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1  | INTRODUC TION

Gene drive mediated by the clustered regularly interspaced short 
palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) 
system has recently emerged as one of the most promising tech-
nologies for reducing the harm caused by insect vectors of disease, 
crop pests, and invasive species, as well as for enhancing the fitness 
of valued species (Champer et al., 2018; Eckhoff, Wenger, Godfray, 
& Burt, 2017; Esvelt, Smidler, Catteruccia, & Church, 2014; Gantz 

et  al.,  2015; Godfray, North, & Burt,  2017; Grunwald et  al.,  2019; 
Kyrou et  al.,  2018; Rode, Estoup, Bourguet, Courtier-Orgogozo, & 
Débarre, 2019; Scott et al., 2018). Cas9 is an endonuclease whose 
target site is determined by an independently expressed guide RNA 
(gRNA) via a 20-nucleotide protospacer sequence (Noble, Olejarz, 
Esvelt, Church, & Nowak,  2017). Because Cas9 can target almost 
any sequence that is followed by a protospacer adjacent motif 
(PAM), RNA-guided gene drive elements can be constructed by in-
serting a suitable sequence encoding Cas9 and one or more gRNAs 

 

Received: 4 February 2020  |  Revised: 5 May 2020  |  Accepted: 7 May 2020

DOI: 10.1111/eva.13032  

O R I G I N A L  A R T I C L E

Can CRISPR gene drive work in pest and beneficial 
haplodiploid species?

Jun Li1  |   Ofer Aidlin Harari2  |   Anna-Louise Doss3  |   Linda L. Walling4  |    
Peter W. Atkinson3  |   Shai Morin2  |   Bruce E. Tabashnik5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

1Department of Statistics, University of 
California, Riverside, CA, USA
2Department of Entomology, Hebrew 
University of Jerusalem, Rehovot, Israel
3Department of Entomology, University of 
California, Riverside, CA, USA
4Department of Botany and Plant Sciences, 
University of California, Riverside, CA, USA
5Department of Entomology, University of 
Arizona, Tucson, AZ, USA

Correspondence
Bruce E. Tabashnik, Department of 
Entomology, University of Arizona, Tucson, 
AZ, USA.
Email: brucet@cals.arizona.edu

Funding information
BARD, Grant/Award Number: IS-5085-18; 
United States—Israel Binational Agricultural 
Research and Development Fund

Abstract
Gene drives based on CRISPR/Cas9 have the potential to reduce the enormous harm 
inflicted by crop pests and insect vectors of human disease, as well as to bolster 
valued species. In contrast with extensive empirical and theoretical studies in diploid 
organisms, little is known about CRISPR gene drive in haplodiploids, despite their 
immense global impacts as pollinators, pests, natural enemies of pests, and invasive 
species in native habitats. Here, we analyze mathematical models demonstrating 
that, in principle, CRISPR homing gene drive can work in haplodiploids, as well as 
at sex-linked loci in diploids. However, relative to diploids, conditions favoring the 
spread of alleles deleterious to haplodiploid pests by CRISPR gene drive are nar-
rower, the spread is slower, and resistance to the drive evolves faster. By contrast, 
the spread of alleles that impose little fitness cost or boost fitness was not greatly 
hindered in haplodiploids relative to diploids. Therefore, altering traits to minimize 
damage caused by harmful haplodiploids, such as interfering with transmission of 
plant pathogens, may be more likely to succeed than control efforts based on intro-
ducing traits that reduce pest fitness. Enhancing fitness of beneficial haplodiploids 
with CRISPR gene drive is also promising.
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(Hammond et al., 2016; Noble et al., 2017). In principle, individuals 
with the desired genotype can be engineered in the laboratory and 
released to spread this genotype in wild populations. Like some other 
gene drives, this approach works via segregation distortion, where 
heterozygotes transmit a desired allele at a frequency higher than 
the 50% expected under the Mendelian inheritance (Drury, Dapper, 
Siniard, Zentner, & Wade, 2017). In heterozygotes, CRISPR homing 
gene drives convert wild-type alleles to driver alleles via cleavage 
and homology-directed repair (Champer et al., 2018).

In parallel with empirical work, mathematical modeling and com-
puter simulations have been essential for evaluating the feasibility, 
limitations, risks, and benefits associated with CRISPR gene drives 
(Champer et  al.,  2020; Deredec, Burt, & Godfray,  2008; Deredec, 
Godfray, & Burt,  2011; Eckhoff et  al.,  2017; Godfray et  al.,  2017; 
Hammond et al., 2016; Noble et al., 2017; Rode et al., 2019; Unckless, 
Clark, & Messer, 2017; Unckless, Messer, Connallon, & Clark, 2015). 
This theoretical work has identified evolution of resistance to the drive 
as a major limitation and greatly advanced understanding of the ex-
pected evolutionary trajectories of CRISPR gene drives in diploid spe-
cies, particularly mosquito vectors of human disease. By contrast, little 
is known about the evolutionary dynamics of CRISPR gene drive in 
haplodiploid species, despite recognition of their considerable impor-
tance and the potential for using CRISPR gene drive to manage them 
(McLaughlin & Dearden, 2019; Rode et al., 2019; Scott et al., 2018).

