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ABSTRACT OF THE THESIS

FPGA-RR: A Novel FPGA Architecture with RRAM-Based
Reconfigurable Interconnects

by

Bingjun Xiao
Master of Science in Electrical Engineering

University of California, Los Angeles, 2012

Professor JINGSHENG JASON CONG, Chair

In this paper we introduce a novel FPGA architecture with RRAM-based reconfiguration (FPGA-

RR). This architecture focuses on the redesign of programmable interconnects, the dominant part

of FPGA. By renovating the routing structure of FPGA using RRAMs, the architecture achieves

significant benefits concerning area, performance and energy consumption. The implementation

of FPGA-RR can be realized by the existing CMOS-compatible RRAM fabrication process. A

customized CAD flow is provided for FPGA-RR, with an advanced P&R tool named VPR-RR

developed for FPGA-RR to deal with its novel routing structure. We use the flow to verify the

benefits of area, performance and power of FPGA-RR over the 20 largest MCNC benchmark cir-

cuits. Results show that FPGA-RR achieves 6.82x area savings, 3.09x speedup and 4.33x energy

savings.
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CHAPTER 1

Introduction

The performance/power efficiency of an application implemented in an application specific inte-

grated circuit (ASIC) can be as much as six orders of magnitude higher than its counterpart coded

in CPU [SV03]. However the rapid increase of non-recurring engineering cost and design cycle of

an ASIC in nanometer technologies makes it impractical to implement most applications in ASIC.

As a result, the field programmable gate arrays (FPGAs) have become increasingly more popular.

An FPGA can be reconfigured to realize a large range of arbitrary functions according to customer

demands. The programmability makes FPGA a quick and reusable hardware implementation plat-

form for specific applications. Compared to ASIC, FPGA has sacrificed its performance to some

extent for programmability [KR07], but FPGA can still have orders of magnitude improvement

in performance/power efficiency compared to CPU [SV03, CSR11]. The flexibility and perfor-

mance of FPGA compared to ASIC and CPU makes FPGA an important component in the realm

of customizable heterogeneous computing platforms [CSR11].

The study in [KR07] measures the gap between FPGA and ASIC. It shows that the area, delay

and power consumption of FPGA are ∼21 times, ∼4 times and ∼12 times as much as those of

ASIC, respectively. The programmable routing structure in FPGA is the principal source of FPGA

performance inferiority when compared to ASIC [Geo00, DeH96, AR04, LLH05, CWM10]. It is

reported that the programmable interconnects in FPGA can account for up to 90% of the total

area [Geo00, CWM10], up to 80% of the total delay [DeH96, AR04, CWM10] and up to 85%

of the total power consumption [LLH05, CWM10]. If the FPGA routing structure gains some

improvement, the gap between FPGAs and ASICs will be significantly reduced.
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Emerging technologies, especially emerging non-volatile memory (NVM) technologies, lead

to opportunities for circuit improvement. Popular emerging NVMs include spin-transfer torque

RAM (STTRAM), phase-change RAM (PRAM), nanoelectromechanical (NEM) relay, and resis-

tive RAM (RRAM). All of these have demonstrated CMOS compatible fabrication and can be

integrated in metal layers over CMOS via a back-end-of-line (BEOL) process [KZU11, LW08,

JLY08, HZG11], leading to opportunities for high-density circuit design. They also have the de-

sirable property of non-volatility, which means that they can be turned off during stand-by to save

power. In light of these new properties of NVMs, a number of novel FPGA architectures based

on NVMs have been explored in the past few years [PMB08, BTS06, CZX10, GHB10, CPZ09,

CWM10, TLW11].

This thesis presents a novel FPGA architecture with RRAM-based reconfiguration (FPGA-

RR). We renovate FPGA programmable interconnects with the integration of RRAMs in order

to conquer the limitations of conventional FPGA mentioned above. Our proposed architecture

substantially reduces the gap between FPGAs and ASICs in area, delay and power.

This thesis is organized as follows. Chapter 2 reviews the conventional FPGA architecture

and recent research work on FPGAs with emerging NVMs. Chapter 3 describes the architecture

of FPGA-RR from high-level overview to detailed design. Chapter 4 provides a complete CAD

flow and evaluation method for FPGA-RR. Chapter 5 presents detailed optimization and evaluation

results of FPGA-RR using the largest 20 MCNC benchmarks. Finally we draw some conclusions

in Section 6. A preliminary study of this work was presented at 2011 IEEE/ACM International

Symposium on Nanoscale Architectures [CX11].
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CHAPTER 2

Background

2.1 Conventional FPGA

Fig. 2.1 shows a conventional FPGA architecture. It is a typical island-based type, which is made
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Figure 2.1: Conventional FPGA architecture.

up of an array of tiles. Each tile consists of one logic block (LB), two connection blocks (CB)

and one switch block (SB). Each logic block contains a cluster of basic logic elements (BLEs),

typically look-up tables (LUTs), to provide customizable logic functions. Each LB also contains

local routing multiplexers (MUXs) to provide connection among BLEs. LBs are connected to the

routing channels through CBs, and the segmented routing channels are connected with each other

through SBs. Fig. 2.1 also depicts two typical circuit designs of CBs and SBs based on MUXs

and buffers described in [LL02]. The selector pins of each MUX are connected to a group of 6-
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transistor SRAM cells to have their connectivity determined. Note that the circuits presented in

Fig. 2.1 have copies of up to the number of pins per side of LBs in a single CB, and up to the

number of tracks per channel in a single SB. We see that CBs and SBs make up the interconnects

of FPGAs with much larger area and higher complexity compared to the direct interconnects of

ASIC.

The FPGA routing structure is usually divided into three components: SRAM-based program-

ming bits, MUX-based routing switches, and buffers. All of these three components are non-trivial

parts in FPGA, as shown in Fig. 2.2. Though programmable interconnects in FPGA have been

 

4.5 Power reduction 
      To estimate FPGA leakage power, we use the method 
described in [Tuan 03]. We divide the FPGA into several basic 
components, such as LUTs, MUXs, and wires. We use HSPICE to 
simulate the leakage power for each component. The total FPGA 
leakage power is obtained by adding up the leakage power of all 
the basic components in the FPGA. 
      Figure 4.8a shows the average (over all the benchmark 
circuits in Fig. 4.7) leakage power reduction of CMOS-NEM 
FPGAs compared to the baseline CMOS-only FPGA.  
     Since the optimized (i.e., minimum area-delay product) 
CMOS-NEM FPGAs can provide up to 40% critical path delay 
reduction compared to the baseline CMOS-only FPGA, it is 
possible to trade-off speed for further leakage power reduction. 
For example, we can resize the routing buffers (i.e., reduce the 
size of the routing buffers) in Option 2 to further reduce power 
(referred to as low power entry in Fig. 4.8b). As shown in Fig. 
4.8b, resizing the buffers improves the leakage power reduction of 
Option 2 to 37% while the average critical path delay reduction 
drops to ~28% (instead of ~40% in Fig. 4.7b). 
      For dynamic power estimation, we focus on the dynamic 
power associated with the programmable interconnects because of 
two reasons: 1) the programmable interconnects can contribute up 
to 70% of the total FPGA power [Li 05]; 2) for both of our 
CMOS-NEM FPGA options, we only use NEM relays as 
programmable routing switches without any changes in CMOS 
LUTs. Therefore, the dynamic power associated with the CMOS 
LUTs does not change. As shown in Fig. 4.9, the dynamic power 
reduction is 4% for Option 1 and 22% for Option 2 (when 
optimized for minimum area-delay product). The dynamic power 
reduction mainly comes from the layout area reduction, as shown 
in Sec. 4.6. 
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Figure 4.8: Leakage power reduction compared to the 
baseline CMOS-only FPGA: (a) Average leakage power 
reduction; (b) Delay-Leakage trade-off for Option 2. 
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Figure 4.9: Dynamic power reduction for CMOS-NEM 
FPGAs. 

4.6 Area benefits 
      Table 1 summarizes the areas of the FPGA tile layouts we 
have created (Sec. 4.3), including the baseline CMOS-only FPGA 
and the two CMOS-NEM FPGA options (optimized for minimum 
area-delay product). The layouts are created using a 90nm 
technology library, and the results are shown in terms of λ 

(=45nm). By stacking NEM relays on top of CMOS, the area 
benefit of CMOS-NEM FPGA is 12.8% for Option 1, and 43.6% 
for Option 2.  
 

