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Abstract of the Dissertation

Bayesian Methods in the Quantitative Risk Assessment
and Toxicity Profiling of Engineered Nanomaterials

by

Trina Ramesh Patel
Doctor of Public Health

University of California, Los Angeles, 2012

Professor Donatello Telesca, Chair

Until recently, very little research has been conducted to assess the potential human health

hazards associated with engineered nanomaterials (ENMs). In-vitro high-throughput screen-

ing (HTS) assays for the assessment of engineered nanomaterials provide new opportunities

to learn how these particles interact at the cellular level, and may aid in reducing the demand

for in-vivo testing. The large number of potential factors that could link nanomaterials to

adverse human health impacts, create an imperative need to develop a stronger foundation

for quantitate risk assessment in nanotoxicology.

In this dissertation we propose a probability model for the analysis of high-throughput

cellular assays. In particular, we develop a method that builds a balance between model

complexity and interpretability as a tool to be used by subject-matter specialists for assess-

ing cytotoxicity. The resulting multivariate surface-response model allows for joint inference

on dose and time kinetics, and associated classical risk assessment parameters of interest.

We illustrate the proposed methodology by profiling a multivariate screening study of eight

metal-oxide nanomaterials. Next, we present loss-function-based methods for the hazard

ranking of engineered nanomaterials. Specifically, we provide a decision-making tool for

prioritizing extensive in-vivo testing of emerging nanomaterials. The proposed framework

allows for the aggregation of ranks across different sources of evidence while allowing for
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differential weighting of this evidence based on its reliability and importance in risk ranking.

We illustrate the methodology by ranking particles from a multivariate cytotoxicity screening

study of eight metal oxides, conducted in two human cell-lines. Finally, we propose method-

ology for modeling the relationship between physicochemical properties of ENMs and their

observed cytotoxicity, as an initial step in the development of a framework for predictive

nanotoxicology. In particular, the proposed approach introduces a new measure of toxicity

that is seamlessly integrated into a multi-dimensional model that accounts for dose and du-

ration kinetics jointly using a flexible smooth surface fit. Moreover, the designed approach

is appropriate for small sample size, and includes data integration and a framework for ad-

vanced dimension reduction through variable selection. The proposed method was applied

to a library of 24 engineered nanomaterials.
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CHAPTER 1

Introduction

Nanomaterials are a large class of substances engineered at the molecular level to achieve

unique mechanical, optical, electrical, and magnetic properties. Nanotechnology is a rapidly

growing field with over 800 consumer products on the market and possibly thousands of

engineered nanomaterials (ENMs) under investigation (Tsuji et al. 2005, Society 2004). Ex-

amples of products manufactured using nanomaterials include sunscreens, cosmetics, elec-

tronics, and stain resistant clothing, among others (Nel et al. 2006). The materials that

result from nanotechnology are projected to play a key role in meeting many fundamental

needs currently facing society. Areas of impact include, but are not limited to, health care,

food, safety, energy, environmental protection, and technology. Some of the current and po-

tential research areas include new treatment methods for cancer, drug delivery, earth-quake

safe buildings, food packaging to improve shelf-life, and more efficient energy conversion

based on renewable energy sources (DECHEMA/VCI 2011)

The unusual properties of nanomaterials can be attributed to their small size (with one

dimension less than 100 nm), chemical composition, surface structure, solubility, shape, and

aggregation. The structural and chemical properties of ENMs allow for increased uptake

and biological interaction with tissues, which would not otherwise be possible with the bulk

form of the material. Many biological processes take place at the nanoscale level, and

the introduction of ENMs into living organisms could lead to harmful interactions with

molecular and cellular processes that are critical to life. In particular, many nanomaterials

are able to move throughout the body, deposit in organs, and penetrate cell membranes,

with the potential for cytotoxicity among other injury responses. For example, inhaled

ultra-fine particles have been long understood to be capable of inducing oxidative stress and
1



pulmonary inflammation. Similarly, preliminary experiments in animal models indicate that

exposure to titanium dioxide (TiO2) and carbon black nanoparticles lead to oxidative stress

and cytotoxic responses (Nel et al. 2006, Nel et al. 2009).

Nanotechnology does have the opportunity for great impact, especially in public health

and medicine, but it confers enormous potential for human exposure and environmental con-

tamination. In order to make this technology and the opportunities it presents sustainable,

it is crucial to ensure the safety of nanomaterials (DECHEMA/VCI 2011). The potential for

exposure as well as hazard, has spurred recent interest in early identification of potentially

hazardous nanomaterials. Of utmost importance is the need to make decisions regarding the

safety and potential toxicity of these particles to humans and the environment. Knowledge

about the potential hazard of nanomaterials is still lacking and extensive study is required to

understand how ENM properties such as size, shape, agglomeration state, solubility, and sur-

face properties could lead to hazard generation at the nano-bio interface (Stern and McNeil

2008, Nel et al. 2006).

Current research in nanotoxicology includes new generation high-throughput screening

(HTS) assays, which enable the simultaneous observation of multiple cellular injury pathways

across an array of doses and times of exposure. These rapid screening approaches include

the use of fluorescence-based cellular assays that assess key signals of nanoparticle toxicity in

various cell types. An example of such an assay is one developed to measure the cytotoxicity

of metal and metal oxide nanoparticles in relation to various cellular injury responses. This

assay is particularly important, as oxidative stress constitutes one of the principal injury

mechanisms though which ENMs can induce adverse health effects (Zhang et al. 2012).

The assay is derived from the hierarchical oxidative stress model of Nel et al. (2006) and

Xia et al. (2006), which postulates that low levels of oxidative stress (Tier 1) lead to a

protective cellular response, while higher levels of oxidative stress will overwhelm antioxidant

defense mechanisms and could trigger a Tier 2 response, characterized by pro-inflammatory

effects. Finally toxic oxidative stress (Tier 3), the highest level, can trigger intracellular

calcium flux, increased permeability of the mitochondria, and possibly cytotoxicity. The
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hierarchical oxidative stress model can be useful for screening nanomaterials that are capable

of generating oxygen radicals, such as metal and metal oxide nanomaterials, which can lead

to cell damage via interference in important intracellular processes (George et al. 2009).

HTS assays provide an opportunity for the rapid testing of a large number of nanoma-

terials. Cellular assays help to define biological relationships and can be used to assess

cytotoxicity by determining important measures of hazard. A large battery of HTS in-vitro

studies can also be used as a screening tool for the hazard ranking and subsequent prior-

itization of a reduced set of in-vivo studies. While HTS assays cannot replace traditional

animal studies, they are less costly and labor intensive, and they can be used to explore the

large number of potential nanomaterial variables that can influence human health hazard

(Meng et al. 2010, Stanley et al. 2008, Maynard et al. 2006). Finally, HTS assays aid in the

development of a framework for predictive toxicology, as the ultimate goal is to limit the

demand for in-vivo studies (Nel et al. 2006). Specifically, HTS assays provide an opportunity

to discover how specific physicochemical characteristics of ENMs contribute to the definition

of injury pathways, a required step in the predictive approach. The feasibility and utility of

HTS assays have been illustrated in various fields such as functional genomics, with the use

of microarray technology, as well as in pharmacology with the rapid screening of potential

drug targets (Hoheisel 2006, White 2000).

HTS data are often characterized by high dimensionality, relatively small sample sizes, and

high measurement error. From a statistical perspective, some of the inferential challenges

include data quality and control, the formulation of robust probability models that are

flexible yet interpretable, integration of heterogeneous sources of data, making non-standard

inferences such as ranks, and the simultaneous testing of a large number of hypotheses.

Bayesian Analysis has been shown to provide an advantageous inferential framework to

deal with these challenges. For example, Telesca and Inoue (2009) introduced a Bayesian

probability model for the analysis of high-throughput time course microarray data with a

similar structure to the HTS data described above. Specifically, the model was used to select

genes with differential activity as well as to provide a measure of similarity between genes.
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Traditionally methodological research in risk assessment has involved both epidemiologi-

cal and animal lab studies in order to establish safe levels for human exposure. Proper risk

assessment involves the processes of hazard identification, hazard characterization, and ex-

posure assessment (Edler et al. 2002). Numerous quantitative methods have been developed

for the purposes of hazard identification and characterization using these sources of data.

Toxicity assessment is traditionally performed by calculating various measures of hazard,

often using a dose escalation study. For example, in many instances it is believed that a

exposure threshold exists, either biologically or statistically, below which no significant effect

exists. In these cases, methods which estimate the threshold are used to derive exposures

below which the toxin is considered to have no biologically significant adverse health effect.

Some classical measures of the exposure threshold include the no-observed-adverse-effect

level (NOAEL) and the lowest observable adverse effect level (LOAEL). The NOAEL is

defined as the highest level of exposure at which no statistically significant effect occurs.

Usually this is calculated by comparing treated animals to untreated animals. Most often,

the entire dose-response curve is not utilized in the quantitative estimation of the NOAEL. In

fact, only the threshold value is used in the calculation, and all other values only contribute

in ensuring an appropriate number and spacing of data points. This method of estimation

leads to imprecise estimates that are not very robust. The lowest-observed-adverse-effect

level (LOAEL) is a similar measure and is used in situations where all tested exposure levels

produce some statistically significant effect when compared to the control group (Edler et al.

2002). The benchmark dose (BMD) is an alternative method introduced by the EPA in which

a dose-response model is used to estimate the lower statistical confidence limit for the dose at

which adverse effects rise above a predetermined amount as compared to the background. In

this way, the BMD attempts to use more of the data in obtaining an estimate of risk (Edler

et al. 2002). Various methods for modeling dose-response data are discussed in Chapter 2.

The classical risk assessment parameters described above, summarize different aspects

of the response trajectory, and are typically assessed disjointly for dose and time kinetics.

In fact, there is still disagreement in the HTS setting on the best measures of risk (Stern
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and McNeil 2008 and Maynard et al. 2006). Furthermore, some of these summaries can

become even more problematic in the nanotoxicology setting due to issues such as dosimetry,

where the administered doses are confounded by different particle bioavailability, effecting

the concentration of material that is actually absorbed by the cell.

Methods for decision making and prioritization for further testing of materials often take

the form of hazard ranking. The most common approaches include simple scoring methods

or methods based on ordering estimates of risk assessment parameters.

The hazard ranking of chemicals has also been extensively studied, especially using partial

order techniques and multi-criteria analysis (see Lerche et al. (2002) for a recent comparison

of these methods). For example, Lerche and Sørensen (2003) consider the ranking of objects

using partial order theory and random linear extensions, and Lerche et al. (2004) apply these

ideas to the ranking of chemicals. These methods are extensions of simple scoring methods,

and again, are designed to work with summaries of previously analyzed data sets. Their

direct applicability to the general HTS setting, described earlier, is therefore limited.

Finally, structure-activity relationships (SAR) are often used as a tool for risk assessment

in situations where adequate toxicity data is unavailable. Quantitative structure-activity re-

lationships (QSAR) are models that relate the biological activity of a material to its chemical

and physicochemical properties. These models can yield valuable predictive power and can

be used to understand the mechanism of toxicity of a material. The use of a combination of

molecular properties to predict a compound’s behavior with respect to biological end-points

is a well accepted concept in the predictive toxicology of chemicals (Schultz et al. 2003).

From a regulatory standpoint these methods are primarily used in circumstances where the

risk of exposure is extremely low and require a strict validation process (Barlow et al. 2002,

Edler et al. 2002). In contrast to QSARs for chemicals, the idea of QSARs for nano-sized

materials is still in early development (Puzyn et al. 2009). The primary efforts to date have

been on adapting the idea of classical chemical QSAR models to nanomaterials. The limited

knowledge associated with nano-sized materials, especially in terms of physicochemical and

toxicity data, the lack of a well defined toxicological endpoint, and the high variability in

5



molecular structures, make it difficult to implement the classical QSAR approach. Therefore,

new methodology that is appropriate for small sample sizes and includes data integration as

well as advanced dimension reduction, is an important area of research.

The objective of this dissertation is to use the information obtained from high-throughput

screening studies to develop a quantitative foundation for risk assessment in nanotoxicology.

In particular, we aim to develop a framework for toxicity assessment, prioritization of in-

vivo testing of ENMs, and predictive nanotoxicology. To our knowledge the methodologies

proposed in this dissertation are the first to provide formal statistical methodology for the

analysis of the data structures introduced by the high-throughput screening assays described

above. As the field of nanotoxicology, especially in regards to high-throughput screening

assays, is relatively new, we are currently aware of only ad hock procedures, often limited to

simple data pre-processing and visualization.

In Chapter 2 we propose a probability model for the analysis of high-throughput cellular

assays. We make an effort to provide an analytic tool that builds a balance between model

complexity and interpretability, as we hope that the proposed framework will be adopted by

subject-matter scientists as a method for assessing cytotoxicity. From a methodological per-

spective, we propose a multivariate surface-response model that allows for joint inference on

dose and time kinetics, along with associated classical risk assessment parameters. We illus-

trate the proposed methodology by profiling a multivariate screening study of metal oxides.

In Chapter 3 we discuss loss-function based ranking methods and apply them to the analysis

of HTS assays. We seek to provide an analytic tool that can be used as a decision making

tool for prioritization of extensive in-vivo testing of emerging nanomaterials. Specifically, we

propose a framework for the aggregation of ranks across different sources of evidence, while

allowing for differential weighting of this evidence based on its reliability and importance in

risk ranking. We applied the proposed methodology to the hazard ranking of nanomaterials

using data from a multivariate cytotoxicity screening study of metal oxides, conducted in

two different cell-lines. Finally, in Chapter 4 we propose methodology for modeling the re-

lationship between physicochemical properties of ENM and their observed cytotoxicity. The
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model described aims to develop a foundation for predictive nanotoxicology. In particular,

the proposed methodology introduces a new measure of toxicity that is seamlessly integrated

into a multi-dimensional model that accounts for dose and duration kinetics jointly using a

flexible smooth surface fit. Moreover, the designed approach is appropriate for small sample

sizes, and includes a framework for advanced dimension reduction through variable selection.

We applied the proposed methodology to a material library of 24 metal oxide nanomaterials.
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CHAPTER 2

Toxicity Profiling of ENMs

2.1 Overview

New generation in-vitro high-throughput screening (HTS) assays for the assessment of en-

gineered nanomaterials provide an opportunity to learn how these particles interact at the

cellular level, particularly in relation to injury pathways. These types of assays are often

characterized by small sample sizes, high measurement error and high dimensionality, as

multiple cytotoxicity outcomes are measured across an array of doses and durations of expo-

sure. In this chapter we propose a probability model for the toxicity profiling of engineered

nanomaterials. A hierarchical structure is used to account for the multivariate nature of the

data by modeling dependence between outcomes and thereby combining information across

cytotoxicity pathways. In this framework we are able to provide a flexible surface-response

model that provides inference and generalizations of various classical risk assessment pa-

rameters. We discuss applications of this model to data on eight nanoparticles evaluated in

relation to four cytotoxicity parameters.

2.2 Introduction

Current research in nano-toxicology includes new generation high-throughput screening (HTS)

assays that enable the simultaneous observation of multiple cellular injury pathways across

an array of doses and times of exposure. In this chapter, for example, we analyze data

on eight metal and metal-oxide nanoparticles, monitored in relation to four cellular injury

responses derived from the hierarchical oxidative stress model of Nel et al. (2006) and Xia
8



Figure 2.1: Fluorescence images and heat map of raw data. On the left are fluores-
cence images of RAW cells treated with various nanomaterials (quantum dot, platinum, and
a negative control) and dyed with compatible dye combinations including MitoSox, JC1, PI,
and Fluo-4. The subsequence fluorescence read-out, measured at varying wavelengths, pro-
vides a measure of the number of cells positive for the response. On the right is a heat map
of the raw data for each particle and outcome. Colder colors indicate a smaller percentage of
cells positive for the response and warmer colors indicate a larger percentage of cells positive
for the response.

et al. (2006). All four outcomes are measured contemporaneously over a grid of ten doses and

seven hours of exposure (see Figure 2.1). The four measured responses include mitochon-

drial superoxide formation, loss of mitochondrial membrane potential, elevated intracellular

calcium, and membrane damage (George et al. 2009). For increasing dosage and duration

of exposure, we observe typical dose-response kinetics with outcomes possibly depending on

one another.

In toxicology, risk assessment involves the characterization of hazard as well as the po-

tential for exposure. The HTS framework provides a wealth of information about cellular

injury pathways, but proves a challenge for the classic risk assessment paradigm. In fact,

there is still disagreement in the HTS setting on how to define, and the appropriateness of,
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classical risk assessment parameters such as the no observable adverse effect level (NOAEL),

the lowest observable adverse effect level (LOAEL), and the dose that produces 50% of the

maximum response (EC50), among others.

Parametric functions such as families of sigmoidal curves are frequently used to fit dose-

response data. Some commonly used sigmoidal models include log-logistic models, log-

normal models, and Weibull models (see Ritz 2010 for a recent review of these models).

The log-logistic functions are the most frequently used for modeling dose-response data in

toxicology. The four parameter log-logistic model can be expressed as follows:

f(x; b, c, d, h) = c+ d− c
1 + exp[b{log(x)− log(h)}] . (2.1)

Here h, the inflection point in the curve, provides a convenient risk assessment parameter

since it can be interpreted as the 50% effective or inhibitory dose (EC50, IC50) (Emmens

1940). Other special cases of this model, frequently used in toxicology, include the 3 pa-

rameter log-logistic model which leads to the famous Hill equation (Hill 1910) and special

cases of the Michaelis-Menton kinetics. Further extensions of these models include the five

parameter log-logistic function, which provide a bit more flexibility by allowing the function

to be asymmetric (Finney 1979), and the Brain-Cousens model, which includes an extra

parameter to account for a possible favorable response to a toxin at low concentrations (Cal-

abrese and Baldwin 2003). In general these models assume that the dose-response function

is completely known apart from the few parameters to be estimated.

Several other methods have been proposed to model nonlinear dose-response relationships

relaxing strictly parametric assumptions. Ramsay (1988) proposed the use of monotone re-

gression splines to model a dose-response function. In this case, piecewise polynomials or

splines can allow greater flexibility, while achieving monotonicity by imposing constraints on

the estimated function. Li and Hunt (2004) proposed the use of linear B-splines with one

random interior knot to model a nonlinear dose-response curve. In this context, the random

interior knot provides inference on the dose at which the toxin begins to takes effect and

thereby provides a useful parameter for risk assessment. Kong and Eubank (2006) suggested
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the use of functions that combine smoothing spline techniques and the non-negativity prop-

erties of cubic B-splines to estimate the dose-response curve. The use of non-parametric

techniques to estimate dose-response curves often provides a more realistic representation of

the data generating process. At the same time, however, some of these techniques make it

more difficult to interpret the model in terms of classical risk assessment.

Recent literature advocates the simultaneous use of multiple outcomes to assess risk. Re-

gan and Catalano (1999) proposed a bivariate dose-response model that accounts for the de-

pendence among outcomes of developmental toxicity using generalized estimating equations.

Geys et al. (2001) proposed a similar model for risk assessment of developmental toxicity,

but approached the problem using latent variables. Yu and Catalano (2005) suggested a

model for quantitative risk assessment of bivariate continuous measures of neurotoxicity us-

ing percentile regression. These methods are often aimed at the analysis of one potentially

toxic agent as it relates to adverse events or continuous outcomes observed in association

with exposure over a range of doses. Their direct applicability to the general HTS setting

described earlier is therefore limited.

From a statistical perspective, cellular interrogation data based on high-throughput plat-

forms can be characterized as multivariate dependent observations. Each nanoparticle is

indeed associated with a multiple set of cellular outcomes recorded both longitudinally, in

relation to different exposure durations, and cross-sectionally, in relation to a dose escalation

design. This particular design structure suggests that valid statistical inference must account

for potentially complex patterns of dependence between different observations. A reasonable

dependence scheme might, for example, assume data to be dependent within outcome and

particle, as well as between outcomes for the same particle.

In conjunction with considerations related to the joint sampling distribution of these data

structures, appropriate statistical treatment must account for non-linearities in the mean

response associated with dose and duration dynamics. While, in principle, one can choose

to define a random response surface in a completely non-parametric fashion, it is important

to maintain a certain degree of interpretability, especially in relation to standard hazard
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assessment quantities of interest to substantive scientists. In summary, perhaps reductively,

the overall modeling challenge lies in the definition of a flexible and interpretable probabilistic

representation for a family of dependent dose-response random surfaces.

In this chapter, we propose a hierarchical dose-response model for the analysis of HTS

data from nanotoxicology. Our model builds on earlier work (Hastie and Tibshirani 1986,

Li and Hunt 2004), expanding on them to account for the multivariate nature of the data

and to address the estimation of a series of two dimensional dose-response surfaces. We

provide a flexible framework for modeling dose and duration-response kinetics jointly, while

providing inference on several risk assessment parameters of interest. We utilize a hierarchical

structure to define dependence between outcomes and thereby borrow strength across injury

pathways, providing the basis for a comprehensive risk assessment paradigm in HTS studies.

We account for outlying observations via a t-distributed error model and describe how to

carry out inference for the model parameters and their functions on the basis of simulated

draws from their posterior distribution. To our knowledge we are the first to propose a

principled statistical methodology for the joint analysis of this new generation of in-vitro

data.

The remainder of the chapter is organized as follows. In Section 2.3 we introduce the

proposed model. In Section 2.4 we discuss parameter estimation and associated inferential

details. Section 2.5 employs the proposed model for the analysis of 8 metal-oxide nanomate-

rials and describes inference for various risk assessment parameters of interest. We conclude

with a critical discussion of the limitations and possible extensions of our method in Section

2.6.

2.3 Model Formulation

2.3.1 Model Description

In this section we describe a dose-response model for a general HTS study, where we monitor

a multivariate continuous outcome y, corresponding to J cytotoxicity parameters, in associa-
12



tion with the exposure of a number of cells to I different ENMs. More precisely, let yijk(d, t)

denote a multivariate response corresponding to ENM i (i = 1, ..., I), cytotoxicity parameter

j (j = 1, ..., J), and replicate k (k = 1, ..., K) at dose d ∈ [0, D] and time t ∈ [0, T ]. In typical

applications one observes y over a discrete set of doses d̃ = (d1, ..., dm1)′ and exposure times

t̃ = (t1, ...., tm2)′. However, for clarity of exposition, we simplify our notation and without

loss of generality refer to a general dose d ∈ [0, D] and time t ∈ [0, T ]. We introduce the

following 4-stage hierarchical model.

Stage 1: Sampling Model

The observed response of particle i, cytotoxicity parameter j, and replicate k is modeled as:

yijk(d, t) = mij(d, t) + εijk(d, t), (2.2)

where εijk(d, t) ∼ N(0, σ2
εj
/τi). Here mij(d, t) denotes the response surface for particle i

and outcome j. The proposed response surface describes dose and duration kinetics for all

d ∈ [0, D] and t ∈ [0, T ] and is expected to exhibit a non-linear dynamic over these domains.

The distribution of yijk is modeled in terms of the error term εijk as a scaled mixture of normal

random variables to account for outlying observations. The error variance is defined in terms

of the measurement error variance σ2
εj
, specific to cytotoxicity parameter j, and on ENM-

specific variance inflation parameter τi. If we define the joint distribution of εijk(d, t) and τi
as P (εijk(d, t), τi) = P (εijk(d, t) | τi, σεj)P (τi | ν), choosing εijk(d, t) | τi, σεj ∼ N(0, σ2

εj
/τi)

and τi | ν ∼ Gamma(ν/2, ν/2), it can be shown that the marginal density of εijk(d, t) | σ2
εj
is

distributed as a T (σ2
εj
, ν) (West 1984). Under this framework, we can borrow strength across

all ENMs by assuming the error variance is the same, but retain robustness in the model by

allowing ENM-specific departures from normality. We allow the measurement error σεj to

vary between cytotoxicity parameters due to heterogeneity in the cytotoxicity outcomes.

Stage 2: Response model at the ENM by cytotoxicity parameter level

The dose-response surface mij(d, t) spans two dimensions (dose and time), and is modeled in

an additive fashion as described by Hastie and Tibshirani (1986). If we let (αij,β′ij,φ′ij,γ ′ij,
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ψ′ij, δ
′
ij,χ

′
ij)′ be a parameter vector indexing the dose-response surface mij(d, t), we can then

define

mij(d, t) = αij + fij(d; φij,βij) + gij(t; ψij,γij) + hij(d, t; χij, δij). (2.3)

Here fij(d; φij,βij) is a function modeling the effect of dose d on response j for ENM i.

Similarly, gij(t; ψij,γij) is the function modeling the effect of time t and hij(d, t; χij, δij) is

the function modeling the interactive effect of dose and time. More specifically, we model the

interaction of dose and time in a semi-parametric fashion as hij(dt; χij, δij). This parame-

terization allows us to retain direct interpretation of the model parameters, while avoiding

over-fitting of sparse data. To ensure likelihood identifiability, we require, without loss of

generality, that fij(d = 0; φij,βij) = 0, gij(t = 0; ψij,γij) = 0, and hij(dt = 0; χij, δij) = 0.

The parameters αij can therefore be interpreted as the background response level for each

particle and outcome.

We model dose-response curves fij(d; φij,βij), duration-response curves gij(t; ψij,γij),

and dose-time response curves hij(dt; χij, δij) as linear combinations of basis functions.