In haplodiploids, unfertilized eggs yield haploid males and fertil-
ized eggs yield diploid females. Haplodiploids include some of the 
world's most devastating pests of crops and forests, such as white-
flies in the Bemisia tabaci species complex, thrips (Thysanoptera), spi-
der mites (Tetranychidae), and tree-killing bark beetles (Scolytinae) 
(Biedermann et al., 2019; De Barro, Liu, Boykin, & Dinsdale, 2011; He, 
Guo, Reitz, Lei, & Wu, 2020; Macfadyen et al., 2018; Normark, 2003; 
Van Leeuwen, Tirry, Yamamoto, Nauen, & Dermauw,  2015). Also, 
more than 100,000 species of Hymenoptera are haplodiploid, in-
cluding bees, ants, sawflies, and wasps that are critically important 
as pollinators, pests, natural enemies of pests, and invasive species 
in native habitats (McLaughlin & Dearden,  2019; Normark,  2003). 
Web of Science topic searches identified over 1,000 publications 
with the term “haplodiploid*” and 633 with “gene drive,” but none 
with both terms. Although the search with both terms missed a few 
papers that briefly mention gene drive for haplodiploids (McLaughlin 
& Dearden, 2019; Rode et al., 2019; Scott et al., 2018), the results re-
flect the limited attention this topic has received. Moreover, analysis 
of CRISPR gene drives in haplodiploids can elucidate the function-
ally equivalent gene drives at sex-linked loci in diploids. In particular, 
drives affecting X-linked loci are well known from experimental work 
with Drosophila, but modeling of their evolutionary trajectories has 
been limited (Champer et al., 2018).

The differences in inheritance between haplodiploids and dip-
loids (and between sex-linked and autosomal loci in diploids) are 
likely to affect outcomes of CRISPR gene drive in wild populations. 
First, conversion of wild-type/driver allele heterozygotes to driver 
allele homozygotes can occur only in diploid females of haplodip-
loids versus both sexes in diploids (Figure 1). Second, selection acts 

directly on recessive alleles in haploid males, whereas such alleles 
are shielded from selection in heterozygous diploids (Crowder 
& Carrière,  2009). Thus, Rode et  al.  (2019) hypothesized that for 
CRISPR gene drive, deleterious alleles intended to suppress popu-
lations of harmful species would spread less readily in haplodiploids 
than diploids, but beneficial alleles in “rescue drives” intended to en-
hance or restore populations of valued species would spread more 
readily in haplodiploids than diploids. Here, we tested these hypoth-
eses using population genetic models to compare the evolutionary 
dynamics of CRISPR gene drive in haplodiploids versus diploids. We 
discovered that in haplodiploids relative to diploids, as predicted, 
conditions favoring spread of deleterious alleles by CRISPR gene 
drive are more restricted, the rate of spread is slower, and resistance 
to the drive evolves more readily. Contrary to the prediction by Rode 
et  al.  (2019), beneficial alleles also spread slower in haplodiploids 
than diploids. However, the spread of alleles that cause little fitness 
cost or enhance fitness was not greatly hindered in haplodiploids 
relative to diploids.

2  | METHODS

2.1 | Modeling approach

We used deterministic, single-locus models with discrete genera-
tions, a 1:1 sex ratio, and random mating to compare evolutionary 
dynamics between haplodiploids and diploids. CRISPR-mediated 
conversion of wild-type to driver alleles in heterozygotes occurred 
in the zygotes or in the adult gonads (germline). In both scenarios, 
the driver alleles generated from conversion in parents were inher-
ited by offspring (Figure 1). Nine previous papers with evolutionary 
models of CRISPR gene drive in diploids examined conversion that 
occurred in zygotes (Drury et al., 2017; Unckless et al., 2015,2017), 
germline (Champer et  al.,  2020; Eckhoff et  al.,  2017; Hammond 
et  al.,  2016; Rode et  al.,  2019), or either (Deredec et  al.,  2008; 
Hammond et al., 2017).

2.2 | Models without resistance to drive

In our basic models without resistance to the gene drive and con-
version in zygotes, we used equation 8 of Deredec et al. (2008) for 
diploids and modified this equation to represent haplodiploids. We 
let c be the proportion of wild-type alleles in wild-type/driver allele 
heterozygotes converted to the driver allele, s the fitness cost of the 
driver allele, and h the dominance of the fitness cost of the driver 
allele in heterozygotes. For haplodiploids in generation t, we denote 
the frequencies of the wild-type and driver alleles in males by pM,t 
and qM,t and their counterparts in females by pF,t and qF,t. In genera-
tion t + 1, these frequencies are as follows:

