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Abstract

Improving sequence alignment and variant calling through the process of population

and pedigree-based graph alignment

by

Charles J. Markello

In current sequencing methodology, a linear genome reference is used to detect

genetic-variants based on collections of sequence reads. The linear reference introduces po-

tential misalignment of reads that don’t exactly match the reference or the copy number of

sequences in the reference doesn’t match the sample correctly. This is known as reference bias.

In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in

some regions has likely prevented the resolution of some cases. Pangenome graphs embed pop-

ulation variation into a reference structure to reduce reference bias. While this helps to reduce

reference bias, further performance improvements are possible with the aid of pedigree infor-

mation. In this dissertation I present my research on the methods developed to build programs

that apply pangenome graphs to solve these problems. First, I share the work I’ve contributed

towards streamlining a single-sample pangenome software workflow and the accuracy enhance-

ments I’ve contributed within the pangenome effort. Next, I share my methods in incorporating

pedigree information within the pangenome framework and show how performance is improved

over standard pangenomes. I describe an extension of this work to demonstrate the clinical ap-

plication of this workflow. Finally, I cover various projects I’ve contributed to that catalogue

and use detected variants for deleterious classification.

xiii



xiv



To my parents,

Tom and Barbara Markello,

who have always been there to support me every step of the way,

and to my sister,

Jay Markello,

for giving perspective and balance to my life.

xv



Acknowledgments

It should be said that there are too many people for me to thank for getting me through

the graduate phase of my life. To start, I want to thank the members of my committee, Bene-

dict Paten, David Haussler, Beth Shapiro and Ed Green for the support, patience, critiques

and opportunities that they have given me over the years for the research being presented in

this dissertation. I would also very much like to thank the members of the National Institutes

of Health Undiagnosed Diseases Program, in particular William A. Gahl, Tim Gall, Charles

Huang, Alex Rodriguez, Alex Brandt, Elise Flynn, Jeremy Elson, Andy Hsieh, Cynthia Tifft,

and David Adams, whose support has made all of this work possible. Much of what I have

learned about how to conduct science, how to write software in robust and usable ways and how

to communicate and share those results are the product of their guidance and feedback.

In addition, I would like to thank my graduate, post-graduate and staff colleagues

Adam Novak, Audrey Musselman-Brown, Brandon Saint-John, Colleen Bosworth, David Stein-

berg, Glenn Hickey, Hannes Schmidt, James Casaletto, Jean Monlong, Joel Armstrong, John

Vivian, Jonas Sibbesen, Jordan Eizenga, Jouni Sirén, Kishwar Shafin, Marina Haukness, Mike

Lin, Robin Rounthwaite, Ryan Lorig-Roach, Sean Blum, Thomas Ng, Trevor Pesout, Xian

Chang, and Yohei Rosen. They have been on the (metaphorical) ground-floor with me who

have advised me in my academic career and taught me much about the research techniques and

obscure technologies that I wouldn’t have known without them. They have been there for me

for the longest time and have shown me how to live a more balanced life in tandem with the

time spent doing graduate work. I also want to thank my friends who include not just my lab

xvi



colleagues, but also the friends I’ve made in college, their friends, my old housemates, and my

sisters friends. Specifically, I want to thank Aryan Sarparast, Michael Nguyen, Nick Giampi-

etro, Chris Sundahl, Wyatt Fluckiger, Eric Allen Carrillo, Dan Carrillo, Adam Carrillo, Corey

Pigott, and Karen Alarcon. They have done the most heavy-lifting in terms of maintaining

my sanity and have significantly contributed to expanding my experiences with travel, food,

climbing, and strange alcoholic beverages.

I also want to thank my family who have all helped me through each stage of this

journey. My mom and dad for giving me the emotional and intellectual support that I needed

to complete this work. To my sister and sister-in-law, Jay and Kelly, for being there for me

while adjusting to life in California and teaching me their mystic ways in the culinary arts and

showing me that rats actually make for really great pets.

To summarize, the work done in this thesis has been made possible because of the

guidance and assistance provided by everyone mentioned here. Graduate school is hard, but it

would have been impossible without their help.

xvii



Part I

Introduction and Background

1



Chapter 1

Introduction

The current fields of biology and clinical medicine have gravitated towards investigat-

ing the role that genes play in the landscape of evolution and disease. Biologists are increasingly

asking more granular questions about the nature of these biological mechanisms. These ques-

tions cover a wide array of disciplines that include the analysis of DNA, RNA, gene regulation,

protein folding and function. As a consequence, large amounts of data are required to answer

questions that relate these domains of knowledge into a more comprehensive picture of biol-

ogy. Large data requires computational solutions in order to understand and synthesise that

information in a reasonable amount of time. The field of Bioinformatics attempts to bridge

these gaps by applying computational methods to effectively answer questions that require pro-

cessing big-data. Since the initial draft of the Human Genome was completed by the Human

Genome Project in 2003, translational and personalized medicine, the fields of medicine that

focuses on the application of genetic and biological information towards solving the individual

aspect of disease, have taken on a larger role in the clinical community. One of the largest areas
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of attention in personalized and translational medicine is on understanding how genetic mech-

anisms connect with the phenotypic expression of organisms, also commonly referred to as the

genotype-to-phenotype mapping problem.

One component of the genotype-to-phenotype mapping problem is the role of rare

diseases as resulting from combinations of alleles at the point of conception and somatic muta-

tions at the early stages of embryological development. The National Institutes of Health Undi-

agnosed Diseases Program (NIHUDP) is challenged to discover and understand the role of rare

genetic variation and mechanisms and how they relate to the expression of rare diseases in their

patient cohort. The driving motivation of this thesis is to develop methodologies that leverage

the latest techniques in Bioinformatic algorithms and programs along with pedigree and clinical

database information in order to provide the tools that can aid in the discovery of genetic vari-

ants that contribute to rare disease. The primary technology covered in this thesis concerns the

the role of mathematical-graph based reference sequences, referred to as pangenome references,

and how they are used to enhance detection of genetic-variants.

The first part of this thesis covers the background and tools used in parts 2, 3 and 4 of

the dissertation. Chapter 2 focuses on the background of various sequencing technologies, the

use of various genomes for sequence alignment, genetic-variant callers, and software workflow

frameworks.

Chapter 3 in this thesis will focus on my work on the development of a stream-

lined and interoperable program that implements a genetic-variant-detecting workflow based on

pangenome references for the application of single-samples. The chapter covers how the pro-

gram was applied to real and simulated data and how it demonstrates improvements in genetic-

3



variant-detection accuracy over other commonly used tools. I will also cover the contributions

I’ve made towards construction of a pangenome reference.

Chapter 4 covers the development of a program that extends the methods developed in

chapter 3 to leverage nuclear family pedigrees. I demonstrate how this program further enhances

the genetic-variant-detecting abilities of the program developed in chapter 3 by evaluating per-

formance over simulated and real data. I will also cover the development and evaluation of

an enhancement to a variant discovery program developed in the NIHUDP that automatically

detects a short-list of genetic-variants that are potentially deleterious to the individual.

Chapters 5 and 6 of this thesis covers projects that I have been involved with and

helped to develop that cover the interpretation of variants that can be discovered by the programs

developed in chapters 3 and 4.
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Chapter 2

Background

2.1 Sequencing Technology

The availability of next-generation sequencing (NGS) technologies has given

researchers the ability to study human genetic variation at the population level [9, 6, 67, 63].

NGS methods have become widely adopted in the fields of both medical and population genet-

ics. Much of NGS is used in genetic screens for genes and variants of known disease association.

It is also being used to find rare variants to diagnose new diseases or diseases of unknown cause.

For example, the National Institutes of Health Undiagnosed Diseases Program (UDP), whose

purpose is to diagnose individuals who have already had exhaustive workup yet remain undiag-

nosed, uses NGS along with gene filtering approaches to find causal mutations for undiagnosed

disorders [36]. In another group, Mallott et al. employed similar methods using NGS to find

variants that are potential causes for Severe Combined Immunodeficiency (SCID) in children

[68].
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Both of these groups used NGS to filter for the minimum number of potential candi-

dates of causal variants to unknown diseases in order to drive down the time and costs of the

study. Specifically, the groups used the exhaustive information contained in NGS data to exam-

ine a patient’s entire set of variants for features that fulfill their search criteria. Some of these

criteria include searching for variants that exist in other patients with similar diseases, variants

that follow inheritance patterns with family members that also share the same signs of the dis-

order, variants that are not contained in those who are healthy, and variants that are located in

genetic regions that contains other variants that share known disease signs with those of the pa-

tient [36, 68]. The lower the number of candidate variants there are, the fewer expensive in-vitro

cellular biology experiments that are performed and model biological systems that are created

to verify the genetic cause for the disorder, thus reducing the cost of the study [36, 68, 89].

The practice of variant filtration to reduce the cost of a study incentivizes the use

of all available genetic information in sequencing technologies[43, 94]. The current state of

NGS relies on methods and algorithms which perform well in identifying genetic variation for

a majority of the human genome, but still have difficulty in reliably sequencing highly variant

or repetitive regions of the genome. A primary source for this difficulty is that the reference

genome used in NGS insufficiently represents variation in these complex regions [18]. In NGS,

most of the variation that is identified within an individual is determined by the differences

between the sequences of the individual and the reference genome. If the reference genome does

not accurately resemble an individual or the population that individual comes from then parts

of sequence of the individual will be poorly assembled. Within poorly assembled sequences a

portion of the variants will either be incorrect or will not be identified at all. What I propose in
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this thesis is a method for improving the discovery of variants from NGS data within regions

of high and low variant composition by using the genomic inheritance information contained

within pedigrees.

The current practice of NGS relies on a single human reference sequence which is

updated on a recurring basis [18]. NGS follows three main steps: sequence generation, sequence

alignment, and data analysis.

Sequence generation is done after sample preparation and library generation is done

to obtain a high-quality set of fragmented DNA sequences. Common NGS sequencing methods

use what is known as sequencing by synthesis [96]. A common sequencing by synthesis process

is done by first binding prepped DNA fragments onto a dense glass slide of universal probes

known as a flow cell [75]. Once the fragments are bound to unique positions on the slide, they

are then amplified so that neighboring positions to these fragments contain copies of the original

sequence fragments [35]. The result is a series of spots on a glass slide, each representing a

unique clonal cluster of a DNA fragment. Finally, the sequencing process begins by binding

universal primers to the set of clusters. DNA polymerase attaches one of four complementary

nucleotide terminators, each containing a fluorescent dye, to the primers a single base at a time.

After the terminators are bound, the clusters are photographed, the terminators are removed, and

the next nucleotide terminator is bound. This cycle is repeated until each strand is completely

bound by a series of complementary nucleotide terminators. The result of this process is a

digitized record of short nucleotide sequences known as reads.

Other sequencing techniques include long-read sequencers like PacBio sequencing as

developed by Pacific Biosciences and the MinION Nanopore sequencer by Oxford Nanopore
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Technologies. The PacBio sequencer is a single-molecule real-time method which synthesizes

and observes the sequence of each strand of DNA without pausing between bases [93]. In

Nanopore sequencing, each strand of DNA is fed through a small pore where a voltage gradient

is passed through the pore [12]. Changes in the voltage that are detected would represent a single

DNA base in the sequence. Both sequencers share the benefit of producing large reads in a short

amount of time. They also require small amounts of initial sample DNA which help to reduce

errors resulting from amplification bias. However, they both produce base error rates that lower

the accuracy of variant detection. Sequenced base error rates can contribute to mismatching

errors within the sequence alignment phase of an NGS pipeline [28].

During sequence alignment, the set of sequenced reads are run on various alignment

algorithms that commonly work by a seed and extend method [73]. First a data structure known

as a hash-table is used to store all short sets of strings of length k, called k-mers, of a read

sequence. The hash-table has the computational property of being fast in the time it takes to

look up where a particular k-mer belongs in a read sequence. The seed operation occurs by

mapping the set of k-mer substrings from a read to the positions they match to on a reference

sequence. Once a position for the seed is found, the seed is extended by adding more of the read

sequence to the right and left of the seed. To take into account sequence differences between

the read and the reference at this position, the seed extension is refined by running more robust

local sequence aligners like the Smith-Waterman [105] algorithm which is a local-alignment

implementation of the general Needleman-Wunsch algorithm [78].

More modern alignment algorithms follow this seed-and-extension framework with

improved indexing techniques introduced by the Burrows-Wheeler transform (BWT) [13]. The
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BWT is a sorting and compression algorithm where a string is permuted into a matrix of all

possible single character rotations. Each row in the matrix is then lexicographically sorted and

the last column in the matrix is taken as the BWT of the string. The BWT data structure has

the benefit of being more compressible and memory efficient. It also enables fast searching for

exact matches of specific substrings in linear-time by only using the first and last columns of

the Burrows-Wheeler matrix [32].

Various read mappers like BOWTIE and BWA-MEM both use the BWT to do initial

seeding and query operations of a read onto a reference genome [61, 64]. BOWTIE alignment

works by using the BWT to index a reference sequence [61]. It then goes through a back-

tracking process for inexact read alignment. For each read, BOWTIE queries the reference for

successively longer suffixes that contain a subset of the read. If the growing query sequence

is not found in the reference, then the leading bases of the previously queried positions will be

changed following an alignment policy and the algorithm will continue growing the query. The

BWA-MEM algorithm also works by using the BWT to index both the reference and query se-

quence [64]. BWA-MEM alignment looks for the positions on the reference where the longest

substring of a read exactly matches a location. These are referred to as supermaximal exact

matches (SMEMs). If the SMEMs are too large, then the algorithm will re-seed for SMEMs

that cover the middle base where the previous SMEMs were found. It then uses these SMEMs

as the seeding locations where it does a dynamic-programming alignment procedure like Smith-

Waterman along with an extension-limiting scoring scheme to do the extension step.

What follows sequence alignment is the downstream data analysis of NGS data where

one can computationally process and discover patterns in the aligned DNA sequences. One of
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the most common procedures of this step is the process of variant calling [73]. Variant calling

is the detection of variants at the DNA level in the sequence when compared to a reference

sequence [72]. In general, the variant caller uses the proportion of reads at a particular position,

known as the depth of coverage, along with read base qualities and read mapping qualities to

determine the most likely genotype of the sample at that location.

Common tools that are used in variant calling are the Unified Genotyper and Hap-

lotypeCaller as developed by the Broad Institute for the GATK project [113]. The Unified

Genotyper works by computing the likelihoods that a base is observed given what the genotype

might be by taking into account only the set of reads that have mapped at a position with a

high enough mapping quality and base quality. It then takes the product of these likelihoods to

calculate the likelihood of a genotype given the set of reads at a position. The highest likelihood

determines the genotype that’s called for that site.

With the HaplotypeCaller, its algorithm works through four main steps [113]. First,

HaplotypeCaller identifies regions of the genome that show evidence for variation based on the

reads relative to a reference. Then for each region it does a local reassembly of the reads to

estimate the possible set of haplotypes – associated sequence of variants – and realigns those

haplotypes to their respective region on the reference. Third, it determines the likelihoods for

each haplotype given the set of read data by running pairwise alignment of each read against

every haplotype. Then those haplotype likelihoods are marginalized to obtain the likelihoods of

observed alleles at a position. Finally the program uses Bayes’ rule to determine the posterior

probability of a genotype at that position given the set of reads. The most likely genotype is

used to define the variant at that site.
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Consequently, the variant calling accuracy mainly depends on the initial read coverage

at a particular coordinate, the base quality scores and mapping quality of those reads at a given

site [28]. If the base qualities or the depth of read coverage or the mapping quality of reads at a

particular position is too low, a small set of incorrectly mapped reads can throw off the variant

caller and detect variants that otherwise don’t exist in that individual’s real genome [28, 113].

In this proposal, the term false positives (FP) will refer to these incorrectly called variants while

false negatives (FN) will refer to the set of variants that exist in an individual that were not

called by a variant caller. Since humans are diploid organisms, the genotypes of an individual

are determined by the proportion of multiple variants that are called at each site. In this way,

genotypes can be incorrectly called even if one of the two possible alleles is called correctly at

a site. FP’s and FN’s will also refer to genotypes throughout this thesis.

Although NGS alignment performs well enough for studying genetic variation for

common alleles in genome-wide association studies, it produces FPs at a rate that is too high

for conducting adequate genome-wide studies of rare variants in regions of the genome that

are difficult to sequence [40]. Here, hard-to-sequence areas of the genome are defined as areas

that produce low read mapping confidence. These regions are commonly either high or low in

sequence complexity. Regions that contain a high concentration of common variants — single

nucleotide polymorphisms (SNPs) or insertions and deletions (INDELs) — are defined as being

high in sequence complexity while regions that contain large numbers of repeating sequence are

defined as being low in sequence complexity. When a particular region shares these traits, the

diminished context reduces the ability for a sequence aligner to map a read that originated

from these regions [29]. This is due to either the read not containing enough information for
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the aligner to confidently map to that position, or the reference sequence doesn’t resemble the

individual’s actual genomic variation well enough in these regions. Since this situation results

in a portion of reads that either don’t map or incorrectly map to these positions, the pileups of

reads for these regions would theoretically be reduced or contain incorrectly-mapped reads. As

a result a variant caller that is dependent on these read pileups to determine variants will run

into a situation where FP or FN variant calls are made. This reduces the ability to accurately

call variants within these regions which can lead to misdiagnosis or underdiagnosis of genetic

disorders in clinical practice.

2.2 Alternative References

One of the main problems facing bioinformatics and especially the problem of next

generation genome sequencing is the task of sequence mapping and variant calling. Over the

last decade the field has found that linear based references are inadequate to discovering variants

that are unique to an individual. This is especially true for variants that lie within highly complex

or repetitive regions of the genome since they require more information for deciding where a

sequence read has come from. This is commonly referred to as a reference bias and has been

recently observed to be a major problem when it comes to detecting genes from individuals from

admixed populations. Rachael Sherman and colleagues in 2018 found that when compiling and

studying a collection of genomes from those with African ancestry that they contained about

10% more DNA sequence than what was present in the current build of the human reference

genome, GRCh38.
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2.2.1 Diploid Aligner

One idea that had been proposed and developed by Timothy Gall within the NI-

HUDP is to use parental, subpopulation and personal information during sequence alignment

to improve overall variant calling which would subsequently improve the detection of rare ge-

netic variants [40]. The method was born out of the methods developed for the computational

pipeline AlleleSeq for studying sample-specific allele expression in transcriptomic data [2].

This project was known as the Diploid Aligner and its core idea was to use an individ-

ual’s parents sequence information to modify the linear reference that is used in NGS. The

parental variant information can come in the form of SNP-chip or whole-genome NGS data.

This parental variant information is used to create three different reference sequences, one rep-

resenting the mother, one representing the father, and the third being a concatenation of the

two. Some regions, like the sex and mitochondria chromosomes, are not diploid and therefore

require special treatment. For those special cases, the paternal set of variants on chromosome

Y would be constructed as part of the paternal reference and the mitochondrial chromosome

would be comprised of maternally-derived variants and would go into the construction of the

maternal reference.

The child’s reads are then aligned to each of the three new references. The parental

reference that the read best maps to will be used as the actual mapping coordinate for the read.

A summary of the parental and concatenated alignment process is illustrated in Figure 2.1.

This modification of the reference would result in references that better match the sequence

of the individual which in turn would improve downstream variant calling. Its motivation was
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driven by the NIHUDPs need to achieve the highest possible accuracy in order to minimize FPs

within individuals with rare genetic disorders. Currently, the NIHUDP’s main role is to take

in patients with undiagnosed rare diseases that have already had exhaustive workup from many

other institutions and hospitals, so conventional methods will likely not be enough to figure

out their disorders. The best practices of reducing FPs within the variants of an individual

are well developed by various filtering techniques and linkage analysis, but these methods are

downstream from the sequencing and alignment processes of NGS meaning they are dependent

on the quality of alignment [92, 70].

The Diploid Aligner attempted to improve the accuracy and recall of aligning NGS

sequence reads to a canonical reference. In theory, this would improve the prior probability of

having a template that increases the likelihood of mapping reads to where they actually came

from in the individual’s genome [40]. The higher likelihood of correct mapping produces more

read coverage of greater mapping quality in high or low complexity regions. As a result, this

would reduce the presence of FPs and FNs within the variant calling process as there is more

high quality information available to resolve variant discrepancies within these positions. Since

2016, the diploid alignment project had been discontinued, but it’s principles and concepts are

carried on in the work presented in this dissertation. Though the project was incomplete, there

had been a proof-of-principle study of work showing that it does improve the overall mapping

quality of the alignment ( 0.111% increase of unique read mapping) relative to alignment to

a traditional linear reference genome. A brief summary of the results can be seen in Table

2.1 below, where 10 NIHUDP family cohorts were run using the Diploid Alignment pipeline

and alignment quantity and gapped alignments were compared with those of traditional NGS
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Maternal Genome

Maternal Genome

Paternal Genome

Paternal Genome

Concatenated Reference

Child’s Readset

Parental References

Figure 2.1: Main schematic of the alignment step in the diploid alignment pipeline. For each

read sequenced from the child, the read is aligned to each of the two parental references and once

to the concatenated reference. The side that the read best aligns to in the concatenated reference

(dashed arrows), either the maternal or the paternal side, decides which of the parental reference

alignments (solid arrows) is chosen to be the actual alignment for that read.
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Total % stdev min max #Families
% Increased aligned reads 0.036 0.007 0.021 0.042 10
% Increased aligned read pairs 0.041 0.007 0.025 0.047 10
% Decreased gapped alignments 90.8 0.3 90.5 91.2 10

Table 2.1: Preliminary alignment results from using the diploid alignment pipeline on 10 NI-

HUDP family cohorts. These read alignment results are relative to single-reference based next-

generation sequencing using bwa and GATK best-practices pipeline on an HG19 human genome

reference sequence.

pipelines.

2.2.2 Genome Graphs

Another project that is similar to the Diploid Aligner which also attempts to solve

the reference bias problem is the Variation Graph (VG) toolkit. VG was developed within the

Computational Genomics Lab at UC Santa Cruz where the goal is to develop a different way

of representing the reference sequence by using a graph-based data structure to better capture

the diversity of human genetic variation and to develop an aligner which can align NGS reads

to this graph [44]. The graph-reference, also known as a genome graph, is a series of nodes

representing bases in a sequence that are connected to each other by edges. A sequence of bases

then can be represented as a path of connected nodes in a graph. In this way, the genome graph

can store variant and structural information as ‘forks’ and ‘merges’ in the sequence path, where

each path can represent a unique haplotype. This is an extension of the ideas established by

partial-order alignment (POA) sequence graphs [62]. POAs were established to represent mul-

tiple sequence alignments (MSA) in a more robust way. The directed edges of a POA establish
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the ordering of sequences much in the same way multiple paths in a VG graph represent mul-

tiple sequences. Figure 2.2 below shows an example of how sequences and structural variation

can be represented by the VG graph scheme.

Genome Graphs

SNP

Indel

CNV

Inversion

A
GATT CA

T

GATT CAA

GAT CATA

GAT CATA

Figure 2.2: Example genome graphs. Each segment holds some number of bases. A join can

connect, at each of its ends,to a base on either the left (5’, blue) or the right (3’, yellow) side of

the base. When reading through a thread to form a DNA sequence, you leave each base on the

opposite side from which you entered, and reverse complement it if you enter on the 3’ side and

leave on the 5’ side.

The example graph above shows the capabilities of the system. One thread of this
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graph can represent the sequence “GATTACA” (reading from the left side of the leftmost se-

quence to the right side of the rightmost sequence, along the nodes drawn in the middle). Other

alternative paths include three variants: a substitution of “A” for “T”, a deletion of an “A”, an

arbitrary number of copies of the ”TA” sequence and an inversion of a “TA” sequence [44].

The main advantage of this data structure is that it can store more sequence variant

information to better capture the common structural and sequence variation found in human

populations. Another advantage is that the set of haplotypes contained within a genome graph

can be compressed and indexed. The VG graph compresses haplotypes by using the Graph Bur-

rows Wheeler Transform (GBWT) [101] which is a scalable extension of the Graph Positional

Burrows Wheeler Transform (gPBWT) [79, 30]. The GBWT enables fast and memory efficient

storage and subhaplotype queries for quick searching and counting of haplotypes. Efficient hap-

lotype queries are useful for cases of checking for haplotype consistency when mapping reads

to a graph [79]. In the case of read mapping onto a genome graph, the VG project uses GCSA2

indexing which is a k-mer based index that is stored within a de Bruijn graph datastructure

[104, 100, 101]. When aligning NGS reads to this graph, the alignment process will take into

account variants that are theoretically more likely to contain a haplotype that better matches an

individual’s sequence relative to a linear reference [29]. The VG alignment process is similar

to the Diploid Aligner in that its goals are to improve sequencing by altering the prior probabil-

ities that a read comes from certain regions of the genome, given the reads observed mapping

position.

Using VG graphs one can design graph references and sequence mapping algorithms

that take advantage of the greater information provided by these new references in order to bet-
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ter decipher the location of a sequence read. The primary algorithm for which sequence reads

are precisely aligned to a graph is done using a seed-and-extend approach where read SMEMs

are seeded using the GCSA2 and GBWT index and the extension and alignment is done using

Partial Order Alignment (POA). POA is an extension of the Smith Waterman alignment algo-

rithm where a dynamic programming matrix is filled in with the alignment scores of all ways

a read aligns with a reference [62]. In addition to this alignment algorithm, POAs fill a multi-

layered DP matrix where each branching layer represents a corresponding branching path in the

graph. Each cell in this matrix is filled based on a gap score which reflects greater penalty for

alignments that permit more insertions and deletions than one with more exact matches. The

specific score given to a cell is based on the minimum cumulative score of its previous neigh-

boring score. Once each cell is filled out, a traceback algorithm is done to find the path through

each preceding cell in the matrix that gives the current cell its score. With POA DP matrices, the

traceback algorithm simply chooses which branching cells produced the minimum score of the

current cell. There are cases where multiple alignment solutions are equally optimal in terms of

gap penalties. In such cases an arbitrary decision is made which path to take. In practice, this

can be tricky since it introduces non-parsimonious solutions that can differ between each read

sequence aligned to a site. To resolve this, INDEL-realignment is implemented on a series of

alignments at each potential INDEL in a read. INDEL-realignment looks at reads at these IN-

DEL sites and uses consensus to determine if an INDEL is present, and if one is then how that

INDEL is represented amongst the reads. This produces a consistent alignment representation

that helps cleanup the alignment and gives variant callers more confidence when calling INDEL

variants.
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With better sequence mapping comes greater information available to genotypers to

detect variants in these regions and thus provides greater variant recall for variants that are

unique to an individual. Now an additional problem presents itself, what makes a good graph

reference? There are a number of techniques each designed around optimizing the amount and

type of variation present in a graph. Through experiments, we’ve found that including more

and more variation to a graph reference can have a counterproductive effect on performance.