Table 1: FPGA tile layout area report along with 
corresponding delay and power reduction 

 CMOS-only 
CMOS-

NEM-FPGA 
Option1 

CMOS- 
NEM-FPGA 

Option2 
Area (λ2) 3300 � 2600 3400 � 2200 2200 � 2200 

Normalized to 
CMOS 1 0.872 0.564 

Delay reduction - ~30% ~40% 
Leakage power 

reduction - 5% 10% 

Dynamic power 
reduction - 4% 22% 

 

4.7 Further FPGA architecture optimization 
      In this paper, we replaced FPGA routing switches and routing 
SRAMs using NEM relays without any additional changes in the 
FPGA architecture. The breakdown of the contributions of the 
various components of the baseline CMOS-only FPGA to tile area, 
path delay and leakage power are shown in Fig. 4.10. Due to the 
directional single driver FPGA architecture [Lewis 03, Lemieux 
04], routing buffers contribute to a large portion of leakage power 
and path delay (dynamic power is still dominated by interconnect 
(Sec. 4.5)). Since we are only replacing routing switches and 
routing SRAMs with NEM relays, routing buffers limit the 
maximum benefits that may be achieved using NEM relays. 
Future research is necessary to explore FPGA architectural 
modifications that may result in further benefits from using NEM 
relays. 
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Figure 4.10: Breakdown of the contributions of different 
components to tile area, path delay and leakage power of 
the baseline CMOS-only FPGA: (a) Tile area; (b) Path 
delay; (c) Leakage power. 

5. Related work 
        Design of FPGAs using emerging nanotechnologies is an 
important research field. Many researchers have explored the use 
of novel devices in FPGAs, such as carbon nanotubes (CNTs), 
nanowires, etc. [Chilstedt 09, Gojman 06, Tahoori 09]. Our focus 
in this paper is on NEM relay-based switches. 
      Several publications have reported possible benefits of NEM 
switches. Most of these publications discuss non-FPGA 
applications. For example, [Akarvardar 07] provides insights of 
using NEM relays as complementary logic gates. [Choi 07] 
discusses the use of NEM relays as non-volatile memory. 
[Dadgour 07] discusses the feasibility of using NEM switches in 
dynamic gates, SRAM cells and sleep transistors for ultra-low 
power applications. [Chong 09] presents a detailed discussion of 

280

Figure 2.2: Breakdown of different components in FPGA [CWM10]. Area is dominated by pro-

grammable interconnects. All three components (SRAM bits, routing switches and routing buffers)

take up significant area.

optimized within the design space of CMOS technology for years, there are fundamental weak

points in all three components:

1. One SRAM cell contains as many as six transistors, but can store only one-bit data. The

low density of SRAM-based storage increases the area overhead of FPGA programmabil-

ity. SRAM is also a volatile memory — this means that it contributes to excessive power

consumption during standby.

2. The MUX-based routing switches also have large area overhead. Fig. 2.3 shows three typical

designs of a MUX. For a 16-to-1 MUX, a one-stage MUX needs 16 SRAM cells, but a

4
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Figure 2.3: Different implementations of a MUX-based routing switch in FPGA, with trade-

off between MUX area and number of SRAM bits.

MUX tree needs only four. Though a MUX tree avoids the large overhead of SRAM cells, it

contains four serial pass transistors in its path from input to output. Each pass transistor has

to be even larger so as to provide sufficient drive. The total number of pass transistors used

by a MUX tree is also two times of the one-stage MUX. As a trade-off between SRAM cells

and pass transistors, the two-stage MUX shows the minimum area-delay product [CWM10].

3. Routing buffers are extensively fabricated and used in the programmable interconnects of

conventional FPGA. Only a small part of them are truly necessary to achieve the optimal

timing result. The excessive buffers originate from their fixed locations in the routing net-

work, as shown in Fig. 2.1. The buffer placement cannot be optimized according to a given

design implemention on FPGA; it can only be optimized for a general situation. Since we

are not sure whether a routing track needs a buffer due to its being in a critical path or a long

unbuffered segment, buffers are placed at every terminal of routing track segments for the

sake of safety. The overuse of buffers not only increases area costs, but also leads to worse

timing results since the intrinsic delay of overused buffers may cancel the benefit brought by

their buffering effect.

In summary, these problems contribute to the significant gap between FPGA and ASIC.
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2.2 FPGAs with Emerging NVMs

With the recent development of emerging non-volatile memory (NVM) technologies, a number of

novel FPGA architectures based on those technologies have been proposed in the past few years.

NVMs are used to replace some FPGA components to obtain the property of non-volatility and to

save area by placing them over CMOS transistors.

2.2.1 Replace SRAMs with NVMs

In [PMB08, BTS06, CZX10, CPZ09, TLW11], the SRAM-based programmable bits are moved to

STTRAMs, PRAMs, NEM relays and RRAMs respectively, as shown in Fig. 2.4a. Note that in

their works, emerging NVMs are used to store ‘0’ or ‘1’ in forms other than voltage levels. So they

still need CMOS transistors as sensing circuits to recover voltage signals. In [PMB08,BTS06], the

authors give an estimation of the number of transistors, which is two transistors for one bit in a

LUT and five transistors for one bit in the routing structure. This cost is still large, especially for

the routing structure. That’s because each routing switch is connected to the output of the memory

cell to store its programming bit, and thus a 4-transistor sense amplifier is needed at every output

and cannot be shared among memory cells.

2.2.2 Use NVMs as Programmable Switches

In [GHB10, CWM10, TLW11], emerging NVMs, including PRAMs, NEM relays and RRAMs,

are used more aggressively as programmable switches in place of SRAM-based pass transistors

in conventional FPGA, as shown in Fig. 2.4b. This kind of use is enabled by a common property

of these emerging NVMs. That is, the connection between two terminals of these devices can be

programmed to turn on or turn off. By applying specific programming voltages, the resistance

between the two terminals can be switched between high resistance state (HRS) and low resis-

tance state (LRS). The programmed resistance value can be kept either under operating voltages

or without supply voltage due to non-volatility. This kind of NVM use saves the area of not only

6



the sensing circuits but also the pass transistors which build routing switches. Since there are no

SRAMs needed by NVM-based routing switches, the one-stage MUX becomes the optimal one

among the implementations in Fig. 2.3. The use of RRAM in our work belongs to this category.

There are still problems to solve for FPGAs with NVMs as routing switches. One of the key

problems is the programmability of NVMs integrated in interconnects. Since the programming of

some of these NVMs, such as PRAMs, 3T NEM relays and RRAMs, share the same terminals

with the signal path when they are used as routing switches, the programming circuits need careful

design. Otherwise there will be interference between the two operation modes. A naive program-

ming schematic was proposed in [TLW11]. It needs two programming transistors for each RRAM,

one for each terminal. This kind of design undermines the great area benefit brought by RRAMs,

which do not occupy CMOS area itself. Besides the programming transistors, there are other pro-

gramming issues yet to be investigated, such as how to improve the buffering solution of FPGA

in light of NVMs. The works referenced above all focus on replacement of routing switches with

NVMs and show some benefits. However, as the author of [CWM10] concludes, routing buffers

become a bottleneck after this replacement, and further exploration of FPGA architecture is needed

on buffers.

2.2.3 Integrate NVMs with Nanowire Crossbars

FPNI [SW07,XRC09] is an attempt to further introduce nanowire crossbars to FPGA. As shown in

Fig. 2.4c, the routing structure is implemented by nanowire crossbars and RRAM cross-points over

CMOS logics. The structure is quite different from the typical island-based FPGA architecture. It

shows significant area reduction but requires the feature size of nanowire crossbars to be much

smaller than that of CMOS logics to achieve higher RRAM density. In addition, the connection

between two cells always has to drive at least two long nanowires in its path, even if the two cells

are adjacent. Due to the large capacitance of these long nanowires and fine granularity of logic

cells, the FPGA performance decreases by 30% as reported in [SW07], and the dynamic power

increases by 17.5% as reported in [DCH07]. The high density of programmable devices in these

7



works may also lead to high leakage power. Furthermore, FPNI fabrication is more complex since

it needs integration of three technologies: CMOS, RRAM and nanowire. There are extra technical

problems, such as broken nanowires, alignment of nanowire crossbars with CMOS pins, etc., yet

to be solved to realize FPNI for practical use. Our work will show that actually we can achieve

similar area reduction without high density of programmable devices.
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(a) Replace SRAMs with emerging NVMs [TLW11].

