
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Weighted p -Bits for FPGA Implementation of Probabilistic Circuits

Permalink
https://escholarship.org/uc/item/7n5016w1

Journal
IEEE Transactions on Neural Networks and Learning Systems, 30(6)

ISSN
2162-237X

Authors
Pervaiz, Ahmed Zeeshan
Sutton, Brian M
Ghantasala, Lakshmi Anirudh
et al.

Publication Date
2019-06-01

DOI
10.1109/tnnls.2018.2874565

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7n5016w1
https://escholarship.org/uc/item/7n5016w1#author
https://escholarship.org
http://www.cdlib.org/

1

Weighted p-bits for FPGA implementation of probabilistic
circuits

Ahmed Zeeshan Pervaiz, Brian M. Sutton, Lakshmi Anirudh Ghantasala, Kerem Y. Camsari

Abstract—Probabilistic spin logic (PSL) is a recently proposed comput-
ing paradigm based on unstable stochastic units called probabilistic bits
(p-bits) that can be correlated to form probabilistic circuits (p-circuits).
These p-circuits can be used to solve problems of optimization, inference
and also to implement precise Boolean functions in an “inverted” mode,
where a given Boolean circuit can operate in reverse to find the input
combinations that are consistent with a given output. In this paper we
present a scalable FPGA implementation of such invertible p-circuits.
We implement a “weighted” p-bit that combines stochastic units with
localized memory structures. We also present a generalized tile of
weighted p-bits to which a large class of problems beyond invertible
Boolean logic can be mapped, and how invertibility can be applied to
interesting problems such as the NP-complete Subset Sum Problem by
solving a small instance of this problem in hardware.

Index Terms—FPGA, invertible logic, Probabilistic computing, Proba-
bilistic logic

I. INTRODUCTION

PROBABILISTIC spin logic (PSL) is a recently proposed com-
puting paradigm based on unstable stochastic units called prob-

abilistic bits (p-bit) that can be used to construct probabilistic circuits
(p-circuits). These p-circuits can be used to solve a large class
of problems including optimization [1], inference [2] and precise
Boolean functions [3]–[5] to perform “invertible” logic.

p-bits are tunable random number generators (tunable RNG) where
a telegraphic output m is controlled with an input I . For example a
strong positive bias at the input will result in the output producing
more highs than lows and vice versa. In mathematical terms, this
behavior is described as:

mi(t) = sgn
{
rand(−1, 1) + tanh

(
Ii(t)

)}
(1)

where rand(−1,1) represents a random number from a uniform
distribution between −1 to 1. p-bits can be interconnected according
to:

Ii(t) = I0
{
hi +

∑
j

Jijmj(t)
}

(2)

where [J] is the interconnection matrix and {h} is the bias vector that
adds a local contribution to each p-bit. I0 controls the strength of the
interconnections that can function as an inverse pseudo-temperature
of the system. (Eq. 1) and (Eq. 2) are the same as the defining
equations for Boltzmann Machines introduced by Hinton and his
collaborators [6] which have had a tremendous impact on the field
of machine learning.

A number of nanodevice implementations of p-bits (Eq. 1) have
been proposed using spintronic units such as stochastic magnetic
tunnel junctions (MTJ) [3], [7]. Such stochastic MTJs have been
experimentally demonstrated [8]–[12]. However, even though nan-
odevice implementations of p-bits could ultimately be more energy
efficient and scalable, a large scale implementation of p-circuits based
on nanodevices is difficult at present. Similarly, the interconnection
matrix (Eq. 2), like the p-bit, can be built with novel nanodevices
such as crossbar arrays using memristors as envisioned in Ref. [13]
or with CMOS solutions such as those shown in Ref. [5], [14], [15].

In this paper we present a digital, tiled FPGA implementation of
large p-circuits using a weighted p-bit that combines the functionality

of Eq. 1 and Eq. 2 in a single, composite unit where each weighted
p-bit is a tunable random number generator that has a local memory
structure which weighs the outputs of other weighted p-bits. The main
contribution of the present paper is to show how such weighted p-bits
can be useful in tackling hard problems that are being explored in the
context of alternative computational paradigms such as “Ising” [16]
and quantum computing. For example, integer factorization, which
has been explored in the context of hardware quantum annealers [17]
using principles similar to “invertible logic” [3].

We further developed an n×n array, demonstrated throughout with
a specific 4× 4 example, on which one can map any n2×n2 [J] matrix.
This 4×4 array can support a fully connected reciprocal network, a
well known requirement for such networks like Boltzmann machines
is the need to update the p-bits in a sequential manner [18]. To do
so, we use a sequencer that produces a set of enable signals for each
p-bit in the 4×4 array.

The tiles that we use to build larger p-circuits are generally
reciprocal networks [18]–[20] that resemble the architecture of Ising
machines [1], [16], [21]–[27], however in general p-circuits can be
constructed as a directed network of reciprocal subcircuits [3] that
are not Ising machines, as we describe in detail in Section III.

The organization of this paper is as follows: In Section II we de-
scribe the FPGA implementation of the weighted p-bit. In Section III
we demonstrate examples of p-circuits realizing invertible Boolean
logic starting from simple Boolean gates that are then interconnected
to construct an N-bit invertible Ripple Carry Adder in Section III-C
and a small instance solver for the NP-complete Subset Sum Problem
in Section III-D.