For example, if one were to introduce variants at a location in a genome that contained only

one difference from another locus in the same genome then ambiguity has been introduced that

results in less confident mapping. This potential for introducing variation that increases the

entropy of the reference is mainly focused in the areas of the genome that are highly repetitive

or recently duplicated from an ancestral genomic sequence. This phenomenon can be seen

below for copy number variants (CNVs) in Figure 2.3 and for SNPs and INDELs in Figure 2.4.
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Linear Reference Sequence

Pangenome Haplotypes

(A) Addition of haplotype sequence

New Haplotype

Pangenome Graph

(B) Ambiguous Pangenome Graph

(C) Ambiguous Graph Alignment

Sample Read

Pangenome Graph

Figure 2.3: Simplified example of how introducing haplotypes can introduce ambiguity in graph

alignment to a graph with CNVs. (A) A linear reference sequence with a single sample haplo-

type that will be added to it. (B) The result of constructing a graph using the reference sequence

and the added haplotype. The graph contains a variable number of copies of the CNV sequence

in red and green. (C) Alignment of a read where seed match support for the CNV sequence

ambiguously maps the read to three potential places on the graph.
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Linear Reference Sequence

Pangenome Haplotypes

(A) Addition of haplotype sequence

New Haplotype

Pangenome Graph

(B) Ambiguous Pangenome Graph

(C) Ambiguous Graph Alignment
Sample Read

Pangenome Graph

Figure 2.4: Simplified example of how introducing haplotypes can introduce ambiguity in graph

alignment to a graph with SNPs and INDELs. (A) A linear reference sequence with a single

sample haplotype that will be added to it. (B) The result of constructing a graph using the refer-

ence sequence and the added haplotype. The resulting pangenome graph contains consecutive

graph subsequences (black boxes) that exactly match while representing two different haplo-

types. (C) Alignment of a read where seed match support is equal between the two matching

graph regions.

2.3 Pedigree Graph Alignment

What I present in this dissertation is a combination of these two ideas in what I refer to

as VG-Pedigree. This aligner would merge the population-level data inherent in the Pangenome

graph with the familial genetic awareness of the diploid aligner to produce a new graph-based

canonical reference that’s tailored to an individual’s pedigree. The basic premise of the project
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is to enhance the VG alignment and variant calling processes using the parental variant infor-

mation obtained either through SNP-chips or whole-genome or whole-exome sequencing. The

parental variants will be used as additional prior evidence for picking the most probable set

of haplotypes that define an individual. Figure 2.5 illustrates an outline of the VG-Pedigree

paradigm.

Alignment of the individuals sequence to this altered Pangenome reference will reveal

a series of variants. Due to the preliminary work of the Diploid Aligner, it is possible that

that a large number of these variants will either be Mendelian inconsistent due to sequence

allele-bias in NGS data [40]. Allele bias arises from uneven amplification of DNA strands

during the library preparation process of NGS [46, 83]. This results in the frequency of certain

alleles to deviate from their expected binomial-distribution. Mendelian inconsistency occurs

when the genotypes of the individual and their parents do not follow a Mendelian model of

inheritance [14]. For instance, if an individual is heterozygous at a position on its genome while

its parents are both homozygous at that same site, then that pattern would indicate a Mendelian

inconsistancy. There are cases where not every Mendelian inconsistancy can be corrected as a

small fraction of these variants are true new-mutations in the child, termed de-novo variants.

Though there are an expected number of approximately 50-100 de-novo variants per individual,

there are 1,000’s to 10,000’s of de-novo variants produced by whole-genome NGS datasets

[57, 34, 5]. So correcting or filtering out these errors will still produce more accurate results.

These problematic regions will need to be resolved by restricting the structure of the

Pangenome graph reference to the variants and haplotypes that are consistant with the variants

present in the pedigree. This can be done by doing a first iteration of alignment of sequence
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Pangenome Graph

Pangenome Haplotypes

Parental Graph

Parental Haplotypes

Paternal ReadMaternal Read

(A) Pangenome Graph Reference and Haplotypes

(B) Alignment of Parental Reads

(C) Parental Graph and Haplotype Index Construction

(D) Alignment of Child Reads

(E) Alignment Projection to Linear Space

Pangenome Haplotypes

Parental Haplotypes

Parental Reads

Child Read

Linear Reference Sequence
Child Read

Figure 2.5: Main schematic of the alignment workflow in VG-Pedigree. (A) An example of a

pangenome graph reference and the haplotype set that coincides with that reference. (B) Align-

ment of parental reads to the haplotypes of the pangenome reference. (C) Construction of the

parental graph reference and haplotype set. (D) Alignment of the child reads to the haplotypes

of the parental reference. (E) Projection of the alignments in (D) to the linear reference space.
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data from pedigree samples to a pangenome graph. Then variants are jointly-called between

the parents and the child to follow genotyping consistency with the alignment data. Then the

pangenome reference is modified using the genotypes called for the parents in the joint-called

variant set. The haplotype set can be defined by first phasing the genotypes of the parents with

respect to the genotypes of the pedigree and the read alignments that span 2 or more variants.

The phased sets of parental genotypes can then be incorporated into the modified pangenome

or parental graph reference.

Once this editing is done, the individuals reads that overlap these problematic regions

will need to be realigned. This cycle of editing the pangenome reference and realignment

can be iterated until the alignment errors converge on a minimum. Afterwards, variant calling

will be made on the pileups of the reads after projecting the pangenome alignments to linear

reference space. Projecting alignments to linear sequence space opens up the ability to use

well-established linear-based variant callers.

2.4 DeepVariant Variant Calling

Another area of optimization is in the problem of variant calling. Recently, new

developments in machine learning have helped to improve the accuracy of variant calling by

using Convolutional Neural Networks (CNNs). CNNs are neural networks that are trained to

decide and successfully classify various features of spatial information. Because CNNs are

neural networks, they are trainable and can therefore be improved by the amount of new and

diverse datasets that are available. This class of neural networks work by decomposing the
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problem of image recognition by breaking down an image into a number of subsegments. A

matrix which is designed to recognize a certain aspect of images such as a line or a circle, known

as a filter or kernel, passes through and performs a dot product against each subsegment of the

image and returns a numerical value that represents the strength of the particular filter that

recognizes the subsegment of that image. Collecting these values results in a set of matrices

of recognized shapes, one for each matrix, known as a feature map. This process of passing

a filter through an image is known as a convolution. After feature maps are produced, each

chunk within each feature map is pooled together to produce a simplified feature map. This

process, known as pooling helps to reduce the computational complexity of processing each

layer while also maintaining enough detail for feature recognition and reducing the likelihood

of overfitting. This process of convolution and pooling is repeated for a number of image feature

matrices through a number of layers resulting in a vector representing a list of numbers, one for

each class that’s to be interpreted.

In the case of variant calling, the problem of identifying the most likely genotype

based on a set of overlapping reads can be reconstituted as a spatial problem that CNNs can

solve. What CNNs offer in this case is a more systematic approach to detecting neighboring

noise in the read pileups when determining the likelihood or quality of a genotype at a specific

location. If a pileup contains too much inconsistent or noisy sequence information directly

around a position that is being considered for a genotype, then the probability of guessing a

correct genotype would decrease as a function of that noise. Different topologies of neighboring

sequences like a tandem repeat that neighbors an INDEL variant would cause a genotyper to

produce inconsistent results. But if a CNN were to successfully recognize this feature and its
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filters and layers were designed to recognize and know of validated examples of what should

be there, then the CNN would be able to more accurately determine the uncertainty of calling a

genotype in those locations.

DeepVariant is a software workflow developed by the Genomics team in Google

Health at Google Inc. that applies the techniques of CNNs to solve the problem of variant

calling based on pileup images [86]. In the first section, the workflow works by taking the set

of aligned reads and scans for regions that are different from a canonical reference genome.

Candidate regions are determined in a similar way as is done in the HaplotypeCaller algorithm.

First active regions are determined from the read pileup differences from the reference at their

respective mapping position. Next, a De Bruijn graph is constructed from the set of k-mers that

are derived from the reads aligned at the pileup in an active region. Common paths in the graph

with edges weighted by frequency of connecting k-mers determine the set of likely haplotype

sequences. Then reads are realigned against this set of candidate haplotypes, picking the best

scoring alignment as the best alignment for that read. Finally candidate regions are determined

based off of the realigned reads in the active region. From this set of candidate regions, the next

phase of the DeepVariant workflow prepares the data for CNN classification by converting them

to a set of feature images that are subsequently merged into a combined image. The following

figure illustrates the details of this image encoding scheme. Once a set of images are compiled

from the candidate regions, the pre-trained CNN processes each image to determine a most

likely genotype for that position.

Internally, the CNN is trained by first taking an initial randomly parameterized or

previously trained input model along with a set of pileup images labeled with the genotypes
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that are known to exist in those images and runs them both through a training cycle. The

training cycle processes the pileup images through the initial CNN model, checks the output

to determine the amount of error with respect to the expected genotypes, uses the stochastic

gradient descent algorithm to suggest a more optimal change in the CNN model, and runs

that model through the cycle again. Stochastic gradient descent works by taking the error as

calculated by an error or objective function that estimates the amount of error a particular model

configuration makes with a random shuffle of the training dataset and returns a set of parameter

values to change in the model. Subsequent iterations will result in a lower value of the objective

function with respect to the parameter set used for the model. This training cycle is repeated

until a certain predetermined number is reached or the estimated error converges towards a

minimum that is past a certain threshold. The advantage of this system is that it doesn’t require

prior knowledge of genomic topology or structure in order to establish a working model. The

authors demonstrate in their study that this framework can generalize such that variant calling

performance is robust to using different versions of a genome reference for human data or even

when applying DeepVariant trained on human data in order to call data on different mammal

species.

More recently, a pedigree-based extension of DeepVariant was implemented known

as DeepTrio [56]. DeepTrio works in the same way as DeepVariant except that the candidate

regions and images are determined at once where if a candidate region is present in one sample

then the same region is considered for the other two individuals in the trio. This enforces

consistency in joint calling where a genotype call is made in the same spots for every individual

in the trio. The CNN model for DeepTrio is also trained differently where a child and parental
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models are trained separately. Child models are based on images compiled from pileups from

both the parents and the child with the labels being based on child truth-set data. The parental

models are based on the same merged pileup image of the trios reads at a candidate region

except the individual parent’s pileup is used with some support of the child’s pileup along with

the labels being based on the individual parent’s truth-set. Since Mendelian information can

assist in determining a more accurate genotype likelihood for the offspring, parental pileup

information is used to enhance the training of the child model. However, total enforcement

of Mendelian consistency can filter out real de-novo variants, so some leniency in the model

training needs to be implemented.

2.5 Software Workflow Frameworks

Basic workflows are fundamental to the field of bioinformatics since most bioinfor-

matic problems require many steps in order to process complex data. They require the right

computational tools and frameworks for processing large whole genome data on different com-

pute environments. This is important because the scale of the data from which the programs

developed in this thesis aims to process is large and will require the resources of a compute clus-

ter. There are many services that exist to provide scalable compute environments for scientific

computation [115, 121, 49]. Due to the number of available services, some tools are needed to

abstract construction of this application such that it can be compatible with as many systems as

possible.

There are three main categories of software frameworks that together help one build
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large, scalable, and portable bioinformatic applications designed for cloud compute environ-

ments. These are containerization systems, workflow languages, and batch systems/workflow-

execution engines. The 1st of these, containers, includes the commonly-used Docker which

provide a framework for packaging up software packages such that the user no longer needs to

worry about not just application-specific dependencies but also operating-system level depen-

dencies [53]. This makes writing and debugging more complex applications on larger compute

systems easier for the user. The user can also chain different containers of software together

such that they can build and mix the order of containers that fit specific use-cases in an appli-

cation. Singularity is another containerization system which, much like Docker, provides ways

for a user to package software into containers. However, the difference with Singularity is that

it fixes a fundamental issue with Docker that makes it harder to work with controlled-access

data or compute resources. Singularity gives the user complete control of their container envi-

ronment without the requirement of being a root user [59]. Since most controlled-access data

sources or compute resources are designed to be highly secure, one of those securing measures

is restricting access to data on a need-to-use basis. This means that a user can not by default

have access to an entire file system or software environment that a user of Docker would require.

Since most of the data used in this thesis is controlled access human data, we will primarily fo-

cus on systems that enable this functionality, and thus will be using Singularity as the primary

containerization engine for this project.

The other component to writing sustainable applications are workflow languages.

Workflow languages provide a higher-level, simpler interface from which a user can write com-

plex pipelines with. The most common of these are the Workflow Description Language (WDL)
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and the Common Workflow Language (CWL) [115, 25]. Both of these languages provide a

number of features that are abstract enough and simple enough in syntax that workflow engines

are able to more easily support than for lower-level scripting languages like python or java. The

downsides are that they are typically much less powerful in terms of the number of different

things one can do with them than for lower-level languages. Critical features of WDL and

CWL provide definitions and configurations for running tasks that each define what programs

are used, what inputs are processed and what is output from that task. They typically provide

a way to define branches and merges between these tasks as well as switches for user-desired

execution paths of a workflow.

The last component, workflow execution engines, are the main system that are respon-

sible for coordinating the execution of a workflow on a cloud or cluster compute environment.

The most common workflow execution engines for WDL and CWL-based applications are Toil

and Cromwell [114, 115].

Toil enables a user to write and run workflows either using workflow languages like

WDL or its own in-house python language for defining task component jobs and how those jobs

connect to form a workflow. Toil supports various cluster systems including local HPC systems

or cloud environments like Amazons AWS or google’s cloud platform (GCP). It also supports

various job schedulers and batch systems which helps make workflows more compatible with

more systems. It also supports call caching where if a previous result has already been com-

puted and stored in its hash then Toil simply looks that value up instead of wasting valuable

compute resources recalculating that value. Toil also supports various other quality-of-life fea-

tures that help make applications more robust to transient errors. These include fault-tolerance,
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restartability, and elastic scalability that runs more compute when there’s more input data to pro-

cess as well as spot-market pricing which uses cheaper but less consistently available compute

resources to be used to reduce costs.

Cromwell is another workflow engine that features many of the same things that Toil

supports. It can work with various workflow languages like WDL and CWL. It also supports

various compute scheduling systems and cloud systems. But unlike Toil, Cromwell is not as

featured especially with respect to traits like call caching and fault-tolerance. That’s mainly

because Cromwell was designed for simplicity and as a result it is much more reliable than Toil

when it comes to running workflows on the kinds of systems that it supports.
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Part II

Basic Graph Genome Pipelines
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Chapter 3

A Pipeline for Pangenome Analysis

3.1 Preamble

In this chapter I present a couple of projects that I have contributed to which tackle

the problem of reference bias at the scale of a single sample of sequence data. I describe two

papers in which I will detail a summary of their algorithms which I was not directly involved

with developing, but I was involved in identifying critical issues, constructing genome graphs

that improved performance of these algorithms and developing software workflows that have

improved usability and performance for other users. The first paper, VG Toolkit, describes the

core concept of graph genomes and a toolkit of programs that enable sequence alignment, graph

construction and manipulation, and variant calling of graph-based alignments [44]. For VG, I

contributed to identifying critical bugs and organized benchmarks using real sequence data to

assess performance and quality. The second paper, Giraffe, I present my contributions to con-

struction of a pangenome reference that maximized mapping and variant-calling performance
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for variants that are unique to a sample. I will also cover my development of the software

suite of workflows that streamline the process of mapping and calling variants from pangenome

graphs.

3.2 Introduction

Advances in genome sequencing technology have provided researchers with a wealth

of data. Much of this data is used in investigating the large sets of genetic variation that is

present in individuals, however much of the variation is poorly characterized within difficult to

sequence regions of the genome. These difficult regions span segmental duplications as well as

regions of high mutation density. Mapping to a linear reference has been found to contribute to

poor performance in detecting variants located in these difficult regions. This is mainly due to

the linear reference lacking information about orthologous haplotypic variants which results in

mismapping of reads to locations that they did not originate from.

3.2.1 Graph Genomes

There are a number of techniques for overcoming this potential performance problem

and they all are concerned with what variants are present in a reference. The main idea here

is to reduce the variant set present in the graph reference down to just the variants that are

most relevant to the individual. One strategy is to only include variants that are known to be

common based on population allele frequency data present in various population databases.

Some common consensus databases include the 1000 genomes project, the GnomAD project,
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the UK10K database, and the all-of-us project [9, 54, 118]. The 1000 genomes project is one

of the earliest projects to produce a diverse and well-curated dataset of phased genotypes. The

latest release provides 2,504 samples amongst 26 populations with a total of about 84.4 million

variants [9]. GnomAD is a more recent project which gives a much larger dataset of 71,702

diverse non-related samples totalling 602M SNPs and 105M INDELs [54]. However, the main

downsides to this dataset is that a portion of it includes samples from specific genetic studies

that are prone to sampling bias and accumulation of patient sample data. The allele frequencies

of this dataset are likely to not be representative of larger populations. So use of this data

requires some preprocessing work in order to tease out potentially biased samples. It also

does not contain phased information which is critical to optimized pangenome alignment. For

the UK10K dataset, approximately 10,000 samples from various disease and general cohorts

around the UK were sequenced to provide a resource for identifying rare variants. Similar to

GnomAD, the downsides of this dataset are that they include not only samples from specific

disease cohorts, but also rare variants which are not of particular use for general pangenome

graph alignment [118]. In addition to sequence variation, haplotype information can also be

embedded in the pangenome graph. This is typically done with the incorporation of phased

variant data which ultimately labels paths in the graph that indicate which variants belong to the

same haploblock.

Using these principles we can determine that a likely optimal workflow will require

a population-based graph reference that includes not only common variants but also haplotype

information that helps determine valid mapping proposals during the seeding process of graph

alignment. Another avenue of improvement to reference sequences is the use of sequences that
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steer away the mapping of read sequences that originate from error-prone regions of the genome.

These are known as decoy sequences and they are primarily comprised of the Epstein-Barr virus

(EBV) virus which is very commonly found in most individuals genomes due to the ubiquitous

spread of the virus. However, a majority of the decoy sequence mainly includes common human

sequences that have not found an adequate place in the reference genome. The decoy sequence

has a number of benefits. It allows for reads that an alignment algorithm would normally spend

a large amount of time attempting to align to the reference to instead more effectively align to

sequences that are a better match. It also guides reads away from critical regions of the genome

and reduce erroneous sequence information from corrupting the task of calling variants in these

regions. So in summary the decoy sequence aids in reducing false positive variant calls while

also speeding up the task of read alignment.

3.2.2 Faster Mapping with VG Giraffe

Potential optimizations in the workflow can been made in a couple of areas. One is

in the mapping stage with the use of the VG Giraffe mapping algorithm. The Giraffe algorithm

takes advantage of the haplotype structure of a graph reference and attempts to produce gapless

alignments of the reads prior to resolving mismatches through dynamic programming based on

two sets of assumptions: that common INDELs are already present in the graph and that most

errors produced by Illumina short-read sequencers are in the form of SNPs.

Giraffe uses a GBWT based on sampled haplotypes and a distance index to more

accurately and efficiently map and cluster paired reads to the graph. It does this in four stages.

The first stage is in finding seeds for each read which critically relies on the use of minimizers.
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Minimizers are a subclass of k-mers which are a set of short subsequences that are of fixed

length k. Historically, encoding and indexing all subsequences of length k of a reference or a

set of reads is computationally or memory intensive and so a more efficient implementation is to

use a common subset of k-mers in a sequence to reduce this resource requirement. Minimizers

are chosen such that a subset of k-mers which represent common k-mers within overlapping

windows best represent the overlapping windows according to some hashing function. Due to

the nature of the graph reference containing more information than that of a linear reference, we

assume that there exists a haplotype path that more completely matches at least some the read

set than that of a linear reference. Because of this assumption, we can use longer minimizers

which will cause the mapping algorithm to examine more unique sequences for read anchoring.

The second stage of the mapper is the use of a distance index for clustering anchors.

This index is based off of a tree data structure which represents a hierarchical decomposition

of the graph. The index allows for fast computation of the shortest distance between any two

positions in the graph reference. In order to compute this index, snarls need to be defined

in the graph which are subsequently computed through another tree datastructure. The snarl

tree structure is used to succinctly describe this nesting topology and serves as the basis for

calculating the minimum distance between any two pairs of nodes in a graph.

To calculate the minimum distance between any two nodes, paths between nodes

need to be established. The snarl decomposition guides this path-finding algorithm by using

the principle that any path between boundary nodes of snarls in a chain must pass through the

boundary nodes of every snarl that lies between those nodes in the chain.

The minimum distance index is constructed in the node order of the post-order traver-
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sal of the snarl tree. To compute distances for each snarl, a Dijkstra algorithm is applied to find

the shortest path from each child of the snarl to the snarl itself. For each chain the child snarls

and chains of that chain are looked up in the snarl index to compute the distances for that chain.

With the minimum distance index established, the minimum distance for an arbitrary pair of

nodes can be computed.

The other component required by the VG Giraffe mapper is the clustering algorithm.

In seed and extend-based algorithms like short read mappers, the substring seeds of each short

read is mapped exactly to a specific position on the reference. The extension step requires an

clustering of these seeds. In the Giraffe space, the minimum distance index is used to cluster

these seeds.

Once the seeds are clustered, the Giraffe algorithm moves on to extending the seeds.

During extension, the alignment boundaries of each seed within their respective clusters are

grown until a pre-set number of mismatches are present. Dynamic programming is then done

on the extended seeds to form a gapped alignment.

One critical component of Giraffe is the path covering and downsampling of the

GBWT index. The reason for this is because there can exist haplotypes in the GBWT where

an error in a read will result in the read appearing to map more correctly to one haplotype over

another, resulting in a false positive mapping. There are also contigs with no known location

in any haplotype that can exist and are useful in the activity of mapping. These can include the

Epstein–Barr virus, unlocalized contigs and decoy contigs. So prior to using the GBWT index

for Giraffe mapping, we first do two things. First is to create a path cover that includes these

miscellaneously-categorized contigs and include this path in the GBWT. Then we downsample
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the haplotypes embedded in the GBWT for the contigs that contain haplotypes.

For paired-end reads, each read can inform the likely position of their mate since

the distance between the two are known a-priori. This is known as the fragment length and

the Giraffe algorithm looks at a paired reads fragment as a function of their fragment-length

distribution in order to estimate where each read is expected to lie in the reference. Giraffe then

maps each read in each pair separately to obtain a set of seeds. The algorithm then attempts to

cluster these seeds by which read they came from and looks to see how far apart the two sets

of clusters are. If the clusters are close enough as defined by the fragment length distribution,

then they are clustered together. Otherwise, one of the two read pairs will be rescued through

realignment using the distance and minimizer indexes.

3.3 Graph Construction Workflow

Construction of a reference genome graph comprises a number of indexes. These

include the VG graph which is a directed acyclic sequence graph (DAG) constructed from a

linear reference sequence in FASTA format and a set of variants represented in VCF format.

DAGs are useful graphs in that they don’t contain cycles which enables linear ordering of nodes.

DAGs also enable topological sorting of nodes which allow for more efficient representations

of sequence data and permits the use of efficient algorithms for searching and indexing this

representation. The XG index is a space-efficient representation of the graph which is mainly

used for tasks that don’t require modification of the graph. The GBWT index is the haplotype

index. It stores similar threads that span nodes in the VG graph in a space-efficient manner.
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The GCSA index is a kmer-based index which enables the graph mapping algorithm the ability

to quickly lookup where subsequences of reads lie in the graph reference. One important step

in graph construction, particularly for GCSA indexing, is sequence pruning. This is needed in

order to reduce the nodes present in complex regions of the graph which helps to dramatically

reduce the number of kmers that need to be indexed during GCSA construction.

Additional indexes are required for the faster VG Giraffe alignment algorithm. These

include the snarls, distance, graph GBWT, and minimizer indexes. The snarl index is con-

structed from the concatenated VG graph file using the command vg snarls. The distance

index is constructed using both the XG and snarls index with the command vg index -j. The

graph GBWT and down-sampled GBWT index is constructed from the XG and GBWT index

with the command vg gbwt -o -g. Finally, the minimizer index is constructed with the dis-

tance index and down-sampled GBWT and graph GBWT using the command vg minimizer.

Figure 3.1 illustrates the complete workflow diagram.
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Figure 3.1: Main schematic of the graph construction workflow. Dotted lines represent optional

paths or multiplexes of command execution.
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3.4 Complete Single Sample Mapping and Calling Workflow

The following workflow implements the necessary steps from graph construction to

sequence alignment to variant calling for a single sample. First a graph reference is constructed

using a population of variants represented in VCF format and a linear reference sequence rep-

resented in FASTA format. The graph construction workflow takes in these two inputs and at

minimum generates a concatenated VG graph file along with an XG and a GCSA index. Option-

ally, if the population of genotypes contained within the input VCF contains phased variants,

then a GBWT index can be built which can enhance the graph alignment algorithm. Following

graph construction the basic mapping and alignment workflow takes in sequence reads either in

FASTQ, BAM or GAM format and at minimum the XG, GCSA indexes of the graph reference.

Currently there are a number of aligners in development that do this at an adequate scale for

whole genome data. The most developed are vg map and vg mpmap or the multi-path mapper.

Each mapper runs a seed and extenstion-based mapping algorithm with POA for more

precise local assembly. First the algorithm finds the Super Maximal Exact Matches (SMEMs)

mapping of the read to the reference by searching a suffix array representation of the GCSA

index. SMEMs are subsets of read sequences that match a reference while not overlapping

other MEMs in the same read. We then chain these SMEMs together by making a Markov

model and using the Viterbi algorithm to find the most likely set of candidate chains of SMEMs.

For the Markov model, nodes represent positions in a particular path in the graph reference

where a SMEM matches and the transitions between nodes represent probabilities proportional

to the implied INDEL length between SMEMs based on distances that are determined by the
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corresponding paths in the reference graph. Finally the sequences that represent the chains of

these SMEMs are aligned using the dynamic programming POA described earlier. During this

process the graph reference needs to be modified in a couple of ways. First is that the graph

inherently represents cycles for inversions and copy number variants. In order to run POA

against these regions, the graph needs to be acyclic. If inversion sequences are present in a

portion of the graph that a chain is aligning to, then a reverse complement of the sequences will

be made and represented as an additional node in the new locally-modified graph reference.

If copy number variant sequences are present in the graph, then a pre-determined number of

copies of that sequence are made and alternative paths are generated in the altered reference

graph each representing a different number of copies of that sequence.

Expanding on this concept of graph alignment is the problem of aligning to multiple

legitimate paths in the graph reference. The multipath mapper vg mpmap simultaneously takes

into account each possible path that a read aligns to and preserves that information for subse-

quent variant calling. vg map on the other hand only finds the most likely path that a read aligns

to and outputs just that information for the variant caller.

A number of options can be done at this point. Either the graph mapper outputs read

alignment records to a graph based in Graph Alignment Map (GAM) format or it can project

the alignments to the linear path as defined by the linear reference used in the initial graph

construction to produce an alignment file in Binary Alignment Map (BAM) format. From this

result, one can call variants a number of ways, either by calling graph-based alignments from the

GAM using vg call or the more commonly-used linear-based alignment callers for BAM files

like GATK HaplotypeCaller or Google’s DeepVariant. Once each contig alignment is called
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with the chosen variant caller, the results are concatenated and sorted into a final output VCF

or genomic VCF (GVCF) file. Figure 3.2 illustrates the complete single-sample mapping and

variant calling workflow schematic.

Figure 3.2: Main schematic of the vg-based alignment and variant-calling workflow. Dotted

lines represent optional paths or multiplexes of command execution.
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3.5 Variant Calling Evaluation

Variant calling is another domain of evaluation which focuses on the downstream

effects of mapping and the quality of a variant caller. This includes looking at variant calling

qualities and concordance with truth-sets.

Variant calling qualities concerns the quality of the mapping of the pileup of the se-

quences at a site, the quality of the bases sequenced for each read at a site, and the allele skew

of the coverage of sequences at a site. In general, greater variant calling quality scores indicate

higher quality in the calling algorithm and the quality of the mapping of reads at a site.

