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ABSTRACT 

Apolipoprotein E Genotype–Specific Drug Repositioning Identifies Bumetanide as an 

Effective Compound to Rescue Cognitive Deficits in a Mouse Model of Alzheimer’s Disease 

By: Alice Taubes 

Alzheimer’s disease (AD) is the leading cause of dementia worldwide, and no effective therapies 

are available. The multifactorial etiology and pathophysiological complexity of AD cause patient 

heterogeneity and pose challenges for drug development, with almost all efforts to target AD-

related pathways having failed in human trials1,2. Although apolipoprotein (apo) E4 is the major 

genetic risk factor for AD1,3-5—60–80% of patients have at least one APOE4 allele and ~70% of 

homozygotes develop AD by age 856,7—it has not been actively considered in drug target 

stratification and development for AD1,2. Here, we used an apoE-genotype-specific drug 

repositioning approach to screen for drugs to treat apoE4-related AD. From a meta-analysis of 610 

human temporal lobar samples from public databases, we established apoE-genotype-specific 

transcriptomic signatures of AD and applied them to a validated Connectivity Map (CMap) 

database containing transcriptomic perturbation signatures of 1300 existing drugs8 to identify those 

capable of perturbing an entire gene-expression network away from the apoE-genotype-driven 

disease state towards a normal state. The loop-diuretic bumetanide was the top predicted drug 

candidate for apoE4/4 AD. Treating aged apoE4 knock-in (apoE4-KI) mice with bumetanide 

rescued cognitive and neuronal plasticity deficits, warranting further efficacy tests in AD clinical 

trials. This study highlights the power of combining precision medicine, computational drug 

repositioning, and targeting network alterations in developing new therapies for AD and other 

neurodegenerative disorders. 
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Alzheimer’s Disease and ApoE4 Alzheimer’s disease (AD) is the leading cause of dementia 

worldwide, with over 40 million people currently suffering from this neurodegenerative disease 

and no disease-altering therapies available.4,9,10 Neuropathologically, AD is characterized by the 

buildup of extracellular Ab plaques and intra-neuronal neurofibrillary tangles of the protein 

tau10. Familial early onset AD has been linked to mutations of several genes in the amyloid 

processing pathway, initially implicating Ab as a key player in AD pathology.  These early onset 

cases, however, only account for approximately 1% of the AD population.6,10-12   

Early efforts to develop disease-modifying therapeutics for AD have been unsuccessful due to 

the poorly-understood multifactorial etiology of the disorder10.  Since its characterization in the 

early 1900’s, Ab and tau have been extensively studied as drug targets.9,13  Ab is a by-product of 

the cleavage of the APP protein with no known physiological function(Tan).  Several promising 

compounds have been developed which successfully target all aspect of Ab production, deposition 

and clearance, however none of these compounds have been efficacious in human clinical trials, 

suggesting that amyloid may not in fact be a driver of this disease.14,15    These costly failures have 

continually been attributed to the time point of treatment, however the causative versus 

compensatory nature of amyloid buildup during AD pathology is hotly contested.14,16  

The majority of AD patients (>98%) do not have a mutation in the APP/ Ab processing 

pathway and develop symptoms anyway.4,9,10  They fall into the category of late-onset AD or 

LOAD, and 60-80% of them have a mutation in the apoE4 gene.4,9,10 ApoE4 was identified by 

epidemiological studies and GWAS as the greatest common genetic risk factor for late onset AD.  

The apoE locus has three naturally alleles in humans, apoE2, apoE3 and apoE4.  ApoE4 incurs a 

2–4 fold risk of AD for heterozygote carriers (~25% of the population) and a 12–14 fold risk for 
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homozygotes (~2% of the population) as compared to the neutral apoE3 allele.6,11,12,17  ApoE2 

isoform is thought to be protective against cognitive decline, Ab plaques in apoE4 carriers do not 

significantly correlate to regional functional deficits or cognitive decline, and longitudinal studies 

have identified cognitive changes in apoE4 carriers before the age of 30, indicating that this risk 

allele has detrimental effects on cognition independent of Ab.10 (Haung Dennis, Fillipini).   

While the mechanism of action of this risk allele is still actively under research, it is believed 

that it acts through Ab-independent mechanisms5. There are several lines of evidence that support 

this hypothesis. Firstly, apoE4 is correlated with the reduction of glucose metabolism in the brain 

in individuals who are between 20 and 39 years old, prior to the onset of Ab deposition.18 Secondly, 

studies have found that apoE4 and not Ab, causes reduced glucose metabolism during normal 

aging.19  

The effects of apoE4 in AD are multifactorial, with the allele impairing neuronal plasticity, 

adult neurogenesis, mitochondrial function, and stimulating tau phosphorylation.20,21   While the 

mechanism of action of this risk allele is still actively under research, it is believed that it acts 

through Ab-independent mechanisms. 5,10.   ApoE4 differs from apoE3 by only one amino acid, 

but this causes a large conformational change in the protein which renders apoE4 much more 

vulnerable to proteolytic cleavage.4,20 The cleaved fragments of apoE4 are thought to be neurotoxic 

and play large role in the neurodegeneration in apoE4-mediated AD9,20. ApoE4 is thought to enact 

pathology though tau, and therefore works in concert with the known pathological hallmarks of 

the disease.22 

ApoE4 has been extensively studied in a few transgenic mouse lines, the most prolific of which 

are mice with the human apoE3 or apoE4 gene knocked in to the endogenous mouse apoE locus. 
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ApoE4 knock-in female mice show significant deficits in learning and memory as measured by 

the Morris Water Maze by 16 months of age as compared to apoE3 controls.22,23  This is consistent 

with data showing that in humans, females are at higher risk for disease than males.6,11,12 These 

mice lose excitatory/inhibitory balance in the hippocampus due to the death of somatostatin 

positive inhibitory interneurons, and exhibit a marked decrease in dendritic spine density of 

hippocampal granule cells.23-25 These data, among the continued failure of costly clinical trials 

targeting Ab, underscore the pressing need to develop unconventional drug development strategies 

that identify pathways and compounds to efficaciously treat AD.14,26  

1.2 Disadvantages of Pathway Based Drug Development Efforts  

 Four drugs have been approved in the U.S. for AD for symptom management, none of 

which slow disease progression.27-29  Three acetylcholinesterase inhibitors (donepezil, 

rivastigmine and galanthamine) are licensed for mild to moderate AD, and the NMDA receptor 

antagonist memantine is licensed to treat moderate to severe AD.27-29 While these drugs have been 

shown to improve cognition for a short period of time, there is a pressing need to develop therapies 

that slow disease progression.27-29  Drugs developed to combat the creation and accumulation of 

Ab have had no effect in humans.4,14 The reasons for these high-profile failures are multifactorial.  

The amyloid pathway may not be the causative agent in advancing AD pathology, and these trials 

have been geared mostly towards mild to moderate AD patients, which may be too late in the 

disease progression for a therapy to be effective.29  

Unfortunately, several candidate therapies advanced to Phase III trials without adequate 

proof of concept of the mechanism of action.  For example, the proposed mechanism of action of 

terenflurbil and semagacestat included modulation of the amyloid cleaving enzyme gamma-

secretase, and the relative benefit of this modulation of the amyloid pathway and on AD disease 
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progression has not been confirmed.,26 leading to failed Phase III trials.  Similarly, a distinct 

mechanism of action for dimebon was not known, and the magnitude of the impact of this drug on 

disease was minimal, with more expensive and unsuccessful Phase III trials.26  Because of this, 

alternative drug targets are actively being sought out, including apoE4-related pathology.   