II. WEIGHTED P-BIT

Fig. 1 shows the block diagram of an FPGA implementation of a
weighted p-bit. There are two major sub-blocks of the weighted p-bit:
(a) The weight matrix which implements Eq. 2 and (b) the tunable
RNG which implements Eq. 1. We describe both components below.

A. Weight Matrix
Each weighted p-bit can take the outputs of others and weight them

according to the interconnection ([J]) matrix. This is done by every
weighted p-bit locally using a weight matrix block that takes the ith

row of the [J] matrix and stores it in registers local to the weighted p-
bit along with the ith entry of the bias vector, {h}. The local presence
of these registers allows a compact implementation of Eq. 1-2 in a
single unit. These registers can also be made user accessible, however
in our demonstration this functionality is not needed since all our [J]
and {h} entries are obtained offline without any online learning [28].
Moreover, the examples discussed in this paper do not make use of
“annealing” [1], which would also require user accessibility.

Fixed point arithmetic: To perform all arithmetic operations in a
weighted p-bit, we use a fixed point notation of s[x][2], where integer
x is chosen based on the requirements of the p-circuit. This allows
a range of −|2x| to (2x − 1) for the integer part. For example, the
[J] and {h} matrices used for the Full Adder shown in Fig. 8 use
weights that require s[4][2] while for an AND gate shown in Fig. 6,
the use of s[3][2] is sufficient. In general, [J] and {h} registers allow

ar
X

iv
:1

71
2.

04
16

6v
3

 [
cs

.E
T

]
 1

 N
ov

 2
01

8

2

Thresholding

m
i

m
1

m
2

m
15

S
u
m

En (Enable) C (Clamp)
S (Select)

Weight Matrix

h

6

Activation

Function

(LUT) 32 bit

Comp

LFSR 32

Tunable RNG

12

+
_

M
U

X

x

J
i1

x

J
i2

x

J
iN

h
C

xm
C

+
_

7.75

-8.00
0

1
5

8

9

10

11
2
6

12

13

14

15

7.75

-8.00

+
_

1 2 22 32

32

32

1
2

3
4

Fig. 1: Weighted p-bit: A weighted p-bit consists of two major
subblocks, a Weight Matrix and a Tunable RNG implementing Eq. 2
and Eq. 1 as a composite unit. The weight matrix implements
one column of Eq. 2 and adds overflow protection and clamping
capabilities to the weighted p-bit while the tunable RNG subblock
implements Eq. 1 whose terminal characteristics are further shown
in Fig. 2. See text for a detailed description.

different problems to be mapped onto the system and having a wide
range of allowed weights enables a broader category of problems to
be solved.

Thresholding: Given that each weighted p-bit has multiple inputs,
the worst case for the weighted sum I0([J]m+ {h}) can exceed the
allowed input range of s[x][2] notation or the allowed input range of
the Activation Function, (which uses the output of the weighted sum
block to calculate tanh as explained in the subsequent subsection.) To
prevent this, an overflow detection and numerical clamping system
are used that compare a bit extended result from the Sum block
to the maximum and minimum allowed numbers for the Activation
Function. The result of the sum is clamped to the the maximum or the
minimum number that can be read by the Activation Function. For
example, the s[4][2] notation has a maximum and minimum limit of
15.75 and -16, however the input of the lookup table for the Activation
Function need not be any less than -8 and any greater than 7.75 as
shown in (Fig. 1).

MUX: A multiplexer is used to perform both the thresholding and
clamping of weighted p-bits (Fig. 1). Table I shows the truth table of
the multiplexer. Four signals are used as inputs, “S(Select)”, which
is high if the weighted p-bit is to be clamped to the “C(Clamp)”
signal. The other two are the outputs of signed comparison between
the Sum and the maximum/minimum numbers to be passed on to the
Activation Function.

B. Tunable random number generator
The output of the weight matrix is applied as input to the tunable

RNG. Fig. 2 shows the average time characteristics of the tunable

S (Select) (C) Clamp IIN > maxtanh IIN < mintanh Output
(4) (3) (2) (1)

0 x 0 0 IIN

0 x 0 1 mintanh

0 x 1 0 maxtanh

1 0 x x mintanh

1 1 x x maxtanh

TABLE I: Truth Table for the weight matrix multiplexer

1

1

6-6

Fig. 2: Sigmoid: The time-averaged output (mi) of a weighted p-bit
is shown as a function of the applied input Ii. When the Ii = 0
(inset), the output mi shows equal amounts of 1’s and 0’s with a
long-time average of 0.5. As Ii is increased above (below) 0, the
average increases and saturates to 1 (−1). Here, the binary output
of the FPGA mi ∈ {0, 1} is converted to a bipolar mi ∈ {−1,+1}
representation.

RNG block. As shown in the inset of Fig. 2, when the input Ii is
0, the mi randomly fluctuates between 0 and 1 as a function of
time, leading to a long time average of 0.5. As the applied input
is increased above (below) 0, the average increases (decreases) and
saturates to 1 (-1). The tunable randomness allows weighted p-bits
to become correlated with each other. We describe the submodules
of the tunable RNG block below.