Truth-sets are used to analyze how well the called variants from a test set match

the variants in a well-sequenced and highly-validated truth set. The current best practice for

this analysis is based on comparison to varian sets as determined by the Genome In A Bottle

Consortium (GIAB) who not only provide a continuously updated truth set but also a set of

pre-determined genomic regions for investigation. These regions range from high confidence

regions to the harder regions of segmental duplications, polynucleotide repeats, short tandem

repeats, and difficult polymerase-chain-reaction primer sequences. Their truth set is curated us-

ing various sequencing platforms ranging from the common short-read sequencers of Illumina

to the long read sequencers of PacBio, 10X Genomics, NanoPore and the high-fidelity Circular

Consensus Sequence reads (CCS/HI-FI) [50, 52, 120, 116]. The PacBio-developed CCS tech-

nology is of particular interest for sequencing the difficult regions of the genome as they are one

of the long-read technologies that have the lowest base error rate. This is mainly due to their

method of using highly redundant sequencing of circularized reads [120].
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Some of these regions came out of recent gene duplication events in genes that accu-

mulated mutations and were responsible for many of the segregating traits of the human species

from their most recent common ancestor. These are genes that have high similarity or homol-

ogy and are a focus in a lot of recent NGS pipeline performance analysis due to the difficulty of

mapping to these regions [69].

3.6 VG Toolkit Results

In 2018 our group published in Nature Biotechnology the initial release of the Vari-

ation Graph Toolkit and found that for variants that are unique to the individual that the graph

alignment process produced more accurate alignments than the leading linear-based approaches

[44]. However, though mapping performance was of high quality, there were a few major issues

that were left unfixed. One critical bug was related to how graph-based alignments were pro-

jected from graph-space to linear-space which is a requirement of linear-based variant callers

like GATK HaplotypeCaller or Google’s DeepVariant. The other critical issue concerned the

construction of a sufficiently-performing graph-reference that was based on the latest GRCh38

linear reference and population variant dataset.

The major bug that went undiscovered since the publication of the VG Toolkit was

that of how reads were projected into linear-space. It was discovered that the base-quality strings

for the reads that were mapped to the opposite strand were not correctly reversed in the BAM

file. Fixing this error resolved the false-positive issues that impacted the overall variant calling

accuracy when genotyping projected pangenome alignments. Figure 3.3 below illustrates the
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performance gain when correcting this error.
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Figure 3.3: ROC curves of variant calling performance of various VG and BWA-MEM alignments with respect to HG002 GIAB

v4.2.1 GRCh37 truth variant call sets. BWA-MEM represents reads aligned to the hs37d5 cannonical reference with BWA-MEM

version 0.7.17-r1188. VG Map Primary represents reads aligned to a VG graph reference that is only constructed using the

linear hs37d5 cannonical reference sequence and projected to linear reference space using VG version 1.24.0. VG Map 1000GP

represents reads aligned to a VG graph reference that is constructed using hs37d5 reference sequence and the 1000GP Phase 3

GRCh37 haplotype set and projected to linear reference space using VG version 1.24.0. VG Map Primary Fix and VG Map

1000GP Fix represents reads aligned using the same method as VG Map Primary and VG Map 1000GP, respectively, except the

projection step used VG version 1.28.0 which implements the reverse base-quality correction. All mapped reads were called

using Illuminas Dragen version 3.7.5 genotyper.

In the VG paper we analyzed how various configurations of alleles that make up the

pangenome reference affect mapping performance. We found that not only was the mapping
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performance better for variants not found in the linear reference, which are the variants of

analytical interest, but that mapping bias was reduced for larger structural variants in these

regions. We also looked at the performance of graph references that contain varying degrees of

allele frequencies and found that when filtering out rare variants that overall mapping accuracy

is improved across-the-board in all regions examined. Though we found good performance with

the pangenome graph that we used, the sequence and variant sets were based off of GRCh37

coordinates and not the improved representation of GRCh38 reference contigs.

During development of a new and faster mapper that would soon be named VG Gi-

raffe, we were working on a GRCh38-based pangenome reference that would update the output

of our new mapper to the more modern sequence-coordinate system that would go on to domi-

nate much of what the bioinformatics and genomics field would rely on. For this task there were

a few things we looked into. The 1000 Genomes Project had produced a few versions of phased

population variant datasets that each had their performance issues. The first is an older variant

dataset that was converted directly from their old GRCh37 variant set, termed liftover-GRCh38,

as sourced from https://cgl.gi.ucsc.edu/data/giraffe/construction/. A more

recent dataset from 2019 which is produced from directly mapping and calling variants against

GRCh38 and restricted to biallelic SNVs and INDELs, termed snpindel-GRCh38, as sourced

from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000 genom

es project/release/20190312 biallelic SNV and INDEL/. And the most recent

re-sequencing project from the New York Genome Center which is using higher coverage Illu-

mina NoaSeq data, termed nygc-GRCH38, as sourced from http://ftp.1000genomes.ebi.

ac.uk/vol1/ftp/data collections/1000G 2504 high coverage/working/20201028 3
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202 phased/.

Each graph constructed by a different variant dataset produced varying results when

calling variants using different genotyping platforms. Tables 3.1 and 3.2 show the perfor-

mance of mapping GIAB HG002 and HG003 sample sequences against various pangenome

references while using the same mapper and variant-caller. Illumina’s Dragen platform ver-

sion 3.7.5 is used as a baseline comparison of a linear-based aligner and variant-caller, termed

DRAGEN-GRCh38[51]. Ultimately, the liftover-GRCh38 pangenome reference was chosen based

on a combination of sensitivity and overall F1 accuracy statistics. The pangenome reference

had the best average performance in sensitivity across the examined benchmark samples with-

out sacrificing too much precision relative to the other mapping methods. liftover-GRCh38 was

also the most conservative choice as it was based off of the well sequenced and phased 1000

Genomes Phase 3 project.

Pipeline Var Type TP FN FP Recall Precision F1

DRAGEN-GRCh38
INDELS 522,615 2,854 2,475 0.994569 0.995481 0.995024

SNPS 3,344,965 20,162 14,870 0.994009 0.995575 0.994791

liftover-GRCh38
INDELS 522,882 2,587 2,718 0.995077 0.995041 0.995059

SNPS 3,349,000 16,127 17,520 0.995208 0.994797 0.995002

snpindel-GRCh38
INDELS 522,730 2,739 2,649 0.994788 0.995165 0.994976

SNPS 3,347,781 17,346 16,121 0.994845 0.995209 0.995027

nygc-GRCh38
INDELS 522,917 2,552 2,758 0.995143 0.994969 0.995056

SNPS 3,348,523 16,604 16,884 0.995066 0.994984 0.995025

Table 3.1: Hap.py performance of linear and graph-based pipelines against grch38-based ref-

erences using 150bp paired-end reads with respect to HG002 GIAB v4.2.1 truth variant call

sets in high confidence regions. All mapped reads were called using Illuminas Dragen v3.7.5

genotyper. Best values in each column are highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

DRAGEN-GRCh38
INDELS 501,769 2,732 2,646 0.994585 0.994969 0.994777

SNPS 3,307,236 20,260 16,084 0.993911 0.995161 0.994536

liftover-GRCh38
INDELS 502,055 2,446 2,922 0.995152 0.994450 0.994801

SNPS 3,311,458 16,038 22,400 0.995180 0.993283 0.994231

snpindel-GRCh38
INDELS 501,881 2,620 2,903 0.994807 0.994484 0.994645

SNPS 3,310,058 17,438 21,429 0.994759 0.993569 0.994164

nygc-GRCh38
INDELS 502,026 2,475 2,943 0.995094 0.994410 0.994752

SNPS 3,311,110 16,386 21,621 0.995076 0.993514 0.994294

Table 3.2: Hap.py performance of linear and graph-based pipelines against grch38-based ref-

erences using 150bp paired-end reads with respect to HG003 GIAB v4.2.1 truth variant call

sets in high confidence regions. All mapped reads were called using Illuminas Dragen v3.7.5

genotyper. Best values in each column are highlighted in bold text.

Although liftover-GRCh38 had good performing results, there were still some opti-

mizations that were made to that pangenome reference. We further examined various strati-

fications of genomic regions, as defined by the GIAB [58]. These regions included the Major

Histocompatibility Complex (MHC) which is known for maintaining a high density of variation,

1000GP variant regions excluded from the GIAB sample (1000GP-excluded), low mappability

regions that are made up of duplicated and paralogous sequence, and difficult to sequence re-

gions that are made up of low sequence variability. We found that the largest source of precision

error for liftover-GRCh38 was contributed by segmental duplications that were larger than 10

kilobases in length. Table 3.3 shows that filtering out these variants from the liftover dataset

prior to pangenome construction, termed liftover-GRCh38-nonsegdup, produced much better

performing SNP accuracy across nearly all regions. The linear graph reference constructed us-

ing just the GRCh38 sequence was used as the point of comparison in this analysis, termed
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primary-GRCh38.

Pipeline Var Type TP FN FP Recall Precision F1

primary-GRCh38
INDELS 522,657 2,812 2,608 0.994649 0.995239 0.994944

SNPS 3,347,097 18,030 15,672 0.994642 0.995341 0.994991

liftover-GRCh38
INDELS 522,887 2,582 2,774 0.995086 0.994940 0.995013

SNPS 3,349,241 15,886 18,073 0.995279 0.994634 0.994957

liftover-GRCh38-nonsegdup
INDELS 522,439 3,030 2,582 0.994234 0.995284 0.994759

SNPS 3,349,015 16,112 15,214 0.995212 0.995479 0.995345

(a) All Regions

Pipeline Var Type TP FN FP Recall Precision F1

primary-GRCh38
INDELS 1,624 53 39 0.968396 0.978793 0.973567

SNPS 19,745 432 262 0.978589 0.986798 0.982677

liftover-GRCh38
INDELS 1,649 28 23 0.983304 0.987674 0.985484

SNPS 20,015 162 80 0.991971 0.995981 0.993972

liftover-GRCh38-nonsegdup
INDELS 1,646 31 29 0.981515 0.984509 0.983009

SNPS 19,998 179 164 0.991129 0.991787 0.991458

(b) MHC Regions

Pipeline Var Type TP FN FP Recall Precision F1

primary-GRCh38
INDELS 338,507 2,244 2,101 0.993415 0.994085 0.993750

SNPS 2,163,130 17,419 14,905 0.992012 0.993159 0.992585

liftover-GRCh38
INDELS 338,682 2,069 2,294 0.993928 0.993549 0.993738

SNPS 2,165,083 15,466 17,418 0.992907 0.992022 0.992464

liftover-GRCh38-nonsegdup
INDELS 338,362 2,389 2,084 0.992989 0.994129 0.993559

SNPS 2,164,822 15,727 14,513 0.992788 0.993343 0.993065

(c) Low Mappability and Segdup Regions

Pipeline Var Type TP FN FP Recall Precision F1

primary-GRCh38
INDELS 366,438 2,704 2,361 0.992675 0.993966 0.993320

SNPS 610,666 17,297 14,133 0.972455 0.977414 0.974928

liftover-GRCh38
INDELS 366,636 2,506 2,520 0.993211 0.993566 0.993389

SNPS 612,700 15,263 16,592 0.975694 0.973672 0.974682

liftover-GRCh38-nonsegdup
INDELS 366,178 2,964 2,339 0.991971 0.994018 0.992993

SNPS 612,464 15,499 13,692 0.975319 0.978165 0.976740

(d) Difficult Regions

Table 3.3: Genotyping evaluation with Hap.py in HG002 against different stratifications of the high-confident regions of the

liftover-GRCh38 graph (A) SNP and INDEL accuracy within all confident regions. (B) Accuracy in MHC regions. (C) Accuracy

in repetitive and segmental duplication regions. (D) Accuracy in regions with low sequence variability. All mapped reads were

called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold text.
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3.7 VG Giraffe Results

3.7.1 Giraffe genotyping outperforms best practices

In 2021 our group published our work on developing and evaluating the performance

of a faster pangenome mapper VG Giraffe [102]. In this study we applied the pangenome

graph reference based on the liftover-GRCh38 dataset with large segmental duplications re-

moved as our basis for performance evaluation.

We used Illumina’s Dragen platform[51] to genotype SNV and short indels using

Giraffe mappings projected onto the linear reference assembly. We compared them to results

using competing graph and linear reference mappers (see 3.7.2.1). No training or calibration

was performed for any of the mappings other than those performed by default by Dragen itself.

We evaluated the calls using the Genome In a Bottle (GIAB) v4.2.1 HG002 high confidence

variant calling benchmark[117].

Out of the examined pipelines, Giraffe mappings to the 1000GP graph produce the

highest overall F1 score (harmonic mean of precision and recall) at 0.9953 (Figure 3.4B and

Tables 3.4 and 3.5). Structural variants were also more accurately detected when using the VG

Giraffe mapper with respect to using VG Map (Figure 3.4C).

Similar but uniformly higher results were found with higher coverage, 250bp reads

(Figure A.1 and Tables A.1 and A.2). Although one would expect longer reads and higher

coverage to produce better variant calls, all else being equal, Giraffe with the 150bp read set

has a slightly higher F1 score (0.9953) than BWA-MEM with the higher coverage 250bp read

set (0.9952). Further restricting comparison only to confident regions that overlap variant calls

53



from the 1000GP variants used in graph construction, Giraffe has the highest F1 score at 0.9995

relative to the other methods (Figure A.2 and Table A.3). Perhaps surprisingly, Giraffe also

maintains the highest F1 score (0.9528) when performing the converse analysis, restricting the

comparison to only confident regions that do not overlap 1000GP variant calls (Figure A.3 and

Table A.4).
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Figure 3.4: Evaluating Giraffe for genotyping. (A) The fraction of alternate alleles in reads

detected for heterozygous variants in NA19239. Reads were mapped to the 1000GP graph with

Giraffe and VG-MAP and to GRCh38 with BWA-MEM, and the fraction of reads supporting

reference or alternate alleles was found for each indel length. (B) Assessing true positive and

false positive genotypes made using the Dragen genotyper with mappings from Giraffe and

other mappers. The line labeled Dragen represents the mapper included with the Dragen system

itself. (C) Comparing Giraffe to VG-MAP for typing large insertions and deletions. “Presence”

(lighter bars) evaluates the detection of SVs without regard to genotype; “genotype” (darker

bars) requires the SV to be detected and its genotype to agree with the truth genotype. The

y-axis shows the F1 score. For the HGSVC benchmark, we define high-confidence regions as

regions not overlapping simple-repeats and segmental duplications.
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Pipeline TP FP FN Precision Sensitivity F-measure
BWA-MEM 3,866,030 22,519 24,392 0.9942 0.9937 0.9940
DRAGEN 3,867,353 17,369 23,071 0.9955 0.9941 0.9948
VG-MAP 3,868,494 20,393 21,929 0.9948 0.9944 0.9946
Giraffe primary 3,869,525 18,308 20,909 0.9953 0.9946 0.9950
Giraffe 3,871,501 17,787 18,917 0.9954 0.9951 0.9953
fast Giraffe 3,870,737 18,964 19,681 0.9951 0.9949 0.9950

Table 3.4: VCFeval performance of linear and graph-based pipelines against grch38-based ref-

erences using 150bp paired-end reads with respect to HG002 GIAB v4.2.1 truth variant call sets

in high confidence regions. Best values in each column are highlighted in bold text.

Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM
INDELS 522,406 3,063 2,723 0.994171 0.995028 0.994599

SNPS 3,343,857 21,270 19,780 0.993679 0.994121 0.993900

DRAGEN
INDELS 522,618 2,851 2,478 0.994574 0.995475 0.995025

SNPS 3,344,971 20,156 14,868 0.994010 0.995576 0.994793

VG-MAP
INDELS 522,643 2,826 2,689 0.994622 0.995092 0.994857

SNPS 3,346,085 19,042 17,677 0.994341 0.994746 0.994544

Giraffe primary
INDELS 522,657 2,812 2,608 0.994649 0.995239 0.994944

SNPS 3,347,097 18,030 15,672 0.994642 0.995341 0.994991

Giraffe
INDELS 522,864 2,605 2,550 0.995043 0.995346 0.995194

SNPS 3,348,882 16,245 15,213 0.995173 0.995479 0.995326

fast Giraffe
INDELS 522,825 2,644 2,583 0.994968 0.995286 0.995127

SNPS 3,348,156 16,971 16,358 0.994957 0.995139 0.995048

Table 3.5: Hap.py performance of linear and graph-based pipelines against grch38-based refer-

ences using 150bp paired-end reads with respect to HG002 GIAB v4.2.1 truth variant call sets

in high confidence regions. Best values in each column are highlighted in bold text.
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DeepVariant is a highly accurate genotyping tool that requires training [86]. We

trained DeepVariant version 1.1.0 to use Giraffe mappings and evaluated it on the held-out

sample HG003. We compared it to the Dragen pipelines tested and DeepVariant using BWA-

MEM with the BWA-MEM trained model they provide. The Giraffe-DeepVariant pipeline (F1:

0.9965) outperforms all other tested pipelines (Tables 3.6, 3.7 and Figure 3.5).
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Figure 3.5: True positive and false positive genotypes made using the DeepVariant genotyper

trained on alignments of 150bp paired-end reads from HG002 and HG004 GIAB samples and

tested on 150bp paired-end reads from the HG003 GIAB sample and evaluated against the

HG003 GIAB v4.2.1 truth variant call sets in high confidence regions. Dragen genotyper results

are included for performance comparison. The ROC curve discrimination threshold is based on

variant call quality.
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Pipeline TP FP FN Precision Sensitivity F-measure
BWA-MEM + Dragen 3,807,536 23,443 24,345 0.9939 0.9936 0.9938
Giraffe + Dragen 3,812,963 18,143 18,922 0.9953 0.9951 0.9952
Dragen MAP + Dragen 3,808,794 18,738 23,081 0.9951 0.9940 0.9945
BWA-MEM + DeepVariant 3,808,209 6,680 24,173 0.9982 0.9937 0.9960
Giraffe + DeepVariant 3,812,716 6,889 19,898 0.9982 0.9948 0.9965

Table 3.6: RTG VCFeval performance between DeepVariant and Dragen variant callers on

grch38-based linear and giraffe 1000GP mappers using 150bp paired-end reads with respect

to HG003 GIAB v4.2.1 truth variant call sets in high confidence regions. Best values in each

column are highlighted in bold text.

Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM + Dragen
INDELS 501,574 2,927 2,789 0.994198 0.994696 0.994447

SNPS 3,306,162 21,331 20,642 0.993589 0.993797 0.993693

Giraffe + Dragen
INDELS 501,993 2,508 2,566 0.995029 0.995122 0.995075

SNPS 3,311,179 16,317 15,563 0.995096 0.995323 0.995210

Dragen MAP + Dragen
INDELS 501,770 2,731 2,644 0.994587 0.994972 0.994780

SNPS 3,307,236 20,260 16,078 0.993911 0.995163 0.994537

BWA-MEM + DeepVariant
INDELS 501,433 3,068 1,393 0.993919 0.997342 0.995627

SNPS 3,306,484 21,012 5,268 0.993685 0.998410 0.996042

Giraffe + DeepVariant
INDELS 501,919 2,582 1,851 0.994882 0.996476 0.995678

SNPS 3,310,338 17,158 5,015 0.994844 0.998488 0.996662

Table 3.7: Hap.py performance between DeepVariant and Dragen variant callers on grch38-

based linear and giraffe 1000GP mappers using 150bp paired-end reads with respect to HG003

GIAB v4.2.1 truth variant call sets in high confidence regions. Best values in each column are

highlighted in bold text.
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We compared the performance of Giraffe, VG-MAP, Illumina’s Dragen platform, and

BWA-MEM for genotyping SNVs and short indels. The design of each calling pipeline is

described in 3.7.2.1 and the parameters and indexes for each experiment is described in A.5.

The variants produced by each pipeline were compared against the Genome In a Bottle (GIAB)

v4.2.1 HG002 high confidence variant calling benchmark[117] using the RealTimeGenomics

vcfeval tool[22] and Illumina’s hap.py tool[58]. This benchmark set covers 92.2% of the

GRCh38 sequence.

We also evaluated a DeepVariant [86] pipeline that uses Giraffe mappings (see 3.7.2.5).

Using the default DeepVariant 1.1.0 trained model, we tested genotyping the HG003 sample

across the entire genome. This sample was not used in training the model.

3.7.2 Methods

3.7.2.1 Genotyping and Evaluation Methods

We mapped ∼830 million paired-end, 150-bp-long reads (Precision FDA Challenge

V2 Illumina ∼35x coverage) from the HG002 sample to the 1000GP graph. We also sep-

arately evaluated mapping ∼1.08 billion 250-bp-long reads (∼40-50x coverage of Illumina

HiSeq 2500) from HG002 to see if using longer reads and higher coverage would affect the

results. For the genome graph mappers, we evaluated variant calling performance by using

vg surject to produce BAM representations of our graph alignments projected onto the linear

reference assembly, and then using Dragen version 3.7.5 to call variants against the hs38d1

reference for each set of alignments. Dragen was used as the primary variant caller because Il-

lumina, who sells it, has found it to produce robust results[51, 58, 82]. Its speed was also useful

60



for the purposes of rapid evaluation of whole genome alignments of real read data. No training

or calibration was performed for any of the generated mappings other than those performed by

default by Dragen itself.

All pipelines evaluated for short variant calling performance had the same structure.

First, we mapped reads to the appropriate GRCh38-based linear or graph reference using the

pipeline’s mapper. Then, we genotyped the resulting alignments using Illumina’s “Dragen Bio-

IT Platform” product, version 3.7.5, against an index generated from the hs38d1 human genome

reference. The mappers for each pipeline evaluated were Illumina’s Dragen internal aligner,

BWA-MEM, VG-MAP, Giraffe, and Giraffe in fast mode. The Genome In a Bottle HG002

version 4.2.1 high-confidence VCFs were used as the truth sets for evaluating performance of

variant calling[17]. The VCF was obtained from https://ftp-trace.ncbi.nlm.nih.gov

/giab/ftp/release/AshkenazimTrio/HG002 NA24385 son/NISTv4.2.1/GRCh38/HG0

02 GRCh38 1 22 v4.2.1 benchmark.vcf.gz and the high confidence regions evaluated were

based on the BED files obtained from https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

release/AshkenazimTrio/HG002 NA24385 son/NISTv4.2.1/GRCh38/HG002 GRCh38 1

22 v4.2.1 benchmark noinconsistent.bed. We used RTG’s vcfeval [22] and Illuminas

hap.py https://github.com/Illumina/hap.py to evaluate variant calling concordance

with truth sets. All pipelines used the computational resources of the NIH HPC Biowulf cluster

(http://hpc.nih.gov).
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3.7.2.2 Graph construction

For the variant calling experiments, graph references, and their indexes for running

vg mappers, were constructed using different versions of vg ranging from 1.20.0 to 1.31.0,

orchestrated by toil-vg construct.

The graph references for GRCh38-based experiments were constructed using vg ver-

sion v1.31.0 as packaged in container quay.io/vgteam/vg:v1.31.0, using the cannoni-

cal hs38d1 FASTA reference file as sourced from https://storage.googleapis.com

/cmarkell-vg-wdl-dev/giraffe manuscript data/genome references/line

ar references/GCA 000001405.15 GRCh38 no alt analysis set plus GCA 000

786075.2 hs38d1 genomic.fna and the 1000 Genomes Project Phase 3 phased VCFs

that were lifted over from old GRCh37-based joint-called datasets as sourced from https:

//storage.googleapis.com/cmarkell-vg-wdl-dev/giraffe manuscript dat

a/genome references/graph references/1000gp data/ALL.chr* GRCh38.geno

types.20170504.rename.vcf.gz. Primary graphs and indexes were constructed using

just the linear reference FASTA with vg version v1.26.0-180-gdc119fa04 as packaged in

container quay.io/vgteam/vg:ci-2284-dc119fa046aa7131a1a8e026be36da2d79bc2f22.

1000GP graphs and indexes were constructing using both the FASTA and the VCFs after fil-

tering out variants belonging to segmental duplication regions of greater than 10 kilobases

in length as defined in the bed file https://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/release/genome-stratifications/v2.0/GRCh38/SegmentalDuplicatio

ns/GRCh38 segdups gt10kb.bed.gz with vg version v1.31.0 as packaged in container
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quay.io/vgteam/vg:ci-2890-655a9622c3d60e87f14b88d943fbd8554214a975.

3.7.2.3 Read sets

Two different read sets were used to evaluate performance. One was the 150 bp

paired-end FASTQ set from sample HG002 as obtained from the FDA Precision Challenge

dataset. These reads are available as paired FASTQs at https://storage.googleapis.com

/cmarkell-vg-wdl-dev/test input reads/HG002.NovaSeq.pcr-free.35x.R1.fastq

.gz and https://storage.googleapis.com/cmarkell-vg-wdl-dev/test input rea

ds/HG002.NovaSeq.pcr-free.35x.R2.fastq.gz. The other read set consisted of 250 bp

paired-end FASTQ reads from sample HG002, obtained from the GIAB NovoAligned BAM at

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002 NA243

85 son/NIST Illumina 2x250˜bps/novoalign bams/HG002.hs37d5.2x250.bam. These

reads in paired FASTQ format are available at https://storage.googleapis.com/cmarkel

l-vg-wdl-dev/test input reads/HG002 read pair 1.fq.gz and https://storage.go

ogleapis.com/cmarkell-vg-wdl-dev/test input reads/HG002 read pair 2.fq.gz.

3.7.2.4 Read mapping

The HISAT2 mapping runs were done using version 2.1.0. Only default settings,

with the addition of the --no-spliced-alignment flag, were used during HISAT2 execution.

One pipeline used Illumina’s Dragen module for both mapping and alignment; both

steps were run against the same index derived from the hs38d1 human genome reference.

The BWA-MEM mapping runs were done using version 0.7.17-r1188 against the
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hs38d1 human genome reference.

The vg alignment runs used different graph indexes depending on the mapper used

(VG-MAP or Giraffe). GRCh38-based experiment run details are given in Supplementary Ta-

ble A.5. All runs used the toil-vg map workflow for the alignment procedure and ABRA2[76]

for indel realignment after alignment. GATK’s Picard tool [3] was used to reorder aligned BAM

files for contig consistency which is required by the Dragen variant calling algorithm.

3.7.2.5 DeepVariant calling

All pipelines for the DeepVariant experiment evaluation used BWA-MEM version

0.7.17-r1188 against the hs38d1 human genome reference or VG Giraffe against the same

1000GP graph as described in 3.7.2.2. Alignments were then indel realigned using ABRA2[76].

The DeepVariant v1.1.0 code base was used for all experiments.

DeepVariant learns to call variants by training on input data from gold standard sam-

ples HG001-HG007. In all DeepVariant models, the HG003 sample is fully withheld from

training, allowing a full genome sample to be evaluated. Because the DeepVariant production

models for Illumina are trained on samples mapped with BWA, DeepVariant likely optimizes

for the mapping accuracy and quality profile of BWA. We used DeepVariant v1.1.0 production

model for the BWA-MEM experiments and a custom model for the GIRAFFE alignments that

were trained using the same methods that were used to train the DeepVariant model for BWA-

MEM alignments. The custom model data can be found here https://storage.googleapis

.com/cmarkell-vg-wdl-dev/giraffe manuscript data/deepvariant models/model.

ckpt-25600*.
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3.8 Code Availability and Data Access

An overview of the data generated for this paper, and key input data to reproduce the

analyses, is available at https://cglgenomics.ucsc.edu/giraffe-data/. The dataset is

available via IPFS at https://ipfs.io/ipfs/QmceMYoTf1UiMED6c9WdsdPfJ5zf4NuXLbL

8oReJT6qYc6.

Archived copies of the code and final re-usable work products have been deposited

in Zenodo as DOI 10.5281/zenodo.4774363, referenced here as [103]. This archive also in-

cludes vg, toil-vg, and toil source code and Docker containers used in this work, as well as

the giraffe-sv-paper orchestration scripts. “Final” versions of vg and toil-vg, including all

features needed to reproduce this work, are 9907ab2 for vg and 99101f2 for toil-vg.

The latest version of the vg toolkit, including the Giraffe mapper, is customarily dis-

tributed at https://github.com/vgteam/vg. The scripts used for the analysis presented

in this study were developed at https://github.com/vgteam/giraffe-sv-paper, a git

bundle of which is archived in Zenodo [103].