1.3 Precision Medicine, Disease Modelling, and Alzheimer’s Disease: 

Due to the complex genetics of AD pathology, precision medicine — the integration of 

prior knowledge of genetic variability into experimental design — has been shown to be 

paramount to successfully identifying mechanisms of disease.4,9,10,30 The integration of apoE 

genotype information with the analysis of transcriptomic data in the context of drug repositioning 

is an extremely powerful tool for the identification of efficacious drugs in AD.27,31-33 Furthermore, 

the multifactorial nature of apoE4-mediated AD pathology suggests that the application of a 

combinatorial drug approach may be required for efficacious treatment regimens.10  Precision 

medicine leans away from the traditional “one-size-fits-all” approach to drug discovery, instead 

pioneering the idea that each individual’s disease comes from a unique genetic milieu and while it 

may present with similar symptoms and pathology, is never the exact same pathological process 

and should not be treated as such.34  

While some fields such as anti-cancer efforts have benefitted enormously from precision 

medicine approaches, others, such as neurodegenerative diseases, are only in their infancy.  This 

discrepancy stems from several factors.  Firstly, access to large-scale biological tissue banks for 

brain tissue associated with neurodegenerative disease has been notoriously difficult.  Only 

recently have such consortia as the NIH’s Accelerating Medicines Partnership – Alzheimer’s 

Disease (AMP-AD) been founded to pool together ‘omics data from brain tissue, and has spawned 

several high-profile papers despite its mere six years of existence.35-37 Secondly, the oft-used 
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mouse models of Alzheimer’s Disease are notoriously biologically irrelevant.38  Most mouse 

models rely on introducing 2-5 exceedingly rare autosomal dominant mutations in the amyloid 

processing pathway which have never naturally occurred in tandem in humans, causing a 

massively overstated and precocious amyloid phenotype leading to early cognitive impairments 

and amyloid pathology in the mouse brain.38  Most of the failed clinical trials over the last ten 

years, of which there have been many, have developed anti-amyloid compounds that while 

effective in mice, are ineffective if not detrimental in humans.26 The inability and/or reluctance of 

large pharma to move away from these highly erroneous mouse models has not only cost billions 

of dollars but has led to the loss of countless lives as the search for therapies remains stymied in 

clinical trials.  The canonical “loudest voice wins” model of rigorous scientific rebuttal has created 

a self-aggrandizing community of amyloid enthusiasts who have unabashedly continued to shut 

down dissenting, and in this case, accurate, scientific voices to create an affirmation bubble of the 

most dangerous variety.   

The theory of precision medicine when applied to the field of AD allows for the possibility 

for the 1% of AD patients that have an autosomal dominant amyloid mutation to potentially be 

experiencing a symptomatically similar but biologically distinct disorder from those with sporadic 

or apoE4-derived pathologies.10,34    While presenting with similar symptoms of spatial learning 

and memory impairment, the underlying generator of cognitive decline is most likely quite distinct 

and amyloid independent.4,10  This simple yet revolutionary idea has only recently taken a foothold 

among government funding agencies, which have slowly been shifting their support away from 

the ongoing amyloid apocalypse as more and more amyloid-related clinical trial failures unfold 

across the world.   
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1.4 Drug Repositioning in AD Drug Development.  

The pathobiology of the apoE4 risk allele remains poorly understood, significantly 

hindering the classical one-target approach to drug development.5,9,30 Drug repositioning, a 

computational method for predicting new uses for FDA approved compounds offers less drug 

development costs and shorter paths to approval for clinical use.39,40  Drug repositioning has been 

used successfully in such areas as cancer, cardiovascular disease, irritable bowel syndrome, 

obesity, erectile dysfunction, smoking cessation, psychosis, attention deficit disorder and 

Parkinson’s disease.41-48   Because the compounds have an established safety profile in humans, 

they have several advantages over conventional drug development strategies.31,39,40,49  

Developing new drugs to combat disease is an arduous and incredibly high-risk process. 

Each new drug that makes it through the FDA can take on the order of 10-15 years and two 

billion dollars to be approved, with a success rate of only 2%.41 Because of this, the rate of drug 

approvals has been steadily declining since 1995.50  Investment in new drug development has 

been gradually decreasing in a similar manner indicating that the cost of new drug development 

will continue to skyrocket.41  This combined with the steadily growing population with 

Alzheimer’s disease creates a dire need for the quick development of new therapeutics. 

The concept of drug repositioning, or the repurposing of already FDA-approved drugs for 

innovative uses, is not new.  In fact, several of the most lauded successes of the 20th century 

were due to serendipitous accidents whereby a drug approved for one indication was found to be 

effective in an entirely different disease.  Thalidomide, for example, was originally developed as 

a sedative, but after its disastrous effects on pregnancy were discovered, clinicians realized it had 

potent anti-cancer properties.51 Traditional drug development pipelines include discovery and 
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pre-clinical, safety review, clinical research, FDA review, and FDA post-market safety 

monitoring.50  Repurposed drugs on the other hand, have already received FDA approval, 

making the journey to the clinic much faster.   

In the past decade, the amount of publically pharmacological data has grown 

exponentially, vastly reducing the need for drug development pipelines to be developed from the 

ground up.  A variety of wet lab and computational approaches have been developed to discover 

new drug-disease relationships.  A plethora of drug and disease knowledge databases have been 

developed including DrugBank, ChemBank, the Therapeutic Target Database, PharmGKB, and 

PubChem, to name a few.52-55  Simultaneously, such public genomic repositories such as 

GenBank, GEO, and AMP-AD allow for the gathering of large phenotypic disease datasets for in 

silico drug testing. The work presented in this thesis ascribes to the network based approach to 

drug repositioning, whereby a drug is matched to a disease based on its gene network 

perturbation.  The underlying premise of this approach is that every drug has a gene network 

effect, and that “side-effects” are rather a phenotyping expression of a drug’s perturbation 

network.  

1.5 The Connectivity Map and Pharmacogenomics:  

The Connectivity Map (CMAP) database is a resource which consists of transcriptomic 

profiles of 1309 diverse bioactive compounds in 5 different cell lines as compared to untreated 

controls, of which nearly 800 have FDA approval status.8,32 This resource, among others, has 

recently opened up the possibility of a systems approach to drug discovery. Genetic perturbations 

in human disease are contrasted with that of a compound’s perturbation profile in cell lines to find 

drugs that best anti-correlate, or “flip” the genetic signature of human disease back to that of 
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control tissue.8,31,56 This method has been continually validated in several human diseases but has 

been applied but not yet been successfully validated in AD.31,35,57,58  The Connectivity map (Cmap) 

was created by Lamb et al., in 2006.8 The authors introduced a database that attempts to describe 

all biological states in terms of genomic signatures, producing a resource that could be mined for 

pattern-matching between drug and disease perturbations.8,50 Since the publication of this resource, 

other such databases such as LINCS, Cytoscape, K-map, and Dt-web have been introduced, further 

enhancing our understanding of the triad of genes, drugs and disease.59-62 These methods have all 

given rise to novel drug-disease relationship hypotheses that have proven to translate to having a 

therapeutic in in vivo animal models and even in the clinic.63 

CMap and its more comprehensive predecessor LINCS and ssCMAP are most often used 

to map global network drug and disease signatures, and therefore does not require detailed 

knowledge of a mechanism of action (MoA) in order to predict therapeutic agents.8,60  In diseases 

such as Alzheimer’s disease where the MoA is unknown, this presents a giant leap forward for 

therapeutic research.31,33,40 In the past decade, these big-data resources such as the CMap and 

LINCS among others have been used extensively to map drugs to disease and vice-versa, 

however the true power of these methods has yet to be unlocked as we continue into an era of 

ever bigger data and computational power.   