Activation Function: We use lookup tables (LUT) to implement
the tanh function. The domain of the tanh is (−∞,+∞) and its
range is (−1, 1). To allow a comparison between the output of the
pseudo random number generator and that of the LUT, we first
transform tanh to z = (tanh + 1)/2 and then use a s[0][31] bit
fixed-point representation, where 0 represents the integer part and
31 represents the fractional part. We choose a s[3][2] representation
for the input of the LUT, which translates to the interval (−8, 7.75)
with a resolution of 0.25 between successive data points. Several
methods of implementing sigmoid like functions have been studied
[29] and lookup tables are naturally suited for implementation in
FPGAs.The use of lookup tables will result in an approximation
error. Ref. [29] looks at the average and the maximum errors for
various approximation methods. For the lookup table an error arises
due to the difference in absolute real number value of tanh and
its truncated representation which is shown in Ref. [29] (Eq. 9) as
Etrunmax = 2−(b+1) for a fixed point representation of s[a][b].

Pseudo-random number generation: We use a 32-bit Linear
feedback shift register (LFSR) with an XNOR feedback to the first
register using taps from 32, 22, 2 and 1 position in the LFSR [30].
Given a seed value, this produces a maximal length pseudo-random
stream of size 232−1 with the all 1’s being the only state that is not
part of the stream. It is important to note that each weighted p-bit in
a p-circuit must have a unique seed value, otherwise the p-bits may
have unintentional strong correlations resulting in incorrect system
operation. In this paper, the use of more complex pseudo-RNGs were
avoided due to the complexity of implementation and size. In practice,
LFSR based pseudo-RNG worked well and are naturally suited for
digital implementation.

Comparator: A 32-bit comparator compares the outputs of the
Activation Function and the pseudo random number generator and
produces 0 or 1 state at the output, as shown in the inset of Fig. 2.
C. System Tile

Serial updating: Our p-circuits within a tile are similar to recipro-
cal networks and in general reciprocal networks, such as unrestricted

3

Boltzmann machines, require all p-bits to be updated sequentially
[18]. To ensure this requirement is met, a “sequencer” is present
in each p-circuit which generates an Enable signal for every p-bit in
the p-circuit, ensuring no two p-bits are active simultaneously. At any
given point in time, only one of these enable signals is high while
all others are kept low, allowing only one p-bit to update. An AND
gate (as implemented here) has 3 p-bits with each p-bit requiring 2
clock cycles for a complete update. To help ensure timing closure
within the FPGA, a gap of 1 clock cycle is present between adjacent
Enable signals. In this case the update order is (A → B → C) but
this sequence itself could have been randomized at each iteration as
a method to avoid unwanted correlations due to the update order.
In general, the updating sequence could also influence the average
time it takes for the p-circuit to settle to its steady-state, but this
is not discussed further. A specific example which illustrates the
connectivity within a tile (such as the 4 × 4 shown in Fig. 3) is
shown in Fig. 5, with all the connections presented.

Mapping problems Another important aspect of the system tile is
to allow mapping of different problems [31] [32]. In this manuscript
we demonstrate simple boolean gates such as an AND gate and a
Full Adder which require 3 and 5 (or 14) p-bits for functioning. For
every problem there is a necessary requirement of serial updating
which is fulfilled using the sequencer present within a tile, but
larger problems such as the 32-bit Ripple Carry Adder can be
implemented by cascading system tiles that implement smaller p-
circuits. This cascading in a parallel manner results in a serial-parallel
architecture. The presence of this serial-parallel architecture preserves
the invertibility of the boolean gates all the while allowing a speed up
as the problems are scaled. The ideal size of a system tile is dictated
by the maximum network size of coupled p-bits which require serial
updating. Note that if the network size is larger than the tile size,
multiple tiles can be joined using minor graph embedding [31] [32],
though with some trade-offs. For example a p-circuit that requires 5
p-bits with p-bits being updated serially, needs only a system tile of
size 5, not any larger. Many such 5 p-bit systems tiles can be put
together to build a larger instance of the same problem. However, note
that it is also possible that some problems would require all p-bits
to be updated serially, in which case the entire problem can only be
mapped onto a single system tile. Note that in such a case the solution
will inherently be slower in a synchronous implementation, since the
time for a complete update of a system tile increases linearly with the
number of p-bits. For example, the AND gate presented in the section
III-A needs 3× (2+1) clock cycles for a complete update, while the
Full Adder requires 5/14× (2+ 1) clock cycles (since we present a
5 and a 14 p-bit Full Adder design) for a complete update. On the
other hand, the 32-bit Ripple Carry Adder presented in the section
III-C requires the same (5, 14)× (2+1) clock cycles (depending on
which Full Adder design is used) for an update since it is using 32
individual Full Adders connected in parallel. In general, the size of
the system tile and the speed of one complete update depend on the
details of how the problem is mapped.

