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Abstract

Structural equation models (SEMs) and vector autoregressive models (VARMs) are two broad 

families of approaches that have been shown useful in effective brain connectivity studies. While 

VARMs postulate that a given region of interest in the brain is directionally connected to another 

one by virtue of time-lagged influences, SEMs assert that directed dependencies arise due to 

instantaneous effects, and may even be adopted when nodal measurements are not necessarily 

multivariate time series. To unify these complementary perspectives, linear structural vector 

autoregressive models (SVARMs) that leverage both instantaneous and time-lagged nodal data 

have recently been put forth. Albeit simple and tractable, linear SVARMs are quite limited since 

they are incapable of modeling nonlinear dependencies between neuronal time series. To this end, 

the overarching goal of the present paper is to considerably broaden the span of linear SVARMs 

by capturing nonlinearities through kernels, which have recently emerged as a powerful nonlinear 

modeling framework in canonical machine learning tasks, e.g., regression, classification, and 

dimensionality reduction. The merits of kernel-based methods are extended here to the task of 

learning the effective brain connectivity, and an efficient regularized estimator is put forth to 

leverage the edge sparsity inherent to real-world complex networks. Judicious kernel choice from 

a preselected dictionary of kernels is also addressed using a data-driven approach. Numerical tests 

on ECoG data captured through a study on epileptic seizures demonstrate that it is possible to 

unveil previously unknown directed links between brain regions of interest.
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I. INTRODUCTION

Several contemporary studies in the neurosciences have converged on the well-accepted 

view that information processing capabilities of the brain are facilitated by the existence of a 

complex underlying network; see e.g., [39] for a comprehensive review. The general hope is 

that understanding the behavior of the brain through the lens of network science will reveal 

important insights, with an enduring impact on applications in both clinical and cognitive 

neuroscience.

However, brain networks are not directly observable, and must be inferred from processes 

observed or measured at nodes. To this end, functional magnetic resonance imaging (fMRI) 

has emerged as a powerful tool, capable of revealing varying blood oxygenation patterns 

modulated by brain activity [37]. Other related brain imaging modalities include positron 

emission tomography (PET), electroencephalography (EEG), and electrocorticography 

(ECoG), to name just a few. Most state-of-the-art tools for inference of brain connectivity 

leverage variants of causal and correlational analysis methods, applied to time-series 

obtained from the imaging modalities [7], [12], [13], [17], [18].

Contemporary brain connectivity analyses fall under two broad categories, namely, 

functional connectivity which pertains to discovery of non-directional pairwise correlations 

between regions of interest (ROIs), and effective connectivity which instead focuses on 

inference of directional dependencies between them [14]. Granger causality [38], vector 

autoregressive models (VARMs) [18], structural equation models (SEMs) [34], [36], and 

dynamic causal modeling (DCM) [15] constitute widely used approaches for effective 

connectivity studies. VARMs postulate that connected ROIs exert time-lagged dependencies 

among one another, while SEMs assume instantaneous directed interactions among them. 

Interestingly, these points of view are unified through the so-termed structural vector 

autoregressive model (SVARM) [9], which postulates that the spatio-temporal behavior 

observed in brain imaging data results from both instantaneous and time-lagged interactions 

between ROIs. It has been shown that SVARMs lead to markedly more flexibility and 

explanatory power than VARMs and SEMs treated separately, at the expense of increased 

model complexity [9].

The fundamental appeal of the aforementioned effective connectivity approaches stems from 

their inherent simplicity, since they adopt linear models. However, this is an 

oversimplification that is highly motivated by the need for tractability, even though 

consideration of nonlinear models for directed dependence may lead to more accurate 

approaches for inference of brain connectivity. In fact, recognizing the limitations associated 

with linear models, several variants of nonlinear SEMs have been put forth in a number of 

recent works; see e.g., [16], [19], [23], [24], [26], [29], [51].

For example, [29] and [30] advocate SEMs in which nonlinear dependencies only appear 

among the so-termed exogenous variables. Furthermore, [23] puts forth a hierarchical 

Bayesian nonlinear modeling approach in which unknown random parameters capture the 

strength and directions of directed links among variables. Several other studies adopt 

polynomial SEMs, which offer an immediate extension to classical linear SEMs; see e.g., 
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[19], [24], [26], [42], [51]. In all these contemporary approaches, it is assumed that the 

network connectivity structure is known a priori, and developed algorithms only estimate the 

unknown edge weights. The Bayesian network method proposed in [22] also relies on 

probabilistic assumptions that are also related to prior information of the structure of the 

network. However, this is a rather major limitation since such prior information may not be 

available in practice, especially when dealing with potentially massive networks, e.g., the 

brain.

Similarly, several variants of nonlinear VARMs have been shown useful in unveiling links 

that often remain undiscovered by traditional linear models; see e.g., [31]–[33], [47]. More 

recently, [31] proposed a kernel-based VARM, with nonlinear dependencies among nodes 

encoded by unknown functions belonging to a reproducing kernel Hilbert space.

Building upon these prior works, the present paper puts forth a novel additive nonlinear 

VARM to capture dependencies between observed ROI-based time-series, without explicit 

knowledge of the edge structure. Similar to [43], [44], kernels are advocated as an 

encompassing framework for nonlinear learning tasks. Note that SVARMs admit an 

interesting interpretation as SEMs, with instantaneous terms viewed as endogenous 
variables, and time-lagged terms as exogenous variables. Since numerical measurement of 

external brain stimuli is often impractical, or extremely challenging in conventional 

experiments, adoption of such a fully-fledged SEM (with both endo- and exogenous inputs) 

is often impossible with traditional imaging modalities.

A key feature of the novel approach is the premise that edges in the unknown network are 

sparse, that is, each ROI is linked to only a small subset of all potential ROIs that would 

constitute a maximally-connected power graph. This sparse edge connectivity has recently 

motivated the development of efficient regularized estimators, promoting the inference of 

sparse network adjacency matrices; see e.g., [1], [3], [21], [31], [48], [49] and references 

therein. Based on these prior works, this paper develops a sparse-regularized kernel-based 

nonlinear SVARM to estimate the effective brain connectivity from per-ROI time series. 

Compared with [31], the novel approach incorporates instantaneous variables, turns out to be 

more computationally efficient, and facilitates a data-driven approach for kernel selection.

The rest of this paper is organized as follows. Section II introduces the conventional 

SVARM, while Section III puts forth its novel nonlinear variant. Section IV advocates a 

sparsity-promoting regularized least-squares estimator for topology inference from the 

nonlinear SVARM, while Section V deals with an approach to learn the kernel that ‘best’ 

matches the data. Results of extensive numerical tests based on EEG data from an Epilepsy 

study are presented in Section VI, and pertinent comparisons with linear variants 

demonstrate the efficacy of the novel approach. Finally, Section VII concludes the paper, and 

highlights several potential future research directions opened up by this work.