1.6 Methods of Drug Repositioning  

Since its introduction in 2006, the CMap has been used extensively across diseases to 

predict new drug-disease relationships.   The canonical use of this resource involves one of three 

methods: a) Using gene expression signature changes in disease states as a search tool across 

drug perturbagen profiles, b) using drug-to-gene network data to identify chemicals with similar 
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expression patterns and therefore potentially similar mechanisms of action, and c) for drug 

combination research.39,49,64 As a tool to elucidate new therapeutic mechanisms, the CMap has 

been used successfully to discover novel therapeutic agents in CNS injury, glioma, Gaucher 

disease, ovarian cancer, leukemia, prostate cancer, Diabetes, among other diseases.65-69  CMap 

has also been employed to investigate the relationship between drugs and microRNAs, as well as 

drug-drug interactions and pairwise combinations of compounds for therapeutic use across 

diseases.70-72  

The central thesis of drug repositioning is that all drug act in a gene network-based 

manner, summarily excluding the one drug-one target approach to therapeutic development.  The 

mechanism of action of a drug, therefore, can be understood as the sum of its effects across the 

entire gene-gene and protein-protein interaction network.  In this vein, the CMap can be applied 

to better understand the full mechanism of action of a drug in a biological system, in this case, 

the cell.8,69,73,74   The CMap and other computational drug databases have been employed to 

better understand basic drug-disease relationships, and to elucidate previously misunderstood 

mechanisms of action, and to find drug-able targets and their corresponding therapeutic 

compounds that existed outside the scope of previous scientific understanding.74 Techniques 

have been developed to modeling functional protein interaction networks, investigating 

potentially therapeutic ‘side effects’, and uncovering more comprehensive information about 

known targets and the gene network pathways within which they exist.43,68,73  

1.7 Bumetanide as a Repurposed Therapeutic Compound 

In this thesis, I demonstrate that bumetanide can be repurposed to ameliorate the learning 

and memory deficits in apoE4-mediated AD.   Bumetanide is an FDA-approved small molecule 



   11 

currently used to treat edema, usually after heart, liver or kidney failure.75-79  It’s canonical 

mechanism of action is as an inhibitor of the sodium-potassium-chloride transporter NKCC1 and 

the kidney-specific NKCC2.80 Bumetanide changes the osmotic balance in the loop of Henle in 

the kidney, causing acute diuresis for patients with edema.81,82 In 1997, McGahan et al., 

demonstrated that Bumetanide targets NKCC1 in vitro and reduces influx of chloride into the 

cell without changing chloride outflux, and that the transport of sodium and potassium ions 

across the membrane was heavily reduced.83  Haas and McManus had previously shown that by 

changing the chloride concentration they could shift the dose-response curve for bumetanide 

suggesting that bumetanide was a competitive inhibitor of NKCC1.84   NKCC1 knockout mice 

are immune to the effects of Bumetanide, further leading to the current understanding of the 

canonical mechanism of action of this drug.85  

Bumetanide has also been shown to change chloride homeostasis in neurons in vitro in 

slice recordings in the pyramidal cells of the hippocampal regions CA1 and CA3.85,86  These 

slice recordings found that application of bumetanide causes a hyperpolarization of neurons, 

making them less susceptible to excitotoxicity associated with overactivity.87  Due to its known 

inhibitory effects, bumetanide has been studied as a potential therapy for epilepsy, Down 

syndrome, Parksinon’s disease, autism, and schizophrenia.85,88-90 Bumetanide is a strong inhibitor 

of NKCC1, with a half-maximal concentration (IC50) of 100-500nM, however it has a relatively 

short half-life (~1 hour in humans and ~30 minutes in rodents) and is not very bioavailable with 

a 1:100 brain:plasma ratio.75,91-94  Despite these pharmacogenetic properties, doses as low as 0.2 

mg/kg bumetanide administered systemically have been shown to have disease-modifying effects 

in mouse models of acute seizure.88,95  
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1.8 Research Purpose 

In the search for better therapeutic agents against AD pathologies, we sought to apply 

precision medicine techniques to screen the CMap to screen for potential small molecule 

candidates in an apoE-dependant manner. We demonstrate that bumetanide is predicted to be 

efficacious against apoE4-mediated disease and we validate our findings in an apoE4-KI mouse 

model of disease.   
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2.1 Data Integration.  

GEO and AMP-AD were searched for transcriptomic AD data from temporal lobe tissue for 

which apoE genotype information was available. Microarray experiments from Webster et al., 

200996, accession GSE15222, was downloaded directly from the NCBI GEO database97 in the 

available series matrix file format. Data had been rank-invariant normalized as described96,98. The 

pre-normalization procedure created negative values in the series matrix file, which were 

eliminated by adding a constant across the expression matrix99. Since fold change (FC) calculated 

after this addition is an underestimation, all subsequent FC estimates are conservative relative to 

the stated thresholds. Log2 transformation was then applied to the all-positive-value expression 

matrix. All samples with an apoE3/3, apoE3/4, or apoE4/4 genotype were used for further analysis 

except one sample with no reported gender. The Syn3157255-MayoEGWAS dataset was 

downloaded from the AMP-AD portal. The data had been background corrected and subjected to 

variance stabilizing transformation (Vst), quantile normalization, and probe filtering with the lumi 

package of BioConductor, as described100. Vst is identical to log2 transformation at higher values, 

but deviates at lower values (Supplementary Fig. 2)101. The Vst algorithm results in 

underestimation of FC values of Vst transformed data calculated based on a log2 scale under this 

deviation value. Thus, subsequent FC estimates for this dataset were also conservative relative to 

the stated thresholds. 

Both datasets were analyzed by principal component analysis (PCA) to confirm normalization 

of technical artifacts (Supplementary Figs. 3 and 4). Since such artifacts were present in the first 

principal component, the Syn3157255-MayoEGWAS dataset was further batch corrected across 

the “plate” covariate by using the ComBat function of the sva package102. The Limma R package, 

which uses linear models for differential expression (DE) analysis, was applied to each dataset 
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separately to estimate DE of genes in all control and AD samples regardless of apoE genotype; for 

genes with more than one probe, the probe with the most significant P value for the difference 

between AD and control samples was used for subsequent integration and meta-analyses of the 

two datasets103. Both datasets were separated into apoE-genotype-specific groups (apoE3/3, 

apoE3/4, and apoE4/4); genes shared by both microarray platforms (16477 genes) were batch 

corrected across the two datasets for each group with the ComBat algorithm (sva package) 

(Supplementary Fig. 5). 

2.2 Differential Expression and Pathway Analysis.  

Average age did not differ in apoE genotype groups, except in the apoE3/4 AD group, 

which was higher in the Syn3157255-MayoEGWAS study (+3.24 years, ANOVA with Tukey 

HSD post-hoc testing, P = 0.0153). To maintain power, no samples were removed from the 

apoE3/4 group in Syn3157255-MayoEGWAS. To ensure that age did not affect our DE results, 

we calculated the Pearson’s correlation of the expression level in the Syn3157255-MayoEGWAS 

dataset of each DE gene from both the apoE3/4 control and AD datasets against the age covariate. 

No genes correlated significantly (FDR < 0.05). To eradicate any spurious results related to non-

sex-matched groups, each apoE-genotype-specific groups were randomly down-sampled to match 

the male to female ratios within each genotype across diagnoses (Supplementary Table 1). To 

account for possible stochastic effects, this process was applied 10 times. The nonparametric rank-

based algorithm RankProd (version 2.42.0) was applied to each of the 10 permutations with a two-

origin design. The two-origin design RankProd algorithm computes pairwise FC ratios for every 

control and AD sample in each dataset separately, ranks the ratio of each gene within each pairwise 

comparison, and calculates the rank product of each gene by taking the product of all pairwise rank 
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ratios from both datasets. P values were determined by 1000 permutations104. Adjusted P values 

were determined separately with the p.adjust base function in R. The ComBat function changes 

the mean and SD of each sample. Therefore, to avoid further artifacts in the reported FC estimation 

by the RankProd package, FCs used in all subsequent cutoffs were calculated separately for each 

dataset before batch correction, and the arithmetic mean was used. Because of the normalization 

transformations of the GSE15222 matrix and the Vst transformation of Syn3157255-

MayoEGWAS, some FC values are underestimated and are referred to as “estimated FC”. 

Estimated FC values and P-values were averaged over each of the 10 sex-matched permutations 

for each genotype and FDR values were calculated using the p.adjust package. DE genes that had 

both an estimated average absolute FC greater than 1.3x and an FDR cutoff < 0.05 were further 

analyzed. DE genes of drug signatures were analyzed with Ingenuity Pathway Analysis (IPA) 

software. Ontology analysis was done using the reference set from the Ingenuity Knowledge Base 

including direct and indirect gene relationships; enrichment P-values were taken directly from the 

IPA software. 

