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Abstract

Implicit samplers are algorithms for producing independent, weighted
samples from multi-variate probability distributions. These are often
applied in Bayesian data assimilation algorithms. We use Laplace
asymptotic expansions to analyze two implicit samplers in the small
noise regime. Our analysis suggests a symmetrization of the algo-
rithms that leads to improved (implicit) sampling schemes at a rel-
atively small additional cost. Computational experiments confirm
the theory and show that symmetrization is effective for small noise
sampling problems.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques are widely used for sam-
pling complicated distributions. However, some data assimilation meth-
ods rely on independent samples from known distributions [5}10,(12}26].
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Weighted direct samplers give independent samples from a proposal dis-
tribution that is not the target distribution, and compensate for this with
a random weight factor (see e.g. [6] and references there). The variance of
the weight factor determines the quality of the sampler [2,10,(18].

This paper studies two weighted direct samplers.

One, the linear map method, has been proposed independently several
times and has several names in the literature; see, e.g., [8], and also [1] for a
similar method. The other is the random map method, which was proposed
in [23]]. The linear and random map methods can both be viewed as exam-
ples of implicit samplers [3,§8,9]. We introduce a small noise parameter, ¢,
similar to that of [27,28], and analyze the performance of these algorithms
in sampling general smooth probability densities on finite-dimensional
spaces in the limit ¢ — 0. The methods we study use a Gaussian approx-
imation to the target distribution, which is valid in the small noise limit.
Many data assimilation applications are in the small noise regime.

We study a standard quality measure of weighted direct samplers. Our
analysis consists in calculating error constants, which are the coefficients of
the leading powers of ¢ in the small noise asymptotic expansion of the
quality measures. As long as simple smoothness hypotheses are satisfied,
the error constants for the linear and random map methods differ by a
factor that depends only on the dimension. This factor converges to one
as the dimension goes to infinity.

The form of the error constant suggests that a symmetrization may
remove the leading error term. We study symmetrized versions of the
linear and random map methods to confirm this. The error is one order
smaller in €. The error constants are not exactly proportional, but their
ratio does converge to one as the dimension converges to infinity. We
present computational experiments that confirm the small noise asymp-
totic calculations. The numerical experiments further demonstrate that
the symmetrized methods are more accurate in the small noise regime,
and show that the symmetrized methods may perform significantly better
than the corresponding “simple” methods even when the noise is not so
small.

This paper is organized as follows: in Section[2} we set up the notation,
present the algorithms, explain how they can be symmetrized, and sum-
marize our theoretical results. Section {3 describes two general technical
tricks that simplify the asymptotic analysis. The relatively simple deriva-



tions of the linear map results are in Section |4, These depend on Subsec-
tion 3.1/ only. The ideas in Subsection {4.3| are needed only for the explicit
error constant formulas for the first computational example in Section |6
The analysis in Section 5| of random map methods also uses the formula
derived in Subsection Section [f| describes numerical experiments on
two test problems which confirm the asymptotic theory in detail. It may
be read without the theoretical Sections and bl Section [/|summarizes
our views of these results and puts them in context.

2 Algorithms, symmetrization and main results

In this section, we describe the sampling algorithms to be studied in the
rest of the paper. We introduce the small-noise scaling used in the analysis
in Section where we also state our main theoretical scaling results.

The following notation is used throughout the paper. Let f(x) and r(x)
be two functions on R? . We write f o 7 if f(x) = Cr(x) for some fixed
C. If distributions depend on ¢, we write f(x,¢) o r(z,¢) if there is a C.
with f(z,e) = C.r(x,€). For any non-negative f with 0 < [ f(z) dz < o0,
there is a probability density p o f. We write X ~ p if X is a random
variable whose probability density is p. We say a random variable X ~ ¢
together with a non-negative weight function w is a weighted sample of a
given probability density p if

for every bounded continuous function u. A weighted sampler of p with
proposal q is a stochastic algorithm that produces X ~ ¢ o< g. It is a direct
sampler if successive samples are independent. The direct samplers we
consider have deterministic weight functions

f@)  plz)
g(x) ~ qlz)

w(z) = (2)
We assume f and g may be evaluated, but the normalizing constants may
be unknown (as is typically the case in applications).

A perfect sampler would have a constant weight function w = C,
which would force p = q. We measure the quality of a weighted sampler
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by the non-dimensionalized deviation of w from a constant:

Ey(w(X)?)

B= By

Q=R-1. (3)
The quality measure () was also used in [28], and several motivations for it
are givenin [2,4,10,19]]. In particular, a heuristic relates a collection of N in-
dependent weighted samples to N/R independent un-weighted samples,
making N/R an effective sample size. A small () is important in recursive
particle filter algorithms. There, probability densities are sampled recur-
sively, as the data are collected, and the weights accumulate as a product
of the weights at each step. Thus, the R of the product can grow rapidly
if the @ of each of the factors is not small. Both algorithms analyzed here
have the property that ) — 0 as ¢ — 0 ; the question that concerns us is
the rate of convergence.
The methods we consider sample

p(z) oc f(z) = e ). (4)

We assume that F' is smooth and has a single global minimum, which is
non-degenerate. Unless otherwise stated, we also assume (without loss of
generality) that the minimum is located at z = 0, and that /(0) = 0. We
write a Taylor expansion of F' near zero as

F(z) = La'He + Cs(z) + - + Cg(z) + O(|z]") (5)

— 2

where H is the Hessian matrix of F' at z = 0, and Cj(z) is the homogeneous
polynomial of degree k

Ci(z) = % S 92 F(0) ©)
" al=k

The random map samplers also require that certain equations related to F’
have unique and well behaved solutions (see below).