Specifically, we use linear B-splines with two random interior knots as points where the

slope changes in a piecewise linear fashion. Let B(x,η) denote a 4-dimensional B-spline ba-

sis with interior knots η = (η1, η2)′. Also, let βij = (βij1, .., βij4)′, γij = (γij1, ..., γij4)′,

and δij = (δij1, ..., δij4)′ be 4-dimensional vectors of spline coefficients. The functions

fij(d; φij,βij), gij(t; ψij,γij), and hij(dt; χij, δij) can then be represented as follows:

fij(d; φij,βij) = B(d,φij)′βij,

gij(t; ψij,γij) = B(t,ψij)′γij,

hij(dt; χij, δij) = B(dt,χij)′δij.

(2.4)

Identifiability restrictions, fij(d = 0; φij,βij) = 0, gij(t = 0; ψij,γij) = 0, and hij(dt =

0; χij, δij) = 0 are implemented by fixing βij1 = 0, γij1 = 0, and δij1 = 0, for all particles

and outcomes (see Figure 2.2 for an illustration).

Modeling dose and duration-response curves as piecewise linear functions allows for con-

siderable flexibility while maintaining direct interpretability of the model parameters. Recall
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Figure 2.2: dose-response as a change point model. (left) B-spline basis function of
degree 1, corresponding to change points (interior knots) at log doses of 1.5 and 4.5. (Middle)
Example dose-response curve. The basis function on the left corresponds to a spline function
with 2 change points. Each random change point has a corresponding distribution, resulting
in a smooth dose-response curve. (Right) Example of a marginal prior distribution on the
change points corresponding to the dose-response curve on the left. This formulation favors
(a-priori) the choice of conservative values for the location of the first change-point (solid
line), and a relatively diffuse prior for our second change-point (dotted line).

that in our formulation the interior knots are estimated as random quantities. This allows,

marginally, for a smooth dose-response trajectory that is automatically adjusted to fit the

data. The main advantage of the proposed functional representation is that, in the absence

of a dose-time interaction, one can interpret the first interior knot φij1 as the dose at which

ENM i becomes toxic in relation to cytotoxicity parameter j (Maximal Safe Dose - similar

to the classical NOAEL concept). A similar interpretation can be given to ψij1, in relation

to duration-response. Note that the foregoing interpretation is contingent on fixing βij2 = 0,

γij2 = 0, and χij2 = 0 when assuming no effect before the first change-point, and βij2 ≤ 0,

γij2 ≤ 0, and χij2 ≤ 0 when assuming a tonic effect before the first change-point. In the

presence of a dose-time interaction, interpretation changes slightly and we instead consider

the idea of safe exposure regions, which represent doses and time exposure combinations that

do not induce cytotoxicity. Finally, in the absence of an interaction, the parameters φij2 and

ψij2 are respectively interpreted as the dose and time at which the response stabilizes, or

cells start a possible recovery process.

We can expand the model further to allow for the exclusion of interaction functions, where
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not needed. To do that we include a latent indicator variable ρij, so that for each particle i

and outcome j

mij(d, t) =


αij + fij(d; φij,βij) + gij(t; ψij,γij) if ρij = 0

αij + fij(d; φij,βij) + gij(t; ψij,γij) + hij(dt; χij, δij) if ρij = 1,
(2.5)

where ρij ∼ Bern(π) and π ∼ U(0, 1). We require that if ρij = 0, hij(dt; χij, δij) > 0, to

ensure identifiability. The indicator variable ρij, can then be used to test explicitly for the

dose-time interactions. The exchangeable Bernoulli trials prior on ρij is designed to account

for multiplicities (Scott and Berger 2006). This trans-dimensional parameterization is key

to avoid overfitting, facilitates parameter interpretation, and allows for testing of specific

scientific hypotheses related to the biological interference of nanomaterials.

For each ENM i and response j, we define the following prior distributions for αij, βij, γij,

and δij:

αij ∼ N(αoi , σ2
αi

),

βij ∼ N4(βoi
,Σβi

)I{βij1 = 0; βij2 ≤ 0; (βij3, βij4) ≥ 0},

γij ∼ N4(γoi
,Σγi

)I{γij1 = 0; γij2 ≤ 0; (γij3, γij4) ≥ 0},

δij | ρij = 1 ∼ N4(mδij
,vδij

)I{δij1 = 0; δij2 ≤ 0; (δij3, δij4) > 0}.

(2.6)

The truncated support for βij , γij , and δij imposes functional constraints on f(·), g(·), and

h(·), which are consistent with the expected behavior of canonical dose and duration kinetics.

At the same time, however, it allows for the system to recover by permitting a decreasing

slope after the second change-point. The covariance matrix Σβi
has diagonal elements σβi`

,

` = 1, .., 4, and off diagonal elements equal to 0. Similarly for Σγi
.

Prior distributions for φij, ψij, and χij are defined to satisfy the following constraints:

(0 < φij1 < φij2 < D), (0 < ψij1 < ψij2 < T ), and (0 < χij1 < χij2 < DT ). More precisely,

we assume that the joint distribution of the interior dose and duration knots follows a
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generalized bivariate Beta density function, so that

φij ∼ B2(aφ1 , bφ1 , aφ2 , bφ2 , D),

ψij ∼ B2(aψ1 , bψ1 , aψ2 , bψ2 , T ),

χij ∼ B2(aχ1 , bχ1 , aχ2 , bχ2 , DT ).

(2.7)

Here we assume that a random vector x = (x1, x2)′ is distributed according to a general-

ized bivariate Beta distribution function (x ∼ B2(a1, b1, a2, b2,m)), with support S(x) =

{(x1, x2) : 0 < x1 < x2 < m}, if and only if:

p(x | a1, b1, a2, b2,m) = p(x1 | a1, b1,m) p(x2 | x1, a2, b2,m)

= 1
B(a1, b1)

xa1−1
1 (m− x1)b1−1

ma1+b1−1
1

B(a2, b2)
(x2 − x1)a2−1(m− x2)b2−1

(m− x1)a2+b2−1 .

(2.8)

The foregoing formulation, can be seen as a generalization of the Dirichlet distribution over

a two-dimensional simplex. This general formulation can be simplified further, in order to

achieve a right-skewed marginal distribution for x1 and a uniform conditional distribution

for x2 given x1. This is achieved by assuming b1 > a1 > 1 and a2 = b2 = 1.

Making use of this construction, we simplify the prior distribution in (2.7) as follows:

φij ∼ B2(1, λφi1 , λφi2 , 1, 1, D)I{λφi2 > λφi1 > 1},

ψij ∼ B2(1, λψi1 , λψi2 , 1, 1, T )I{λψi2 > λψi1 > 1},

χij ∼ B2(1, lχi1 , lχi2 , 1, 1, T )I{lχi2 > lχi1 > 1}.

(2.9)

From a regulatory standpoint, this formulation favors (a-priori) the choice of conservative

values for the location of the first change-point and a relatively diffuse prior distribution for

our second change-point (see Figure 2.2).

Stage 3: Response model at the ENM level

For each ENM i, we exploit conditional conjugacy to define the following prior distributions
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for population level parameters:

αoi ∼ N(mαi , vαi), βoi
∼ N4(mβi

,vβi
), γoi

∼ N4(mγi
,vγi

). (2.10)

In the absence of an interaction, the parameters βoi
and γoi

represent summaries of the dose

and duration-response trajectories across all outcomes and the αoi parameters represent a

summary of the baseline response across all outcomes. In the presence of an interaction, we

may construct these summaries conditionally on specific doses and durations of exposure.

Finally, considering the distribution introduced in (2.9), we define a prior model for pop-

ulation level parameters λφi
= (λφi1 , λφi2) and λψi

= (λψi1 , λψi2) as follows:

λφi` ∼ Gamma(aλφi` , bλφi`), λψi` ∼ Gamma(aλψi` , bλψi`), (2.11)

where ` = 1, 2. The parameters λφi
and λψi

can be used to construct summaries of dose and

duration-response change-points across all outcomes. Shape hyperparameters (aλφi` , bλφi`)

and (aλψi` , bλψi`) can be tuned to favor more or less conservative values for the change-point

locations at the particle level.

Stage 4: Hyperpriors

We complete the model by specifying prior distributions on our hyperparameters as follows:

1/σ2
εj
∼ Gamma(aεj , bεj), 1/σ2

αi
∼ Gamma(aαi , bαi),

1/σ2
βi
∼ Gamma(aβi , bβi), 1/σ2

γi
∼ Gamma(aγi , bγi).

(2.12)

We model our precision parameters as gamma distributions, exploiting conditional conju-

gacy. Again, prior parameters can be tuned to define more or less informative distributions

consistent with the scale of the outcomes (Gelman 2006). Note that in our formulation,

x ∼ Gamma(a, b) denotes a Gamma distributed random quantity with shape a and rate b,

such that E(x) = a/b.
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2.4 Estimation and Inference

2.4.1 Posterior Simulation via MCMC

Using the B-spline representation introduced in Section 2.3.1, we can write the expected j-th

response level associated with ENM i, at dose d, and exposure time t as

mij(d, t; αij,βij, · · ·) =


αij + B(d,φij)′βij + B(t,ψij)′γij if ρij = 0

αij + B(d,φij)′βij + B(t,ψij)′γij + B(dt,χij)′δij if ρij = 1

Let β = {βij : i = 1, . . . , I, j = 1, . . . , J} and define γ and δ in a similar fashion. These

parameters denote the full set of spline coefficients. Furthermore, consider knot parameters

φ = {φij : i = 1, . . . , I, j = 1, . . . , J}, with ψ and χ similarly defined, and background

response parameters α = {αij : i = 1, . . . , I, j = 1, . . . , J}. Finally, let σ2
ε = (σ2

ε1 , . . . , σ
2
εJ

)′

and τ = (τ1, . . . , τI)′. If we denote withY the complete set of response values for all particles

and cytotoxicity outcomes, the likelihood function can be written as follows:

L(β,γ, δ,φ,ψ,χ,α,σ2
ε , τ ,ρ | Y) ∝

∏
i,j,k,d,t

(σ2
εj

τi

)- 1
2

exp
{
-( yijk(d, t)−mij(d, t; . . .) )2

2σ2
εj
/τi

} ,
(2.13)

where the product is taken over all replicates k, particles i, outcomes j, doses d and times t.

We are interested in the posterior distribution

P (β,γ, δ,φ,ψ,χ,α,σ2
ε , τ ,ρ | Y) ∝ L(β,γ, δ,φ,ψ,χ,α,σ2

ε , τ ,ρ | Y)

×P (β,γ, δ,φ,ψ,χ,α,σ2
ε , τ ,ρ),

(2.14)

where the prior model P (β,γ, δ,φ,ψ,χ,α,σ2
ε , τ ,ρ), is fully described in Section 2.3.1. This

quantity is, however, unavailable in closed analytic form, therefore we base our inference on

Markov Chain Monte Carlo (MCMC) simulations.

The proposed posterior simulation algorithm combines Gibbs steps within Metropolis-

Hastings steps in a hybrid sampler, where we update parameters component-wise (Tierney

1994). We directly sample components when closed-form full conditional distributions are
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available using a Gibbs sampling algorithm (Geman and Geman 1984, Gelfand and Smith

1990); otherwise, we use the Metropolis-Hastings (MH) approach (Metropolis et al., 1953).

Available full conditional distributions are given in Appendix A.1. As we are considering

selection of interaction functions in a trans-dimensional setting, we implement a reversible

jumps algorithm to move between models with and without the dose-time interaction func-

tion hij(dt; χij, δij) (Green 1995). The model indicator ρij and corresponding model param-

eters δij and χij are updated jointly using reversible jump MCMC steps. After the model

structure has been specified, the model parameters are updated from their corresponding

conditional posterior distributions. The proposed sampling scheme can be summarized as

follows.

1. Fixed dimensional updates. Given the current state of the latent interaction indicators ρij,

response surfaces are uniquely defined as in (2.5). Posterior sampling is standard here and

proceeds by updating spline coefficients β,γ and δ from their conditional posterior via direct

simulation (Gibbs step - Appendix A.1). Knot parameters φ,ψ and χ are updated via a

MH step. For example, when sampling the interior knot parameters φ we use an appropriate

proposal kernel q(φ0
ij`, φ

1
ij`) to efficiently construct Markov chains with the desired stationary

distribution. While accounting for the fact that φij1 < φij2, we consider uniform proposal

densities of the form

q(φ1
ij` | φ0

ij`)=U(φ0
ij` − wφij`, φ0

ij` + wφij`)I(Sφ), (2.15)

where ` = 1, 2. Here Sφ denotes the appropriate support and must satisfy the constraints

0 < φij1 < φij2 < D. Proposed values of φij` are accepted with the following probabilities:

min
{

1;
p(φ1

ij` | yijk,θ\φ)
p(φ0

ij` | yijk,θ\φ)
q(φ0

ij` | φ1
ij`)

q(φ1
ij` | φ0

ij`)

}
, ` = 1, 2. (2.16)

To tune proposal kernels, each φij` was sampled using an initial value of w that was re-

calibrated throughout the burn-in period to achieve an acceptance rate between 30% and
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70% (Roberts and Rosenthal 2001). Specifically, the acceptance rate of φij` was monitored

every 200 iterations throughout the burn-in period with wφij` adjusted appropriately if the

acceptance rate did not fall within the desired range. A similar Metropolis-Hastings scheme

was adapted for sampling the duration-response parameters ψ, dose-time interaction param-

eters χij | ρij = 1, as well as for population level knot parameters.

2. Trans-dimensional updates. We sample the model space by randomly proposing the birth

or death of dose-time interaction functions hij(·). This is accomplished by selecting a particle

i and outcome j at random and by jointly updating ρij, δij and χij. In detail:

1. For uniformly random i ∈ (1, ...I) and j ∈ (1, ...J), propose a systematic change

ρ0
ij → ρ1

ij = 1− ρ0
ij. We assume for the moment that we propose moving from ρ0

ij = 0

to ρ1
ij = 1, implying the birth of a new interaction function hij(·).

2. Propose new knots and spline coefficients δ1
ij ∼ q(δ1

ij) and χ1
ij ∼ q(χ1

ij).

3. Accept the proposed move with probability τb = min(1, Rb), where

Rb =
p(yijk | δ1

ij,χ
1
ij, ρ

1
ij,θ\δij ,χij ,ρij)

p(yijk | ρ0
ij,θ\δij ,χij ,ρij)

p(δ1
ij | ρ1

ij)p(χ1
ij | ρ1

ij)
q(δ1

ij)q(χ1
ij)

p(ρ1
ij)

p(ρ0
ij)
, (2.17)

where we use θ\ω to denote all model parameters, with the exception of ω.

In the case where the proposed move would imply a death of an interaction function (ρ0
ij =

1→ ρ1
ij = 0), the acceptance probabilty would simply be τd = 1/τb.

While the proposal densities q(δij) q(χij) in (2.17) can in theory be defined almost arbi-

trarily, to guarantee efficient exploration of the model space we consider truncated multivari-

ate normal proposals for δij and χij centered around regions of high posterior probability.

Efficient optimization within the MCMC iterations is achieved using standard profile likeli-

hood ideas (Severini and Stainwalis 1994).
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2.4.2 Posterior Inference

In this section we discuss inference on ENM-specific risk assessment parameters, based on

draws from the posterior distribution described in Section 2.4.1. Table 2.1 summarizes

several quantities of interest including the maximal safe dose, maximal safe exposure time,

and the maximal response. This list is not exhaustive. However, other risk assessment

parameters of interest, such as benchmark doses (BMD) or effective concentrations (ECα)

are easily obtained from our model output in a numerical fashion. In the case of a dose-

time interaction, these quantities are defined conditionally on specific doses and durations

of exposure.

Let φ(n)
ij , ψ(n)

ij , χ(n)
ij , β(n)

ij , γ(n)
ij , δ(n)

ij , α(n)
ij and ρ(n)

ij , n = 1, ..., N , denote N MCMC draws

Parameter Model function Parameter interpretation
β∗3ij dose-response slope between φij1 and φij2 Overall dose effect
γ∗3ij duration-response slope between φij1 and φij2 Overall exposure time effect
φ1ij dose-response change point 1 Maximal safe dose
ψ1ij duration-response change point 1 Maximal safe exposure time
m∗ij Evaluated numerically Maximal response

Table 2.1: Risk assessment parameters. ENM level risk assessment parameters associ-
ated with the hierarchical model introduced in 2.3.1. For each parameter we summarize its
function in the model and the related interpretation as a cytotoxicity risk factor.

from the posterior distribution of φij , ψij , χij , βij , γij , αij and ρij. In the absence of an

interaction term, posterior samples φ(n)
ij1 and ψ(n)

ij1 directly provide us with an approximation

of the posterior distribution for the maximal safe dose and maximal safe exposure time. We

can also obtain the posterior samples for the overall dose effect, β∗(n)
ij3 = β

(n)
ij3 /(φ

(n)
ij2 − φ

(n)
ij1),

which is the slope of the dose-response curve between φij1 and φij2. Similarly, we can

obtain the posterior distribution for the overall time effect, using posterior samples γ∗(n)
ij3 =

γ
(n)
ij3 /(ψ

(n)
ij2 − ψ

(n)
ij1 ). In the presence of a dose-time interaction we can define any of the

summaries described above conditionally on a given dose and time. For example, the maximal

safe dose conditional on exposure time can be defined as min{φij1, χij1/t}, and posterior

samples can be obtained from min{φ(n)
ij1 , χ

(n)
ij1/t}. Given posterior draws, one can proceed with
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the straightforward construction of standard posterior summaries, such as means, maxima

a posteriori, modes, quantiles, and credible regions. We may also be interested in testing

for a dose-time interaction. The expected inclusion probability of the dose-time interaction

function can be estimated using posterior draws ρ(n)
ij as p̂ij = ∑

n ρ
(n)
ij /N . Given the prior

distribution described in (2.5), this posterior probability is known to adjust for multiplicities

and can be used to test for a dose-time interaction. Scott and Berger (2006), for example,

recommend selecting the median model, that is including all interactions for which p̂ij > 0.5.

Also of interest is an estimate of the dose-response surface, mij(d, t). for particle i and

outcome j. This surface is, of course, defined in an infinite-dimensional space. However, given

the basis-function representation introduced in Section 2.3.1, we only need finite draws from

the parameter set of interest. More precisely, draws from the marginal posterior distribution

of the dose-response surface for any dose d ∈ [0, D] and time t ∈ [0, T ] are given by

m
(n)
ij (d, t) =


α

(n)
ij + B(d,φ(n)

ij )′β(n)
ij + B(t,ψ(n)

ij )′γ(n)
ij if ρ(n)

ij = 0

α
(n)
ij + B(d,φ(n)

ij )′β(n)
ij + B(t,ψ(n)

ij )′γ(n)
ij + B(dt,χ(n)

ij )′δ(n)
ij if ρ(n)

ij = 1.
(2.18)

For each φ(n)
ij , ψ(n)

ij , β(n)
ij , φ(n)

ij , and α(n)
ij , n = 1, ..., N , we evaluate the dose-response function

given in (4.19) over a grid of values D̃ = (d1, ..., dn)′ and T̃ = (t1, ..., tn)′. The posterior mean

of the samples m(n)
ij , n = 1, ..., N , at each value of D̃ and T̃ can be used to summarize the

fit of the dose-response surface, as shown in Figures 2.3 to 2.6. Other quantities of interest

include the posterior distribution of the dose-response function fij(d; φij,βij), duration-

response function gij(t; ψij,γij), and dose-time interaction function hij(dt; χij, δij). Draws

from the marginal posterior distribution of these functions for any dose d ∈ [0, D] and time

t ∈ [0, T ] are given by
f

(n)
ij (d; φij,βij) = B(d, φ(n)

ij )′β(n)
ij ,

g
(n)
ij (t; ψij,γij) = B(t, ψ(n)

ij )′γ(n)
ij ,

h
(n)
ij (dt; χij, δij) = B(dt, χ(n)

ij )′δ(n)
ij .

(2.19)

For each draw, we evaluate the dose-response functions over a grid of values d ∈ D̃, and

the duration-response functions over a grid of values t ∈ T̃ . As described before, standard

point-wise posterior summaries can be obtained in a straightforward fashion. Simultaneous
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confidence bands for the functional effect of interest can be constructed following the Monte

Carlo approximation suggested by Baladandayuthapani et al. (2005).

Additional summaries of interest can be obtained in a numerical fashion. For example, the

posterior distribution for the maximal response value m∗ij = max{mij(d, t); d ∈ [0, D], t ∈

[0, T ]}, may be obtained evaluating m
(n)
ij (d, t) over a fine grid of doses D̃ and times T̃ .

An approximate posterior draw from m∗ij can be defined as m∗(n)
ij = max{m(n)

ij (d, t); d ∈

D̃, t ∈ T̃}. Given smoothness constraints on mij(d, t), defined in Section 2.3.1, the foregoing

procedure is likely to provide a good approximation to the posterior distribution of the

maximal response value, provided D̃ and T̃ define a sufficiently detailed evaluation grid.

Similar procedures may be adopted to obtain inference on other risk assessment parameters

like ECαs or BMDs.

2.5 Applications

2.5.1 Synthetic Data

To assess estimation of the model presented in Section 2.3, we present a simulation study in

Appendix A.2. The dose and time kinetics were simulated in an additive fashion, from var-

ious parametric functions, including both canonical and non-canonical profiles that are still

reasonably interpretable under a toxicity framework. We also placed increasingly conserva-

tive priors on the population level parameters λφi
and λφi

in order to assess the sensitivity

of the model results to our choice of prior parameters. In Appendix A.3, we provide an

additional sensitivity analysis assessing model results to our choice of prior model for the

change-point parameters. We compare our prior model results to both a truncated normal

prior and a parameterization of the bivariate beta prior that results in a uniform prior on

the simplex.

Simulation results indicate that our model is robust to model mis-specification and is not

very sensitive to our choice of prior. We do, however, maintain that using the bivariate

beta prior defined in (8) is likely to be more appropriate in data analytic frameworks, as the
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implied stochastic behavior of the response surface, a priori, reflects more closely the usual

biological mechanisms of toxicity. More specifically, it assigns zero probability of toxicity

to zero dose and time, where toxicity is indeed not expected to occur. Furthermore, this

prior accounts for issues such as dosimetry, in which the administered doses are confounded

by different particle bioavailability. Therefore, in some particles toxicity is not expected to

occur for doses and times greater than zero.

2.5.2 Case Study Background

We illustrate the proposed methodology by analyzing data on macrophage cells (RAW cells)

exposed to eight different metal and metal-oxide nanoparticles, monitored in relation to

four cytotoxicity parameters. All four outcomes are measured over a grid of ten doses and

seven times (hours) of exposure (see Figures 2.3 to 2.6). Cytotoxicity screening is based

on the hierarchical oxidative stress model (George et al. 2009). More specifically, a multi-

parametric assay that utilizes four compatible dye combinations and subsequent change in

fluorescence read-out was used to measure four responses relating to the highest tier of ox-

idative stress (toxic oxidative stress). The four measured responses include mitochondrial

superoxide formation (MSF), loss of mitochondrial membrane potential (MMP), elevated

intracellular calcium (EIC), and cellular membrane damage (CMD). Figure 2.1 provides flu-

orescence images of cells exposed to various nanomaterials (50 µg/mL and 3 hours), including

quantum dot, platinum, and a negative control consisting of no nanomaterials. Row 1 in-

cludes images of cells treated with a dye combination including MitoSox, which permeates

the mitochondria and fluoresces red when oxidized by superoxide. Red fluorescence measured

in cells treated with MitoSox is therefore a measure of mitochondrial superoxide formation.

Similarly, in Row 2 cells are treated with a dye combination including JC1, which stains

the cytoplasm red in healthy cells, but forms a monomer in cells with decreased membrane

potential and consequently stains the cytoplasm green. Finally, in Row 3 cells are strained

with a dye combination including Fluo-4 and Propidium Iodide (PI). In cells with damaged

membranes, PI is able to permeate the cell and bind to DNA where it causes the nucleus to
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emit a red florescence. Fluo-4 is a dye that emits a green fluorescence in the cytoplasm in

cells with elevated intracellular calcium. Each sample was also stained with a Hoechst dye

which causes all cell nuclei to emit a blue florescence, allowing for a count of the total number

of cells. An analysis of the fluorescence readout, monitored at varying wavelengths, results

in a measure of the percentage of cells positive for each response. Figure 2.1 also provides a

heat map of the raw responses for each particle and outcome, where colder colors (blues and

greens) indicate a smaller percentages of cells positive for the response and warmer colors

(oranges and reds) indicate a higher percentage of cells positive for the response. The final

data was normalized using a logit transformation to unconstrain the support so that it can

take on values between -∞ and ∞. Our inferences are based on 20,000 MCMC samples

from the posterior distribution in (4.18), after discarding a conservative 60,000 iterations for

burn-in. MCMC sampling was performed in R version 2.10.0, and convergence diagnostics

were performed using the package CODA (Convergence Diagnostics and Output Analysis),

(Plummerm et al. 2006).