Notation. Bold uppercase (lowercase) letters will denote matrices (column vectors), while 

operators (⋅)⊺, and diag(⋅) will stand for matrix transposition and diagonal matrices, 

respectively. The identity matrix will be represented by I, while 0 will denote the all-zero 
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matrix, and their dimensions will be clear from the context. Finally, ℓp and Frobenius norms 

will be denoted by || ⋅ ||p, and || ⋅ ||F, respectively.

II. PRELIMINARIES ON LINEAR SVARMS

Consider a directed network whose topology is unknown, comprising N nodes, each 

associated with an observable time series {yit}t = 1
T  measured over T time-slots, for i = 1, … , 

N. Note that yit denotes the t-th sample of the time series measured at node i. In the context 

of the brain, each node could represent a ROI, while the per-ROI time series are obtainable 

from standard imaging modalities, e.g., EEG or fMRI time courses. The network topology 

or edge structure will be captured by the weighted graph adjacency matrix A ∈ ℝN × N, 

whose (i,j)-th entry aij is nonzero only if a directed effect exists from region i to region j.

In order to unveil the hidden directed network topology, traditional linear SVARMs postulate 

that each yjt can be represented as a linear combination of instantaneous measurements at 

other nodes {yit}i ≠ j
, and their time-lagged versions {{yi(t − ℓ)}i = 1

N }
ℓ = 1
L

 [9]. Specifically, yjt 

admits the following linear instantaneous plus time-lagged model

y jt = ∑
i ≠ j

a ji
0 yit + ∑

i = 1

N
∑

ℓ = 1

L
a ji

ℓ yi(t − ℓ) +e jt (1)

with ai j
ℓ  capturing the directed influence of region i upon region j over a lag of ℓ time points, 

while ai j
0  encodes the corresponding instantaneous directed relationship between them. The 

coefficients encode the directed structure of the network, that is, a directed link exists from 

nodes i to j, i.e. aij ≠ 0, only if ai j
0 ≠ 0, or if there exists ai j

ℓ ≠ 0 for ℓ = 1, … , L. If ai j
0 = 0 ∀i,j, 

then (1) reduces to classical Granger causality [38]. Similarly, setting ai j
ℓ = 0 ∀i,j ≠ 0 reduces 

(1) to a linear SEM with no exogenous inputs [25]. Defining yt := [y1t, … , yNt]⊺, et := [e1t, 

… , eNt]⊺, and the time-lagged adjacency matrix Aℓ ∈ ℝN × N with the (i,j)-th entry 

[Aℓ]i j: = ai j
ℓ  one can write (1) in vector form as

yt = A0yt + ∑
ℓ = 1

L
Aℓyt − ℓ + et (2)

where A0 has zero diagonal entries a =ii
0 0 for i = 1, … , N.

Given the multivariate time series {yt}t = 1
T  the goal is to estimate matrices {Aℓ}ℓ = 0

L
, and 

consequently unveil the hidden network topology. Admittedly, overfitting is a potential risk 

since L is assumed prescribed. Nevertheless, this can be mitigated via standard order 
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selection methods that control model complexity, e.g., the Bayesian information criterion 

[10], or Akaike’s information criterion [6].

Knowing which entries of A0 are nonzero, several approaches have been put forth to 

estimate their values. Examples are based upon ordinary least-squares [9], and hypothesis 

tests developed to detect presence or absence of pairwise directed links under prescribed 

false-alarm rates [38]. Albeit conceptually simple and computationally tractable, the linear 

SVARM is incapable of capturing nonlinear dependencies inherent to complex networks 

such as the human brain. To this end, the present paper generalizes the linear SVARM in (1) 

to a nonlinear kernel-based SVARM.

It is also worth noting that most real world networks (including the brain) exhibit edge 

sparsity, the tendency for each node to link with only a few other nodes compared to the 

maximal 𝒪(N) set of potential connections per node. This means that per j, only a few 

coefficients {ai j
ℓ} are nonzero. In fact, several recent approaches exploiting edge sparsity 

have been advocated, leading to more efficient topology estimation; see e.g., [1], [3], [31].

III. FROM LINEAR TO NONLINEAR SVARMS

To enhance flexibility and accuracy, this section generalizes (1) so that nonlinear directed 

dependencies can be captured. The most general nonlinear model with both instantaneous 

(spatial) and time-lagged (temporal) dependencies can be written in multivariate form as 

yt = f‒(yt, {yt − ℓ}ℓ = 1
L ) + et or, entry-wise as

y jt = f‒ j(y− jt, {yt − ℓ}ℓ = 1
L ) + e jt, j = 1, …, N (3)

where y−jt := [y1t, … , y(j−1)t, y(j+1)t, … , yNt]⊺ collects all but the j-th nodal observation at 

time t, yt−ℓ :=[y1(t−ℓ), … , yN(t−ℓ)]⊺ and f j( . ) denotes a nonlinear function of its multivariate 

argument. With limited (NT) data available, f j in (3) entails (L + 1)N − 1 variables. This fact 

motivates simpler model functions to cope with the emerging ‘curse of dimensionality’ in 

estimating { f j} j = 1
N . A simplified form of (3) has been studied in [31] with L = 1, and 

without instantaneous influences y−jt, which have been shown of importance in applications 

such as brain connectivity [34] and gene regulatory networks [8]. Such a model is simplified 

compared with (3) because the number of variables of f j reduces to N. Nevertheless, 

estimating such an N-variate functional model still suffers from the curse of dimensionality, 

especially when the size of typical networks scales up.

To circumvent this challenge, we further posit that the multivariate function in (3) is 

separable with respect to each of its (L + 1)N − 1 variables. Such a simplification of (3) 

amounts to adopting a generalized additive model (GAM) [20, Ch. 9]. In the present context, 

the GAM adopted is f j(y− jt, {yt − ℓ}ℓ = 1
L ) = ∑i ≠ j f i j

0 (yit) + ∑i = 1
N ∑ℓ = 1

L f i j
ℓ(yi(t − ℓ) , where 

the nonlinear functions { f i j
ℓ} will be specified in the next section. Defining 
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f i j
ℓ(y): = ai j

ℓ f i j
ℓ(y), the node j observation at time t is a result of both instantaneous and multi-

lag effects; that is [cf. (1)]

y jt = ∑
i ≠ j

ai j
0 f i j

0 (yit) + ∑
i = 1

N
∑

ℓ = 1

L
ai j

ℓ f i j
ℓ(yi(t − ℓ)) + e jt (4)

where similar to (1), {ai j
ℓ} define the matrices {Aℓ}ℓ = 0

L
. In order to avoid scaling ambiguity, 

we ai j
ℓ ∈ {0, 1} as binary variables indicating the presence of edge, meaning a directed edge 

from node j to node i exists if the corresponding ai j
ℓ ≠ 0 for any ℓ = 0,1, … , L. Instead of 

having to estimate an [(L + 1)N − 1]-variate function in (3) or an N-variate function in [31], 

(4) requires estimating (L + 1)N − 1 univariate functions. Note that conventional linear 

SVARMs in (1) assume that the functions { f i j
ℓ} in (4) are linear, a limitation that the ensuing 

Section IV will address by resorting to a reproducing kernel Hilbert space (RKHS) 

formulation to model { f i j
ℓ}.