2.1 Simple and symmetrized linear map methods

The simple linear map method uses X ~ m, where 7 is the local Gaussian
approximation that uses the first term on the right of (),

m(z) ox e H@/2 (7)
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Direct Gaussian sampling algorithms make this possible. Using (2) with
f=e¢"and g =e*H%/2, we find the weight function

w(z) = e~ F(@)+a'Hz/2 (8)
The simple linear map Monte Carlo algorithm to estimate E,(u(X)) is:
1. Generate N independent Gaussian samples X;, ~ 7
2. Compute weights W, = w(X},) using
3. Compute the estimator

>y u(X)w(Xy)
Zszl w(Xg)

)

of E,(u(X)) .

In practice, the minimizer of F* will not be at 0 , nor will its Hessian
at the minimum be the identity. It will be necessary to first find z, =
argmin F'(z) and evaluate H(z.), the Hessian of F' at the minimum. This
can be a time-consuming step.

As we will see below, the leading-order term in the e-expansion of @
depends only on Cj (see equation (36)). This is not surprising, as the sim-
ple method is based on the approximation F(z) ~ ja'Hz, and Cj(x) is
the largest correction. Since C is an odd function of x, one may hope that
the leading error term can be removed by a symmetrization related to the
classical Monte Carlo trick of antithetic variates [15,16]. Here we present
a symmetrized linear map method; we will verify in Section that it
removes the principal error term in the small noise limit.

The symmetrized linear map method is as follows: first draw £ ~ 7 as
before, and evaluate the linear map weights (8) for £ and for —¢£. Note that
7(€) = m(—£) so these weights are

f(§) f(=9)
= == 9
U T R ©)
Then return X = { or X = —¢ with probabilities
o wy o w-
el (10)



These probabilities have a particle filter interpretation. Consider (&, w, )
and (—¢§,w_) to form a two element weighted ensemble. The formulas
are the probabilities that would be used to sub-sample this to a one
element un-weighted ensemble [2].

To find the weight function of the symmetrized linear map method we
must identify ¢,(x), the probability density of X. There are two ways to
generate X = z (using the convention that z is a possible value of the
random variable X). One way is to propose { = z and then take the +
choice in (I0). The other way is to propose £ = —z and then take the —
choice. The probability density for { = z is 7(x). The density for —¢ is
7m(—=¢) = 7(§). The probability to get x if x was proposed is

The probability to get x if —x was proposed is the same, since

B w_(—x)

T e TR )
()
w(=z) + w(=(-z))’

= pi(z) . (12)

Therefore, the pdf of X is
g5(2) = m(2)p4 () + 7 (=2)p- (=),
_ 2u(z) (13)

(x)w(x) +w(—z)

Moreover, if 7(x) is a normalized probability density, then ¢, is also nor-
malized. This can be seen by using the right side of

Ja@rde = [ @)+ a(-a) de

4 [ )+ u(a)) dn

~1. (14)




The weight function (2)) for the symmetrized method is thus

p(z) m@w(x)  wz) +w(=w)
wi(@) o qs() > W(x)—w(sig()ﬂ) B 2 ’ (15

The simple linear map sampler and the symmetrized sampler have dif-
ferent symmetries. The simple sampler has a symmetric proposal den-
sity and non-symmetric weight. The symmetrized sampler has a non-
symmetric proposal density, ¢;(z) # ¢;(—x), but a symmetric weight func-
tion. Intuitively one can therefore expect that the quality measure of the
symmetrized method is better because a symmetric weight function is
“more nearly constant” for small z, particularly in the small noise regime
described below.

2.2 Simple and symmetrized random map methods

The simple (as opposed to symmetrized) random map method is described
in [23]. We review the method here for notation and completeness.
One first samples £ ~ 7, and then chooses

X = A€ (16)
The stretch factor A(§) > 0 is defined implicitly via
FA(§)E) = 3¢ HE . (17)

The random map algorithm gets its name from the map £ — X . To ensure
the correctness of the algorithm, we need to assume that equation has
a unique solution A > 0 for every { # 0 . This will be the case if, e.g.,
every level set (except the zero level set) of F' is “star-shaped,” i.e., for
every ¢ > 0, every straight line through 0 intersects the level set F'~!(c)
transversely at exactly two points.

To determine the weight function of the random map method, note that
if { ~ mand X = z(§), then X has probability density

o(o() = 7(6)aee 55 ). 18)
so that we find the weight w from (2) to be
Ox

w(€) = |det (a?) , (19)
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choosing the arbitrary implicit constant to be equal to 1 here.
The Jacobian determinant is

_ §'HE
= &) . 20
B N S NG 20
To see this, note that the Jacobian matrix is obtained by differentiating (16)
oz .
9% EIVAEG)] + MO, (21)

where V) is the column vector with entries ¢, A({). The determinant iden-
tity

det( A + A) = X+ M Hr(A) + -+, (22)
gives
O d | yd—1gt
det % =N+ NV, (23)

where the terms of order \?~2 and lower vanish because ¢ [VA(€)]! is a
matrix of rank one. A calculation (given just below) gives

¢ _ §HE
€V = A (xtV:EF 1) ,

which immediately leads to (20). To verify (24), we differentiate with
respect to &;:

(24)

D~ 0., FAOE) 0 [ME)&) = (HE); (25)

> 0., F(A)E) (agf)fj + A(f)al-]) = (HE), . (26)

We multiply by &;, sum over i, and use the relations A\({){ = z, and § =
ﬁx:

EVLF(AE)E) E V&) + MEEVLF(NE)E) = €' HE, (27)

TG VOO ETA +a' VPO = €HE. 28

Solving for £'V,A(¢) gives (24).