Interconnecting System tiles For certain problems, scaling to
larger instances will be possible by interconnecting system tiles.
The Ripple Carry Adder and the Subset Sum solver implemented
in this manuscript are two such examples where Full Adders realized
within a system tile are interconnected to form larger more complex
systems. In such problems, the system tiles need to be connected
in a “directed” manner where the strength of the connection can be
manipulated. For example in the 32-bit RCA, the Carry out of a Full
Adder is connected to the Carry In of the proceeding Full Adder.
This connection can be done via the following

1) The Select and Clamp signals shown in Fig. 1. For example
for the 32-bit Adder one could Clamp the Select line of all

Sequencer

m
2

m
C m

1

En
1

[Sel] [Clamp]

m
1

m
C m

4

m
1

m
C m

13

m
1

m
C m

16

En
4

En
13

[m] [m]

En
16

Sel
13

Clamp
13

Clk

En
i

Fig. 3: 4 x 4 system tile: A 4 × 4 block of weighted p-bits (denoted
by wp-bit) can be used to implement [J] matrices with a dimension
of 42×42 and the sequencer block allows each of the 16 p-bits to be
updated sequentially for proper system operation. Different problems
can be mapped through a choice of suitable [J] and {h} matrices to
construct larger p-circuits.

Carry-in p-bits and clamp them to the Carry-out line from the
preceding Adder with the exception of the First Full Adder
which has its Carry-in clamped to 0.

2) By the mC terminal. This terminal allows the output of a p-bit
to be weighted by an interconnect strength hC such that when
hC → ∞ the p-bit is effectively cloned to the signal coming
into mC, while for hC → 0, the signal mC has no effect on
the p-bit operation. Note that hC → ∞ is the same as using
the Select and Clamp signal as presented previously.

D. FPGA
I/O Architecture for FPGA: We use the Xilinx Kintex ultrascale

XCKU040-1FBVA676 FPGA. The Xilinx Vivado Design Suite was
used to synthesize and implement the Verilog RTL for the FPGA. As
shown in Fig. 4, I/O operations with the p-circuits was accomplished
by memory-mapping the p-circuits using AXI peripheral logic. Once
wrapped, a number of standard interfaces can be used to control
and extract data from the FPGA. Herein, we used a standard UART
connection coupled to a Xilinx MicroBlaze softcore processor. For
simplicity, we targeted a base operating frequency of 100 MHz for the
design, as the principle objective was to explore invertible logic using
p-circuits. For high-performance directed Boolean logic, we believe
an optimized CMOS design would be more appropriate, however,
since there is no equivalent of invertible Boolean logic in CMOS,
we believe that the real application space for p-circuits lies in this
domain. Table II presents a summary of resource utilization of the
various designs that have been implemented in this paper.

III. RESULTS

A. AND Gate
Fig.5 shows the block diagram of an AND gate that is implemented

using 3 p-bits with each p-bit having two inputs. The weighting
matrices [J] and {h} are from Ref. [33] and shown below:

JAND =

A B C

0 −1 2
−1 0 2
2 2 0

, hT =
(
1 1 −2

)
(3)

4

MicroBlaze

Tile

 AXI-Wrapper

Sequencer Sequencer Sequencer

Tile Tile

Control Signals & Outputs

p-circuit

I/O

Peripheral
Computer

Fig. 4: I/O Architecture for FPGA: We communicate with the input
and output terminals of weighted p-bits using an I/O architecture
whose block diagram is shown above. Any p-circuit (tile or collection
of tiles) can be converted into an AXI (universal serial bus architec-
ture) peripheral, which can then communicate with a computer via
a MicroBlaze processor that allows the collection of data from p-
circuits.

S
1 C

1

m
1

A

S
2 C

2

m
2

B

S
3 C

3

m
3

C

En
1

En
2

En
3

Sequencer
LFSR 9

(a)

Fig. 5: AND Gate: Three weighted p-bits are needed to implement an
AND gate whose [J] matrix is obtained from Ref. [33]. A sequencer
circuit is used to force an updating sequence of (A→ B→ C).

The p-circuit architecture of Ref. [3] forces m to be bipolar, i.e. m
∈ {1,−1}. It is more convenient to work with a binary representation
of 1 and 0, i. e m ∈ {0, 1}, in the FPGA which requires that
the [J] and {h} matrices be mapped to binary bases. This can be
accomplished by the following transformation: Jbinary = 2×Jbipolar
and hbinary = hbipolar − Jbipolar1, where 1 is an all ones vector of
size N × 1.

Floating mode (AND): Fig. 6 shows the operation of an AND

Total Slice Slice
Weighted p-bits LUTs Registers

Kintex Ultrascale 242400 484800
XCKU040-1FBVA676

Tunable RNG 1 42 33

AND Gate 3 156 123

Full Adder 14 1345 586

15-bit SSP problem 155 14931 7083

32-bit Ripple Carry Adder 434 38814 18071

TABLE II: FPGA resource utilization of the p-circuits that have been
implemented in this paper.