(b) Use NVMs as programmable switches [CWM10].

(c) Integration of CMOS, NVMs and nanowire in FPNI [XRC09].

Figure 2.4: FPGA with emerging non-volatile memories.

9



CHAPTER 3

The FPGA-RR Architecture

In this paper, we focus on only the renovation of an FPGA routing structure, which is the dominant

component in FPGA. There are already many works that propose logic blocks with emerging

technologies [PMB08, BTS06, CZX10, CPZ09, TLW11]. Our work can build on these studies and

also provide further improvement. As analyzed in Section 2, using NVMs as routing switches is

clearly a good idea. Although there are still problems with this method, we will show that they can

be solved by renovating FPGA architecture to cater to NVM properties.

3.1 Choice of NVMs

First, we need to decide which type of NVM to use in our work. Different NVMs have their own

merits/shortcomings as programmable switches. For example, STTRAM usually has an on/off

ratio below 10. This ratio is sufficient for memory application but far from enough for a routing

switch. RRAM can have an on/off ratio as high as 106 which is comparable to that of MOSFET

[GLL08]. NEM relay has the highest on/off ratio since it shows almost zero off current [LW08].

However, this device has a complex structure, as shown in Fig. 3.1a and Fig. 3.1b. It has a large

fabrication size of 92.5F 2 (F is the feature size) and occupies three metal layers [CWM10]. The

area of NEM relays can easily exceed that of CMOS transistors below them, especially in cases

where the area of an FPGA tile is much reduced by emerging technologies. In contrast, other

NVMs, like STTRAMs, PRAMs and NVMs, have simple junction-like structures and thus have a

much smaller size. For example, one RRAM device can be limited within F 2 area and one metal

layer as shown in Fig. 3.1c and Fig. 3.1d [WTL10]. PRAM also has properties as good as RRAM.
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and titanium-nitride [Jang 08]. The low processing temperatures 
of these materials make NEM relays BEOL-compatible and 
provide the capability of stacking them between interconnect 
layers. After fabricating NEM relays between metal layers, they 
can be encapsulated (experimentally demonstrated by [Cavendish 
Kinetics, Jahnes 04]) so that further processing for the remaining 
metal interconnects can continue (Fig. 2.5). 
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Figure 2.4: Layouts of 3T and 4T NEM relays used in this 
paper at the 22nm technology node. 
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Figure 2.5: Encapsulated NEM relays between metal layers 
to enable monolithic 3D integration with silicon CMOS. 
 

      The operation of NEM relays introduces reliability issues that 
are distinct from those of CMOS transistors [Akarvardar 09a]. In 
addition to the presence of surface forces and the related stiction 
issue (i.e., the beam may not be pulled out after pull-in), the 
biggest concern is the mechanical contact reliability. Hot 
switching, high impact velocity of the beam tip during contact, 
and tip bouncing aggravate such reliability issues. The bump 
added at the beam tip in Fig. 2.1 is intended to alleviate some of 
these issues. For ultimately scaled NEM relays, the current 
density across the nanometer-sized contact spots could be a 
limiting factor [Akarvardar 09a]. The contact reliability, as well 
as the reproducibility and consistency of mechanical properties 
and adhesion forces, require hermetic sealing using either a 
wafer-bonding process or micro-shell encapsulation [Cavendish 
Kinetics, Jahnes 04] to provide a controlled environment for the 
NEM relays by isolating them from humidity and contaminants 
such as gases and organic compounds [Akarvardar 09a].  
      Despite these reliability issues, promising experimental data 
has been demonstrated for NEM relays which can switch reliably 
up to 1011 cycles [Cavendish Kinetics, Nathanael 09]. Since NEM 
relays will be used for programmable routing resources in CMOS-
NEM FPGAs (as detailed later), the number of programming 
cycles is expected to be much smaller (e.g., < 500 according to 
[Kuon 07]) for typical FPGA users. 
      Though promising, lots of challenges remain to be solved 
before NEM relays can be incorporated into existing state-of-the-
art CMOS-FPGAs. More research and experiments are needed to 
understand the manufacturability of NEM relays on top of 
CMOS, as well as the associated process costs, yield, and testing 
costs. 

3. NEM relays for SRAM-based FPGAs 
      In this section, we discuss the use of NEM relays for replacing 
routing switches and routing SRAMs in SRAM-based FPGAs. 
We focus on the island-style FPGA architecture, which consists of 

Logic Blocks (LBs) and programmable routing wires in routing 
channels connecting LBs (Fig. 3.1a). We choose the following 
architectural parameters according to [Kuon 08]. Each LB 
contains 10 four-input look-up tables (4-LUTs) and 10 flip-flops 
(FFs), along with 22 input pins and 10 output pins (Fig. 3.1b). To 
provide interconnections between different LBs, routing wires are 
distributed along the horizontal and vertical routing channels (Fig. 
3.1a). The wires in the channel are directional single-driver wires, 
i.e., the wires can only be driven from one end [Lewis 03, 
Lemieux 04]. Channel width (W = 104) is defined as the number 
of wires in each routing channel [Kuon 08]. LB input pin 
flexibility (Fcin = 0.2) is the fraction of wires in the channel that 
can connect to each LB input pin. Similarly, LB output pin 
flexibility (Fcout = 0.1) is the fraction of wires in the channel that 
can connect to each logic block output pin [Kuon 08]. The 
connection block (CB) (Fig. 3.1c) is defined as the group of 
multiplexers that are used to connect the wires in the channel to 
LB input pins. The switch box (SB) is defined as the group of 
multiplexers used to connect starting points of wires to LB output 
pins and endpoints of other wires (Fig. 3.1d). Switch box 
flexibility (Fs = 3) is defined as the number of wire endpoints (in 
addition to LB output pins) that can be connected to the starting 
point of each wire (Fig. 3.1d). The entire SRAM-based FPGA can 
be considered as an array of tiles (Fig. 3.1a). Each tile contains 
one LB, two CBs and one SB. The routing wires in the channel 
are of length 4 (length-4 wire), i.e., they span four tiles in length 
[Kuon 08]. 
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3. Characterization Results  

The DC characterization of 3D RRAM shows the two 
memory states can be switched by BL = 1.5V or SL=1.5V 
with WL = 0.7 or 2V for set and reset operations, as shown 
in Fig. 4. The distribution of the BL or SL voltages during set 
and reset in DC sweep is summarized in Fig. 5. For same 
ReRAM film area, Fig.6 shows that the set voltage is 
increased to get higher current drivability in smaller BJT, 
that is, the vertical BJT current drivability can be adjusted 
accordingly to fit the current demands of set/reset operations 
by an appropriate and optimized size ratio of BJT and 
ReRAM film. The resistive switching characteristic is further 
investigated by monitoring the resistance levels of the 3D 
ReRAM cell for few cycles in Fig.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The read stability of High Resistance State (HRS) and 
Low Resistance State (LRS) at forward and reverse read 
directions is characterized and shown in Fig. 8 and Fig. 9. 
Forward read is chosen to avoid the possible state change of 
reverse read at HRS. The On/Off current and read disturb 
window are optimized by a range of WL voltages as 
exhibited in Fig.10 and 11, higher WL voltage can result a 
larger read window but more read disturb will be introduced. 
The optimization of source line voltages to balance the read 
current and WL current is characterized and shown in Fig.12.  
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Figure 3 the new vertical BJT outputs higher current 
drivability in different CMOS logic technologies. 
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ABSTRACT 

A new three dimensional vertical bipolar junction 
transistor (BJT) ReRAM cell with CMOS compatible 
process is reported. A new logic compatible BJT is vertically 
formed underneath the resistive stacked film of 
TiN/Ti/HfO2/TiN as a high performance current driver and 
bit-cell selector. Using a shallow and tiny NLDD to be an 
emitter connects with ReRAM film as the bitline, a very thin 
and self-aligned P-pocket implant to be the wordline, and the 
N-well is the collector of cells. As a result, the new 3D 
vertical ReRAM cell is very area-saving and efficiently 
operated by the high gain (β>50) BJT with a low voltage of 
2V for reset and 1.5V for set. By adapting the highly 
shrinkable 3D BJT current driver in ReRAM, the cell is 
decoupled with gate length and oxide thickness of logic 
MOSFETs so that it can be easily scaled down to 4F2 by the 
lithographic limitation of defining ReRAM film with F2 area. 