Problem statement.

Given {yt ∈ ℝN}
t = 1
T

, the goal now becomes to find the nonlinear functions { f i j
ℓ}, as well as 

the adjacency matrices {Aℓ}ℓ = 0
L

 in (4).

IV. KERNEL-BASED SPARSE SVARMS

Suppose that each univariate function f i j
ℓ( . ) in (4) belongs to the RKHS

ℋi
ℓ : = { f i j

ℓ | f i j
ℓ(y) = ∑

t = 1

∞
βi jt

ℓ κi
ℓ(y, yi(t − ℓ))} (5)

where κi
ℓ(y, ψ):ℝ × ℝ ℝ is a preselected basis (so-termed kernel) function that measures 

the similarity between y and ψ. Different choices of κi
ℓ specify their own basis expansion 

spaces, and the linear functions can be regarded as a special case associated with the linear 

kernel κi
ℓ(y, ψ) = yψ . An alternative popular kernel is the Gaussian one that is given by 

κi
ℓ(y, ψ): = exp[ − (y − ψ)2/(2σ2)] . Defining the inner product as 

κi
ℓ(y, ψ1), κi

ℓ(y, ψ2) : = ∑τ κi
ℓ(yτ, ψ1)κi

ℓ(yτ, ψ2), a kernel is reproducing if it satisfies 

κi
ℓ(y, ψ1), κi

ℓ(y, ψ2) = κi
ℓ(ψ1, ψ2),, which induces the RKHS norm 

| | f i j
ℓ | |

ℋi
ℓ

2 = ∑τ ∑τ′ βi jτ
ℓ βi jτ′

ℓ κi
ℓ(yiτ, yiτ′)[50].
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Considering the measurements per node j, with functions f i j
ℓ ∈ ℋi

l, for i = 1, N and ℓ = 0, 1, 

… , L, the present paper advocates the following regularized least-squares (LS) estimates of 

the aforementioned functions obtained as

{ f i j
ℓ} = arg min

{ f i j
ℓ ∈ ℋi

ℓ}

1
2 ∑

t = 1

T
y jt − ∑

i ≠ j
ai j

0 f i j
0 (yit) − ∑

i = 1

N
∑

ℓ = 1

L
ai j

ℓ f i j
ℓ(yit)

2
+

λ ∑
i = 1

N
∑

ℓ = 0

L
Ω (‖ai j

ℓ f i j
ℓ‖

ℋℓ)

(6)

where Ω(.) denotes a regularizing function, which will be specified later. An important result 

that will be used in the following is the representer theorem [20, p. 169], according to which 

the optimal solution for each f i j
ℓ  in (6) is given by

f i j
ℓ(y) = ∑

t = 1

T
βi jt

ℓ κi
ℓ(y, yi(t − ℓ)) . (7)

Although the function spaces in (5) include infinite basis expansions, since the given data 

are finite, namely T per node, the optimal solution in (7) entails a finite basis expansion. 

Substituting (7) into (6), and letting βi j
ℓ : = [βi j1

ℓ , …, βi jT
ℓ ]⊺, and αi j

ℓ : = ai j
ℓ βi j

ℓ , the functional 

minimization in (6) boils down to optimizing over vectors {αi j
ℓ} Specifically, (6) can be 

equivalently written for each j in vector form as

{αi j
ℓ} = arg min

{αi j
ℓ}

1
2 y j − ∑

i ≠ j
Ki

0αi j
0 − ∑

i = 1

N
∑

ℓ = 1

L
Ki

ℓαi j
ℓ

2

2

+ λ ∑
i = 1

N
∑

ℓ = 0

L
Ω (αi j

ℓ)⊺Ki
ℓαi j

ℓ

(8)

where yj := [yj1, … , yjT]⊺, and the T × T matrices {Ki
ℓ} have entries 

[Ki
ℓ]

t, τ
= κi

ℓ(yit, yi(τ − ℓ)). Furthermore, collecting all the observations at different nodes in 

Y: = [y1, …, yN] ∈ ℝT × N and letting K‒ ℓ ≔ [K1
ℓ…KN

ℓ ], (8) can be written as
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{αi j
ℓ} = arg min

αii
0 = 0, {αi j

ℓ}

1
2 Y − ∑

l = 1

L
KℓWα

ℓ

F

2

+ λ ∑
j = 1

N
∑
i = 1

N
∑

ℓ = 0

L
Ω (αi j

ℓ)⊺Ki
ℓαi j

ℓ

(9)

where the NT × N block matrix

Wα
ℓ : =

α11
ℓ ⋯ α1N

ℓ

⋮ ⋱ ⋮
αN1

ℓ ⋯ αNN
ℓ

(10)

exhibits a structure ‘modulated’ by the entries of Aℓ. For instance, if ai j
ℓ = 0, then αi j

ℓ : = ai j
ℓ βi j

ℓ

is an all-zero block, irrespective of the values taken by βi j
ℓ .

Instead of the LS cost used in (6) and (9), alternative loss functions could be employed to 

promote robustness using the ϵ-insensitive, or, the ℓ1-error norm; see e.g., [20, Ch. 12]. 

Regarding the regularizing function Ω(⋅), typical choices are Ω(z) = |z|, or, Ω(z) = z2. The 

former is known to promote sparsity of edges, which is prevalent to most networks; see e.g., 

[39]. In principle, leveraging such prior knowledge naturally leads to more efficient topology 

estimators, since {Aℓ} are promoted to have only a few nonzero entries. The sparse nature of 

Aℓ manifests itself as block sparsity in Wα
ℓ. Specifically, using Ω(z) = |z|, one obtains the 

following estimator of the coefficient vectors {αi j
ℓ}

{αi j
ℓ} = arg min

αii
0 = 0, {αi j

ℓ}

1
2 Y − ∑

l = 1

L
KℓWα

ℓ

F

2

+ λ ∑
ℓ = 0

L
∑
j = 1

N
∑
i = 1

N
(αi j

ℓ)⊺Ki
ℓαi j

ℓ .

(11)

Recognizing that summands in the regularization term of (11) can be written as 

(αi j
ℓ)⊺Ki

ℓαi j
ℓ = | | (Ki

ℓ)1/2
αi j

ℓ | |2 ,, which is the weighted ℓ2-norm of αi,j the entire regularizer 

can henceforth be regarded as the weighted ℓ2,1-norm of Wα
ℓ, that is known to be useful for 

promoting block sparsity. It is clear that (11) is a strongly convex problem, which admits a 

globally optimal solution. In fact, the problem structure of (11) lends itself naturally to 

efficient iterative proximal optimization methods e.g., proximal gradient descent iterations 

[5, Ch. 7], or, the alternating direction method of multipliers (ADMM) [41].
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For a more detailed description of algorithmic approaches adopted to unveil the hidden 

topology by solving (11), the reader is referred to Appendix A. All in all, Algorithm 1 is a 

summary of the novel iterative solver of (11) derived based on ADMM iterations. Per 

iteration, the complexity of ADMM is in the order of 𝒪(T2NL) which is linear in the network 

size N. A couple of remarks are now in order.