 Normalized �me

000

001

010

011

100

101

110

111

000 001 010 011 100 101 110 111

500 100 150 200 250 300

0.3

0.25

0.20

0.15

0.1

0.05

0

Fig. 6: Floating mode (AND): (a) Time dependent outputs of [ABC]
for the AND gate are shown as a function of samples collected from
the serial port of the FPGA. (b) The weighted p-bits are correlated
and when left floating they reproduce the truth table of the AND Gate
as shown by the time-averaged statistics which are collected using
106 samples. The FPGA results are in excellent agreement with the
Boltzmann Law of Eq. 5.

gate with all weighted p-bits left floating, where the states [ABC]
corresponding to the truth table (A ∩ B = C) of an AND gate are
visited with high probability. Note that this is a unique property of
p-circuits with no counterpart in a digital CMOS implementation of
an AND gate. In reciprocal networks with symmetric [J] matrices,
an energy functional E for the state {m} = [mi,mj, · · ·]T can be
defined as [3], [18]:

E({m}) = −I0
(∑

i,j

1

2
(Jijmimj) +

∑
i

himi

)
(4)

Then, Boltzmann Law describes the steady state probabilities for
each configuration {m} according to,

P({m}) = exp(−E({m}))∑
i,j exp(−E({m}))

(5)

Fig. 6 shows the steady state statistics of the AND gate in excellent
agreement with the Boltzmann Law for a total of 106 samples.

Forward / Invertible mode (AND): Fig. 7(a) shows the statistics
for the system when both inputs A and B have been clamped
to 1 through the Select and Clamp signals that control the bias
vector {h}. In this case, for the chosen I0, the output C mostly
stays high (1) which means the circuit is operating like a standard
digital AND gate. A remarkable property of p-circuits is in their
input/output equivalence similar to the gates discussed in the context
of memcomputing [34]. The output bits (C) can also be clamped and
in this case the inputs (A,B) fluctuate among combinations consistent
with the clamped output. Fig. 7(b) shows the long time statistics of
the system when the output C has been clamped to 0. It can be
seen that the system spends an equal amount of time visiting three
possible combinations of (A,B), namely (0,0), (0,1) and (1,0). This

5

000 001 010 011 100 101 110 111
 [A B C]

0

0.2

0.4

0.6

0.8

1

000 001 010 011 100 101 110 111
0

0.1

0.2

0.3

 [A B C]

(a)

(b)

Fig. 7: Forward / Invertible mode (AND): Any weighted p-bit of
the AND gate, input (A, B) or output (C) can be clamped using the
bias vector {h} through the Select and Clamp signals. (a) shows the
long time statistics when the inputs A and B have been clamped to 1,
while (b) shows the long time statistics when the output C has been
clamped to 0. In both cases 106 samples have been used.

basic example can be imagined to be 1-bit factorization of an AND
gate where the factors of the product 0 are identified.

B. Full Adder
A Full Adder was implemented as a p-circuit following the

architecture of Ref. [3]. In Ref. [3] 14 p-bits are used to build a
Full Adder, of which only 5 constitute input/output terminals, namely
CIN,A,B, Sum and COUT. The remaining 9 are known as “auxil-
iary” p-bits. In this paper, we improve the 14 p-bit implementation
of the invertible Full Adder (FA) in Ref. [3] and implement the same
functionality using 5 p-bits. This is achieved by first noting that the
first half of the truth table is complementary to the second half for
the FA (Fig 8). The first 4 lines in the truth table are then turned into
an orthonormal set by a Gram-Schmidt process and a [J] matrix is
obtained using Eq. 12 in Ref. [3] which is finally rounded to integer
values, with diagonal entries replaced by zeroes

JFA =

Cin B A S Cout

0 −1 −1 1 2
−1 0 −1 1 2
−1 −1 0 1 2
1 1 1 0 −2
2 2 2 −2 0

 (6)

These designs for the Full Adder fit within the 4×4 tiles that were
defined previously with less packing efficiency, but since the design
is reconfigurable, appropriate changes can be made at a relatively low
cost by scaling the tile size up or down. Similar to the AND gate
we convert the weight matrix into their binary equivalents using the
transformation shown earlier. A summary of resource utilization for
the 14 p-bit Full adder is given in Table II.

Fig. 8 shows the state of a 14 p-bit Full Adder when all the p-bits
have been left floating. The truth table of the Full Adder is highlighted
in floating mode and can be seen by the statistics shown in Fig. 8 that
are collected using 106 samples, once again in excellent agreement
with the Boltzmann Law. Due to its sequential updating, this Full
Adder design requires 14× [2 + 1(gap)] = 42 clock cycles for one
complete update. The Full Adder is the largest p-circuit that we have

 C
OUT
 B A S C

IN

0

0.05

0.1

0
0
0
0
0

0
1
0
1
0

0
1
1
0
1

1
0
0
1
0

1
0
1
0
1

1
1
0
0
1

0
0
1
1
0

1
1
1
1
1

Fig. 8: Floating mode (Full Adder): Long time statistics of the 14
weighted p-bit Full Adder using 106 samples when all the terminals
have been left floating are shown in the figure above. Similar to the
AND gate, the Full Adder reproduces its truth table when all p-bits
are left floating. Results show excellent agreement with Boltzmann
Law (Eq. 5).

built within a 4×4 tile, since each weighted p-bit within the Full
Adder needs to be updated sequentially. In the next section we use
this 14 p-bit Full Adder to construct a N-bit Ripple Carry Adder,
while in section III-D we use a 5-bit Full Adder to solve a small
instance of the SSP.

