separation.
Proposition: If a11 asset returns belong to a class of distri-
butions that is closed under l1inear combination (with finite var-
iances), and such that, (7a) and (7b) together imply (7c), then the economy
exhibits two fund separation under perfect markets.
Corollary: CAPM holds under the multivariate normal distribution.7
Since the above analysis applies equally well to an instantan-
eous efficient frontier as to an ex ante frontier, it is intuitive
to think of Merton's [28] continuous time CAPM in these terms with
assets exhibiting a non-anticipating "locally multivariate normal
distribution." Going a step further, it is obvious that Merton's
[29] continuous time CAPM with k - 1 stochastic factors can be

written in the same form as (5). In particular, Merton's equation

(34) ([29], p. 882):

olo. -po.0 ] e lo. -p.0 ]
E o=y, +-2_Pm__pnnm e ), R PN FOTI_ £ .3.) (8)
P 0 Z m 0 1 2 n 0
on (1 - ©rm) °n( - Pmn)
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can be obtained by choosing 6y = Tp - Em and 6y = Ty = En (see
below) with L. being the asset return that is perfectly negatively
correlated with the shift in the riskless return. Since 31 and 52
may be correlated, V would contain some correlation terms that show

up in (8).



Another model that is consistent with (5) §s the Kraus and

Litzenberger [23] skewness preference model. By taking 81 = rml- Em

and 82 = (;m - Em)z. we obtain their equation (6) ([23], »p. 1090).8
What is the relationship between the APT and the mean-variance

efficient set mathematics? To answer this question, let us take

Merton's CAPM with a stochastic interest rate as an example. From

the point of yiew of the APT, equation (8) holds whether portfolio

m is taken to be the "market portfolio” or the "first portfolio," call

it portfolic A, defined by Merton in his Theorem 2 ([29], p. 880).

This is obvious because portfolio A is a linear combination of the

"market portfolio" and portfolio n, and vice versa. Portfolio A, with

th

investment proportion inthe i~ asset given by the 1th component of

the vector

t'1(E -3 /¢ t'](E - 2g)

where ! is the instantaneous covariance matrix and e is a vector

of all one's, lies on the instantaneous efficient frontier of risky
assets, and, together with the riskless asset, provides “the service
to investors of an instantanegus efficient, risk-return frontjer."
Hence, if (8) is given with m being the portfolio A, then (8) and

(6) simultaneously hold with the same m. This is true because m

is then located on the instantaneous efficient frontier and the
efficient set mathematics applies. Although the mathematics was
developed for the discrete time case the continuous time case follows
trivially. In fact, the pricing equation of a k factor multi-beta
APT (eq. (5), discrete or continuous time) can always be reduced to

a single beta equation (eq. (6)). The trouble is that the investment

proportions of portfolio A as well as the betas computed against it



may change with time. In the discrete time case, a portfolio with
fixed investment proportions that is on the ex-ante efficient frontier
for a period may not be on the frontier for any subsequent periéd

or any subperiod. This problem can be partially alleviated if
portfolio A is "tracked" by another variable. Recently, Breeden [4]
has found that "real consumption" can replace portfolio A in the
single beta pricing equation, given appropriate assumptions.9

An important point to note here is that even though we are

always able to collapse a k factor pricing equation into a single

beta equation, we do not generally have two fund separation. In a
single period k-factor APT model, if we choose an orthogonal set of

k factors with one of them being the portfolio on the efficient
frontier, then the portfolios corresponding to the remaining k - 1
factors will have zero risk premium. I1f we then form k - 1 zero in-
vestment portfolios (from the k - 1 orthogonal portfolios) by

shorting the riskless asset, then we would have k - 1 portfolios
‘with no investment, zero expected return and uncorrelated with the
efficient portfolio. However, not every risk averse investor would
prefer investing only in the riskless asset and the efficient portfolio
because generally uncorrelated does not imply independent. (The

k - 1 zero investment, zero expected return portfolios behave like

h above). Algebraically, a portfolio p represented by (bp1""’bpk’ 1)

(see footnote 3) can be decomposed into:

(bp]""’bpk’ 1) = (bp], 0,...,0, 1)
+ (0, pr’ 0,...,0)
+
+(0,...,0, b_,, 0).