Our symmetrization of the simple random map method is a natural
adaptation of the symmetrization of the simple linear map method. There
are three steps:



1. Generate a sample { ~ .
2. Compute z, = A(§) - £ and 2 = \(—¢€) - (—¢), each using (17).

3. Use & = x; with probability p, () := w(§)/(w(§) + w(=E)). Other-
wise use z_.

The arguments leading to and apply here too. The probability
density of X produced by the symmetrized random map method is thus

xr) = 2 e F'@
=0 = ) T eE@)” @)

where w(§) is the weight of the simple random map method. The weight
function for the symmetrized random map method is

where w is the weight of the simple method (20).

(30)

2.3 Summary of small noise theory

The small noise problem concerns the scaled density
p(x) o flu) = e " (31)

Recursive particle filter applications often call for proposal distributions
roughly of the form (3I). When the noise parameter ¢ is small, most of
the probability in p is near the point of maximum probability, which we
continue to take to be z, = 0. Therefore F(z) ~ sa"Hx (see ) may be a
useful approximation.

We state and derive the small noise theory using a standard scaling,

T=c"z. (32)
This scales the terms in the Taylor expansion (5) as

F(z)

. 1T HT + ' 205(F) + eCy(T) + ¥2C5(T) + 2Co(T) + O(?) . (33)



The target density therefore satisfies
p(F) o exp (2" HT/2 — £'2C4(F) — eCy(T) — O(*?)) . (34)

For the rest of the theory, we assume p satisfies (34). Following common
practice, we drop the tilde.

Our theoretical results take the form of asymptotic approximations of
Q defined in (3). The simple linear map and random map methods have
the scaling

Q =cA+ O(%?). (35)
The error constants are
A= E.(C3(X)%) (simple linear map),  (36)
A= MEW(Q@,(X )?) (simple random map).  (37)
(2+d)(4+d)

The error scaling for the symmetrized methods is
Q=¢>B+ 0(s?) (38)
with error constants of the form

B =var,(Cy — 1C3) (symmetrized linear map),  (39)
B=var,(Cy—1C3) +c4- K (symmetrized random map).  (40)

Here ¢, = O(1/d), and K is a possibly dimension-dependent constant de-
pending on F. The exact form is given in Section[5.2|

We have the following conclusions. For both methods, () — 0 in the
small noise limit ¢ — 0. This is perhaps not surprising because the Gaus-
sian approximation m becomes exact in this limit. On the other hand, this
property cannot be taken for granted in general; see, e.g., [27].

The simple linear and random map methods have the same order as
¢ — 0, and the symmetrized methods have a higher order. Thus, for any
tixed problem and for sufficiently small ¢, the error constants of the sym-
metrized methods are significantly smaller than the error constants for the
corresponding simpler methods. The ratio of the error constants for the
linear and random map methods depends only on the dimension. This
factor converges to 1 as d — oo. Thus, in the limits ¢ — 0 and d — oo, the
random map methods lose their advantages over the linear map methods.

10



3 Analysis tools

Here we describe two tools that we will use in the analysis of the linear
and random map methods.

3.1 The variance lemma

The variance lemma is a simple way to understand some cancellations that

occur in computing ) for small €. It applies to functions u(x, €) of the form
u(z,e) =1+ "uy(z) + e¥ug(z) + O(e™) .

It states that if
E(u(X,¢)?)
2

@= E(u(X,¢))

-1, (41)
then

Q = e*"var(uy (X)) + O(e”") . (42)
The variance formula does not depend on the distribution of X, except
that the same distribution must be used throughout. Expectations of u,
appear at O(¢?") in the numerator and denominator of but they cancel

in the ratio to leading order.
The verification is straightforward. The numerator in QQD is

E(u(X,e)?) = E(1+2e"u; + ¥ (uf + 2us) + O(e”),
=1+2"E(w) + &7 (E(u}) + 2E(us)) + O(e”) .
The denominator is
E(u(X,e))> = (14 E(w) + e E(u) + 0(5”))2,
=1+ 2"E(w) + €7 (E(u1)” + 2E(u2)) + O(”") .
Therefore,
Q= 14 2e"E(uy) + ¥ (BE(u?) + 2E(ug)) + O(e%7)
14 2e"E(uy) + €2 (E(u1)? + 2E(ug)) + O(e37)
+ O(

= [142"E(u1) +€* (E(u}) + 2E(uy)) )]
x [1=2¢"E(u1) + € (3E(u1)* — 2E(u2)) + O(e*)] — 1
=" (E(u}) — E(w)?) + O(e™) .

Note that this conclusion depends on the existence of a function us(x), but
it does not depend on what s is.