Remark 1: Selecting Ω(z) = z2 is known to control model complexity, and thus prevent 

overfitting [20, Ch. 3]. Let Dℓ: = Bdiag(K1
ℓ…KN

ℓ ), and D:=Bdiag(D0…DL), where Bdiag(⋅) is 

a block diagonal of its matrix arguments. Substituting Ω(z) = z2 into (9), one obtains

{αi j
ℓ} = arg min

αii
0 = 0, {αi j

ℓ}

1
2 Y − KWα‖

F
2

+ λ trace(Wα
⊺DWα)

(12)

where K: = [K0…KL] , and Wα: = [(Wα
0)⊺…(Wα

L)⊺]
⊺
. Problem (12) is convex and can be 

solved in closed form as

α j = (K j
⊺K j + 2D j)

−1K j
⊺y j (13)

where α j denotes the (NL − 1)T × 1 vector obtained after removing entries of the j-th column 

of Wα indexed by ℐ j: = {( j − 1)T + 1, …, jT}; K j collects columns of K excluding the 

columns indexed by ℐ j; and the block-diagonal matrix D j is obtained after eliminating rows 

and columns of D indexed by ℐ j. Using the matrix inversion lemma, the complexity of 

solving (13) is in the order of 𝒪(T3NL).

Remark 2: Relying on an operator kernel (OK), the approach in [31] offers a more general 

nonlinear VARM (but not SVARM) than the one adopted here. However, [31] did not 

account for instantaneous or the multiple-lagged effects. Meanwhile, estimating f(yt − 1) in 

[31] does not scale well as the size of the network (N) increases. Also OK-VARM is 

approximated in [31] using the Jacobian, which again adds to the complexity of the 

algorithm, and may degrade the generality of the proposed model. Finally, the model in [31] 

is limited in its ability to incorporate the structure of the network (e.g., edge sparsity). In 

order to incorporate prior information on the model structure, [31] ends up solving a 

nonconvex problem, which might experience local minima, and the flexibility in choosing 

kernel functions will also be sacrificed. In contrast, our approach entails a natural extension 

to a data-driven kernel selection, which will be outlined in the next section.

Remark 3: Estimation of a nonlinear function generally requires a large number of samples 

(T), consequently incurring increased complexity. Clearly, the proposed method is prone to 

Shen et al. Page 9

IEEE Trans Signal Process. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scalability issues when dealing with even moderately-sized networks. This motivates solving 

the kernel-based optimization problem “on the fly,”; see also [40], [46] for recent examples. 

However, deriving such efficient and real-time solvers is beyond the scope of the present 

paper, whose focus is the novel nonlinear modeling framework. Only batch algorithms have 

been presented, but pursuit of more efficient online algorithms constitutes an important 

future direction.

Remark 4: Note that the sparsity prior in the present work is considered separately for each 

Aℓ. This results in the block sparsity of Wα
ℓ, see (10). This can be easily adapt to the case 

where more prior information is available with respect to the structure of the network. For 

example, in case when {Aℓ} share the same sparsity pattern. One could stack the weight 

matrices in (10), and impose group sparse structure on the corresponding blocks of {Wα
ℓ}. 

Such adaptation will not influence the convexity of the problem in (11), henceforth the 

resulting problem can still be solved to the global optimum.

Remark 5: Stability of the generative KSVARM depends on the matrices {Aℓ}, the noise 

level, the initial condition, as well as the choice of the kernel functions. It is an interesting 

future research direction, but goes beyond the scope of the present paper.

V. DATA-DRIVEN KERNEL SELECTION

Choice of the kernel function determines the associated Hilbert space, and it is therefore of 

significant importance in estimating the nonlinear functions { f i j
ℓ}. Although Section IV 

assumed that the kernels {κi
ℓ} are available, this is not the case in general, and this section 

advocates a data-driven strategy for selecting them. Given a dictionary of reproducing 

kernels {κp}
p = 1
P  it has been shown that any function in the convex hull 

𝒦: = {κ |κ = ∑p = 1
P θpκp, θp ≥ 0, ∑p = 1

P θp = 1 } is a reproducing kernel [35], [45]. 

Therefore, the goal of the present section is to select a kernel from 𝒦 that best fits the data. 

For ease of exposition, consider κi
ℓ = κ ∈ 𝒦 for all ℓ = 0,1, … , L and i = 1, … , N in (6), 

therefore ℋi
ℓ = ℋ(κ). Note that the formulation can be readily extended to settings when 

{κi
ℓ} are different. Incorporating κ as a variable function in (6) yields

{ f i j
ℓ} = arg min

κ ∈ 𝒦, { f i j
ℓ ∈ ℋ(κ)}

1
2 ∑

t = 1

T
y jt − ∑

i ≠ j
ai j

0 f i j
0 (yit) − ∑

i = 1

N
∑

ℓ = 1

L
ai j

ℓ f i j
ℓ(yit)

2
+

λ ∑
i = 1

N
∑

ℓ = 0

L
Ω (‖ai j

ℓ f i j
ℓ‖

ℋ(κ))

(14)
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where ℋ(κ) denotes the Hilbert space associated with kernel function κ. With ℋp denoting 

the RKHS induced by κp, it has been shown in [4] and [35] that the optimal { f i j
ℓ} in (14) is 

expressible in a separable form as

f i j
ℓ(y) : = ∑

p = 1

P
f i j

ℓ, p(y) (15)

where f i j
ℓ, p belongs to RKHS ℋp, for p = 1, … , P. Substituting (15) into (14), one obtains

{ f i j
ℓ} = arg min

{ f i, j
ℓ, p ∈ ℋp}

1
2 ∑

t = 1

T
y jt − ∑

i ≠ j
∑

p = 1

P
ai j

0 f i j
0, p(yit) − ∑

i = 1

N
∑

ℓ = 1

L
∑

p = 1

P
ai j

ℓ f i j
ℓ, p(yit)

2
+

λ ∑
i = 1

N
∑

ℓ = 0

L
∑

p = 1

P
Ω ( ai j

ℓ f i j
ℓ, p | |ℋp) .

(16)

Note that (16) and (6) have similar structure, and their only difference pertains to an extra 

summation over P candidate kernels. Hence, (16) can be solved in an efficient manner along 

the lines of the iterative solver of (6) listed under Algorithm 1 [cf. the discussion in Section 

IV]. Further details of the solution are omitted due to space limitations.