 
1. Introduction  

Currently, resistive RAM (ReRAM) have become a public 
research area by its superior characteristics of high set/reset 
speed, low voltage operations, and remarkable 
reliability[1-5]. As the demand for mass storage and low 
power demands in many portable consumer products, the 
ReRAM becomes more promising to be a candidate of the 
best solution for those issues. Due to the limitations of 
CMOS processes and planer structure of transistors, it is 
difficult to utilize the conventional transistors to satisfy the 
all requirements of low voltage operations, high scalability, 
and large current drivability with one single cell. In this 
paper, a new 3D vertical bipolar junction transistor (BJT) 
ReRAM cell with CMOS compatible process is presented 
and demonstrated. A very small 3D npn BJT is vertically 
formed just underneath the resistive stacked films of ReRAM 
cell for minimizing the Si-surface area as shown in Fig.1. By 
using a shallow and small area NLDD as an emitter to 
connect with resistive stacked film of TiN/Ti/HfO2/TiN for 
the bitline (BL), a very thin and self-aligned P-pocket 
implant to be the wordline (WL), and the collector is formed 
by the N-well in CMOS logic process. By adapting the 
ultra-small and high performance (β>50) vertical BJT to be 
a current driver, the cell can be very efficiently working at 
low voltages of 2V and 1.5V for reset and set operations as 
summarized in Table.1[6,7]. Since the resistive film is placed 
on top of vertical BJT in the 3D structure, which made the 
new cell scalability and performance independent to the 
constraints of logic gate length and oxide thickness. Because 
of the features, the new 3D ReRAM cell can be easily 

implemented in advanced CMOS logic platforms for the 
ultra high density and very low voltage NVM applications. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. 3D ReRAM Cell Structure and Operation Principle 

The novel 3D ReRAM cell was fabricated by TSMC 
0.18um CMOS logic processes for demonstration. A 
resistive stacked film of TiN/Ti/HfO2/TiN is straightly 
deposited, defined, and aligned with the logic process 
compatible vertical BJT to form a 3D structure for 
minimizing the cell size, the emitter of the vertical BJT is 
formed by the logic process layer of NLDD implant as 
depicted in Fig.1, and the base is figured by P-pocket implant 
by the same masking step of NLDD for wordline (WL) 
definition. The collector is established by the N-well of logic 
process. By using the vertical BJT in the 3D cell structure, 
the new ReRAM cell is entirely decoupled with logic 
transistor gate length and oxide thickness, as a result, the cell 
layout can be easily arranged and scaled down to 4F2 based 
on the lithographic limitation of ReRAM film with F2 area as 
depicted in Fig.2(a) and (b). Besides, in comparison with the 
conventional MOSFET, as shown in Fig.3, the new vertical 
BJT performs much higher current drivability in different 
CMOS technologies, especially for 90nm and beyond. 
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Figure 1 A new vertical npn BJT is vertically formed under ReRAM film for 
minimizing the Si-surface area. 

Forming Set Reset Read

Sel. Unsel. Sel. Unsel. Sel. Unsel. Sel. Unsel.

WL 0.7 V Float 0.7 V Float 2 V Float 0.8 V Float

BL 2 V Float 1.5 V Float 0 V Float 0 V Float

SL 0 V 0 V 0 V 0 V 1.5 V 1.5 V 0.5 V 0.5 V

Table 1 Operation conditions of 3D ReRAM with a vertical BJT driver. 
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(d) RRAM with CMOS.

Figure 3.1: Different cell sizes of two emerging non-volatile memories — NVM relay [CWM10]

and RRAM [WTL10].

However, the programming of PRAM is harder to control than RRAM. PRAM needs to be kept at

a very high temperature for a very short time to have a reset operation, and needs to be kept at a

moderately high temperature for a long time to have a set operation [LW08]. In contrast, RRAM

has a bipolar programming mechanism, i.e., it can be set/reset by applying high positive/negative

voltages [GLL08,WTL10]. Therefore we choose RRAM to act as the routing switches in our work.

3.2 Overall Architecture

In our FPGA-RR, routing buffers are first separated from the FPGA routing structure. By doing

so, only SRAM-based programming bits and MUX-based routing switches are left in the routing

structure. They can be built by RRAMs and metal wires alone. Then both connection blocks and

switch blocks are free of transistors and can be placed over logic blocks, as shown in Fig. 3.2.
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FPGA-RR will become a highly compact array, as shown in Fig. 3.3a. The area of FPGA-RR is
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Figure 3.2: In FPGA-RR, switch blocks and connection blocks are placed over logic blocks in the

same die according to existing RRAM fabrication structures [TKN07].

almost solely determined by logic blocks, which take only 10% to 20% of the conventional FPGA

area [Geo00,CWM10]. There are also programming transistors for RRAMs and routing buffers to

be attached to the FPGA-RR routing structure. We will show that, for this additional structure, the

area of both programming transistors and routing buffers is much smaller than that of logic blocks.

3.3 Layout Design

Since SBs and CBs are now placed over CMOS transistors using RRAMs and metal wires, their

layout cannot be borrowed from conventional FPGA experience; it needs to be redesigned. Most

of the designers’ attention should be put on the consistency of the relative positions of RRAM

and metal layers with existing RRAM fabrication technologies. Fig. 3.3b is a detailed design of

the connection blocks and switch blocks in FPGA-RR using RRAMs and metal wires only. It

addresses some design issues as follows:

1. In this design we use five metal, layers M5 to M9, solely for interconnects. The circuits of

logic blocks in FPGA-RR will use the metal layers, i.e., M1 to M4, which are sufficient for

practical FPGAs, e.g. Virtex-6 [Xil].

2. To ease FPGA-RR fabrication, the RRAM layer is designed to be located between the M9

and M8 layers. It is close to the top, which is the same as the RRAM fabrication structure
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Figure 3.3: The proposed FPGA-RR architecture. (a) Overview of FPGA-RR where the FPGA

area is mainly contributed by logic blocks instead of programmable interconnects, and (b) A de-

tailed layout design of the connection blocks and switch blocks in FPGA-RR using the RRAM

fabrication structure shown in Fig. 3.2. Here each ’metal via’ (marked as a red point) at the in-

tersection between wires of M9 and M5–M8 refers to a vertical connection between them through

metal via(s). Each ’RRAM’ (marked as a black box) refers to the same vertical connection but also

integrated with an RRAM device.

shown in the far right of Fig. 3.2.

3. The placement of all metal wires is designed to avoid any blockage caused by a metal via.

This blockage issue occurs where more than two metal layers are used, e.g. in switch blocks.

Fig. 3.4 shows how we address this issue. In the abstract structure of FPGA-RR switch

blocks, as shown in Fig. 3.4a, the location of any via that connects a metal layer is limited to

the perimeter of the rectangular box assigned to that layer. Then, in the 3D view in Fig. 3.4b,

the via blockages caused by vertical connections to the most bottom metal layer are located

at the most outside box and vice versa. With the application of this principle, metal wires

will naturally avoid all via blockages.

4. Though our design uses multiple metal layers, a signal rarely goes through many metal

layers. While a signal is transmitted from one logic block to another, the straight paths in
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Figure 3.4: An illustration of how via blockages are avoided by metal wires in our layout

design of switch blocks. (a) An abstract structure of FPGA-RR switch blocks. M9 and

M8 are omitted here for clarity. (b) 3D view to show how via blockages are avoided by

metal wires. RRAM layer is omitted here for clarity. For demonstration purposes, Vertical

connections are bounded in a plane to construct the case most demanding for via blockage

avoidance.
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switch blocks are used most frequently. These paths go through M8 and M7, which are close

to the RRAM layer to save extra latency on metal via. When a signal reaches a logic block,

it then needs to access metal layers at very low levels, i.e. M1–M4, from the RRAM layer.

5. RRAMs can easily fit into the layout design in Fig. 3.3b without extra area overhead. As

stated in Section 3.1, the size of an RRAM cell can be close to or even smaller than the

width of a metal wire [WTL10].

6. Each metal layer in M5 to M9 consists of a set of parallel metal wires without any turns.

This reduces fabrication complexity and avoids high resistance of turning points.