-1
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3.2 Evaluating rational Gaussian expectations

The random map analysis in Section [5/leads to Gaussian expectations of
the form ()
ETI' Y
(i)

where C is a homogeneous polynomial of some degree. These are related
to expectations of C. In fact, if f(£) is homogeneous of degree ¢, then

(q+d)E=(f(8)) = Ex(IE]*f(£)) - (43)
Taking C of degree p, and (&) = C(£)/[¢|? or f = C(€)/|¢|*, givesq = p—2

orq=p—4,and
E(%) - m(CE) (44)

or (iterating twice)

o)\ I
l%<mw)‘%p—4+@@—z+@

This result, which may be derived as a I' function identity, is surely not
new.
We give an elementary derivation that uses the function

E-(C(8)) - (45)

I(r) = / F(re)e P g

On one hand,
I(r) = / FE)e P2 g = rap(1) .

On the other hand, we can change variables with r{ = 7 to get

1) = [ s e Sy,

12



Now differentiate with respect to r and set r = 1:
gri~ (1) =I'(r)
= % /f(n)\lee"'Z/@’"Z’ %,
— a [ sl e SL
(1) = [ FQ)ePe 2 g — aru),
@+ [ s 2 = [1ep e ag
This is the desired (43).

4 Analysis of linear map methods

This section contains the calculations behind the results and (39). We
estimate the expectations required for @ (see (3)) using the Laplace asymp-
totic expansion method, see, e.g., [24]. The calculations are easy to justify if
F has a unique global minimum and F' — oo rapidly enough as |z| — oc.

4.1 Laplace asymptotics, simple linear map

We wish to calculate the expected value of the weight and the expected
value of the square of the weight for the linear map method in (8). We
use the Taylor expansion of F' in to obtain a Taylor expansion of the
weight

w(m) _ 6—51/203(:c)—aC4(z)+O(a3/2)
— 1= [62Cy(x) + £Cu()] + L [/2Cy(2)]” + O(%?)
=1—e'20y(x) + ¢ [1C5(2)* — Cu(z)] + O(%?) . (46)

Recall that C3(z) is an odd function of z and 7(z) is symmetric. Therefore
E.(C3) = 0, and the variance lemma with r = 1/2 gives

Q = evar,(Cs) + O(*?) = e E,(C2) + O(%/?) .
This is the desired result (36).
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4.2 Laplace asymptotics, symmetrized linear map

We obtain the Taylor expansion of the weight of the symmetrized linear
map method from and from the expansion of the weight of the simple
linear map method in (46). We note that the term that is anti-symmetric in
x, which is C3(—z) = —C5(x), cancels, so that

w,(z) = 14 [3CF — Cy(z)] . 47)
To apply the variance lemma, we first show that

Er(ws(€)°)
Er(ws(€))?
This shows that we can average over £ instead of X when computing the

quality measure (). To see why, note that implies that for any function
u,

By, (ws(X)°)

_ ) | _ _
¢ = Bawmp ! b =

) 20y w
Buu0) = B, (S —u(@)) | 9)
Together with (15), this implies that

= Ex(w()) (50)

The last equality follows from the symmetry of 7. Similar algebra and
symmetry reasoning leads to

(&) +w(=¢) 2

- k. (ut M40

= B, (ws(9)?) . (51)

Application of the variance lemma to the above expression, with expecta-
tions over £, and using (47), leads to the error term (39).

Eq (wy(X)?) = Ex (w — {w(ﬁ) +w(—5)]2>

14



4.3 Evaluating F(C?) with Wick’s formula

There is a more explicit expression for E,(C3) based on Wick’s formula
[17]. Recall that the distribution of a mean zero multivariate Gaussian is
completely determined by its covariance matrix. Therefore, the expected
value of a higher order monomial is a function of the covariances. Wick’s
formula is this function. Of course, the expected value of an odd order
monomial is zero; Wick’s formula gives the even-order moments.

The general version of Wick’s formula is as follows (see, e.g., [17]). Sup-
pose X = (Xi,...,Xy) € R? is a multivariate mean zero Gaussian with
covariances C;; = E.(X;X;). Leti, for k = 1,...,2n, be a list of indices,
with repeats allowed. Let M = X, ---X,, be the corresponding degree
2n monomial. A pairing is a partition of {1,...,2n} into n sets of size 2

P={ki,L},....{kn,ln}} -
A pairing has the property that

{1.....2n} = | J {1} .

The set of all pairings is P. The number of pairings is
Pl=02n—-1)2n—3)---3=(2n—1)I.

There are no pairings of a set with an odd number of elements. Wick’s
formula gives the expected value of a monomial of even degree as a sum
over all pairings of the indices:

2n n n
5, (H X> S [EC ) - S [[Con . 6D
k=1

PcPr=1 PeP k=1

As an example, for d = 1 and 2n = 6, X ~ AN(0,0?), there are 5 - 3 = 15
parings, so

E(X% =15 (a%)° = 150° . (53)
To apply Wick’s formula to our results, we use the simplified notation
Fijk = 04,0,,0,,F(0), and write

1
Cs=5 > Fyrirjzy

ijk

15



and )
C?? - % Z Ejkﬂmnxixjxkxlxmxn .
ijklmn
There are two kinds of pairings. One kind pairs one of the indices {i, j, k}
with another of the {i, j, k}. This forces one of the {I/,m,n} to be paired
with another, and the unpaired index from {3, j, k} to be paired with the
unpaired index from {/, m,n}. An example of this kind of pairing is

P = {{Zv k} ) {]v TL} ) {l>m}} :
There are nine such pairings, since the unpaired index from each triple
is arbitrary. The expectations are all equal because Fj;; is a symmetric
function of its indices. The other kind of pairing has each of the {i, j, k}
paired with one of the {l,m,n}. An example of this kind of pairing is