-0 -

Therefore, if we let 5] be on the mean variance efficient frontier

. 51.) =0, i=1...,k, then {0, bpz. 0,...40)4.vns

(0,...,0, bpk’ 0) are k -1 zero investment, zerp expected return’

-

and Cov(g

portfolios uncorrelated with (bpl' 0,...,0, 1). However, not every

p]‘ p2’...’bpk’ 1).

Therefore, we do not have two fund separation. A well known

investor would prefer (bp], 0,...,0, 1) to (b b

example is in Hakansson [17]. In the continuous time APT model with

explicit state dependent utility functions, the k - 1 portfolios are

used to provide hedges.
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111. Applications

Many theorectical and practical applications of the CAPM will
follow easily under the APT. In this section, we sha11Abr1ef1y comment
on several obvious results in the area of corporate finance, term
structure of interest rates and option pricing. The 1list is only
for illustrative purposes and is by no means exhaustive.

Let us first consider the question of capital budgeting in
a single period setting. If we can estimate subjectively

Cov(r , ri)’ i=1, ...,k where rp is the return on investment,

and have estimates of Ei’ i =1, ... ,k+1 (in the same way

-

that we estimate Cov(;p, rm), E, and Ay with the CAPM) then (5) can
be used as a benchmark to distinguish profitable from unprofitable
investment in the same way as the Security Market Line in the CAPM.
The only difference is that we now have a k dimensional hyperplane.
The investment is acceptable if its expected internal rate of
return lies on or above the "Security Market Plane" in the k + 1
dimensional space with return on the "vertical" axis.

Theorem: A project's net present value is non-negative if and only
if its internal rate of return > R*, R* given by (5).

The result is intuitively clear. The proof and some comments
on the multiperiod decision are provided in Appendix B. A closely
related issue is ranking portfolios using the Security Market Plane.
We shall return to this problem in the next section.

Other results in Rubinstein [40] follow under the APT with

parallel arguments; specifically,
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(i) Proof of Modigliani-Miller proposition ] with risky corporate
debt and corporate taxation

(ii) proof of Modigliani-Miller proposition Il revised for risky
corporate debt

(iii) analysis of the separate effect of operating risk and financial
risk on equity risk premium

(iv) analysis of the components of operating risk.

Another well known application of the CAPM involves the option
pricing model. The derivation of the inverse parabolic differential
equation that governs the option price by Black énd Scholes [1]
using the CAPM can be done using the APf in exaﬁt1y the same
manner. The results in Galai and Masulis [14] follow by
considering the entire risk premium term rather than just beta in
their equations (8), {9) and (10).

It is not surprising that the option pricing equation holds
under a general equilibrium model such as the APT. Since the option
pricing model is derived by assuming partial equilibrium (i.e., no
arbitrage profit) among several securities, it must hold, in parti-
cular, with the stronger assumption of no arbitrage profit among all
securities. Consequently, prices obtained using the same type of
hedging arguments must be consistent with those obtained using the
APT. Important examples include the compound option formula of
Geske [16] and many recent theories of the term structure of inter-

est rates.
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The derivation of option prices using a general equilibrium
model such as CAPM, APT or Rubinstein's [41] model {is {mportant
because not all underlying parameters are traded assets.f Furthérmore.
using the APT to derive the option pricing differential equation is
relatively easy and straightforward. The governing differential
equation with stochastic interest rate in Merton ([30], equation
(33), p. 164-165, in the interval when the bond price is following
geometric Brownian motion) can be readily derived in a few lines.
This technique can be used fo model other variations in the basic
Black-Scholes model assumptions. While not all those mixed initial-
boundary problems have quasi-analytic solutions, many powerful num-
erical algorithms are available provided the boundary conditions
can be meaningfully discretized and error propagation is stab]eﬁo

In the theory of the term structure of interest rates, it is
well known that if both lenders and borrowers are risk averse, the
forward rate will generally differ from the expected spot rate.
1f we assume that the liguidity premium arises solely form "risk,"
then we can use the APT to price "risk." This was the approach
taken by Roll [33] when he used the CAPM to price "risk." From
the term structure relationship, the liquidity premium of an N period

bond is the average of the risk premiums of bonds of maturities

from one to N periods.1]
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Recently, many authors have derived the term structure using
hedging arguments. They differed in their assumptions about the
number of state variables and the governing stochastic process.