2.5.3 Case Study Analysis and Results

We fit the model described in Section 2.3.1 to the metal-oxide data-set described in the

previous section. The prior on the interior knot parameters was modeled using the sim-

plified density described in (2.9). A set of relatively non-informative Gamma(2, 1) and

Gamma(3, 1) priors were considered for the components of both λφi
and λψi

, along with a

vague B2(2, 3, 1, 1, DT ) prior for our dose-time interaction change-point parameter χij. We

also fixed βij2 = 0 and γij2 = 0, assuming no effect before φij1 and ψij1, thereby allowing,

in the absence of a dose-time interaction, the interpretation of φij1 as the maximal safe dose

and ψij1 as the maximal safe exposure time. Similarly, when ρij = 1, we fixed δij2 = 0. We

placed Gamma(.01, .01) priors on the 1/σεj parameters, Gamma(1, .1) priors on all remain-

ing precision parameters, and N(0, 10) priors on the αoi parameters. The parameters βoi
and γoi are modeled as truncated multivariate normals with mean 1 and a covariance matrix

with diagonal elements 10 and off diagonal elements 0. Finally, we placed a prior distribution
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Figure 2.3: Fitted response curves for the platinum (Pt) ENM. Fitted response
surfaces (column 1), dose-response function, fij(d) (column 2), duration-response function,
gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and associated 95%
posterior intervals. In (column 1), the color red represents response values corresponding
to lower time points and the color black represents response values corresponding to higher
time points.
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Figure 2.4: Fitted response curves for the quantum dot (QD) ENM. (left) Fitted
response surfaces (column 1), dose-response function, fij(d) (column 2), duration-response
function, gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and as-
sociated 95% posterior intervals. In (column 1), the color red represents response values
corresponding to lower time points and the color black represents response values corre-
sponding to higher time points.
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Figure 2.5: Fitted response curves for the gold (Au) ENM. Fitted response surfaces
(column 1), dose-response function, fij(d) (column 2), duration-response function, gij(t) (col-
umn 3), dose/duration interaction function, hij(dt) (column 4) and associated 95% posterior
intervals. In (column 1), the color red represents response values corresponding to lower time
points and the color black represents response values corresponding to higher time points.
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Figure 2.6: Fitted response curves for the quantum dot (ZnO) ENM. Fitted response
surfaces (column 1), dose-response function, fij(d) (column 2), duration-response function,
gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and associated 95%
posterior intervals. In (column 1), the color red represents response values corresponding
to lower time points and the color black represents response values corresponding to higher
time points.
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on the degrees of freedom parameter ν, for the t-distributed error described in Section 2.3.1.

We specified the prior to be uniform on 1, 2, 4, 8, 16, and 32 degrees of freedom (Besag and

Higdon 1999). In concordance with our synthetic data experiments, a sensitivity analysis on

the case study data-set proved robust to reasonable variations in the prior specification.

We provide graphical summaries of goodness of fit and posterior predictive performance

in Figure 2.7. The top panel shows the mean and 95% posterior intervals of the posterior

predictive mean response across all doses and times of exposure (black), along with the em-

pirical mean response (red), for each particle and outcome. In all cases the empirical mean

response is contained within the 95% posterior intervals of the posterior predictive mean

distribution, indicating good average posterior coverage across doses and times of exposure.

The bottom panel provides a plot of the probability integral transform histogram for the

entire model (Gneiting et al. 2007). Visual assessment of the plot indicates that it is close to

uniformity, suggesting relatively good posterior predictive calibration. Additional summaries

and diagnostic tools are detailed in Appendix A.5.

Figures 2.3 to 2.6 illustrate data and results associated with four of the particles examined

in this HTS study. Particularly, we report inference for platinum, quantum dot, zinc oxide,

and gold nanomaterials for each of the four cytotoxicity outcomes. Inferences for the re-

maining four particles are reported in Appendix A.4. Specifically, column 1 shows expected

posterior response surfaces across dose and time for all outcomes. As the posterior expecta-

tion marginalizes over the interior knots, smooth surfaces reflect the uncertainty about the

location of the change-points, and provide an illustration of how the proposed technique will

adjust for smoothness in an unsupervised fashion. Also included are functional posterior

expectations associated with dose-response curves fij(d) (column 2), representing the effect

due to dose; duration-response curves gij(t) (column 3), representing the effect due to expo-

sure time; and the expected dose-time interaction function hij(t) (column 4).

Figure 2.8 provides a plot of the estimated median response, relative to the background,

for different doses and times of exposure. Blue colors indicate safety regions or areas of

reduced risk to the cells, while red regions indicate increased risk of cytotoxicity. Finally,

Figure 2.9 provides posterior summary estimates, including mean and 95% posterior inter-
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Figure 2.7: Graphical model diagnostics. (Bottom) Probability Integral Transform
assessing empirical calibration of the posterior predictive distribution. (Top) Mean and 95%
posterior intervals of the posterior predictive mean response across all doses and times of
exposure, for all outcomes and particles 1 through 8 (QD, ZnO, Fe3O4, Pt, Ag, SiO2, Al2O3,
Au). Also included are the empirical mean responses across all doses and times of exposure
(red).

32



vals, for the maximal safe dose conditional on the duration of exposure. Note that in the

absence of a dose-time interaction, the maximal safe dose is the same across all exposure

times.

Quantum dot (QD) shows a relatively high toxic response for plasma membrane damage

and mitochondrial superoxide formation. In particular, we see a more pronounced dose effect

for membrane damage and both a time, dose and significant dose-time interaction (ρ̂ = .99)

effect for mitochondrial superoxide formation. This supports previous findings with con-

ventional assays that QD nanoparticles stabilized by toluene are capable of inducing tier 2

and 3 oxidative stress responses induced by the toluene (George et al. 2011). Platinum (Pt)

shows a pronounced dose, time, and dose-time interaction effect (ρ̂ = .99) for mitochondrial

superoxide formation. Platinum also shows a notable time effect for elevated calcium but

not for mitochondrial depolarization or membrane damage, indicating that the particle in-

duced sub-lethal effects to the cell without cytotoxicity. The Zinc oxide nanoparticle (ZnO)

shows a relatively high toxic response for plasma membrane damage, elevated calcium and

mitochondrial depolarization. In particular, we see a more pronounced time effect for the

elevated calcium and both a time and dose effect for membrane damage and mitochondrial

depolarization. This again verifies what has previously been demonstrated in conventional

assays, in which ZnO nanoparticles have been found to be capable of inducing tier 2 and 3

oxidative stress responses through Zn+
2 release (George et al. 2009). In contrast, the gold

nanoparticle (Al) shows very little response for all outcomes, indicating that, compared to

the other particles, it has small risk of inducing a sublethal or lethal cytotoxic response.

2.6 Discussion

In this chapter, we propose a statistical framework for modeling dependent dose-response

surfaces over multivariate outcomes. The proposed methodology accounts for dose and

duration kinetics jointly using a flexible model that does not compromise interpretability.

We account for the multivariate nature of the data using the hierarchical framework and
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Figure 2.8: Safe exposure regions for the quantum dot (QD), platinum (Pt), gold
(Au), and zinc oxide (ZnO) nanomaterials. For each particle and outcome we can
define dose and time exposure regions which do not induce cytotoxicity. Red colored regions
indicate greater cytotoxicity to the cells, whereas blue colored regions indicate reduced risk.
Contour lines quantitate the median estimated response, relative to the background, where
zero response areas can be interpreted as safe exposure regions.
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Figure 2.9: Maximal Safe Dose for the quantum dot (QD), platinum (Pt), gold
(Au), and Zinc Oxide (ZnO) nanomaterials. Posterior summary estimates of the
maximal safe dose, conditional on exposure time, including the posterior mean and associated
95% posterior intervals. In the case of no interaction, the maximal safe dose is the same
across all times.
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thereby efficiently combine information and borrow strength across cellular injury patterns.

We account for the non-robust nature of the data by allowing for particle specific variance

inflation, resulting in a t-distributed model for the error structure.

The main challenge associated with the class of models proposed in this chapter is finding

the right balance between model complexity and model interpretability. An alternative

formulation of the dose-response surface would seek inference for a general smooth surface

mij(d, t). However, our simplified approach, based on the assumptions of additivity and

linearity, maintains a very appealing level of interpretability, allowing for the definition of

specific risk assessment parameters while maintaining an adequate level of flexibility. A

related generalization of the proposed additive framework would include a more general

class of functional interactions to account for a possible synergistic effect between dose and

duration of exposure. This would come at the cost of reduced interpretability, but, at the

same time, could be of clear scientific interest in some contexts. In this initial modeling

effort, we chose to work with a t-distributed error structure and therefore normalized our

response to unconstrain the support so that it could take on values between -∞ and ∞.

An alternative formulation could retain the original scale of the data, but rather define a

generalized multivariate model such that the outcome distribution can be described using

binomial or beta random quantities. This extension would require a substantial increase

in computational complexity, with the possible need to consider numerical or analytical

approximations, but it is clearly worthy of further methodological exploration.

The hierarchical formulation introduced in this chapter is easily adapted to the case where

multiple cell lines are used to test for cytotoxicity. A natural integration strategy would

perhaps find motivation in the meta analytic framework, with information shared between

experiments via the inclusion of one extra level in the hierarchy.

Finally, the proposed model can also be expanded by the inclusion of covariates. This

is naturally defined as an extension to stage 3 of the model introduced in Section 2.3. The

addition of covariates is especially important for relating specific ENM properties to toxicity,

and is therefore an important area for future work.
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CHAPTER 3

Hierarchical Rank Aggregation

3.1 Overview

The development of high-throughput screening (HTS) assays in the field of nanotoxicology

provide new opportunities for the hazard assessment and ranking of engineered nanomaterials

(ENMs). It is often necessary to rank lists of materials based on multiple risk assessment

parameters, often aggregated across several measures of toxicity and possibly spanning an

array of experimental platforms. Bayesian models coupled with the optimization of loss

functions have been shown to provide an effective framework for conducting inference on

ranks. In this article we present various loss function based ranking approaches and apply

them to the ranking of particles for combinations of experiments and toxicity outcomes.

Additionally, we propose a framework for the aggregation of ranks across different sources

of evidence, which also allows for the differential weighting of this evidence based on its

reliability and importance in risk ranking. We apply these methods to high-throughput

toxicity data on two human cell lines exposed to eight different nanomaterials and measured

in relation to four cytotoxicity outcomes.

3.2 Introduction

This chapter considers hazard ranking of engineered nanomaterials (ENMs) from high-

throughput screening (HTS) studies. Decision support, specifically involving hazard rank-

ing, can be used to develop a framework for the prioritization of extensive in-vivo testing

of emerging nanomaterials. Given ethical and economic considerations associated with an-
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imal experiments, initial prioritization schemes must indeed rely on high content in-vitro

screening of a large number of particles (Lilienblum et al. 2008).

The statistical challenge associated with hazard ranking from HTS data lies in its richness

and heterogeneity, as multi-dimensional measurements are often taken over a small number

of replicates with relatively low signal. Inferential goals include toxicity ranking of ENMs,

as well as associated measures of uncertainty, both within and aggregated across the many

sources of evidence. A heat-map visualization of a sample HTS data set is provided in Figure

3.1, where the toxic response of two human cell lines, exposed to eight different nanoparticles,

is measured in relation to four cellular response outcomes monitored across an array of doses

and durations of exposure.

We propose an approach to ranking particles aimed at achieving three goals: to use

a hierarchical dose-response model to rank particles within outcomes and experiments; to

derive an aggregate or consensus ranking that summarizes information across outcomes and

experiments; and finally to account for the varying levels of reliability and importance of the

outcomes and experiments. An aggregate ranking across different outcomes and experiments

can aid in decision-making for future testing. Although the rankings within outcomes or

experiments are expected to be positively correlated this does not guarantee that the ranked

lists of ENMs will be in complete agreement. As an example, Figure 3.2 shows dose-response-

surfaces fit to HTS toxicity data for quantum dots, nano-zinc oxide and nano-platinum.

Nano-platinum shows higher responses for mitochondrial superoxide formation and almost

no response for membrane damage. Conversely, zinc oxide has a very strong response for

membrane damage. Furthermore, different sources of information come with varying levels of

reliability and importance in terms of assessing overall toxicity. For example, while membrane

damage is viewed as a lethal response to the cell, mitochondrial superoxide formation is only

a sublethal indicator of cellular oxidative stress. Therefore, the information derived from

these outcomes might need to be weighted differently when ranking a material’s hazard

potential.

We illustrate the proposed framework for analyzing and ranking data on two cell lines

38



Figure 3.1: Heatmap of HTS data assessing the cytotoxicity of eight different
ENMs. The rows and columns correspond to the doses and times of exposure, respectively,
for each cell type and cytotoxicity parameter measured. The four cytotoxicity parameters
measured include mitochondrial superoxide formation (MSF), loss of mitochondrial mem-
brane potential (MMP), elevated intracellular calcium (EIC), and cellular membrane damage
(CMD). Blue colors indicate the least harmful activity, while yellow indicates a high cellular
response.

exposed to eight metal and metal-oxide nanoparticles, monitored for the presence of four

cytotoxicity outcomes, and measured across an array of doses and times of exposure.

The multi-level structure of the data coupled with the non-standard inferential goals can

be naturally accounted for under the Bayesian hierarchical framework. Shen and Louis (1998)

and Lockwood et al. (2002) describe rank estimation under a Bayesian setting and show

that rather than ranking posterior means, estimation based on minimizing a loss function

specific to ranks is more appropriate. Lin et al. (2006) explore ranking based on optimizing

various loss functions using a two-stage hierarchical model. More specifically, they review
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ranking based on squared-error loss and extend this to other loss functions that are tuned

to application specific goals. For example, when the goal is to identify relatively high or

low rankers, a loss function that penalizes classification errors produces estimates which

minimize error. Lin et al. (2009) apply various loss functions to ranking health service

providers based on standardized mortality ratios estimated from a two-stage hierarchical

model. Noma et al. (2010) extend some of these ideas to the analysis of microarray data and

develop three empirical Bayes methods for ranking genes based on a hierarchical mixture

model for differential expression.

The problems of comparing lists and rank aggregation have also been considered in the

computer science and bioinformatics literature in relation to meta-search (Dwork et al. 2001

and Fagin et al. 2003). Fagin et al. (2003) defined a set of distance measures that could be

used to quantify dissimilarities between lists. In the context of rank aggregation, they are

interested in finding the collection of measures that has the minimum total distance with

respect to the given lists. Dwork et al. (2001) considered the problem of aggregating across

lists using a Markov process approach. First, pairwise majority preferences are summarized

across lists and then the matrix of pairwise preferences are used to produce a Markov Chain

(MC) transition matrix. The aggregate ranking can then be defined according to the sta-

tionary distribution of this MC. DeSemet et al. (2002) used a similar approach to model the

aggregate behavior of a large number of decision makers. These techniques, however, are

designed to work with summaries of previously analyzed data sets, and to our knowledge are

not directly applicable to a comprehensive data-fusion exercise.

In this chapter we present various loss-function-based ranking methods, including those

suggested by Shen and Louis (1998) and Lin et al. (2006), and apply them to the ranking

of HTS data within outcomes and experiments. Additionally, we build on this approach,

describing loss-functions that can be used to provide an overall ranking of particles, and

thereby propose a framework for the prioritization of further testing of high risk materials.

The remainder of this chapter is organized as follows. In Section 3.3 we introduce a general

statistical model for toxicity profiling and estimation of various risk assessment parameters.
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In Section 3.4 we present various loss function based methods for ranking and discuss the

applicability of these methods to nanoparticle toxicology. In Section 3.5 we apply these

methods to the analysis and ranking of eight metal-oxide nanomaterials. Finally, we conclude

with a critical discussion of the limitations and possible extensions of these methods in

Section 3.6.

3.3 Statistical Models of Toxicity

In this section we describe a basic framework for a dose-response model for a general HTS

study, in which we monitor a multivariate continuous outcome y, corresponding to J cytotox-

icity parameters, in association with the exposure of a number of cells to I different ENMs.

We are also interested in combining results acrossK different experiments, often consisting of

multi-outcome HTS assays conducted over K cell lines. More precisely, let yijk`(d, t) denote

the response corresponding to ENM i (i = 1, ..., I), cytotoxicity parameter j (j = 1, ..., J),

experiment k (k = 1, ..., K) and replicate ` (` = 1, ..., L), for a cell population exposed to

dose d ∈ [0, D] for a duration t ∈ [0, T ]. In practice, observations are obtained over a dis-

crete set of doses and durations of exposure. However, for simplicity of notation and without

loss of generality, we will assume that doses and times are defined over continuous intervals.

Hazard ranking will focus on the expected response E{yijk`(d, t)} = mijk(d, t), where mijk(·)

defines the exposure-duration dynamic for the process under study and may be specified in

a parametric or non-parametric fashion. The proposed hazard ranking framework will not

depend on specific representations of this quantity. We therefore maintain the discussion on

fairly general grounds, leaving specific modeling considerations to the case study in Section

3.5. A detailed discussion of these issues is also reported in Chapter 2.

For notational convenience we will simply identify the full exposure-duration surface with

mijk = {mijk(d, t) : d ∈ [0, T ], t ∈ [0, T ]}. We assume that the joint distribution of

an integrated HTS experiment can be represented by the following multi-stage hierarchical
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Figure 3.2: Fitted response-surfaces for the quantum dot (QD), zinc oxide (ZnO)
and platinum (Pt) nanomaterials exposed to the macrophage (RAW 264.7) cell
line. Each of the four responses measured include: mitochondrial superoxide formation
(MSF), loss of mitochondrial membrane potential (MMP), elevated intracellular calcium
(EIC), and cellular membrane damage (CMD).
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model
yijk`(d, t) | mijk, σ

2
ijk ∼ p(yijk`(d, t) | mijk, σ

2
ijk)

mijk | mij, σ
2
ij ∼ p(mijk | mij, σ

2
ij)

mij | mi, σ
2
i ∼ p(mij | mi, σ

2
i )

mi ∼ p(mi),

(3.1)

where mij and mi denote exposure-duration surfaces at the integrated particle-by-outcome

(ij) and integrated particle (i) levels. The model is completed with prior distributions on

variance components and possible nuisance parameters.

Let, m = {mijk : i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K} denote the set of all

smooth surfaces and let σ2 = {σ2
ijk : i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K} be the set

of all variance parameters. Furthermore, if we denote by Y the complete set of response

values for all particles, cytotoxicity parameters, and experiments, all evidence available over

exposure-duration dynamics and associated variability at the different levels of the hierarchy

is contained in the posterior distribution

p(m,σ | Y ) ∝ p(Y |m,σ2)p(m,σ2). (3.2)

This quantity, or most often Monte Carlo samples from this joint distribution, can be used

to calculate the joint posterior distribution of various functionals g(mijk). These functions

provide easily interpretable summaries of full exposure-duration dynamics, which may be

used as overall measures of hazard. Some examples of risk assessment summaries frequently

used in toxicology include exposure levels or time thresholds below which no significant

effect exists, doses or times at which adverse effects rise above some predetermined amount

as compared to the background (benchmark doses), and summaries of the slope of the dose-

response trajectory including the dose or time that produces an α% inhibitory response

(ECα) (Edler et al. 2002). These measures summarize different aspects of a response-surface,

and in most cases are computed separately for dose and time kinetics. Although no sufficient

univariate measure exists that can synthesize every aspect of the response-surface, in this

paper we will focus on the area under the response-surface as a possible summary measure
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(Section 3.5). However, we maintain that the proposed method is directly applicable to any

functional of the response-surface set m.

3.4 Decision Theoretic Approaches to Hazard Ranking

3.4.1 Estimating Ranks

Most common ranking methods are based on ordering estimates of target parameters, such

as MLEs and posterior means, or on the ordering of statistics testing some null hypothesis

of interest. As described, among others, by Louis and Shen (1999) and Lin et al. (2006),

these methods perform poorly when the posterior distributions of the target parameters

are not stochastically ordered and are not invariant under monotone transformation of the

target parameters. A more appropriate method of ranking is based on calculating the joint

posterior distribution of the ranks, followed by inference guided by loss functions appropriate

for analytic goals.

The rank of some target parameter g(mijk), for each particle i, outcome j, and experiment

k can be defined as the sum represented by
I∑

h=1
1{g(mijk)≥g(mhjk)}. A direct extension of this

definition to the aggregate ranking of particles, for example, across K experiments, might be

defined by the ranks of population level parameters g(mij). A caveat of this procedure is that,

due to technical and/or biological sources of variability, data on heterogeneous measures of

toxicity may support high posterior variances for population level parameters, which are not

necessarily reflected in small rank correlations amongst lower level quantities. This procedure

may in fact result in the artificial inflation of reported aggregate rank variability.

In order to avoid this paradox, we define aggregate ranks across experiments but within

outcomes, and across outcomes and experiments, as a weighted average of individual ranks

within both outcomes and experiments. More formally, the rank of our target parameter,
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g(mijk), at each level of hierarchy, can be described as follows:

Rijk = rank(g(mijk)) =
I∑

h=1
1{g(mijk)≥g(mhjk)}

Rij =
K∑
k=1

wekRijk

K∑
k=1

wek = 1

Ri =
J∑
j=1

wek
K∑
k=1

wojRijk

J∑
j=1

woj = 1

(3.3)

where, a rank of 1 corresponds to the highest rank, or most hazardous particle. Here, the

Rijk allow us to determine the rank of each particle within each cytotoxicity outcome and

experimental group. Rij is the rank of each particle within each cytotoxicity parameter, but

aggregated across all experiments. Ri is an overall summary of the rank of each particle

across all cytotoxicity parameters and experimental groups. Finally, woj and wek are weight

functions that allow us to assign a measure of importance to each cytotoxicity parameter j

and experiment k.

Provided that draws from p(mijk | Y ) are available via Markov Chain Monte Carlo

(MCMC) or otherwise, all knowledge about Rijk is easily summarized in the posterior

distribution p(Rijk | Y ), and similarly for Rij and Ri. In the following sections we describe

in detail optimal point estimators of ranks at the different levels of the hierarchy from a

decision theoretic perspective, as well as potential substantive strategies to select weights

woj and wek.

3.4.2 Rank Estimates Based on Squared-Error Loss Functions

Following Shen and Louis (1998) and Lockwood et al. (2002), a natural choice for loss

functions may be based on the squared-error associated with posterior ranks. Let Rest
ijk be a

point estimator for the posterior rank of particle i, outcome j, experiment k, and similarly

for Rest
ij and Rest

i . For each particle at each level of hierarchy squared-error loss functions
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can be described as follows:

L
(SEL)
jk = L

(SEL)
jk

(
Rest
ijk, Rijk

)
= 1

I

∑
i

(
Rest
ijk −Rijk

)2
,

L
(SEL)
j = L

(SEL)
j

(
Rest
ij , Rij

)
= 1

I

∑
i

(
Rest
ij −

K∑
k=1

wekRijk

)2

,

L(SEL) = L(SEL) (Rest
i , Ri) = 1

I

∑
i

(
Rest
i −

J∑
j=1

woj
K∑
k=1

wojRijk

)2

.

(3.4)

These loss functions are minimized by the following posterior means,

R̄ijk(Y ) = Eg(mijk)|Y [Rijk | Y ] =
I∑

h=1
P (g(mijk) ≥ g(mhjk) | Y ),

R̄ij(Y ) = Eg(mijk)|Y [Rij | Y ] =
K∑
k=1

wek
I∑

h=1
P (g(mijk) ≥ g(mhjk) | Y ),

R̄i(Y ) = Eg(mijk)|Y [Ri | Y ] =
J∑
j=1

woj
K∑
k=1

wek
I∑

h=1
P (g(mijk) ≥ g(mhjk) | Y ).

(3.5)

The R̄i are generally not integer values. For optimal integer ranks we use R̂i = rank(R̄i),

and similarly, for R̄ij and R̄ijk. In some cases it is more convenient to define percentiles

instead of ranks (Lockwood et al. 2002). Therefore, we let Qijk = Rijk/(I + 1) denote the

percentile rank for particle i, outcome j, and experiment k. Again, we can write similar

expressions for Qi and Qij.

3.4.3 Rank Estimates Based on Upper 100(1− γ)% or Lower 100(γ)% Loss Func-

tions

In many situations, interest may focus on identifying some fraction of particles with the

highest (or lowest) likelihood of conferring adverse effects. Lin et al. (2006) proposed a loss

function which addresses this goal by penalizing misclassification by an amount that depends

on the distance of the estimated percentile from some cut-point γ. Let γ (0 < γ < 1) denote

the most toxic fraction of total ENMs that we would like to identify. Also let Qest
ijk be a point

estimator for the posterior percentile rank of particle i, outcome j, and experiment k, and

similarly for Qest
ij and Qest

i . In order to rank ENMs at each level of hierarchy, loss functions
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based on the upper 100(1− γ)% classification error can be described as follows:

L
(PLF )
jk = 1

I

∑
i

(
γ −Qest

ijk

)2 (
1{Qijk>γ,Qestijk<γ} + I{Qijk<γ,Qestijk>γ}

)
,

L
(PLF )
j = 1

I

∑
i

(
γ −Qest

ij

)2 (
1{Qij>γ,Qestij <γ} + I{Qij<γ,Qestij >γ}

)
,

L(PLF ) = 1
I

∑
i

(γ −Qest
i )2 (

1{Qi>γ,Qesti <γ} + I{Qi<γ,Qesti >γ}

)
.

(3.6)

For notational convenience we will assume γI is an integer and let

πijk(γ) = P (Rijk > γ(I + 1) | Y ) =
I∑
n
P (Rijk = n | Y ),

πij(γ) = P (
K∑
k=1

wojRijk > γ(I + 1) | Y ) =
I∑
n
P (

K∑
k=1

wojRijk = n | Y ),

πi(γ) = P (
J∑
j=1

wek
K∑
k=1

wojRijk > γ(I + 1) | Y ) =
I∑
n
P (

J∑
j=1

wek
K∑
k=1

wojRijk = n | Y ).