Remark 6: Note that {θp} does not show up in the optimization problem in (16), since all 

the coefficients can be readily absorbed into the nonlinear functions without affecting 

optimality. This is a consequence of the property that given any function belonging to a 

prescribed RKHS, all its scaled versions belong to the same RKHS [c.f. (5)]; see also [35] 

for a detailed proof.

VI. NUMERICAL TESTS

This section presents results from numerical tests conducted on both synthetic and real data 

to corroborate the effectiveness of the proposed approach. Simulated data were generated via 

a different model in order to assess the impact of the presence of nonlinear dependencies. 

Tests on real data were based on seizure experiments captured from a number of subjects.

A. Synthetic data tests

Data generation.—Setting L = 1, synthetic data were generated via a random 20-node (N 
= 20) Erdös-Rényi graph, with edge probability 0.4. The resulting graph was encoded as a 

binary 20 × 20 adjacency matrix. Using this graph, simulated data were generated via both 

linear and nonlinear models. After drawing vectors yn, 1 ∼ 𝒩(0, 1) and matrices {Al}, the 
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output data {yt}t = 2
T  were generated recursively. Furthermore, matrices {Km

ℓ } were generated 

using prescribed kernels, that is, entry (i, j) of Km was set to [Kt
ℓ]

i j
= κ(yit, y jt) where the 

kernel function κ(⋅, ⋅) is known a priori. Entries of coefficient vectors αi j ∈ ℝT were drawn 

independently from 𝒩(0, 1), while noise terms were generated i.i.d. as ei1 ∼ 𝒩(0, σe
2).

Experiments were run for different values of T, with the edge detection threshold τ selected 

in each setting to obtain the lowest edge identification error rate (EIER), defined as

EIER : =
A − A 0

N(N − 1) × 100% . (17)

The operator || ⋅ ||0 denotes the number of nonzero entries of its argument. For all 

experiments, error plots were generated with values of EIER averaged over 100 independent 

runs.

Test results.—Figures 2 and 3 depict EIER values plotted against the measurement ratio 

(T/N) under varying signal-to-noise ratios (SNR := 10 log(P)signal/Pnoise), where Psignal 

denotes the variance of yj1) for polynomial and Gaussian kernels, respectively. The synthetic 

graph was generated with edge probability p = 0.3. Figure 2 plots the EIER when data are 

generated by (4), using a polynomial kernel of order P = 2, and Figure 3 plots the error 

performance realized with data generated via a Gaussian kernel with bandwidth σ2 = 1. It is 

clear that adoption of nonlinear SVARMs yields markedly better performance than topology 

inference approaches based on linear SVARMs, which corroborates the effectiveness of the 

proposed algorithm in identifying the network topology when the dependencies among 

nodes are nonlinear. It is also worth observing that as SNR decreases, the performance of the 

proposed algorithm deteriorates slightly, but can still yield much better performance than the 

linear approach.

Figure 5 plots heatmaps of actual and inferred adjacency matrices, under varying modeling 

assumptions. Plots of inferred adjacency matrices are based on a single realization of T = 40 

samples, with white entries representing presence of an edge, that is, ai j
ℓ ≠ 0. As shown by 

the plots, accounting for nonlinearities yields more accurate recovery of the unknown 

network topology. Figure 4 plots EIER values against the measurement ratio (T/N) when the 

underlying Erdös-Rényi graphs are generated using several values of the edge probability p 
∈ {0.1,0.5,0.9}, with λ and η optimally chosen for each scenario. For each value of p, the 

nonlinear approach outperforms the linear variant, since nonlinear dependencies are 

accounted for.

In order to assess edge detection performance, receiver operating characteristic (ROC) 

curves are plotted under different modeling assumptions in Figure 6. With PD denoting the 

probability of detection, and PF A the probability of false alarms, each point on the ROC 

corresponds to a pair (PF A, PD) for a prescribed threshold. Figure 6 (a) results from tests run 

on data generated by Gaussian kernels with σ2 = 1, while Figure 6 (b) corresponds to 
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polynomial kernels of order P = 2. Using the area under the curve (AUC) as the edge-

detection performance criterion, Figures 6 (a) and (b) clearly emphasize the benefits of 

accounting for nonlinearities. In both plots, kernel-based approaches result in the higher 

AUC metrics than approaches resorting to linear SVARMs. Moreover, the kernel based 

SVARM outperforms the kernel based VARM which does not take into account the 

instantaneous effects.

Figure 6 (c) plots ROC curves based on linear and kernel based SVARMs, with simulated 

data actually generated using a linear SVARM. The curves are parameterized by the 

sparsity-control parameter λ. Not surprisingly, kernel-based SVARMs adopting polynomial 

kernels underperform the linear SVARM, due to the inherent model mismatch. However, the 

kernel SVARM endowed with a multi-kernel learning scheme (MK-SVARM) is shown to 

attain comparable performance to the linear SVARM when the prescribed dictionary 

comprises both linear and polynomial kernels. Figure 7 plots the ROC curves based on linear 

and kernel based nonlinear SVARMs with L = 2. The trend exhibited by these curves is 

similar to those in Figure 6.

B. Real data tests

This section presents test results on seizure data, captured through experiments conducted in 

an epilepsy study [28]. Epilepsy refers to a chronic neurological condition characterized by 

recurrent seizures, globally afflicting over 20 million people, and often associated with 

abnormal neuronal activity within the brain. Diagnosis of the condition sometimes involves 

comparing EEG or ECoG time series obtained from a patient’s brain before and after onset 

of a seizure. Recent studies have shown increasing interest in analysis of connectivity 

networks inferred from the neuronal time series, in order to gain more insights about the 

unknown physiological mechanisms underlying epileptic seizures. In this section, 

connectivity networks are inferred from the seizure data using the novel approach, and a 

number of comparative measures are computed from the identified network topologies.

C. Seizure data description

Seizure data were obtained for a 39-year-old female subject with a case of intractable 

epilepsy at the University of California, San Francisco (UCSF) Epilepsy Center; see also 

[28]. An 8 × 8 subdural electrode grid was implanted into the cortical surface of the 

subject’s brain, and two accompanying electrode strips, each comprising six electrodes 

(a.k.a., depth electrodes) were implanted deeper into the brain. Over a period of five days, 

the combined electrode network recorded 76 ECoG time series, consisting of voltage levels 

measured in a region within close proximity of each electrode.