The first published paper along this line is the work of Vasicek
[43] and the most comprehensive one is the yet unpublished work

of Cox, Ingersoll and Ross [5]. As mentioned earlier, their
conclusion must necessarily be consistent with the pricing of the
APT whenever the APT holds, with perhaps the attendant simplifying
assumptions. For example, the two factors assumption of Brennan
and Schwartz [2] s eguivalent to the assumption that there
exists a linear transformation of the factors such that bond prices
are sensitive to at most only two factors in a k factor world.

Before going on, let us reflect on a rather interesting point.
Many theoretical applications of CAPM reguire only that (6) hold.
But we know that (6) always holds as long as a mean variance effic-
jent frontier exists. Can we conclude that, say, the MM proposition
holds so long as we have an efficient frontier? Unfortunately,
this is only an illusion. The efficient frontier depends on expected
returns which depend on prices which we try to ghow are leverage

irrelevant.
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Iv. Estimation of the pricing equation

In this section, we shall analyze the best way to estimate the
expected return under the APT in the framework of perturbation analysis.
These analyses can be found in most elementary textbooks on num-
erical ana1ysis12 and are relevant to the method described in section
11 as well as to any regression method. We shall begin by reviewing

some of the observations made by von Neuman13

in the late 1940's.

In solving a matrix equation Ax = y, we consider the effect of
perturbations in y and in A on the computed solution x + éx, where
éx denotes the error. If we let A(x + 6x) = y + 8y, where &y is

the perturbation in y, then
R -1
[Tex || < AT []syll (9)

where || « || is any vector norm when applied to vectors and IR
is the subordinate matrix norm to the vector norm when applied to
matrices. If we let (A + SA)(x + éx) = y, with 6A as the pertur-

bation in A, then
Hox]/]1x + &x]| < v[[sA[]/]]A]] (10)

with 1 < v = ||A]] [IA'1|| which is called the condition number
of the matrix A. The inequalities in (9) and (10) are sharp

in the sense that equalities can hold. If we combine the above
two cases and ignore error terms of second order, then the error

bound for the case (A + 6A)(x + éx) = y + 8y is given by
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provided §A is so.sma11 that ||6A]] :_1/!|A'1]|. Equation (11)

says that the relative error in the computed solution is bounded

by a multiple of the sum of relative errors in y and A. This

also points out the crucial role played by y, the condition number
of A. When y is large, A is called i11 conditioned, and the computed
solution is not reliable because any error may be magnified by

a factor of the order of vy.

In our case of computing (5), aside from sampling errors,
8y will contain Cov(Ep, ;i) whenever they are not all zeros.

Also, 6A will contain errors from the finite arithmetics carried
out inside the computer. This component of A will be ignored

in our analysis because when k is small the cure is cheap and
simple. If, instead of computing (5), we regress returns of

asset p on returns of k + 1 assets, 6A will contain the covariance
matrix of ;i’ i=1, ... ,k+ 1 when solving the normal equation,
in addition to the perturbation mentioned above.

How large is y before we call A i1l conditioned? This is
related to the size of |]sA||/||A|| and ||éy{|/]]lyl]l. In most
scientific applications in which A and y are measured quite accur-
ately, matrices with y < 100 are said to be well conditioned.

But in social science, where A and y may contain relative errors
of up to 1% or more, a y = 100 may produce a computed solution
with no single meaningful digit. What is worse is the fact that

it is hard to judge from appearance how i1l conditioned A is.
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The innocent looking symmetric positive definite matrix

5 7 3
7 1 2
3 2 6

has a condition number that is roughTy;equa1 to 1500. So some
relative error may be magnified over a thousand times. A numer-
ical example is constructed in Appendix C using the data in Miller
and Scholes [31] where they considered the problem of why the
assets' own variances have explanatory power in cross sectional
regression.

Now let us specialize the perturbation theory of linear sys-
tems to our case. Suppose we decompose a reasonably sized cov-
ariance matrix of, say 200 x200 and obtain c? and bij; then we can
construct the matrix in (3) by forming portfolios from the 200
assets with the aim of making the matrix as diagonal as possib]e14
(the same asset may enter into all k portfolios!). In addition,
if all the weights of the assets in the portfolios are roughly of
the same order, the process will reduce the random errors that may
appear in igdivfdual bij's (e.g. due to sampling errors). Further,
if the Cov(ep, ei) are randomly distributed about zero, then the
covariance between the idiosyncratic terms will be much reduced.
Hence we can reduce vy, S8A, &y simultaneously (after knowing bij)’