C. N-bit Ripple Carry Adders

Unlike the reciprocal networks (Jij = Jji) we have shown so far,
we now construct a directed p-circuit by cascading the symmetric Full
Adders in a parallel architecture without any global sequencer circuit.
This is very different from the AND gate and Full Adder presented
in sections III-A and III-B which are designed within a 4 × 4 tile,
where each p-bit is updated sequentially. This serial-parallel update
scheme significantly speeds up convergence time.

Fig. 9a shows the block diagram of multiple tiles, each designed
as a Full Adder, that are interconnected in a directed way to form an
N-bit Ripple Carry Adder (RCA). What makes the RCA directed is
the fact that the carry out bit of the Full Adders is connected only
from the least significant bit to the most significant bit but not vice
versa. Note that this constitutes a significant difference from the AND
and Full Adder because the Boltzmann Law is not applicable to this
system anymore.

In this design we chose a fully directed connection between Full
Adders. However, in general, tiles can be interconnected via an
adjustable connection that can be partially (or fully) bidirectional
using the terminal mc shown in Fig. 1. This concept of directionality
is key to building larger p-circuits as shown in Ref. [3] where a strong
degree of bidirectionality can lead to erroneous results unless a very
large number of time samples are obtained.

The system shown Fig. 9a in general produces a sum (S) consistent
when the inputs A, B are clamped to an N-bit number functioning
as an adder. However, the system can also function as a subtractor
when an N-bit input (A or B) and the sum are clamped to a given
number, even though the system is no longer completely bidirectional.
Fig. 9b shows the long time statistics for the N-bit Ripple Carry
Adder when all N-bit terminals (S=sum, A and B) have been left
floating and, remarkably, the system correlates in such a manner to
select a single state (S−A−B=0) with ≈ 20% probability out of 105

samples. This feature can be used to solve hard problems such as the
3-sum problem that is concerned with finding a set of inputs (A, B,
C) that add up to a given sum S [35]. With minor modifications, the
invertible Full Adders could also be used to solve the Subset Sum
Problem, using similar adder architectures shown in [34]. A digital

6

Sequencer Sequencer Sequencer

Tile=Full Adder

(a)

(b)

Fig. 9: N-bit Ripple Carry Adder: (a) Reciprocal networks of
individual tiles programmed as Full Adders are interconnected in
a directed manner to construct an N-bit Ripple Carry Adder (RCA).
(b) The RCA is left floating and the long time statistics of the N-bit
sum (S) and the inputs (A, B) get correlated in such a way to make
a single state (inset) S−A−B = 0 appear with ≈ 20% probability
out of 105 samples among billions of states (±232), as can be seen
in the x-axis. Only ≈ 1500 samples are shown for clarity.

implementation such as our invertible N-bit adder could be used to
solve such problems in hardware very efficiently.

The N-bit Ripple Carry Adder presented in Fig. 9 is not a true
sequentially updated machine because while each adder takes 42
clock cycles to produce one complete update, the adders themselves
do not wait 42 × N for one complete update. In this way the N-bit
Adder presented in Fig. 9 is a serial-parallel architecture different
from the serially updated N-bit adders presented in Ref. [3]. This
serial-parallel update for the N-bit RCA seems to operate accurately
for the deterministic update sequence we chose, but it is not clear if
this approach would be generally applicable for any problem, which is
beyond the scope of this paper. While we do not give a quantitative
analysis of the speed up from this serial-parallel architecture, we
note that in the case of the invertible N-bit RCA, this serial-parallel
architecture combined with fast clock speeds of the FPGA should
allow considerably faster operation of this large scale p-circuit as
compared to computer simulations.

D. Subset Sum Problem
In this subsection we show how the Full Adder block and the serial-

parallel architecture of the N-bit Ripple Carry Adder can be used
to solve a small instance of the NP-complete Subset Sum Problem
(SSP) [35]. In this problem, a set G with a finite number of positive
numbers is defined, and from this set the problem is to determine
whether there exists a subset S′ such that S′ ⊆ G has elements
which sum to a specific target S. Figure. 10 shows a circuit that can
be programmed to select a 17-bit sum S, while the 15-bit inputs are
constrained to particular sets. In the example shown in Fig.10, the
sum S is set to 3584 while the inputs A, B and C are constrained to
the sets {0, 512}, {0, 512} and {0, 512} respectively. Note that in
Fig. 10(b) we show terminals hXX for ease of visualization where
h = −V means that the select and clamp lines are connected to 1
and 0 respectively, while h = +V means that the select and clamp

FAFAFAFA

FAFAFAFAFAFA

-V-V-V-V-V0-V 0

15111091 . . .

-V-V-V

-V 0 0 0 -V -V-V-V 0 -V -V-V0

A
11

B
11

C
0

C
8

C
9 C

10
C

14

S
0 S

8
S

9
S

10 S
14 S

15

S
16

V V V0 0 0 -V 0 -V-V-V 0

FA

FA
C

i
B
A h

s
h

c

S

C
o

h
B

h
A

h
c i

o

 0 = Unpinned

+/- V = Pinned 1/0

50 100 150 200 250 300

Normalized time

0

512

1024

1536

2048

2560

3072

3584

A
+

B
+

C

0 512 1024 1536 2048 2560 3072 3584

A+B+C

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

b
ab

il
it

y

(a) (b)

(c)

(d)

A={0,512} B={0,1024} C={0,2048}

A
10

B
10

A
9

B
9

A
8

B
8

A
0

B
0

. . .

