Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Application of Bi-2212 in Prototype Wind-and-React Accelerator Magnets

Permalink

https://escholarship.org/uc/item/7n3634xw

Authors

Godeke, A. Cheng, D. Dietderich, D.R. et al.

Publication Date

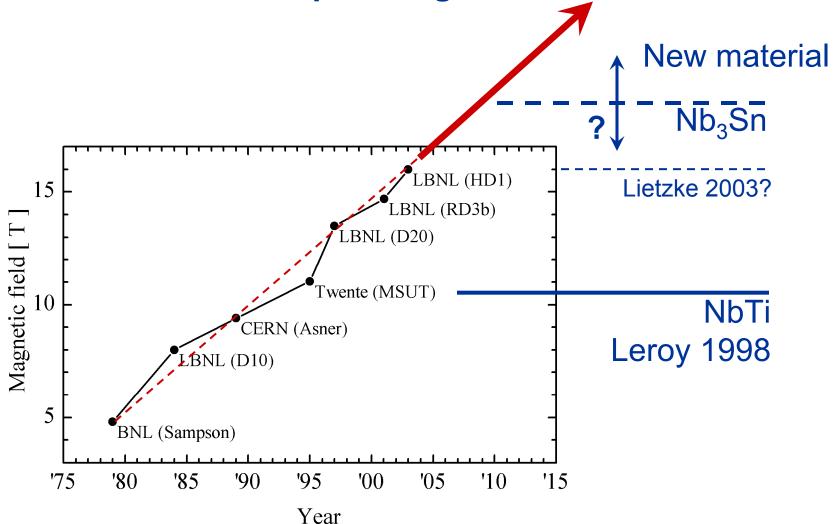
2008-05-29

Application of Bi-2212 in Prototype Wind-and-React Accelerator Magnets

A. Godeke, D. Cheng, D. R. Dietderich, H. Felice, C. R. Hannaford, S. O. Prestemon, and G. Sabbi Lawrence Berkeley National Laboratory

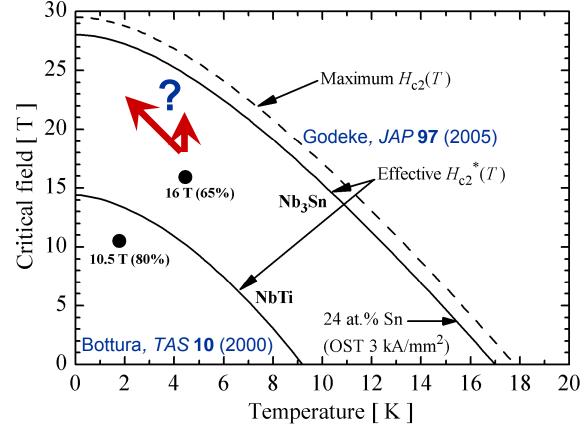
Y. Hikichi, J. Nishioka, and T. Hasegawa SWCC Showa Cable Systems Co., Ltd.

13th Japan-US Workshop – Gifu, Japan November 10, 2007


Funded by the US Department of Energy under contract No. DE-AC02-05CH11231

Motivation

Magnetic field records in dipole magnets



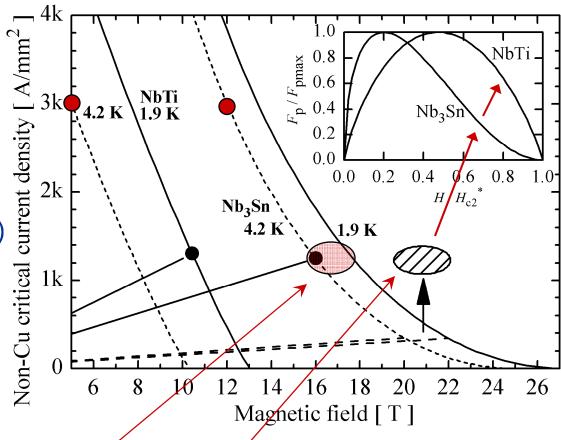
Intrinsic limitations NbTi and Nb₃Sn

Field – temperature limitations and achieved dipole fields

- NbTi (optimized wire & magnet)
 - → 10.5 T @ 1.8 K
 - ◆80% of $H_{c2}*(1.8 \text{ K})$
- Nb₃Sn
 - → 16 T @ 4.5 K
 - ◆65% of $H_{c2}*(4.5 \text{ K})$
 - ◆80% of $H_{c2}*(4.2 \text{ K})$?
 - **→** 20 T
 - ◆80% of $H_{c2}^*(1.8 \text{ K})$?
 - → 22 T

■ Why does Nb₃Sn achieve "only" 65% of H_{c2}*?