(1)pM,t+1=

pF,t

pF,t+qF,t(1−s)
and qM,t+1=

qF,t(1−s)

pF,t+qF,t(1−s)
,
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and

where

In our basic models without resistance to the gene drive and 
conversion occurring in the adult gonads (germline), we used 
equation 1 of Deredec et al. (2008) for diploids and modified this 
equation to represent haplodiploids. In generation t + 1, the fre-
quencies of the wild-type and driver alleles in males and females 
are as follows:

and

where

Based on the equations above, we evaluated the independent 
and interactive effects on driver allele frequency (q = mean of qM 
and qF for haplodiploids) of zygote versus germline conversion, c, s, 
h, and q0, the initial frequency of the driver allele (i.e., at genera-
tion 0) in both sexes. Unless noted otherwise, we set q0 = 0.001. In 
10 previous papers with evolutionary models of CRISPR gene drive 
in diploids, q0 was 0.00001 (Unckless et al., 2017), 0.001 (Godfray 
et  al.,  2017; Unckless et  al.,  2015), 0.01 (Champer et  al.,  2018; 
Deredec et al., 2011; Noble et al., 2017), 0.05 (Deredec et al., 2008; 
Hammond et al., 2016), 0.1 (Rode et al., 2019), 0.6 (Rode et al., 2019), 
and 0.7 (Drury et al., 2017). In one previous analysis, q0 varied from 
ca. 0.002 to 0.1 (Figure S4 of Unckless et al., 2017).

To map the outcomes for the driver allele (fixed, lost, fixed or lost 
depending on the initial driver allele frequency, or stable polymor-
phism) across a range of parameter values, we solved the equations 
above for equilibria as described in Supporting Information S1. We 
also used sensitivity analyses by varying parameters systematically 
in computer simulations, as described below.

2.3 | Models with resistance to drive

We modeled the evolutionary dynamics of the CRISPR gene drive 
with the potential for evolution of resistance to drive under two 

(2)pF,t+1=
pF,tpM,t+

1

2
(1−c)(1−hs)(pF,tqM,t+qF,tpM,t)

wt

,

(3)
qF,t+1=

(1−s)qF,tqM,t+

{
c(1−s)+

1

2
(1−c)(1−hs)

}(
pF,tqM,t+qF,tpM,t

)

wt

,

(4)
wt=pF,tpM,t+

{
c(1−s)+ (1−c)(1−hs)

} (
pF,tqM,t+pM,tqF,t

)

+ (1−s)qF,tqM,t.

(5)pM,t+1=

pF,t

pF,t+qF,t(1−s)
and qM,t+1=

qF,t(1−s)

pF,t+qF,t(1−s)
,

(6)pF,t+1=
pF,tpM,t+

1

2
(1−c)(1−hs)(pF,tqM,t+qF,tpM,t)

wt

,

(7)qF,t+1=
(1−s)qF,tqM,t+

1

2
(1+c)(1−hs)(pF,tqM,t+qF,tpM,t)

wt

,

(8)wt=pF,tpM,t+ (1−hs)(pF,tqM,t+pM,tqF,t)+ (1−s)qF,tqM,t.

F I G U R E  1   CRISPR-mediated gene drive in haplodiploid and diploid species. Conversion from the wild-type to driver allele (red arrow) 
occurs only in heterozygotes harboring one copy of each allele. In haplodiploids (a and b), conversion occurs only in females, which slows the 
spread of the driver allele relative to diploids (c and d), where conversion occurs in both sexes. In this example, the conversion rate is 100% 
(c = 1) and the driver allele has no fitness cost (s = 0). In the parents (top row in each panel), the initial frequency of the driver allele (q0) is 0.5 
for males and 0.25 for females for the haplodiploid (a and b pooled), and 0.25 for both sexes for the diploid (c and d pooled). The final driver 
allele frequency in the offspring after conversion (bottom row in each panel) is 0.5 for males and 1.0 for females for the haplodiploid (a and b 
pooled) versus 1.0 for both sexes for the diploid (c and d). The process illustrated for haplodiploids also applies to sex-linked genes in diploids

(a) (b)

(c) (d)
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scenarios. In the first scenario, we examined evolution of resistance 
to drive using Equations  1–3 of Unckless et  al.  (2017) for diploids 
with zygote conversion and modifying these equations to represent 
haplodiploids as described below. We set the initial frequency of the 
resistance and driver alleles at 0.001, with h = 0.5, s = 0.2, no fitness 
cost for the resistance allele, and c = 0.9 or 0.5. With this low fitness 
cost of the driver allele (s = 0.2), the results for zygote and germline 
conversion are similar. In the second scenario, we focused exclu-
sively on the rate of decrease in the driver allele frequency caused 
by the resistance to drive. We simulated initial frequencies of 0.999 
for the driver allele, 0.001 for the resistance allele, and 0 for the 
wild-type allele. In this scenario, no conversion from wild-type allele 
to driver allele occurs, which means the results are independent of 
the timing of conversion.