Data used in the Giraffe read mapping experiments, including the 1000GP, HGSVC,

and yeast target graphs, the linear control graphs, the graphs used to simulate reads, and the

simulated reads themselves, can be found at https://cgl.gi.ucsc.edu/data/giraffe/m

apping/.

The SV pangenomes and SV catalogs annotated with allele frequencies are hosted

at https://cgl.gi.ucsc.edu/data/giraffe/calling/ and archived in [103]. This

repository also includes SVs with strong inter-super-population frequency patterns, SV-eQTLs,
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and SVs overlapping protein-coding genes.

To build the 1000GP and HGSVC graphs, we used the GRCh38 no-alt analysis set

(accession GCA 000001405.15), and the hs38d1 decoy sequences

(accession GCA 000786075.2), both available from NCBI, in addition to the variant call files

distributed by the respective projects.
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Chapter 4

Complete Pedigree-Based Graph Workflow for

Rare Candidate Variant Analysis

4.1 Preamble

Methods that use a linear genome reference for genome sequencing data analysis are

reference biased. In the field of clinical genetics for rare diseases, a resulting reduction in geno-

typing accuracy in some regions has likely prevented the resolution of some cases. Pangenome

graphs embed population variation into a reference structure. While pangenome graphs have

helped to reduce reference mapping bias, further performance improvements are possible. We

introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of

Giraffe [102] and the variant-calling tool DeepTrio [56] using a specially-trained model for

Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both

single-nucleotide variants (SNVs) and insertion and deletion (INDEL) variants over those pro-
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duced by alignments created using BWA-MEM to a linear-reference and Giraffe mapping to

a pangenome graph containing data from the 1000 Genomes Project. We have also adapted

and upgraded the deleterious-variant (DV) detecting methods and programs of Gu et al. into

a streamlined workflow [45]. We used these workflows in combination to detect small lists of

candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program

(UDP). All candidate DVs that were previously diagnosed using the Mendelian models covered

by the previously published Gu et al. methods were recapitulated by these workflows. The

results of these experiments indicate a slightly greater absolute count of DVs are detected in the

proband population than in their matched unaffected siblings.

4.2 Introduction

Recent advances in genome sequencing technology are improving the accuracy of

detecting genetic variants [120]. However, the use of a single genome reference for read align-

ment and variant calling still presents a problem. A sequence mapping algorithm best aligns

sequences to a reference when those sequences are present in the reference. Where a sample’s

genome deviates significantly enough from the reference, reads will fail to map properly [97].

This reference bias can be reduced using pangenome graphs. Pangenome Graphs represent mul-

tiple genomes as a series of variants [44]. These graphs are further enhanced by incorporating

haplotype information that is available in phased genotype datasets. This haplotype information

is embedded in a haplotype index [102]. In previous work, we have found that mapping error,

in both simulation and real-data experiments, is reduced by using population variant data in
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pangenome graph references [44, 102].

Parent-child trios provide evidence of sequence transmission between generations.

This helps to identify which variants in the child occurred as de-novo mutations, since these

variants will generally be absent in the parents. This information also helps to determine phas-

ing orientation of heterozygotes in the child which can aid in detecting compound-heterozygous

candidate DVs. In typical clinical diagnostics, in particular for the case of rare diseases,

parental genomes are sequenced to help improve the chances of successful clinical diagnosis

of a proband [20].

The Undiagnosed Disease Program (UDP) of the National Human Genome Research

Institute (NHGRI) is charged with diagnosing previously undiagnosed individuals and discov-

ering new variants of clinical significance [38, 36, 37, 39, 106]. In 2009 the UDP started exam-

ining cases that have remained undiagnosed after previous exhaustive clinical examination. One

part of their process involved sequencing the genomes of patients, including some that included

parents, an affected proband and one or more unaffected siblings. Since the beginning of the

UDP, they have seen more than 500 different disorders and achieved a diagnostic success rate

of over 30 percent, including the discovery of new disorders [45]. Most of the pediatric cases

examined by the UDP over the past 10 years have already had negative diagnostic results from

clinical exomes. The UDP applies further technologies, including whole genome sequencing,

RNA sequencing, and SNP-chip analysis to more completely explore non-exonic and intergenic

regions in an attempt to solve negative exome cases [45]. One of the more difficult tasks of

gene discovery is the detection of variants in highly polymorphic, repetitive, and incompletely-

represented regions of the genome, exactly where pangenome graphs can potentially extend
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accuracy and precision.

We first describe VG-Pedigree, a software workflow for mapping and variant calling

next generation sequencing data. The workflow leverages pedigrees in genome graphs, and

uses machine-learning for variant calling. Intermediary results from VG-Pedigree are subse-

quently used to identify candidate deleterious variants by using a significantly upgraded, fully

automated single stage implementation of the UDP candidate analysis workflow [45]. These

upgrades include better software portability and usability, change to the GRCh38 reference, use

of better population datasets and newer deleterious predictors than those used in the previous

version. The final upgrade was the addition of a new software module to detect and quantify

large scale mosaicism.

This workflow analyzed 15 UDN quartet+ pedigrees containing one affected child

(Proband), one or two unaffected siblings, and two unaffected parents to demonstrate its capa-

bilities. Of the probands that had a known diagnosis, the corresponding DVs detected based on

the Mendelian models covered by the previously published candidate analysis workflow were

recapitulated by this workflow. This unified workflow was designed to run from machine out-

put FASTA sequence data to a final short candidate list, but it is modular. The first part of

VG-Pedigree produces an intermediate set of BAM files and a jointly called VCF file. The

candidate analysis in the second part could be run using any set of genome BAM formated files

plus a joint-called VCF formatted pedigree dataset.
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4.3 Results

4.3.1 Overview of VG-Pedigree

VG-Pedigree goes through a number of stages before final variant calling (Fig. 4.1A).

First, the set of short reads in the parent-parent-child trio of the pedigree are mapped to a

pangenome graph reference based on the 1000 Genomes Project dataset, termed 1000GP, using

VG Giraffe, and variants are then called using DeepTrio (Fig. 4.1B) [9, 102]. Next, variants

in 1000 Genomes Project haplotypes that appear missing in the DeepTrio-called variants are

imputed. The purpose of this is to fill in common variants that were possibly missed by the

variant callers in order to facilitate the phasing of more complete haploblocks. The resulting

variant file is phased using both alignment and pedigree information (Fig. 4.1C). A parental

graph reference is then constructed using only the parental genotypes from the joint-called

VCF file (Fig. 4.1D). A haplotype index of this graph reference for VG Giraffe is generated

from the phased genotypes of the parental samples. Once this graph is constructed, the proband

and siblings’ reads are re-mapped to this new parental graph reference and variants are re-called

using the new mappings (Fig. 4.1B). Finally, the newly-called variants of the child and sibling

samples are joint-called with the old parental variants to form the final joint-called pedigree

VCF.
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Figure 4.1: Toil-VG Pedigree workflow. Dotted lines indicate optional pathways in the work-

flow. (A) Overall workflow diagram. (B) Single sample alignment and variant-calling workflow.

(C) Trio joint-genotyping and phasing workflow. (D) Parental graph construction workflow. (E)

Workflow for preprocessing and annotation of pedigree variants required for candidate analysis.

(F) The candidate analysis workflow.

The candidate analysis workflow takes as input the set of alignments and variant calls

from VG-Pedigree and outputs a final set of candidate DVs for the proband. This is done

through a series of filters and annotations. First, SnpEff is used to annotate the type and function

of variants within the joint-called pedigree VCF file [19]. The deleteriousness of these variants

is predicted using the Combined Annotation Dependent Depletion (CADD) software tool [90]

(Fig. 4.1E). Next, a series of filtration and analysis methods are applied to the annotated variants

and the workflow outputs a set of candidate DVs for the proband (Fig. 4.1F). The methods
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applied in the candidate analysis workflow are an implementation of the methods described in

the Gu et al. study [45]. In this paper, we present enhancements to the methods and software of

the candidate analysis workflow. An additional module of the analysis workflow has also been

developed which automatically detects the presence and type of mosaicism in the designated

proband. These methods and improvements together provide a more complete and accurate

dataset from which to discover rare variants that are causal to genetic diseases over the previous

iteration.

We evaluated performance of this workflow based on four main metrics. First, we

evaluated the ability of the workflow to accurately align reads to the correct position in a

genome. Second, we assessed the accuracy of variant calls based on those alignments. Thirdly,

we looked at the ability of the analysis workflow to capture DVs in the proband population ver-

sus the unaffected sibling population. Finally, we examined the runtime and costs of running

this workflow using a commercial cloud environment.

4.3.2 Mapping Evaluation

Mapping was evaluated with both simulated and real sequencing data. The former

considers measures of mapping reads with a known position. This was done by simulating

reads from haplotypes whose corresponding path locations in the graph are known, so that

we could identify when a read was mapped to the correct location on the graph. We sim-

ulated reads by first constructing sample graphs using benchmark sample variation data and

then generated paired-ended reads using error models and pair distance distributions based on

real-read data. We also made sure to only simulate reads from benchmark samples that were
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not contained within the pangenome references used in the graph mapping methods. During

evaluation, simulated reads mapped to the linear references were injected to graph reference

space for comparison with graph mappers (see supplementary methods 4.5.3). Figure 4.2 illus-

trates the performance of 10 million read pairs that are simulated from the Genome-in-a-Bottle

(GIAB) HG002 version 4.2.1 high confidence variant sets [58]. We also examined stratified

performance across regions of interest using 100 million reads simulated from the GIAB high

confidence regions. These regions were all defined by GIAB: [58] low complexity regions that

comprise regions of low sequence variability, low mappability regions that are made up of dupli-

cated and paralogous sequence, the Major Histocompatibility Complex (MHC) which is known

for maintaining a high density of variation, 1000GP variant regions excluded from the GIAB

sample (1000GP-excluded), and, specifically for HG002, the complex medically relevant genes

(CMRG) included in a study by Wagner et al. [116].

All conditions evaluated consist of the combination of a mapper and a reference (see

supplementary methods 4.5.4). The Giraffe-Parent condition used VG Giraffe [102] to align

reads to the parental graph reference as produced by the workflow up to graph construction

(Fig. 4.1D). The Giraffe-1000GP condition used VG Giraffe to align reads to the pangenome

reference. The Giraffe-Primary condition used VG Giraffe to align reads to a linear graph

reference as produced using only the hs38d1 reference with no variation. And the BWA-MEM-

hs38d1 condition used BWA-MEM [64] to align reads to the hs38d1 human reference genome.

Figure 4.2 shows the receiver-operator-curves (ROC) of each tested mapper in all

confident regions, 1000GP-excluded regions, low mappability regions, and MHC regions. The

curves are stratified by mapping quality (MAPQ). In each evaluated region, Giraffe-Parent pro-
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duced the highest F1, both for reads with MAPQ60 and across all reads. When looking at

1000GP-excluded variants within stratified regions, Giraffe-Parent produced the highest total

F1 across low complexity regions (Fig. B.1), low mappability regions (Fig. B.2), MHC regions

(Fig. B.3), and CMRG regions (Fig. B.4).
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Figure 4.2: Mapping performance of 100 million read pairs simulated from HG002 high confident datasets. Four different align-

ments are compared across four different regions and ROC curves are plotted with a log-scaled false positive rate on the x-axis and

a linear-scaled true positive rate on the y-axis with the mapping quality as the discriminating factor. Green curves represent graph

alignments against the parental graph reference constructed from HG003 and HG004 illumina read graph alignments. Red curves

represent alignments against the 1000GP graph reference. Purple curves represent alignments to the primary GRCh38 linear graph

reference. Blue curves represent linear alignments against the hs38d1 reference using BWA-MEM. (A) Alignments in GIAB

v4.2.1 confident regions (from 1 million simulated read set). (B) Alignments in non-1000GP confident regions (from 1 million

simulated Illumina read set). (C) Alignments in GIAB v4.2.1 low mappability regions (from 100 million simulated Illumina read

set). (D) Alignments in GIAB v4.2.1 MHC regions (from 100 million simulated Illumina read set).
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For all GIAB high confidence regions, Giraffe-Parent gave the most accurate align-

ments relative to the other examined mappers. Giraffe-Parent also achieved the highest total

of correctly mapped reads in all but the CMRG regions, the highest total of reads mapped at

MAPQ60 in low mappability MHC and CMRG regions, and the highest average percent iden-

tity between aligned reads and the reference sequence across all regions (Table B.1). In the high

confident 1000GP-excluded regions of the HG002 sample, Giraffe-Parent achieved the highest

proportion of correctly mapped reads, MAPQ60 reads, and average sequence identity (Table

B.2). Giraffe-Parent also produced the highest proportions of perfectly-aligned and gaplessly-

aligned reads, and the lowest proportion of soft-clipping reads across all examined confident

(Table B.3) and 1000GP-excluded regions (Table B.4).

4.3.3 Variant Calling Evaluation

In addition to examining the mapping performance of the workflow we measured

the accuracy of variants called in each workflow. Here we use the version 4.2.1 release of

the HG001, HG002 and HG005 truth-set benchmarks as published by GIAB [58, 117]. Real-

TimeGenomics’ vcfeval tool [22] and Illumina’s hap.py haplotype aware variant comparison

tool [58] were used when comparing the results of variants called using alignments of real

reads to various combinations of mappers and references. The mappers and references used

include VG Giraffe against the parental graph (Giraffe-Parent), which is the method used by

VG-Pedigree, and, for comparison, VG Giraffe against the 1000GP graph (termed Giraffe-

1000GP), BWA-MEM against the linear hs38d1 reference (BWA-MEM-hs38d1), and Illumina’s

Dragen platform version 3.7.5 [51, 58, 82] against the linear hs38d1 reference (Dragen-hs38d1)
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(see supplementary methods 4.5.5 and 4.5.6).

We tested our VG-Pedigree pipeline using DeepTrio version 1.1.0 with trained child

and parent models for variant-calling comparison in HG001. Training used the Ashkenazi

(HG002, HG003, HG004), and Han Chinese (HG005, HG006, HG007) trio alignments us-

ing the Giraffe-1000GP method for model training (see supplementary methods 4.5.6.2). The

DeepTrio-called variants achieve the highest accuracy (F1: 0.9976) using Giraffe-Parent (Ta-

ble 4.1A-B). This represents a total variant error (false positive and false negative) reduction

of 4,844 variants between Giraffe-Parent and BWA-MEM-hs38d1 relative to an error reduction

of 2,925 variants between Giraffe-1000GP and BWA-MEM-hs38d1. In the 1000GP-excluded

variants, the Giraffe-Parent accuracy (F1: 0.9748) outperforms Giraffe-1000GP (F1: 0.9717)

by a greater margin than Giraffe-1000GP outperforms BWA-MEM-hs38d1 (F1: 0.9691). This

reflects an error reduction of 3,210 variants between Giraffe-Parent and BWA-MEM-hs38d1 rel-

ative to an error reduction of 1,481 variants between Giraffe-1000GP and BWA-MEM-hs38d1.

We then assessed HG002 and HG005 using the same training method for the model

used in evaluating HG001. The models were re-trained with Giraffe-1000GP-aligned read data

for all trio samples except with chromosome 20 completely held out for validation purposes.

Supplementary Figure B.10C-D and Supplementary Table B.5 show the results of training for

HG002 and Supplementary Figure B.11C-D and Supplementary Table B.6 for HG005 results.

The total number of errors in chromosome 20 reduced from 1,070 to 1,051 (1.78%) and from

1,130 to 909 (19.56%) variants for HG002 and HG005, respectively.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,711,135 6,444 11,258 0.9983 0.9970 0.9976
Giraffe-1000GP 3,708,607 5,687 13,934 0.9985 0.9963 0.9974
BWA-MEM-hs38d1 3,705,297 5,532 17,014 0.9985 0.9954 0.9970
Dragen-hs38d1 3,704,307 4,586 18,001 0.9988 0.9952 0.9970

(a) DeepTrio HG001 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 285,663 5,222 9,468 0.9820 0.9677 0.9748
Giraffe-1000GP 283,261 4,422 11,997 0.9846 0.9591 0.9717
BWA-MEM-hs38d1 281,355 4,356 13,544 0.9848 0.9538 0.9691
Dragen-hs38d1 280,317 3,398 14,589 0.9880 0.9503 0.9688

(b) DeepTrio HG001 All High Confident Regions, 1000GP-excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,710,974 8,234 11,439 0.9978 0.9969 0.9974
Giraffe-1000GP 3,705,842 8,751 16,704 0.9976 0.9955 0.9966
BWA-MEM-hs38d1 3,701,516 8,594 20,806 0.9977 0.9944 0.9960
Dragen-hs38d1 3,700,322 7,181 22,004 0.9981 0.9941 0.9961

(c) DeepVariant HG001 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 285,782 6,404 9,248 0.9781 0.9685 0.9733
Giraffe-1000GP 280,890 6,704 14,264 0.9767 0.9514 0.9639
BWA-MEM-hs38d1 279,005 7,010 15,926 0.9755 0.9457 0.9604
Dragen-hs38d1 277,765 5,610 17,173 0.9802 0.9415 0.9605

(d) DeepVariant HG001 All High Confident Regions, 1000GP-excluded

Table 4.1: VCFeval HG001 DeepTrio and DeepVariant Performance VCFeval performance of the graph-based and linear-based

pipelines with respect to HG001 GIAB v4.2.1 truth variant call sets stratified by (A) DeepTrio on all HG001 regions, (B) DeepTrio

on HG001 regions excluding 1000GP variants, (C) DeepVariant on all HG001 regions, and (D) DeepVariant on HG001 regions

excluding 1000GP variants. All mapped reads were called using DeepTrio and DeepVariant v1.1.0 genotyper using trained models.

Best values in each column are highlighted in bold text.
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We also tested Giraffe-Parent using the default Deep-Trio version 1.1.0 models, which

were not trained with Giraffe alignments. We found that in using the HG005 and HG002 trios

Giraffe-Parent or Giraffe-1000GP with the default DeepTrio models outperforms the results

achieved using standard BWA-MEM (Table B.7A-B). The same performance gains are observed

for Giraffe-Parent in more difficult regions for both HG002 and HG005 samples (Tables B.8 and

B.9).

ROC curves for DeepTrio calls stratified by genotype quality also show performance

gains. Figure 4.3 shows the ROC curves between the graph-based and linear-based alignment

methods in HG001 for all confident regions and 1000GP-excluded variants respectively. Sup-

plementary Figures B.10A-B and B.11A-B illustrates performance in the same regions but for

the HG002, and HG005 samples using the default DeepTrio models, respectively.
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Figure 4.3: ROC curves of DeepTrio variant calling performance of the graph-based and linear-

based pipelines with respect to HG001 GIAB v4.2.1 truth variant call sets stratified by (A)

HG001 high confident whole genome regions using trained DeepTrio models, (B) HG001 high

confident whole genome regions excluding 1000GP variants using trained DeepTrio models.
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We also examined the difficult regions of the genome more deeply for the HG001,

HG002 and HG005 GIAB samples using the sample-specific stratification [116, 117]. Giraffe-

Parent outperformed the other examined methods in the sample-specific complex variants con-

taining single heterozygous SNPs and INDELs or compound-heterozygous SNPs except for

regions that contain compound-heterozygous variants where at least one of the variants is an

INDEL. In those regions, either BWA-MEM-hs38d1 or Dragen-hs38d1 achieved the highest F1

scores relative to the Giraffe methods (Tables B.11 B.12 B.13).

4.3.3.1 Comparing to DeepVariant

To compare the mapping performance with non-trio-based calling methods, we ran

the DeepVariant single sample genotyper on the same alignments [86]. This evaluation assesses

gains in variant calling accuracy brought by mapping to a graph containing the subject’s parental

information (Giraffe-Parent) vs. simply mapping to a linear reference, or a population based

pangenome graph (Giraffe-1000GP).

During evaluation of DeepVariant calls, like in our DeepTrio evaluations, we focused

on using models that were not trained with pangenome graph alignments of the samples used

in evaluation. For HG001 alignments, a trained DeepVariant model was used in evaluating

HG001 whole genome results. This model was trained using just the Giraffe-1000GP-aligned

HG002 and HG004 sample reads. For evaluations of DeepVariant calls on HG002 and HG005

alignments, the default models of DeepVariant version 1.1.0 were used. In HG001, the Giraffe-

Parent method achieves the highest accuracy (F1: 0.9974) representing a total variant error

reduction of 9,727 variants between Giraffe-Parent and BWA-MEM-hs38d1 relative to an error
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reduction of 3,945 variants between Giraffe-1000GP and BWA-MEM-hs38d1 (Table 4.1C).

4.3.3.2 Illumina Dragen Calling

We additionally tested using Illumina’s Dragen platform version 3.7.5 variant caller

in place of DeepTrio [51]. The Dragen variant caller uses an algorithm similar to that of GATK

HaplotypeCaller, and, like DeepVariant, does not use the parental read mappings [87].

We used Dragen to call variants against the Giraffe pangenome and BWA-MEM linear

reference mappings. Once again, Giraffe-Parent produced the most accurate variant calls for

HG002 and HG005. Giraffe-Parent produced the highest F1 score (0.9965) in all confident

regions for HG002 (Table B.10). This is in contrast with the F1 performance of Giraffe-1000GP

(0.9953) and BWA-MEM-hs38d1 (0.9940). Total error is reduced by 18,754 variants between

Giraffe-Parent and BWA-MEM-hs38d1 relative to an error reduction of 9,995 between Giraffe-

1000GP and BWA-MEM-hs38d1. For HG005, Giraffe-Parent produced the highest F1 score

(0.9958) in all confident regions (Table B.14). This is in contrast with Giraffe-1000GP (F1:

0.9944) and BWA-MEM-hs38d1 (F1: 0.9931). Total error is reduced by 20,724 variants between

Giraffe-Parent and BWA-MEM-hs38d1 relative to an error reduction of 10,489 between Giraffe-

1000GP and BWA-MEM-hs38d1.

Breaking down the analysis to SNPs and INDELs reveals the same trend. The Giraffe-

Parent produced the highest F1 scores in HG002 in all examined regions except for the CMRG

genes, where Dragen-hs38d1 achieves a higher accuracy in INDELs (F1: 0.959108) relative to

Giraffe-Parent (F1: 0.958785) (Tables B.15 B.16 B.17 B.18 B.19, and B.20). Similar statistics

are observed in HG005, where Giraffe-Parent alignments produce the highest F1 in all SNPs
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and INDELs across all confident regions (Tables B.21 B.22 B.23 B.24 B.25).

4.3.3.3 Illumina Dragen Graph Comparison

Illumina’s Dragen platform version 3.7.5 has also implemented a graph-based map-

per. To compare, we also examined the performance of the Dragen graph implementation for

mapping and variant calling (termed Dragen-Graph-hs38d1) [51]. The Giraffe-Parent with

DeepTrio calling method outperformed Dragen-Graph-hs38d1 across all confident regions of

HG001, HG002 and HG005 GIAB benchmarks (Table B.26).

4.3.4 Candidate Analysis Evaluation

As a quality-control procedure, we investigated the workflow’s ability to identify DVs

that are relevant to clinical disorders. We ran the workflow on nuclear pedigrees of at least 4

individuals in size. Out of the UDP set of such 50 cohorts with identified candidate variants,

a set of 15 cohorts were randomly chosen. The 15 cohorts include 15 probands and 22 unaf-

fected siblings comprising 18 females and 19 males. 10 out of 12 of the UDP probands from

these cohorts that have a known genetic diagnosis had their causal variants recapitulated by

this workflow. The list of Mendelian models detected include homozygous recessive, de-novo,

hemizygous, X-linked, mitochondrial, and compound-heterozygous genotypes. Of the 12 ex-

amined probands that have a diagnosis attributed to a CLIA-validated variant, 5 were identified

with de-novo dominant non-synonymous changes in an exonic region, 2 had a de-novo domi-

nant frameshift in an exonic region, 2 had compound-heterozygous variants where both were

non-synonymous changes in exonic regions, and 1 had a compound-heterozygous variant with a
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non-synonymous change in an exon and a change in an intronic/splice-site region. Of the 2 that

were missed, 1 had a large structural variant deletion which the candidate analysis workflow

was not designed to detect. The other was a male with a de-novo variant on the X-chromosome

with a low CADD score that did not pass the workflows default CADD threshold. Supplemen-

tary Table B.27 shows the number and type of candidate variants detected by the workflow for

all 37 individuals.

In addition, we compared the number and type of clinically-relevant variants that

are identified between the affected proband population and their matched unaffected sibling

population to indirectly evaluate the pipeline’s ability to identify DVs. This analysis runs in two

steps. First, for each family, the affected offspring are set as the proband in the workflow and

the unaffected offspring are set as the unaffected siblings. Then for the second step, for each

family, the unaffected offspring are set as the proband and the affected offspring are set as the

unaffected siblings. Finally, the set of candidate DVs from the probands in the first step are

compared against the set of candidate DVs from their matched unaffected siblings in the second

step.

There is an expected baseline load of rare deleterious variants that all individuals

inherit due to de-novo mutation and inefficient selection against segregating variants [47]. Fig-

ure 4.4A shows the distribution between these two populations in the 15 pedigree cohort sample

set. Figure 4.4B shows the distribution of differences in the candidate DVs between the matched

proband and siblings. X-linked recessive candidate DVs were excluded from both populations

in order to improve comparability between male and female samples. Compound-heterozygous

candidate pairs and candidate alleles that occupy the same locus are also counted as one can-
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didate for the purposes of this comparison. The number of candidate DVs in the proband pop-

ulation are significantly different from their matched unaffected sibling’s set of candidate DVs

(Wilcoxon signed-rank test p-value=0.03). Given a large enough sample set, we might expect

the median number of rare deleterious variants in the proband population to be slightly different

from the median number of rare deleterious variants in the unaffected sibling population. Due to

two factors, the proband’s level of genetic burden is hypothesised to be slightly greater than that

of their unaffected siblings: all probands in this analysis currently show phenotypic expression

of their disease, and the unaffected siblings are of similar age.
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Figure 4.4: Proband-sibling pairwise candidate analysis results on 15 nuclear families of at

least quartet in size, comprising a population of 15 probands and 22 siblings. Plot (A) shows

the average number of candidate variants between the probands and sibling populations. 17

red lines represent proband-sibling pairs where the proband has more DVs than their matched

sibling, 5 blue lines represent probands have less DVs than their matched sibling (blue), and 1

green line where probands have the same number of DVs as their matched sibling. The proband

population holds an average of 14.53 DVs while the sibling population has an average of 12.77

DVs. A one-tailed Wilcoxon signed-rank test of the hypothesis that the probands have greater

numbers of DVs than their matched siblings produced a p-value of 0.0333. (B) The distribution

of proband - sibling DV list size differences. (C) A mosaic region identified by the workflow

(red box) overlaid with the snp-chip B allele frequency plot for a UDP sample.
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In addition, we ran the workflow on 4 undiagnosed cases that have previously shown

a negative or inconclusive clinical exome and negative commercial genome assay results. From

these samples, we have produced a number of candidate DVs. Of the 4 cases, 2 have candidate

DVs that match their phenotypic profile and are being examined for clinical function, the other

2 cases are undergoing further investigation. One of the 2 cases had an identified mosaic region

on chromosome 7 detected by the candidate analysis workflow (Figure 4.4C). Concurrently, we

ran the analysis on the HG001(NA12878), HG002, HG005 probands and, as expected, did not

detect any signs of mosaicism. Supplementary Tables B.28 and B.29 shows the number and

type of candidate variants detected by the workflow.