P={{i;m},{j;n} ,{k1}} .
There are six such pairings, since i is paired with one of the three {i, m,m},

then j with one of the remaining two, then k with the last one. The expec-
tations are again equal. Altogether

1
E.(C3) = 36 Z Fijt Fimn (9C;;CriCrp 4 6C5C1 Cin)
ijklmn
This formula simplifies in the special case H = I, which implies that

Cjr = 0,. In that case, the C;;Cy,;C,,,, terms vanish unless i = j, K = [ and
m = n. The C;;Cy,C,,,,, terms give

> FikFymr = |V A F(O)]17 -

ikm
(For any tensor A, we denote the Euclidean 2-norm of all its entries by
||A||s2 regardless of the rank of A .) The C;,C},,Cy,, terms give

> Fh = ID*FO)[,.

ijk
Taken together, these results say that when the Gaussian part of p is in-
variant under orthogonal transformations, we have

1 1
EL(C2) =~ [V A FO)|% + - || D*FO)| .
4 6

The compact expressions on the right represent the two distinct ways a
quadratic function of the Fj;;, can be rotationally invariant.
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5 Analysis of random map methods

We analyze the simple and symmetrized random map algorithms in the
small noise limit ¢ — 0. For the analysis, we use the fact that the ran-
dom map sampler is affine invariant. This means that if A/ is an invertible
d x d matrix and y = Mz, then the behavior of the random map sampler
is identical when applied to F'(z) or to G(z) = F(Mz). Since H is non-
degenerate, it is possible to choose M so that the Hessian of G is the iden-
tity. Without loss of generality, we put H = I in our analysis of random
map samplers. See [13] for a discussion of the value of affine invariance in
practical Monte Carlo.

5.1 Simple random map

The powers in ) for the simple and symmetrized random map methods
come easily. The simple method has w = 1 + O(¢'/?), which the vari-
ance lemma turns into () = O(e). The symmetrized method
symmetrizes w, which eliminates the O(¢/?) term, leaving w, = O(¢) and
Q = O(e?). Tt takes more detailed calculations to find the error constants

and (40).

It is clear that with our assumptions w has an asymptotic expansion in
powers of £/2 as required by the variance lemma. For the error constant
of the symmetrized method, we need explicit expressions up to O(e). We
calculate the expansions of the quantities that enter into w, then combine
them. We write a(&,¢) ~ b(§, ¢) if a and b agree up to order .

With our normalization H = I, we obtain from

F(z) = 3|z|* +&205(x) + eCu(x) . (54)
To find an expansion for A\, we substitute the ansatz
AE) = 1420 (€) + eXa(€) (55)
into (17). We find that

LEP m AN (©)IEP + P A€ C5(€) + eA(€)*Cu(©),
A LEP + e PMIEP + e [BAT + Ao I€1,
+ &2 [1+4320] C5(€) +eCu(€) - (56)
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Collecting terms of O(c'/2) gives
0= (&) + C5(8)

which can be rearranged to

A (E) = %j@ - (57)
The O(¢) equation is
0= [3A(6)* + A (&)] [¢]* + 3Ai(€)C3(8) + Cu(€) -
Solving for )\, yields
Nol€) = 5C5(8)°  Cu(§) (58)

2 el
We now expand the weights (20). For the denominator, we compute
the gradient of F:

VF(E) = €4 Y2V 05(6) + eVC4(€) .

Since C5(¢) is homogeneous of degree 3, we have VC3(\) = N2V (5(9),
and Euler’s identity gives {'VC5(¢) = 3C3(). Therefore,
EVENEE) = MO + ' PME)*E'VCa(€) + €'V T (€)
~[¢)” +el/2 (M (€)IE]* +3C5(6)]
e [MaE)IEP 4+ 6M(6)Cs(€) + 4C4(E)]
) 7 C3(8)°

~ [ +e1205(€) + £ (3Cu(8) — 5 ep (59)
For the numerator in (20), use the identity
(14 )" =14 (d— Da+ %(d C1)(d—2)a? + 0() |
to obtain
M (14220 +edy) "
~1+e2(d— DM +e[(d— 1A+ 3(d—1)(d - 2)A\]]
1— 2

€17 2 g feP
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We use and to evaluate w to order «:

d+3 Cy(§)?* 04(5)1 } ]2

G +d”4ﬂ 2 gt kP

{meu—@@@
(& ~

w
7 C5(€)?
€2 + eY/22C5(€) + ¢ [304(5) — 3 |3§|§2) }
This has the form
1 1/2 b
w%1121/23;;z1+€1/2(a—0)+5(02_d_ac+b)’ (61)

with coefficients

_ (1= d)G(E)
IS
d+3 C3(8)°  Cu(§)
b= (d— —
VST e e |
_205(8)
TR
L 3CiE) TGl
gz 2 g
The term of order ¢'/2 in (61) is
cie)

a—c=—(d+1)

62
P (©2)

This suffices for the error constant for the simple random map method.
The variance lemma formula (42), together with (62) gives

Q~ e(d+1)E, (Oréﬁ)2> . (63)

The expected value can be evaluated using the Gaussian integral iden-
tity (45). Since C3(¢) is degree p = 6, we have

(d+1)?
(d+2)(d+4)

This is the desired result (37).