To modify the diploid equations of Unckless et al. (2017) to rep-
resent haplodiploids, we let sr be the fitness cost of the resistance 
allele relative to the wild-type allele with 0 ≤ sr <s, and hro the dom-
inance of this fitness cost in resistance/wild-type allele heterozy-
gotes. Thus, the fitness cost in resistance/wild-type heterozygotes 
is hrosr. We let hrd be the dominance of the fitness advantage of the 
resistance allele relative to the driver allele in resistance/driver het-
erozygotes, which makes this fitness advantage hrdsr + (1 − hrd)s. For 
haplodiploids in generation t, we denote the frequencies of the wild-
type, driver, and resistance alleles in males by pM,t, qM,t and rM,t, and 
their counterparts in females by pF,t, qF,t, and rF,t. In generation t + 1, 
these frequencies are as follows:

where

2.4 | Computer simulations

We conducted computer simulations in R by iterating the relevant 
equations above for haplodiploids and diploids. In simulations with-
out the potential for resistance to the drive, we simulated enough 
generations with each set of parameters to classify the outcome for 
the driver allele as fixed, lost, or stable polymorphism (0 < q < 1). In 
nearly all cases, this was < 100 generations. For simulations where 
the driver allele increased toward fixation, we recorded the num-
ber of generations for q to exceed 0.50 (g50) to compare the rate of 
increase between haplodiploids and diploids and to systematically 
assess the effects of c, s, h, and q0, and zygote versus germline con-
version, and their interactions within each genetic system.

In simulations with the potential for resistance to the drive, we 
evaluated two sets of initial conditions: 1) q0 = r0 = 0.001 (where r0 
is the initial frequency of the allele conferring resistance to drive) 
and 2) q0 = 0.999 and r0 = 0.001. We simulated enough generations 
to determine when frequency of the resistance allele exceeded 0.50 
(which also indicated q was less than 0.50). This was < 200 genera-
tions in nearly all cases.

2.5 | Comparisons with previously published 
modeling results

For diploid modeling of gene drive, our results from simulations and 
analyses of equilibria corresponded precisely with results based on 
the same conditions reported by Deredec et  al.  (2008), Unckless 
et al. (2015), Unckless et al. (2017), and Rode et al. (2019). For hap-
lodiploid modeling without gene drive, our results from simulations 
matched those of Crowder and Carrière (2009).

3  | RESULTS

3.1 | Evolutionary trajectories without resistance to 
drive

We first examined the evolutionary trajectories of the CRISPR gene 
drive with the initial driver allele frequency (q0) of 0.001, conversion 
of 90% of heterozygotes to driver allele homozygotes (c = 0.9), no 
effect of the driver allele on fitness (s = 0), and without the poten-
tial for evolution of resistance to the drive. Under these conditions, 
the trajectories leading to fixation of the driver allele were qualita-
tively similar for the haplodiploid and diploid species, but the driver 

(9)pM,t+1=

pF,t

pF,t+qF,t(1−s)+ rF,t(1−sr)
,

(10)qM,t+1=

qF,t(1−s)

pF,t+qF,t(1−s)+ rF,t(1−sr)
,

(11)rM,t+1=

rF,t(1−sr)

pF,t+qF,t(1−s)+ rF,t(1−sr)
,

(12)pF,t+1=
1

wt

×
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pF,tpM,t+
1

2
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�
(1−hs)

+
1
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�
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,

(13)

qF,t+1=
1

wt

×

[{
qF,tqM,t+c

(
pF,tqM,t+pM,tqF,t

)}
(1−s)

+
1

2
(1−c)

(
pF,tqM,t+pM,tqF,t

)
(1−hs)

+
1
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(
qM,trF,t+qF,trM,t
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1−hrdsr− (1−hrd)s

}]

(14)
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1

wt
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(
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1

2

(
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allele spread slower for the haplodiploids (Figure 2). The number of 
generations for the driver allele frequency to exceed 0.50 (g50) was 
15 for the haplodiploid versus 11 for the diploid species (Figure 2). 
Because the driver allele had no effect on fitness in this scenario, the 
36% greater g50 for the haplodiploids can be attributed entirely to 
the lack of conversion in haplodiploid males. In the haplodiploids, the 
driver allele frequency lagged one generation behind in the haploid 
males relative to the diploid females (Figure 2). Because the driver 
allele had no effect on fitness (s = 0), the results for this scenario are 
not affected by the timing of conversion (see below).

Next, we evaluated the same conditions as above, but with zy-
gote conversion and a substantial fitness cost associated with the 
driver allele (s = 0.4) that was codominant (h = 0.5). For the diploids, 
this fitness cost slowed the spread of the driver allele, but the driver 
allele still increased to fixation (g50 = 39, Figure 3a). By contrast, in 
the haplodiploids, the driver allele frequency decreased, ultimately 
leading to the expected loss of this allele (Figure 3a). With a conver-
sion efficiency of only 20% (c = 0.2) and a smaller, recessive fitness 
cost (s = 0.2, h = 0), the driver allele frequency increased to fixation 
in the diploid (g50 = 68), whereas it reached a stable equilibrium of 
0.082 in the haplodiploid (Figure 3b).