4.3.5 Runtime Evaluation

The workflows examined are runnable on the Terra platform [10]. When running on

a quartet with 30 to 35x coverage paired read data, the workflow takes a little more than 8000

CPU hours for a total cost of approximately $100 (Table B.30). The VG-Pedigree pipeline

makes up the majority of the computation at about 8000 CPU hours and costs $92-95, while the

candidate analysis workflow runs in about 200 CPU hours costs $3-5. Costs can vary based on

the load of the cloud compute system and the availability of lower-cost preemptable nodes.

4.4 Discussion

There is growing evidence that rare variants have the effect sizes, diversity and abun-

dance necessary to explain a substantial portion of human genetic load [48, 99, 65]. Pedi-
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grees can help resolve harder-to-study regions by giving orthogonal evidence in the form of

Mendelian inheritance to enhance the statistical power and phasing accuracy to categorize

compound-heterozygote and de-novo variation from a list of called variants [98, 85, 92, 109].

Graph-based approaches leverage additional variation information during read mapping to mit-

igate the problems of alignment to complex regions of the genome [44, 102]. The methods and

software developed in this project are designed to maximize the biological information available

to detect and interpret individual-level variation. The software developed is scalable so that it

can easily run on high performance compute clusters that support common batch systems like

Slurm [121] or Kubernetes [53]. It is publicly accessible in the toil-vg GitHub repository and

in WDL format which is published in the Dockstore repository [81, 10].

Alignment and genotyping performance of short-sequenced reads is improved across

all examined confident regions in the GIAB samples. This is due to the parental genotypes

contributed to the pangenome reference used in the Giraffe-Parent method that better match

the child’s reads. The result of these improvements translate to better coverage, mapping qu

ality and greater variant calling accuracy in both confident and difficult regions of the genome.

All examined UDP cases that have a known genetic diagnosis based on the Mendelian models

covered by the previously published candidate analysis workflow have their causal variants re-

capitulated by this workflow [45]. The candidate analysis evaluation indicates detectable differ-

ences in the number of candidate DVs identified between the affected and unaffected offspring

populations. This result shows a similar trend to that of the analysis done on exome datasets

from a larger sample set, which also showed a statistically significant difference [45]. The main

improvement in this analysis over the previous analysis is that this analysis covers the whole
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genome including intronic and intergenic regions.

A number of areas can be improved within this workflow. One example is the training

model used in DeepTrio. Our training used a very limited number of benchmark samples,

which was limited further to leave benchmark data for testing and development. Given these

limitations, there is room to improve the DeepTrio model when additional well-sequenced and

diverse benchmark samples become available.

Variant calls from graph-based alignments are prone to error due to the conversion

of the native graph alignment map (GAM) format output from VG alignments to the linear

reference BAM format. Information about the exact path of reads is lost during this projection

step which can result in reads appearing different from the linear reference genome when the

variant is already present in a path in the graph reference.

Structural Variants (SV) are an important component to the set of rare variants that

contribute to disease [119, 4]. In previous work, there have been efforts to tailor pangenome

graphs and variant caller algorithms to improve the accuracy of detecting SV [102]. Another

avenue to improve this workflow is to apply pangenome graphs with incorporated SV infor-

mation as a module that runs concurrently to the VG-Pedigree workflow. One of the samples

in the candidate DV analysis was missed by this workflow as it contained a large SV deletion.

Incorporating SVs into the VG-Pedigree workflow would aid in the detection of such variants.

Refinements to the CADD scoring metrics can be made to enhance the detection of

specific variants. One of the samples in the candidate DV analysis that was missed by this

workflow was a male with a de-novo variant on the X-chromosome with a low CADD score

that did not pass the workflows default CADD threshold. To remedy this, the CADD threshold
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for de-novo male X-linked variants can either be lowered to enhance sensitivity or the CADD

program would need to adjust their scoring metrics to take into account such variants and up-

weigh their scores.

Further runtime improvements could also be made. The workflow takes about 1.5

days and approximately 8000 total CPU hours at a cost of about $100 to process one family.

This is moderately expensive and slow relative to traditional methods, which have well-tuned

hardware acceleration solutions and years of work optimizing computation time. GPU acceler-

ation or field-programmable-gate-array (FPGA) implementations of the graph alignment algo-

rithm could substantially accelerate the computation of the graph-based algorithms.

There are a number of refinements that could be made to the most expensive parts of

this workflow. Reference construction of the parental graph could be improved by altering and

pruning the haplotype index with the haplotypes discovered by the trio-backed phasing stage of

the pipeline. The use of graph-based variant callers would remove the need to surject alignments

to linear BAM files and therefore maintain potentially more information that could be used to

produce more accurate calls.

Additional orthogonal methods can be applied to the workflows presented. The re-

construction of sequences in a sample from sequence data alone, known as de-novo genome

assembly, can be used to support evidence of the genotypes detected in this workflow. One tool

known as WHdenovo can apply pedigree information and long-sequence reads to enhance the

construction of sample-specific assemblies that can resolve potential genotyping errors in this

workflow [42, 41].

New pangenome graphs are continuously being updated and tested as more popula-
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tion variation is characterized. The Telomere-to-Telomere genome project (T2T) has recently

released a genome reference which exhaustively captures the centromeric and telomeric se-

quence better than the previous GRCh38 version of the human genome [80]. The Human

Pangenome Reference Consortium (HPRC) is a group of research institutions that are tasked

with the development of a pangenome reference using the latest methods and data. By charac-

terizing regions of the genome not well represented by existing variant datasets, the pangenome

references developed by the HPRC that incorporate new T2T sequences should further improve

the performance and accuracy of the workflows presented in this paper.

4.5 Methods

4.5.1 VG Pedigree Workflow

Pangenome graphs provide a framework for leveraging genomic variation informa-

tion to create a better-informed mapping procedure than that provided by a linear genomic

reference. The workflow presented here goes through a number of stages (Fig. 4.1A). The first

stage establishes parental haplotypes to construct a parental-backed graph reference. It takes

short reads from a trio and aligns each to a population-informed graph reference. We use a

graph based on the 1000 Genomes dataset [9, 102]. It is still the largest and most diverse set

of phased genotypes available to the public with broad consent. The 1000GP graph is based

on the hs38d1 human reference genome and the 1000 Genomes Project phase 3 variant set that

has been lifted over from GRCh37 to GRCh38 genome coordinate space, and is available in a

publicly accessible Google Cloud bucket.
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Alignment of the parent-child trio to the 1000GP graph goes through a number of

steps that split and merge read alignments to enable distributed computation (Fig. 4.1B, Sup-

plementary Fig. B.5). This greatly reduces time spent aligning reads, which is a major bot-

tleneck for the workflow. Afterwards, each chunked alignment is projected back to the linear

genome reference coordinate space and corrected for duplicates and missing mate information

and INDELs are realigned using ABRA2 [77]. Following alignment, samples in the trio are

variant-called, producing a per-sample gVCF genotype called file. A trio-based DeepVariant

extension [86], Google’s DeepTrio [56], is used to call variants in this workflow. DeepTrio first

generates images based on the alignments between the parent and child reads. Then the Deep-

Trio variant caller is run concurrently to call gVCFs for each contig for each sample in the trio.

The gVCFs are next joint-called with the Glnexus package [122] in order to merge and recall

potentially uncalled variants in the trio. Joint-calling gVCFs enhances DeepVariant-based calls

by reexamining trio variant sites that were confidently called in one sample but not another. The

joint-called trio VCF is then divided by autosomal and sex-chromosomal contigs, with the mi-

tochondrial contig only preserving the maternal set of called genotypes and the Y chromosomal

contig preserving the paternal set of called genotypes.

A number of different schemes for phasing these variants were explored using com-

binations of Eagle [66], WhatsHap [71], and SHAPEIT4 [26]. Supplementary Table B.31 il-

lustrates the performance of combinations of these programs when phasing the GIAB HG002

sample. Supplementary Table B.32 shows phasing performance for the GIAB Ashkenazi trio

with respect to GRCh38- or GRCh37-based graph alignments. Using Eagle followed by What-

sHap produced the largest blocks of phased variants while maintaining a switch error rate close

93



to, or better than, the method with the largest median haplotype block size from this list: What-

sHap in combination with SHAPEIT4. Following the alignment and variant calling step, a

phasing sub-pipeline is run on these contig VCFs using the Eagle-WhatsHap phasing method

(Fig. 4.1C, Fig. B.6). Missing genotypes are imputed using Eagle version 2.4.1 [66]. Finally

the contig VCFs are phased with trio- and read-backed methods using WhatsHap [71]. That

final set of contig VCFs are then filtered down to just the parental genotype sets and passed into

the graph construction workflow.

Following the phasing stage of the workflow, the phased variants from that step and

a linear reference in FASTA are passed as input into the graph construction step (Fig. 4.1D,

Fig. B.7). VG mappers use a variety of indexes [102]. To facilitate this need, the construction

workflow generates a combination of indexes based on the requirements of the VG Giraffe

mapper.

After constructing the parental graph, the offspring reads can be realigned to it.

GVCFs are called from offspring alignments to the parental graph reference. (Fig. 4.1B, Fig. B.5).

Finally, variants are jointly called, once again with the Glnexus package [122], by combin-

ing previously-computed gVCFs of the 1000GP-aligned parents with gVCFs derived from the

parental graph-aligned offspring.

The methods developed here for the VG-Pedigree workflow are implemented in the

software framework “toil-vg” under the ‘toil-vg pedigree‘ subcommand which makes use of the

TOIL workflow engine [114] for cloud-based and cluster-compute systems and is available on

GitHub at https://github.com/vgteam/toil-vg. The workflow is also made available in

WDL format in the Dockstore [81, 10] repository at https://dockstore.org/workflows/gi
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thub.com/vgteam/vg wdl/vg-pedigree-giraffe-deeptrio:master.

4.5.2 Candidate Analysis Workflow

A primary endpoint goal for this workflow is variant detection to identify likely causes

of the genetic disorders in the UDP cases. Traditional variant filtration techniques narrow down

a set of variants, but they are usually not exhaustive enough to narrow the list down to an

actionable number of variants without truncation [84, 55]. Further, they often do not specialise

in the detection of compound-heterozygous candidates in non-coding regions. Traditionally, a

large proportion of work is needed to validate the clinical functionality for each variant [11].

Given this downstream cost, this workflow focuses on reducing that cost by minimizing the

number of variants that need to be examined in the final list. The analysis workflow takes in

a very large set of variants and filters them by examining a series of variant attributes each of

which follows an order of most-certain to least-certain true-positive data types (Fig. 4.1F).

Additional improvements and features were added to this implementation of the meth-

ods developed in the Gu et al. study. In this paper, we have adapted all components and anno-

tations used by the workflow to be compatible with the GRCh38 reference genome coordinate

system. The CADD engine software suite has been updated to version 1.6 which incorporates

greater accuracy in determining deleterious variants located in splice sites and introns [90]. We

have also updated the population annotation dataset to use GnomAD v3.1 which has incorpo-

rated a larger proportion of samples producing more accurate and exhaustive population allele

frequencies [54]. The maximum minor allele frequency (MAXMAF) calculation implemented

in the population/deleterious-backed variant filtration module was altered to use
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a binomial instead of a poisson distribution (Fig. B.8D). A critical bug was patched that was

found to erroneously output X-linked candidate variants for females. We implemented a new

module that automatically detects the presence, location and type of copy number variant (CNV)

mosaicism in the proband.

The alignment and variant calling workflow output is processed with various annota-

tion programs before they are able to be passed as input into the candidate analysis workflow.

Post processing the final datasets comprises SnpEff annotation, INDEL-realignment, and con-

verting to a one variant per row format that has pedigree consistent INDELs, for each of the

samples in the pedigree (Fig. 4.1E, Fig. B.9). The CADD [90] software suite is used in this

analysis workflow to predict the deleteriousness of a given variant. Any variants that are unique

to the CADD database in the joint VCF have a deleterious score calculated by the software.

The analysis portion of the workflow examines and filters the pedigree variant file in

the context of Mendelian inheritance, alignments against the parental-based graph reference,

population variant frequency, and predictions of variant effects on gene function and expression

[45] (see supplementary methods 4.5.7). Using these filters generates a set of variants that

are further filtered by examining the BAM files for sequence and alignment noise surrounding

each variant [45]. This produced a final short list for clinical examination. The workflow then

cleans up the resulting candidate list of identifiable errors and artifacts. Typical candidate lists

produced by this pipeline consist of 10-50 variants (Tables B.27 and B.28). These lists include

compound-heterozygous variants located in non-coding regions of the genome.

One new implementation of the workflow is the detection of CNV mosaicism. Mo-

saicism is a genetic event where a single sample possesses multiple populations of cells that
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possess different proportions of variants. The goal of the program is to detect stretches of

phased variants that show consistent and significant evidence for deviation in allele depth (AD)

contributed by the mother and father. The first step is to phase a set of heterozygous genotypes in

the proband by examining the parental genotypes. The phasing done here is more stringent than

in the previous method described in the vg pedigree workflow because we are looking for a se-

quence of easily phasable SNPs and so the procedure is rule-based instead of WhatsHap which

is based on statistical models. A given genotype in the proband is phaseable if two conditions

are met: at least one parent has a homozygous genotype, and the other parent is heterozygous.

If a large enough proportion of genotypes are phased in this way, the program examines regions

of sufficient length for consecutive stretches of allele balance deviation. A sliding window of

10,000 phased genotypes is used to scan each chromosome and find the boundaries of the mo-

saic region. For each SNP within this window, the AD of one parent is subtracted from the AD

of the other parent. A t-test is applied to the list of AD differences within the window to test

if the distribution is significantly different from the null model of no difference. If the t-test

statistic is greater than the input threshold, then a region of possible mosaicism is detected and

subsequently logged in a separate file for further examination. This threshold was determined

empirically against mosaic-positive samples obtained by the UDP. This differs from traditional

CNV callers in that this program incorporates trio information to look for partial deletion or

duplication events at megabase scales at a continuous level of granularity.

This program can also determine three types of mosaicism: uniparental isodisomy-

disomy, trisomy-disomy, and monosomy-disomy. In uniparental isodisomy-disomy mosaicism

the individual has populations of cells where a proportion of their genome shares both copies
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from only one of their parents, and the rest of their cells have inherited a copy from both parents.

These types of mosaics are detected by examining the total read depth of the child and parents

within the candidate mosaic region. If the proportion of total read depth between the child

and parents are the same, and the proportion of ADs of the phasable SNPs between the child

and parents are not the same, then the program will classify the mosaic region as uniparental

isodisomy-disomy.

In trisomy-disomy mosaicism, the individual has populations of cells where a pro-

portion of their genome has inherited two copies of the same chromosome from one of their

parents and one copy from the other parent while the rest of their cells have inherited a copy

from both parents. If the proportion of total read depth in the child is greater than their parents,

then the region is classified as trisomy disomy mosaicism. Alternatively, in monosomy-disomy

mosaicism, the individual inherits only one copy from only one parent in some of their cells,

and the rest of their cells inherit one copy from each parent. In this case, if the total read depth

in the child is less than that of their parents, then the region is classified as monosomy disomy

mosaicism.

All modules have been implemented in software containers to improve portability and

interoperability with other workflow engines [53, 95]. The candidate analysis workflow is im-

plemented within the “toil-vg” software package under the toil-vg analysis subcommand.

The candidate analysis workflow is also available in WDL format in the Dockstore repository at

https://dockstore.org/workflows/github.com/cmarkello/bmtb wdl/bmtb:main.

98



4.5.3 Read Simulation

To simulate reads using the vg framework we generated pangenome graphs represent-

ing the haplotypes of HG002. To build these graphs we used a reference genome (hs38d1) and a

variant population dataset (GIAB HG002 version 4.2.1 high-confidence variant sets), using the

vg construct command to build the pangenome graph. Since the hs38d1 reference genome is

also contained in the graph whose mapping to which we were evaluating we used the reference

location of in hs38d1 to evaluate if a read was correctly mapped.

First a sample graph was constructed using the vg container

quay.io/vgteam/vg:ci-2890-655a9622c3d60e87f14b88d943fbd8554214a97,

on the Genome-in-a-Bottle(GIAB) HG002 sample trio-phased variant data from https://ft

p-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002 NA24385 s

on/NISTv4.2.1/GRCh38/SupplementaryFiles/HG002 GRCh38 1 22 v4.2.1 benchma

rk phased MHCassembly StrandSeqANDTrio.vcf.gz, and the linear reference sequence

GCA 000001405.15 GRCh38 no alt plus hs38d1 analysis set

.compact decoys.fna.gz from https://storage.googleapis.com/cmarkell-vg-wdl

-dev/grch38 inputs/GCA 000001405.15 GRCh38 no alt plus hs38d1 analysis set.c

ompact decoys.fna.gz.

Next, reads were simulated using the commands from the following script

https://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mappi

ng simulation/sim reads.sh.

The simulated reads were mapped using BWA-MEM-hs38d1 against the linear reference, VG
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Giraffe against Primary, 1000GP and the Parental graph reference as produced by the VG

Pedigree workflow using commands from the script

https://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mappi

ng simulation/run mapevals.sh. Mappings made by BWA-MEM-hs38d1 against the linear

reference were injected to graph space using the same sample graph of HG002 and hs38d1 that

was used to simulate reads.

Finally, the aligned reads were evaluated for mapping accuracy using the following commands

from the script

https://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mappi

ng simulation/run mapevals.sh

followed by the rendering of receiver-operator-curves of the mapping results with the com-

mands from the script

https://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs m

apping simulation/plot roc simulated mapped reads.sh. Graph Alignment Map

(GAM) file stats were computed using ‘vg stats‘ from VG version v1.31.0. Percent identity

between aligned reads and the reference sequence were calculated using ‘vg gamcompare‘ from

VG version v1.31.0.

4.5.4 Graph Construction

All genome graphs including the 1000GP 1000 Genomes Project population graph

reference and the Primary linear graph reference were constructed using VG version v1.27.0.

A custom form of the GRCh38 cannonical FASTA sequence was generated where all decoy
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contigs were merged together into a single decoy contig in order to reduce the contig number

of the file and is available at https://storage.googleapis.com/cmarkell-vg-wdl-dev

/grch38 inputs/GCA 000001405.15 GRCh38 no alt plus hs38d1 analysis set.com

pact decoys.fna.gz. This FASTA file was used as the reference framework for these graph

references.

All methods of graph construction can be reproduced using the following scripts from

the script repository URL https://github.com/cmarkello/vg-pedigree-paper/tree/

main/scripts/graph construction.

4.5.5 Read Mapping

Real reads obtained from the GIAB sample trios HG002 and HG005 were mapped using

4 mappers: Illumina’s Dragen-hs38d1 version 3.7.5, BWA-MEM-hs38d1 version 0.7.17-

r1188, Giraffe from VG version v1.31.0, and the VG Pedigree mapping workflow using VG

version v1.31.0.

The commands for running Illumina’s Dragen-hs38d1 module are described in the script from

the following URL: https://github.com/cmarkello/vg-pedigree-paper/blob/main/s

cripts/wgs mapping experiments/Dragen-hs38d1 map.sh.

The commands for running BWA-MEM-hs38d1 are described in the script from the URL: ht

tps://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mapping

experiments/bwamem map.sh.

The commands for running VG Giraffe are described in the script from the URL: https://gi

thub.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mapping experim
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ents/giraffe map.sh.

The commands for running the VG Pedigree workflow are described in the script from the URL:

https://github.com/cmarkello/vg-pedigree-paper/blob/main/scripts/wgs mappi

ng experiments/giraffe pedigree map.sh.

4.5.6 Variant Calling and Evaluation

4.5.6.1 Variant Callers

We used two different variant callers for the purposes of evaluating robustness in

mapping performance. Google’s DeepTrio version 1.1.0 was used as the main variant caller of

choice and Illumina’s Dragen-hs38d1 module version 3.7.5 was used as the variant caller for

alternative method comparison.

All mapped HG002 and HG005 trio samples from each of the mappers from Section

4.5.5 were called using both variant callers. For DeepTrio calling, the default model that comes

with version 1.1.0 was used to call genotypes over the whole genome for each sample. For

DeepTrio calling using the models that were trained using the VG Giraffe-based alignments

were run on chromosome 20 since that contig was held-out during the training process described

in 4.5.6.2.

Called variants were subsequently evaluated by running Illumina’s Hap.py version

0.3.12 from the container jmcdani20/hap.py:v0.3.12 and RealTimeGenomics’ vcfeval

version 3.12.1 using the GIAB version 4.2.1 truth-sets for the HG002 and HG005 samples.

Commands for running all variant calling and evaluations can be found in the scripts

located in the following URL: https://github.com/cmarkello/vg-pedigree-paper/tre
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e/main/scripts/wgs calling experiments.

4.5.6.2 DeepTrio and DeepVariant Training

To enable DeepTrio to make maximal use of the pedigree graph, DeepTrio was re-

trained on samples mapped against the pangenome graph. Re-training used two trios, HG002-

HG003-HG004 and HG005-HG006-HG007. Each sample was mapped at 35x coverage. To im-

prove generalization across sequencing depth, training examples were generated using random

downsampling of examples by 1.0, 0.8, 0.7, 0.6, and 0.5 (corresponding to average sequence

depth of 35x, 28x, 24.5x, 21x, and 17.5x). Training used examples from chr1-chr19, with chr21

and chr22 used as a tune set to select a model, and chr20 fully withheld as an independent

evaluation dataset. Training used the default parameters for DeepTrio, with the exception of

minimum mapping quality being set to 1, which enables DeepTrio to better take advantage of

the pangenome graph’s improvement in difficult to map regions. One model was trained to call

variants in the child, and another model was separately trained to call variants in the parent.

DeepTrio uses each of these models during runtime to call variants for both parents and child.

Two sets of DeepTrio trained models were used in evaluation. The model trained

using samples HG002-HG003-HG004 and HG005-HG006-HG007 was applied to the whole

genome evaluations of the HG001 sample. The model trained using samples HG002-HG003-

HG004, HG005-HG006-HG007 and HG001-NA12891-NA12892 was applied to the chromo-

some 20 evaluations of the HG002 and HG005 samples.

A re-trained DeepVariant model was used in evaluating HG001 whole genome re-

sults. This model was trained using just the HG002 and HG004 sample alignments against the
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pangenome graph. The training examples were generated using random downsampling of ex-

amples by 1.0, 0.8, 0.7, and 0.6 (corresponding to average sequence depth of 35x, 28x, 24.5x,

and 21x). All other training methods and parameters were similar to those used in training the

DeepTrio models.

4.5.7 Candidate Analysis Workflow Modules

The first steps of the analysis workflow find false negative variant genotypes in the

parents relative to the child such that they appear de-novo in the proband. It performs an in-

tense pedigree-aware Bayesian re-genotyping to recover many apparent de-novo states back

into simple dominant mendelian inheritance from a parent (Supplementary Fig. B.8A-B). A full

description of this method and heuristic derivation can be found in supplementary manuals 1

and 2 of the Gu et al. paper [45].

The next module identifies and filters variants for various modes of Mendelian inher-

itance, population frequencies, and predictions of deleteriousness (Supplementary Fig. B.8C).

Mendelian models include homozygous recessive (HR), de-novo (DN), mendelian-inconsistent

regions that focus primarily on the proband’s homozygous variant or hemizygous genotypes

(MI), X-linked (XL), mitochondrial, and compound-heterozygous genotypes (CM). CM geno-

types are examined in regions of defined gene loci using compound Phred-scaled CADD scores

known as Virtual Mendelian Model (VMM) for each combination of heterozygous pairs of the

CH [45]. A full description of this method and heuristic derivation can be found in supplemen-

tary manuals 3 of the Gu et al. paper [45].

After identifying Mendelian model candidacy, a population-based and deleterious-
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based filter is applied that is based on CADD, VMM and an assortment of population databases

(Supplementary Fig. B.8D). The databases used for this task include 1000Genomes [21], UK10K

[118], ExAC [63], GnomAD [54], and the UDP’s set of internal samples. A full description of

this method and heuristic derivation can be found in supplementary manual 5 of the Gu et al.

paper [45].

For the remaining variants, their loci are further examined through a BAM file cura-

tion procedure (Supplementary Fig. B.8E). Variants at these loci are filtered based on density of

mismatches and consistency of pileups across sequence reads that are aligned in this region. A

full description of this method and heuristic derivation can be found in supplementary manual

4 of the Gu et al. paper [45].

The last module investigates potentially false positive de-novo variants due to the

density of mismatches in a region surrounding the variant in the alignment data and filters them

out (Supplementary Fig. B.8F). The full description of this method and heuristic derivation can

be found in supplementary manual 6 of the Gu et al. paper [45].

In parallel to the filtering modules described above, two additional types of variants

are examined for candidacy. The first of which looks for variants that have no coverage in the

proband but evidence for coverage is present in everyone else in every population dataset. These

variants are referred to as called-no-coverage (CNC). A module in the analysis pipeline exam-

ines these variants and checks for their presence in other population databases (Supplementary

Fig. B.8G). This method supplements the proband’s set of read coverage information with the

read coverage information collected by the UDP lab to enhance the detection of large double

deletions on the scale of exons. This module is described further in manual 7 of the Gu et al.
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paper [45].

Code Availability and Data Access

The scripts available for running the graph reference construction, mapping simula-

tion and variant calling experiments is provided at https://github.com/cmarkello/vg-pe

digree-paper/scripts. The repository can be downloaded directory using

git clone https://github.com/cmarkello/vg-pedigree-paper.git.

The main VG Pedigree workflow is available both in TOIL format from the pedigree sub-

command of the toil-vg program as available from https://github.com/vgteam/toil

-vg.git. The workflow is also available in WDL format and is available on Dockstore at the

following URL: https://dockstore.org/workflows/github.com/vgteam/vg wdl/vg-

pedigree-giraffe-deeptrio:master.

The candidate analysis workflow has been made available as a separate program for interop-

erability purposes and is available in TOIL format from the analysis sub-command of the

toil-vg program as available from https://github.com/vgteam/toil-vg.git. The

workflow is also written in WDL format and is available on Dockstore at the following URL:

https://dockstore.org/workflows/github.com/cmarkello/bmtb wdl/bmtb:main.

Both the VG-Pedigree workflow and the candidate analysis workflow are imple-

mented in the software workflow engine TOIL [114] for cloud-based and cluster-compute sys-
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tems under the software framework toil-vg. They are callable using the toil-vg pedigree

and toil-vg analysis subcommands, respectively. toil-vg is available on GitHub at https:

//github.com/vgteam/toil-vg. The workflows are also made available in WDL format in the

Dockstore [81] repository at https://dockstore.org/workflows/github.com/vgteam/

vg wdl/vg-pedigree-giraffe-deeptrio:master and https://dockstore.org/workfl

ows/github.com/cmarkello/bmtb wdl/bmtb:main.

Input data used in the mapping evaluation, variant calling evaluation and runtime

evaluation are all publicly available and listed in the scripts posted in the github repository:

https://github.com/cmarkello/vg-pedigree-paper. Input data used in the candidate

analysis evaluation experiments have been or are being submitted to the database of Genotypes

and Phenotypes (dbGaP).

Low complexity, low mappability and MHC regions were defined by the following

bed files, respectively, and intersected using Bedtools against the GIAB sample-specific all-

confident region benchmark bed files: https://ftp-trace.ncbi.nlm.nih.gov/giab/ft

p/release/genome-stratifications/v2.0/GRCh38/union/GRCh38 alldifficultreg

ions.bed.gz, https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-s

tratifications/v2.0/GRCh38/union/GRCh38 alllowmapandsegdupregions.bed.gz,

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratificatio

ns/v2.0/GRCh38/OtherDifficult/GRCh38 MHC.bed.gz [88, 117]. The analysis of called

variants in the HG002 complex medically relevant genes used the HG002 CMRG v1.00 VCF

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002 N

A24385 son/CMRG v1.00/GRCh38/SmallVariant/HG002 GRCh38 CMRG smallvar v1.00.v
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cf.gz and BED file https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/Ashken

azimTrio/HG002 NA24385 son/CMRG v1.00/GRCh38/SmallVariant/HG002 GRCh38 CMR

G smallvar v1.00.bed [116]. Sample-specific difficult region bed files were extracted from

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-st

ratifications/v3.0/GRCh38/GenomeSpecific/.