2.3 Drug Repositioning Analysis.  

The computational drug repositioning algorithm, which was developed by Sirota et al. and 

Dudley et al.41,42 and taken from Chen et al.44, was applied to each apoE-genotype-specific gene 

signature using the publically available CMap database (1300 compounds). Although LINCS is a 

much more comprehensive database, only a very small proportion of DE genes in AD overlapped 

with the 1000 genes measured, and therefore it was not used in this study.  The algorithm was 

modified to use the full apoE-genotype-specific DE signature rather than the top 150 up- and 

downregulated genes. FDR-adjusted P values were calculated with the p.adjust function in the 
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base R package. Technical replicates, defined as the same drug, concentration, cell line, and 

treatment, were averaged by CMap score. In the analysis of overlapping drug predictions between 

apoE-genotype-specific groups, when drugs had more than one technical replicate, the P value 

from the most significant replicate was reported in order to have the most inclusive drug set. The 

cell line with the lowest CMap score was reported for each compound to further enrich the signal. 

The raw CMap data for bumetanide in PC3 cells was extracted for further analysis. The CMap 

data from the pipeline detailed by Chen et al.44 consists of the FC rank after bumetanide treatment. 

To display how bumetanide “flips” the apoE4/4-specific transcriptomic signature of AD, the CMap 

data in Figure 2 were analyzed by Monte Carlo simulation to calculate the significance of the shift 

in the average FC rank. Downregulation by bumetanide was defined as a shift of upregulated 

apoE4/4 human gene signatures to a lower rank than the mean rank of all genes. Upregulation by 

bumetanide was defined as a shift in average FC rank of the downregulated genes in the apoE4/4-

specific AD signature toward a higher rank than the mean rank of all genes.  

2.4 Mice.  

All protocols and procedures followed the guidelines of the Laboratory Animal Resource Center 

at the University of California, San Francisco (UCSF). All mice were housed under identical 

conditions from birth through death (12-hour light/dark cycle, housed 5/cage, PicoLab Rodent Diet 

20). All mouse lines were maintained on a C57Bl/6J background. ApoE3-KI and apoE4-KI 

homozygous mice (Taconic)105,106 as well as wildtype mice were born and aged under normal 

conditions at the Gladstone Institutes/UCSF animal facility. Female apoE-KI mice were used 

because of their susceptibility to AD-related neuronal and behavioral deficits. Gender-matched 
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wildtype mice were used as controls. The ages of the mice are indicated in the behavioral testing 

section of the online methods. 

2.5 Bumetanide Treatment.  

Bumetanide was prepared at 220 m M in 2% DMSO in 0.9% sterile saline, adjusted to pH 8.5 with 

NaOH for solubility, and given by i.p. injection daily to apoE-KI and wildtype mice, starting 6 

weeks before and continuing throughout behavioral assessment. Body weight was measured 

weekly during bumetanide treatment; injection volume was calculated to achieve a dose of 0.02 

(low) or 0.2 (high) mg bumetanide/kg body mass (e.g., 50-m l daily injection for a 20-g mouse). 

Control mice were injected with a matched volume of 2% DMSO in 0.9% sterile saline, pH 8.5. 

Injections were well tolerated and had no adverse effects on health. 

2.6 Behavioral Testing.  

Mice were singly housed before testing. Each mouse was assigned a random number, so 

researchers were blinded to genotype and treatment information. At about 14 months of age, 

apoE3-KI and apoE4-KI mice were randomly assigned to treatment groups: apoE3-KI vehicle (n 

= 10, age 14.01 ± 0.44 months), apoE3-KI low bumetanide (n = 11, age 14.30 ± 0.33 months), 

apoE3-KI high bumetanide (n = 10, age 13.74 ± 0.22 months), apoE4-KI vehicle (n = 10, age 14.10 

± 0.35), apoE4-KI low bumetanide (n = 10, age 14.70 ± 0.27 months), apoE4-KI high bumetanide 

(n = 9, age 13.77 ± 0.28 months), wildtype vehicle (n = 16, age 16 months), wildtype bumetanide 

(n = 15, age 16 months). Treatment was administered daily by i.p. injection beginning 6 weeks 

before and continuing throughout the 14 days of testing in the Morris water maze (MWM); 

injections were given at the end of the light cycle and after the day’s test. 
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The MWM pool (diameter, 122 cm) contained opaque water (22–23°C) with a platform 10 cm 

in diameter. The platform was submerged 1.5 cm during hidden platform sessions23,107-110 and 

marked with black-and-white-striped mast (15 cm high) during cued training sessions. Mice were 

trained to locate the hidden platform (hidden days 1–5) and the cued platform (visible days 1–3) 

in two daily sessions (3.5 h apart), each consisting of two 60-s trials (hidden and cued training) 

with a 15-min intertrial interval. Distal visual cues on the walls of the behavioral testing room 

remained constant throughout the test. Visible trials took place after training and memory probes 

and were 60 seconds long with a cued visible platform. The platform location remained constant 

in the hidden platform sessions but was changed for each cued (visible) platform session. Entry 

points were changed semirandomly between trials. At 24, 72, and 120 hours after the last hidden 

platform training, a 60-s probe trial (platform removed) was done. The entry points for the probe 

trial was in the southwest quadrant, and the target quadrant was the northeast quadrant. 

Performance was monitored with an EthoVision video-tracking system (Noldus Information 

Technology). For the probe trials, we analyzed (1) the percent time spent in the target quadrant 

versus average time spent in the three other quadrants, (2) the number of crossings over the position 

of the target platform versus the average number of crossings over the equivalent positions in the 

three other quadrants and (3) the distance to platform over the first 10 seconds. 

2.7 RNA-Seq Analysis of Hippocampal Tissue.  

Twelve-month-old apoE3-KI and apoE4-KI mice received daily i.p. injections of vehicle or 

bumetanide (0.2 mg/kg body weight) for 60 days. Mice were perfused with 0.9% saline, and the 

hippocampus was dissected and homogenized in Trizol reagent. Total RNA was extracted and 

purified with the Qiagen RNeasy Micro kit, which included a DNase treatment. cDNA was 
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generated from full-length RNA (50 ng per sample) with the NuGEN RNA-Seq V2 kit, which uses 

the single primer isothermal amplification method to deplete ribosomal RNA, and sheared by 

Covaris to yield fragments of uniform size. The NuGen Ultralow system V2 was used for adding 

adapters and for barcoding and amplification. The resulting RNA libraries were purified with 

Agencourt XP magnetic beads, and quantified by qPCR after quality control with an Agilent 

Bioanalyzer. The libraries were pooled and sequenced with a HiSeq 4000 instrument (Illumina) 

for single-end (SE50) sequencing. Sequence data were aligned with the STAR short read aligner111 

and counts per feature were obtained with the feautureCounts function from the Subread 

package112. After alignment, transcripts not shared in the GSE15222 and Syn3157255-

MayoEGWAS databases were discarded, as were genes with less than one count per million in 

two or more samples113.  

The DESeq pipeline was used to assess DE of the remaining 11,877 transcripts. Genes below 

a P value of 0.05 were considered DE for future pathway analysis. After count normalization with 

DESeq, data were rld transformed (vsn package), and clustering was done on the DE genes with 

the pheatmap package. PCA was applied to the rld-transformed DE genes. The DE signatures of 

drugs were analyzed with Ingenuity Pathway Analysis software. Ontology analysis was done using 

the reference set from the Ingenuity Knowledge Base including direct and indirect gene 

relationships. For analysis of rank changes of apoE-genotype-specific signature genes of AD, the 

raw count data from the 11,877 transcripts were rank transformed, and for each gene the average 

rank of vehicle-treated samples was subtracted from that of bumetanide-treated samples. 

Significance of the rank changes of the up- and downregulated apoE4-KI human gene signatures 

deviating from the population mean of the rank change of all genes (zero) was calculated by Monte 

Carlo simulation. 
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2.8 Brain Slice Electrophysiological Recordings and Data Analyses.  

ApoE4-KI mice were randomly allocated to vehicle (n = 3, age 15.2 ± 0.85 months) and control 

(n=3, age 15.1 ± 0.06) groups.  ApoE3-KI mice were similarly allocated into vehicle (n=3, age 

15.5 ± 0.17) and control (n=3, age 15.57 ± 0.29) groups.  Mice were dosed from 4 – 6 weeks and 

slice recording day / dosage time were allocated randomly between the groups to allow for equal 

dosage time while experiment was performed. At time of recording all mice were approximately 

16 months of age.  