We conducted a sensitivity analysis with 100% conversion (c = 1) 
at either the zygote or germline stage and a fitness cost (s) that var-
ied from −0.4 to 0.4, where negative values indicate a fitness benefit 
of the driver allele (e.g., for a rescue drive in a valued species). With 
c = 1 and zygote conversion (Figure 4a,c), all heterozygotes are con-
verted to driver allele homozygotes, so the dominance of the fitness 
cost (h) does not affect the outcome. With germline conversion, the 
outcome depends on h and we evaluated h = 0.5 in this analysis. For 
any given fitness cost, the driver allele spread slower for the hap-
lodiploid than the diploid species, and this difference increased as 
the fitness cost increased (Figure 4a,b). With s = −0.4, the g50 was 
only two generations more for haplodiploids than diploids with ei-
ther zygote conversion (9 versus 7) or germline conversion (10 ver-
sus 8, Figure 4a,b). With s = 0.4 and zygote conversion, the driver 
allele was lost for the haplodiploids and g50 was 32 for the diploids 
(Figure 4a). Because the conversion rate was 100% (the maximum), 
the results indicate that under the conditions evaluated, the fitness 
cost must be less than 0.4 for the driver allele to increase in hap-
lodiploids. With s  =  0.4 and germline conversion, g50 was 2.5-fold 
greater for haplodiploids (35) than diploids (14) (Figure 4b).

As we increased the initial frequency of the driver allele (q0) from 
0.0001 to 0.1, the driver allele spread more readily (Figure  4c,d). 
Furthermore, for each combination of q0 and fitness cost examined 
(s = 0.3 or 0.4), the driver allele spread more readily in the diploid 
than the haplodiploid species. With s  =  0.3, the driver allele fre-
quency increased slower in haplodiploids than diploids (Figure 4c,d). 
With s = 0.4 and zygote conversion, the driver allele frequency in-
creased in all cases for diploids, but for haplodiploids it increased 
only for q0 = 0.1 and decreased for q0 = 0.01 or less (Figure 4c). This 
frequency dependence is important, because in most cases, the 
driver allele is expected to be rare initially.

With q0 = 0.001, s = 0.2, and h = 0 or 1, increasing c from 0.5 to 1 
made the driver allele spread faster (Figure 4e,f). For each combination 
of parameter values tested, the driver allele spread slower in the hap-
lodiploid than the diploid species (Figure 4e,f). For each combination 
of c and s, the driver allele spread faster when the fitness cost was 
recessive (h = 0) than dominant (h = 1), with the exception that re-
sults were independent of h for c = 1 with zygote conversion, as noted 
above. The effect of dominance of the fitness cost was strongest at 
the lowest c and stronger for haplodiploids than diploids (Figure 4e,f).

F I G U R E  2   Driver allele frequency increases slower in 
haplodiploid (HD) than diploid species. No fitness cost (s = 0), 
conversion rate 90% (c = 0.9), and initial driver allele frequency 
(q0) = 0.001
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(h) = 0.5. (b) s = c = 0.2, h = 0Generation
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The effects of timing of conversion (zygote versus germline) de-
pended on the fitness cost. With a fitness cost that is not completely 
dominant (s > 0 and h < 1), the driver allele spread slower with zygote 
conversion (Figure 4a,c,e) than germline conversion (Figure 4b,d,f). 
This difference arises because the fitness cost occurs throughout 
the lifetime of the heterozygotes in which conversion to driver al-
lele homozygotes happens at the zygote stage, but not the germline 
stage. With a dominant fitness cost (s  >  0 and h  =  1), the results 
are identical for conversion at the zygote and germline stages, be-
cause the full fitness cost of the driver allele occurs throughout the 
lifetime of heterozygotes, regardless of the timing of conversion 
(Figure 4e,f). With no fitness cost (s = 0), results are also identical for 

zygote and germline conversion (Figure 4a,b). With a fitness benefit 
(s < 0), the driver allele spread faster with zygote conversion than 
germline conversion, because the fitness benefit begins sooner with 
zygote conversion (Figure 4a,b). However, under the conditions we 
tested, this difference was small, even when the fitness benefit was 
relatively large. For example, with s = −0.4 and h = 0.5, g50 for ha-
plodiploids was 9 with zygote conversion versus 10 with germline 
conversion (Figure 4a,b).

Overall, for both haplodiploids and diploids, we can classify 
driver allele outcomes into four categories: fixed (q = 1), lost (q = 0), 
fixed or lost depending on the initial driver allele frequency (q0), and 
stable equilibrium (0 < q < 1). By analyzing the equations underlying 

F I G U R E  4   Effects of fitness cost 
(s), initial frequency of the driver allele 
(q0), conversion rate (c), and dominance 
of the fitness cost (h) on the number 
of generations for the driver allele 
frequency to exceed 0.50 in haplodiploid 
(HD) and diploid (D) species. Panels 
(a) and (b): c = 1, h = 0.5, q0 = 0.001. 
Panels (c) and (d): c = 1, h = 0.5. Panels 
(e) and (f): s = 0.2, q0 = 0.001. With 
c = 1 and zygote conversion, as in (a) 
and (c), all heterozygotes are converted 
to driver allele homozygotes, so the 
dominance of the fitness cost does not 
affect the outcome. The boxed keys for 
germline conversion (b, d, and f) also 
apply for zygote conversion (a, c, and e, 
respectively). Asterisks indicate loss of the 
driver allele, which occurs with s > 0.382 
in (a) and q0 ≤ 0.0857 in (c)

(a) (b)