3.4 Programming Schematic

3.4.1 Programming Transistor Sharing

To program the RRAMs integrated in programmable interconnects, there needs to be two program-

ming transistors at both of the two terminals of an RRAM respectively. Then an RRAM can be

correctly selected to program under control of the two programming transistors. To achieve this,

the author of [TLW11] proposes to allocate two programming transistors for each RRAM, i.e., a

2T1R structure. Programming transistors are usually larger than RRAMs and lead to extra CMOS

area. In our FPGA-RR, we find out that we do not need so many programming transistors. If we

denote each track in a routing channel or each pin of a logic block as one programming point, then

any arbitrary RRAM is between two adjacent programming points. So, we only need to allocate

one programming transistor for each programming point. For example, when we want to program

the RRAM between two tracks to connect/disconnect the two tracks, we just turn on the program-

ming transistors on the two tracks and apply the programming voltages to them to program the

RRAM, as shown in Fig. 3.5. In the figure, Vp refers to the threshold voltage that switches the

RRAM state. The programming voltages may be the same as those in [TLW11]. The programming

for the RRAMs between the tracks and the pins of logic blocks follows a similar pattern. The total
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Figure 3.5: Programming circuits for RRAMs in interconnects. The two programming transistors

on the two tracks will apply programming voltages to program the RRAM between them.

number of programming transistors per tile is calculated as two times the channel width plus the

number of pins of a logic block per channel. It is about 1/6 of 2T1R consumption and also much

smaller than the transistor count of a logic block. This area savings comes from the programming

transistor sharing (PTS) among RRAMs, as shown in Fig. 3.6. This figure shows the situation in

SBs, which contain more RRAMs than CBs. We see that one programming transistor is shared by

SB SB 

RRAM sharing path 

programming transistor 

Figure 3.6: One programming transistor can be shared by six RRAMs (marked as black boxes)

through sharing paths (marked as red lines) in switch blocks (SBs) of our work.

as many as six RRAMs, which are located not only within one single SB, but can also be across

two adjacent SBs in two tiles. The situation in CBs is even better where more RRAMs share one

programming point. Table 3.1 shows a comparison of transistor counts among routing switches

based on CMOS, RRAM with 2T1R structure, and PTS.
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Table 3.1: Comparison of transistor counts among routing switches based on CMOS, RRAM with

2T1R structure, and programming transistor sharing (PTS).

CMOS 2T1R [TLW11] PTS (this work)

N -to-M MUX M
“
N + 7

√
N

”
N + M N + M

N ×N SB w/o buf 64N 24N 2N

The high sharing rate comes from our transistor-free RRAM-based programmable interconnect

design. In the related work proposing 2T1R design [TLW11], the possibility of programming

transistor sharing is, as shown in Fig. 3.7, blocked by the transistors existing in programmable

interconnects. This limits sharing opportunities.

!"#$%&'()*%+',-.#/0'#0'1234'

5)*%+-,'67$&.'89*/97::#0/'
$970.#.$*9.'

5;<-9'#0'
#0$-9%*00-%$.'

==>?'

Figure 3.7: Sharing paths are blocked by transistors (marked as dotted lines) in existing work

[TLW11].

3.4.2 Programming Transistor Selecting

Another important problem that has been ignored in previous work is the selecting circuit of pro-

gramming transistors. In a memory system made up of 1T1C DRAM cells or 1T1R PCRAM

(or RRAM cells), a common way to select a programming transistor is row/column addressing.

The motivation is to build the selecting circuit at a complexity of O (
√

n) with a lower order than

n, where n is the number of programming transistors. For large n, compared to programming

transistors, the cost of the selecting circuit becomes trivial and can be ignored. The structure of

row/column addressing is shown in Fig. 3.8. The gate terminal of each programming transistor is
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Figure 3.8: Row/column addressing for the programming transistor array of RRAMs in intercon-

nects. If two programming transistors in one array are selected simultaneously, there will be two

other transistors selected parasitically.

connected to a word line, and the drain terminal is connected to a bit line. Note that in a memory

application of RRAMs, an RRAM is dedicated to only one cell instead of being shared between

cells in FPGA-RR, as shown in Fig. 3.8. One problem to programming an RRAM in programmable

interconnects is that each time there are two programming transistors being selected. This is equiv-

alent to a dual-port random access. This kind of access may cause troubles in a structure designed

for single-port access, as shown in Fig. 3.8. For example, to program the RRAM in Fig. 3.8, the

two cells marked as ‘S’ are selected. Then both the two word lines ‘2’ and ‘4’ and the two bit lines

‘0’ and ‘3’ are enabled simultaneously. It will cause two other programming transistors (marked as

‘P’) to be parasitically selected as well. To realize dual-port random access without malfunction,

one naive solution is to double the programming transistors at each programming point, as shown

in Fig. 3.9a. A better solution, without an extra increase in programming cost, is to partition the

programming transistors into different blocks. It must guarantee that the two programming transis-

tors of any arbitrary RRAM belong to different blocks. Fig. 3.9b shows a feasible partition which

leads to five blocks. The programming transistors at programming points in y-directional channels

are assigned into two blocks named ‘channel 0’ and ‘channel 1’ by a parity of channel indices. So

are the programming points in x-directional channels. The programming points at the pins of logic

18



!""#$%&'%()**%)(% !""#$%&&'%()**%+,-.%

VpA2=0

VpB2=0

A

B

VpB1=Vp

VpA1=Vp

/,)0*1%2"#.3432,"3%5%1#67%(,4.2%

(a)

!"#$$%&'('

!"#$$%&')'

!"#$$%&'*'

!"#$$%&'+'

!"#$$%&'('

,-$'

!"#$$%&'('

!"#$$%&')' !"#$$%&')'

!"#$$%&'('!"#$$%&'('

!"
#$

$%
&'*
'

!"
#$

$%
&'+
'

!"
#$

$%
&'*
'

!"
#$

$%
&'*
'

!"
#$

$%
&'+
'

!"
#$

$%
&'*
'

(b)

Figure 3.9: Two solutions to solve parasitic selection — (a) double programming transistors at

each programming point, and (b) partition programming transistors into five blocks, where the two

programming transistors at the terminals of any arbitrary RRAM lie in two different blocks.

blocks are assigned into a separate block. In this case, no two programming transistors in the same

block will be selected simultaneously and no parasitic selection will result.

3.4.3 Sneak Paths in Programming

One more problem that we visit in this paper is sneak paths in programming circuits. This problem

exists in circuits with two-terminal programmable devices, e.g., anti-fuse, PRAM, RRAM, etc. To

illustrate this, we take an RRAM-based subset-type switch block (SB) [WM95] as an example. As
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shown in Fig. 3.10a, we want to send a signal from point A upwards and rightwards to B and C.

It is a very common demand in FPGA routing. We find out that when we want to program the

RRAM between A and C after A and B have been programmed to connect, the RRAM between

B and C will be programmed as well. One may argue that whether B and C are connected or not

!"#!$%&

'()*(+,,$-&+.-&/)..$/%$-&
0)&1()*(+,&%)&#$&/)..$/%$-&
2.$+3&1+%4!&5.&1()*(+,,5.*&

6&

7&

8&

(a) Subset-type switch block [WM95].

!"#$%&'()*

(b) Universal-type switch block [CWW96].

Figure 3.10: Subset-type switch blocks always have sneak paths in programming whenever a track

with a fanout of two or more is involved. Universal-type switch blocks do not have this problem.

does not matter since A, B and C are always in the same net after programming. But in the next

programming process, the connection between B and C can shunt part of the programming current

to reset the RRAM between A and B or A and C. The programming current to reset a RRAM is

usually large and the minimum size of the programming transistors is designed close to its margin.

The unexpected current shunting will likely cause a programming failure and subsequent functional

failure of FPGA. The author of [GHB93] found a way to avoid sneak paths by programming

devices in a specific order. But in the case of Fig. 3.10a, when we turn to program the RRAM

between A and C first to avoid the sneak path between B and C, the path is still there when we

program the RRAM between A and B later. To program a subset-type SB to a connection with

fanout ≥ 2 directions, there will always be sneak paths which cannot be eliminated by changing
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programming order. What we need is a change of architecture to fix this problem. We realize that

the reason that SBs of subset type can easily cause this kind of sneak path is that this SB type

leads to dense programmable connections between limited tracks. We consider the universal-type

SB [CWW96] to be a better choice since it distributes programmable connections among more

tracks. As shown in Fig. 3.10b, even to program a connection with fanout of three directions, there

will be no sneak path in the universal-type SB. Only in this case can we follow the method in

[GHB93] to program in an order that eliminates sneak path. We understand that many commercial

FPGA products are using subset-type SBs [WM95] due to easier layout design [SC02]. But we

have already given a feasible universal-type RRAM-based SB layout design in Section 3.3. Also,

universal SBs can give better routability, as proven in [CWW96].