(3.7)

where n = γI+1. The quantities that minimize the posterior risk induced by the loss function

described in (3.6) can be described by: R̃ijk(γ) = rank(πijk(γ)), for particle i, cytotoxicity

parameter j, and experiment k. We can write similar expressions for R̃ij(γ) and R̃i(γ). Here

we have optimized the classification errors for ranking the most hazardous particles. Ranking

based on particles least likely to be hazardous will follow a similar procedure.

3.4.4 Assigning Weights

Different sources of information come with varying levels of reliability and importance in

terms of hazard ranking. Our definitions of aggregate ranks include weights woj, averaging

across J possible outcomes, and wek, averaging across K experiments. These quantities may

be used directly in the definition of aggregate ranks in a way that reflects possibly differing

measures of importance to be assigned to each outcome and experiment.

The definition of differentiated aggregate hazard measures is especially important in HTS

cytotoxicity studies. A typical HTS assay will, in fact, include outcomes measuring only

sublethal effects, often used as hypothesis generation and confirmatory tools by biologists,

as well as outcomes measuring lethal effects, which are more directly related to cytotoxicity.

47



Intuitively, we might want to give a higher weight to particles that induce lethal effects

relative to particles that only induce sublethal effects without cytotoxicity. For example, in

cytotoxicity studies of metal-oxide nanomaterials, PI uptake, a measure of cellular membrane

damage, is the outcome most often chosen to carry out risk ranking (George et al. 2011).

Similar considerations are valid for the differential weighting of experiments. For example

George et al. (2009) report an experiment carried out on two cell lines: bronchial epithelial

cells and a macrophage cells. In this case, one cell line may prove more relevant for the

prioritization of animal inhalation toxicity experiments as compared to the other. When no

particular experiments or outcomes are considered to be more or less relevant as a measure

of hazard, uniform weights can be applied.

While differential weighting is, in principle, completely general and can be determined

using expert’s criteria, we found that it is often easier to obtain expert opinion on the

ordering of different outcomes and experiments. If we let (π1, ...πk...πK) be the ordering of

the K experiments based on relative importance, then one possibility for assigning weights

is to find we1, ...weπK , such that

weπk−1 = δweπk ,
K∑
k=1

δk−1weπ1 = 1, for k = 1, . . . , K; δ ≥ 1; (3.8)

leading to wek = δk−1/
∑K
h=1 δ

h−1. Aggregate weight determination across J outcomes can

be obtained in the same fashion. In this formulation, differential weighting depends solely

on a one dimensional, easily interpreted parameter δ. A value of δ equal to 1 assigns equal

importance to each experiment, while a value of δ equal to .5 assigns twice the importance

to experiment πk−1 as experiment πk. Alternatively, weights woj and wek can be given arbi-

trary values, for example based on expert elicitation, as long as they satisfy the constraints
J∑
j=1

woj = 1 and
K∑
k=1

wek = 1.
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Figure 3.3: Rankings based on squared-error loss using equal weights for all out-
comes. Posterior expected ranks and 95% posterior intervals computed by minimizing
squared-error loss. Each cell-line and outcome is given equal weight. Ranks are displayed
individually within outcomes and experiments (black), aggregated across experiments, but
within outcomes (red), and aggregated across all outcomes and experiments (yellow).

Figure 3.4: Rankings based on squared-error loss using moderately aggressive
weights favoring important outcomes. Posterior expected ranks and 95% posterior
intervals computed by minimizing squared-error loss. Each cell-line is given equal weight,
and each outcome is given weights (.37, .27, .21, .15), in the order (CMD, MSF, MMP, EIC).
Ranks are displayed individually within outcomes and experiments (black), aggregated across
experiments, but within outcomes (red), and aggregated across all outcomes and experiments
(yellow).
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3.5 A Case Study in Nanotoxicology

3.5.1 Background

We analyze and rank data on cells exposed to eight different metal and metal-oxide nanopar-

ticles and monitored in relation to four cytotoxicity parameters. All four outcomes are

measured over a grid of ten doses (0, .375, .750, 1.6, 3.12, 6.25, 12.5, 25, 50, 100, 200 µg/ml),

seven times (hours) of exposure, and four replicates at every dose-time combination (see

Figure 3.2). Cytotoxicity screening is based on the hierarchical oxidative stress model de-

scribed in Xia et al. (2006). More specifically, a multi-parametric, epiflourescence assay was

used to measure four responses relating to toxic oxidative stress. Three of the responses

measured sublethal effects to the cell, including mitochondrial superoxide formation (MSF),

loss of mitochondrial membrane potential (MMP), and elevated intracellular calcium (EIC),

and the last outcome measured cellular membrane damage (CMD), a lethal effect to the

cell. The nanoparticles measured included: silver (Ag), gold (Au), platinum (Pt), iron oxide

(Fe3O4), aluminum oxide (Al2O2), silicon dioxide (SiO2), zinc oxide (ZnO), and quantum dot

(QD). Experiments were conducted in two different cell lines related to inhalation toxicity:

bronchial epithelial cell lines (BEAS-2B) and macrophage (RAW 264.7) cell lines.

3.5.2 Analysis and Results

We fit response-surfaces for the metal-oxide data set using the model described in Section

3.1. Specifically, we model the data in a generalized additive fashion and parameterized

using linear basis spline functions. Details for a similar reduced experiment were described

in Chapter 2. To summarize briefly, the response-surface mijk(d, t), corresponding to ENM

i (i = 1, ..., I), cytotoxicity parameter j (j = 1, ..., J), and replicate k (k = 1, ..., K) at dose

d ∈ [0, D] and time t ∈ [0, T ], was modeled as follows:

mijk(d, t) = αijk + B(d,φijk)′βijk + B(t,ψijk)′γijk. (3.9)
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Equal Weights
ENM Rank
QD 2.79 (2.38,3.12)
ZnO 3.29 (3,3.75)
Fe3O4 3.4 (2.75,4)
SiO2 4.98 (4.38,5.5)
Al2O3 5.21 (4.62,5.75)
Au 5.28 (4.62,5.88)
Pt 5.5 (5,6)
Ag 5.56 (5.12,6)

woj = (.37, .27, .21, .15)
ENM Rank
QD 2.27 (1.92,2.54)
ZnO 3.25 (2.96,3.69)
Fe3O4 3.95 (3.09,4.73)
Al2O3 5.08 (4.43,5.75)
Au 5.15 (4.41,5.94)
SiO2 5.2 (4.48,5.88)
Ag 5.47 (4.92,6.04)
Pt 5.63 (5.03,6.37)

woj = (.54, .27, .12, .07)
ENM Rank
QD 1.66 (1.46,1.82)
ZnO 3.18 (2.88,3.72)
Fe3O4 4.65 (3.51,5.67)
Al2O3 5 (4.2,5.89)
Au 5.09 (4.15,6.13)
Ag 5.12 (4.41,5.87)
SiO2 5.55 (4.58,6.44)
Pt 5.74 (4.94,6.77)

Table 3.1: Rankings based on squared-error loss using aggressive weights favoring
important outcomes. Aggregated ranks across each outcome and cell-line. Posterior
expected ranks and 95% posterior intervals computed by minimizing squared-error loss. Each
cell-line is given equal weight and each outcome (CMD,MSF,MMP,EIC) is given varying
weights woj.

where, B(d,φijk) and B(d,ψijk) denote two 4-dimensional B-spline basis with interior knots

φijk = (φijk1, φijk2)′ and ψijk = (ψijk1, ψijk2)′. Also, βij = (βij1, .., βij4)′ and γij = (γij1, ...,

γij4)′ are two 4-dimensional vectors of spline coefficients. Identifiability restrictions are im-

plemented by fixing βijk1 = 0 and γijk1 = 0, allowing us to interpret αij as the background

response level for each particle, outcome, and experiment. We also fix βij2 = 0 and γij2 = 0,

assuming no effect before φij1 and ψij1. See Figure 3.2 for an example of surfaces fit to the

data on RAW 264.7 cells exposed to the zinc oxide (ZnO), quantum dot (QD), and platinum

(Pt) nanomaterials, and measured across the four cytotoxicity outcomes. Our inferences are

based on 20,000 MCMC samples from the posterior distribution in (3.2), after discarding

a conservative 60,000 iterations for burn-in. MCMC sampling was performed in R version

2.10.0, and convergence diagnostics were performed using the package CODA (Convergence

Diagnostics and Output Analysis), (Plummerm et al. 2006).

We define our target parameter, g(mijk), as the area under the response-surface, exclud-

ing any background response, for each particle, outcome, and experiment. Any number

of classical summaries can be derived from this model and used for risk assessment such

as benchmark doses (BMD), effective concentrations (ECα), no observable adverse effect

level (NOAEL), among others. These measures summarize different aspects of the response-

surface, and typically disjointly for dose and time kinetics. In fact, there is still disagreement

in the HTS setting on the best measures of risk (Stern and McNeil 2008 and Maynard et al.

2006). Furthermore, some of these summaries can become even more problematic in the
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Figure 3.5: Rankings based on squared-error loss using aggressive weights favoring
important outcomes. Posterior expected ranks and 95% posterior intervals computed by
minimizing squared-error loss. Each cell-line is given equal weight, and each outcome is
given weights (.54, .27, .12, .07), in the order (CMD, MSF, MMP, EIC). Ranks are displayed
individually within outcomes and experiments (black), aggregated across experiments, but
within outcomes (red), and aggregated across all outcomes and experiments (yellow).

MSF EIC CMD MMP
ENM Rank ENM Rank ENM Rank ENM Rank
QD 1.01 (1,1) Fe3O4 1.43 (1,2.5) QD 1 (1,1) ZnO 2.34 (2,3.5)
Fe3O4 3.28 (2,4) ZnO 3.39 (2.5,4) ZnO 2.45 (2,3.5) Fe3O4 2.7 (1.5,4)
Al2O3 4.65 (4,5.5) Ag 3.76 (3,4.5) Ag 3.83 (2.5,5) SiO2 3.5 (2.5,4)
Pt 4.75 (4,5.5) Pt 4.45 (3.5,5) Al2O3 5.06 (3.5,6.5) QD 4.17 (2.5,5.5)
Au 4.96 (4,6) SiO2 4.81 (4,5.5) Au 5.12 (3.5,7) Au 4.36 (3,6)
ZnO 4.98 (4.5,5.5) QD 4.99 (5,5) SiO2 6.14 (4.5,7.5) Al2O3 4.64 (3.5,6)
SiO2 5.47 (4.5,6) Al2O3 6.5 (5.5,7.5) Fe3O4 6.18 (4,8) Pt 6.57 (5.5,7.5)
Ag 6.91 (6,8) Au 6.66 (6,7.5) Pt 6.23 (5,8) Ag 7.72 (6.5,8)

Table 3.2: Rankings within outcomes based on squared-error loss. Aggregated ranks
across each each outcome and aggregated across cell-lines. Posterior expected ranks and 95%
posterior intervals computed by minimizing squared-error loss. Each cell-line is given equal
weight.
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nanotoxicology setting due to issues such as dosimetry, where the administered doses may

in fact differ from the dose absorbed by the cell. The area under the response-surface is an

overall summary of the entire dose and duration-response dynamic. Although no sufficient

one-dimensional summary of the dose and duration-response profile exists, the area under

the surface may be a more comprehensive summary of risk. Using the model described in

(3.9), we define area under the surface as follows:

AUS =
∫ T

0
∫D

0 mijk(d, t)− αijk dd dt

=
∫ T

0
∫D

0 B(d,φijk)′βijk + B(t,ψijk)′γijk dd dt

= T [1
2(D − φijk1)βijk3 + 1

2(D − φijk2)βijk4] +

D[1
2(T − ψijk1)γijk3 + 1

2(T − ψijk2)γijk4]

(3.10)

Using the ranking methods described in Section 3.4, we rank the eight nanoparticles

within cell lines and outcomes, within outcomes but aggregated across cell-lines, and ag-

gregated across cell-lines and outcomes. Table 3.1 (left panel) provides posterior expected

ranks, and associated 95% posterior intervals ranks, for each particle, aggregated across all

cytotoxicity outcomes and cell-lines, with each outcome and cell-line weighted equally. Based

on knowledge about oxidative stress pathways and the assays used to measure cytotoxicity

outcomes, it is believed that the outcomes measured can be ranked in order of importance

as follows: (CMD, MSF, MMP, EIC). Using the weight function described in (3.8) and a

value of δ = .75, yields weights (.37, .27, .21, .15), for the four outcomes. Similarly, using a

slightly more aggressive δ = .5 gives weights (.54, .27, .12, .07). Table 3.1 (middle panel and

right panel) provides overall summaries, aggregated across outcomes and cell-lines, for the

posterior ranks using the weight functions described. Additionally, Table 3.2 and 3.3 provide

rankings for each particle, within outcomes but across cell lines, and within outcomes and

experiments, respectively. In each of the cases we compute expected ranks and 95% posterior

intervals by minimizing squared-error loss. Figures 3.3 - 3.5 provide graphical summaries of

the expected posterior ranks and associated 95% posterior intervals at each level of hierarchy.

The ranks are computed by minimizing squared-error loss and using equal weights for each

cell line, but using different weights for each outcome as described above.
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MSF EIC CMD MMP
Cell-line ENM Rank ENM Rank ENM Rank ENM Rank

RAW 264.7

QD 1 (1,1) Pt 1.34 (1,2) QD 1 (1,1) Fe3O4 1.04 (1,2)
Pt 2.19 (2,3) Fe3O4 1.87 (1,4) ZnO 2 (2,2) SiO2 1.97 (1,2)
Fe3O4 3.04 (2,4) Ag 3.17 (2,4) Al2O3 3.87 (3,6) ZnO 3.67 (3,6)
SiO2 3.81 (3,5) ZnO 3.74 (2,5) Au 4.03 (3,7) Al2O3 4.16 (3,7)
ZnO 4.99 (4,6) SiO2 4.88 (4,5) Ag 5.36 (3,8) Au 5.38 (3,8)
Al2O3 6.2 (6,8) Al2O3 6.18 (6,7) SiO2 5.93 (4,8) QD 6.1 (3,8)
Ag 7.26 (6,8) Au 6.85 (6,7) Fe3O4 6.21 (3,8) Pt 6.23 (4,8)
Au 7.51 (6,8) QD 7.97 (8,8) Pt 7.59 (6,8) Ag 7.45 (5,8)

BEAS-2B

QD 1.02 (1,1) Fe3O4 1 (1,1) QD 1 (1,1) ZnO 1 (1,1)
Au 2.42 (2,4) QD 2 (2,2) Ag 2.3 (2,3) QD 2.25 (2,4)
Al2O3 3.1 (2,4) ZnO 3.04 (3,4) ZnO 2.9 (2,5) Au 3.34 (2,6)
Fe3O4 3.52 (2,5) Ag 4.35 (3,5) Pt 4.86 (3,8) Fe3O4 4.36 (2,6)
ZnO 4.97 (4,5) SiO2 4.74 (4,6) Fe3O4 6.14 (4,8) SiO2 5.03 (3,6)
Ag 6.56 (6,8) Au 6.48 (5,8) Au 6.2 (4,8) Al2O3 5.12 (3,7)
SiO2 7.12 (6,8) Al2O3 6.83 (5,8) Al2O3 6.25 (4,8) Pt 6.91 (6,7)
Pt 7.3 (6,8) Pt 7.56 (6,8) SiO2 6.36 (4,8) Ag 8 (8,8)

Table 3.3: Individual rankings based on squared-error loss. Posterior expected ranks
and 95% posterior intervals computed by minimizing squared-error loss. Each cell-line is
given weight and each outcome (CMD,MSF,MMP,EIC) is given weights: (.37, .27, .21, .15).

In Figure 3.5, the posterior intervals reflect the uncertainty about the hazard rankings,

and provide an illustration of how the proposed technique combines information and provides

more precise estimates of ranks when aggregated across outcomes and cell lines. Although

it is difficult to distinguish between more or less toxic particles when looking at individual

ranks, we can discern that aggregated across outcomes and cell lines, quantum dot nanoparti-

cles show significantly higher responses than all other particles. Zinc oxide nanoparticles also

show a significantly higher toxic response than nano platinum, silver, aluminum oxide, silicon

dioxide, and gold particles. Table 3.2 (column 3 ) provides rankings for cellular membrane

damage, aggregated across the two cell lines. In terms of cellular membrane damage, quan-

tum dot and zinc oxide show significantly higher cytotoxic responses then the remaining six

nanoparticles. Previous studies have shown that while platinum, silver, aluminum oxide, sili-

con dioxide, and gold particles nanoparticles have been shown to trigger sublethal responses,

they do not increase PI uptake, an indicator of cellular membrane damage, leading to cell

death (George et al. 2011). In contrast, it has been shown using conventional assays that

QD nanoparticles stabilized by toluene are capable of inducing tier 2 and 3 oxidative stress

responses induced by the toluene (George et al. 2011), and are therefore significantly more

toxic. Similarly, it has been demonstrated that ZnO nanoparticles are capable of inducing
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tier 2 and 3 oxidative stress responses through Zn+
2 release (George et al. 2009).

3.6 Discussion

In this article we present various loss function based ranking approaches and apply them to

the hazard ranking of nanomaterials, using multivariate toxicity data obtained from HTS

assays. Furthermore, we extend these methods to the aggregation of ranks across different

sources of evidence. We account for the multivariate nature of the data using a Bayesian

hierarchical framework, and coupled with a loss function, are thereby able to derive a rank

estimate and its associated uncertainty. The proposed methodology accounts for the vari-

ability in the scale of the response across cytotoxicity measures and experimental platforms

and allows for the differential weighting of these measures in the estimation of an aggregate

rank distribution.

As described by Louis and Shen (1999), Lin et al. (2006), when the posterior distributions

of the target parameters are stochastically ordered and are invariant under monotone trans-

formation, the choice of ranking method does not matter. However, in many cases there is a

clear benefit involved with using an optimal procedure which is clearly defined by inferential

goals. In this chapter we present the most commonly used squared-error loss function, which

optimizes the overall ranking of all particles. We also present the upper 100(1 − γ)% (or

lower 100(γ)%) loss function, which is useful when the goal is identifying the most (or least)

toxic fraction of particles. Many other loss functions can be considered. For example, Lin

et al. (2006) suggest the use of a weighted combination of several loss functions in order to

broaden the class of all loss functions.

One advantage of a ranked list of ENMs is that it allows for the prioritization of further in-

vivo testing of the materials, especially when resources are limited. Although, loss function

based ranking methods are optimal, in many cases the results may not be conclusive as

in our example indicated by the large, often overlapping, confidence intervals around the

rank estimates. Aggregated ranks across different sources of information can be used to
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combine information and reduce the uncertainty of the results. Although the ranked lists

are expected to be correlated, this does not guarantee that the ranked lists of ENMs will be

in complete agreement. In some cases this disagreement may in fact increase the uncertainty

of the results.

Another important consideration when ranking particles is the use of a proper estimate

of toxicity. In this chapter, we focused on one summary, the area under the response-

surface, that we believe is an adequate measure of risk. An alternative formulation would

be to construct multiple ranked lists of particles using more then one summary of risk,

followed by the aggregation of these lists. Furthermore, in this chapter we have focused on

ENM hazard as the sole factor in determining risk. In toxicology, risk assessment involves

the characterization of hazard as well as the potential for exposure. Currently, there is

not enough exposure information available to perform a traditional risk assessment, but an

important area of future research involves the aggregation of hazard and exposure rankings

(Maynard et al. 2006).
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CHAPTER 4

Relating ENM Properties to Toxicity

4.1 Introduction

Knowledge about the potential hazard of nanomaterials is still lacking and extensive study

is required to understand how ENM properties such as size, shape, agglomeration state,

solubility, and surface properties, could lead to hazard generation at the nano-bio interface

(Stern and McNeil 2008, Nel et al. 2006). High-throughput screening (HTS) assays provide

an opportunity to study biological relationships, and may suggest which nanoparticles are

likely to have an in-vivo effect. While HTS assays cannot replace traditional animal studies,

they can be used to explore the large number of potential nanomaterial variables that can

influence human health hazard (Meng et al. 2010, Stanley et al. 2008, Maynard et al. 2006).

In this chapter, we analyze data on 24 metal-oxide nanoparticles, monitored in relation to

a cellular injury response measuring cellular membrane damage. The outcome was measured

contemporaneously over a grid of ten doses and seven hours of exposure. All particles were

characterized in terms of their size, dissolution, crystal structure, conduction energies, as

well as many other particle descriptors (Zhang et al. 2012).

Quantitative structure-activity relationships (QSAR) models provide a way to understand

how combinations of physical and chemical characteristics predict the toxicity of nanomate-

rials with respect to its biological activity. In contrast to QSARs for chemicals, very little

work has been done to develop nano-QSAR models. The primary efforts to date have been on

adapting the idea of classical chemical QSAR models to nanomaterials, which are restricted

due to limited information for ENMs in terms of physicochemical and toxicity data, and the
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lack of a well defined toxicological endpoint.

The use of a combination of molecular properties to predict a compound’s behavior, with

respect to biological end-points, is a well accepted concept in the predictive toxicology of

chemicals (Schultz et al. 2003). Stanley et al. (2008) present a nano-QSAR model based

on an advanced data mining algorithms. The authors apply a hierarchical and consensus

clustering methods to classify nanoparticles into groups based on similarity in their toxic

activity profiles. Subsequent clustering patterns can then be compared in relation to ENM

properties that tend to be assigned to the same class. Unsupervised clustering methods,

although useful, lack specificity and do not take full account of dose and time response

profiles.

Puzyn et al. (2011) present a nano-QSAR model for metal-oxide nanoparticles based on

methods commonly used in the predictive toxicology of chemicals. The authors modeled

the relationship between ENM toxicity and various structural descriptors, using a modified

multiple linear regression algorithm that accounts for non-linear effects. ENM toxicity was

characterized by a summary that estimated the dose concentration that brought about 50%

reduction in bacterial cell viability (EC50). Similarly, Liu et al. (2011) present a nano-QSAR

model that uses logistic regression to to model the probability that a particle is toxic, given

structural covariates. A particle was defined as toxic, at a given concentration, based on a

statistically significant difference in mean response, as compared to the background response

in unexposed cells. These techniques, however, are designed to work with previously defined

summaries of the dose-response trajectory, and to our knowledge, fail to take into account the

uncertainty inherent in the estimation of these summaries when relating them to structural

covariates.

In this chapter, we introduce a new new class of models that relate ENM physicochemical

properties to cytotoxicity profiles, in order to initiate a framework for predictive toxicology.

The proposed methodology introduces a new measure of toxicity that is seamlessly integrated

into a multi-dimensional model that accounts for dose and duration kinetics jointly using a

flexible smooth surface fit. This toxicological endpoint measures the probability of toxicity,
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an intuitively more appealing summary of hazard, as it is comparable across experiments, and

can be used to seamlessly integrate multiple dose and time escalation studies. Furthermore,

the probability of toxicity is used to link nanomaterial physicochemical properties to non-

linear and multi-dimensional cytotoxicity profiles, while accounting for the variability in the

estimation of this summary. Finally, this methodology is appropriate for limited data sets,

and includes data integration and a framework for advanced dimension reduction through

variable selection.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce the

proposed model. In Section 4.3 we discuss parameter estimation and associated inferential

details. Section 4.4 employs the proposed model for the analysis of 24 metal-oxide nanomate-

rials, and describes inference for cytotoxicity profiles and their relationship to ENM-specific

physicochemical properties. We conclude with a critical discussion of the limitations and

possible extensions of the proposed method in Section 4.5.

4.2 Model Formulation

4.2.1 Toxicity Model

In this section we describe a smooth response model, where we monitor a continuous outcome

y corresponding to the exposure of a number of cells to I different ENMs. Let yij(d, t)

denote a response corresponding to ENM i (i = 1, ..., I) and replicate j (j = 1, ..., J), at

dose d ∈ [0, D] and time t ∈ [0, T ]. In practice, observations are obtained over a discrete

set of doses and durations of exposure. However, for ease of presentation and without loss

of generality, we will assume that doses and times are defined over continuous intervals. We

introduce the following hierarchical model.

Stage 1: Sampling Model

The observed response of particle i and replicate j is modeled as:

yij(d, t) = mi(d, t) + εij(d, t), (4.1)
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where εij(d, t) ∼ N(0, σ2
ε/τi) and τi | ν ∼ Gamma(ν/2, ν/2). Here mi(d, t) denotes the

response surface for each particle i. This quantity describes dose and duration kinetics for

all d ∈ [0, D] and t ∈ [0, T ], and is expected to exhibit a non-linear dynamic over these

domains. The distribution of yij is modeled in terms of the error term εij as a scaled mixture

of normal random variables to account for outlying observations. The error variance is defined

in terms of the measurement error σ2
ε , and on ENM-specific variance inflation parameter τi.

This formulation results in a t-distributed error (see West 1984), where we borrow strength

across all ENM by assuming the same error variance, but retain robustness in the model by

allowing ENM-specific departures from normality.

Stage 2: Surface Response model at the ENM level

The dose-response surface mi(d, t) spans two dimensions (dose and time), and is modeled

as a non-parametric smooth fit. Let (αi,β′i)′ be a parameter vector indexing the response

surface mi(d, t). We define

mi(d, t) = αi + fi(d, t;βi), (4.2)

where fi(d, t;βi) is a smooth surface modeling the effect of dose d and time t, for each ENM

i. To ensure likelihood identifiability we require, without loss of generality, that fij(d =

0, t = 0;βi) = 0.