Qre E (C5(8)?) - (64)
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5.2 Symmetrized random map

The analysis of the symmetrized random map requires the O(¢) term in
the w expansion (6I). The result is

(d+2)(d +4) C5(§)” Ca(§)
> P

The w symmetrization formula then gives

we(é) = 1+¢ {(d F2)(d+4) 03(522 —(d+ 2)04(?} .

2 €] €]
The variance lemma then implies that
_ (d+2)(d +4) C5(§)” Ca(§)
Q—&tzvarﬂ< 5 € —(d+2) |£|2>.

We now expand the above, and rearrange the terms for direct comparison
with the result for the symmetrized linear map:

_ (d+2)(d+4) C5()?
Q—62var7r( 5 Rl )j
1
(d+2)(d+4) C3(9)? Ca(€)
—5250V7r< 5 . |£’4 ,(d—|—2) |£‘2 )
i
Cu(€
—|—5217ar7r<(d—|—2) E(P))J. (65)
101
Consider term I. We have
_ (d+2)(d +4) C5(§)?
I—Varﬂ< 5 i )

(d+2)4(d—|—4) Ew<cr§(ﬁ;) >_ [(d+2)2(d+4>Ew<Cr§(‘? >}2 (66)
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Using (45) and a direct generalization of it, we get

Cy(6)2\  Er <C3(§)2>
E(Tef) = @ oy )
Ca(6)*\ Er <C3(5)4>
E( s )= A+ 0(d+6)(d+8)(dT10)° (68)
Thus,
(d+22(d+4PE(Co(9)) g T
1= DE o+ o)@srio) RG]
_ 1 o 1 (d+2)*(d +4) 4
= 3709 - {1 - T o yar ) GO
(69)
Similarly, we have
1 ) 1 (d+2)%(d+4) )
I = Seov(Co(E)%, Ca(6)) — 5 {1 - ([d+4)(d+6)d+3) JEx (CH(€7Cu(8)),
(70)
II = var, (Cy(¢)) — {1 — %}Eﬁ(al(gf) , (71)

When d is sufficiently large, we can rewrite the expressions for I-III in
a more concise way:

= ivarﬂ(cg(ff) - (g +0(1/d) ) Ex (Co()"). (72)

1 — %covﬁ (03(5)2, 04(5)) . (g + O(l/d2)>Eﬁ(Cg(§)2O4(§)), (73)

Il = var, (C4(€)) — (g +O(1/d) ) B (Ca(€)?) - (74)
This leads to

Q=2 [varﬂ(%cg(gf ~Gi(©) e K] +0() (75)
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where ¢; = O(1/d) and K is a combination of moments of C3 and C, . This
verifies the stated result (40). We see that for d > 1, the variance of the
symmetrized random map method approaches that of the symmetrized
linear map. The above also shows that in low dimensions, the variance
of the symmetrized random map may be smaller than that of the sym-
metrized linear map, though exactly how much depends on the degree of
correlation between C3(£)? and Cy(€) .

The error term of the symmetrized methods in (39) and (40) can in prin-
ciple also be evaluated using Wick’s formula, however the calculations are
much more involved. We illustrate how to use Wick’s formula for the error
terms of the symmetrized methods with an example.

6 Computational experiments

We present computational experiments that confirm the theoretical error
analysis above for small ¢ and suggest what may happen when ¢ is not
so small. We use two test problems. One is a nonlinear random walk
whose dimension is arbitrary. This allows us to see how the samplers’
performance depends on the dimension. We see that the samplers perform
worse in higher dimension, but they are still quite useful in dimensions of
practical interest. In the other example we apply the algorithms to a data
assimilation problem with the “Lorenz '63” model [20]. The goal is is to
sample the posterior distribution of the initial conditions in the presence
of noisy observations of the state at later time.

6.1 Non-linear random walk

Consider a non-Gaussian random walk tied at the start and free at the
end. The random variable is X = (X;,..., Xy), with X, = 0 implicitly.
The Gaussian random walk potential is

e Hr = (Th41 — $k)2 (76)

where 7, = 0. We make the walk non-Gaussian by adding cubic and quar-
tic terms to the potential energy. The nonlinear parts are discretizations of
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a nonlinear energy functional

N-1 )
Cs(x) = (wepn — )’ (77)
k=0
and N
Ca(@) =B (wr — )" . (78)
k=0

The coefficients a and 5 would be called “coupling constants” in field the-
ory, and both are set to 1 in our numerical experiments below. In the Gaus-
sian measure determined by , the increments (X1 — X}) are indepen-
dent standard normal random variables. We can use this to calculate

Er(C3(X)%) = 0 3 Be (X1 = X)) (K = X)) - (79)

The terms on the right hand side with j # k vanish because the increments
are independent. The terms with j = & satisfy, using Wick’s formula (53),

Er((Xin1 — X)°) = Exo(2°) = 15, (80)

SO
E.(Cs(z)%) = 15°N . (81)

Thus, the simple linear method for this problem has the quality measure,

see (36),

Q ~ 152N . (82)
The simple random map quality measure is slightly less:
N(N +1)?
~ 2
Q =~ el5a N+ (N £d) (83)

It is tedious but straightforward to calculate the error constant for the
symmetrized methods. We need

1
var,(Cy = 5C3) = Ex ([Ca = 3C3) — (Ex(Ca = 3CD)" .
The first part is

1
£, (1Cs— §C3P) = B, (C2) — Ex (CiC3) + LB ()
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We evaluate these three using Wick identities, first
= B Z Enon) (Xja1 — X)) (X1 — Xi))

= [ZE X1 = X5) (Xjn — X))
J#k

+ Z E Xjp — ) (X1 — Xi) )}
_ g [(N? — N)E ((X; — X1)'(Xs — Xa)")

+NE (X, — Xl)s)]
=3-33°N*+O(N).