3.5 On-Demand Buffer Insertion

In the previous sections we were discussing our FPGA-RR routing structure without buffers. Sep-

aration of buffers from the basic routing structure not only provides opportunities for the program-

ming transistor sharing mentioned in Section 3.4, but also facilitates on-demand buffer insertion

which will be described in this section.

3.5.1 Buffering Architecture

We propose on-demand buffer insertion as a buffering solution for FPGA-RR. As shown in

Fig. 3.11, a limited number of buffers are prefabricated in routing channels. They can be con-

nected to the tracks in channels via RRAMs. Buffers are shared among tracks in the same channel.

Only a track with a high demand for a buffer will be programmed to use a buffer. The demand de-

pends on routing paths of the circuit to implement on FPGA-RR. This mechanism brings benefits

of both area and performance; these will be analyzed in the following sections.

Since each buffer is attached to routing tracks via one single RRAM, we adopt the regenerative

feedback repeater described in [DHE95] as a buffer circuit. This circuit has one signal terminal and
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Figure 3.11: On-demand buffer insertion in programmable interconnects of FPGA-RR.

can provide drive in both signal directionals, as opposed to the conventional unidirectional buffers.

It saves at least half of the buffers by serving the function of two complementary unidirectional

buffers with only one repeater.

Note that the connections between buffers and routing tracks are actually RRAM-based multi-

plexers. For a channel of N tracks and M buffers, the area overhead of on-demand buffer insertion

except buffer area is the M programming transistors at extra programming points of buffer termi-

nals. We reuse the N programming transistors at programming points of tracks which are used to

program switch blocks as well. The on-demand buffer insertion can also be implemented in con-

ventional CMOS technology, but the area overhead is much higher. The cost would be an N -to-M

MUX, i.e., around MN transistors according to Table 3.1.

3.5.2 Savings of Unnecessary Buffers

In conventional FPGAs, the locations of buffers in a routing structure are predetermined during

FPGA design. For example, as shown in Fig. 2.1, each switch from one track segment to another in
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a switch block (SB) contains a routing buffer . The motivation for this conservative over-buffering

is to avoid a potential large RC delay caused by an unbuffered connection between two long un-

buffered track segments. This cautiousness stems from a lack of information about which track a

signal comes from. But if we have information of the circuit mapped in FPGA, we do not need

so many buffers. For example, the path from A to B in Fig. 3.12 will use a buffer when it goes

through the SB. However, a buffer is unnecessary for such a short path. We should only place
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Figure 3.12: Two path examples to show different demands for buffers. Short paths without exhi-

bition of quadratic increase of RC delay do not need buffers.

buffers at certain points in paths that are long enough to exhibit a quadratic increase in RC delay,

e.g., from C to D.

Fixed locations of buffers also result in unnecessary buffers in non-critical paths. Fig. 3.13

shows a delay distribution of all paths in a benchmark ”tseng” mapped onto a conventional FPGA.

The paths with more criticality (heavy color in Fig. 3.13) usually go from an FF through many

logic blocks to another FF. Some of these logic blocks are far away from each other, and takes

much effort to go from one to another, like C to D in Fig. 3.12. But for paths which are not so

critical (those with light color in Fig. 3.13), even if some portion of them travels, e.g., C to D in
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Figure 3.13: Delay distribution of all paths in a design to map onto FPGA. Most paths can be

relaxed for less use of buffers.

Fig. 3.12, they may not need buffers since they go through fewer logic blocks and have sufficient

timing slack. This results in a savings of routing buffers. But fixed locations of buffers eliminate

this opportunity due to an unawareness of the critical paths of circuits that should implemented

in FPGA ahead of the design period. Savings of unnecessary buffers can be achieved only during

placement and route via on-demand buffer insertion.

3.5.3 Performance Benefit

The fixed locations of buffers in conventional FPGA also lead to a deviation from optimal timing

results. A case study in Fig. 3.14 shows the timing benefit brought by the on-demand buffer inser-

tion in FPGA-RR when compared to the fixed buffer pattern in conventional FPGA. To simplify

the problem, we assume in this case that the RC delay of a wire with the length of one block is

0.5RwireCwire = 1ns, and that the buffers in interconnects are considered ideal buffers with infinite

drive, no input/output capacitance, and a fixed intrinsic delay of 9ns. The optimal length of a wire
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Figure 3.14: Performance comparison between the fixed buffer patten in conventional FPGA and

the on-demand buffer insertion in FPGA-RR.
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between two adjacent buffers would be

k =

√
Tbuffer

0.5RwireCwire
= 3

In conventional FPGA, the pattern of pre-fabricated buffers in interconnects will follow this result

to distribute buffers evenly with a distance of three blocks (as shown in Fig. 3.14). The problem is

that it does not know the starting point of each net (the offset can be 0, 1 or 2). So it just staggers

the patterns among different tracks in the same channel, as shown in Fig. 3.14. When the output

pin of a logic block happens to be connected to a wire segment that is buffered right after the

connection node, just like the block “start” in Fig. 3.14 connected to track3 in the upper channel,

the routing result will deviate from the optimal. The problem can be even worse during the switch

from one track to another, which is always buffered to avoid potential RC delay. It drives the

routing result farther from the optimal. The table in Fig. 3.14 lists all the possible delays from the

logic block “start” to the logic block “end” according to the settings in the conventional FPGA

discussed above. The first column is the track ID in the upper channel, and the first row is the

track ID in the right channel. The buffers at the output pin of the “start” block and the input pin

of the “end” block are not counted in the delay calculation. As shown in Fig. 3.14, the worst-case

can be 22% slower than the best case in a conventional FPGA. On the contrary, the on-demand

buffer insertion in FPGA-RR will not suffer from the deviation from the optimal buffer placement

in interconnects as does the conventional FPGA. We see from Fig. 3.14 that in FPGA-RR, buffers

are inserted just exactly one per three blocks, resulting in a total delay of only 45ns. It is even

better than the best-case in a conventional FPGA.

26



CHAPTER 4

Characterization and Evaluation

4.1 CAD Flow

To evaluate performance and energy consumption of FPGA-RR via widely used benchmarks, such

as MCNC benchmarks, we need a CAD flow that is able to accept these benchmarks as input.

The CAD flow for conventional FPGAs has been extensively studied [BRM99]. We adopt it and

modify it into a flow for our FPGA-RR, as shown in Fig. 4.1. The input of the flow is the circuit

Circuit Design

Logic Optimization and 
Technology Mapping (ABC)

Architecture

Mapped Netlist

Architecture 
Logic 

Specification
BC‐Netlist
Generator

Timing‐driven Packing (T‐VPACK)
BC Netlist

Architecture

Power Estimation 
(fpgaEVA_LP2)

Architecture 
Routing 

Specification

Placement and Routing (VPR‐RR)

PowerArea Delay

Figure 4.1: Customized CAD flow for FPGA-RR. An enhanced P&R tools is developed for FPGA-

RR.

design to implement on FPGA-RR. The output includes the placement and routing (P&R) result

used for programming the design on FPGA-RR, as well as an estimation of area, delay, and power
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consumption for the design implementation on FPGA-RR. A circuit design first goes through the

design tool ABC [too] to perform logic optimization and technology mapping. A mapped netlist

consisting of K-LUTs will be obtained. Then the mapped netlist is fed into the design tool T-

VPACK [BRM99] to pack LUTs to logic blocks, and then into the design tool VPR-RR that we

developed to accomplish P&R. At last, we use the generated basic-cell (BC) netlist with delay

and capacitance information to run the power estimation tool fpgaEVA LP2 [LLH05]. Since we

try to reuse most parts of the existing CAD flow for conventional FPGAs, the development of an

FPGA-RR CAD flow is quite easy. Only the P&R tool is specifically developed for FPGA-RR. We

will introduce the features of this tool in the rest of this section.

4.2 Equivalent Circuit Model for Interconnect

To perform the timing and power analysis for FPGA-RR, we first develop an equivalent circuit

model for the FPGA-RR routing structure. Fig. 4.2 shows the equivalent circuit of a representative

routing path from the output pin of a logic block to the input pin of another logic block in FPGA-

RR and makes a comparison with that of a conventional FPGA. In the circuit model, the MUXs
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Figure 4.2: Extracted equivalent circuit model of the FPGA-RR routing structure and comparison

with conventional FPGA.