. . .

. . .

. . .

Fig. 10: Subset Sum Problem: (a) An adder that adds three 15-
bit numbers A,B and C to give a 17-bit Sum S. The Sum S is first
clamped to a particular number which in this case is 3584. The inputs
A, B and C are constrained to particular sets using a scheme shown
in (b) for each bit of the inputs. Note how the connections from the
bottom layer of adders are directed where the sum is clamped to the
top layer where the inputs A and B are added. In this example A is
{0, 512}, B is {0, 1024}, and C is {0, 2048}. (c) shows 300 time
samples taken from a data sequence of 105 from which two values
of 3584 and 1536 appear more then the other 6 possible states. (d)
shows the histogram corresponding to 105 samples.

lines are connected to 1 and 1 respectively, and h = 0 means that
the select line is connected to 0. One striking feature of this circuit
is that the flow of information in the structure shown in Fig. 10(a) is
upwards, i.e. information flows from the Sum to inputs A and B.

The inputs can be constrained to sets by clamping certain bits
to 0 or 1 depending on the choice of the set. For the input A
used in Fig. 10, all the bits except the 9th from the LSB side
are clamped to 0. Clamping the bits hence allows the inputs to
be constrained to particular sets, forcing the circuit to look within
a certain configuration consistent with the members of the set.
Fig. 10(c) shows 300 time samples of A+B+C taken from a data
sequence of 105 when the Sum is clamped to 3584. In this case
where the correct inputs are A=512, B=1024, and C=2048, it can
be seen that two states one correct 3584 and another incorrect 1536
appear closer to each other and far removed from the other 6 possible

7

combinations that the system could be in. The relative probabilities of
different peaks in the solution (such as 1536 and 3584) is a function of
the inverse pseudo-temperature (I0 in Eq. 4) and could be made larger
by increasing this value. However, in practice this could cause the
system to get stuck in a meta-stable state for a long time. Therefore,
for this example we have chosen a relatively small I0 = 1 that does
not create a large difference in probabilities. Fig. 10(d) shows the
statistics for the entire 105 samples from which the state 3584 has
a higher peak than 1536. We note that this particular example of
the SSP is easily solvable and does not constitute a hard instance.
Our main purpose is to illustrate how invertible Full Adders can be
interconnected to design a hardware solver for this problem, similar
in spirit to the approach described in Ref. [34].

IV. CONCLUSION

We have presented a digital tiled FPGA implementation of prob-
abilistic circuits with which we demonstrate examples of invertible
Boolean logic. We have used a weighted p-bit design where neuron
and synapse-like functionalities are combined in a single composite
unit. The digital tiled nature of our architecture will allow p-circuits
to scale as the FPGA densities scale, and we show how these tiles
can be combined to construct large p-circuits such as the N-bit Ripple
Carry Adder and a solver for the NP-complete Subset Sum Problem
which use the invertibility of p-circuits.

V. ACKNOWLEDGMENT
The authors gratefully acknowledge useful discussions with Supriyo Datta.

This work was supported in part by C-SPIN, one of six centers of STARnet,
a Semiconductor Research Corporation program, sponsored by MARCO and
DARPA.

REFERENCES

[1] B. Sutton, K. Y. Camsari, B. Behin-Aein, and S. Datta, “Intrinsic
optimization using stochastic nanomagnets,” Scientific Reports, vol. 7,
2017.

[2] B. Behin-Aein, V. Diep, and S. Datta, “A building block for hardware
belief networks,” Scientific Reports, vol. 6, 2016.

[3] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, “Stochastic p-bits
for invertible logic,” Phys. Rev. X, vol. 7, p. 031014, Jul 2017. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevX.7.031014

[4] R. Faria, K. Y. Camsari, and S. Datta, “Low barrier nanomagnets as
p-bits for spin logic,” IEEE Magnetics Letters, 2017.

[5] A. Pervaiz, L. Ghantasala, K. Camsari, and S. Datta, “Hardware emu-
lation of stochastic p-bits for invertible logic.” Scientific reports, vol. 7,
no. 1, p. 10994, 2017.

[6] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm
for boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147–169,
1985.

[7] K. Y. Camsari, S. Salahuddin, and S. Datta, “Implementing p-bits with
embedded mtj,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767–
1770, Dec 2017.

[8] J. Grollier, D. Querlioz, and M. D. Stiles, “Spintronic nanodevices for
bioinspired computing,” Proceedings of the IEEE, vol. 104, no. 10, pp.
2024–2039, 2016.

[9] S. K. Piotrowski, M. Bapna, S. D. Oberdick, S. A. Majetich, M. Li, C. L.
Chien, R. Ahmed, and R. H. Victora, “Size and voltage dependence
of effective anisotropy in sub-100-nm perpendicular magnetic tunnel
junctions,” Phys. Rev. B, vol. 94, p. 014404, Jul 2016.