We write numbers in factored form, as in 3 - 3 instead of 9, for clarity. The
second term is

Ex (04053) = @252 Exo,1 ((Xj+1 - Xj)4(Xk+1 - Xk)3(Xz+1 - Xl)g)

= a2 30 B (X1 = X)) (Xes = X' (X = X))
A (k=1)
+ Z E (X1 — X)) (X1 — Xi)* (Xia —Xl)?))}

=a’B [(NQ — N)E (X2 — X1)" (X3 — X»)°)
+ NE (X5 — Xl)“’)]
=3-5-3a’8N?+O(N) .

The factor of 3 in the third term is for the three possibilities (j = k) # (I =
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m),and (j =1) # (k=m),and (j =m) # (k=1):

E. (C3) =" > B ((Xj01 = X))*(Xir — X’ (Xij1 — X0)*(Xoni1 — Xo)®)

Jkim
=a'[3 > B (G = X)Xk — X (X = X0 (Xt — X)?)
(j=k)#(=m)
+ Y B (X — X)) (Ke = X (X1 = X0 (X — Xp0)?) |
j=k=l=m

=o' [3(N2 = N)E (X2 — X1)°(X5 — X»)°)
+NE (X, — Xl)m)}
=3-(5-3)?a*N?+ O(N) . (84)

Adding these gives
E. ([Cs—1C51?) =N?(B%-3°—a?8-3-5-3+ 1a*-3-(5-3)*) + O(N) .

A simpler calculation shows that E.(Cy — 3C3%) = O(N). Subtracting the
terms finally gives
472
var, (Cy - 10 = 10tV 2 (5312 + o) = U o).
It is now clear that the simple methods have error coefficients proportional
to €N, and the symmetrized methods have error coefficients proportional
to (eN)%

We perform numerical experiments and vary N and e. In these exper-
iments, we approximate the expected values in the quality measure () by
averages over 10* samples. We protect the computations against over- and
underflow as follows. Instead of saving the weight, we save the logarithm
of the weight of each sample. This is straightforward for the linear map.
For the symmetrized linear map, we use

Wi () X Wi () + Wi (—1)

= Wy (1) (1 + w) , (85)

Wi ()
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where wy,, is the weight of the simple linear map and wy;,,, that of the sym-
metrized linear map. We then compute

log weym () =log(wyy, () + log (1 + %) ,
=log(wy,(z)) +log (1 + exp(F(x) — F(—x))). (86)
For the random map we save the log of the weight
log w,(2) = (d — 1) log(|A(2)]) + log(€'HE) — log (V. F(A(@)€)) . (87)

For the symmetrized random map, the log of the weight is

log Wepm () = log(wem(x)),

o <1 . (A(—x))d—l evxF(—A(—x)g)) @)

A(x) §VLF(A(x)S)

Once we have computed the logarithms of the weights for each sample,
we subtract the maximum value of the logarithms of the weights, then
exponentiate, then normalize.

The left panel of Figure [1| shows () as a function of € for N = 2, and
the right panel for N = 200. The dots, circles, squares and diamonds
are values of () computed from the samples, the lines have slope one or
two, and are there to illustrate the “order” of the method. Specifically,
the turquoise line is as in (82), the red line as in (83), and the purple line
on the left is as in (84). The numerical results confirm our asymptotic
expansions for sufficiently small . We have made similar observations
for other values of N < 1000. Specifically, for N = 2, we observe that
the numerical results agree with the predicted values for relatively large ¢
(up to € ~ 0.01). For ¢ > 107, the linear map method, the random map
method, and the symmetrized linear map method are similarly good (as
measured by (). All four methods are doing equally well when ¢ becomes
even larger. Moreover, all four methods can be useful in this problem, in
the sense that () is “not too large,” even when ¢ is close to 1.

We observe in the numerical experiments with N = 200 that the ran-
dom map loses its advantage over the linear map when N becomes large.
This is true for the simple and symmetrized versions of these methods. We
observe that the results of our experiments agree with our predictions for
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Figure 1: Sampling nonlinear random walks. Left: V = 2. Right: V = 200.
Turquoise squares: linear map (LM). Blue diamonds: symmetrized linear
map (SLM). Red dots: random map. Purple circles: symmetrized random
map. The turquoise and red lines have slope one, the purple and blue lines
have slope two. The turquoise line is as in , the red line as in , and
the purple line on the left is as in (84).

e < 107®. For larger ¢, all methods perform poorly and yield a large Q > 1
fore > 1073,

Figure 2| illustrates the scaling of () with N, as computed by Wick’s
formula. Shown is () as a function of NV for the various methods. As pre-
dicted by the theory, we observe that the symmetrized methods have lead-
ing error terms proportional to (¢ N)?, and that the simple, unsymmetrized
methods have error terms proportional to e V.