Candidate deleterious variants for the proband and sibling populations of the 15 co-

hort proband-sibling pairwise analysis can be found in the supplemental files “proband cv.xlsx”

and “sibling cv.xlsx”, respectively.

Scripts for reproducing the methods for graph construction can be found in https:

//github.com/cmarkello/vg-pedigree-paper/tree/main/scripts/graph construct

ion.

Scripts for reproducing the mapping evaluation experiments can be found in https://github

.com/cmarkello/vg-pedigree-paper/tree/main/scripts/wgs mapping simulation.

Scripts for reproducing the real-data mapping and variant calling evaluation can be found in

https://github.com/cmarkello/vg-pedigree-paper/tree/main/scripts/wgs mappi

ng experiments and

https://github.com/cmarkello/vg-pedigree-paper/tree/main/scripts/wgs calli

ng experiments, respectively.
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Chapter 5

BRCA Exchange Repository

5.1 Preamble

In this chapter I present contributions that I’ve made towards the development of the

BRCA Exchange project which pertains to the clinical interpretation of variants after variant

discovery is made. BRCA Exchange is a database and website which aggregates BRCA1 and

BRCA2 gene variation data for the purposes of facilitating collaborative research activity [23].

Much of what I contributed to related to the collection of data from various BRCA1 and BRCA2

database silos from around the world. I also contributed to the design and implementation

of some components of the website. These primarily included the graphical user interfaces

(GUI) of database filters and column selections for the data-table as well as an interactive visual

representation of allele location and frequencies of various types of variants in the form of a

lollipop chart.
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5.2 Introduction

Over the past 60 years, geneticists began to relate genetic measurements with mea-

sures of clinical significance. Recent advances in genetic sequencing technologies gave re-

searchers the ability to investigate these genetic traits in more granular detail, down to the level

of single nucleotide changes. This level of precision eventually led to the growing development

of clinical diagnostics which eventually resulted in variant databases that have been curated

by different academic institutions from around the world. The advent of these databases be-

ing housed by different global institutions naturally fractured the development of standards of

variant interpretation and clinical significance. Today, a number of different variant databases

with clinical interpretation are available and each have attempted to bridge this gap in stan-

dardization such that variants in one database can be compared or combined with variants in

another database. These include but aren’t limited to the Online Mendelian Inheritance in Man

(OMIM) [7], the Human Genome Organization (HUGO) [1], the Human Genome Variation

Society (HGVS) [27], the Human Gene Mutation Database (HGMD) [108], the Leiden Open

Variation Database (LOVD) [33], and the ClinVar database [60].

The Global Alians for Genomics and Health (GA4GH) has been tasked with facili-

tating the organization and standardization of variant representation and interpretation with the

goal of combining the worlds collection of data to further enhance the quality of genetic re-

search and clinical application [111]. The BRCA Exchange Challenge was a pilot project under

this organization that was focused on the genes BRCA1 and BRCA2 due to their popularity and

the wealth of available data for those genes. The goal of BRCA Exchange was to demonstrate

112



the viability of combining data from various global variant databases in the form of a website

that services a centralized database [23].

5.3 Variant Database

The BRCA Exchange variant dataset is comprised of a large number of global databases.

These include ClinVar[60], Ex-UV[112], LOVD[33], GnomAD[54], the Breast Cancer Infor-

mation Core (BIC)[110], and the ENIGMA consortium[107]. The resulting database houses

more than 18,000 BRCA1 variants and more than 22,000 BRCA2 variants. Variants were fil-

tered based on reference bias with the current reference genome or had erroneous nomenclature

terms as determined by the HGVS standard. Variants with different representations but are ge-

nomically equivalent are determined by deriving an alternative allele string for each variant that

consists of the variant plus flanking genomic bases, comparing these allele strings and merging

any variants that yield equivalent allele strings. With this strategy, the pipeline detects equiv-

alent variants that show no apparent similarity in their HGVS strings or genomic coordinates,

such as complex indels that produce the same alternative allele string through differing combi-

nations of insertions and deletions. Figure 5.1 shows the amount of overlap in variants within

the databases in BRCA Exchange.
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Figure 5.1: BRCA Exchange Database Overlap between ClinVar Leiden Open Variation Database (LOVD) and the allele frequency

databases: Exome Aggregation Consortium (ExAC), 1000 Genomes project, and the Exome Sequencing Project (ESP).
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5.4 Visualization of Variants

A number of interactive features were implemented in the BRCA Exchange website.

The components I contributed to included the visual layout and interactivity of the column and

database filters. Figure 5.2 shows a sample of the graphical layout of this feature.

Figure 5.2: A screenshot of the BRCA Exchange website illustrating the column and source

filtering and selection web-interface.

An interactive visualization of the variant set was implemented in the form of a lol-

lipop chart. The chart displays for each variant a vertical line oriented by location on the x-axis

and a circle at the top of the vertical line representing the class of the variant in the y-axis and

by the color of the circle. Figure 5.3 shows an example of the interactive chart.
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(a) Lollipop Pathogenicity

(b) Lollipop Allele Frequency

Figure 5.3: A screenshot of the BRCA Exchange website illustrating the interactive lollipop chart. (a) The lollipop chart represent-

ing variants by pathogenicity class. (b) The lollipop chart representing variants by allele frequency class.
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5.5 Code Availability and Data Access

The main website for BRCA Exchange can be accessed at https://brcaexchange

.org/. Data and source code for all of the components of the website can be accessed on github

at https://github.com/BRCAChallenge/brca-exchange.
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Chapter 6

Co-occurrence Analysis of VUS

6.1 Preamble

In this chapter I present contributions that I’ve made towards the development of a

method for interpreting the pathogenicity of variants of unknown significance (VUS) via the

use of co-occuring genotypes in a dataset of samples. These methods have been applied to a

study which investigated the set of BRCA1 and BRCA2 variants in a cohort of samples that were

derrived from the BioBank Japan repository [15]. Here, I describe the pipeline for examining

variants that co-occur with other variants within the same sample which implicitly gives some

evidence for benign classification for that variant.
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6.2 Introduction

One classic example of variants that are known to impact clinical outcomes is the

increased risk of cancer in breast, ovarian, pancreatic, prostate and skin tissues that is caused

by the presence of pathogenic variants in the BRCA1 and BRCA2 genes[24]. Genetic testing is

typically done to examine and determine if a patient or their family have inherited risk factors

pertaining to those clinical outcomes. Patients and family members can use this information

to practice mitigation efforts like increased cancer screening and risk-reducing medication in

order to detect and treat cancer before it becomes unmanageable[24]. However, these strategies

are limited to the knowledge of which variants in an individual are known to be pathogenic

or benign. If a large portion of these variants are identified as VUS, then the individual will

be unable to determine what their medical needs are. Many databases containing information

about the pathogenic classification of variants house many germline variants that are labeled as

variants of unknown significance (VUS). As of May 2021, ClinVar, one of the major repositories

for clinical classification of germline variants, has as many as 34.3% of BRCA1 and BRCA2

variants are labeled as VUS while another 4.8% of variants have classifications that conflict

between different institutions. Currently in other variant databases like gnomAD, many more

variants have been identified in individuals but have no clinical classification tied to them[54].

The issue of the accumulation of VUS variants in these databases is related to the

phenomenon that many VUS are rare variants in which institutions that aggregate these variants

don’t obtain enough sample data to determine significance. However, through the use of variant-

level summaries on aggregated data, some of these VUS variants can be reinterpreted to be
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likely benign based on information. The American College of Molecular Geneticists (ACMG)

have developed standard forms of evidence for the practice of variant interpretation[91]. One

of these standards includes the observations of VUS variants in cis and in trans with known

pathogenic variants (PM3 and BP2, depending on the disorder). In this study, we developed

analysis workflows which aggregate datasets and look for classifications of tumor pathogenic

classification for BRCA1 and BRCA2 variants in samples derived from the BioBank Japan

cohort[74].

6.3 Results

One of the analysis workflows that we have developed looks at examining variants that

co-occour with other variants within the same sample. In fully penetrant genetic diseases where

the pattern of inheritance is recessive, if an individual without the disease phenotype contains a

VUS in trans, or on the opposite copy of the gene, with a variant of known pathogenicity within

the locus boundary of the same gene, then that observation indicates evidence that the VUS has

benign impact. An example is for BRCA2 (and more recently BRCA1), where individuals that

express Fanconi Anemia show co-occurrences of two pathogenic variants in both copies of the

gene. Fanconi Anemia is a rare disorder that’s marked by deficient homologous DNA repair

activity, early onset of cancer, bone marrow failure, and a life expectancy of approximately

40 years[8]. In this example, if an individual who is older than 40 does not show signs of

Fanconi Anemia and displays a VUS homozygous or heterozygous genotype in trans with a

pathogenic heterozygous genotype within the same BRCA2 or BRCA1 gene locus boundaries,
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then the VUS variant has strong evidence for benign classification. Figure 6.1 demonstrates

various configurations of genotypes that can indicate benign classification of VUS in a recessive

disorder.

(A) Heterozygous VUS

(B) Homozygous VUS

OR

OR OR

Figure 6.1: An overview of the logic applied to co-occurrence analysis when evaluating variant

pathogenicity. Grey boxes represent VUS variants. Red boxes represent pathogenic variants.

Blue boxes represent benign variants. White boxes represent gene locus boundaries. (A) Exam-

ple of heterozygous genotype configurations that contribute to evidence of benign classification

for a VUS. (B) Examples of homozygous genotype configurations that contribute to evidence

of benign classification for a VUS.

One issue with this analysis is that, for heterozygous genotypes, it is dependent on

knowing the phase of the genotypes in order to determine cis or trans configurations of the

genotypes. In this case, genotypes can be phased a number of ways. The use of long read

technology can capture the orientation of neighboring alleles which can determine which copy
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of the gene a particular allele in a genotype resides. One can also use statistical methods that

use genetic linkage to probabilistically determine the likely phase of two neighboring alleles.

Finally, if family or offspring information is available then Mendelian inheritance information

can be used to determine which parents a set of alleles likely came from which can inform

which copy of the gene a specific allele comes from.

Another problem of variant comparison comes from the issue of variant representa-

tion. There are instances where two haplotypes can be represented using two different sets of

genotypes as illustrated in Figure 6.2. Each pair of genotypes are valid representations, but

they are not directly comparable since they represent different positions and variant types in

the haplotypes. To overcome this we decomposed the set of variants into a general, haplotype-

independent notation and then expand that notation consistently back into an analyzable format.

The Human Genome Variation Society (HGVS) have laid out the framework for doing this by

using relative notation. We applied HGVS python software libraries to do this by projecting a

variant from genomic coordinate space to cDNA-relative coordinate space by choosing a tran-

script pertaining to the gene that that variant is found. Then we projected that variant back to

genomic coordinate space to get a standardized representation of that variant. Processing all

variants in this way gives us the ability to directly compare variants within and across datasets.
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1  2  3  4  5  6  7  8  

G  A  T  T  A  A  C  A

G  A  T  T  A  C  A  A

chr8 4 . TA T  . . . GT 1/1
chr8 7 . C  CA . . . GT 1/1

1  2  3  4  5  6  7  8  

chr8 6 . A C . . . GT 1/1
chr8 7 . C A . . . GT 1/1

G  A  T  T  A  C  A  A

G  A  T  T  A  C  A  A

1  2  3  4  5  6  7  8  

G  A  T  T  A  C  A  A

G  A  T  T  A  C  A  A

Position

Reference Haplotype

Alternative Haplotype

(A)

(B)

Figure 6.2: An example of a pair of haplotypes where the variant representation in VCF format

can be ambiguous. (A) A pair of INDEL genotypes produces two alternative haplotypes. (B) A

pair of SNP genotypes produces the same pair of alternative haplotypes.

We applied this method to the BioBank Japan cohort of 23,731 Japanese individuals

and found 19 BRCA variants that were previously unexamined by the BRCA ClinGene Vari-

ant Curation Expert Panel (VCEP) expert panel to have evidence of benign classification. Of

the 19 VUS variants, 5 variants had benign evidence supported by co-occourrence analysis.

Two variants were present in a homozygous genotype and had a single co-occurrence with a

pathogenic variant in control individuals. This evidence along with additional HGMD BS1 and

BP4 evidence based on allele frequency and BayesDel[31] prediction of benign impact, the

data strongly suggests a benign classification for these two variants. The other 3 variants each
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had a single heterozygous co-occourrence with a pathogenic variant and have BayesDel pre-

diction scores that indicate benign impact (BP4). However, these 3 variants are heterozygous

and the dataset is not phased, so there’s not enough evidence from the co-occurrence alone to

support benign classification, so further information from additional cohorts would be needed

to disambiguate the finding.

6.4 Code Availability

The workflows are available at Dockstore at https://dockstore.org/workflow

s/github.com/BRCAChallenge/federated-analysis/cooccurrence:master, and the

source code is available on GitHub at https://github.com/BRCAChallenge/federated-a

nalysis.
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We gratefully thank Gunnar Rätsch for instigating this project, and the members of

the BRCA Challenge Evidence Gathering Group for discussion on the analytical design.

125

https://dockstore.org/workflows/github.com/BRCAChallenge/federated-analysis/cooccurrence:master
https://dockstore.org/workflows/github.com/BRCAChallenge/federated-analysis/cooccurrence:master
https://github.com/BRCAChallenge/federated-analysis
https://github.com/BRCAChallenge/federated-analysis


Part V

Discussion

126



Chapter 7

Discussion

For the past 10 years, the field of genomics has been focused in enhancing the ability

to detect rare and more complex alleles that have not been sufficiently captured with the more

traditional methods of linear-based approaches. Pangenomics offers many avenues towards

helping to reduce the reference-bias that has been present in linear-based sequence alignment

methods. With the development of pangenomes came the ability to tailor and curate references

that enhance the mappability of sequences with more specific origins. This, in-turn, has aided

the detection of variants that are unique at the individual level. The flexibility and interoper-

ability of pangenomes also enables the application of pedigree information which can be used

to generate parental graph references.

The work presented in this dissertation presents a number of key findings. In chap-

ter 3, I detailed the optimization and performance enhancement of pangenome references and

mappers and demonstrated how they have improved variant detection accuracy when compared

to standard linear-based approaches. In chapter 4, I presented methods that I developed which
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incorporate the tools developed in chapter 3 towards a unified pipeline that generates parental

graph references. In that chapter I also demonstrated the application of this workflow towards

the processing of real patient datasets and have shown that they recapitulate key variants that

were previously discovered in those samples. In chapter 5 and 6, I have described projects that

I have been involved with which further illustrate some use-cases for discovery of such variants

which can be applied towards clinically-actionable decisions in patients.

The work here can also be easily extended to use multiple pangenomes that each cen-

ter around a different landscape of variation. Structural variants are an important type of rare

variants that contributes to disease [119, 4]. In previous work, there have been efforts to tailor

pangenome graphs and variant caller algorithms to improve the accuracy of detecting structural

variants [102]. These efforts can easily be merged into the pipelines and methods employed in

this dissertation to more exhaustively cover a larger portion of the known pool of rare variation.

Multiple pangenomes can also be constructed that focus on either a set of variants in a specific

panel of genes [29]. This is a viable direction when abundant haploblock data is available only

within specific genes or regions of the genomes from a particular study or database. Differ-

ent sub-population datasets with allele frequency information that are derived from sufficiently

large and random samplesets can be used to generate different population pangenome references

that better match the likely allele content of an individual. A sample with an identified common

ancestry with a subpopulation can make use of the more specific subpopulation pangenome

in order to further avoid the possibility of spurious mapping [16]. Combining this with an

alignment-free method of examining read sequences could help determine which subpopula-

tion graph reference would make a more optimal starting reference for the initial alignments
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in VG-Pedigree. This method has the significant drawback of assuming perfect subpopulation

stratification of humans when the reality is that there are innumerable admixture events which

can change the allele frequency landscape overtime. The method also assumes that the subpop-

ulations as defined by population databases like the 1000 Genomes Project accurately define

the diversity of human populations. It is for those reasons that a unified pangenome reference

would give the most agnostic approach to tackling the reference-bias issue.

A number of things could be done to further improve the variant calling technologies

used in this dissertation. One is an extension of Google’s DeepVariant variant caller whereby

the software could call variants directly from alignments made to the pangenome reference.

Currently DeepVariant can only call variants from alignment data that is represented in a lin-

ear format like the BAM files that are output from BWA-MEM. In order to adapt pangenome

alignments to be callable by DeepVariant, one would need to project the alignment data into

linear space. This is a lossy process where the specific information about which haplotype path

a particular read mapped to can be lost. Another improvement to DeepVariant would be the

implementation of a pedigree-aware variant caller. Currently DeepTrio implements a simpler

approach whereby a parent-parent-child trio set of alignments are stacked together and a set of

image files are generated. The variant caller does not currently take into account any proba-

bilistic models of de-novo variation and so any Mendelian error, where the genotypes of the trio

don’t match any expected inheritance models, will not be handeled by the variant caller. This

can be remedied by first detecting Mendelian errors and then use a bayesian model that’s param-

eterized by the alignment and basequality information of the trio to determine the most likely

set of genotypes that correct the error. The algorithm can then process each de-novo variant at
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random until the number of de-novo variants in the child have reached the expected number as

determined by the baseline or region-specific mutation rate.

Complementing the developments presented in this dissertation, the field of genomics

over the last 10 years has been adding a number of new tools and technologies. Long read se-

quencing is one technology which has matured to a point where the accuracy and length of

the sequenced reads can resolve variants that reside within the variable and repetitive sequence

regions of the genome. Circular consensus sequences (CCS), PacBio long-reads and Nanopore

sequencing have all helped in filling in the missing gaps of the genome that were present since

the initial draft of the human genome was completed in 2003[50, 52, 120]. These sequencing

technologies helped to expand the resolution of the centromeric and telomeric regions of the hu-

man genome reference. The Telomere-to-telomere project (T2T) has recently published work

on completing a human genome sequence which spans these regions[80]. In adapting the T2T

results to pangenomes, the Human Pangenome Reference Consortium (HPRC) was formed to

develop a pangenome reference using the latest methods and data. By characterizing regions of

the genome not well represented by existing variant datasets, the pangenome references devel-

oped by the HPRC that incorporate new T2T sequences should further improve the performance

and accuracy of the workflows presented in this dissertation.

The current trend in pangenomics development has primarily been focused on first

predicting possible use-cases and not on centering the development around the needs of real-

world case-studies. Moving forward, I believe some of the more impactful engineering efforts

will be done by first identifying specific genetic phenomenon and clinical cases and then to

rework the characteristics of pangenomes around accurately detecting those genetic features.
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Though there is room for improvement within pangenomics, I am hopeful that the technologies

developed here can serve as a solid foundation for future discoveries in genetics research and

medicine. I am confident that the expansion of pangenomic research will become more and

more relevant and useful to the field of clinical genetics.
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Appendix A

Appendix A: Supplementary Information for

the VG Giraffe paper

A.1 Preamble

This appendix covers supplementary figures and tables included in the preprint ”Geno-

typing common, large structural variations in 5,202 genomes using pangenomes, the Giraffe

mapper, and the vg toolkit” as described in chapter 3.
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A.2 Supplementary Figures
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Figure A.1: True positive and false positive genotypes made using the Dragen genotyper with

projected mappings from Giraffe and other mappers, using 250bp paired-end reads from the

HG002 GIAB sample and evaluated against the HG002 GIAB v4.2.1 truth variant call sets

in high confidence regions. The ROC curve discrimination threshold is based on variant call

quality.
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Figure A.2: True positive and false positive genotypes made using the Dragen genotyper with

projected mappings from Giraffe and other mappers, using 150bp paired-end reads from the

HG002 GIAB sample and evaluated against the HG002 GIAB v4.2.1 truth variant call sets in

high confidence regions only within 1000GP variant regions. The ROC curve discrimination

threshold is based on variant call quality.
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Figure A.3: True positive and false positive genotypes made using the Dragen genotyper with

projected mappings from Giraffe and other mappers, using 150bp paired-end reads from the

HG002 GIAB sample and evaluated against the HG002 GIAB v4.2.1 truth variant call sets in

high confidence regions with 1000GP variant regions excluded. The ROC curve discrimination

threshold is based on variant call quality.
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A.3 Supplementary Tables

Pipeline TP FP FN Precision Sensitivity F-measure
BWA-MEM 3,869,299 16,380 21,134 0.9958 0.9946 0.9952
DRAGEN 3,870,566 12,863 19,864 0.9967 0.9949 0.9958
VG-MAP 3,871,583 14,332 18,859 0.9963 0.9952 0.9957
Giraffe primary 3,873,118 13,640 17,331 0.9965 0.9955 0.9960
Giraffe 3,874,597 13,359 15,840 0.9966 0.9959 0.9962
fast Giraffe 3,874,104 13,695 16,334 0.9965 0.9958 0.9961

Table A.1: VCFeval performance of linear and graph-based pipelines against grch38-based

references using 250bp paired reads with respect to HG002 GIAB v4.2.1 truth variant call sets

in high confidence regions. Best values in each column are highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM
INDELS 522,705 2,764 2,214 0.994740 0.995955 0.995347

SNPS 3,346,810 18,317 14,146 0.994557 0.995792 0.995174

DRAGEN
INDELS 522,672 2,797 2,043 0.994677 0.996265 0.995471

SNPS 3,348,116 17,011 10,799 0.994945 0.996786 0.995865

VG-MAP
INDELS 522,905 2,564 2,260 0.995121 0.995873 0.995497

SNPS 3,348,892 16,235 12,052 0.995176 0.996415 0.995795

Giraffe primary
INDELS 522,834 2,635 2,316 0.994985 0.995771 0.995378

SNPS 3,350,496 14,631 11,308 0.995652 0.996637 0.996144

Giraffe
INDELS 523,148 2,321 2,177 0.995583 0.996026 0.995804

SNPS 3,351,672 13,455 11,167 0.996002 0.996680 0.996341

fast Giraffe
INDELS 523,119 2,350 2,178 0.995528 0.996024 0.995776

SNPS 3,351,207 13,920 11,503 0.995863 0.996580 0.996222

Table A.2: Hap.py performance of linear and graph-based pipelines against grch38-based ref-

erences using 250bp paired reads with respect to HG002 GIAB v4.2.1 truth variant call sets in

high confidence regions. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F-measure
BWA-MEM 3,370,702 1,678 4,248 0.9995 0.9987 0.9991
DRAGEN 3,371,710 1,462 3,296 0.9996 0.9990 0.9993
VG-MAP 3,372,845 3,121 2,141 0.9991 0.9994 0.9992
Giraffe primary 3,371,806 1,501 3,143 0.9996 0.9991 0.9993
Giraffe 3,373,044 1,543 1,934 0.9995 0.9994 0.9995
fast Giraffe 3,372,947 1,684 2,028 0.9995 0.9994 0.9994

Table A.3: VCFeval performance of linear and graph-based pipelines against grch38-based

references using 150bp paired-end reads with respect to HG002 GIAB v4.2.1 truth variant call

sets in high confidence regions only found in the 1000GP variant set used in constructing the

graph references used by VG-MAP and Giraffe. Best values in each column are highlighted in

bold text.
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Pipeline TP FP FN Precision Sensitivity F-measure
BWA-MEM 331,019 20,738 19,972 0.9410 0.9429 0.9420
DRAGEN 331,381 15,819 19,643 0.9544 0.9438 0.9491
VG-MAP 331,322 17,144 19,694 0.9508 0.9437 0.9472
Giraffe primary 333,362 16,714 17,638 0.9523 0.9496 0.9509
Giraffe 334,122 16,144 16,901 0.9539 0.9517 0.9528
fast Giraffe 333,452 17,182 17,569 0.9510 0.9498 0.9504

Table A.4: VCFeval performance of linear and graph-based pipelines against grch38-based

references using 150bp paired-end reads with respect to HG002 GIAB v4.2.1 truth variant call

sets in high confidence regions excluding the 1000GP variant set used in constructing the graph

references used by VG-MAP and Giraffe. Best values in each column are highlighted in bold

text.
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Mapper Reads Graph vg version Docker xg gcsa lcp gbwt min gg dist
VG-MAP 150 bp 1000GP v1.31.0 Quay � � �
VG-MAP 250 bp 1000GP v1.31.0 Quay � � �

Giraffe 150 bp Primary v1.31.0 Quay � � � � �
Giraffe 250 bp Primary v1.31.0 Quay � � � � �
Giraffe 150 bp 1000GP v1.31.0 Quay � � � � �
Giraffe 250 bp 1000GP v1.31.0 Quay � � � � �

Fast Giraffe 150 bp 1000GP v1.31.0 Quay � � � � �
Fast Giraffe 250 bp 1000GP v1.31.0 Quay � � � � �

Table A.5: Table of parameters for GRCh38-based genotyping experiment vg runs
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Appendix B

Appendix B: Supplementary Information for

the VG-Pedigree paper

B.1 Preamble

This appendix covers supplementary figures and tables included in the preprint ”A

Complete Pedigree-Based Graph Workflow for Rare Candidate Variant Analysis” as described

in chapter 4.
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B.2 Supplementary Figures
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Figure B.1: Low Complexity Region mapeval HG002 Mapping performance of 10 million

read pairs simulated from HG002 high confident datasets. Four different alignments are com-

pared across two different regions and ROC curves are plotted with a log-scaled false positive

rate on the x-axis and a linear-scaled true positive rate on the y-axis with mapping quality as

the discriminating factor. Green curves represent graph alignments against the parental graph

reference constructed from HG003 and HG004 illumina read graph alignments. Red curves

represent alignments against the snp1kg graph reference. Purple curves represent alignments

to the primary GRCh38 linear graph reference. Blue curves represent linear alignments against

the hs38d1 reference using BWA-MEM-hs38d1. (A) Alignments in GIAB v4.2.1 confident re-

gions. (B) Alignments in non-1000GP confident regions.
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Figure B.2: Low Mappability Region mapeval HG002 Mapping performance of 100 million

read pairs simulated from HG002 high confident datasets. Four different alignments are com-

pared across two different regions and ROC curves are plotted with a log-scaled false positive

rate on the x-axis and a linear-scaled true positive rate on the y-axis with mapping quality as

the discriminating factor. Green curves represent graph alignments against the parental graph

reference constructed from HG003 and HG004 illumina read graph alignments. Red curves

represent alignments against the snp1kg graph reference. Purple curves represent alignments

to the primary GRCh38 linear graph reference. Blue curves represent linear alignments against

the hs38d1 reference using BWA-MEM-hs38d1. (A) Alignments in GIAB v4.2.1 confident re-

gions. (B) Alignments in non-1000GP confident regions.
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Figure B.3: MHC Region mapeval HG002 Mapping performance of 100 million read pairs

simulated from HG002 high confident datasets. Four different alignments are compared across

two different regions and ROC curves are plotted with a log-scaled false positive rate on the

x-axis and a linear-scaled true positive rate on the y-axis with mapping quality as the discrimi-

nating factor. Green curves represent graph alignments against the parental graph reference con-

structed from HG003 and HG004 illumina read graph alignments. Red curves represent align-

ments against the snp1kg graph reference. Purple curves represent alignments to the primary

GRCh38 linear graph reference. Blue curves represent linear alignments against the hs38d1

reference using BWA-MEM-hs38d1. (A) Alignments in GIAB v4.2.1 confident regions. (B)