2.9 Statistical Analyses. Behavior metrics are expressed as mean ± SEM. All values for n are the 

numbers of mice or biological replicates. The distribution of data was assessed with the Shapiro-

Wilk normality test; most of the data were normally distributed. Differences between groups were 

determined by unpaired or paired two-sided t test. For multiple comparisons, one-way ANOVA 

and Tukey’s post-test were used. P < 0.05 was considered significant. Researchers were blinded 

to genotypes and treatment information during experiments. 

2.10 Compliance with Relevant Ethical Regulations and Animal Use Guidelines. All 

experimental and animal protocols and procedures were done in accordance with the university 

and institutional ethical regulations and animal use guidelines. 
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3.1 Study Rationale 

 The patient heterogeneity of AD caused by different genetic, epigenetic, and 

environmental factors suggests that attempting to develop a single drug suitable for all AD patients 

may be a severe over-simplification. Consequently, the combination of precision medicine guided 

by disease-associated gene mutations or polymorphisms with computational drug repositioning 

might be an alternative approach to identify existing drugs effective for subpopulations of AD 

patients. Our drug repositioning approach for AD builds on the well-validated hypothesis that 

drugs which perturb or “flip” differentially expressed (DE) genes in a disease state back towards 

control levels may be efficacious against this disease41-43,114-117. Within this pipeline, the first step 

is to establish apoE-genotype-specific transcriptomic signatures of AD. The second is to apply a 

validated computational drug-repositioning algorithm41-44 to query the CMap database, which 

contains transcriptomic perturbation signatures of 1300 drugs8. Each compound receives a 

prediction score for therapeutic potential in apoE-genotype-specific AD41,42,44; a negative score 

suggests that a compound might reverse the transcriptomic signature of the disease. Since 

transcriptomic signatures of AD are compared with those perturbed by each compound, the 

prediction strategy is driven by the DE gene signature of the disease rather than by a hypothesis-

driven approach targeting isolated pathways. Finally, the top predicted drug is tested in a mouse 

model of apoE4-driven AD to validate efficacy and explore mechanisms of action. 

3.2 Meta-Analysis of Large Publically Available Temporal Lobar Datasets Results in ApoE-

Dependent Transcriptomic Signatures of Disease 

To establish apoE-genotype-specific transcriptomic signatures of AD, we analyzed the two 

largest public human temporal lobar transcriptomic datasets with apoE-genotype information—



   24 

GSE15222 (n = 213)96 and Syn3157255-MayoEGWAS (n = 397)100 (Fig. 1a, Supplementary 

Table 1). As in most clinical studies6, AD groups in each dataset had proportionately more 

apoE3/4 and apoE4/4 carriers than controls (Fig. 1b). The datasets were stratified by apoE 

genotype for meta-analysis (Fig. 1a) using a nonparametric algorithm, RankProd104. Genes with 

an average false-discovery rate (FDR)-adjusted P value < 0.05 and an average absolute estimated 

fold change (FC) > 1.3x were further analyzed. Comparison with apoE-genotype-matched controls 

showed up- or down-regulation of 314, 150, and 696 genes in AD subjects with an apoE4/4, 

apoE3/4, and apoE3/3 genotype, respectively (Fig. 1c,d, Supplementary Tables 2–4). Strikingly, 

only 31 DE genes (2.7% of all DE genes) were shared among all three AD groups (Fig. 1c,d, 

Supplementary Tables 2–4), highlighting the unique pathobiology of each apoE genotype in AD 

pathogenesis. 

3.3 Ontological Analysis Uncovers Disparate Pathways in ApoE-Specific Disease Signatures 

Ontological analysis identified 28, 24, and 48 perturbed pathways in apoE4/4-, apoE3/4-, and 

apoE3/3-specific signature of AD (Fig. 1e, Supplementary Tables 5–7). Only three (3% of all 

perturbed pathways) were shared among all three AD groups (Fig. 1e, Supplementary Tables 5–

7), further highlighting the unique effect of each apoE genotype on the molecular milieu of AD. 

Next, we applied the apoE-genotype-specific transcriptomic signatures of AD to the CMap 

database to produce therapeutic predictions44. The FDA-approved loop-diuretic bumetanide had 

the best predictive score against apoE4/4 AD (Fig. 2a, see Online Methods for detailed analytic 

procedures) and a much weaker CMap score against apoE3/4 and apoE3/3 AD (Fig. 2b,c). In 

bumetanide-treated cells in the CMap database, genes upregulated in apoE4/4 AD were shifted 

downward (higher rank numbers, P = 0.003 by Monte Carlo simulation) and those downregulated 

in apoE4/4 AD were shifted upward (lower rank numbers, P = 0.002 by Monte Carlo simulation) 
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(Fig. 2d–g), confirming that the transcriptomic perturbation signature of bumetanide correlates 

negatively with that of apoE4/4 AD. 
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CHAPTER 4: BUMETANIDE AMELIORATES COGNITIVE, ELECTROPHYSIOLOGICAL, 
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4.1 Bumetanide Ameliorates the Learning and Memory Deficits in a Mouse Model of ApoE4-

Mediated AD 

For in vivo validation, we examined the effects of bumetanide treatment at low (0.02 mg/kg) 

and high (0.2 mg/kg) doses (daily intraperitoneal injection for 8 weeks) on cognitive deficits in 

16-month-old apoE4-KI mice. We used the Morris water maze (MWM)23,107-109 to test spatial 

learning and memory over 5 days in hidden platform learning trials followed by probe trials of 

short-term memory at 24 hours after the last hidden trial and long-term memory at 120 hours (Fig. 

3a). Learning curve and swim speed did not differ across genotype or treatment groups during the 

hidden trials (Fig. 3b, Supplementary Fig. 1a,b). Bumetanide treatment did not alter learning 

curve and swim speed of wildtype mice either (Supplementary Fig. 2a,b). However, vehicle-

treated apoE4-KI mice had impairment of short-term memory not seen in vehicle-treated apoE3-

KI mice (Fig. 3c) and vehicle- and bumetanide-treated wildtype mice (Supplementary Fig. 2c,e). 

Strikingly, bumetanide treatment at both low and high doses rescued the short-term memory deficit 

of apoE4-KI mice, which performed as well as apoE3-KI mice, in the 24-hour probe trial (Fig. 

3c). Low bumetanide- and vehicle-treated apoE3-KI mice performed equally well, suggesting that 

low dose of bumetanide treatment does not adversely affect memory formation. However, high 

dose of bumetanide treatment impaired short-term memory of apoE3-KI mice in the 24-hour probe 

trial (Fig. 3c), indicating the specificity of bumetanide’s beneficial effect on apoE4-KI mice. In 

the 120-hour probe trial, high bumetanide-treated apoE4-KI mice still had a significant preference 

for the target quadrant (Fig. 3d), indicating a strong beneficial effect of bumetanide on long-term 

memory of apoE4-KI mice. Interestingly, either low or high bumetanide-treated apoE3-KI mice 

forgot the hidden platform location, like the vehicle-treated apoE3-KI mice, in the 120-hour probe 



   28 

trial (Fig. 3d), again suggesting that the beneficial effect of bumetanide on long-term memory is 

specific for apoE4-KI mice. 

In a more stringent test of spatial memory, we counted precise crossings of the target platform 

position versus similar areas in the other quadrants during each probe trial to assess the specificity 

and accuracy of memory performance. Strikingly, high bumetanide-treated apoE4-KI mice, but 

not apoE3-KI mice, had significantly more platform crossings in the target quadrant in both the 

24- and 120-hour probe trials (Fig. 3e,f). Low bumetanide-treated apoE4-KI mice had a trend 

toward significant improvement of short-term memory accuracy in 24-hour probe trial (Fig. 3e). 

Interestingly, high bumetanide treatment impaired short-term memory accuracy in 24-hour probe 

trial (Supplementary Fig. 2d). Taken together, these data demonstrate that bumetanide restored 

the accuracy of both short- and long-term memory performance specifically in apoE4-KI mice.  