and then use (5) to generate expected returns or use (3) to generate

betas.
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At this point, let usexamire possible errors that
may have crept into the computation of cJ.2 and bij' There are two
sources of errors: (i) sampling errors, (ii) possible contamin-
ation from idiosyncratic variances of individual assets when
factoring the covariance matrix. The second source can be greatly
reduced by factoring a large enough matrix, yet both sources
can be reduced simultaneously if we use the following two stage
process. In the first step, we factor a reasonably sized covar-
jance matrix, determine the number of factors, aggregate to form
the matrix in (3), and generate betas for a large class of assets.
In the second step, we form portfolios of, say, 20 assets each,
in such a way that (i) the idiosyncratic term of each portfolio
is small (ii) none of the common factors will be diminished in
the resultant portfolios. This can be done by successively
emphasizing the jth common factor, j =1, . . . ,k. Formation
of these portfolios cannot be done before step 1 because we would
not know the estimated bij’ and arbitrary formation of portfolios
may diminish the influence of a common factor. After forming
the portfolios, we can compute the covariance matrix of the port-
folios aad repeat step 1. This two stage procedure can be jterated
to achieve as accurate an answer as we wish subject of course
to sampling errors of portfolios, but we suspect almost all benefits
are realized in the first two or three passes.1

Obviously, the above procedure inyo1ves a nontrivial amount
of computations. Can all these be avoided using simple regression

on k + 1 portfolios? Such regression would be acceptable if



- 19 -

we know how to form k + 1 portfolios that are almost orthogonal
and how to simultaneously reduce the fdiosyncratic terms‘of the
resultant portfolios without the knowledge of the bij's of the
individual assets. Generally, there will be 2 tradeoff between
the two goals, and it is not clear which is the best way, 1f any.

Finally, let us turn to perhaps the most difficult problem assoc-
jated with the empirical work -- the determination of the number
~ of factors. Since the determination from factor analysis depends
on some statistical assumptions, we are quite concerned about
the impact of leaving out a factor. Fortunately, the penalty
for carrying an extra factor or two js small, as long as we take
care to isolate the "extra" factors from the regular ones.
Therefore, in -practice, a rule of thumb js when in doubt include
an extra factor. As an additional safeguard, we can test if
any important factor is left out by following the procedure Roll
and Ross [35] used for testing the significance of own variances
and append any factor, if necessary.

Having discussed the problems of estimating the
pricing equation (and thus the Security Market Plane), we
can look into the problem of ranking portfolics. 1f the pricing
equation can be estimated without error, then the Jensen [22] index
may be used. Unfortunately, it is clear from the above discussion
that some errors will always be present. However, if we take
care to keep such error small, bounds on the ambigquity when
performance is measured by the Security Market Plane can be
established. This would enable us to compute an incomplete ordering
of performance. The calculation of the bounds involves only

elementary numerical 1inear algebra; therefore, it is omitted here.
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V. Summary’

The explicit pricing equation of the APT model is derived'-
using éétimable parameters. Although the two stage method involves
rather substantial computations even with custom-designed algorithms
that can compute extreme eigenvalues and eigenvectors directly,
it seems to be worthwhile, especially if it can be carried out
on a vector machine or a:super computer, and the results shared
among researchers. On the theoretical side, we have seen that many

asset pricing models are either special cases of the APT or implied

by the APT.
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Appendix A

Suppose asset returns are generated by ;1 = Ei + b1131 + ...

bikék + ;i' From factor analysis, with the normalization chosen
below, we obtain b%j' We would Tike to show that there exists a
unique linear transformation that will take bij into b%j and a

related transformation that will take {31, ooy Sk} into an ortho-

gonal set {E{, cee s 3&) such that var(gs) = Gj, the eigenvalue

from the factor analysis, and r, = E. 4 bié'y + ..o 4 by éy + ¢y
A1l versions of factor analysis are designed to estimate the
m x m covariance matrix § net of the idiosyncratic terms from the

gross covariance matrix. Hence o = (wij) = Cov(;,i mey Ty - ej).
Choose the normalization QB = BA , B'B = I where B is a m x k matrix
of b%j's and A = diag(G], cee s ek)' Let T be the k x k matrix

representation on the canonical basis of the linear operator.