(c)
(d)
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the evolutionary dynamics (Supporting Information S1), we deter-
mined which outcomes occur as a function of all possible values of 
conversion rate (c = 0 to 1) with the fitness cost (s) ranging from 0 
to 1 and being either recessive (h = 0) or dominant (h = 1), and with 
either zygote or germline conversion (Figure 5). As expected for both 
haplodiploids and diploids, fixation of the driver allele is more likely 
as c increases and s decreases (Figure 5). Consistent with the simu-
lation results described above, this analysis demonstrates that the 
conditions causing fixation of the driver allele are narrower for ha-
plodiploids than diploids, whereas a wider range of conditions yield 
loss of the driver allele for haplodiploids than diploids (Figure 5). For 
example with c = 1 and conversion at the zygote stage, the driver 
allele increases to fixation for q0  ≥ 0 with s  < 0.382 for haplodip-
loids and s < 0.5 for diploids (Supporting Information S1). For both 
haplodiploids and diploids, stable equilibria occurred with a reces-
sive fitness cost (h = 0), but not with a dominant fitness cost (h = 1, 
Figure 5). Fixation of the driver allele is expected when some conver-
sion occurs (c > 0) and a fitness benefit is associated with the driver 
allele (s < 0), because both conversion and selection favor the driver 
allele (Supporting Information S1).

Consistent with the simulation results described above, with a 
dominant fitness cost (h = 1), the results are identical for zygote and 
germline conversion (Figure 5b,e). However, with a recessive fitness 
cost (h = 0), conditions favoring fixation or stability of the driver al-
lele are narrower with zygote conversion (Figure 5a,d) than germ-
line conversion (Figure 5c,f). For example, with c = 1 and h = 0 for 

haplodiploids, fixation of the driver allele occurs with s < 0.382 (as 
noted above) for zygote conversion versus s < 1 for germline conver-
sion (Figure 5a,c and Supporting Information S1).

3.2 | Evolutionary trajectories with resistance 
to drive

In our final set of simulations, we included the potential for evolution 
of resistance to the drive, mediated by an allele at the target locus 
that could not be converted to the driver allele. We analyzed situa-
tions where resistance alleles occurred initially at a low frequency as 
part of standing genetic variation and selection favored the resist-
ance allele relative to the driver allele, but not relative to the wild-
type allele. Thus, the fitness cost of the resistance allele (sr) was less 
than the fitness cost of the driver allele (0 ≤ sr < s). Accordingly, se-
lection favoring the resistance allele was weak when the driver allele 
was rare. After the driver allele reached a high frequency via conver-
sion of the wild-type allele, selection increased the resistance allele 
frequency and concomitantly decreased the driver allele frequency 
(Figure  6). In all cases examined, resistance to the drive evolved 
faster in haplodiploids than diploids (Figures 6 and 7).

In the first scenario with resistance to drive, we set the initial 
frequency of the resistance and driver alleles at 0.001, with a co-
dominant (h = 0.5) fitness cost of 0.2 for the driver allele, no fit-
ness cost for the resistance allele, c = 0.9, and zygote conversion. 

F I G U R E  5   Effects of fitness cost (s) and conversion rate (c) on driver allele outcomes in haplodiploid and diploid species. The four 
outcomes for the driver allele are fixed (q = 1), lost (q = 0), fixed or lost depending on initial driver allele frequency, and stable polymorphism 
where both the driver and wild-type alleles persist. Compare each top panel for haplodiploid (HD: panels a to c) with the panel immediately 
below for diploid (D: panels d to f, adapted from Deredec et al., 2008), with all other conditions identical in each pair. a and d: dominance of 
the fitness cost (h) = 0, conversion in zygote. b and e: h = 1, conversion in zygote or germline. c and f: h = 0, conversion in germline
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Consistent with the results without resistance summarized above, 
the driver allele frequency increased slower in the haplodiploids 
(g50 = 28) than the diploids (g50 = 15); it peaked at 0.993 in gener-
ation 37 for the haplodiploids versus 0.997 in generation 21 in the 
diploids (Figure 6a,c). The number of generations for the driver al-
lele frequency to decline from its peak to less than 0.50 was 34 for 
the haplodiploids versus 52 for the diploids (Figure  6a,c). Under 
the conditions tested initially, the addition of the resistance allele 
had little effect on the upward trajectory of the driver allele. In 
simulations with and without the resistance allele, the g50 was the 
same. The driver allele frequency was slightly higher without re-
sistance than with resistance in the generation when the threshold 
of 0.50 was exceeded (generation 28: 0.509 without resistance 
versus 0.505 with resistance in the haplodiploids and generation 
15: 0.503 without resistance versus 0.5004 with resistance in the 
diploids).

With c = 0.5 and all other conditions as stated immediately above, 
the driver allele frequency increased slower in the haplodiploid 

(g50 = 76) than the diploid (g50 = 29) and reached a lower peak in 
the haplodiploids (0.949 at generation 93) than the diploids (0.991 
at generation 44, Figure 6b,d). Under this scenario, the number of 
generations for the driver allele frequency to decline from its peak 
to less than 0.50 was 23 for the haplodiploids and 42 for the dip-
loids (Figure 6b,d). Reflecting the rate of the increase in driver allele 
frequency and its subsequent decrease, the number of generations 
when the driver allele frequency was above 0.50 was 35 to 42% 
greater for diploids than haplodiploids (Figure 6, c = 0.9, haplodip-
loid = 43 and diploid = 58; c = 0.5, haplodiploid = 40 and diploid = 57).