The surface response function fi(d, t;βi) is modeled using two-dimensional P-splines,

as described by Lang and Brezger (2006). We assume that the surface fi(d, t;βi) can

be approximated by the tensor product of two 1-dimensional B-splines. Specifically, we

use polynomial splines of degree r and equally spaced knots over the domain of d and

t. let Bm(x) denote the mth basis of a M-dimensional B-spline basis with interior knots

xmin = η0 < η1, ... < ηs−1 < ηs = xmax. Also, let βi = (βi1, .., βi,mdmt , ...βi,MdMt)′ be a

(MdMt)-dimensional vector of spline coefficients. The function fi(d, t;βi) can then be rep-

resented as follows:

fi(d, t;βi) =
Md∑
md

Mt∑
mt
βi,mdmtBmt(t)Bmd(d) = Hiβi, (4.3)
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where Md is the number of basis functions over the domain of d, Mt is the number of basis

functions the domain of t, and H is (DTK ×MdMt) dimensional design matrix, which can

be defined as (B1(d)B1(t), . . . , Bmd(d)Bmt(t), . . .BMd
(d)BMt(t)). Identifiability restriction

fij(d = 0, t = 0;βi) = 0, is implemented by fixing βi1 = 0, for all particles.

We can expand the model further, to include a summary measure of overall toxicity. To

do that we include a latent indicator variable γi, so that for each particle i

mi(d, t) =


αi if γi = 0

αi + fi(d, t;βi) if γi = 1,
(4.4)

where γi | θ ∼ Bern(pi). The indicator variable γi, can then be used as a measure of

toxicity for particle i. This trans-dimensional parameterization is key to linking the toxicity

of ENM i to it’s physicochemical properties, where θ is the parameter vector relating the

toxicity of particle i to their corresponding physicochemical properties. These quantities will

be described further in Section 4.2.2.

For each ENM i, we define the following prior distribution for αi:

αi ∼ N(mαi , vαi). (4.5)

The priors for βi are based on spacial smoothness priors (Besag and Kooperberg 1995, Lang

and Brezger 2004). Specifically, we use a prior based on the Kronecker product of the penalty

matrices of the dose and time effects, and is defined as follows:

βi ∼ NMdMt(0, σ2
βi(Kd ⊗Kt)) (4.6)

The penalty matrices Kd and Kt, can be constructed based on a first or second order random

walk process, as described in detail by Lang and Brezger (2004). To summarize, penalty

matrices Kd and Kt are used to define prior distributions on the β parameters of our non-

linear response function, and are the Bayesian analog of difference penalties used in penalized

likelihood estimation. First order difference penalties correspond to a first-order random walk
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process and similarly, second order differences corresponds to a second-order random walk

process. For example, for the dose component we obtain

βimd = βimd−1 + ζimd (first− order)

βimd = 2βimd−1 − βimd−2 + ζimd (second− order)
(4.7)

where, ζimd ∼ N(0, σ2
βi). The smoothness of the response surface is controlled by the variance

parameter σ2
βi. For example, for a second-order random walk process, the penalty matrix

has the following banded structure

Kd =



1 -2 1

-2 5 -4 1

1 -4 6 -4 1
. . . . . . . . . . . .

1 -4 6 -4 1

1 -4 5 -2

1 -2 1



(4.8)

The foregoing penalty matrix leads to a rank deficient covariance matrix. However, adding

a small positive constant to components (1,1) and (D,D) reinstates propriety without fun-

damentally changing the smoothing properties of the proposed stochastic prior. Another

choice of prior for βij can be based on the four nearest neighbors (see Lang and Brezger

2004). We prefer the prior described in 4.6 because it provides a smoother fit to the data

(Clayton 1996, Lang and Brezger 2004), a desirable property in this context due to the high

measurement error associated with HTS data.

Stage 3: Hyperpriors

We complete the model by specifying prior distributions on the hyperparameters as follows:

1/σ2
ε ∼ Gamma(aε, bε), 1/σ2

αi
∼ Gamma(aαi , bαi), 1/σ2

βi
∼ Gamma(aβi , bβi).

(4.9)
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We model precision parameters as gamma distributions, again exploiting conditional conju-

gacy. Note that in our formulation, x ∼ Gamma(a, b) denotes a Gamma distributed random

quantity with shape a and rate b, such that E(x) = a/b.

4.2.2 Covariate Model

For each ENM (i=1,...I), we would like to model a set of P physicochemical properties as a

vector of covariates xi = (xi0, ...xip, ..., xiP )′, where p = 0 corresponds to the model intercept.

We relate cytotoxicity vector γi to covariate vector xi through a regression at the ENM level,

such that

g(γi | xi) = x′iθ, (4.10)

where θ = (θ0, ...θp, ...θP ) is a vector of regression coefficients and g is a standard link

function. The regression coefficients θ, summarize how variability in ENM physicochemical

properties explain the variability in the probability of toxicity, as determined by the ENM

toxicity profiles.

Following Albert and Chib (1993), we introduce a latent-variable structure into the model.

We define a latent continuous measure of toxicity Zi, which is positive when a particle is

toxic, and negative when a particle is non-toxic. More precisely, for each ENM (i = 1, ...I),

we denote a continuous variable Zi, where

γi(d, t) =


0 if Zi ≤ 0

1 if Zi > 0.
(4.11)

Furthermore, the toxicity of each ENM i is related to the P physicochemical properties by

the normal regression model

Zi = x′θ + ζi, (4.12)

where all ζi (i = 1, . . . , I) are assumed to be independent and identically distributed accord-
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ing to g. We can then define the probability of toxicity, given covariate vector xi, as

pi = P (γi = 1) = P (Zi > 0) = g(x′iθ). (4.13)

Specifically, the last equality holds true when g(·) is a symmetric distribution such as the

probit model. Introducing a latent structure when modeling binary data, along with a

probit link function, where g(·) is the normal cumulative distribution function, allows for an

automatic Gibbs sampling algorithm to be constructed (Albert and Chib 1993 and Johnson

and Albert 1999).

In some instances we may like to define only a subset of the P regressors, which are

specifically related to the probability of toxicity. We can introduce variable selection into

the model above by defining a binary indicator vector

ρp =


0 if θp = 0 (physicochemical property p selected)

1 if θp 6= 0 (physicochemical property p not selected),
(4.14)

where p = 1, ...P . Given ρ, we can define θρ as a vector that includes all nonzero elements

of θ, and Xρ as the design matrix, which only includes the columns of X corresponding to

the non-zero elements of ρ. In this context, we assume that ρ0 = 1, therefore θ0, model

intercept, is included in every model.

Finally, we complete the model by defining a prior for θρ and ρ as

θρ ∼ Nq(0, c(X ′ρXρ)−1)

P (ρp = 1) = πp, 0 ≤ πp ≥ 1, p = 1, . . . , P,
(4.15)

where c is a constant positive scaling factor and q =
P∑
p=0

ρp. Large values of c lead to a non-

informative prior distribution on θ. As described by Lee et al. (2003), choosing small values

for πp, leads to parsimonious models by restricting the number of covariates included. The

values of πp can also be tuned to include prior knowledge about the importance of certain
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physicochemical properties. Most commonly, a prior is placed on πp, such that

πp ∼ Beta(aπ, bπ), (4.16)

as described by Scott and Berger (2006).

4.3 Estimation and Inference

4.3.1 Posterior Simulation via MCMC

Using the P-spline representation introduced in Section 4.2.1, we can write the response level

associated with ENM i, at dose d, and exposure time t as

mi(d, t; αi,βi, · · ·) =


αi +

Md∑
md

Mt∑
mt
βi,mdmtBmt(t)Bmd(d) if γi = 1

αi if γi = 0.

Furthermore, we can write the probability that ENM i is toxic, given the vector of physico-

chemical properties contained in xi, as

P (γi = 1 | ρ) = P (Zi > 0) = x′iρθρ.

Let β = {βi : i = 1, . . . , I} denote the full set of spline coefficients, α = {αi : i = 1, . . . , I}

the background response parameters, and γ = {γi : i = 1, . . . , I} the latent indicator

of toxicity. Furthermore, consider regression coefficients θ = {θi : i = 1, . . . , I}, latent

continuous measure of toxicity Z = {Zi : i = 1, . . . , I}, and latent indicator of covariate

selection ρ = {ρp : p = 0, . . . , P}. Finally, let τ = (τi, . . . , τI)′. If we denote with Y

the complete set of response values for all particles, we can write the likelihood function as

follows:

L(β,α, γ,θ,Z,ρ, σ2
ε , τ | Y) ∝

∏
i,j,k,d,t

[
(σ2

ε/τi)−
1
2 exp

{
−( yij(d, t)−mi(d, t; . . .) )2

2σ2
ε/τi

}]
,

(4.17)
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where the product is taken over all replicates k, particles i, doses d and times t. We seek

inference on the full set of parameters, described above, through the posterior probability

P (β,α, γ,θ,Z,ρ, σ2
ε , τ | Y) ∝ L(β,α, γ,θ,Z,ρ,σ2

ε , τ | Y)

×P (β,α, γ,θ,Z,ρ, σ2
ε , τ )

(4.18)

where the prior model, P (β,α, γ,θ,Z,ρ, σ2
ε , τ ), is a product of the conditionally indepen-

dent prior distributions described in Section 4.2.

The posterior distribution is unavailable in closed analytic form, therefore we base our in-

ference on Markov Chain Monte Carlo (MCMC) simulations. Closed-form full conditional

distributions are available for all parameters, therefore the proposed posterior simulation

algorithm utilizes a Gibbs sampling algorithm to directly sample and update parameters

component-wise (Geman and Geman 1984, Gelfand and Smith 1990); Full conditional dis-

tributions are given in Appendix C.1.

As we are considering selection of response functions in a trans-dimensional setting, we

will first sample from the marginal distribution of the model indicator γ, integrating out

β, allowing us to jump between models with and without a dose-time response function

fi(d, t; βi). Similarly, for the covariate model described in Section 4.2.2, we begin by sam-

pling from the marginal distribution of ρ, integrating out θ, allowing us to jump between

models with a subset of the P covariates. The model indicators γ and ρ are updated using

Gibbs sampling steps. After the model structure has been specified, the model parame-

ters are updated from their corresponding conditional posterior distributions. The proposed

sampling scheme can be summarized as follows.

1. Trans-dimensional updates

We begin by drawing from γ | Y ,α,θ,Z,ρ, σ2
ε , τ ; the marginalized conditional distribution

of γ, obtained by integrating β out of the full conditional distribution of γ. More precisely,
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P (Y | α,θ,σ2
ε , τ ) ∝

∫
β
P (Y | βγα,θ,σ2

ε , τ )P (βγ | γ) dβγ

∝
I∏
i=1
| Σβi |−

1
2 | ( τi

σ2
εi
H ′
γiHγi + Σ−1

βi ) |− 1
2

exp
{

1
2

(
( τi
σ2
εi
H ′
γiỸi)′( τi

σ2
εi
H ′
γiHγi + Σ−1

βi )−1( τi
σ2
εi
H ′
γiỸi)

)}
,

where Ỹi = Yi − 1DTKα
′
i. The derivation of this integral is provided in Appendix C.1. The

conditional distribution P (γ | Y ,α,θ,σ2
ε , τ ) is then given by

P (γ | Y ,α,θ, σ2
ε , τ ) ∝ P (Y | α,θ,σ2

ε , τ )P (γ | θ)

∝
I∏
i=1
| Σβi |−

1
2 | ( τi

σ2
ε
H ′
γiHγi + Σ−1

βi ) |− 1
2

exp
{

1
2

(
( τi
σ2
ε
H ′
γiỸi)′( τiσ2

ε
H ′
γiHγi + Σ−1

βi )−1( τi
σ2
ε
H ′
γiỸi)

)}
Φ(−xiθi)γiΦ(xiθi)1−γi ,

where Φ(·) is the cdf of a standard normal distribution. When the number of particles get

large, it is convenient to draw each γi component-wise from P (γi | Yi, γk 6=i,α,θ,Z,ρ, σ2
ε , τ ).

A similar scheme was adapted for sampling from ρ | θ,Z,γ; the marginalized conditional

distribution of ρ, obtained by integrating θ out of the full conditional distribution of ρ.

Following Lee et al. (2003), the conditional distribution of P (ρp | ρk 6=p,Z) is given by

P (ρp | ρk 6=p,Z) ∝ P (Z | Z)P (ρp)

∝ exp
[

1
2(Z ′Z − c

1+cZ
′Xρ(X ′

ρXρ)−1X ′
ρZ)

]
πρpp (1− πp)1−ρp .

2. Fixed dimensional updates.

Given the current state of the latent indicators γ, response surfaces are uniquely defined as

in (5.3). Posterior sampling here is standard, and proceeds by updating spline coefficients

βγ, background response parameters α, and variance parameters τ and σ2
ε , from their full

conditional distributions via direct simulation (Gibbs step - Appendix C.1).

Similarly given the latent indicators ρ, the covariate model is uniquely defined as in (4.14).

Again, posterior sampling is standard and proceeds by updating regression coefficients θρ
from θρ | ρ, and, Z fromZ | θ,ρ,γ, via Gibbs sampling. Again, full conditional distributions
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are given in Appendix C.1.

4.3.2 Posterior Inference

In this section we discuss inference for the model described in Section 4.2, based on draws

from the posterior distribution described in (4.18). Let β(n)
i , α(n)

i , γ(n)
i , θ(n)

i and ρ(n)
p , n =

1, ..., N , denote N MCMC draws from the posterior distribution of βi, αi, γi, θi and ρp.

One quantity of interest is an estimate of the dose-response surface mi(d, t) for each

ENM i. This surface is defined in an infinite-dimensional space; however, given the P-spline

representation introduced in Section 4.2.1, we only need finite draws from the parameter

set of interest. More precisely, draws from the marginal posterior distribution of the dose-

response surface for any dose d ∈ [0, D] and time t ∈ [0, T ] are given by

m
(n)
i (d, t) =


α

(n)
i +

Md∑
md

Mt∑
mt
β

(n)
i,mdmt

Bmt(t)Bmd(d) if γ(n)
i = 1

α
(n)
i if γ(n)

i = 0.
(4.19)

For each β(n)
i , α(n)

i , and γ(n)
i , n = 1, ..., N , we evaluate the dose-response function given in

(4.19) over a grid of values D̃ = (d1, ..., dn)′ and T̃ = (t1, ..., tn)′. The posterior mean of the

samples m(n)
ij , n = 1, ..., N , at each value of D̃ and T̃ , can be used to summarize the fit of

the dose-response surface, as shown in Figures 4.1 and 4.2.

The expected inclusion probability of the dose/duration-response surface βi can be es-

timated using posterior draws γ(n)
i , as p̂γi = ∑

n γ
(n)
i /N . Similarly, the expected inclu-

sion probability of each of the covariates can be estimated using posterior draws ρ(n)
p , as

p̂ρp = ∑
n ρ

(n)
p /N . This posterior probability can be used for model selection, Scott and

Berger (2006) for example, recommend selecting the median model, that is including all

interactions for which p̂ρp > 0.5.

Posterior samples θ(n)
p , p = 0, ..., P , can provide us with approximations of the posterior

distribution for the probability of toxicity, for an ENM with a given a set of physicochemical

properties. More precisely, draws from the marginal posterior distribution of the probability
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of toxicity for any particle k, with a corresponding set of physicochemical properties xk =

(x0k, ...xpk, ..., xk(P ))′, are given by

p
(n)
k = Φ(x′kθ(n)) (4.20)

Given posterior draws, one can proceed with the straightforward construction of standard

posterior summaries, like means, maxima a posteriori, modes, quantiles and credible regions.

Another quantity of interest may be an estimate of the probability of toxicity, as a function

of one or more physicochemical properties. Given posterior samples θ(n)
p , n = 1, ..., N , we

evaluate the probability given in (4.20) over a plausible grid of values x̃, for a particular set

of physicochemical properties. The posterior mean of the samples p(n), n = 1, ..., N , at each

value of x̃, can be used to summarize the probability of toxicity as a function of a set of

covariates, as shown in Figure 4.5.

4.4 Applications

4.4.1 Case Study Background

We illustrate the proposed methodology by analyzing data on bronchial epithelial cells

(BEAS-2B), exposed to a library of 24 nanoparticles. This data is aimed at screening for

toxicity of metal-oxide nanoparticles, including ZnO, CuO, CoO, Fe2O3, Fe3O4, WO3, Cr2O3,

Mn2O3, Ni2O3, SnO2, CeO2, Al2O3, among others. The amount of oxidative stress and in-

flammation induced by metal-oxide nanoparticles, the principal injury mechanism through

which ENMs can induce adverse health effects, was measured using a multi-parametric as-

say that utilizes four compatible dye combinations and subsequent change in fluorescence

read-out. In this chapter, we focus on one specific cytotoxic response measuring the amount

of membrane damage to the cell. Specifically, this outcome is measured by treating BEAS-

2B cells with Propidium Iodide (PI) and measuring the resulting florescence. In cells with

damaged membranes PI is able to permeate the cell and bind to DNA, where it causes the
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nucleus to emit a red florescence. Each sample was also stained with a Hoechst dye, which

causes all cell nuclei to emit a blue florescence, and allows for a count of the total number

of cells. An analysis of the fluorescence readout, measured at varying wavelengths, results

in a measure of the percentage of cells positive for each response. The outcome is measured

over a grid of ten doses and seven times (hours) of exposure (see Figures 4.1 and 4.2), and

the final response was normalized using a logit transformation to unconstrain the support

so that it can take on values between -∞ and ∞.

Furthermore, all particles were characterized in terms of their size, dissolution, crystal

structure, conduction energies, as well as many other particle descriptors (Zhang et al. 2012).

Burello and Worth (2011) hypothesized that comparing the conduction and valance band

energies to the redox potential of the reactions occurring within a cell could predict nanopar-

ticle toxicity of oxides. Specifically, the mechanistic interpretation is based on the idea that

oxidizing and reducing substances can create an imbalance in the normal intracellular state

of the cell, either by the production of oxygen radicals or by reducing antioxidant levels.

In particular, the potential for oxidative stress might be predicted by comparing the energy

structure of oxides, as measured by their conduction and valance band energy levels, to the

redox potential of the cell. When these two energy levels are comparable, it can possibly al-

low for the transfer of electrons, and subsequent imbalance in the normal intracellular state.

The normal cellular redox potential is in the range (−4.12to − 4.84eV ). The conduction

band energy of a particle is a measure of the energy sufficient to free an electron from an

atom, and allow it to move freely within the material. Therefore, one measure of interest

is the relationship between particles with conduction band energies within and outside the

range of the cellular redox potential, to their cytotoxicity profiles.

Another measure of interest is the metal dissolution rate of a particle. Particles that are

highly soluble have the ability to shed metal ions, which can lead to nanoparticle toxicity

(Zhang et al. 2012). Other measures that might be of interest include the primary size of the

particle, a measure of the crystal structure (b(Å)), lattice energy (∆Hlattice), which measures

the strength of the bonds in the particles, and the enthalpy of formation (∆HMen+), which
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is a combined measure of the energy required to convert a solid to a gas and the energy

required to remove n elections from that gas.

4.4.2 Case Study Analysis and Results

The model described in Section 4.2 was fit to the metal-oxide data-set described in the

previous section. We placed relatively diffuse Gamma(.01, .01) priors on the 1/σε parameter,

Gamma(1, .1) priors on all remaining precision parameters, and N(0, 100) priors on the αi
parameters. We also placed a prior distribution on the degrees of freedom parameter ν, for

the t-distributed error described in Section 4.2.1. Specifically, the prior was modeled using

a discrete uniform distribution on 1,2,4,8,16, and 32 degrees of freedom (Besag and Higdon

1999). Finally, for the covariate model we placed a relatively diffuse prior on the regression

coefficient θ, by fixing the scaling factor c to a value of 100, and set a Beta(1, 8) prior on

πp, favoring relatively parsimonious models.

Furthermore, the model was initially fit to the ENM library and corresponding six chem-

ical and structural properties described above. In particular, we model log(dissolution) in a

non-linear fashion as a spline function with a change point at log(dissolution) of 2.3, conduc-

tion band energy as a binary covariate, and all other ENM characteristics described above

as continuous linear predictors. In modeling log-dissolution, we really have two separate

classes of particles, those with low dissolution and those with high dissolution, therefore it is

natural to allow for a discontinuity at the boundary between the two classes. An estimate of

the inclusion probability, ρ̂ was used to select a single model, specifically we followed Scott

and Berger (2006) by selecting the median model, that is including all covariates for which

ρ̂p > 0.5. The final model included log(metal dissolution) and conduction band energy.

Our inferences are based on 20,000 MCMC samples from the posterior distribution in

(4.18), after discarding a conservative 60,000 iterations for burn-in. MCMC sampling was

performed in R version 2.10.0, and convergence diagnostics were performed using the package

CODA (Convergence Diagnostics and Output Analysis), (Plummerm et al. 2006).
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Figure 4.1: Fitted response surfaces for CuO, Al2O3, CeO2, CoO, Fe2O3, Fe3O4,
Mn2O3, Gd2O3, HfO2, ZnO, In2O3, and La2O3 ENMs. Estimated smooth response
surfaces, where the color red represents response values corresponding to lower time points
and the color black represents response values corresponding to higher time points.
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Figure 4.2: Fitted response surfaces for Co3O4, NiO, Sb2O3, Cr2O3, SiO2, SnO2,
Ni2O3, TiO2, WO3, Y2O3, Yb2O3, and ZrO2 ENMs. Estimated smooth response
surfaces, where the color red represents response values corresponding to lower time points
and the color black represents response values corresponding to higher time points.
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We formally present model assessment and posterior predictive performance in Appendix

C.2. To summarize, we assess goodness of fit using cross-validation and posterior predictive

checks. The conditional predictive ordinate (cpo), as defined by Geisser (1980), is the pre-

dictive density of observation `, given all other observations, and can be used as diagnostic

tool for detecting observations with poor model fit. Large values of -log(CPOk) indicate

observations that are not being fitted well. The top panel of Figure C.1, provides a plot

of -log( ˆCPOi(d, t)) for our final model. In general, low values of -log(CPOi(d, t)) indicate

good model fit. The middle panel indicates that the largest values of -log( ˆCPOi(d, t)) tend

to be observations with large exposure times, This is expected, as cell death is followed after

sometime by the dissolution of cell nuclei, hindering the measurement of cellular responses.

Next, we plotted the probability integral transform histogram for the entire model, as de-

scribed by Gneiting et al. (2007). The plot is provided in the bottom panel of Figure C.1, and

visual assessment indicates that it is close to uniformity, suggesting relatively good posterior

predictive calibration. Additional summaries and diagnostic tools are detailed in Appendix

C.2.

Figures 4.1 and 4.2 illustrate data and the posterior expected dose-time response for the 24

particles examined in this HTS study. Figure 4.4 provides a plot of the estimated probability

of toxicity for each of the 24 ENMs.

Table 4.1 provides estimates of the posterior mean inclusion probabilities and posterior

summaries for the averaged model, which includes all seven physicochemical properties de-

scribed in Section 4.4.1. Table 4.2 provides posterior summaries for the final model, which

includes conduction band energy and log(metal dissolution rate). Figure 4.5 also includes

summary plots of the posterior probability of toxicity as a function of conduction band energy

and metal dissolution. In particular, the top panel displays the posterior mean probability

of toxicity, and associated 95% posterior intervals, for different values of the log(metal dis-

solution rate), given the conduction band energy is outside the range of the cellular redox

potential. The middle panel displays the posterior mean probability of toxicity, and 95%

posterior intervals, for conduction band energies inside and outside the range of the cellular
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Figure 4.3: Graphical model diagnostics. (Top) Estimate of − log(cpoi(d, t)) for detect-
ing observations with poor model fit. (Middle) Plot of -log(cpoi(d, t)) as a function of dose
and time, indicating any relationship between outlying observations and the administered
dose or duration of exposure. (Bottom) Probability Integral Transform assessing empirical
calibration of the posterior predictive distribution.
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Figure 4.4: Posterior mean probability of toxicity for each ENM. Particles with a
probability of toxicity greater then .5 are indicated in red.

redox potential, given no metal dissolution. The bottom panel of Figure 4.5 provides the

posterior mean probability of toxicity, as a function of both conduction band energy and

log(metal dissolution). Red colored regions indicate greater probability of toxicity, whereas

blue colored regions indicate low probability of toxicity.

From Figures 4.1, 4.2, and 4.4, we see that CuO, Mn2O3, ZnO, Cr2O3, CoO, CO3O4,

and Ni2O3 nanomaterials have a pronounced dose/time effect, as compared to the other

17 materials. These seven particles all have posterior mean probabilities of toxicity above

.5, suggesting that they are capable of inducing cytotoxicity. In particular, conduction

band energies inside the redox potential of the cell, predict high probability of cytotoxicity.