T RF . R
[ %1 ] by |
[
Pk L Pk

From ]inear algebra, T exists, and it is unique if there are Kk

linearly independent assets. Now consider the transformation
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8 8 )
= (1))
L %k L %k |
We have .‘
3] A
- - - . = | 1 1 '1
ry - € (bil’ e bik) : ( §1s cees bik)(T )
Lék dJ L
&
( %], cees b%k) ; ,
| Sk |
and
A = B' QB = B'(Cov(F; - €s, F; = €.))B

1 1 J

B'(B {covariance matrix of 8ys wees 6&}8')8

{covariance matrix of &, ..., SL} .

Therefore, we have shown the existence of a linear operator that
accomplishes the goal. It is also clear that if @ =C T C' where
columns of C are not orthonormal, then even though I may be diagonal,
its elements are not eigenvalues of Q. Hence, the converse is not
true.

To derive equation (5) from the theorem in section II, we

first combine the two parts of the theorem into the matrix equation:
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-1 ..
e eopp | BT
P - 2 1

where E' = (Ey, ..., E 4y), Fy, F, are the coefficient matrices
in equations (3) and (4) respectively and ggi(Fp,F) is the
vector (Cov(rp,rl), cees Cov(rp,rk))'.

To reduce (A.1) to a form that resembles the CAPM eguation,

we note that the riskless (or a zero beta) asset also satisfies (A.1),

hence

therefore

_—
E'F

Ep - A

o

If we let the k+1St asset be the riskless asset, then the last

column of FZ becomes (0, ..., 0,1)', therefore
Fg‘ 0
-1
F =
2
1 ‘1
-e F3 1

where F3 is the principal k x k minor of F2 and e' 1is the

k component vector (1, ..., 1). The product (El’ P XO) Fo

is a row vector whose first k elements are given by

-1 v ope]
(E]- XO’ cees Ep- XO)F3 £ (E - AO) F3

Hence equation (A.2) can be written as

(A.1)

(A.2)



ap .
£y - b = (E-3g) F3l A
Defining V = F]F3, we have equation (5)

Eg = g+ (E-g) V7 Cov(




Appendix B

To prove the theorem in section I1I, let V0 be the equili-
brium present value of the project, I be its investment cost, V]
be the end of period value, Ep = E(V.l)/v0 - 1 be the equilibrium
return, and ;p = 91/1 - 1 be the internal rate of return. By (5),

in equilibrium

1 -1 - -
E, = (E- x)" V" Lov(r I/Vg, r) .

Solving for V0 yields

-xa)" v EEX(;D’;) 1

Hence the net present value of the project is

~ , -1 -
g E(V]) - (E-2p)" V7 Cov(ry
T +1,

,ril -1 -AOI

"
—
+
| e
o
——

I
Ty (IRR - R¥)

Therefore, net present value is nonnegative if and only if

IRR > R*. Q.E.D.

Equation (B.1) gives an explicit formula relating NPV to I,

IRR ana R*; therefore, it can be used to rank mutually exclusive

(B.1)
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projects too. A point that is worth repeating here is that whenever
IRR # R*, the proper discount rate, call it d, that discounts
end of period E(V]) to Vg (i.e., Vo © E(V])/(1 + d)) 1s neither

IRR nor R*. From (B.1), d can be solved and is ziven by

T cov(W/E(0), 7y) 5.2

1= (E -2 )V Cov(Vy/E(T)), 7y

Ao - (E =2 Q)'v

d =

Equation (B.2) 1is especially important in a multiperiod setting
because we can no longer define IRR properly in general and there
is no multiperiod analog of (B.1). Since there is no theoretical
reason why the APT is limited to a single period model, extension
to the multiperiod case can be naturally accomplished following the
reasoning and techniques in Fama [9].

Another interesting point was considered by Fama on what types
of uncertainty are alTowed in the parameters of multiperiod asset
pricing models. If the intertemporal stochastic shifts can be
perfectly hedged (e.g. Black and Scholes [1], Merton [29], Cox,
Ross and Rubinstein [ 7] ), then all market parameters may be assessed

as if they were deterministic.
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Appendix C

In this appendix we shall discuss briefly the problem of errors

ijn variables when two or more explanatory variables are involved.
Let us first consider the regression equation in Miller and Scholes

[31]:

2(e,i) + e,

R. = ag * ayb; + 3, s i

1 1

where R, 1is the annual return, b; is an estimate for beta and

i
2(e.) is the residual variance (defined in detail in Miller and

518y

Scholes). Reconstructing the data given on p. 53, table 1 of their
paper, the solution (ao, ay, a2) = (,127, .042, .310) satisfies

approximately the matrix equation (X'X8 = X'y):