Alignments in non-1000GP confident regions.
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Figure B.4: CMRG Region mapeval HG002Mapping performance of 100 million read pairs

simulated from HG002 high confident datasets. Four different alignments are compared across

two different regions and ROC curves are plotted with a log-scaled false positive rate on the

x-axis and a linear-scaled true positive rate on the y-axis with mapping quality as the discrimi-

nating factor. Green curves represent graph alignments against the parental graph reference con-

structed from HG003 and HG004 illumina read graph alignments. Red curves represent align-

ments against the snp1kg graph reference. Purple curves represent alignments to the primary

GRCh38 linear graph reference. Blue curves represent linear alignments against the hs38d1

reference using BWA-MEM-hs38d1. (A) Alignments in GIAB v4.2.1 confident regions. (B)

Alignments in non-1000GP confident regions.
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Single-sample Mapping and Variant Calling

Figure B.5: Single Sample Mapping and Variant Calling Workflow
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Parental Phasing Work�ow

Figure B.6: Parental Phasing Workflow
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Graph Construction Work�ow

Figure B.7: Graph Construction Workflow
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Figure B.8: Pedigree Analysis Workflow
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Variant Annotation Work�ow

Figure B.9: Variant Annotation Workflow
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Figure B.10: ROC curves of DeepTrio variant calling performance of the graph-based and

linear-based pipelines with respect to HG002 GIAB v4.2.1 truth variant call sets stratified by

(A) HG002 high confident whole genome regions using default deeptrio models, (B) HG002

high confident whole genome regions excluding 1000GP variants using default deeptrio models,

(C) HG002 high confident chr20 regions on default and trained deeptrio models, (D) HG002

high confident chr20 regions excluding 1000GP on default and trained deeptrio models.
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Figure B.11: ROC curves of DeepTrio variant calling performance of the graph-based and

linear-based pipelines with respect to HG005 GIAB v4.2 truth variant call sets stratified by

(A) high confident HG005 regions using default deeptrio models, (B) HG005 regions excluding

1000GP variants using default deeptrio models, (C) HG005 chr20 regions on default and trained

deeptrio models, and (D) HG005 chr20 regions exclusing 1000GP on default and trained deep-

trio models.
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B.3 Supplementary Tables

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 18,114,687 17,733,384 97.89506 NA
Giraffe-Primary 18,109,463 17,808,858 98.34006 99.5028
Giraffe-1000GP 18,111,426 17,813,218 98.35348 99.5997
Giraffe-Parent 18,118,011 17,811,602 98.30881 99.6076

(a) High Confidence Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 9,988,015 9,612,067 96.23601 NA
Giraffe-Primary 9,985,663 9,700,694 97.14622 99.5002
Giraffe-1000GP 9,987,485 9,704,710 97.16871 99.6002
Giraffe-Parent 9,994,079 9,706,146 97.11896 99.6173

(b) All Difficult Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 19,358,236 15,621,865 99.98379 NA
Giraffe-Primary 19,341,252 16,559,558 99.98702 99.3660
Giraffe-1000GP 19,357,906 16,628,206 99.98794 99.4458
Giraffe-Parent 19,419,540 16,702,174 99.99207 99.4830

(c) Low Mappability Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 318,157 310,796 99.93822 NA
Giraffe-Primary 317,762 309,288 99.91755 99.0593
Giraffe-1000GP 318,232 313,465 99.91769 99.4125
Giraffe-Parent 318,583 314,020 99.92230 99.4847

(d) MHC Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 831,328 781,909 99.87850 NA
Giraffe-Primary 826,982 781,539 99.84095 99.3621
Giraffe-1000GP 827,118 781,745 99.84675 99.4776
Giraffe-Parent 828,373 782,353 99.85007 99.5284

(e) CMRG Regions

Table B.1: Mapping statistics on HG002 simulated read alignments against various GRCh38-based graph references and BWA-

MEM-hs38d1 alignments against the linear GRCh38 reference.
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Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 2,030,502 1,061,413 99.95949 NA
Giraffe-Primary 2,033,842 1,095,548 99.97116 98.8193
Giraffe-1000GP 2,032,683 1,094,500 99.96958 98.8106
Giraffe-Parent 2,060,518 1,104,532 99.96813 98.8738

(a) High Confidence Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 1,515,808 546,811 99.92319 NA
Giraffe-Primary 1,518,070 580,904 99.94750 98.6305
Giraffe-1000GP 1,516,914 579,978 99.94431 98.6120
Giraffe-Parent 1,544,713 590,796 99.94211 98.6816

(b) All Difficult Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 1,249,470 282,325 99.85265 NA
Giraffe-Primary 1,253,071 316,560 99.90649 98.4929
Giraffe-1000GP 1,251,903 315,668 99.90085 98.4690
Giraffe-Parent 1,279,696 326,888 99.89782 98.5353

(c) Low Mappability Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 3,168 1,440 100.00000 NA
Giraffe-Primary 3,213 1,434 99.51185 99.3212
Giraffe-1000GP 3,219 1,436 99.51253 99.3531
Giraffe-Parent 3,250 1,462 99.24761 99.3903

(d) MHC Regions

Pipeline Total Correct Total at MAPQ 60 % Correct at MAPQ 60 % Identity
BWA-MEM-hs38d1 23,831 14,387 99.43699 NA
Giraffe-Primary 24,229 14,400 99.43750 99.1547
Giraffe-1000GP 24,231 14,390 99.43711 99.1596
Giraffe-Parent 24,905 14,540 99.36726 99.2803

(e) CMRG Regions

Table B.2: Mapping statistics on HG002 simulated read alignments against various GRCh38-based graph references and BWA-

MEM-hs38d1 alignments against the linear GRCh38 reference within non-1000GP variant dataset regions.
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Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.9487 59.9905 95.6780 91185 bp in 5180 read events
Giraffe-1000GP 99.9484 59.5811 95.4316 132915 bp in 8348 read events
Giraffe-Primary 99.9484 52.4840 94.1270 229332 bp in 16041 read events

(a) High Confidence Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.9582 59.9252 95.7237 53191 bp in 2769 read events
Giraffe-1000GP 99.9577 59.0901 95.1374 97954 bp in 5946 read events
Giraffe-Primary 99.9588 51.8425 93.3032 163696 bp in 11340 read events

(b) All Difficult Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.8358 59.3039 95.4556 219196 bp in 8690 read events
Giraffe-1000GP 99.8339 57.0887 95.1969 291307 bp in 13304 read events
Giraffe-Primary 99.8394 51.2567 94.2947 402816 bp in 20980 read events

(c) Low Mappability Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.9651 58.9368 95.5042 58373 bp in 1170 read events
Giraffe-1000GP 99.9639 57.1014 93.9220 69204 bp in 1650 read events
Giraffe-Primary 99.9402 45.3226 91.3136 100793 bp in 2951 read events

(d) MHC Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.9487 59.9619 95.5591 94701 bp in 2144 read events
Giraffe-1000GP 99.9485 58.0663 94.1551 117680 bp in 3253 read events
Giraffe-Primary 99.9482 51.0891 92.6229 133603 bp in 4128 read events

(e) CMRG Regions

Table B.3: GAM statistics on HG002 simulated read alignments against various GRCh38-based

graph references.
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Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.2513 57.9923 94.7110 58129 bp in 2075 read events
Giraffe-1000GP 99.2456 54.3073 94.4219 69967 bp in 2810 read events
Giraffe-Primary 99.2685 53.4428 94.2612 75430 bp in 3136 read events

(a) High Confidence Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.0653 57.6372 94.6650 51799 bp in 1710 read events
Giraffe-1000GP 99.0583 53.5654 94.2688 61319 bp in 2324 read events
Giraffe-Primary 99.0870 53.0669 94.2073 65488 bp in 2537 read events

(b) All Difficult Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 98.9241 57.3295 94.5397 49098 bp in 1547 read events
Giraffe-1000GP 98.9160 53.5318 94.3970 54949 bp in 1919 read events
Giraffe-Primary 98.9492 53.1273 94.3692 58048 bp in 2094 read events

(c) Low Mappability Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.7268 60.7608 95.4813 3 bp in 1 read events
Giraffe-1000GP 99.7268 57.7764 94.5776 0 bp in 0 read events
Giraffe-Primary 99.7268 55.9899 94.3464 53 bp in 5 read events

(d) MHC Regions

Pipeline % Total Aligned % Total Perfect % Total Gapless Total Softclips
Giraffe-Parent 99.6867 59.2507 94.7993 2187 bp in 65 read events
Giraffe-1000GP 99.6803 53.0399 92.5010 3090 bp in 139 read events
Giraffe-Primary 99.6867 52.5860 92.2932 3255 bp in 143 read events

(e) CMRG Regions

Table B.4: GAM statistics on HG002 simulated read alignments against various GRCh38-based

graph references in regions that don’t overlap the 1000GP variant set.

156



Pipeline Var Type TP FN FP Recall Precision F1

HG002
INDELS 11,208 48 18 0.995736 0.998456 0.997094

SNPS 71,064 269 28 0.996229 0.999606 0.997915

HG003
INDELS 10,582 46 19 0.995672 0.998282 0.996975

SNPS 69,928 238 49 0.996608 0.999300 0.997952

HG004
INDELS 10,950 50 25 0.995455 0.997819 0.996635

SNPS 71,426 233 47 0.996748 0.999343 0.998044

(a) Default

Pipeline Var Type TP FN FP Recall Precision F1

HG002
INDELS 11,210 46 25 0.995913 0.997857 0.996884

SNPS 71,099 234 28 0.996720 0.999607 0.998161

HG003
INDELS 10,585 43 37 0.995954 0.996662 0.996308

SNPS 69,958 208 48 0.997036 0.999315 0.998174

HG004
INDELS 10,948 51 34 0.995273 0.997036 0.996154

SNPS 71,405 254 42 0.996455 0.999413 0.997932

(b) Trained

Table B.5: DeepTrio Trained High Confident Regions Chromosome 20 HG002 Trio Hap.py

performance of DeepTrio using the (A) default DeepTrio model and (B) trained DeepTrio model

against the 1000 Genomes Project grch38-based graph reference using 150bp paired-end reads

with respect to HG002 GIAB v4.2.1 truth variant call sets in high confidence regions on chro-

mosome 20. Best values for each sample are highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

HG005
INDELS 8,430 25 9 0.997043 0.998967 0.998004

SNPS 68,392 205 49 0.997012 0.999284 0.998147

HG006
INDELS 8,999 108 77 0.988141 0.991736 0.989935

SNPS 66,086 118 175 0.998218 0.997361 0.997789

HG007
INDELS 9,162 94 71 0.989844 0.992528 0.991184

SNPS 67,267 88 111 0.998693 0.998353 0.998523

(a) Default

Pipeline Var Type TP FN FP Recall Precision F1

HG005
INDELS 8,429 26 21 0.996925 0.997592 0.997258

SNPS 68,422 175 58 0.997449 0.999153 0.998300

HG006
INDELS 9,010 97 86 0.989349 0.990801 0.990074

SNPS 66,097 107 62 0.998384 0.999064 0.998724

HG007
INDELS 9,183 73 66 0.992113 0.993072 0.992593

SNPS 67,285 70 68 0.998961 0.998991 0.998976

(b) Trained

Table B.6: DeepTrio Trained High Confident Regions Chromosome 20 HG005 Trio Hap.py

performance of DeepTrio using the (A) default DeepTrio model and (B) trained DeepTrio model

against the 1000 Genomes Project grch38-based graph reference using 150bp paired-end reads

with respect to HG005 GIAB v4.2.1 truth variant call sets in high confidence regions on chro-

mosome 20. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,874,697 4,930 16,260 0.9987 0.9958 0.9973
Giraffe-1000GP 3,871,969 3,934 19,021 0.9990 0.9951 0.9970
BWA-MEM-hs38d1 3,871,240 3,790 19,728 0.9990 0.9949 0.9970
Dragen-hs38d1 3,869,647 3,028 21,325 0.9992 0.9945 0.9969

(a) DeepTrio HG002 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 337,167 4,096 14,691 0.9880 0.9580 0.9728
Giraffe-1000GP 334,524 3,036 17,362 0.9910 0.9504 0.9703
BWA-MEM-hs38d1 334,456 3,239 17,241 0.9904 0.9507 0.9701
Dragen-hs38d1 332,840 2,496 18,862 0.9926 0.9461 0.9688

(b) DeepTrio HG002 All High Confident Regions, 1000GP excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,873,547 5,993 17,426 0.9985 0.9955 0.9970
Giraffe-1000GP 3,868,404 5,514 22,623 0.9986 0.9942 0.9964
BWA-MEM-hs38d1 3,867,786 5,099 23,169 0.9987 0.9940 0.9964
Dragen-hs38d1 3,865,635 4,227 25,328 0.9989 0.9935 0.9962

(c) DeepVariant HG002 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,675,759 5,538 16,931 0.9985 0.9954 0.9970
Giraffe-1000GP 3,672,686 4,614 20,010 0.9987 0.9946 0.9967
BWA-MEM-hs38d1 3,671,038 5,100 21,631 0.9986 0.9941 0.9964
Dragen-hs38d1 3,669,697 3,933 22,978 0.9989 0.9938 0.9963

(d) HG005 All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 293,972 4,673 15,392 0.9844 0.9500 0.9669
Giraffe-1000GP 290,980 3,616 18,390 0.9877 0.9402 0.9634
BWA-MEM-hs38d1 290,333 4,451 18,816 0.9849 0.9389 0.9613
Dragen-hs38d1 288,921 3,291 20,242 0.9887 0.9342 0.9607

(e) HG005 All High Confident Regions, 1000GP excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,674,849 7,372 17,866 0.9980 0.9952 0.9966
Giraffe-1000GP 3,669,103 7,534 23,650 0.9980 0.9936 0.9958
BWA-MEM-hs38d1 3,667,163 7,728 25,519 0.9979 0.9931 0.9955
Dragen-hs38d1 3,665,339 6,266 27,352 0.9983 0.9926 0.9954

(f) DeepVariant HG005 All High Confident Regions

Table B.7: VCFeval HG002 and HG005 DeepTrio and DeepVariant Performance VCFeval performance of the graph-based

and linear-based pipelines with respect to HG002 and HG005 GIAB v4.2.1 truth variant call sets stratified by (A) DeepTrio on all

HG002 regions, (B) DeepTrio on HG002 regions excluding 1000GP variants, (C) DeepVariant on all HG002 regions (D) DeepTrio

on all HG005 regions, (E) DeepTrio on HG005 regions excluding 1000GP variants, and (F) DeepVariant on all HG005 regions.

All mapped reads were called using DeepTrio and DeepVariant v1.1.0 genotyper using default models. Best values in each column

are highlighted in bold text.

159



Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 981,231 4,798 15,946 0.9951 0.9840 0.9895
Giraffe-1000GP 978,541 3,795 18,672 0.9961 0.9813 0.9886
BWA-MEM-hs38d1 977,936 3,641 19,243 0.9963 0.9807 0.9884
Dragen-hs38d1 976,334 2,877 20,850 0.9971 0.9791 0.9880

(a) Low Complexity Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 262,599 3,550 14,203 0.9867 0.9487 0.9673
Giraffe-1000GP 259,901 2,596 16,907 0.9901 0.9389 0.9638
BWA-MEM-hs38d1 259,050 2,774 17,749 0.9894 0.9359 0.9619
Dragen-hs38d1 257,425 2,025 19,379 0.9922 0.9300 0.9601

(b) Low Mappability Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 21,521 106 318 0.9951 0.9854 0.9902
Giraffe-1000GP 21,489 136 350 0.9937 0.9840 0.9888
BWA-MEM-hs38d1 21,478 107 356 0.9950 0.9837 0.9893
Dragen-hs38d1 21,500 100 334 0.9954 0.9847 0.9900

(c) MHC Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 20,400 246 832 0.9881 0.9608 0.9743
Giraffe-1000GP 20,375 237 862 0.9885 0.9594 0.9737
BWA-MEM-hs38d1 20,361 243 877 0.9882 0.9587 0.9732
Dragen-hs38d1 20,362 224 874 0.9891 0.9588 0.9737

(d) Hard-to-sequence Medically Relevant Genes

Table B.8: VCFeval HG002 DeepTrio Performance Difficult VCFeval performance of the

graph-based and linear-based pipelines with respect to HG002 GIAB v4.2.1 truth variant call

sets stratified by (A) low complexity and highly repetative regions, (B) low mappability regions,

(C) MHC regions, and (D) Difficult Medically Relevant Genes. All mapped reads were called

using DeepTrio v1.1.0 genotyper. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 836,745 5,227 16,495 0.9938 0.9807 0.9872
Giraffe-1000GP 833,695 4,320 19,552 0.9948 0.9771 0.9859
BWA-MEM-hs38d1 832,268 4,795 20,935 0.9943 0.9755 0.9848
Dragen-hs38d1 830,857 3,644 22,352 0.9956 0.9738 0.9846

(a) Low Complexity Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 260,810 4,321 15,212 0.9837 0.9449 0.9639
Giraffe-1000GP 257,763 3,414 18,259 0.9869 0.9338 0.9596
BWA-MEM-hs38d1 256,456 4,101 19,558 0.9843 0.9291 0.9559
Dragen-hs38d1 254,978 2,967 21,040 0.9885 0.9237 0.9550

(b) Low Mappability Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 19,671 191 898 0.9904 0.9564 0.9731
Giraffe-1000GP 19,653 237 910 0.9881 0.9558 0.9717
BWA-MEM-hs38d1 19,407 178 1,159 0.9909 0.9437 0.9667
Dragen-hs38d1 19,461 166 1,101 0.9915 0.9465 0.9685

(c) MHC Regions

Table B.9: VCFeval HG005 DeepTrio Performance Difficult Regions VCFeval performance

of the graph-based and linear-based pipelines with respect to HG005 GIAB v4.2.1 truth variant

call sets stratified by (A) low complexity and highly repetative regions, (B) low mappability

regions, and (C) MHC regions. All mapped reads were called using DeepTrio v1.1.0 genotyper.

Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,876,233 13,399 14,197 0.9966 0.9964 0.9965
Giraffe-1000GP 3,871,253 17,172 19,183 0.9956 0.9951 0.9953
BWA-MEM-hs38d1 3,866,486 22,395 23,955 0.9942 0.9938 0.9940
Dragen-hs38d1 3,867,357 17,366 23,081 0.9955 0.9941 0.9948

(a) All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 338,774 12,182 12,244 0.9653 0.9650 0.9651
Giraffe-1000GP 334,036 15,583 16,986 0.9554 0.9514 0.9534
BWA-MEM-hs38d1 331,192 20,657 19,836 0.9413 0.9433 0.9423
Dragen-hs38d1 331,387 15,817 19,647 0.9544 0.9438 0.9491

(b) All High Confident Regions, 1000GP excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 983,197 12,086 13,498 0.9879 0.9865 0.9872
Giraffe-1000GP 978,268 15,735 18,428 0.9842 0.9815 0.9828
BWA-MEM-hs38d1 973,691 20,820 23,006 0.9791 0.9769 0.9780
Dragen-hs38d1 974,330 15,753 22,364 0.9841 0.9776 0.9808

(c) Low Complexity Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 265,206 10,528 11,575 0.9618 0.9582 0.9600
Giraffe-1000GP 260,558 13,973 16,223 0.9491 0.9414 0.9452
BWA-MEM-hs38d1 255,796 19,064 20,984 0.9306 0.9242 0.9274
Dragen-hs38d1 256,373 13,970 20,407 0.9483 0.9263 0.9372

(d) Low Mappability Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 21431 113 380 0.9948 0.9826 0.9886
Giraffe-1000GP 21394 235 416 0.9891 0.9810 0.9850
BWA-MEM-hs38d1 21309 312 505 0.9856 0.9769 0.9812
Dragen-hs38d1 21361 316 450 0.9854 0.9794 0.9824

(e) MHC Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 20406 556 817 0.9735 0.9615 0.9675
Giraffe-1000GP 20319 758 914 0.9640 0.9569 0.9605
BWA-MEM-hs38d1 20278 732 948 0.9652 0.9553 0.9602
Dragen-hs38d1 20310 636 921 0.9696 0.9566 0.9631

(f) Hard-to-sequence Medically Relevant Genes

Table B.10: VCFeval performance of the graph-based and linear-based pipelines with respect to HG002 GIAB v4.2.1 truth variant

call sets stratified by (A) all regions, (B) regions excluding 1000GP variants, (C) low complexity and highly repetative regions,

(D) low mappability regions, (E) MHC regions, and (F) Difficult Medically Relevant Genes. All mapped reads were called using

Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 369,556 1,280 4,563 0.9965 0.9878 0.9922
Giraffe-1000GP 368,523 1,295 5,619 0.9965 0.9850 0.9907
BWA-MEM-hs38d1 366,035 1,047 8,044 0.9971 0.9785 0.9877
Dragen-hs38d1 366,121 972 7,949 0.9974 0.9787 0.9880

(a) complex and SVs

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 207,109 313 2,964 0.9985 0.9859 0.9922
Giraffe-1000GP 206,287 275 3,790 0.9987 0.9820 0.9902
BWA-MEM-hs38d1 204,137 295 5,915 0.9986 0.9718 0.9850
Dragen-hs38d1 204,230 223 5,818 0.9989 0.9723 0.9854

(b) snps within 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 38,740 141 761 0.9964 0.9807 0.9885
Giraffe-1000GP 38,578 148 924 0.9962 0.9766 0.9863
BWA-MEM-hs38d1 38,105 79 1,378 0.9979 0.9650 0.9812
Dragen-hs38d1 38,153 77 1,327 0.9980 0.9663 0.9819

(c) complex indel 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 57,488 143 392 0.9975 0.9932 0.9954
Giraffe-1000GP 57,362 163 517 0.9972 0.9911 0.9941
BWA-MEM-hs38d1 57,026 163 847 0.9971 0.9854 0.9912
Dragen-hs38d1 57,077 157 795 0.9973 0.9863 0.9917

(d) comphet snp 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 47,048 695 781 0.9854 0.9836 0.9845
Giraffe-1000GP 47,075 706 769 0.9852 0.9839 0.9846
BWA-MEM-hs38d1 46,980 604 829 0.9873 0.9826 0.9850
Dragen-hs38d1 46,983 596 825 0.9875 0.9827 0.9851

(e) comphet indel 10bp slop50

Table B.11: VCFeval performance of the graph-based and linear-based pipelines with respect to HG001 GIAB v4.2.1 truth variant

call sets stratified by (A) union of all SV, CNV, complex and compound heterozygous variant bed files used for v4.2.1 of the GIAB

benchmark for each sample, (B) regions containing at least two variants on one haplotype within 10bp of each other, and all variants

are snps, with 50bp slop added on each side, (C) regions containing at least two variants on one haplotype within 10bp of each

other, and at least one of the variants is an indel, with 50bp slop added on each side, (D) regions containing at least one variant on

each haplotype within 10bp of each other, and all variants are snps, with 50bp slop added on each side and (E) regions containing

at least one variant on each haplotype within 10bp of each other, and at least one of the variants is an indel, with 50bp slop added

on each side. All mapped reads were called using DeepTrio v1.1.0 genotyper where Giraffe-Parent and Giraffe-1000GP used

the trained model while BWA-MEM-hs38d1 and Dragen-hs38d1 used the default model that was tuned to BWA-MEM alignments.

Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 398,897 1,254 5,131 0.9969 0.9873 0.9921
Giraffe-1000GP 397,899 1,145 6,139 0.9971 0.9848 0.9909
BWA-MEM-hs38d1 396,630 846 7,419 0.9979 0.9816 0.9897
Dragen-hs38d1 396,600 809 7,449 0.9980 0.9815 0.9897

(a) complex and SVs

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 215,240 330 3,208 0.9985 0.9853 0.9918
Giraffe-1000GP 214,441 277 4,014 0.9987 0.9816 0.9901
BWA-MEM-hs38d1 213,187 213 5,260 0.9990 0.9759 0.9873
Dragen-hs38d1 213,193 167 5,251 0.9992 0.9760 0.9875

(b) snps within 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 44,265 150 606 0.9966 0.9865 0.9915
Giraffe-1000GP 44,134 160 737 0.9964 0.9835 0.9899
BWA-MEM-hs38d1 43,871 112 1006 0.9975 0.9775 0.9874
Dragen-hs38d1 43,903 110 969 0.9975 0.9784 0.9878

(c) complex indel 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 63,416 120 410 0.9981 0.9936 0.9958
Giraffe-1000GP 63,294 133 538 0.9979 0.9916 0.9947
BWA-MEM-hs38d1 63,080 147 745 0.9977 0.9883 0.9930
Dragen-hs38d1 63,111 143 717 0.9977 0.9888 0.9932

(d) comphet snp 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 56,912 566 598 0.9902 0.9896 0.9899
Giraffe-1000GP 56,907 541 608 0.9906 0.9894 0.9900
BWA-MEM-hs38d1 56,994 426 537 0.9926 0.9906 0.9916
Dragen-hs38d1 56,992 432 540 0.9925 0.9906 0.9915

(e) comphet indel 10bp slop50

Table B.12: VCFeval performance of the graph-based and linear-based pipelines with respect to HG002 GIAB v4.2.1 truth variant

call sets stratified by (A) union of all SV, CNV, complex and compound heterozygous variant bed files used for v4.2.1 of the

GIAB benchmark for each sample, (B) regions containing at least two variants on one haplotype within 10bp of each other, and

all variants are snps, with 50bp slop added on each side, (C) regions containing at least two variants on one haplotype within 10bp

of each other, and at least one of the variants is an indel, with 50bp slop added on each side, (D) regions containing at least one

variant on each haplotype within 10bp of each other, and all variants are snps, with 50bp slop added on each side and (E) regions

containing at least one variant on each haplotype within 10bp of each other, and at least one of the variants is an indel, with 50bp

slop added on each side. All mapped reads were called using the DeepTrio v1.1.0 genotyper default model that was tuned to

BWA-MEM alignments. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 357,867 998 5,357 0.9972 0.9852 0.9912
Giraffe-1000GP 356,744 981 6,466 0.9973 0.9822 0.9897
BWA-MEM-hs38d1 354,731 865 8,488 0.9976 0.9766 0.9870
Dragen-hs38d1 354,796 800 8,435 0.9978 0.9768 0.9871

(a) complex and SVs

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 208,724 389 3,739 0.9981 0.9824 0.9902
Giraffe-1000GP 207,858 369 4,609 0.9982 0.9783 0.9882
BWA-MEM-hs38d1 206,066 353 6,392 0.9983 0.9699 0.9839
Dragen-hs38d1 206,132 298 6,329 0.9986 0.9702 0.9842

(b) snps within 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 37,209 158 895 0.9958 0.9764 0.9860
Giraffe-1000GP 37,034 186 1,058 0.9950 0.9722 0.9834
BWA-MEM-hs38d1 36,637 133 1,470 0.9964 0.9613 0.9785
Dragen-hs38d1 36,736 119 1,378 0.9968 0.9637 0.9800

(c) complex indel 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 57,398 129 429 0.9978 0.9926 0.9952
Giraffe-1000GP 57,313 141 517 0.9975 0.9911 0.9943
BWA-MEM-hs38d1 57,102 142 727 0.9975 0.9874 0.9924
Dragen-hs38d1 57,130 142 700 0.9975 0.9879 0.9927

(d) comphet snp 10bp slop50

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 35,824 368 444 0.9898 0.9877 0.9888
Giraffe-1000GP 35,821 372 436 0.9897 0.9880 0.9888
BWA-MEM-hs38d1 35,798 344 460 0.9905 0.9873 0.9889
Dragen-hs38d1 35,829 329 436 0.9909 0.9880 0.9894

(e) comphet indel 10bp slop50

Table B.13: VCFeval performance of the graph-based and linear-based pipelines with respect to HG005 GIAB v4.2.1 truth variant

call sets stratified by (A) union of all SV, CNV, complex and compound heterozygous variant bed files used for v4.2.1 of the

GIAB benchmark for each sample, (B) regions containing at least two variants on one haplotype within 10bp of each other, and

all variants are snps, with 50bp slop added on each side, (C) regions containing at least two variants on one haplotype within 10bp

of each other, and at least one of the variants is an indel, with 50bp slop added on each side, (D) regions containing at least one

variant on each haplotype within 10bp of each other, and all variants are snps, with 50bp slop added on each side and (E) regions

containing at least one variant on each haplotype within 10bp of each other, and at least one of the variants is an indel, with 50bp

slop added on each side. All mapped reads were called using DeepTrio v1.1.0 genotyper default model that was tuned to BWA-MEM

alignments. Best values in each column are highlighted in bold text.
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Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 3,676,960 15,137 15,271 0.9959 0.9959 0.9959
Giraffe-1000GP 3,671,554 19,961 20,682 0.9946 0.9944 0.9945
BWA-MEM-hs38d1 3,666,629 25,529 25,603 0.9931 0.9931 0.9931
Dragen-hs38d1 3,667,062 20,746 25,172 0.9944 0.9932 0.9938

(a) All High Confident Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 295,692 13,440 12,950 0.9565 0.9579 0.9572
Giraffe-1000GP 290,604 17,730 18,041 0.9425 0.9414 0.9419
BWA-MEM-hs38d1 287,788 23,311 20,835 0.9251 0.9323 0.9287
Dragen-hs38d1 287,890 18,300 20,739 0.9402 0.9326 0.9364

(b) All High Confident Regions, 1000GP excluded

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 838,794 12,502 14,055 0.9853 0.9835 0.9844
Giraffe-1000GP 833,427 17,042 19,426 0.9800 0.9772 0.9786
BWA-MEM-hs38d1 828,706 22,846 24,137 0.9732 0.9717 0.9724
Dragen-hs38d1 829,353 17,211 23,493 0.9797 0.9725 0.9760

(c) Low Complexity Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 263,249 11,319 12,734 0.9588 0.9538 0.9563
Giraffe-1000GP 258,032 15,679 17,951 0.9427 0.9349 0.9388
BWA-MEM-hs38d1 253,309 21,529 22,667 0.9217 0.9178 0.9197
Dragen-hs38d1 253,923 15,752 22,055 0.9416 0.9201 0.9307

(d) Low Mappability Regions

Pipeline TP FP FN Precision Sensitivity F1
Giraffe-Parent 19,612 184 942 0.9907 0.9542 0.9721
Giraffe-1000GP 19,586 322 973 0.9838 0.9527 0.9680
BWA-MEM-hs38d1 19,365 437 1,190 0.9779 0.9422 0.9597
Dragen-hs38d1 19,429 423 1,128 0.9787 0.9452 0.9616

(e) MHC Regions

Table B.14: VCFeval performance of the graph-based and linear-based pipelines with respect to HG005 GIAB Draft v4.2.1 truth

variant call sets stratified by (A) all regions, (B) regions excluding 1000GP variants, (C) low complexity and highly repetative re-

gions, (D) low mappability regions, and (E) MHC regions. All mapped reads were called using Illuminas Dragen v3.7.5 genotyper.