4.2 Bumetanide Treatment Rescues Neuronal Plasticity and Excitability Deficits in Aged 

ApoE4-KI Mice  

In an effort to gain a better understanding the underlying mechanisms of apoE4-specific behavioral 

rescue, we tested the genotype-specific effects of bumetanide on long-term potentiaion (LTP). LTP 

is an electrophysiological measurement of neuronal plasticity24. It has been considered as a 

molecular mechanism underlying normal memory formation24, and it is impaired in animal models 

of AD25. In line with memory impairment of aged  (16-month-old) apoE4-KI mice, LTP recorded 

in the CA1 region of the hippocampal slices showed significant deficit in aged vehicle-treated 

apoE4-KI mice compared to age-matched vehicle-treated apoE3-KI mice (Fig. 3, G and H). 

Bumetanide treatment (0.2 mg/kg for 8 weeks) completely rescued LTP deficit in aged apoE4-KI 

mice (Fig. 3, G and H). Furthermore, neuronal hyperexcitability in the CA1 region of the 
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hippocampus in apoE4-KI mice, measured by input-output curve analysis26, was also normalized 

by bumetanide treatment (Fig. 3I). Thus, in vivo bumetanide treatment restored neuronal plasticity 

and excitability, which underlies normal memory formation, in the hippocampus of aged apoE4-

KI mice. 

4.3 Bumetanide Recapitulates the Anti-Correlation of the Transcriptomic Signature of 

ApoE4/4-Mediated AD in the Mouse Hippocampus. 

Finally, to explore bumetanide’s effects on the transcriptome in vivo, we performed an RNA-

seq analysis of the hippocampus, a temporal lobe region considered the epicenter of AD 

pathologies1, from apoE4-KI mice treated with vehicle or bumetanide (0.2 mg/kg daily 

intraperitoneal injection) for 8 weeks. Hierarchical clustering and principal component analyses 

showed significant clustering of samples based on DE genes from bumetanide versus vehicle 

treatment (Fig. 4a,b, Supplementary Table 8), suggesting a distinct drug effect in the 

hippocampus. Furthermore, in bumetanide-treated apoE4-KI mice, the genes significantly 

upregulated in apoE4/4 AD were shifted down in their expression ranks (toward higher numbered 

ranks) (Fig. 4c,d, P < 0.001 by Monte Carlo simulation), corroborating the CMap data and the 

hypothesis that reversal of the disease-specific transcriptomic signature is a rational strategy for 

computational drug repurposing, even in animal models. However, in apoE4-KI mice, bumetanide 

did not alter the smaller subset of genes downregulated in apoE4/4 AD (Fig. 4e), perhaps because 

some of the downregulated genes reflect cell death rather than altered gene expression in apoE4/4 

AD. 

Pathway analysis of the genes whose expression was most affected by bumetanide in apoE4-

KI mice (P < 0.05) identified 71 significantly perturbed pathways (Supplementary Table 9). 

Interestingly, six of these pathways overlapped with those enriched in the apoE4/4 AD signature: 
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GABA receptor signaling, cAMP-mediated signaling, G-protein-coupled receptor signaling, 

VDR/RXR activation, synaptic long-term depression, and CCR3 pathways (Fig. 4f). Future 

investigation is warranted to determine whether any of these perturbations are responsible for the 

beneficial effects of bumetanide. 
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Figure 1 

Figure 1. ApoE-genotype-specific transcriptomic signatures of AD. (a) Experimental 
workflow, including dataset selection and integration, apoE genotype stratification, DE analysis 
of genes, drug repositioning analysis, and behavioral and transcriptomic validation. (b) ApoE 
genotype composition of AD and control datasets GSE15222 (n = 213) and Syn3157255-
MayoEGWAS (n = 397). ApoE4 allelic representation (apoE3/4 and apoE4/4) was greater in AD 
groups (c2 test of apoE4 carriers versus non-carriers in AD versus control populations, P < 
0.001). (c, d) Venn diagram of overlapping and unique upregulated (c) and downregulated (d) 
DE genes (Estimated absolute FC > 1.3x, FDR < 0.5) from apoE-genotype-specific, rank-based 
meta-analysis. 153 genes were uniquely significantly upregulated in apoE4/4 AD, 15 in apoE3/4 
AD, and 319 in apoE3/3 AD. Only 18 DE genes were shared across these groups. 69 genes were 
uniquely significantly downregulated in apoE4/4 AD, 8 in apoE3/4 AD, and 193 in apoE3/3 AD. 
Only 13 DE genes were shared across all three groups. (e) Venn diagram of shared and unique 
significantly enriched ontological pathways across apoE-genotype-specific groups. Nineteen 
pathways were uniquely significantly enriched in apoE4/4 AD, 10 in apoE3/4 AD, and 28 in 
apoE3/3 AD. Only 3 pathways were shared across all three groups.  
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Figure 2 

 

Figure 2. ApoE-genotype-specific drug repositioning analysis identifes bumetanide as the top 
predicted drug candidate for apoE4/4 AD. (a–c) Graphs of CMap compounds ordered by CMap 
score against (a) apoE4/4-specific, (b) apoE3/4-specific, and (c) apoE3/3-specific transcriptomic 
signatures of AD. While CMap score is negative for all three genotypes, adjusted p-value (Q) for 
the CMap score associated with bumetanide is significant for apoE4/4, as the top predicted drug, 
and apoE3/3 AD, but not for apoE3/4 AD. (d) Heatmap of genes from apoE4/4-specific 
transcriptomic signature of AD, rank ordered and color coded by estimated FC in apoE4/4 AD 
(left) and then re-color-coded by CMap rank (right). Bumetanide flips the expression rank of both 
up- and down-regulated genes in the apoE4/4-specific transcriptomic signature of AD. (e) FC rank 
from CMap data versus estimated FC of DE genes in apoE4/4 AD, as determined by rank-based 
meta-analysis (see Fig. 1 and Online Methods). Horizontal dotted lines indicate estimated FC cut-
off of 1.3 (151 upregulated and 71 downregulated genes in the apoE4/4 signature of AD were 
shared in the CMap data). Mean FC rank of all genes after bumetanide treatment in the CMap data 
is 11,066.54 (vertical gray dotted line). The 151 upregulated genes in apoE4/4 AD had an average 
FC rank of 12,393.62 (vertical red dotted line), indicating lower ranks and lower expression in 
response to bumetanide. The 71 downregulated genes in apoE4/4 AD have an average FC rank of 
8,815.22 (vertical red line), indicating higher ranks and higher expression in response to 
bumetanide. Right y-axis denotes number of genes in histogram of scatterplot values. (f, g) 
Histogram of the FC rank of 1000 permutations of size-matched gene sets taken at random from 
the bumetanide treatment data from CMap for upregulated genes (n = 151) (f) and downregulated 
genes (n = 71) (g) in apoE4/4 AD. The FC rank of human apoE4/4-specific upregulated genes after 
bumetanide treatment (12,393.62, vertical red dotted line) is significantly higher (Monte Carlo 
simulation, P = 0.003), and that of the downregulated genes after bumetanide (8,815.22, vertical 
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red line) is significantly lower (Monte Carlo simulation, P = 0.002), than the mean of 1000 
permutations calculated by Monte Carlo simulation, indicating a shift toward lower expression and 
higher expression, respectively.  
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Figure 3 
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Figure 3. Bumetanide treatment rescues spatial memory deficit specifically in aged apoE4-
KI mice. (a) Schematic of the MWM test. Mice are placed in the maze at the entry point and use 
distal spatial cues to find the hidden platform. (b) Escape latency of bumetanide- (low dose at 0.02 
mg/kg and high dose at 0.2 mg/kg daily intraperitoneal injection for 8 weeks) and vehicle-treated 
apoE3-KI mice (n = 11, 10, and 10, respectively) and apoE4-KI mice (n = 10, 9, and 10 
respectively) over learning days 1–5 did not differ between groups. (c) In the 24-hour probe trial, 
both low and high dose of bumetanide treatment increased percent time apoE4-KI mice spent in 
the target quadrant versus average percent time in the other quadrants to the level of vehicle-treated 
apoE3-KI mice. High dose of bumetanide treatment impaired memory of apoE3-KI mice, as 
compared to vehicle-treated apoE3-KI mice. (d) In the 120-hour probe trial, only high bumetanide-
treated apoE4-KI mice spent more time in the target quadrant than controls. (e, f) In 24-hour (e) 
and 120-hour (f) probe trials, high dose of bumetanide treatment significantly increased platform 
crossings in target quadrant versus the other quadrants in apoE4-KI mice only. Values are mean ± 
SEM. Differences within groups in b–f were determined by paired two-sided t test, p-values are as 
displayed in the figure panels. (g, h) High dose of bumetanide treatment rescued LTP deficit in 
ex-vivo hippocampal slices from apoE4-KI mice. Theta burst-induced LTP was measured on ex-
vivo hippocampal slices from vehicle-treated apoE3-KI mice (n = 14), bumetanide-treated apoE3-
KI mice (n = 11), vehicle-treated apoE4-KI mice (n = 14), and bumetanide-treated apoE4-KI mice 
(n = 12) at ages of 16 months. Average fPSP slope values was binned to one-minute intervals and 
normalized to control (g). LTP gain outcomes across experimental groups were summarized (h). 
ApoE vehicle (i) High dose of bumetanide treatment rescued hippocampal network excitability 
deficit in ex-vivo hippocampal slices from apoE4-KI mice. Input-output relationships in Shaeffer 
collaterals-CA1 network were measured on ex-vivo hippocampal slices from vehicle-treated 
apoE3-KI mice (n = 23), bumetanide-treated apoE3-KI mice (n = 10), vehicle-treated apoE4-KI 
mice (n = 11), and bumetanide-treated apoE4-KI mice (n = 12) at ages of 16 months. The average 
fPSP slope values (normalized to minimum) across increasing stimulus amplitude were shown. ** 
p < 0.01; *** p < 0.001. 
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Figure 4 