631 631 47.96 Ja27 121.8
631 FZO.S 64.67' .042 = 34.6
47.96 | 64.67 12.58 .310 12.71

Now suppose the true beta is approximated by bi with error; we

want to know how much error would have caused 2, (the slope coeffi-
cient of the residual variance) to go from zero to .310 (t = 11.76).
Suppose the error in bi has zero mean; then the only numbers that
contain errors in the above matrix equation would be those in the
boxes. We shall ignore the (3,3} element in the matrix since it

is irrelevant when a, = 0. The elements (2,3) and (3,2) must

be the same. Therefore, we are free to adjust only four entries.
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We changed the two entries in the matrix by 5% and we were able

to come up with the following solution

631 631 47.96 .053 121.78
631 778 67.9 .140 = 142.5
47.96 67.9 12.58 0 12.05

The two entries on the right hand side were changed by 5.8% and 5.2%
respectively. The sblufion 2, = .140 and 2, = 0 was much closer
to the expected value if the CAPM was correct.

We can see from the numerical example constructed above that
a change of 5% - 6% would produce a drastic change in the solution
of the regression. However, the numbers in this example should not
be taken at face value because of the artificial nature of the revised
matrix. Also, one reason why the original regression coefficients
Yooked so bad is probably the existence of missing factors (and
that is why we have APT) and of skewness-induced spurious dependence
as discussed by Miller and Scholes, and Roll and Ross [35]. Never-

theless, thic example contains a message:

(i) Although it is well known, it might be worthwhile to emphasize
again that the usual "bias towards zero" discussion of the
errors-in-variables problem applies generally only in the case
where there is one explanatory variable. It is no longer true
when more than one explanatory variables are involved.

(ii) The errors-in-many-variables problem is quite difficult.

Equation (11) provides a highly exaggerated "average
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p0und." It is exaggerated tecause of the special form of
error that can occur. It is an "average bound" because it
is in norm form rather than in component form. In the pre-
vious example, if the true ag is zero, then in component
form, the relative error is infinite.

(iii) If we are willing to do more work, then in some special
cases, a tighter bound is possible. See Leamer ([25], pp.
254-255).

(iv) In general, if we have many explanatory variables, we should
be very concerned about measurement error. The answer to

many puzzling results might be simpler than we thought.
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FOOTNOTES
1/ See Gehr [15], Roll and Ross [35].

2/ This statement of the APT is best regarded as an fntuitive result.
See Ross [36, 37, 38], Huberman [19]. '

3/ Associated with every asset i (or portfolio of assets) is a
k + 1 - vector (bil,...,bik, n) where bil,...,bik are the coef-
ficients in equation (1) and (2) and n is the number of units
(say, in dollars) of investment in i. The linear independence
thus refers to the relationship in the k + 1 dimensional vector
space.

4/ The size of the idiosyncratic terms was observed by Roll and Ross.

5/ See Kruskal [24] for a survey and discussion of the many
variants of the basic method.

6/ In the multiperiod setting or the continuous time setting, we
shall make enough assumptions so that the derived utility has
the characteristics of risk aversion. . .See Fama [11], Merton
B8 ], Cox, Ingersoll and Ross [5].

7/ An alternative proof of the CAPM is to note that the multivariate
normal distribution assumption implies, via the above analysis,
the market model (i.e., equation (1) with k =1, 8 % Tp - Em),
hence equation (6). .

8/ Their derivation of their equation (3) did not need their equation
(6). A weaker test of their (3) or (6) that avoids the collinearity
problem that they faced would be to determine if there are only
two factors.

9/ See also Cornell [3].

10/ A well known numerical disaster is solving the option pricing
type differential equation with an algorithm that violates a
von Neuman stability condition.

11/ Of some interest is Macaulay's duration as a measure of risk.
See Macaulay [27], Hicks [18], and Ingersoll, Skelton and Weil
[20], and Cox, Ingersoll and Ross [6].

12/ See, for example, Dahlquist and Bjfrck [8], pp. 174-177,
Forsythe and Moler [13], Isaacson and Keller [21].

13/ von Neuman and Goldstine [32].

14/ 1f the matrix is exactly diagonal, inverting the matrix involves
only simple divisions and (11) does not apply. In general,

if the matrix is nearly diagonal and symmetric, the condition
number will be small after scaling. :

15/ This construction was used by Marc Reinganum in a recent study
of the APT [44]. A more extensive empirical study is currently
under way by the author.
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