Best values in each column are highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 522,588 2,881 2,628 0.994517 0.995202 0.994860

SNPS 3,344,124 21,003 19,746 0.993759 0.994132 0.993945

Dragen-hs38d1
INDELS 522,618 2,851 2,478 0.994574 0.995475 0.995025

SNPS 3,344,971 20,156 14,869 0.994010 0.995576 0.994792

Giraffe-1000GP
INDELS 522,857 2,612 2,493 0.995029 0.995450 0.995239

SNPS 3,348,629 16,498 14,664 0.995097 0.995641 0.995369

Giraffe-Parent
INDELS 523,367 2,102 2,150 0.996000 0.996077 0.996039

SNPS 3,353,105 12,022 11,232 0.996427 0.996662 0.996545

Table B.15: All High Confident Regions Hap.py performance of linear and graph-based

pipelines against grch38-based references using 150bp paired-end reads with respect to HG002

GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped reads were called

using Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold

text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 127,809 2,136 2,051 0.983562 0.985570 0.984565

SNPS 206,391 17,741 18,657 0.920846 0.917379 0.919109

Dragen-hs38d1
INDELS 127,822 2,125 1,890 0.983647 0.986689 0.985166

SNPS 206,576 17,560 13,979 0.921655 0.936836 0.929184

Giraffe-1000GP
INDELS 127,933 2,010 1,976 0.984532 0.986103 0.985317

SNPS 209,107 15,027 13,667 0.932955 0.938858 0.935897

Giraffe-Parent
INDELS 128,402 1,542 1,664 0.988133 0.988314 0.988224

SNPS 213,380 10,755 10,574 0.952016 0.952944 0.952480

Table B.16: All High Confident Regions, 1000GP excluded Hap.py performance of linear

and graph-based pipelines against grch38-based references using 150bp paired-end reads with

respect to HG002 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 366,349 2,793 2,428 0.992434 0.993795 0.993114

SNPS 607,821 20,142 18,370 0.967925 0.970707 0.969314

Dragen-hs38d1
INDELS 366,372 2,770 2,261 0.992496 0.994220 0.993357

SNPS 608,443 19,520 13,471 0.968915 0.978371 0.973620

Giraffe-1000GP
INDELS 366,608 2,534 2,267 0.993135 0.994208 0.993671

SNPS 612,142 15,821 13,452 0.974806 0.978528 0.976664

Giraffe-Parent
INDELS 367,116 2,026 1,934 0.994512 0.995062 0.994787

SNPS 616,565 11,398 10,134 0.981849 0.983853 0.982850

Table B.17: High Confident Low Complexity Regions Hap.py performance of linear and

graph-based pipelines against grch38-based references using 150bp paired-end reads with re-

spect to HG002 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 16,165 1,385 1,216 0.921083 0.931191 0.926109

SNPS 239,599 19,596 17,853 0.924397 0.930654 0.927515

Dragen-hs38d1
INDELS 16,188 1,362 1,009 0.922393 0.942300 0.932240

SNPS 240,153 19,042 12,964 0.926534 0.948782 0.937526

Giraffe-1000GP
INDELS 16,496 1,054 1,020 0.939943 0.942722 0.941331

SNPS 244,030 15,165 12,957 0.941492 0.949580 0.945519

Giraffe-Parent
INDELS 16,771 779 789 0.955613 0.955821 0.955717

SNPS 248,401 10,794 9,740 0.958356 0.962268 0.960308

Table B.18: High Confident Low Mappability Regions Hap.py performance of linear and

graph-based pipelines against grch38-based references using 150bp paired-end reads with re-

spect to HG002 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 1,640 37 28 0.977937 0.984914 0.981413

SNPS 19,753 424 239 0.978986 0.987936 0.983441

Dragen-hs38d1
INDELS 1,642 35 29 0.979129 0.984467 0.981791

SNPS 19,809 368 239 0.981761 0.987963 0.984853

Giraffe-1000GP
INDELS 1,641 36 26 0.978533 0.986014 0.982259

SNPS 19,841 336 164 0.983347 0.991723 0.987517

Giraffe-Parent
INDELS 1,641 36 17 0.978533 0.990826 0.984641

SNPS 19,879 298 49 0.985231 0.997517 0.991336

Table B.19: High Confident MHC Regions Hap.py performance of linear and graph-based

pipelines against grch38-based references using 150bp paired-end reads with respect to HG002

GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped reads were called

using Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold

text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 3,438 189 139 0.947891 0.963641 0.955701

SNPS 16,892 707 541 0.959827 0.968781 0.964283

Dragen-hs38d1
INDELS 3,446 181 121 0.950096 0.968291 0.959108

SNPS 16,911 688 462 0.960907 0.973250 0.967039

Giraffe-1000GP
INDELS 3,442 185 151 0.948994 0.960585 0.954754

SNPS 16,924 675 554 0.961646 0.968135 0.964880

Giraffe-Parent
INDELS 3,450 177 128 0.951199 0.966492 0.958785

SNPS 17,010 589 377 0.966532 0.978187 0.972325

Table B.20: High Confident Hard-to-sequence Medically Relevant Genes Hap.py perfor-

mance of linear and graph-based pipelines against grch38-based references using 150bp paired-

end reads with respect to HG002 GIAB v4.2.1 truth variant call sets in high confidence regions.

All mapped reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each

column are highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 414,524 2,252 2,264 0.994597 0.99474 0.994668

SNPS 3,252,342 23,289 23,261 0.992890 0.99290 0.992895

Dragen-hs38d1
INDELS 414,506 2,270 2,187 0.994553 0.994918 0.994735

SNPS 3,252,795 22,836 18,551 0.993029 0.994330 0.993679

Giraffe-1000GP
INDELS 414,726 2,050 2,220 0.995081 0.994844 0.994963

SNPS 3,257,070 18,561 17,726 0.994334 0.994588 0.994461

Giraffe-Parent
INDELS 415,126 1,650 1,844 0.996041 0.995718 0.995879

SNPS 3,262,094 13,537 13,267 0.995867 0.995950 0.995909

Table B.21: All High Confident Regions Hap.py performance of linear and graph-based

pipelines against grch38-based references using 150bp paired-end reads with respect to HG005

GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped reads were called

using Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold

text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 87,787 1,725 1,944 0.980729 0.980132 0.98043

SNPS 201,964 19,131 21,428 0.913472 0.904275 0.90885

Dragen-hs38d1
INDELS 87,779 1,734 1,827 0.980629 0.981303 0.980966

SNPS 202,069 19,027 16,531 0.913942 0.924536 0.919209

Giraffe-1000GP
INDELS 87,895 1,617 1,857 0.981935 0.981027 0.981481

SNPS 204,643 16,461 15,944 0.925551 0.927866 0.926707

Giraffe-Parent
INDELS 88,276 1,236 1,506 0.986192 0.984622 0.985406

SNPS 209,377 11,727 11,984 0.946962 0.945971 0.946466

Table B.22: All High Confident Regions, 1000GP excluded Hap.py performance of linear

and graph-based pipelines against grch38-based references using 150bp paired-end reads with

respect to HG005 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 261,098 2,140 2,007 0.991870 0.992747 0.992309

SNPS 568,001 21,935 20,836 0.962818 0.964646 0.963731

Dragen-hs38d1
INDELS 261,094 2,144 1,846 0.991855 0.993325 0.992589

SNPS 568,653 21,283 15,358 0.963923 0.973726 0.968800

Giraffe-1000GP
INDELS 261,308 1,930 1,853 0.992668 0.993305 0.992986

SNPS 572,511 17,425 15,174 0.970463 0.974203 0.972329

Giraffe-Parent
INDELS 261,702 1,536 1,507 0.994165 0.994557 0.994361

SNPS 577,501 12,435 10,969 0.978921 0.981377 0.980147

Table B.23: High Confident Low Complexity Regions Hap.py performance of linear and

graph-based pipelines against grch38-based references using 150bp paired-end reads with re-

spect to HG005 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 14,902 1,432 1,345 0.912330 0.918222 0.915267

SNPS 238,355 21,231 20,193 0.918212 0.921897 0.920051

Dragen-hs38d1
INDELS 14,913 1,421 1,118 0.913004 0.931115 0.921970

SNPS 238,956 20,630 14,639 0.920527 0.942273 0.931273

Giraffe-1000GP
INDELS 15,195 1,139 1,077 0.930268 0.934596 0.932427

SNPS 242,776 16,810 14,608 0.935243 0.943244 0.939227

Giraffe-Parent
INDELS 15,499 835 773 0.948880 0.953066 0.950968

SNPS 247,692 11,894 10,551 0.954181 0.959143 0.956656

Table B.24: High Confident Low Mappability Regions Hap.py performance of linear and

graph-based pipelines against grch38-based references using 150bp paired-end reads with re-

spect to HG005 GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped

reads were called using Illuminas Dragen v3.7.5 genotyper. Best values in each column are

highlighted in bold text.
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Pipeline Var Type TP FN FP Recall Precision F1

BWA-MEM-hs38d1
INDELS 1,594 104 74 0.938751 0.960215 0.949362

SNPS 17,848 1037 319 0.945089 0.982277 0.963324

Dragen-hs38d1
INDELS 1,597 101 81 0.940518 0.956708 0.948544

SNPS 17,911 974 298 0.948425 0.983483 0.965636

Giraffe-1000GP
INDELS 1,607 91 60 0.946408 0.967759 0.956964

SNPS 18,062 823 206 0.956420 0.988620 0.972254

Giraffe-Parent
INDELS 1,613 85 43 0.949941 0.976894 0.963229

SNPS 18,098 787 72 0.958327 0.995998 0.976799

Table B.25: High Confident MHC Regions Hap.py performance of linear and graph-based

pipelines against grch38-based references using 150bp paired-end reads with respect to HG005

GIAB v4.2.1 truth variant call sets in high confidence regions. All mapped reads were called

using Illuminas Dragen v3.7.5 genotyper. Best values in each column are highlighted in bold

text.
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Pipeline TP FP FN Precision Sensitivity F1
Dragen-Graph-hs38d1 3,713,377 14,580 8,552 0.9961 0.9977 0.9969
Giraffe-1000GP 3,708,607 5,687 13,934 0.9985 0.9963 0.9974
Giraffe-Parent 3,711,135 6,444 11,258 0.9983 0.9970 0.9976

(a) HG001

Pipeline TP FP FN Precision Sensitivity F1
Dragen-Graph-hs38d1 3,878,846 11,982 11,592 0.9969 0.9970 0.9970
Giraffe-1000GP 3,871,969 3,934 19,021 0.9990 0.9951 0.9970
Giraffe-Parent 3,874,697 4,930 16,260 0.9987 0.9958 0.9973

(b) HG002

Pipeline TP FP FN Precision Sensitivity F1
Dragen-Graph-hs38d1 3,679,064 13,750 13,171 0.9963 0.9964 0.9964
Giraffe-1000GP 3,672,686 4,614 20,010 0.9987 0.9946 0.9967
Giraffe-Parent 3,675,759 5,538 16,931 0.9985 0.9954 0.9970

(c) HG005

Table B.26: VCFeval performance of the graph-based Illumina Dragen v3.7.5 results

Dragen-Graph-hs38d1 versus the Giraffe-Parent and Giraffe-1000GP trained Deep-

Trio results on HG001, HG002, and HG005 GIAB v4.2.1 truth variant call sets. All

Giraffe-Parent and Giraffe-1000GP mapped reads were called using a trained DeepTrio

v1.1.0 genotyper. Best values in each column are highlighted in bold text.
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Cohort ID Sample ID SNPs(INDELs) MF CC MC DN HR HM XL CNC CM

UDP10618 UDP10618 4596326(1662678) 48397 38 21 5 5 0 15 0 13
UDP11318 4599172(1662619) 47617 11 11 1 1 1 0 0 8

UDP10815
UDP10815 4670495(1695028) 59070 14 14 3 0 2 0 0 9
UDP11178 4671755(1695378) 56412 20 20 2 5 0 0 0 13

UDP10898 UDP10898 4598520(1706914) 49839 17 15 3 2 2 0 0 10
UDP11100 4599169(1707215) 49854 26 14 6 1 0 12 0 7

UDP10915 UDP10915 4594489(1729303) 51032 13 13 2 1 2 0 0 8
UDP11205 4595214(1729292) 49031 23 12 1 0 1 10 0 11

UDP10934
UDP10934 4596460(1792043) 37260 21 13 0 5 1 4 0 11
UDP11401 4597116(1792526) 35625 12 11 2 2 1 0 0 7
UDP11402 4597246(1792142) 34354 21 10 6 6 0 6 0 3

UDP11136 UDP11136 4529866(1687948) 44364 54 11 1 0 41 2 0 10
UDP11452 4531234(1691523) 43478 11 7 0 4 1 1 0 5

UDP11628
UDP11628 4620199(1780410) 37682 17 14 3 5 0 0 0 9
UDP12046 4620477(1781250) 37079 14 12 2 8 0 0 0 4
UDP12047 4620963(1781070) 41392 13 12 3 2 0 0 2 6

UDP11732
UDP11732 4801023(1846737) 60615 42 21 6 3 0 18 0 15
UDP12102 4801929(1846678) 54942 18 16 5 2 0 0 0 11
UDP12103 4803220(1846798) 60527 23 21 2 2 1 0 0 18

UDP11854 UDP11854 4579136(1731652) 49485 13 13 7 1 0 0 0 5
UDP12189 4579971(1732111) 49256 26 15 5 3 1 10 0 7

UDP12531
UDP12531 5103899(1518349) 54023 15 14 6 1 1 0 0 7
UDP12828 5105572(1518403) 58263 36 12 1 8 1 19 0 7
UDP12829 5106400(1518434) 53520 22 18 3 6 1 0 0 12

UDP12639 UDP12639 4766953(1422540) 59948 23 13 1 3 0 7 0 12
UDP18612 4770026(1422158) 57176 17 15 2 3 1 2 0 9

UDP12925
UDP12925 4888275(1447275) 43188 26 22 3 12 0 0 0 11
UDP18398 4891027(1447124) 47376 27 9 0 4 1 18 0 4
UDP18399 4889817(1447196) 42447 8 8 2 0 0 0 0 6

UDP6540
UDP6540 4561095(1686264) 46285 12 7 0 1 0 5 0 6
UDP11422 4562810(1686426) 46657 27 17 3 3 0 9 0 12

UDP6603
UDP6603 4804021(1886900) 49991 24 14 1 3 0 6 0 14
UDP12029 4804566(1887828) 42704 10 10 4 0 0 0 0 6
UDP12030 4805402(1887866) 43145 11 11 5 1 0 0 0 5

UDP12283
UDP12283 4654603(1770554) 37784 37 13 4 3 23 0 0 7
UDP12523 4654881(1774679) 39409 12 11 3 2 0 0 0 7
UDP12524 4657260(1774522) 36491 11 9 2 5 1 0 0 3

Table B.27: Proband vs Sibling Analysis 15 Cohort Variant Filter Results Total counts of starting variants down to the filtered

candidate list for each of the 15 cohort samples comprising 15 probands and 22 siblings. Bolded cohort IDs are cohort probands

where their diagnosis has an associated CLIA-validated variant by the UDP. MF are the total number of variants after passing

through Mendelian filters. CC, the number of candidate variants and compound heterozygous pairs produced by the candidate

analysis workflow. MC, the total number of candidate variants and compound heterozygous pairs after merging candidates together

that share the same gene locus and the X-linked variant counts removed for sex-independent sample comparison. DN, the number

of de-novo candidate variants. HR, the number of homozygous recesive variants. HM are the number of hemizygous variants.

XL, the number of X-linked variants. CNC, the number of variants that lie within a depleted or haploinsufficient region. CM, the

number of compound heterozygous pairs of variants.
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Sample ID Total SNPs INDELs MF CC DN HR HM XL CNC CM
UDP18482 5994493 4624043 1370450 81201 39 2 2 1 19 0 15
UDP18111 6228191 4807587 1420604 39220 12 1 3 3 0 0 5
UDN714479 6100463 4702966 1397497 30257 23 0 3 0 14 0 6
UDN833679 6194587 4773584 1421003 46306 23 3 2 3 9 0 6

Table B.28: Candidate Analysis Filter Variant Counts on 4 Additional Cohort Probands

Total counts of starting variants down to the filtered candidate list for 4 probands. Bolded cohort

IDs are cohort probands where their disease was diagnosed by the UDP. MF are the total number

of variants after passing through Mendelian filters. CC, the number of candidate variants and

compound heterozygous pairs produced by the candidate analysis workflow. DN, the number

of de-novo candidate variants. HR, the number of homozygous recesive variants. HM are the

number of hemizygous variants. XL, the number of X-linked variants. CNC, the number of

variants that lie within a depleted or haploinsufficient region. CM, the number of compound

heterozygous pairs of variants.
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Sample ID Type Total E NE CV(P:B:UNK) PP(D:B:UNK) HGMD CADDE20 CADDNE15 VMM30

UDP18482
non-CM 24 2 22 NA:NA:24 NA:NA:24 NA 2 16 NA
CM Pairs 15 11 4 NA:4:11 5:4:6 NA NA NA 15

UDP18111
non-CM 7 0 7 NA:NA:7 NA:NA:7 NA 0 6 NA
CM Pairs 5 3 2 NA:NA:5 NA:1:4 1 NA NA 5

UDN714479
non-CM 17 7 10 NA:NA:17 3:1:13 1 5 10 NA
CM Pairs 6 5 1 NA:1:5 3:1:2 2 NA NA 6

UDN833679
non-CM 17 6 11 NA:2:15 2:2:13 1 6 11 NA
CM Pairs 6 4 2 NA:NA:6 3:NA:3 NA NA NA 6

Table B.29: Candidate Analysis Candidate Statistic Counts on 4 Additional Cohort Probands Total count of variants with

various annotation stats. non-CM, the set of candidate variants that are not compound heterozygous variants. CM Pairs, the set of

candidate variants that are compound heterozygous variants.

E, counts of exonic variants based on the SnpEff annotation list (includes NON SYNONYMOUS CODING, FRAME SHIFT,

CODON CHANGE PLUS CODON DELETION, STOP GAINED, START GAINED).

NE, counts of non-exonic variants based on the SnpEff annotation list (includes anything not in the Exonic list).

CV(P), ClinVar variant interpretation of either Pathogenic or Likely Pathogenic.

CV(B), ClinVar variant interpretation of either Benign or Likely Benign.

CV(UNK), ClinVar variant interpretation of either not present in the database or categorized as not provided,

Conflicting interpretations of pathogenicity, Uncertain significance.

PP(D), PolyPhen variant interpretation of either probably damaging or possibly damaging.

PP(B), PolyPhen variant interpretation as benign.

PP(UNK), PolyPhen variant interpretation non existant in current database.

HGMD, Human Gene Mutation Database annotation of Disease Mutation DM or possible Disease Mutation DM?.

CADDE20, number of exonic variants with a Combined Annotation Dependent Depletion Phred score of greater than or equal to 20.

CADDNE15, number of non-exonic variants with a Combined Annotation Dependent Depletion Phred score of greater than or equal

to 15.

VMM30, number of compound heterozygous pairs with a Virtual Mendelian Model Combined score of greater than or equal to 30.
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Workflow Run Total Runtime Total CPU Hours Total Cost
HG002 Trio + HG001 VG Pedigree Workflow 37h 2m 7983.73 $92.32
HG002 Trio + HG001 Canidate Analysis Workflow 7h 56m, 8h 35m 195.09, 213.51 $3.68, $4.10
HG005 Trio + HG001 VG Pedigree Workflow 38h 11m 7062.96 $88.22,
HG005 Trio + HG001 Canidate Analysis Workflow 8h 43m, 9h 15m 213.00, 237.20 $4.07, $4.62

Table B.30: Workflow costs for various runs of the VG Pedigree workflow and the Candidate

Analysis workflow on the Terra Platform.
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Phasing Method Total (Heterozygous) Variants Assessed SE Rate SE/F Rate HD[%]
EAGLE2 75444(47568) 36853 1.53% 1.01% 39.17%
EAGLE2 + WHATSHAP 75444(47568) 38843 0.90% 0.49% 0.50%
WHATSHAP 75444(47549) 38774 0.88% 0.49% 0.49%
WHATSHAP + EAGLE2 75444(47568) 36835 1.55% 1.03% 39.17%
WHATSHAP + SHAPEIT4 71594(44966) 36850 0.76% 0.41% 0.41%

(a) WhatsHap Compare HG002 GRCh37 Chr20 Intersecting variants

Phasing Method Total (Heterozygous) Variants Assessed SE Rate SE/F Rate HD[%]
EAGLE2 83331(52255) 36288 0.79% 0.59% 49.26%
EAGLE2 + WHATSHAP 83331(52255) 37188 0.07% 0.03% 0.03%
WHATSHAP 83332(52221) 37103 0.07% 0.04% 0.04%
WHATSHAP + EAGLE2 83331(52255) 36279 0.87% 0.66% 49.26%
WHATSHAP + SHAPEIT4 80951(50862) 36288 0.08% 0.04% 0.04%

(b) WhatsHap Compare HG002 GRCh38 Chr20 Intersecting variants

Table B.31: WhatsHap Compare statistics on Chromosome 20 joint-called and phased HG002

trio data using various phasing methods. (A) Comparison stats of the Giraffe aligned and Deep-

Variant joint-genotyped VCF on GRCh37-based reference against the GIAB v3.3.2 benchmark

trio-phased VCF. (B) Comparison stats of the Giraffe aligned and DeepVariant joint-genotyped

VCF on GRCh38-based liftovered reference against the GIAB v4.2.1 benchmark trio-phased

VCF. Abbreviations: SE(Switch-error), SE/F(Switch/Flip-error), HD(Hamming Distance).
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Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
BASELINE 39965(35042) 401 2 39088 2
EAGLE2 52213(46735) 1 52213 52213 52213
EAGLE2 + WHATSHAP 56858(48422) 429 3 55121 2
WHATSHAP 56474(48171) 430 3 54733 2
WHATSHAP + EAGLE2 52194(46717) 405 3 49609 2
WHATSHAP + SHAPEIT4 52216(46735) 1 52216 52216 52216

(a) HG002 GRCh37 Chr20

Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
EAGLE2 53274(47628) 1 53274 53274 53274
EAGLE2 + WHATSHAP 58190(49355) 429 3 56453 2
WHATSHAP 57843(49150) 430 3 56102 2
WHATSHAP + EAGLE2 53255(47610) 405 3 50725 2
WHATSHAP + SHAPEIT4 53273(47626) 1 53273 53273 53273

(b) HG003 GRCh37 Chr20

Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
EAGLE2 54298(48484) 1 54298 54298 54298
EAGLE2 + WHATSHAP 59155(50105) 429 3 57418 2
WHATSHAP 58788(49882) 430 3 57047 2
WHATSHAP + EAGLE2 54279(48466) 405 3 51730 2
WHATSHAP + SHAPEIT4 54308(48493) 1 54308 54308 54308

(c) HG004 GRCh37 Chr20

Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
BASELINE 37814(33217) 1 37814 37814 37814
EAGLE2 57780(49484) 1 57780 57780 57780
EAGLE2 + WHATSHAP 61423(52374) 434 3 59681 2
WHATSHAP 60669(52049) 445 3 58886 2
WHATSHAP + EAGLE2 57773(49478) 436 3 54601 2
WHATSHAP + SHAPEIT4 57838(49511) 1 57838 57838 57838

(d) HG002 GRCh38 Chr20

Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
EAGLE2 58881(50312) 1 58881 58881 58881
EAGLE2 + WHATSHAP 62573(53184) 434 3 60831 2
WHATSHAP 61838(52878) 445 3 60055 2
WHATSHAP + EAGLE2 58874(50306) 436 3 55774 2
WHATSHAP + SHAPEIT4 58889(50316) 1 58889 58889 58889

(e) HG003 GRCh38 Chr20

Phasing Method Total Phased (SNVs) Blocks Median Block Size Largest Block Smallest Block
EAGLE2 59258(50497) 1 59258 59258 59258
EAGLE2 + WHATSHAP 62289(52726) 434 3 60547 2
WHATSHAP 61546(52430) 445 3 59763 2
WHATSHAP + EAGLE2 59251(50491) 436 3 56147 2
WHATSHAP + SHAPEIT4 59300(50523) 1 59300 59300 59300

(f) HG004 GRCh38 Chr20

Table B.32: WhatsHap phasing stats on Chromosome 20 joint-called and phased HG002 trio data using various phasing methods.

(a-c) Stats for HG002, HG003, and HG004 respectively, aligned with Giraffe and DeepVariant trio-based joint-genotyped VCF on

GRCh37-based reference. (d-f) Stats for HG002, HG003, and HG004 respectively aligned with Giraffe and DeepVariant trio-based

joint-genotyped VCF on GRCh38-based liftovered reference.
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