Similarly, particles with a high metal dissolution rate, seem to to predict high probability of

cytotoxicity. Our model confirms, from a statistical perspective, the conduction band energy

and ENM metal dissolution properties, in the definition of cytotoxicity to BEAS-2B cells

(Burello and Worth 2011, Zhang et al. 2012).
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Parameter Inclusion Probability Posterior Summaries
Intercept 1.00 -0.50(-16.17,18.31)
Conduction Band Energy 0.77 1.62( 0.00, 3.81)
log(Metal Dissolution Rate)<2.3 0.69 0.07( -0.19, 0.39)
log(Metal Dissolution Rate)>2.3 0.69 2.81( -0.19,12.90)
log(Primary Size) 0.31 0.00( -0.72, 0.71)
log(Crystal Structure (b(Å))) 0.35 -0.03( -2.11, 1.97)
log(Enthalpy of Formation (∆HMen+)) 0.38 -0.20( -2.38, 1.37)
log(Lattice Energy (∆Hlattice)) 0.36 -0.18( -1.89, 2.10)

Table 4.1: Posterior summaries for regression coefficients corresponding to the
model which includes predictors for seven different ENM physicochemical prop-
erties. Posterior mean inclusion probabilities as well as posterior mean and associated 95%
posterior intervals are provided for the model regression coefficients.

Parameter Posterior Summaries
Intercept -1.22(-2.45,-0.20)
Conduction Band Energy 2.02( 0.49, 3.75)
log(Metal Dissolution Rate)<2.3 0.11(-0.19, 0.41)
log(Metal Dissolution Rate)>2.3 3.52(-0.18, 8.49)

Table 4.2: Posterior summaries for regression coefficients corresponding to the
final model. The final model includes model includes predictors for to conduction band en-
ergy and log(metal dissolution rate). Posterior mean estimates and associated 95% posterior
intervals are provided for the model regression coefficients.
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Figure 4.5: Posterior summaries of the probability of toxicity as a function of
conduction band energy and metal dissolution. (Top) Posterior mean (black) and 95%
posterior intervals (red) for the probability of toxicity as a function of log(metal dissolution
rate), given conduction band energy outside the range of the cell redox potential. (Middle)
Posterior mean (black) and 95% posterior intervals (red) for the probability of toxicity as a
function of conduction band energy, given no metal dissolution. (Bottom) Posterior mean
probability as a function of conduction band energy and log(metal dissolution rate). Red
colored regions indicate greater probability of toxicity, whereas blue colored regions indicate
low probability of toxicity.

78



4.5 Discussion

In this chapter, we propose a model that assesses how nanomaterial physicochemical prop-

erties explain toxicity in-vitro. The proposed methodology introduces a new measure of tox-

icity that is seamlessly integrated into any model structure, including a multi-dimensional

model that accounts for dose and duration kinetics jointly using a flexible smooth surface

fit. This measure is intuitively more appealing, as it is a measures the probability of toxicity,

rather then single univariate summaries of the response surface trajectory. Furthermore, the

indicator of toxicity is used to link ENM physicochemical properties to non-linear and mul-

tidimensional cytotoxicity profiles, while accounting for the uncertainty in the estimation of

this summary. Measures such as the (ECα), benchmark doses, and the area under the curve,

vary between experiments, and therefore do not easily allow for a comprehensive data-fusion

exercise.

The methodology is also appropriate for limited data sets, as it includes data integration

and a framework for advanced dimension reduction through variable selection. We account

for the non-robust nature of the data by allowing for particle specific variance inflation,

resulting in a t-distributed model for the error structure. Finally, the hierarchical framework

is easily adapted to include a multivariate response, associated with a multiple set of cellular

responses, which can thereby efficiently combine information and borrow strength across

cellular injury patterns. One limitation of using variable selection in a settling where the

sample size is extremely small, includes increased sensitivity of the results to the selection

prior placed on the inclusion parameters.

An important extension to the work described in this chapter includes the inclusion of

multiple cytotoxicity parameters, in the form of multivariate dependent observations. A

reasonable dependence scheme can, for example, assume data to be dependent within out-

come and particle, as well as between outcomes for the same particle. A further extension

would involve a modeling framework that combines multiple data sources in a meta-analytic

fashion. This technique is also easily adapted into the hierarchical modeling framework. In

nanotoxicology, these extensions could provide an opportunity for addressing questions that
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cannot be currently answered, due to limited sample sizes, and are therefore an important

area for future work. The proposed model is only an initial step in an effort to develop a

framework for predictive nanotoxicology. A further extension, toward the ultimate goal of

developing a QSAR model, might include the use of functional regression to relate physico-

chemical properties to cytotoxicity profiles using more sophisticated functional forms, as the

relationship to cytotoxicity is often highly non-linear.
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CHAPTER 5

Discussion

In this dissertation, we propose methodologies that provide a formal statistical framework

for the analysis of the high dimensional data structures that are generated by new-generation

high-throughput screening assays. In particular, we develop a foundation for toxicity assess-

ment, prioritization of in-vivo testing of ENM, and predictive nanotoxicology.

In Chapter 2 we propose a probability model for the analysis of high-throughput cellular

assays. We provide an analytic tool, that builds a balance between model complexity and

model interpretability, as a method for assessing cytotoxicity. In particular, we developed a

statistical framework for modeling dependent dose-response-surfaces over multivariate out-

comes. We account for dose and duration kinetics jointly using a flexible model which does

not compromise interpretability. We also account for the multivariate nature of the data us-

ing a hierarchical structure, and thereby efficiently combine information and borrow strength

across cellular injury patterns. Finally, we account for the non-robust nature of the data

by allowing for particle specific variance inflation, resulting in a t-distributed model for the

error structure.

In Chapter 3 we discuss loss-function-based ranking methods and apply them to the

analysis of HTS assays. We seek to provide a decision-making tool that we hope will be used

for the prioritization of in-vivo animal testing of emerging nanomaterials. Specifically we

present various loss function based ranking approaches, and apply them to the hazard ranking

of nanomaterials. Moreover, we extend these methods to the aggregation of ranks across

different sources of evidence, while allowing for the differential weighting of this evidence

based on its reliability and importance in risk ranking. We account for the multivariate
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nature of the data using a Bayesian hierarchical model, and coupled with a loss function,

are thereby able to derive a rank estimate and a measure of its uncertainty.

Finally in Chapter 4, we propose a framework for modeling the relationship between

ENM physicochemical properties and their observed cytotoxicity, as an initial step in the

development of a foundation for predictive nanotoxicology. We introduce a new measure of

toxicity that is seamlessly integrated into any model structure, including a multi-dimensional

model that accounts for dose and duration kinetics jointly using a flexible smooth surface fit.

Furthermore, the probability of toxicity is used to link ENM physicochemical properties to

non-linear and multidimensional cytotoxicity profiles, while accounting for the uncertainty in

the estimation of this summary. The methodology is also appropriate for limited data sets,

as it includes data integration, and a formulation for dimension reduction through variable

selection.

Important areas of future work include the development of statistical methods for the

quantitative assessment of data reliability, more refined sampling models that accounts for

the digital processing of measurements, and the further development of models for predictive

nanotoxicology.

High-throughput cellular assays allow the measurement of possible toxic effects of nano-

materials at the cellular level. These measurements often translate into a multivariate re-

sponse that summarizes different levels of cellular injury associated with the nanomaterials.

The nanoparticle environment, particle aggregation, as well as other properties of the par-

ticles under study, are sometimes associated with aberrations in the florescent readings,

leading to high measurement errors. In the context of high-throughput cellular assays it

becomes important to provide quantitative tools for rigorous data quality assessment. Po-

tential strategies could range from the detection of outliers in an unsupervised manner, to the

integration of prior knowledge about known biological interactions with information coming

from high-throughput scans, in the definition of quantitative models for the validation of

measurements.

In this initial modeling effort, we choose to work with digital fluorescence measurements
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that were used to define the percent of cells positive for the measured response. In order to

use a t-distributed error structure, we normalize our response to unconstrain the support so

that it can take on values between -∞ and∞. In high-throughput toxicity studies, prolonged

exposure to toxic nanomaterials leads to cellular death, and often, subsequent dissolution

of the cell nuclei, leading to reduced reliability in cellular measurement. A more refined

formulation of the model could retain the total cell count, along with a count of the total

number of cells positive for the measured response. This would naturally lead to the definition

of a sampling model that assigns less certainty to observations with reduced reliability.

Retaining the original structure of the data would involve the definition of a generalized

multivariate model, such that the outcome distribution can be described using binomial

random quantities. This extension would require a substantial increase in computational

complexity, with the possible need to consider numerical or analytical approximations, but

it is clearly worthy of further consideration.

An important extension to the model described in Chapter 4 is the inclusion of multiple

cytotoxicity parameters, in the form of multivariate dependent observations. A reasonable

dependence scheme can, for example, assume data to be dependent within outcome and

particle, as well as between outcomes for the same particle. We can also expand the model

further by defining a more refined sampling model that allows for different measurement

errors across exposure times, as by nature these measurements are taken at different times

and consequently on different arrays. For example, if we let yijk(d, t) denote a multivariate

response corresponding to ENM i (i = 1, ..., I), cytotoxicity parameter j (j = 1, ..., J),

and replicate k (k = 1, ..., K), at administered dose d in d = (d1, ...dD)′ and time t in

t = (t1, ...tT )′. The observed response for particle i, outcome j, and replicate k can be

modeled as:

yijk(d, t) = mij(d, t) + εijk(d, t). (5.1)

Let a J × T matrix Ei(d = d`) = {εi(d = d`) : i = 1, . . . , I, ` = 1, ...L}, and similarly let

Yi denote the complete set of response values for particle i, then the distribution of Yi can

be modeled in terms of the error term Ei(d = d`), as a matrix normal random variable as
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follows:

Ei(d = d`) ∼MN

(
0, Σ1

J×J
,

1
τi

Σ2
T×T

)
. (5.2)

Under this framework, we can borrow strength across all ENM by assuming the error vari-

ance is the same, but retain robustness in the model by allowing ENM-specific departures

from normality. Furthermore, the measurement error Σ1 accounts for heterogeneity in the

cytotoxicity outcomes, while allowing for outcomes to be correlated. Similarly, the measure-

ment error Σ2 accounts for possible variability in the measurement error across exposure

times, while allowing for correlation between these measurements.

The dose-response-surface mij(d, t) can be modeled as a non-parametric smooth fit, while

allowing for a quantitative measure of toxicity γij . Let (αij,β′ij, γij)′ be a parameter vector

indexing the response-surface mij(d, t). We define

mij(d, t) =


αij if γij = 0

αij + fij(d, t;βij) if γij = 1,
(5.3)

where fij(d, t;βij) is a smooth surface modeling the effect of dose d and time t, for each ENM

i and cytotoxicity parameter j, and γij is a latent indicator variable that can be used as a

measure of toxicity for each particle i and cytotoxicity parameter j. To ensure likelihood

identifiability we must require, without loss of generality, that fij(d = 0, t = 0;βij) = 0.

Similarly to the model described in Chapter 4, the response-surface fij(d, t;βij) can be

modeled using two-dimensional P-splines, as described by Lang and Brezger (2006). We

can complete the model by defining appropriate priors for βij, αij, γij, and all remaining

precision parameters.

Again, we can directly extend the model described in Chapter 4, and define a model linking

cytotoxicity profiles to measured ENM-specific physicochemical properties as follows. For

each ENM (i=1,...I), we would like to model a set of P physicochemical properties as a vector

of covariates xi = (xi0, ...xip, ..., xi(P ))′. We relate our cytotoxicity vector γij to our covariate
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vector xi through a regression at the ENM by cytotoxicity parameter level, such that

g(γij | xi) = x′iθ (5.4)

where θ = (θ0, ...θp, ...θP ) is our vector of regression coefficients and g is a standard link

function. We may proceed as in the univariate case, by introducing a continuous latent

variable Zi and modeling g as probit model, allowing the construction of a Gibbs sampling

algorithm (Albert and Chib 1993 and Johnson and Albert 1999). Again, in the case where P

is large, we may proceed as in Chapter 4 by allowing for dimension reduction in the form of

variable selection. One limitation of using variable selection in a settling where the sample

size is extremely small, is the increased sensitivity of the results to the chosen selection prior.

A further extension of the model described above would involve a modeling framework that

combines multiple experiments or data sources in a meta-analytic fashion. This technique is

easily adapted into the hierarchical modeling framework, with information shared between

studies via the structuring of one extra level in the hierarchy. In nanotoxicology, these

extensions could provide an opportunity for addressing questions that cannot be currently

answered due to limited sample sizes, and are therefore an important area of future work.

Finally, the proposed model is only an initial step in an effort to develop a framework

for predictive nanotoxicology. A further extension, toward the ultimate goal of developing

a QSAR model, includes the further development of the regression model relating the prob-

ability of toxicity to ENM-specific physicochemical properties. Due to the limited samples

size in the case-study described in Chapter 4, the modeling of functional covariates was kept

relatively simple. As the relationship between cytotoxicity and ENM structural and chemical

properties is often non-linear, one approach might include the use of functional regression

to relate physicochemical properties to cytotoxicity profiles, using more sophisticated func-

tional forms. For example, nanoparticle size measurements are most often measured as a

distribution of sizes rather then a single value. In this case it might be important to relate

the observed cytotoxicity of a material to its measured size distribution. This is naturally

defined as an extension of the covariate model described in Section 4.2.2 of Chapter 4, as
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follows:

g(γi | xi, c(s)) = x′iθ +
∫
ci(s)ζ(s) ds, (5.5)

where θ = (θ0, ...θp, ...θP ) is our usual vector of regression coefficients, s is a continuous index

for size, c(s) is the covariate function, and ζ(s) is a functional parameter, which models

how variability in the size distribution explains variability in the probability of toxicity.

Further details on this type of model can be found in Ramsey and Silverman (2005). One

way to model the functional component of the expression above might be through the use

of generalized additive regression based on Bayesian P-splines, as detailed in Lang and

Brezger (2004). Modeling the relationship between cytotoxicity profiles and ENM-specific

physicochemical properties using functional covariates would require substantial increase in

computational complexity, but as the library of available data of ENMs rapidly expands, it

is clearly worthy of further exploration.
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APPENDIX A

Appendix A: Toxicity Profiling of ENMs

A.1 Full Conditional Distributions

In this appendix we describe some of the full conditional distributions for the model described

in Chapter 2. Let yijk(d, t) denote a multivariate response corresponding to ENM i (i =

1, ..., I), cytotoxicity parameter j (j = 1, ..., J), and replicate k (k = 1, ..., K) at some dose

d in d = (d1, ...dD)′ and some time t in t = (t1, ...tT )′.

Also, let θ = (α,β,γ,φ,ψ,αo,βo,γo, τ ,σε,σα,σβ,σγ) denote the full parameter vector

and, let θ\δ denote the vector containing all components of θ except for some parameter δ in

θ. Moreover, we denote Yij as the complete set of response values for particle i and outcome

j. Using the notation above we define the full conditional distributions for all available

parameters as follows.

A.1.1: Full conditional distributions for the random effect parameters αij, βij , γij , and δij .

αij | Yij ,θ\αij ∼ N


∑
d,t,k

ỹαijk
(d,t)

σ2
εj
/τi

+ αoi
σαi

D×T×K
σ2
εj
/τi

+ 1
σαi

, 1
D×T×K
σ2
εj
/τi

+ 1
σαi

 ,

where

ỹαijk(d, t) =


yijk(d, t)− B(d,φij)′βij − B(t,ψij)′γij if ρij = 0

yijk(d, t)− B(d,φij)′βij − B(t,ψij)′γij − B(d ∗ t,χij)′δij if ρij = 1.
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βij | Yij ,θ\βij
∼ N4(Mβ, Vβ),

where

Mβ =
(

Σ-1
βi

+ ∑
d,t,k

B(d,φij)B(d,φij)
′

σ2
εj
/τi

)-1 (
Σ-1
βi
βoi

+ ∑
d,t,k

B(d,φij)ỹβijk (d,t)
σ2
εj
/τi

)
,

Vβ =
(

Σ-1
βi

+ ∑
d,t,k

B(d,φij)B(d,φij)
′

σ2
εj
/τi

)-1

ỹβijk(d, t) =


yijk(d, t)− B(t,ψij)′γij − αij if ρij = 0

yijk(d, t)− B(t,ψij)′γij − B(d ∗ t,χij)′δij − αij if ρij = 1.

γij | Yij ,θ\γij
∼ N4(Mγ, Vγ),

where

Mγ =
(

Σ-1
γi

+ ∑
d,t,k

B(t,ψij)B(t,ψij)
′

σ2
εj
/τi

)-1 (
Σ-1
γi
γoi

+ ∑
d,t,k

B(t,ψij)ỹγijk (d,t)
σ2
εj
/τi

)
,

Vγ =
(

Σ-1
γi

+ ∑
d,t,k

B(t,ψij)B(t,ψij)
′

σ2
εj
/τi

)-1

,

ỹγijk(d, t) =


yijk(d, t)− B(d,φij)′βij − αij if ρij = 0

yijk(d, t)− B(d,φij)′βij − B(d ∗ t,χij)′δij − αij if ρij = 1.

δij | Yij ,θ\δij
∼ N4(Mδ, Vδ),

where

Mδ =
(

Σ-1
δi

+ ∑
d,t,k

B(t,χij)B(d∗t,χij)
′

σ2
εj
/τi

)-1 (
Σ-1
δi
mδij

+ ∑
d,t,k

B(d∗t,χij)ỹδijk (d,t)
σ2
εj
/τi

)
,

Vδ =
(

Σ-1
γi

+ ∑
d,t,k

B(t,ψij)B(t,ψij)
′

σ2
εj
/τi

)-1

,

ỹδijk(d, t) = yijk(d, t)− B(d,φij)′βij − B(t,ψij)′γij − αij.
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A.1.2: Full conditional distributions for ENM level parameters αoi , βoi , and γoi .

αoi | θ\αij ∼ N


∑J

j=1 αij

σ2
αi

+mαi
s2
αi

J

σ2
αi

+ 1
s2
αi

, 1
J

σ2
αi

+ 1
s2
αi

 ,
βoi
| θ\βij

∼ N4

((
JΣ-1

βi
+ v-1

βi

)-1 (
Σ-1
βi

∑J
j=1 βij + v-1

βi
mβi

)
,
(
JΣ-1

βi
+ v-1

βi

)-1
)
,

γoi
| θ\γij

∼ N4

((
JΣ-1

γi
+ v-1

γi

)-1 (
Σ-1
γi

∑J
j=1 γij + v-1

γi
mγi

)
,
(
JΣ-1

γi
+ v-1

γi

)-1
)
.

A.1.3: Full conditional distributions for the error variance parameter σ2
εj
and variance infla-

tion parameter τi.

1/σ2
εj
| Yij ,θ\σεj ∼ Gamma

(
aεj + I×D×T×K

2 , 1
2
∑

d,t,k,i
(yijk(d, t)−mij(d, t))2τi + bεj

)
,

where

mij(d, t) =


B(d,φij)′βij + B(t,ψij)′γij + αij if ρij = 0

B(d,φij)′βij + B(t,ψij)′γij + B(d ∗ t,χij)′γij + αij if ρij = 1.

τi | Yij ,θ\τi ∼ Gamma

(
ν
2 + J×K×D×T

2 , 1
2
∑

d,t,k,j

(yijk(d,t)−mij(d,t))2

σ2
εj

+ ν
2

)
,

where

mij(d, t) =


B(d,φij)′βij + B(t,ψij)′γij + αij if ρij = 0

B(d,φij)′βij + B(t,ψij)′γij + B(d ∗ t,χij)′γij + αij if ρij = 1.

A.1.4: Full conditional distributions for other variance parameters

1/σ2
αi
| θ\σαi ∼ Gamma

(
aαi + J

2 , bαi + 1
2
∑J
j=1(αij − αoi)2

)
,

1/σ2
βi`
| θ\σβi` ∼ Gamma

(
aβi + J

2 , bβi + 1
2
∑J
j=1(βij` − βoi`)2

)
,

1/σ2
γi`
| θ\σγi` ∼ Gamma

(
aγi + J

2 , bγi + 1
2
∑J
j=1(γij` − γoi`)2

)
,

where ` = 1, .., 4.
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A.2 Simulation Study: Assessing Model Fit

To assess estimation of the model presented in Chapter 2, we simulated four sets, (i =

1, ..., 4), of four independent surfaces, (j = 1, ..., 4), each evaluated at ten doses (d ∈ [0, D])

and seven times of exposure (t ∈ [0, T ]). The dose and time kinetics were simulated in an

additive fashion from various parametric functions. In addition for each set of response-

surfaces, we simulated a dose*time interaction function for two of the four surfaces. If we

let yijk(d, t) denote a multivariate response corresponding to a set of surfaces i (i = 1, ..., 4),

outcome j (j = 1, ..., 4), and replicate k (k = 1, ..., 4), at dose d ∈ [0, D] and time t ∈ [0, T ],

then each simulated surface can be described by

yijk(d, t) = sij(d, t) + ξijk(d, t). (A.1)

Here sij(d, t) = αij + rij(d) + uij(t) + wij(dt)I(rij = 1) represents a smooth dose-response-

surface and rij an indicator that determines whether or not a dose-time interaction was

simulated. The functions rij(d), uij(t), and wij(dt) were simulated from various parametric

functions such as log-logistic, weibull, polynomial, and cubic spline models. These parametric

functions were used to construct both canonical and non-canonical profiles that are still

reasonably interpretable in a toxicity framework. Note that the simulated response curves

do not follow our model which uses a B-spline representation with two random interior

knots. Dose-response surfaces were also simulated with varying levels of noise, across each

outcome j. This is as expected in high-throughput screening studies, where different assay

systems are able to capture measurements with varying levels of precision. More specifically,

ξijk(d, t) ∼ N(0, σξj), where σξj = .6, .8, 1, 1.2 for j = 1, ..., 4 respectively.

The model described in the Chapter 2 was fit to the simulated surfaces. We placed

relatively diffuse priors on all parameters. More precisely, we placed Gamma(.01, .01) priors

on the 1/σεj parameters, Gamma(1, .1) priors on all remaining precision parameters, and a

discrete uniform prior on 1,2,4,8,16, and 32, for the degrees of freedom parameter ν. The

population level parameters αoi are modeled as N(0, 10) and the βoi
and γoi

parameters as

truncated N4(0, 10I). We fixed βij2 = 0, γij2 = 0, and δij2 = 0, assuming no effect before
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the first change-point. Note that this constraint can be changed to βij2 ≤ 0, γij2 ≤ 0 and

δij2 ≤ 0, when assuming a tonic effect before the first change-point. We also placed a diffuse

N4(0, 100I) prior on our dose-time interaction amplitude parameters δij. Finally, in order

to assess the sensitivity of the model results to our choice of prior parameters, we specified

increasingly informative priors on our population level change-point parameters λφi
and λφi

,

and on our dose-time interaction change-point parameters χij. Our inferences are based on

20,000 MCMC samples, after discarding a conservative 60,000 iterations for burn-in.

Figure A.1 gives examples of increasingly informative prior distributions on our dose-

response change-point parameters φij1 and φij2. We impose a right-skewed prior distribution

on φij1, which favors (a-priori) conservative values for the location of the first change-point

parameter, and allow a relatively diffuse prior distribution for our second change-point pa-

rameter φij2. Similar examples can be constructed for our duration-response change-points

ψij1 and ψij2, and our dose-time interaction change-points χij1 and χij2.

Figures A.2 through A.5 provide results from our simulation study using increasingly in-

formative priors on our population level change-point parameters λφi
and λψi

, and our dose-

time interaction change-point parameters χij. Simulated dose (column 2 ), duration (column

3 ), and dose-time interaction (column 4 ) response curves are superimposed with expected

dose and duration-response curves, and point-wise 95% posterior intervals estimated from

our model. Prior 1 (blue) is the least informative, and corresponds to a set of relatively dif-

fuse Gamma(2, 1) and Gamma(3, 1) priors on λφi
and λφi

, and a diffuse B2(2, 3, 1, 1, DT )

prior on χij. Prior 2 is a moderately informative Gamma(2.5, 1) and Gamma(7, 1.5) prior

on λφi
and λφi

, and a B2(2.5, 4.7, 1, 1, DT ) prior on χij. Finally prior 3 is the most infor-

mative, and corresponds to a Gamma(2, 1) and Gamma(7, 1.5) prior on λφi
and λφi

, and

a B2(2, 4.7, 1, 1, DT ) prior on χij. The left panel shows fitted dose-response-surfaces, span-

ning dose and time, for our least informative prior. Table A.1 also provides posterior mean

estimates of ρij, which are the expected inclusion probabilities of the dose-time interaction

function, after adjusting for multiplicity, and can be used to test for a dose-time interaction.

The simulation results show that the posterior mean response trajectories are able to

adequately estimate the true dose and duration-response curves, while capturing the most
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important features. In particular, our model is able to appropriately model both canonical

and non-canonical dose-response trajectories, while providing interpretable risk assessment

parameters. It is also evident that our model is relatively insensitive to the choice of prior

parameters for our change-points. Priors 1-3 are, in most cases, indistinguishable, especially

in those cases where the data sufficiently provide information on the location of the change-

points. Finally, although we do not include a formal simulation study to determine the false

positive and negative rate for correctly identifying an interaction function using our model,

we do notice that in all the simulated cases the model is able to correctly distinguish between

data simulated with and without a dose*time interaction function.
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Figure A.1: Marginal prior distributions on the change-point parameters. Examples
of increasingly informative prior distributions on the change-point parameters φij1, φij2. We
favor (a-priori) the choice of conservative values for the location of the first change-point
(solid line) and a relatively diffuse prior for our second change-point (dotted line).