ECoG epochs containing eight seizures were extracted from the record and analyzed by a 

specialist. The time series at each electrode were first passed through a bandpass filter, with 

cut-off frequencies of 1 and 50 Hz, and the so-termed ictal onset of each seizure was 

identified as follows. A board-certified neurophysiologist identified the initial manifestation 

of rhythmic high-frequency, low-voltage focal activity, which characterizes the onset of a 

seizure. Samples of data before and after this seizure onset were then extracted from the 

ECoG time series. The per-electrode time series were then divided into 1s windows, with 

Shen et al. Page 13

IEEE Trans Signal Process. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.5s overlaps between consecutive windows, and the average spectral power between 5Hz 

and 15Hz was computed per window. Finally, power spectra over all electrodes were 

averaged, and the ictal onset was identified by visual inspection of a dramatic increase (by at 

least an order of magnitude) in the average power. Two temporal intervals of interest were 

picked for further analysis, namely, the preictal and ictal intervals. The preictal interval is 

defined as a 10s interval preceding seizure onset, while the ictal interval comprises the 10s 

immediately afterwards. Further details about data acquisition and pre-processing are 

provided in [28].

The goal here was to assess whether modeling nonlinearities, and adopting the novel kernel-

based approach would yield significant insights pertaining to causal/effective dependencies 

between brain regions, that linear variants would otherwise fail to capture. Toward this goal, 

several standard network analysis measures were adopted to characterize the structural 

properties of the inferred networks.

D. Inferred networks

Prior to running the developed algorithm, 10s intervals were chosen from the preprocessed 

ECoG data with the sampling rate set to 400Hz, and then divided into 20 successive 

segments, each comprising 200 data samples over a 0.5s horizon. To illustrate this, suppose 

the 10s interval starts from t = 0s and ends at t = 10s, then the first segment comprises 

samples taken over the interval [0s, 0.5s], the second one would be [0.5s, 1s], and so on. 

After this segmentation of the time series, directed network topologies were inferred using 

Algorithm 1 with L = 1, based on the 0.5s segments, instead of the entire signal, to ensure 

that the signal is approximately stationary per experiment run. A directed link from 

electrode i to j was drawn if at least one of the estimates of ai j
ℓ  turned out to be nonzero.

Upon inference of the 20 networks the data pertaining to each seizure, presence/absence of 

an edge is established via a t-test with PF A = 0.1. Inference results were not averaged since 

different seizures may originate from disparate parts of the brain, leading to non-trivial 

differences between connectivity patterns among electrodes.

Networks inferred from the preictal and ictal intervals were compared using linear, the 

kernel-based (K-)SVARMs, and K-SVARM with data-driven kernel selection. The lag 

lengths were set to L = 1 for all cases. For K-SVARM, a Gaussian kernel with σ = 1 was 

selected, and with ρ = 10, Algorithm 1 with regularization parameter Λ was selected via 

cross-validation. For the data-driven kernel selection scheme, two candidate kernels were 

employed, namely, a linear kernel, and a polynomial kernel of order 2.

Figure 8 depicts networks inferred from different algorithms for both preictal and ictal 

intervals of the time series. The figure illustrates results obtained by the linear SVARM, and 

the K-SVARM approach with and without kernel selection. Each node in the network is 

representative of an electrode, and it is depicted as a circle, while the node arrangement is 

forced to remain consistent across the six visual representations. A cursory inspection of the 

visual maps reveals significant variations in connectivity patterns between ictal and preictal 

intervals for both models. Specifically, networks inferred via the K-SVARMs, reveal a global 

decrease in the number of links emanating from each node, while those inferred via the 
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linear model depict increases and decreases in links connected to different nodes. 

Interestingly, the K-SVARM with kernel selection recovered most of the edges inferred by 

the linear and the K-SVARM using a Gaussian kernel, which implies that both linear and 

nonlinear interactions may exist in brain networks. Moreover, network topologies inferred 

via K-SVARM with kernel selection are more similar to those obtained using a single kernel 

than a linear SVARM, implying that the simple linear model is insufficient to capture the 

network topology in complex brain networks. However, one is unlikely to gain much insight 

only by visual inspection of the network topologies. Moreover, to further analyze differences 

between inferred networks from both models, and to assess the potential benefits gained by 

adopting the novel scheme, several network topology metrics are computed and compared in 

the next subsection.

E. Comparison of network metrics

First, in- and out-degree was computed for nodes in each of the inferred networks. Note that 

the in-degree of a node counts its number of incoming edges, while the out-degree counts 

the number of out-going edges. The total degree per node sums the in- and out-degrees, and 

is indicative of how well-connected a given node is. Figure 9 depicts nodes in the network 

and their total degrees encoded by the radii of circles associated with the nodes. As expected 

from the previous subsection, Figures 9 (a) and (b) demonstrate that the linear SVARM 

yields both increases and deceases in the inferred node degree. On the other hand, the 

nonlinear SVARM leads to a more spatially consistent observation with most nodes 

exhibiting a smaller degree after the onset of a seizure (see Figures 9 (c) and (d)), which may 

imply that directed dependencies thin out between regions of the brain once a seizure starts, 

the same trend is also revealed by the K-SVARM with kernel selection (see Figures 9 (e) and 

(f)); see also Table I for the number of disappearing and appearing edges, as well as the 

number of nodes for which the degree increases or decreases.

In order to assess the reachability of brain regions before and after seizure onset, 

comparisons of the so-termed average shortest path lengths were done. Average shortest path 

of a node computes the average length of shortest paths between the given node and all other 

nodes; see e.g., [27] for more details. The per-node average shortest path length for each 

inferred network is depicted in Figure 10, with node radii similarly encoding the computed 

values. Little variation between preictal and ictal average shortest path length is seen for the 

linear model (Figures 10 (a) and (b)), while variations are more marked for the K-SVARM, 

see Figures 10 (c–f). It can be seen that modeling nonlinearities reveals subtle changes in 

reachability of nodes between preictal and ictal phases.

Figure 11 depicts the closeness centrality computed per node in the inferred networks. 

Closeness centrality measures how reachable a node is from all other nodes, and is generally 

defined as the reciprocal of the sum of geodesic distances of the node from all other nodes in 

the network; see also [27]. Once again, Figure 11 depicts a more general decrease in 

closeness centralities after seizure onset in networks inferred by the nonlinear SVARM, as 

compared to the linear variant. This empirical result indicates a change in reachability 

between regions of the brain during an epileptic seizure.
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In addition to the local metrics, a number of global measures were computed over entire 

inferred networks, and pertinent comparisons were drawn between the two phases; see Table 

II for a summary of the average global measures of the inferred networks from 8 different 

seizures. Several global metrics were considered, e.g., network density, global clustering 

coefficient, network diameter, and average number of neighbors.These metrics are obtained 

by averaging the metrics of networks inferred from 8 seizures.

Network density refers to the number of actual edges divided by the number of potential 

edges, while the global clustering coefficient is the fraction of connected triplets that form 

triangles, adjusted by a factor of three to compensate for double counting. On the other 

hand, network diameter is the length of the longest geodesic, excluding infinity. Table II 

shows that networks inferred via the K-SVARMs and MKL-SVARMs exhibit lower network 

cohesion after seizure onset, as captured by network density, global clustering coefficient, 

and average number of neighbors, while the network diameter increases. These changes 

provide empirical evidence that the brain network becomes less connected, and diffusion of 

information is inhibited after the onset of an epileptic seizure.