To simplify the dynamics and focus exclusively on the rate of 
decrease in the driver allele frequency caused by the resistance to 
drive, we simulated initial frequencies of 0.999 for the driver allele, 
0.001 for the resistance allele, and 0 for the wild-type allele. In this 
scenario, no CRISPR-mediated conversion occurs, and the trajectory 
is determined entirely by the fitness of the three genotypes (driver 
allele homozygote, resistance allele homozygote, and resistance/
driver heterozygote). With a fitness cost (s) of 0.3 for the driver allele 

F I G U R E  6   After the driver allele 
reaches a high frequency, resistance to 
the drive evolves faster in haplodiploid 
than diploid species. Frequency of driver 
allele (q, black) and resistance allele (r, 
red). Initial frequency of driver allele (q0) 
and resistance allele (r0) = 0.001, driver 
allele fitness cost (s) = 0.2 and dominance 
of fitness cost (h) = 0.5, no fitness cost 
for resistance allele, and fitness cost for 
resistance/driver heterozygotes = 0.1. 
Compare each top panel for haplodiploid 
(a and b, solid lines) with the panel 
immediately below for diploid (c and d, 
dotted lines), with all other conditions 
identical in each pair
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and the fitness cost of the resistance allele (sr) varied from 0 to 0.2, 
the driver allele decreased faster for the haplodiploid than the dip-
loid species (Figure 7).

For both haplodiploids and diploids, the driver allele frequency 
decreased slower when the fitness advantage of the resistance allele 
relative to the driver allele was recessive (hrd = 0, Figure 7a) versus 
dominant (hrd = 1, Figure 7b). Moreover, the difference between ha-
plodiploids and diploids was much larger with recessive versus dom-
inant resistance (Figure 7). This occurred because selection favored 
the resistance allele in haploid males regardless of its dominance, 
but not in heterozygous diploids when this allele was recessive. 
Specifically, with hrd = 0 and sr ranging from 0 to 0.2, the number of 
generations for the driver allele frequency to drop below 0.50 was 
2,352 to 7,041 generations for the diploids versus 49 to 133 for the 
haplodiploids (Figure 7a). This is 48- to 53-fold more generations for 
the diploids than the haplodiploids. Conversely, with the fitness ad-
vantage of the resistance allele relative to the driver allele dominant 
(hrd = 1) and sr varied from 0 to 0.2, the generations for the driver 
allele frequency to decrease below 0.50 was 23 to 60 for the diploids 
versus 21 to 57 for the haplodiploids, less than a 1.1-fold increase for 
the diploids relative to haplodiploids (Figure 7b).

4  | DISCUSSION

In contrast with the extensive empirical and theoretical studies of 
CRISPR gene drive in diploid organisms, relatively little is known 
about this issue in haplodiploids despite their immense global im-
pacts. Collectively, the myriad species of haplodiploids have devas-
tating negative effects as pests in agriculture and invasive species in 
native habitats, as well as vital positive contributions as pollinators 
and natural enemies of pests (Biedermann et al., 2019; Crowder & 
Carrière, 2009; De Barro et al., 2011; He et al., 2020; Macfadyen 
et  al.,  2018; McLaughlin & Dearden,  2019; Normark,  2003; Van 
Leeuwen et al., 2015). The results reported here show that in princi-
ple, CRISPR driver alleles can spread in wild populations of haplodip-
loids across a wide range of conditions. Indeed, qualitative patterns 
were generally similar between haplodiploids and diploids for the 
spread of alleles via gene drive and the evolution of resistance to 
gene drive. However, the conditions favoring spread of driver al-
leles were narrower in haplodiploids than diploids. Also, for each 
set of parameter values tested, the driver allele frequency increased 
slower and resistance to the drive evolved faster in haplodiploids 
than diploids.

The extent of the difference in evolutionary dynamics between 
haplodiploids and diploids was affected by nonlinear interactions 
among the factors examined, including the magnitude (s) and dom-
inance (h) of the fitness cost or benefit associated with the driver 
allele, conversion efficiency (c), the initial frequency of the driver 
allele (q0), and the timing of conversion. For example, with s = 0.4, 
h = 0.5, c = 0.9, and q0 = 0.001, and zygote conversion, outcomes 
were diametrically opposite: loss of the driver allele in the haplodip-
loids and fixation in the diploids. However, with a sufficiently lower 

s or higher q0, the outcomes were similar: the driver allele increased 
to fixation in both the haplodiploid and diploid species, only slower 
in the haplodiploids.

Here, we focused primarily on a low initial frequency of the 
driver allele (e.g., q0 = 0.001) because we expect that in most appli-
cations of gene drive, a relatively small number of laboratory-reared 
organisms with the driver allele will be released into large field pop-
ulations. When the driver allele is rare initially, its spread can be pre-
vented by fitness costs. As q0 approaches zero and the fitness cost 
is dominant (h = 1), even with 100% conversion efficiency, the driver 
allele can spread only if the fitness cost is less than 0.5 for diploids 
or less than 0.382 for haplodiploids, with either zygote or germline 
conversion.