Prior ENM Outcome 1 Outcome 2 Outcome 3 Outcome 4

Prior1

1 0.01 0.99 0.99 0.00
2 0.00 0.00 0.99 0.99
3 0.99 0.00 0.99 0.00
4 0.99 0.99 0.01 0.00

Prior2

1 0.00 0.98 0.99 0.00
2 0.00 0.00 0.99 0.99
3 0.99 0.00 0.99 0.00
4 0.99 0.99 0.00 0.00

Prior3

1 0.00 0.99 0.99 0.00
2 0.00 0.01 0.99 0.99
3 0.99 0.00 0.99 0.11
4 0.99 0.99 0.00 0.00

Table A.1: Expected inclusion probabilities of the dose-time interaction function
using priors 1-3. Posterior mean estimates of ρij describe the expected inclusion proba-
bilities of the dose-time interaction function, and can be used to test for an interaction.
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Figure A.2: Simulation study to assess model fit and prior sensitivity (weibull).
(column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with simulated
data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction (column
4 ) response curves (black) superimposed with expected curves estimated from our model
(solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1 (blue) is
the least informative, prior 2 (red) is moderately informative and priors 3 (purple) is the most
informative. (column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with
simulated data.
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Figure A.3: Simulation study to assess model fit and prior sensitivity (log-logistic).
(column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with simulated
data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction (column
4 ) response curves (black) superimposed with expected curves estimated from our model
(solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1 (blue) is
the least informative, prior 2 (red) is moderately informative and priors 3 (purple) is the most
informative. (column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with
simulated data.
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Figure A.4: Simulation study to assess model fit and prior sensitivity (polynomial).
(column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with simulated
data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction (column
4 ) response curves (black) superimposed with expected curves estimated from our model
(solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1 (blue) is
the least informative, prior 2 (red) is moderately informative and priors 3 (purple) is the most
informative. (column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with
simulated data.
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Figure A.5: Simulation study to assess model fit and prior sensitivity (cubic
splines). (column 1 ) Fitted response-surfaces estimated using prior 1, superimposed with
simulated data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction
(column 4 ) response curves (black) superimposed with expected curves estimated from our
model (solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1
(blue) is the least informative, prior 2 (red) is moderately informative and priors 3 (pur-
ple) is the most informative. (column 1 ) Fitted response-surfaces estimated using prior 1,
superimposed with simulated data.

97



A.3 Simulation Study: Assessing Prior Model Sensitivity

To assess sensitivity of the model to our choice of a prior model on the change-point parame-

ters, we conducted a sensitivity analysis using the simulated data described above. We fit the

simulated data to models with three different priors on the change-point parameters. The

first prior was the bivariate beta prior parameterization described above, where we impose

a right-skewed prior distribution on φij1, ψij1, and χij1, and allow a conditionally uniform

prior distribution for our second change-point parameters φij2, ψij2, and χij2. Here we spec-

ified a set of relatively diffuse Gamma(2, 1) and Gamma(3, 1) priors for our population level

change-point parameters λφi
and λφi

, and a diffuse B2(2, 3, 1, 1, DT ) prior for our dose-time

interaction change-point parameter χij. The second prior is also a bivariate beta prior, with

extremely informative, perhaps unreasonable, Gamma(60, 3) and Gamma(1000, 10) priors

for our population level change-point parameters λφi
and λφi

, and a B2(20, 100, 1, 1, DT )

prior for our dose-time interaction change-point parameter χij.

The third prior is another parameterization of the bivariate beta distribution which allows

for a uniform prior on the simlex, and can be described as follows:

φij ∼ B2(1, 1, 1, 1, D),

ψij ∼ B2(1, 1, 1, 1, T ),

χij ∼ B2(1, 1, 1, 1, T ),

(A.2)

with support S(φij) = {(φij1, phiij2) : 0 < φij1 < φij2 < D} and S(ψij) = {(ψij1, psiij2) :

0 < ψij1 < ψij2 < T}. The marginal prior distribution of φij1 is uniform and the conditional

prior distribution of φij2 given φij2 is also uniform. Similarly for ψij and χij .

Finally, the fourth prior consists of two truncated normal priors, where for each ENM i
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and response j, we define the following prior distributions for φij, ψij, and χij.

φij1 ∼ N(φoi1 , σ2
φi1

)I(0 < φij1 < D), φij2 ∼ N(φoi2 , σ2
φi2

)I(φij2 < φij2 < D),

ψij1 ∼ N(ψoi1 , σ2
ψi1

)I(0 < ψij1 < T ), ψij2 ∼ N(ψoi2 , σ2
ψi2

)I(ψij2 < ψij2 < T ),

χij1 ∼ N(1
3DT, 100)I(0 < χij1 < DT ), χij2 ∼ N(2

3DT, 100)I(χij2 < χij2 < DT ).
(A.3)

For each ENM i, we also define the following prior distributions for our population level

parameters
φoi1 ∼ N(1

3D, 10), φoi1 ∼ N(2
3D, 10),

ψoi1 ∼ N(1
3T, 10), ψoi1 ∼ N(2

3T, 10),
(A.4)

and similarly the following priors on our hyperparameters

1/σ2
φi1
∼ Gamma(aφi1 , bφi1), 1/σ2

φi2
∼ Gamma(aφi2 , bφi2),

1/σ2
ψi1
∼ Gamma(aψi1 , bψi1), 1/σ2

ψi2
∼ Gamma(aψi2 , bψi2).

(A.5)

For all other parameters we used relatively diffuse priors, as described in Appendix A.2.

Our inferences are based on 20,000 MCMC samples, after discarding a conservative 60,000

iterations for burn-in.

Figures A.6 through A.9 provide results from our simulation study, using the four differ-

ent prior models for our change-point parameters described above. Simulated dose (column

2 ), duration (column 3 ), and dose-time interaction (column 4 ) response curves are super-

imposed with expected dose and duration-response curves, and point-wise 95% posterior

intervals estimated from our model. Finally, column 1 shows fitted dose-response-surfaces,

spanning dose and time, for prior 2.

In summary, our analysis shows that inferential results tend to be robust to the choice of

prior model. Priors 1, 3, and 4 are, in most cases, indistinguishable. Prior 2, is an extremely

informative prior, and therefore results do somewhat differ from the other 3 priors, although

not unreasonably. The benefit of using the bivariate beta prior described in the Chapter

2 is that it reflects the biological mechanism of toxicity. More specifically, it assigns zero

probability to zero dose and time where toxicity is not expected to occur. The bivariate
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beta prior also takes a conservative standpoint by assigning high probability to low doses

and times of exposure, above a certain threshold.
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Figure A.6: Simulation study to assess prior sensitivity to change-point model
(weibull). (left) Fitted response-surfaces estimated using prior 2, superimposed with sim-
ulated data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction
(column 4 ) response curves (black) superimposed with expected curves estimated from our
model (solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1
(blue) is the bivariate beta prior presented in Chapter 2, prior 2(green) is an extremely in-
formative bivariate beta prior, prior 3 (red) is a uniform prior over the simplex and prior 4
(purple) is the truncated normal prior described above.
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Figure A.7: Simulation study to assess prior sensitivity to change-point model
(log-logistic). (left) Fitted response-surfaces estimated using prior 2, superimposed with
simulated data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction
(column 4 ) response curves (black) superimposed with expected curves estimated from our
model (solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1
(blue) is the bivariate beta prior presented in Chapter 2, prior 2(green) is an extremely
informative bivariate beta prior, prior 3 (red) is a uniform prior over the simplex and prior
4 (purple) is the truncated normal prior described above.
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Figure A.8: Simulation study to assess sensitivity to prior change-point model
(polynomials). (left) Fitted response-surfaces estimated using prior 2, superimposed with
simulated data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction
(column 4 ) response curves (black) superimposed with expected curves estimated from our
model (solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1
(blue) is the bivariate beta prior presented in Chapter 2, prior 2(green) is an extremely
informative bivariate beta prior, prior 3 (red) is a uniform prior over the simplex and prior
4 (purple) is the truncated normal prior described above.
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Figure A.9: Simulation study to assess prior change-point model sensitivity (cubic
splines. (left) Fitted response-surfaces estimated using prior 2, superimposed with simulated
data. Simulated dose (column 2 ), duration (column 3 ), and dose-time interaction (column
4 ) response curves (black) superimposed with expected curves estimated from our model
(solid colored lines) and point-wise 95% posterior intervals (dashed lines). Prior 1 (blue) is
the bivariate beta prior presented in Chapter 2, prior 2(green) is an extremely informative
bivariate beta prior, prior 3 (red) is a uniform prior over the simplex and prior 4 (purple) is
the truncated normal prior described above.
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A.4 Additional Figures and Tables

The model presented in Chapter 2 was fit to a metal-oxide library consisting of eight nanopar-

ticles, monitored for four cytotoxicity responses, which were measured over a grid of ten doses

and seven times (hours) of exposure. The four responses include mitochondrial superoxide

formation (MSF), loss of mitochondrial membrane potential (MMP), elevated intracellular

calcium (EIC), and cellular membrane damage (CMD). Each outcome was measured as the

percentage of cells positive for the response, and was normalized using a logit-like transfor-

mation.

In this appendix we present figures and tables for the remaining four particles not pre-

sented in Chapter 2, including silver (Ag), aluminum oxide (Al2O3), iron oxide (Fe3O4), and

silicon dioxide (SiO2) (see Figures A.10 to A.13). Specifically, column 1 shows fitted dose-

response-surfaces spanning dose and time. Also included are fitted curves for the expected

dose-response function fij(d) (column 2), which represent the effect due to dose, the expected

duration-response function gij(t) (column 3), which represent the effect due to time, and the

expected dose-time interaction function hij(t) (column 4).

Figure A.14 provides a plot of the estimated median response, relative to the background,

for a range of doses and times of exposure. Blue colors indicate safety regions, or areas of

reduced risk to the cells, while red colored regions indicate increased risk of cytotoxicity.

Table A.2 provides posterior estimates of the expected inclusion probability of the dose-time

interaction function, for each ENM i and outcome j. The estimated inclusion probability

can be used to test for a dose-time interaction, adjusted for multiplicity. Finally, Figure A.15

provides posterior summary estimates, including mean and 95% posterior intervals, for the

maximal safe dose, conditional on the duration of exposure.
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Figure A.10: Fitted response curves for the silver (Ag) ENM. Fitted response-surfaces
(column 1), dose-response function, fij(d) (column 2), duration-response function, gij(t) (col-
umn 3), dose/duration interaction function, hij(dt) (column 4) and associated 95% posterior
intervals. In (column 1), the color red represents response values corresponding to lower time
points and the color black represents response values corresponding to higher time points.
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Figure A.11: Fitted response curves for the aluminum oxide (Al2O3) ENM. Fitted
response-surfaces (column 1), dose-response function, fij(d) (column 2), duration-response
function, gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and as-
sociated 95% posterior intervals. In (column 1), the color red represents response values
corresponding to lower time points and the color black represents response values corre-
sponding to higher time points.

107



Figure A.12: Fitted response curves for the iron oxide (Fe3O4) ENM. Fitted response-
surfaces (column 1), dose-response function, fij(d) (column 2), duration-response function,
gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and associated 95%
posterior intervals. In (column 1), the color red represents response values corresponding
to lower time points and the color black represents response values corresponding to higher
time points.
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Figure A.13: Fitted response curves for the silicon dioxide (SiO2) ENM. Fitted
response-surfaces (column 1), dose-response function, fij(d) (column 2), duration-response
function, gij(t) (column 3), dose/duration interaction function, hij(dt) (column 4) and as-
sociated 95% posterior intervals. In (column 1), the color red represents response values
corresponding to lower time points and the color black represents response values corre-
sponding to higher time points.
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Figure A.14: Safe exposure regions for silver (Ag), aluminum dioxide (Al2O3),
iron oxide (Fe3O4), and silicon dioxide (SiO2) ENMs.. For each particle and outcome
we can define dose and time exposure regions which do not induce cytotoxicity. Lighter
regions indicate greater cytotoxicity to the cells, whereas darker regions indicate reduced
risk. Contour lines quantitate the median estimated response, relative to the background,
where zero response areas can be interpreted as safe exposure regions.
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Figure A.15: Maximal Safe Dose for silver (Ag), aluminum dioxide (Al2O3), iron
oxide (Fe3O4), and silicon dioxide (SiO2) ENMs. Posterior summary estimates of the
maximal safe dose, conditional on exposure time, including the posterior mean and associated
95% posterior intervals. In the case of no interaction, the maximal safe dose is the same
across all times.
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ENM MSF EIC CMD MMP
Ag 0.59 0.00 0.00 0.99
Au 0.00 0.00 0.00 0.00
Pt 0.99 0.00 0.00 0.00
Al2O3 0.00 0.00 0.00 0.00
Fe3O4 0.99 0.00 0.00 0.00
SiO2 0.99 0.00 0.00 0.46
QD 0.99 0.00 0.00 0.00
ZnO 0.99 0.00 0.99 0.00

Table A.2: Expected inclusion probabilities of the dose-time interaction function.
Posterior mean estimates of ρij for each particle and outcome. The expected inclusion
probability can be used to test for a dose-time interaction.

A.5 Model Assessment

In this Appendix we discuss model assessment. First we include a plot of the probability

integral transform (PIT) histogram as measure of predictive performance, as described by

Gneiting et al. (2007). Next, we check the average coverage of the posterior predictive dis-

tribution across all doses and times, by plotting the distribution of the posterior predictive

mean response averaged across all doses and times of exposure, along with the empirical

mean response across all doses and times of exposure.

Figure A.16 provides a plot of the PIT histogram for the entire model, including all doses,

times, outcomes, and particles. Visual assessment indicates that the plot does tend toward

uniformity, indicating good overall predictive performance. Figure A.17 also includes plots

of the PIT histogram, separately for each ENM. The PIT histograms look approximately

uniform for most ENM.

Figures C.2 and C.3 provide plots of the distribution of the posterior predictive mean re-

sponse averaged across all doses and times of exposure (black), for each particle and outcome.

The mean and associated 95% posterior intervals for this posterior predictive distribution

are marked using vertical lines (black). Also included is the empirical mean response across

all doses and times of exposure (red). Figure C.4 summarizes these results by plotting the

mean and 95% posterior intervals of the posterior predictive mean response (black), along
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Figure A.16: PIT histogram for the entire model.

with the the empirical mean response across all doses and times (red), for each particle and

outcome. In all cases the empirical mean response is contained within the 95% posterior

intervals of the posterior predictive mean distribution, indicating relatively good posterior

coverage across all doses and times of exposure. Further details on the implementation of

model diagnostics described above can be found in Appendix C.2.
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Figure A.17: PIT histograms separately for each ENM.
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Figure A.18: Posterior predictive mean distributions for Ag, Au, Pt and Al2O3
ENMs. For each particle and outcome we plot the distribution of the posterior predictive
mean response across all doses and times of exposure (black), along with the mean (solid
black line) and associated 95% posterior intervals (dotted black lines) for this distribution.
Also included is the empirical mean response across all doses and times of exposure (red).
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Figure A.19: Posterior predictive mean distributions for Fe3O4, SiO2, QD and ZnO
ENMs. For each particle and outcome we plot the distribution of the posterior predictive
mean response across all doses and times of exposure (black), along with the mean (solid
black line) and associated 95% posterior intervals (dotted black lines) for this distribution.
Also included is the empirical mean response across all doses and times of exposure (red).
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Figure A.20: Summary of posterior predictive mean coverage. Mean and 95% poste-
rior intervals of the posterior predictive mean response across all doses and times of exposure,
for all outcomes and particles 1 through 8 (QD, ZnO, Fe3O4, Pt, Ag, SiO2, Al2O3, Au). Also
included are the empirical mean responses across all doses and times of exposure (red).
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APPENDIX B

Hierarchical Rank Aggregation

B.1 Toxicity Model

In this appendix we describe in detail the toxicity model used in the Chapter 3 case study.

Let y denote a multivariate continuous outcome, corresponding to J cytotoxicity parameters,

in association with the exposure of a number of cells to I different ENMs, and measured

across K different experiments. More precisely, let yijk(d, t) denote a multivariate response

corresponding to ENM i (i = 1, ..., I), cytotoxicity parameter j (j = 1, ..., J), experiment k

(k = 1, ..., K), and replicate ` (` = 1, ..., L), at dose d ∈ [0, D] and time t ∈ [0, T ]. Typically y

is observed over a discrete set of doses d̃ = (d1, ..., dm1)′ and exposure times t̃ = (t1, ...., tm2)′.

However, for clarity of exposition, we simplify our notation without loss of generality and

refer to a general dose d ∈ [0, D] and time t ∈ [0, T ]. We introduce the following 5-stage

hierarchical model.

Stage 1: Sampling Model

The observed response of particle i, cytotoxicity parameter j, experiment k, and replicate `

is modeled as:

yijk`(d, t) = mijk(d, t) + εijk`(d, t), (B.1)

where εijk(d, t) ∼ N(0, σ2
εjk
/τi) and τi ∼ Gamma(ν/2, ν/2). Here mij(d, t) denotes the

response-surface for particle i and outcome j. The error term εijk is defined in terms of

the measurement error variance σ2
εjk

, specific to cytotoxicity parameter j and experiment k,

and on ENM-specific variance inflation parameter τi. In this way we allow departures from

normality and allow the measurement error σεj to vary between cytotoxicity parameters and
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experiments, due to heterogeneity in the cytotoxicity outcomes and experimental platforms.

Stage 2: Response model at the ENM by cytotoxicity outcome by experimental

level

The dose-response surface mijk(d, t) spans two dimensions (dose and time), and is modeled

in an additive fashion as described by Hastie and Tibshirani (1986). Let (α′ijk,β′ijk,φ′ijk,γ ′ijk,

ψ′ijk)′ be the parameter vector indexing the dose-response-surface mijk(d, t). We define

mijk(d, t) = αijk + fijk(d; φijk,βijk) + gijk(t; ψijk,γijk). (B.2)

Here fijk(d; φijk,βijk) is the function modeling the effect of dose d on response j, for ENM

i and experiment k. Similarly, gijk(t; ψijk,γijk) is the function modeling the effect of time

t. To ensure likelihood identifiability we require, without loss of generality, that fijk(d =

0; φijk,βijk) = 0 and gijk(t = 0; ψijk,γijk) = 0. The parameters αijk can therefore be

interpreted as the background response level for each particle and outcome.

The dose-response curves fijk(d; φijk,βijk) and the duration-response curves gijk(t; ψijk,

γijk), are modeled as a linear combination of basis functions. Specifically, we use linear

B-splines with two random interior knots. Let B(x,η) denote a 4-dimensional B-spline basis

with interior knots η = (η1, η2)′. Also, let βijk = (βijk1, .., βijk4)′ and γijk = (γijk1, ..., γijk4)′

be two 4-dimensional vectors of spline coefficients. The functions fijk(d; φijk,βijk) and

gijk(t; ψijk,γijk) can then be represented as follows:

fijk(d; φijk,βijk) = B(d,φij)′βijk,

gijk(t; ψijk,γijk) = B(t,ψijk)′γijk.
(B.3)

Identifiability restrictions, fijk(d = 0; φijk,βijk) = 0 and gijk(t = 0; ψijk,γijk) = 0, are

implemented by fixing βijk1 = 0 and γijk1 = 0, for all particles and outcomes.

Similarly to the model described in Chapter 2, the first interior knot φijk1 can be interpreted

as the dose at which ENM i becomes toxic in relation to cytotoxicity parameter j and

experiment k (Maximal Safe Dose - similar to the classical NOAEL concept). A similar
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interpretation can be given to ψijk1, in relation to duration-response. As before, the foregoing

interpretation is contingent on fixing βijk2 = 0 and γijk2 = 0, when assuming no effect before

φijk1 and ψijk1, and βijk2 ≤ 0 and γijk2 ≤ 0, when assuming a favorable effect before φijk1

and ψijk1. The parameters φijk2 and ψijk2, are respectively interpreted as the dose and time

at which the response stabilizes or the cellular response starts a possible recovery process.

For each ENM i, response j, and experiment k, we define the following prior distributions

for αijk, βijk, and γijk

αijk ∼ N(αoij , σ2
αij

),

βijk ∼ N4(βoij ,Σβij
)I{βijj1 = 0; βijj2 ≤ 0; (βijk3, βijk4) ≥ 0},

γijk ∼ N4(γoij ,Σγij
)I{γijk1 = 0; γijk2 ≤ 0; (γijk3, γijk4) ≥ 0}.

(B.4)

The covariance matrix Σβij
has diagonal elements σβijp

, p = 1, .., 4, and off diagonal elements

equal to 0; similarly for Σγij
.

Prior distributions for φijk and ψijk are defined to satisfy the following constraints: (0 <

φijk1 < φijk2 < D) and (0 < ψijk1 < ψijk2 < T ). More precisely, we model the joint

distribution of the interior dose and duration knots using a generalized bivariate, as described

in detail Chapter 2.

φij ∼ B2(1, λφij1 , λφij2 , 1, 1, D)I{λφij2 > λφij1 > 1},

ψij ∼ B2(1, λψij1 , λψij2 , 1, 1, T )I{λψij2 > λψij1 > 1}.
(B.5)

This results in a right-skewed marginal distribution for x1, and a uniform conditional distri-

bution for x2 given x1.

Stage 3: Response model at the ENM by cytotoxicity outcome level

For each ENM i and outcome j, we define the following prior distributions for the population

level parameters across experiments

αoij ∼ N(αooi , σ2
αoi

), βoij
∼ N4(βooi

,Σβoi
), γoij

∼ N4(γooi
,Σγoi

). (B.6)
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The parameters βoij
and γoij

are summaries of the dose and duration-response trajectories

across all experiments and αoij is a summary of the baseline response across all experiments.

We also define a prior model for population level parameters λφij
= (λφij1 , λφij2) and

λψij
= (λψij1 , λψij2) as follows:

λφijr ∼ Exponential(λφoir), λψijr ∼ Exponential(λψoir), (B.7)

where r = 1, 2. The parameters λφij
and λψij

can be used to construct summaries of dose

and duration-response change-points across all experiments.

Stage 4: Response model at the ENM level

For each ENM i, we define the following prior distributions for the population level param-

eters across experiments and outcomes

αooi ∼ N(mαi , vαi), βooi
∼ N4(mβi

,vβi
), γooi

∼ N4(mγi
,vγi

). (B.8)

The parameters βooi
and γooi

are summaries of the dose and duration-response trajectories

across all outcomes and experiments. The αooi parameters summarize the baseline response

across all outcomes and experiments.

The population level parameters λφi
= (λφi1 , λφi2) and λψi

= (λψi1 , λψi2) can be defined

as follows:

λφoir ∼ Gamma(aλφir , bλφir), λψoir ∼ Gamma(aλψir , bλψir), (B.9)

where ` = 1, 2. The parameters λφoi
and λψoi

can be used to construct summaries of dose

and duration-response change-points across all outcomes and experiments.

121



Stage 5: Hyperpriors

We complete the model by specifying prior distributions on our hyperparameters as follows:

1/σ2
εjk
∼ Gamma(aεjk , bεjk), ν ∼ Uniform(1, 2, 4, 8, 16, 32),

1/σ2
αij
∼ Gamma(aαij , bαij), 1/σ2

βij
∼ Gamma(aβij , bβij),

1/σ2
γij
∼ Gamma(aγij , bγij), 1/σ2

αoi
∼ Gamma(aαoi , bαoi),

1/σ2
βoi
∼ Gamma(aβoi , bβoi), 1/σ2

γoi
∼ Gamma(aγoi , bγoi).

(B.10)

Note that in our formulation, x ∼ Gamma(a, b) denotes a Gamma distributed random

quantity with shape a and rate b, such that E(x) = a/b.

B.2 Full Conditional Distributions

In this appendix we describe some of the full conditional distributions for the model de-

scribed above. Again let yijk`(d, t) denote a multivariate response corresponding to ENM

i (i = 1, ..., I), cytotoxicity parameter j (j = 1, ..., J), experiment k (k = 1, ..., K), and

replicate ` (` = 1, ..., L), at some dose d in d = (d1, ...dD)′ and some time t in t = (t1, ...tT )′.

Also, let θ = (α,β,γ,φ,ψ,αo,βo,γo,λφ,λψ,αoo,βoo,γoo,λφo
,λψo

, τ , ν,σε,σα,σβ,σγ ,

σαo
,σβo

,σγo
) denote the full parameter vector, and let θ\δ denote the vector containing

all components of θ except for some parameter δ in θ. Moreover, we denote Yijk as the com-

plete set of response values for particle i, outcome j and, experiment k. Using the notation

above we define the full conditional distributions for all available parameters as follows.

B.2.1: Full conditional distributions for the random effect parameters αijk, βijk, and γijk.

αijk | Yijk,θ\αijk ∼ N


∑
d,t,`

ỹαijk`
(d,t)

σ2
εjk

/τi
+
αoij
σαij

D×T×`
σ2
εjk

/τi
+ 1
σαij

, 1
D×T×`
σ2
εjk

/τi
+ 1
σαij

,
where ỹαijk`(d, t) = yijk`(d, t)− B(d,φijk)′βijk − B(t,ψijk)′γijk.
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βijk | Yijk,θ\βijk
∼ N4(Mβ, Vβ),

where

Mβ =
(

Σ-1
βij

+ ∑
d,t,`

B(d,φijk)B(d,φijk)′

σ2
εjk

/τi

)-1 (
Σ-1
βij
βoij

+ ∑
d,t,`

B(d,φijk)ỹβijk` (d,t)
σ2
εjk

/τi

)
,

Vβ =
(

Σ-1
βij

+ ∑
d,t,`

B(d,φijk)B(d,φijk)′

σ2
εjk

/τi

)-1

,

ỹβijk`(d, t) = yijk`(d, t)− B(t,ψijk)′γijk − αijk.