28



in connection blocks and switch blocks are replaced by the RRAMs, of which one is at a low

resistance state (LRS) and the others are at a high resistance state (HRS). The wire segments are

still modeled as distributed RC lines, but with buffers if inserted. Note that the overall resistance

value and capacitance value of wire segments have changed due to the reduction of the tile area in

FPGA-RR.

4.3 On-Demand Buffer Insertion Algorithm

To fully utilize the benefits of on-demand buffer insertion in FPGA-RR, we develop an algorithm

to choose the optimal positions of buffers to insert into programmable interconnects. Given all the

nets routed in programmable interconnects, the goal is to find the best buffer option so that the

critical delay is minimized. The constraint of the delay minimization is that the total number of

inserted buffers should not exceed that of prefabricated buffers in each channel. Since on-demand

buffer insertion in FPGA-RR allows a buffer allocation for demanding wires just like ASIC, we

have considered implanting into FPGA-RR several state-of-art methods of ASIC buffer insertion

[Gin90, CP99, ASV03]. Some methods are not applicable to FPGA-RR due to its difference from

ASIC. For example the need to form buffer blocks or to utilize dead areas in ASIC does not exist in

FPGA-RR. After these investigations, we decided to go with a negotiation-based iterative approach

integrated with buffer placement for minimal delay.

To better present our algorithm, we will first focus on the delay minimization assuming there is

a buffer resource. In this case, optimization is applied to every net so that the global minimization

of the largest delay among all paths is achieved. Here we extend a method of buffer placement

in ASIC [Gin90] to FPGA-RR. A routed net in FPGA-RR connects an output pin and multiple

input pins of logic blocks together through programmable interconnects. According to the circuit

model in Fig. 4.2, it is equivalent to a routing tree with one source and multiple sinks, as shown in

Fig. 4.3. We perform a depth-first search on the routing tree to construct a set of delay/Cdownstream

pairs that correspond to different buffer options for every subtree (Cdownstream refers to downstream
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Figure 4.3: The basic idea of the algorithm for the optimal buffer insertion is implemented in our

tool.

capacitance). During the search, any pair with both delay/Cdownstream larger than another existing

pair will be pruned after a combination of buffer options for two subtrees. The complexity of the

algorithm is O(B2) where B is the total number of legal buffer positions in a routing tree.

When buffer demands exceed the number of available buffers in some regions, we need to take

the constraint of buffer resource into consideration during delay minimization. The method that

we use is inspired by the negotiation-based routing iteration procedure in [ME95]. That procedure

minimizes the critical delay under the constraint of track resource in every channel, which is similar

to our problem. In our case, we add the buffer overuse cost to the delay of a buffer option as one

of the metrics to prune buffer options (the other metric is still Cdownstream). The total cost of a buffer

option n for a subtree i of a routing tree shown in Fig. 4.3 is expressed as

Cost(n) = Crit(n) · delay(n) + [1− Crit(n)] · DNF · h(n) · p(n)

Crit(i) is the largest criticality among all the paths through which subtree i goes. Criticality of

a timing-critical path is close to one and cricality of a non-critical path is close to zero. DNF

is the delay normalization factor. h(n) and p(n) are the historical and present overuse of buffer

resources, respectively, in buffer option n. p(n) will grow as iteration continues, and the buffers in
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uncritical paths will be pushed away from congested regions or even be removed.

4.4 VPR-RR: the P&R Tool for FPGA-RR

To deal with the novel routing structure of FPGA-RR in the P&R step of CAD flow, we develop

an advanced tool named VPR-RR (VPR for RRAM-based Reconfiguration) on the base of the

commonly-used FPGA P&R tool VPR [BRM99]. The main contributions of this tool are as fol-
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Figure 4.4: Overview of the two tools, VPR and VPR-RR.

lows:

1. VPR-RR can deal with the routing graph of FPGA-RR as shown in Fig. 4.4b. In Fig. 4.4b the

gray blocks are I/O blocks and logic blocks of FPGA, and the diagonal wires are the routing

paths available in switch blocks. We see that the switch blocks and connection blocks in

VPR-RR are placed over logic blocks and provide connections for logic blocks nearby in a

different way from that of the conventional FPGA shown in Fig. 4.4a.

2. VPR-RR is integrated with the algorithm to generate the best option for on-demand buffer

insertion described in Section 4.3. The tool can display where buffers are needed for inser-

tion in the final routing result, as shown in Fig. 4.5. We see that the positions for buffers to be
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inserted are marked with a black delta shape. We also see that the interconnect view of the

routing result in Fig. 4.5b is quite similar to that of ASIC. We describe the good performance

of FPGA-RR in Section 5.

(a) Routing resource view. (b) Routing result view

Figure 4.5: View of the best option for buffer insertion by VPR-RR.
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CHAPTER 5

Experimental Results

5.1 Settings

We choose 32nm technology node as our experimental platform. The architecture specifications

for conventional FPGA are adopted from the 32nm setting in the intelligent FPGA Architecture

Repository (iFAR) [KR, KR08a, KR08b]. In this setting, each logic block contains 10 four-input

look-up tables (4-LUTs) and 22 input pins [KR]. One problem with iFAR is that all the input/out-

put resistance/capacitance values of routing switches or wire segments in FPGA routing structures

are zero. It is claimed in iFAR that all the timing parameters are counted in delay values. This

is not an accurate model for evaluating the performance of FPGA. We calculate the timing pa-

rameters using the lookup tables in ITRS2010 [ITR10] and HPSICE simulation with PTM device

models [ZC, ZC06]. The RRAM model is extracted from the measurement results of the RRAMs

fabricated by the process in [GLL08]. The 20 largest MCNC benchmark circuits are used as the

input of the CAD flow for conventional FPGA and FPGA-RR respectively, and comparisons are

made on the output of the CAD flow from the aspects of area, delay and power. We find that one

of the benchmarks becomes unroutable in conventional FPGA after we supplement the architec-

ture settings with detailed timing parameters. So we increase the routing channel width from the

original 104 in iFAR [KR] to the minimum achievable number of 120 found by VPR binary search.
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5.2 Buffer Distribution, Sizing and Amount

Compared to conventional FPGA, FPGA-RR has the unique capability of on-demand buffer in-

sertion. Before its evaluation, we need to explore the architecture settings related to on-demand

buffer insertion. The first basic question is whether we should prefabricate more buffers in the

routing channels at a specific location in FPGA-RR, e.g. around the center, or just evenly dis-

tribute them. This depends on the distribution of buffer demand over the routing channels. We

measure the number of buffers inserted in every channel with the constraint of buffer resource re-

moved. Fig. 5.1 shows two buffer distributions of two benchmarks implemented on FPGA-RR. By
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Figure 5.1: Two cases of buffer distribution without buffer limit. Locations with high buffer de-

mand vary among cases.

comparing the buffer distributions of all the benchmarks, including these two, we observe that the

hotspot locations of buffer demand differ from one design to another. They could be at the center

of FPGA-RR, at boundaries, at some intermediate zones, or just a mixture of multiple patterns.

Therefore, a simple uniform distribution of prefabricated buffers tends to work best.

Then we need to decide how many buffers to prefabricate per routing channel. In addition,

the size of the buffers needs to be optimized again since the buffering solution has changed as

compared to a conventional FPGA. Due to the observation that a smaller buffer size will increase

the number of buffers required per channel, we explore these two parameters simultaneously. Note

that both of the two parameters have an impact on both the area and performance of FPGA-RR.

Therefore we use the area-delay product as the evaluation metric. Fig. 5.2 shows the result. Here
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Figure 5.2: Exploration of the impact of buffer sizing and richness on the area-delay product.

Buffer size is normalized (the optimal size of conventional FPGA in iFAR [KR] is normalized to

1).

buffer size is normalized, with the optimal size of conventional FPGA in iFAR [KR] equal to

1. The area-delay product is the average improvement of FPGA-RR, compared to conventional

FPGA, over the 20 benchmarks. We see that with the increase of the number of buffers per channel,

improvement of the area-delay product first increases and then decreases. That’s because the FPGA

area will always increase, so the area savings will always decrease. But the critical delay will gain

a benefit at first and then keep constant when the buffer resource is rich enough. In the enlarged

portion of Fig. 5.2, we find the best pair of buffer sizing and richness to achieve the maximum

area-delay product. We determine the number of buffers per channel to be three and the buffer size

at 0.2 times the optimal size of a conventional FPGA in iFAR.