In addition, note that we do not have access to the ground truth topologies for the brain 

networks to evaluate the effectiveness of the nonlinear methods. In order to verify the benefit 

of the nonlinear method, we further carried out classification on the obtained adjacency 

matrix as well as the nodal feature vectors, including degree, average shortest path length, as 

well as clustering coefficients of the network nodes. We adopted SVM with 5-fold cross-

validation. It can been observed from Table III that extracting nonlinear dependencies can 

improve the accuracy of classification between ictal and pre-ictal data. Therefore, the novel 

nonlinear model can help improve the accuracy of disease diagnosis.

VII. CONCLUSIONS

This paper put forth a novel nonlinear SVARM framework that leverages kernels to infer 

effective connectivity networks in the brain. Postulating a generalized additive model with 

unknown functions to capture the hidden network structure, a novel regularized LS estimator 

that promotes sparse solutions was advocated. In order to solve the ensuing convex 

optimization problem, an efficient algorithm that resorts to ADMM iterations was 

developed, and a data-driven approach was introduced to select the appropriate kernel. 

Extensive numerical tests were conducted on ECoG seizure data from a study on epilepsy.

In order to assess the utility of the novel approach, several local and global metrics were 

adopted and computed on networks inferred before and after the onset of a seizure. By 

observing changes in network behavior that are revealed by standard metrics before and after 

seizure onset, it is possible identify key structural differences that may be critical to explain 

the mysteries of epileptic seizures. With this in mind, the paper focused on identifying 

structural differences in the brain network that could not be captured by the simpler linear 

model. Interestingly, empirical results support adoption of a nonlinear modeling perspective 

when analyzing differences in effective brain connectivity for epilepsy patients. Specifically, 

adopting the novel kernel-based approach revealed more significant differences between the 

preictal and ictal phases of ECoG time series. For instance, it turned out that some regions 
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exhibited fewer dependencies, reduced reachability, and weakened information-routing 

capabilities after the onset of a seizure. Since the kernel-based model includes the linear 

SVARM as an instance, the conducted experiments suggest that one may gain more insights 

by adopting the nonlinear model, a conclusion that may yield informative benefits to studies 

of epilepsy that leverage network science.

This work paves the way for a number of exciting research directions in analysis of brain 

networks. Although it has been assumed that inferred networks are static, overwhelming 

evidence suggests that topologies of brain networks are dynamic, and may change over 

rather short time horizons. Future studies will extend this work to facilitate tracking of 

dynamic brain networks. Furthermore, the novel approach will be empirically tested on a 

wider range of neurological illnesses and disorders, and pertinent comparisons will be done 

to assess the merits of adopting the advocated nonlinear modeling approach.
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Appendix

A. Topology Inference via ADMM

Given matrices Y and K : = [K0….KL], this section capitalizes on convexity, and the nature 

of the additive terms in (11) to develop an efficient topology inference algorithm. Proximal 
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optimization approaches have recently been shown useful for convex optimization when the 

cost function comprises the sum of smooth and nonsmooth terms; see e.g., [11]. Prominent 

among these approaches is the alternating direction method of multipliers (ADMM), upon 

which the novel algorithm is based; see e.g., [41] for an early application of ADMM to 

distributed estimation.

Algorithm 1

ADMM for network topology identification

1:
Input: Y, {{Ki

ℓ}
i = 1
N }

ℓ = 1

L
, τα, λ , ρ

2: Initialize: Γ[0] = 0NT × N, Ξ[0] = 0NT × N, κ = 0

3: for ℓ = 1, …, L do

4:  Dℓ = Bdiag(K1
ℓ, …, KN

ℓ )

5:  K‒ ℓ = [K1
ℓ…KN

ℓ ]

6: end for

7: K‒ ≔ [K‒ 0…K‒ L], D = Bdiag(D0…DL)
8: for j = 1, … , N do

9: ℐ j: = {( j − 1)T + 1, …, jT}

10: ℐ j: = {(κ, l) |κ ∉ ℐ j, or l ∉ ℐ j}

11: ℐ j: = {(κ, l) | l ∉ ℐ j}

12: D j = [D]ℐ j
, K j = [K]ℐ j

13: end for

14: while not converged do

15:  for j = 1, … , N (in parallel) do

16:
  q j[κ] = ρD j

1 2γ j[κ] + K‒ j
⊺y j − D j

1 2ξ j[κ]

17:
  α j[κ + 1] = (K j

⊺K j + ρD j)
−1q j[κ]

18:
  γi j

ℓ[κ] = 𝒫λ/ρ((Ki
ℓ)1/2

αi j
ℓ[κ + 1] + ξi j

ℓ[κ]/ρ),

19:   for i = 1, … N, ℓ = 0, … L

20:  end for

21:
 Wα[κ + 1]: = [(Wα

0)⊺[κ + 1], …, (Wα
L)⊺[κ + 1]]

⊺

22:
 Γ[κ + 1]: = [(Γ0[κ + 1])⊺, …, (ΓL[κ + 1])⊺]

⊺

23: Ξ[κ + 1] = Ξ[κ] + ρ(D1 2Wα[κ + 1] − Γ[κ + 1])

24:  κ=κ+1

25: end while
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26: Edge identification: (after converging to αi j* )

27:  ai j* ≠ 0 if | |αi j* | | ≥ τα, else ai j* = 0 , ∀(i, j, ℓ)

28:
return {Aℓ}ℓ = 0

L

For ease of exposition, let the equality constraints (α j j
ℓ = 0) temporarily remain implicit. 

Introducing the change of variables γi j
ℓ : = (Ki

ℓ)1/2
αi j

ℓ ,, problem (11) can be recast as

arg min
{αi j

ℓ}
(1/2) Y − ∑

ℓ = 0

L
KℓWα

ℓ | |F
2 + ∑

ℓ = 0

L
g(Γℓ)

s . t . γi j
ℓ − (Ki

ℓ)1/2αi j
ℓ = 0 ∀i, j, ℓ

(18)

where Γℓ: = [γ1
ℓ…γN

ℓ ], γ j
ℓ: = [(γ1 j

ℓ )⊺…(γN j
ℓ )⊺]

⊺
 and g(Γℓ): = λ ∑i = 1

N ∑ j = 1
N | |γi j

ℓ | |2 is the 

nonsmooth regularizer. Let Dℓ: = Bdiag(K1
ℓ…KN

ℓ ), and D: = Bdiag(D0…Dℓ), where Bdiag(.) is 

a block diagonal of its matrix arguments. One can then write the augmented Lagrangian of 

(18) as

ℒρ(Wα, Γ, Ξ) = (1/2) Y − KWα F
2 + g(Γ)

+ Ξ, D1/2Wα − Γ + (ρ/2) Γ − D1/2Wα F
2

(19)

where Wα: = [(Wα
0)⊺…(Wα

L)⊺]
⊺

and Γ: = [(Γ0)⊺…(ΓL)⊺]
⊺
. Note that Ξ is a matrix of dual 

variables that collects Lagrange multipliers corresponding to the equality constraints in (18), 