[10] A. Mizrahi, N. Locatelli, R. Matsumoto, A. Fukushima, H. Kubota,
S. Yuasa, V. Cros, J.-V. Kim, J. Grollier, and D. Querlioz, “Magnetic
stochastic oscillators: Noise-induced synchronization to underthreshold
excitation and comprehensive compact model,” IEEE Transactions on
Magnetics, vol. 51, no. 11, pp. 1–4, 2015.

[11] A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura, S. Yuasa,
and K. Ando, “Spin dice: A scalable truly random number generator
based on spintronics,” Applied Physics Express, vol. 7, no. 8, p. 083001,
2014.

[12] W. H. Choi, Y. Lv, J. Kim, A. Deshpande, G. Kang, J.-P. Wang, and C. H.
Kim, “A magnetic tunnel junction based true random number generator
with conditional perturb and real-time output probability tracking,” in
2014 IEEE International Electron Devices Meeting, Dec 2014, pp.
12.5.1–12.5.4.

[13] Y. V. Pershin and M. Di Ventra, “Experimental demonstration of
associative memory with memristive neural networks,” Neural Networks,
vol. 23, no. 7, pp. 881–886, 2010.

[14] H. Jarollahi, N. Onizawa, V. Gripon, N. Sakimura, T. Sugibayashi,
T. Endoh, H. Ohno, T. Hanyu, and W. J. Gross, “A nonvolatile associative
memory-based context-driven search engine using 90 nm cmos/mtj-
hybrid logic-in-memory architecture,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 4, no. 4, pp. 460–474,
2014.

[15] S. Hu, Y. Liu, Z. Liu, T. Chen, J. Wang, Q. Yu, L. Deng, Y. Yin, and
S. Hosaka, “Associative memory realized by a reconfigurable memristive
hopfield neural network,” Nature communications, vol. 6, 2015.

[16] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, “A 20k-spin ising chip to solve combinatorial optimization
problems with cmos annealing,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 1, pp. 303–309, 2016.

[17] F. C. M. D.-B. A. D. K. W. G. M. A. R. Evgeny Andriyash,
Zhengbing Bian, “Boosting integer factoring performance via quantum
annealing offsets,” 14-1002A-B, D-Wave Technical Report Series, Dec.
2016.

[18] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668,
2007.

[19] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[20] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[21] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, “Fpga-based
annealing processor for ising model,” in Computing and Networking
(CANDAR), 2016 Fourth International Symposium on. IEEE, 2016, pp.
436–442.

[22] F. Ortega-Zamorano, M. A. Montemurro, S. A. Cannas, J. M. Jerez,
and L. Franco, “Fpga hardware acceleration of monte carlo simulations
for the ising model,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, pp. 2618–2627, 2016.

[23] T. Wang and J. Roychowdhury, “Oscillator-based ising machine,” arXiv
preprint arXiv:1709.08102, 2017.

[24] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock,
S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara et al.,
“A fully-programmable 100-spin coherent ising machine with all-to-all
connections,” Science, p. aah5178, 2016.

[25] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,
A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu et al., “A coherent
ising machine for 2000-node optimization problems,” Science, vol. 354,
no. 6312, pp. 603–606, 2016.

[26] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo, A. Maio-
rano, F. Mantovani, E. Marinari, V. Martin-Mayor, A. Muñoz-Sudupe
et al., “Simulating spin systems on ianus, an fpga-based computer,”
Computer Physics Communications, vol. 178, no. 3, pp. 208–216, 2008.

[27] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero,
M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor
et al., “Janus: An fpga-based system for high-performance scientific
computing,” Computing in Science & Engineering, vol. 11, no. 1, pp.
48–58, 2009.

[28] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” CoRR, vol. abs/1705.06963, 2017.

[29] M. Tommiska, “Efficient digital implementation of the sigmoid function
for reprogrammable logic,” IEE Proceedings-Computers and Digital
Techniques, vol. 150, no. 6, pp. 403–411, 2003.

[30] www.xilinx.com/support/documentation/application/notes/xapp210.pdf.
XAPP 052 July 7, 1996 (Version 1.1)

[31] W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar, “Quantum
annealing correction with minor embedding,” Physical Review A, vol. 92,
no. 4, p. 042310, 2015.

[32] V. Choi, “Minor-embedding in adiabatic quantum computation: Ii.
minor-universal graph design,” Quantum Information Processing,
vol. 10, no. 3, pp. 343–353, 2011.

[33] J. Biamonte, “Nonperturbative k-body to two-body commuting conver-
sion hamiltonians and embedding problem instances into ising spins,”
Physical Review A, vol. 77, no. 5, p. 052331, 2008.

[34] F. L. Traversa and M. D. Ventra, “Polynomial-time solution of prime
factorization and np-complete problems with digital memcomputing
machines,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 27, no. 2, p. 023107, 2017.

[35] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

https://link.aps.org/doi/10.1103/PhysRevX.7.031014
http://arxiv.org/abs/1709.08102

	I Introduction
	II Weighted p-bit
	II-A Weight Matrix
	II-B Tunable random number generator
	II-C System Tile
	II-D FPGA

	III Results
	III-A AND Gate
	III-B Full Adder
	III-C N-bit Ripple Carry Adders
	III-D Subset Sum Problem

	IV Conclusion
	V Acknowledgment
	References