γijk | Yijk,θ\γijk
∼ N4(Mγ, Vγ),

where

Mγ =
(

Σ-1
γij

+ ∑
d,t,`

B(t,ψijk)B(t,ψijk)′

σ2
εjk

/τi

)-1 (
Σ-1
γij
γoij

+ ∑
d,t,`

B(t,ψijk)ỹγijk` (d,t)
σ2
εjk

/τi

)
,

Vγ =
(

Σ-1
γij

+ ∑
d,t,`

B(t,ψijk)B(t,ψijk)′

σ2
εjk

/τi

)-1

,

ỹγijk`(d, t) = yijk`(d, t)− B(d,φijk)′βijk − αijk.

B.2.2: Full conditional distributions for ENM by outcome level parameters αoij , βoij , and

γoij .

αoi | θ\αijk ∼ N


∑K

k=1 αijk
σ2
αij

+ αooi
σαoi

)2

K

σ2
αij

+ 1
σαoi

)2
, 1

K

σ2
αij

+ 1
σαoi

)2

 ,

βoi
| θ\βijk

∼ N4

((
KΣ-1

βij
+ Σβoi

)-1
)-1
(

Σ-1
βij

K∑
k=1
βij + Σβoi

)-1βooi

)
,
(
KΣ-1

βij
+ Σβoi

)-1
)-1
)
,

γoi
| θ\γijk

∼ N4

((
KΣ-1

γij
+ Σγoi

)-1
)-1
(

Σ-1
γij

K∑
k=1
γij + Σγoi

)-1γooi

)
,
(
KΣ-1

γij
+ Σγoi

)-1
)-1
)
.

B.2.3: Full conditional distributions for ENM level parameters αooi , βooi , and γooi .

αooi | θ\αoij ∼ N



J∑
j=1

K∑
k=1

αoij

σ2
αoi

+mαi
s2
αi

JK

σ2
αoi

+ 1
s2
αi

, 1
JK

σ2
αoi

+ 1
s2
αoi

 ,

βooi
| θ\βoij

∼ N4

((
JKΣ-1

βoi
+ v-1

βi

)-1
(

Σ-1
βoi

J∑
j=1

K∑
k=1
βoij

+ v-1
βi
mβi

)
,
(
JKΣ-1

βoi
+ v-1

βi

)-1
)
,
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γooi
| θ\γoij

∼ N4

((
JKΣ-1

γoi
+ v-1

γi

)-1
(

Σ-1
γoi

J∑
j=1

K∑
k=1
γoij

+ v-1
γi
mγi

)
,
(
JKΣ-1

γoi
+ v-1

γi

)-1
)
.

B.2.4: Full conditional distributions for the error variance parameter σ2
εjk

and variance in-

flation parameter τi.

1/σ2
εjk
| Yijk,θ\σεjk ∼ Gamma

(
aεjk + I×D×T×L

2 , 1
2
∑
d,t,`,i

(yijk`(d, t)−mijk(d, t))2τi + bεjk

)
,

where mijk(d, t) = B(d,φijk)′βijk + B(t,ψijk)′γijk + αijk.

τi | Yijk,θ\τi ∼ Gamma

(
ν
2 + J×K×L×D×T

2 , 1
2

∑
d,t,`,k,j

(yijk`(d,t)−mijk(d,t))2

σ2
εjk

+ ν
2

)
,

where mijk(d, t) = B(d,φijk)′βijk + B(t,ψijk)′γijk + αijk.

A.4: Full conditional distributions for other variance parameters.

1/σ2
αij
| θ\σαij ∼ Gamma

(
aαij + K

2 , bαij + 1
2
∑K
k=1(αijk − αoij)2

)
,

1/σ2
βijp
| θ\σβijp ∼ Gamma

(
aβij + K

2 , bβij + 1
2
∑K
k=1(βijkp − βoijp)2

)
,

1/σ2
γijp
| θ\σγijp ∼ Gamma

(
aγij + K

2 , bγij + 1
2
∑K
k=1(γijkp − γoijp)2

)
,

1/σ2
αoi
| θ\σαoi ∼ Gamma

(
aαi + J

2 , bαi + 1
2
∑J
j=1(αoij − αooi)2

)
,

1/σ2
βoip
| θ\σβoip ∼ Gamma

(
aβi + J

2 , bβi + 1
2
∑J
j=1(βoijp − βooip)2

)
,

1/σ2
γoip
| θ\σγoip ∼ Gamma

(
aγi + J

2 , bγi + 1
2
∑J
j=1(γoijp − γooip)2

)
,

where p = 1, .., 4.

B.3 Additional Ranking Results

The model presented in Appendix B.1, and the ranking methods presented in Chapter 3,

were used to rank the eight nanoparticles within cell lines and outcomes, within outcomes

but aggregated across cell-lines, and aggregated across cell-lines and outcomes. The four

responses include mitochondrial superoxide formation (MSF), loss of mitochondrial mem-

brane potential (MMP), elevated intracellular calcium (EIC), and cellular membrane dam-

age (CMD). The nanomaterials include: silver (Ag), gold (Au), platinum (Pt), iron oxide
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(Fe3O4), aluminum oxide (Al2O2), silicon dioxide (SiO2), zinc oxide (ZnO), and quantum

dot (QD). The two screened cell lines, both related to inhalation toxicity, include bronchial

epithelial cell lines (BEAS-2B) and macrophage (RAW 264.7) cell lines. Ranks were initially

constructed assuming equal weights for outcomes and cell-lines. Based on knowledge about

oxidative stress pathways and the assays used to measure these outcomes, it is believed

that the outcomes measured can be ranked in order of importance as follows: (CMD, MSF,

MMP, EIC). Using the weight function described in (3.8) and a value of δ = .75, we derived

weights (.37, .27, .21, .15), for the four outcomes. Similarly, using a slightly more aggressive

δ = .5, we derived weights (.54, .27, .12, .07). In Chapter 3, we presented tables and figures of

these ranks by minimizing squared-error loss. In this appendix, we present results for ranks

constructed by minimizing the percentile loss functions presented in Chapter 3. Specifically,

we would like to optimize ranks to identify the 25% most toxic fraction of total ENM (top

2 ENM).

Table B.1 (left panel) provides posterior expected ranks, and associated 95% posterior

intervals ranks, for each particle, aggregated across all cytotoxicity outcomes and cell-lines,

with each outcome and cell-line weighted equally. Table B.1 (middle panel and right panel)

provide overall summaries, aggregated across outcomes and cell-lines, for the posterior ranks

using the weight functions described above. Additionally, Table B.2 and B.3 provide rankings

for each particle, within outcomes but across cell lines, and within outcomes and experiments,

respectively. In each of these cases, we compute expected ranks and 95% posterior intervals

by minimizing the upper 25% loss functions.

Similar to the results found in Chapter 3, we see that in terms of the overall ranks, when

we use weights favoring the most important outcomes, QD is significantly more toxic then

the remaining seven nanoparticles.
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Equal Weights
ENM Rank
Ag 4.5 (4.5,4.5)
Au 4.5 (4.5,4.5)
Pt 4.5 (4.5,4.5)
Al2O3 4.5 (4.5,4.5)
Fe3O4 4.5 (4.5,4.5)
SiO2 4.5 (4.5,4.5)
QD 4.5 (4.5,4.5)
ZnO 4.5 (4.5,4.5)

wj = (.37, .27, .21, .15)
ENM Rank
QD 1 (1,4.5)
Ag 5 (5,5)
Au 5 (5,5)
Pt 5 (5,5)
Al2O3 5 (5,5)
Fe3O4 5 (5,5)
SiO2 5 (5,5)
ZnO 5 (5,5)

wj = (.54, .27, .12, .07)
ENM Rank
QD 1 (1,1)
Ag 5 (5,5)
Au 5 (5,5)
Pt 5 (5,5)
Al2O3 5 (5,5)
Fe3O4 5 (5,5)
SiO2 5 (5,5)
ZnO 5 (5,5)

Table B.1: Overall rankings based on upper 25% loss functions. Aggregated ranks
across each outcome and cell-line. Posterior expected ranks and 95% posterior intervals
computed by minimizing squared error loss. Each cell-line is given equal weight and each
outcome (CMD,MSF,MMP,EIC) is given varying weights wj.

MSF EIC CMD MMP
ENM Rank ENM Rank ENM Rank ENM Rank
QD 1 (1,1) Fe3O4 1 (1,4.5) QD 1 (1,1) ZnO 1 (1,4.5)
Fe3O4 5 (1.5,5) Ag 5 (5,5) ZnO 5 (1.5,5) Fe3O4 5 (1.5,5)
Ag 5 (5,5) Au 5 (5,5) Ag 5 (5,5) Ag 5 (5,5)
Au 5 (5,5) Pt 5 (5,5) Au 5 (5,5) Au 5 (5,5)
Pt 5 (5,5) Al2O3 5 (5,5) Pt 5 (5,5) Pt 5 (5,5)
Al2O3 5 (5,5) SiO2 5 (5,5) Al2O3 5 (5,5) Al2O3 5 (5,5)
SiO2 5 (5,5) QD 5 (5,5) Fe3O4 5 (5,5) SiO2 5 (5,5)
ZnO 5 (5,5) ZnO 5 (5,5) SiO2 5 (5,5) QD 5 (5,5)

Table B.2: Rankings within outcomes based on upper 25% loss functions. Aggre-
gated ranks across each each outcome and aggregated across cell-lines. Posterior expected
ranks and 95% posterior intervals computed by minimizing squared error loss. Each cell-line
is given equal weight.

MSF EIC CMD MMP
Cell-line ENM Rank ENM Rank ENM Rank ENM Rank

RAW 264.7

QD 1 (1,1) Pt 1 (1,1) QD 1.5 (1.5,1.5) Fe3O4 1.5 (1.5,1.5)
Pt 2 (2,5) Fe3O4 2 (2,5) ZnO 1.5 (1.5,1.5) SiO2 1.5 (1.5,1.5)
Fe3O4 3 (2,5) Ag 3 (2.5,5) Ag 5.5 (5.5,5.5) Ag 5.5 (5.5,5.5)
SiO2 4 (4,5) ZnO 4 (2.5,5) Au 5.5 (5.5,5.5) Au 5.5 (5.5,5.5)
Ag 6.5 (6,6.5) Au 6.5 (6.5,6.5) Pt 5.5 (5.5,5.5) Pt 5.5 (5.5,5.5)
Au 6.5 (6,6.5) Al2O3 6.5 (6.5,6.5) Al2O3 5.5 (5.5,5.5) Al2O3 5.5 (5.5,5.5)
Al2O3 6.5 (6,6.5) SiO2 6.5 (6.5,6.5) Fe3O4 5.5 (5.5,5.5) QD 5.5 (5.5,5.5)
ZnO 6.5 (6,6.5) QD 6.5 (6.5,6.5) SiO2 5.5 (5.5,5.5) ZnO 5.5 (5.5,5.5)

BEAS-2B

QD 1 (1,1) Fe3O4 1.5 (1.5,1.5) QD 1 (1,1) ZnO 1 (1,1)
Au 2 (2,5) QD 1.5 (1.5,1.5) Ag 2 (2,5) QD 2 (2,5)
Fe3O4 3 (2.5,5) Ag 5.5 (5.5,5.5) ZnO 3 (2,5) Au 3 (2.5,5)
Al2O3 4 (2.5,5) Au 5.5 (5.5,5.5) Au 6 (6,6) Fe3O4 4 (2.5,5)
Ag 6.5 (6.5,6.5) Pt 5.5 (5.5,5.5) Pt 6 (6,6) SiO2 5 (5,5)
Pt 6.5 (6.5,6.5) Al2O3 5.5 (5.5,5.5) Al2O3 6 (6,6) Ag 7 (6.5,7)
SiO2 6.5 (6.5,6.5) SiO2 5.5 (5.5,5.5) Fe3O4 6 (6,6) Pt 7 (6.5,7)
ZnO 6.5 (6.5,6.5) ZnO 5.5 (5.5,5.5) SiO2 6 (6,6) Al2O3 7 (6.5,7)

Table B.3: Individual rankings based on upper 25% loss functions. Posterior expected
ranks and 95% posterior intervals computed by minimizing squared error loss. Each cell-line
is given weight and each outcome (CMD,MSF,MMP,EIC) is given weights: (.37, .27, .21, .15).
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APPENDIX C

Appendix C: Relating ENM Properties to Toxicity

C.1 Full Conditional Distributions

In this appendix, we describe some of the full conditional distributions for the model de-

scribed in the Chapter 3. Let yij(d, t) denote a multivariate response corresponding to ENM

i (i = 1, ..., I) and replicate j (j = 1, ..., J), at some dose d in d = (d1, ...dD)′ and some time

t in t = (t1, ...tT )′.

Also let ω = (α,β, τ , σε,σβ,θ,γ,ρ) denote the full parameter vector, and let ω\δ denote

the vector containing all components of ω except for some parameter δ in ω. Moreover,

we denote with Yi the complete set of response values for particle i. Finally, let H de-

note a (MdMt) × N dimensional design matrix, which can be defined as (B1(d)B1(t), . . . ,

Bmd(d)Bmt(t), . . .BMd
(d)BMt(t)), and X an I× (P + 1) dimensional design matrix, which in-

cludes the P covariates. Using the notation above we define the full conditional distributions

for all available parameters as follows.

C.1.1: Full conditional distributions for the random effect parameters αi and βi.

αi | Yi,ω\αi ∼ N


∑
d,t,k

ỹαij (d,t)

σ2
ε /τi

+
malphai
sαi

D×T×J
σ2
ε /τi

+ 1
σαi

, 1
D×T×J
σ2
ε /τi

+ 1
σαi

 ,
where

ỹαij(d, t) =


yij(d, t) if γi = 0

yij(d, t)−Hβ if γi = 1
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βi | Yi,ω\βi
∼ NMdMt(Σ-1

βi
+ ∑

d,t,k

H′H
σ2
εj
/τi

)-1 (
Σ-1
βi
mβi + ∑

d,t,j

Hỹβij (d,t)
σ2
ε /τi

)
,

(
Σ-1
βi

+ ∑
d,t,j

H′H
σ2
ε /τi

)-1
 ,

where ỹβij(d, t) = yij(d, t)− αi and Σβi = σ2
βi

(Kd ⊗Kt).

C.1.2: Full conditional distributions for the error variance parameter σ2
ε and variance inflation

parameter τi.

1/σ2
ε | Yi,ω\σε ∼ Gamma

(
aε + I×D×T×J

2 , 1
2
∑
d,t,j,i

(yij(d, t)−mi(d, t))2τi + bε

)
,

where

mi(d, t) =


αi if γi = 0

Hβ + αi if γi = 1.

τi | Yi,ω\τi ∼ Gamma

(
ν
2 + J×D×T

2 , 1
2
∑
d,t,j

(yij(d,t)−mi(d,t))2

σ2
ε

+ ν
2

)
,

where

mi(d, t) =


αi if γi = 0

Hβ + αi if γi = 1.

C.1.3: Full conditional distributions for other variance parameters.

1/σ2
βi`
| ω\σβi` ∼ Gamma

(
aβi + MdMt

2 , bβi + 1
2(βi −mβ)′(Kd ⊗Kt)(βij −mβ)

)
.

C.1.4: Full conditional distributions for covariate parameters θp and Zi.

Zi | θ, γi = 1 ∼ N (x′iθ, 1) I(Zi ≤ 0),

Zi | θ, γi = 0 ∼ N (x′iθ, 1) I(Zi > 0),

θ | Z,γ ∼ NP+1
(
(X ′ρXρ)-1X ′ρZ, (X ′ρXρ)-1

)
.
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C.1.5: Derivation of P (γ | Y ,ω\γ).

P (γ | Ỹ ,ω\γ) ∝ P (Ỹ | ω\β)P (γ | θ)

P (Ỹ | ω\β) =
∫
P (Ỹ |,ω)P (β | ω\β) dβγi

=
∫ I∏

i=1
(2π)

−DTKJ
2 (2π)

−MtMdJγ
2

(
σ2
ε

τi

)− 1
2

| Σβi |−
1
2

exp
{
−1

2

(
τi
σ2
ε
(Ỹi −Xγi)′(Ỹi −Xγi) + (β′γiΣ-1

βiβγi)
)}

= C1

∫
exp

{
−1

2

(
τi
σ2
ε

(Ỹ ′
iỸ ′

i + β′γiX ′
γiXγiβγi − 2β′γiX ′

γiỸi)

+ β′γiΣ
-1
βiβγi

)}
dβγi

= C1exp
{
−1

2
τi
σ2
ε
(Ỹ ′

iỸ ′
i

)}
∫
exp

{
−1

2

(
β′γi(

τi
σ2
ε

X ′
γiXγi + Σ-1

βi)βγi − 2β′γi
τi
σ2
ε

X ′
γiỸi

)}
dβγi

= C1C2

∫
exp

{
−1

2
(
β′γiV

-1βγi − 2β′γiD
)}

dβγi

= C1C2exp
{

1
2 (D′AA-1AD)

}
exp

{
−1

2

(
β′γiV

-1βγi − 2β′γiV -1V D +D′V V -1V D
)}

= C1C2exp
{

1
2(( τi

σ2
ε
X ′
γiỸi)′( τiσ2

ε
X ′
γiXγi + Σ-1

βi)-1( τi
σ2
ε
X ′
γiỸi))

}
∫
exp

{
−1

2
(
(βγi − V D)′V -1(βγi − V D)

)}
dβγi

= C1C2C3

∫
exp

{
−1

2
(
(βγi − V D)′V -1(βγi − V D)

)}
dβγi

= C1C2C3(2π)
MtMdJ

2 | V | 12∫
(2π)

−MtMdJ
2 | V |−

1
2 exp

{
−1

2
(
(βγi − V D)′V -1(βγi − V D)

)}
dβγi

=
I∏
i=1

(2π)−DTKJ2
(
σ2
ε

τi

)− 1
2 | Σβi |−

1
2 | ( τi

σ2
ε
X ′
γiXγi + Σ-1

βi) |−
1
2

exp
{
−1

2

(
τi
σ2
ε
Ỹ ′

iỸ ′
i

)}
exp

{
1
2

(
( τi
σ2
ε
X ′
γiỸi)′( τiσ2

ε
X ′
γiXγi + Σ-1

βi)-1( τi
σ2
ε
X ′
γiỸi)

)}
∝

I∏
i=1
| Σβi |−

1
2 | ( τi

σ2
ε
X ′
γiXγi + Σ-1

βi) |−
1
2

exp
{

1
2

(
( τi
σ2
ε
X ′
γiỸi)′( τiσ2

ε
X ′
γiXγi + Σ-1

βi)-1( τi
σ2
ε
X ′
γiỸi)

)}
.
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C.2 Model Assessment

In this appendix we discuss model assessment. First we assess goodness of fit using the condi-

tional predictive ordinate (cpo), as described by Geisser (1980). Next we plot the probability

integral transform (PIT) histogram, as a measure of predictive performance (Gneiting et al.

(2007)). Finally, we present some graphical posterior predictive checks.

C.2.1: Conditional Predictive Ordinate (CPO)

The conditional predictive ordinate (CPO) is a diagnostic tool for detecting observations

with poor model fit. If we let Y denote the complete set of responses, let Y−k denote

observation Y with the k-th component omitted, and let Y obs
k denote the kth component of

observation Y , then CPOk can be defined as follows:

CPOi = π(Y obs
k | Yk) =

∫
π(Y obs

k | Y−k,ω)π(ω | Y−k) dω,

π(Y obs
k | Y−k,ω) = 1∫ π(ω | Y )

π(Y obs
k | ω) dω

. (C.1)

Here, ω = (α,β, τ , σε,σβ,θ,γ,ρ) denotes the full parameter vector. Given N MCMC

samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can obtain the harmonic

mean estimate of CPOk as follows:

ˆCPOi = N
N∑
n=1

1/π
(
Y obs

k
|ω(n)
k

) . (C.2)

The expression above is evaluated at posterior samples ω(1)
k , . . . ,ω

(N)
k .

A plot of -log(CPOk) can be used to diagnose poor model fit. Large values of -log(CPOk)

indicate observations that are not consistent with the model. The top panel of Figure

C.1, provides a plot of -log( ˆCPOi(d, t)) for the model and data described in Chapter 4.

Overalll values of -log( ˆCPOi(d, t)) are relatively low, indicating good model fit. The middle

panel indicates that the largest values of -log( ˆCPOi(d, t)) tend to be observations with large

exposure times, This is to be expected, as cell death is followed after sometime by the
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dissolution of cell nuclei, hindering the measurement of cellular responses.

C.2.2: Probability Integral Transform (PIT)

The probability integral transform (PIT), as described by Gneiting et al. (2007), is frequently

used as a measure of posterior predictive calibration. Here calibration is defined as the sta-

tistical consistency between the posterior predictive distribution and the observed responses

Y . The PIT is described as the value of the observed response Yk attained under the pre-

dictive cumulative distribution function. Using the same notation as above, the PIT can be

defined as follows:

PITk =
∫
P (Yk ≤ ω)π(ω)dω = Pk(Yk). (C.3)

Given N MCMC samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can

estimated PIT as follows:
ˆPIT k = 1

N

N∑
n=1

I(Yk ≤ Ỹ (n)
k ). (C.4)

where Y (n)
rep k is a sample from the posterior predictive distribution.

A plot of the PIT histogram can be used to visually assess the calibration of the model.

Under good predictive performance of the model, the PIT histogram has a uniform distribu-

tion (see Diebold et al. (1997) for a formal proof). Inspection of the PIT histogram can also

indicate reasons for poor predictive performance. A hump-shaped PIT histogram indicates

prediction intervals that are, on average, to wide due to over dispersion of the predicative

distribution. A U-shaped PIT histogram indicates that the predictive distribution is too nar-

row. Finally, a triangle shaped PIT histogram corresponds to biased predictive distributions

(Gneiting et al. 2007).

The bottom panel of Figure C.1 provides a plot of the PIT histogram for the entire model,

including all doses, times, and particles. Visual assessment indicates that the plot does tend

toward uniformity, indicating good overall predictive performance.

C.2.2: Posterior Predictive Checking

A common tool for model checking in Bayesian inference involves posterior predictive checks.

The basic idea behind posterior predictive checking is that if the model is a good fit to
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Figure C.1: Graphical model diagnostics. (Top) Estimate of − log(cpoi(d, t)) for detect-
ing observations with poor model fit. (Middle) Plot of −log(cpoi(d, t)) as a function of dose
and time, indicating any relationship between outlying observations and the administered
dose or duration of exposure. (Bottom) Probability Integral Transform assessing empirical
calibration of the posterior predictive distribution.
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the data, then data replicated under the model should resemble the observed response Y .

In posterior predictive checking, replicate samples Yrep, are simulated from the posterior

predictive distribution and compared to the observed data Y . Potential problems with the

model can be detected by looking for systematic differences between the simulated posterior

predictive samples and the observed response. Using the same notation described above, the

posterior predictive distribution can be described as follows:

p(Yrep | Y ) =
∫
P (Yrep | ω)P (ω | Y )dω. (C.5)

Given N MCMC samples, n = 1, ..., N , from the posterior distribution P (ω | Y ), we can

draw samples Y (n)
rep , n = 1, ..., N , from the posterior predictive distribution

Diagnostics of posterior predictive performance are obtained by comparing draws from the

posterior predictive distribution to the observed data, using both formal tests and graphical

checks. Graphical model checking involves the display of the simulated data from the pos-

terior predictive distribution alongside the observed data Y , and visually looking for large

discrepancies such as lack of coverage (Gelman et al. 2004).

Figures C.2 and C.3 provide plots of the distribution of the posterior predictive mean

response averaged across all doses and times of exposure (black), for each particle. The

mean and associated 95% posterior intervals for the posterior predictive distribution are

marked using vertical lines (black). Also included is the empirical mean response across all

doses and times of exposure (red). Figure C.4, summarizes these results by plotting the

mean and 95% posterior intervals of the posterior predictive mean response (black), along

with the the empirical mean response across all doses and times (red), for each particle. In

all cases the empirical mean response is contained within the 95% posterior intervals of the

posterior predictive mean distribution, indicating relatively good posterior coverage across

all doses and times of exposure.
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Figure C.2: Posterior predictive mean distributions for CuO, Al2O3, CeO2, CoO,
Fe2O3, Fe3O4, Mn2O3, Gd2O3, HfO2, ZnO, In2O3, and La2O3 ENMs. For each
particle we plot the distribution of the posterior predictive mean response across all doses
and times of exposure (black), along with the mean (solid black line) and associated 95%
posterior intervals (dotted black lines) for this distribution. Also included is the empirical
mean response across all doses and times of exposure (red).
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Figure C.3: Posterior predictive mean distributions for Co3O4, NiO, Sb2O3, Cr2O3,
SiO2, SnO2, Ni2O3, TiO2, WO3, Y2O3, Yb2O3, and ZrO2 ENMs.] For each particle
we plot the distribution of the posterior predictive mean response across all doses and times
of exposure (black), along with the mean (solid black line) and associated 95% posterior
intervals (dotted black lines) for this distribution. Also included is the empirical mean
response across all doses and times of exposure (red).
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Figure C.4: Summary of posterior predictive mean coverage. Mean and 95% posterior
intervals of the posterior predictive mean response across all doses and times of exposure, for
all 24 particles.) Also included are the empirical mean responses across all doses and times
of exposure (red).
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