The timing of conversion did not affect results with s = 0 or h = 1, 
but with s > 0 and h < 1, the spread of the driver allele was slower 
and occurred under a narrower range of conditions with zygote 
conversion than germline conversion. In the few species of diploids 
rigorously examined so far, germline conversion is more important 
than zygote conversion (Champer et al., 2017; Grunwald et al., 2019; 
Hammond et al., 2017). Thus, with s > 0 and h < 1, results with germ-
line conversion are probably more realistic, whereas results with zy-
gote conversion provide a conservative assessment of the potential 
spread of driver alleles.

In haplodiploids as well as in diploids, the potential for evolu-
tion of resistance to gene drives represents a major challenge, 
with some promising countermeasures identified in theoretical 
and empirical work with diploids (Champer et  al., 2018 and 2020; 
Drury et al., 2017; Godfray et al., 2017; Noble et al., 2017; Unckless 
et al., 2017). Relative to the results here with alleles conferring re-
sistance to drive considered only from standing genetic variation 
(initial frequency = 0.001), the addition of resistance alleles arising 
from nonhomologous end-joining during CRISPR-mediated cleavage 
and other mechanisms could substantially accelerate evolution of 
resistance to drive under some conditions (Unckless et  al.,  2017). 
Moreover, we found that resistance to drive evolved faster in hap-
lodiploids than diploids, with a much larger difference between the 
two genetic systems when the fitness advantage of the resistance 
allele relative to the driver allele was recessive. As shown before for 
diploids (Drury et al., 2017; Godfray et al., 2017) and seen here for 
haplodiploids, the magnitude and dominance of the fitness advan-
tage of alleles conferring resistance to drive relative to driver alleles 
determines if and how quickly resistance alleles spread. Thus, driver 
alleles with minimal fitness cost can help to deter evolution of resis-
tance to drive.

In light of the results summarized above, it may be most pro-
ductive to aim for population replacement for haplodiploid pests 
rather than suppression or eradication. This approach entails in-
troducing traits that have little or no fitness cost, but reduce the 
harm caused by target populations. For pests such as whiteflies and 
thrips that cause extensive damage to crops by transmitting plant 
viruses, this idea might be implemented with alleles that reduce such 
transmission without decreasing the insects' fitness. For example, 
introducing an allele that interferes with B.  tabaci transmission of 
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begomoviruses, which damage many important crops (Mansoor, 
Briddon, Zafar, & Stanley, 2003), might boost this pest's fitness by 
reducing the negative effects of the viruses on the vector that occur 
in some cases (Costa, Brown, & Byrne, 1991; Liu, Zhao, Jiang, Zhou, 
& Liu, 2009; Rubinstein & Czosnek, 1997). This tactic is analogous 
to reducing the transmission by mosquitoes of pathogens that cause 
malaria and other human diseases without necessarily reducing the 
mosquitoes' fitness.

Another potential application that could succeed in haplodiploids 
as well as in diploids is increasing the frequency of alleles conferring 
pest susceptibility to conventional insecticides or insecticidal trans-
genic crops (Itokawa, Komagata, Kasai, Ogawa, & Tomita, 2016; Jin 
et al., 2018). In both haplodiploids and diploids, efforts to increase 
the frequency of susceptible alleles via gene drive would be aided by 
the fitness cost typically associated with insecticide resistance alleles 
(Crowder & Carrière, 2009; Gassmann, Carrière, & Tabashnik , 2009; 
Kliot & Ghanim,  2012). Moreover, the use of CRISPR-mediated 
gene drive to spread traits that increase the fitness of valued spe-
cies, such as providing resistance to parasitic mites or pesticides in 
bees (Belsky & Joshi, 2019; Hu, Zhang, Liao, & Zeng, 2019), should 
be boosted by the fitness benefits of the driver alleles. Our results 
imply the spread of fitness-enhancing alleles would not be greatly 
hindered in haplodiploids relative to diploids. Because such alleles 
typically carry fitness costs in the absence of the selective agents 
such as mites or insecticides, selection would only favor such alleles 
when populations suffer the detrimental effects of these selective 
agents. However, CRISPR-mediated spread of such alleles could ef-
fectively immunize beneficial populations and thereby minimize the 
negative effects of such selection.

The ethical concerns about gene drive in diploids (Brossard, 
Belluck, Gould, & Wirz,  2019; de Graeff, Jongsma, Johnston, 
Hartley, & Bredenoord,  2019; James, Marshall, Christophides, 
Okumu, & Nolan, 2020; Kohl, Brossard, Scheufele, & Xenos, 2019; 
Scott et al., 2018; Webber, Raghu, & Edwards, 2015) also apply to 
haplodiploids, perhaps tempered somewhat for haplodiploids by the 
expected greater difficulty in spreading driver alleles, increased like-
lihood of evolution of resistance to the drive, and reduced chances 
of population control or eradication. Although the exploration of 
gene drive in haplodiploids is in its infancy, we hope the theoreti-
cal framework provided here will spur progress, including additional 
modeling as well as empirical advances. The results here also provide 
insights into potential differences in the evolutionary trajectories of 
gene drives targeting sex-linked versus autosomal loci in diploids.
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