6.2 Lorenz’63

We consider estimating the initial conditions of the Lorenz ‘63 [20] equa-

tions
dx dy dz

where 0 = 10, § = 8/3 and p = 28, from noisy measurements of z, y and z
attime 7"
d = (2(T),y(T), 2(T))" +v. (90)

The Gaussian random variable v ~ A (0, I3) models measurement noise.
The above ordinary differential equations (ODE) are solved with the Mat-

27



P LM
SLM ||
RM

SRM

o

10 10 10

Figure 2: Scaling of () with N. Turquoise squares: linear map (LM). Blue
diamonds: symmetrized linear map (SLM). Red dots: random map. Pur-
ple circles: symmetrized random map. The turquoise line has slope one,
the blue line has slope two.

lab routine ode45. The prior for the initial conditions is Gaussian with
mean
fo = (3.6314, 6.6136, 10.6044)", (91)

and covariance Py = eI3. The conditional random variable x|d thus has
the pdf p(zo|d) = exp(—F(x¢)/e), where

Flao) = 5 ((d— bz (d = (o)) + (o — ) (1o — 70)) ,  (92)

so that this problem corresponds to a “small noise” situation. Here z; is
shorthand notation for the vector (z(0), y(0), 2(0))?, and h(x) is the ode45
solution of the ODEs at time 7. The initial conditions we use to generate
the synthetic data for our numerical experiments is

Zo,true = Ho + 0.5 (\/57 _\/57 \/E)t

We generate samples of zy|d using the linear and random map meth-
ods described above, and vary € and 7. The minimization required by the
sampling schemes is done with a quasi-Newton method where all deriva-
tives are approximated with finite differences. Similarly, we approximate
the Hessian at the minimum via finite differences.
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Figure 3: Estimating initial conditions of the Lorenz '63 equations. The
parameter € = 1 is constant and the time 7" at which data are collected is
varied. Turquoise squares: linear map (LM). Blue diamonds: symmetrized
linear map (SLM). Red dots: random map. Purple circles: symmetrized
random map. The turquoise and red lines have slope four, the blue and
purple lines have slope six.

We first fix e = 1 and vary 7, i.e. the time when data are collected.
As T becomes larger, the problem becomes more and more difficult and
multiple modes can appear [21},22]. Figure 3/ shows () as a function of 7.
We observe that the symmetrized methods perform better than the sim-
ple versions, and give a significantly smaller ()-value. For small 7', the
computed values of @) follow a straight line with slope 4 for the random
and linear maps, and slope 6 for the symmetrized methods. For T' ~ 1,
all four methods perform similarly well (the symmetrization seems to lose
its advantages) and for 7' > 1, the methods perform poorly. This is per-
haps because the pdf we attempt to sample becomes multi-modal and,
therefore, is no longer star-shaped. However, we made no adjustments to
address multi-modal target densities.

Next, we fix T = 0.05 and vary ¢. In this case, the pdf has the func-
tional form we analyze, and the scenario is analogous to the “small noise
accurate data” regime analyzed in the context of particle filtering in [28].
Figure [ shows @ as a function of e. As in the previous example, we find
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Figure 4: Estimating initial conditions of the Lorenz '63 equations. The
data are collected at time 7" = 0.05 and the parameter ¢ is varied. Turquoise
squares: linear map (LM). Blue diamonds: symmetrized linear map
(SLM). Red dots: random map. Purple circles: symmetrized random map.
The turquoise and red lines have slope one, the blue and purple lines have
slope two.

that our numerical experiments confirm the predicted behavior, even if ¢
is relatively large.

7 Conclusion and discussion

We have performed a small-noise analysis of two implicit sampling meth-
ods, the linear and random map methods. The analysis shows that the
random map method outperforms the linear map method in the small
noise regime, but this advantage becomes insignificant in high dimen-
sions. The simplicity and relative speed of the linear map method thus
makes it more attractive in the limit of small noise. The analysis further
suggests that both methods may be improved by a symmetrization proce-
dure analogous to antithetic variates. We illustrate the theory with numer-
ical examples which also suggest that the symmetrized algorithms may
outperform the simple, unsymmetrized algorithms even when the noise
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is not so small.

We wish to emphasize two points that are important in practice. The
tirst concerns weighted direct samplers as used in particle filtering. Some
methods proposed for practical applications do not have ) — 0, and may
even have () — oo as ¢ — 0. For example, the “vanilla” bootstrap particle
filter [14], which proposes samples from a proposal distribution that does
not take into account the most recent observation, has () — oo [27]]. The
present samplers all make proposals centered about the MAP (maximum
a-posteriori) point, which takes into account the most recent observation.
There is much discussion in the literature of the advantages of doing this
[7,[11)[18,125,29].

Second, we wish to address the computational cost of the algorithms
we analyze and propose. In practice, the cost is roughly proportional to
the number of evaluations of F' and its derivatives. Even our Lorenz ‘63
example requires an ODE solve to evaluate F. The rest of the algorithm is
cheap by comparison.

All of our methods start with computing =, = argmin F(x). This re-
quires a number of evaluations of F' and possibly its derivatives (for nu-
merical optimization). We also need the Hessian of F, either by formulas,
adjoints, or by finite differences. The simple linear map method requires
one more evaluation of F/(X) per sample. The symmetrized linear map
method requires two F' evaluations. In particle filter applications, we may
want just one sample. In that case, the optimization is more expensive
than sampling. Other applications may require many samples, in which
case the cost is roughly the number of samples times the cost for one or
two F evaluations.

The simple random map must solve once for each sample. This
is one equation in the single unknown, A. It is normally solved with just
a few F evaluations. As with the linear map methods, generating one
sample using the symmetrized method requires roughly the work of two
samples from the simple version, though by exploiting the ansatz for
A, one can obtain a good initial guess for finding A\(—¢) based on A() .
This may speed up the symmetrized method.
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