5.3 Evaluation of FPGA-RR

Fig. 5.3 shows the area savings of FPGA-RR at the technology node of 32nm. It shows more

than 6.82x saving of total area for FPGA-RR. The SRAM-based programming bits and routing

switches are now implemented efficiently by RRAMs on top of CMOS. A large number of routing

buffers are also saved due to on-demand buffer insertion. These factors lead to a small area of
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Figure 5.3: Area of a single tile and comparison. BLEs: basic logic elements.

programmable interconnects as compared to that basic logic elements (BLE). Only in this case,

where BLEs become the dominant part of FPGA, will technologies for highly compact BLEs

[PMB08, BTS06, CZX10, CPZ09, TLW11] be meaningful. Works on BLEs can be combined with

this work on programmable interconnects for more area savings.

Table 5.1 shows the performance comparison between baseline FPGA and FPGA-RR. It shows

a 3.09x speedup. The speedup mainly stems from shorter communication distance due to area

reduction. One-stage multiplexers (MUXs), implemented by RRAMs in routing switches, are also

faster than multi-stage MUXs implemented by SRAMs. On-demand buffer insertion also drives

buffer solutions closer to the optimal.

Table 5.2 shows the power and energy consumption of the baseline FPGA and FPGA-RR.

An average of 4.33x energy savings per clock cycle is achieved. Due to fewer transistors in pro-

grammable interconnects, the leakage power is reduced. Also, since there is smaller capacitance

on routing paths, dynamic power is reduced as well. Note that RRAM is also non-volatile. FPGA-

RR will enjoy more benefits brought by power gating since no devices other than SRAMs in

BLEs need supply power to hold their state. These SRAMs can be further eliminated by BLEs

based on emerging non-volatile memories [PMB08, BTS06, CZX10, CPZ09, TLW11] as well. Ta-

ble 5.3 shows a comparison of improvements achieved by different work on RRAM-based FP-

GAs. These works perform evaluation at the same technology node (32nm) with the same set

of benchmarks. The comparison should be fair. When compared to FPGA-RR in this work, rF-

PGA [TLW11] shows limited improvement since it only replaces SRAM-based routing switches

with RRAMs and does not renovate the routing structure to cater to RRAM property. The area
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savings of FPNI [SW07, XRC09] is impressive, but the large capacitance value of long nanowires

undermines performance and energy consumption.

5.4 Sensitivity Analysis

Since RRAM is an emerging technology, its device parameters tend to be hard to control. This

motivates us to conduct a sensitivity analysis for RRAM parameters. There are two key parameters:

Ron (or so-called Rlrs, resistance value at low resistance state) and Roff (or so-called Rhrs, resistance

value at high resistance state). Ron mainly has an impact on FPGA-RR performance and Roff on

leakage power and energy consumption. Fig. 5.4 shows this impact. We sweep the parameters one
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Figure 5.4: Sensitivity analysis of RRAM parameters in FPGA-RR.

order of magnitude upwards or downwards away from the center with original settings. In most of

the swept ranges, FPGA-RR maintains the improvement.
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Table 5.1: Critical Path Delay and Comparison (unit: ns)

Baseline FPGA FPGA-RR

Interconnect Total Interconnect Total

alu4 5.21 6.27 0.90 (5.79x) 1.99 (3.14x)

apex2 6.09 7.28 1.04 (5.81x) 2.15 (3.38x)

apex4 5.82 6.75 0.90 (6.46x) 1.84 (3.66x)

bigkey 2.85 3.32 0.45 (6.24x) 0.97 (3.42x)

clma 9.33 11.5 2.59 (3.59x) 4.33 (2.67x)

des 4.77 5.70 0.70 (6.74x) 1.65 (3.45x)

diffeq 5.33 6.90 0.52 (10.2x) 2.56 (2.69x)

dsip 2.89 3.21 0.37 (7.74x) 0.88 (3.61x)

elliptic 6.58 8.94 0.94 (7.00x) 3.75 (2.38x)

ex1010 11.4 12.5 4.50 (2.54x) 5.60 (2.23x)

ex5p 5.62 6.42 0.77 (7.29x) 1.71 (3.74x)

frisc 9.62 12.8 1.20 (7.97x) 4.82 (2.65x)

misex3 4.91 5.83 0.77 (6.30x) 1.72 (3.38x)

pdc 8.25 9.36 2.49 (3.31x) 3.57 (2.61x)

s298 6.96 8.55 0.92 (7.53x) 2.70 (3.16x)

s38417 6.22 7.82 0.66 (9.33x) 2.31 (3.38x)

s38584.1 5.29 6.55 0.72 (7.27x) 2.17 (3.00x)

seq 5.33 6.13 0.87 (6.12x) 1.79 (3.41x)

spla 7.26 8.18 1.67 (4.32x) 2.61 (3.13x)

tseng 5.10 6.67 0.50 (10.0x) 2.41 (2.76x)

average - - - (6.58x) - (3.09x)
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Table 5.2: Power/Energy Consumption and Comparison (unit: mW or J/cycle).

Baseline FPGA FPGA-RR

Leakage Energy Leakage Energy

alu4 6.38 82.7 1.87 (3.39x) 22.7 (3.63x)

apex2 7.75 99.3 2.54 (3.05x) 23.8 (4.15x)

apex4 6.99 71.5 2.49 (2.80x) 15.2 (4.68x)

bigkey 14.4 83.2 8.61 (1.67x) 22.7 (3.65x)

clma 25.0 402. 8.10 (3.09x) 83.1 (4.84x)

des 20.2 194. 12.6 (1.59x) 56.0 (3.46x)

diffeq 5.53 62.3 1.75 (3.14x) 16.6 (3.73x)

dsip 15.0 78.9 8.93 (1.68x) 22.4 (3.51x)

elliptic 12.3 160. 4.21 (2.93x) 39.0 (4.11x)

ex1010 23.2 363. 8.15 (2.85x) 74.5 (4.87x)

ex5p 5.87 60.6 2.09 (2.81x) 13.6 (4.44x)

frisc 13.4 221. 4.16 (3.22x) 42.4 (5.21x)

misex3 6.73 75.6 2.29 (2.94x) 20.0 (3.78x)

pdc 19.4 236. 6.89 (2.82x) 46.4 (5.10x)

s298 5.55 55.8 1.70 (3.26x) 8.55 (6.52x)

s38417 18.4 215. 5.33 (3.44x) 47.2 (4.54x)

s38584.1 20.1 217. 5.71 (3.52x) 53.6 (4.05x)

seq 7.90 91.4 2.69 (2.93x) 23.5 (3.88x)

spla 15.9 179. 5.75 (2.77x) 35.4 (5.07x)

tseng 4.27 55.1 1.10 (3.85x) 15.9 (3.46x)

average - - - (2.89x) - (4.33x)

Table 5.3: Comparison of improvements in related work and our work.

area reduction performance energy reduction

rFPGA [TLW11] 2.10x 1.67x 1.19x

FPNI [SW07, XRC09] 7.52x 0.77x 0.94x

FPGA-RR (this work) 6.82x 3.09x 4.33x
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CHAPTER 6

Conclusion

This work presents FPGA-RR, an novel FPGA architecture with RRAM-based reconfiguration.

The proposed architecture is based on the existing CMOS-compatible RRAM fabrication process.

After reviewing limitations of the conventional FPGA and recent work on FPGA with emerging

NVMs, we redesign the dominant part of FPGA, programmable interconnects, to conquer these

limitations. We discuss practical issues and improvement opportunities driven by RRAM usage.

A complete CAD flow is provided for FPGA-RR, with an advanced P&R tool named VPR-RR

developed for FPGA-RR to deal with its novel routing structure. An evaluation of FPGA-RR is

done on the 20 largest MCNC benchmark circuits. Results show that FPGA-RR achieves 6.82x

area savings, 3.09x speedup and 4.33x energy savings. Note that no die-stacking is needed to

achieve this degree of area reduction and speedup. If 3D integration technology is introduced

in the future to stack several FPGA-RRs together, at least 2x more improvement in density and

speedup can be expected, according to the experimental results on 3D architecture in [LEL07].
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