 

Figure 4. RNA-seq analysis of the transcriptomic perturbation signature of bumetanide in 
the hippocampus of apoE4-KI mice. (a) Hierarchical clustering analysis of scaled regularized 
log (rld) transformed RNA expression levels of DE genes (P < 0.05) as quantified by RNA-seq of 
hippocampal tissues from apoE4-KI mice after treatment with bumetanide (0.2 mg/kg 
intraperitoneal injection for 8 weeks) or vehicle. Color bar denotes scaled rld expression levels. 
(b) Prinicipal component analysis (PCA) of DE genes in apoE4-KI mouse hippocampal tissues 
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separates bumetanide-treated samples from vehicle-treated samples. Principal component 1 (PC1) 
accounts for 57.4% and PC2 for 11.2% of the variance. (c) The gene set representing the apoE4/4-
specific transcriptomic signature of AD as derived from analysis of human temporal lobe samples 
(see Figure 1) that were also detected by RNA-seq in apoE4-KI mouse hippocampus. The change 
in expression rank of these genes in apoE4-KI mouse hippocampal tissues following bumetanide 
treatment, as compared to vehicle treatment, was plotted against the estimated FC in human 
temporal lobe samples of apoE4/4 AD as compared to healthy controls. Mean change in expression 
rank of all genes after bumetanide treatment is zero as expected (vertical gray dotted line). The 
157 genes that were upregulated in apoE4/4 human AD had an average change in expression rank 
of 49.76 (vertical red dotted line) after bumetanide treatment, indicating a shift toward lower ranks 
and lower expression in response to bumetanide. Right y-axis denotes number of genes in 
histogram of scatterplot values. (d, e) Histograms of the mean change in expression rank after 
bumetanide treatment of 1000 random permutations of size-matched gene sets to sets of 
upregulated genes (n = 157) (d) and downregulated genes (n = 56) (e) in apoE4/4 AD. The mean 
change in expression rank of human apoE4/4-specific upregulated genes after bumetanide 
treatment (49.76, red dotted line) was significantly higher than zero (mean of 1000 permutations) 
as calculated by Monte Carlo simulation, indicating a significant shift toward lower expression; 
the mean change in expression rank of downregulated genes was not signficantly shifted away 
from zero. (f) Venn diagram and table of unique (65) and shared (6) significantly enriched 
ontological pathways by Ingenuity Pathway Analysis (IPA) in DE genes from hippocampus of 
apoE4-KI mice after bumetanide treatment (P < 0.05) as compared to pathways significantly 
enriched in apoE4/4 AD in humans.  
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     Supplementary Table 1 

Supplementary Table 1.  Covariate measures for human transcriptomic datasets. For each 
study separately and combined, the following covariates are reported: apoE status, diagnosis, 
mean age of each group, SD of within-group age, significance of age difference between controls 
and AD samples within each genotype (within genotype significance), group size (n), number of 
males, number of females, number of males or females in down-sampled sex-matched groups, 
within group male to female ratio (Male/Female ratio), and within group male to female ratio 
after down-sampling (Male/Female ratio down-sample). ApoE3/4 AD samples were significantly 
older (by 3.24 years) than apoE3/4 control samples in the MayoEGWAS study. This discrepancy 
was addressed in our computational pipeline as described in Online Methods section.  
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Supplementary Figure 1 

 

 
Supplementary Figure 1. Bumetanide treatment does not affect swim speed or visible trial 
performance. (a) Bumetanide did not significantly affect swim speed during hidden platform 
trials of apoE4-KI and apoE3-KI mice. (b) There was no significant difference between any 
groups in visible trials (measured by 2-way ANOVA), indicating there were no motor or vision 
impairment in any of the groups. 
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     Supplementary Figure 2 

 

Supplementary Figure 2. The effects of bumetanide treatment in wildtype mice.  
(a) Escape latency of vehicle and bumetanide treated WT mice during learning days 1–5 did not 
differ. (b) Bumetanide did not significantly affect swim speed during hidden platform trials in 
WT mice as compared to vehicle treated WT controls. (c) In the 24-hour probe trial, both vehicle 
(P = 0.0002) and bumetanide (P=0.0119) treated WT mice showed increased percent time spent 
in the target quadrant versus average percent time in the other quadrants. (d) In the 24-hour 
probe trials, vehicle treated WT mice showed significantly increased platform crossings 
(P=0.0071) in target quadrant versus the other quadrants, whereas bumetanide treated WT mice 
did not.  (e)  In the 72-hour probe trial, both vehicle (P=0.0045) and bumetanide (P=0.0045) 
treated WT mice spent more time in the target quadrant than the other quadrants. (f) In the 72-
hour probe trial, neither vehicle and bumetanide treated WT animals showed increased target 
crossings in target quadrant versus the other quadrants. Differences within groups in c–f were 
determined by paired two-sided t test, p-values are as displayed in the figure panels. 
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Supplementary Figure 3 

 

Supplementary Figure 3. Variance stabilizing transformation deviates from log2 
transformation only at lower values. Sample data provided by the lumi package 
(example.lumi) were downloaded. These data include 8,000 randomly selected genes from 
Barnes et al., 2005 microarray study118. Vst transformation (lumi package) was plotted against 
log2 transformation (base R package). Vst values are equal to log2 at higher numbers but begin 
to deviate upward around a transformed value of 9. Therefore, any fold change calculation from 
values lower than 9 in a Vst transformation is an underestimation of actual measured fold 
change.  
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Supplementary Figure 4 

 

 

Supplementary Figure 4. Principal component analysis of the GSE15222 dataset reveals no 
clustering trend across apoE4 genotype, diagnosis, age, or sex covariates. (a) GSE15222 was 
downloaded directly from GEO in the available series matrix file format. Data had been rank 
invariant normalized as described96. The pre-normalization procedure created negative values, 
which were eliminated by adding a constant across the expression matrix99. The data was log2 
transformed and the resulting data were subjected to principal component analysis. The first 
principal component (PC1) was correlated with the diagnosis covariate (Pearson’s r = 0.4585, P 
= 1.61x10-12). PC2 was also significantly associated with diagnosis (Pearson’s r = -0.1581, P = 
0.0207). PC1 was also significantly correlated with apoE4 status (Pearson’s r = 0.1827, P = 
0.0074). PC2 did not correlate with diagnosis or apoE4 status. (b) Data displayed according to 
age decade of sample. PC1 did not correlate with the age covariate. PC2 correlated with age 
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(Pearson’s r = -0.1581, P = 0.0206) (c) Data displayed according to sex. PC1 and PC2 did not 
correlate with sex. 