〈P, Q〉 denotes the inner product between P and Q, while ρ > 0 a prescribed penalty 

parameter. ADMM boils down to a sequence of alternating minimization iterations to 

minimize ℒρ(Wα, Γ, Ξ) over the primal variables Wα, and Γ, followed by a gradient ascent 

step over the dual variables Ξ; see also [2], [41]. Per iteration κ + 1, this entails the 

following provably-convergent steps, see e.g. [41]

Wα[κ + 1] = arg min
Wα

ℒρ(Wα, Γ[κ], Ξ[κ]) (20a)

Γ[κ + 1] = arg min
Γ

ℒρ(Wα[κ + 1], Γ, Ξ[κ]) (20b)
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Ξ[κ + 1] = Ξ[κ] + ρ(D1/2Wα[κ + 1] − Γ[κ + 1]) . (20c)

Focusing on Wα[κ + 1], note that (20a) decouples across columns of Wα, and admits closed-

form, parallelizable solutions. Incorporating the structural constraint αi j
0 = 0, one obtains the 

following decoupled subproblem per column j

α j[κ + 1] =

arg min
α j

(1/2)α j
⊺(K j

⊺K j + ρD j)α j − α j
⊺q j[κ]

(21)

where qj [κ] is constructed by removal of entries indexed by ℐ j from 

ρD1/2γ j[κ] + K⊺y j − D1/2ξ j[κ], with ξ j[κ], denoting the j-th column of Ξ[κ]. Assuming 

(K j
⊺K j + ρD j) is invertible, the per-column subproblem (21) admits the following closed-form 

solution per j

α j[κ + 1] = (K j
⊺K j + ρD j)

−1q j[κ] . (22)

On the other hand, (20b) can be solved per component vector γi j
ℓ , and a closed-form solution 

can be obtained via the so-termed block shrinkage operator for each i and j, namely,

γi j
ℓ[κ] = 𝒫λ/ρ((Ki

ℓ)1/2αi j
ℓ[κ + 1] + ξi j

ℓ[κ]/ρ) (23)

where 𝒫λ(z): = (z/ | |z | |2 )max( | | z | |2 − λ , 0). Upon convergence, {ai j
ℓ} can be determined by 

thresholding αi j
ℓ  and declaring an edge present from i to j, if there exists any αi j

ℓ ≠ 0 for ℓ = 1, 

… , L.
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Fig. 1: 
(left) A simple illustration of a 5-node brain network; and (right) a set of five neuronal time 

series (e.g., ECoG voltage) each associated with a node. Per interval t, SVARMs postulate 

that directed dependencies between the 5 nodal time series may be due to both the 

instantaneous effects (blue links), and/or time-lagged effects (red links). Estimating the 

values of the unknown coefficients amounts to learning the directed (link) structure of the 

network.
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Fig. 2: 
Plot of EIER vs. measurement ratio (T/N), with simulated data generated via a polynomial 

kernel of order P = 2. Note that K-SVARMs consistently outperform LSVARMs.
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Fig. 3: 
Plot of EIER vs. (T/N) with data generated using a Gaussian kernel with σ2 = 1; K-SVARMs 

uniformly lead to lower errors than linear LSVARMs over varying SNR levels, based on 

empirical observations.
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Fig. 4: 
Plot of EIER vs. (T/N) with simulated data generated via a polynomial kernel of order P = 2; 

it can be empirically observed that K-SVARMs uniformly outperform LSVARMs across 

varying edge densities.
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Fig. 5: 
Plots of actual and inferred adjacency matrices resulting from adopting linear and nonlinear 

SVARM with T = 40.
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Fig. 6: 
ROC curves generated under different modeling assumptions: a) K-SVARM based on a 

Gaussian kernel with σ2 = 1; b) K-SVARM based on polynomial kernel of order P = 2; and 

c) Linear SVARM.
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Fig. 7: 
ROC curves generated under different modeling assumptions: a) K-SVARM based on a 

Gaussian kernel with σ2 = 1, L = 2; and b) K-SVARM based on a polynomial kernel of order 

P = 2, L = 2.
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Fig. 8: 
Visualizations of 76-electrode networks inferred from ECoG data: (a) linear SVARM with L 
= 1 on preictal time series; (b) linear SVARM on ictal time series; (c) K-SVARM on preictal 

time series, using Gaussian kernel with σ = 1; (d) the same K-SVARM on ictal time series; 

(e) K-SVARM with kernel selection on preictal time series; and finally (f) K-SVARM with 

kernel selection on ictal time series.
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Fig. 9: 
Node degrees of networks inferred from ECoG data encoded by circle radii: (a) linear 

SVARM on preictal data; (b) linear SVARM on ictal data; (c) K-SVARM on preictal time 

series; (d) K-SVARM on ictal data; (e) MKL-SVARM on preictal time series; (f) MKL-

SVARM on ictal time series.
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Fig. 10: 
Same as in Figure 9 for comparison based on average shortest path length of inferred graphs.
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Fig. 11: 
Same as in Figure 9 for comparison based on closeness centrality of inferred graphs.
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Shen et al. Page 36

TABLE I:

Changes of edges and nodal degrees from preictal to ictal stages using networks inferred from ECoG seizure 

data using the linear, K-SVARM, and K-SVARM with kernel selection schemes ↑: appear/increase, ↓: 

disappear/decrease.

Linear SVARM K-SVARM MKL-SVARM

↑ ↓ ↑ ↓ ↑ ↓

edge 166 184 103 252 233 421

degree 24 31 23 40 22 48

IEEE Trans Signal Process. Author manuscript; available in PMC 2020 October 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen et al. Page 37

TABLE II:

Comparison of global metrics associated with networks inferred from ECoG seizure data using the linear, K-

SVARM, and K-SVARM with kernel selection scheme. Major differences between the computed metrics 

indicate that one may gain insights from network topologies inferred via models that capture nonlinear 

dependencies.

Linear SVARM K-SVARM MKL-SVARM

Preictal Ictal Preictal Ictal Preictal Ictal

Network density 0.103 0.095 0.136 0.089 0.148 0.101

Glob. clustering coeff. 0.246 0.220 0.372 0.356 0.391 0.343

No. of connect. comp. 8 7 2 5 2 6

Network diameter 5 5 7 9 4 7

Avg. no. of neighbors 7.73 6.89 10.23 6.71 11.11 7.55
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Shen et al. Page 38

TABLE III:

Comparison of classification accuracy (%) using networks inferred from ECoG seizure data using the linear, 

K-SVARM, and K-SVARM with kernel selection scheme.

L-SVARM K-SVARM MKL-SVARM

Degree 65.4 68.3 70.8

Clust. coeff. 56.1 61.1 61.2

Centrality 59.4 65.2 65.3
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