Supplementary Figure 5 
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Supplementary Figure 5. Principal component analysis (PCA) of the Syn3157255-
MayoEGWAS dataset after batch correction reveals no clustering trend across apoE4 
genotype, diagnosis, age, or sex covariates. (a) The Syn3157255-MayoEGWAS dataset was 
downloaded from the AMP-AD portal. The data had been background corrected and subjected to 
variance stabilizing transformation (Vst), quantile normalization, and probe filtering with 
the lumi package of BioConductor, as described100. Vst transformation is identical to log2 
transformation at higher values, but deviates at lower values (see Supplementary Fig. 2)101. The 
dataset was analyzed by PCA to confirm normalization of technical artifact. A clear technical 
artifact, corresponding to the “plate” covariate, was apparent across the first principal component 
(PC1, 29.0% of the explained variance). PC1 correlated with the plate covariate (Pearson r = 
0.7159, P < 2.2x10-16), as did PC2 (Pearson r = 0.2049, P = 3.9x10-5). (b) The dataset was batch 
corrected across the plate covariate by using the ComBat function of the sva package, and PCA 
was done to ensure that the technical artifact had been addressed. PC1 and PC2 did not correlate 
with the plate covariate after batch correction. (c) The PCA of ComBat-corrected data displayed 
according to apoE genotype. PC1 correlated with diagnosis (Pearson r = -0.4126, P < 2.2x10-16), 
as did PC2 (Pearson r = 0.1653, P = 0.0009). PC1 correlated with apoE4 allele dosage (Pearson 
R2 = -0.1727, P = 0.0005), but PC2 did not. (d) ComBat-corrected data displayed according to 
sex. PC1 correlated with sex (Pearson r = -0.2842, P = 8.23x10-9), but PC2 did not. (e) ComBat-
corrected data displayed according to age decade of sample. PC2 correlated with age (Pearson r 
= 0.1224, P = 0.0147), and the correlation of PC1 and age approached significance (Pearson r = -
0.0943, P = 0.0605). 
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     Supplementary Figure 6 

 

Supplementary Figure 6. Data integration by probe selection and batch correction yields a 
normalized dataset for meta-analysis. (a) The Syn3157255-MayoEGWAS dataset was 
downloaded from the AMP-AD portal. The data had been background corrected and subjected to 
variance stabilizing transformation (vst), quantile normalization, and probe filtering with 
the lumi package of BioConductor, as described100, then batch corrected across the “plate” 
covariate (see Supplementary Figure 4). GSE15222 was downloaded and a constant was 
applied to the dataset to eliminate negative values; the data were then log2 transformed. The 
Limma package was applied to the two datasets separately to estimate differential expression 
(DE) between all control and AD samples regardless of genotype; for genes with more than one 
probe, the probe with the most significant P value for the difference between AD and control 
samples was used for subsequent integration103. Data were then combined using genes shared in 
both datasets (n = 16477s). Gene expression values after vst (MayoEGWAS) or log2 
transformation (GSE15222) showed clear differences in expression levels between datasets. (b) 
Expression values of integrated data after ComBat correction by study show consistency across 
integrated datasets, which were used for all further DE analysis. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 
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This study is the first to successfully apply computational drug repositioning to AD in an apoE-

genotype-specific manner of precision medicine.  We leveraged publically available 

transcriptomic data to create a precision medicine drug repositioning pipeline for AD which 

predicted bumetanide as a top candidate against apoE4-mediated AD, with possible efficacy in 

apoE3/4 and apoE3/3 disease as well.  The efficacy of bumetanide for apoE4/4 AD was validated 

in vivo in an apoE4 mouse model of AD via cognitive behavioral testing on the Morris Water 

Maze. Importantly, the beneficial effects of bumetanide on short- and long-term memories are 

specific for apoE4 mice at both low and high doses, in some cases allowing these mice to perform 

at higher levels than both their apoE3 and WT counterparts. Treatment with this drug can actually 

impair short-term and/or long-term memories in apoE3 and wildtype mice. Further testing 

bumetanide in clinical trials for apoE4/4 AD is warranted, and since this compound has already 

received FDA approval, the distance to the clinic is drastically forshortened.  

 

This study validates our strategy to develop new therapies for AD and other neurodegenerative 

disorders with multifactorial etiology, complicated mechanisms, and patient heterogeneity. Our 

method addresses the challenges in finding an effective therapy for AD, and highlights the pitfalls 

of traditional drug discovery pipelines.  We successfully circumvented the canonical and perilous 

one-drug-one-target approach to AD drug development, demonstrating that and unbiased pathway-

blind approach to drug discovery may be paramount to success.  By allowing the brain to ostensibly 

speak for itself in the form of large-scale genomic perturbations, we were able to predict 

efficacious therapies without ascribing to one “causative” pathway or protein.   In effect, we 

hypothesize that drugs capable of perturbing an entire network away from a disease state might be 
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a more effective treatment strategy for these complex conditions than targeting disease-related 

individual pathways.  

We similarly assert that attempting to develop a single drug suitable for all patients with 

complex disease may be a severe over-simplification. Combining precision medicine techniques 

guided by disease-associated gene mutations or polymorphisms with computational drug 

repositioning is a powerful tool to identify drugs effective for subpopulations of patients, as shown 

in this study for potential bumetanide treatment of apoE4/4 AD patients only.   While AD patients 

present with similar symptoms and a group of pathological disease markers, it is evident that 

genetics plays a large role in disease course, and potentially disease causation.  We believe strongly 

that genetic subsets of AD may in fact be separate disorders requiring separate therapeutic 

approaches, and have approached our drug discovery pipeline with this tenant in mind.  We have 

shown that these genetic factors can be leveraged as powerful tools for targeting personalized drug 

discovery, and may in fact be inextricably tied to finding successful therapies for AD. 

Finally, repurposed drugs that are already FDA approved allow for a faster trajectory to the 

clinic, which could dramatically lower the cost and shorten the time of drug development pipelines.   

Mining the repository of >12,000 already FDA-approved compounds is an untapped resource of 

drugs that need only be re-evaluated for efficacy before reaching the clinic.  We believe strongly 

that by taking advantage of this resource we may be able to hasten drug discovery for diseases that 

currently have no therapies available.   
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CHAPTER 6: FUTURE DIRECTIONS 
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While this study lays the groundwork for precision medicine-assisted computational drug 

repositioning for Alzheimer’s Disease, there are several avenues of research that stem from our 

initial studies that we believe to be extremely important in our ongoing quest for effective 

therapies.  We hope to build on this first foray into drug repositioning to both create the pipelines 

and the resources to uncover more and better effective therapies going forward. 

Firstly, this study utilizes a pipeline that identifies Bumetanide from the CMap database 

that was established from tumor cell lines; more precise drug repositioning databases are needed 

from cell types relevant to neurological diseases, such as neurons and glia.  We believe strongly 

that a cell-type specific repository of FDA approved compounds may be paramount to successful 

drug discovery, and in this vein are expanding our studies to create such a resource.   While the 

cancer drug line from the CMap served to produce successful results in this baseline study, we are 

optimistic that more efficacious compounds could be identified with cell-specificity as a factor in 

our computational screening methods.  

Secondly, the human brain studies we relied on for our input to our computational 

screens rely on a small number of apoE4/4 control individuals.  While we were able to produce 

results with this small n, we are in dire need of more data from non-cognitively impaired 

apoE4/4 individuals.  These persons are exceedingly rare given the large penetrance of the apoE4 

allele in homozygotes, however with the advent of personalized genome sequencing 

technologies, these populations are quickly being identified.  Gathering more and better data 

from these rare populations is extremely important going forward in order to create more 

accurate screening pipelines for AD therapies.   

And lastly, new and better sequencing technologies are continually being developed, and 

are greatly needed to achieve better granularity in our understanding of the underlying processes 
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of AD in the human brain.  We believe that the timely creation of datasets utilizing single cell 

sequencing as well as proteomic methods to query the AD brain is of utmost importance to 

identifying effective therapies against AD, and in a world where 1 in 3 seniors die from this 

disease, we cannot develop therapies quickly enough. 
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