Practical limitations NbTi and Nb₃Sn

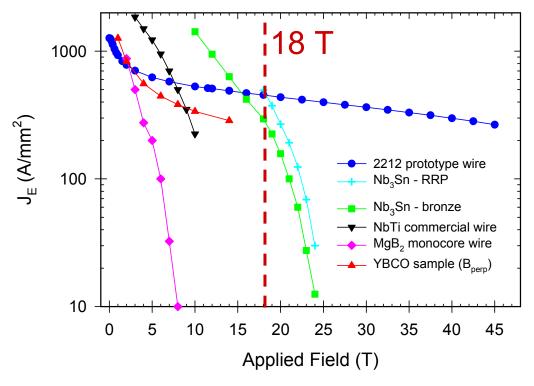

NbTi

- Pinning optimized (α-Ti)
 - →~1 pinning cite/vortex
 - $ightharpoonup F_p \propto h(1-h)$

Nb₃Sn

- Insufficient pinning centers (grain size ~150 nm)
 - Collective pinning
 - → $F_p \propto h^{0.5}(1-h)^2$
 - Reduced high field efficiency

- Practical dipole limitation is 17 18 T
 - → Gain with improved pinning is "only" 2 3 T



How to approach 20 T and higher

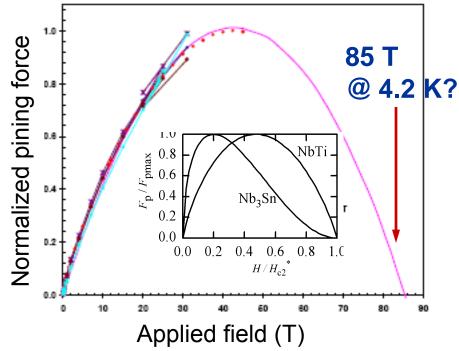
A switch to a new material is inevitable! (Even if Nb₃Sn pinning can be improved)

Material choices for very high field dipoles

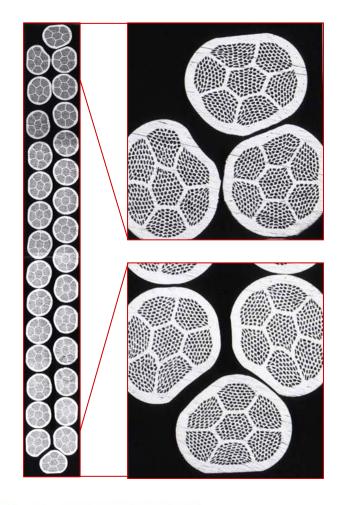
- → K.R. Marken, MRS meeting 2006
- High field current carrying capacity: YBCO, Bi-2212, and Bi-2223

Dipoles: High current, low inductance Rutherford cables → Bi-2212

Bi-2212 round wire



- **NbTi** $H_{c2}^{*}(0) \approx 14.5 \text{ T}$ Dipoles = 10.5 T
- Nb₃Sn $H_{c2}^*(0) \approx 28 \text{ T} \rightarrow \text{Dipole limit} \approx 18 \text{ T}$


Rutherford cables

Dipoles achieve ~ 2/3 of $H_{c2}^*(0)$

- Beyond Nb₃Sn is 20 25 T
- $H_{c2}^{*}(0)$ required is 40 T minimum

◆ Trociewitz, NHMFL report 2005

Technological challenges - I

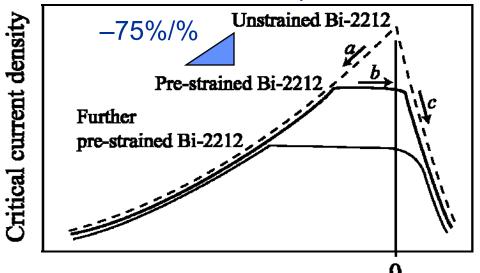
• Challenges: Godeke et al., TAS 17 (2007)

Material	Dipole limit	Reaction		
NbTi	10.5 T	Ductile: R&W		
Nb_3Sn	17–18 T (F _P ↑: 22 T)	$\sim 675^{\circ}\mathrm{C}$ in Ar/Vacuum		
Bi-2212	Stress limited	$\sim 890^{\circ} \text{C}$ in $\text{O}_2~(\pm~2^{\circ} \text{C})$		

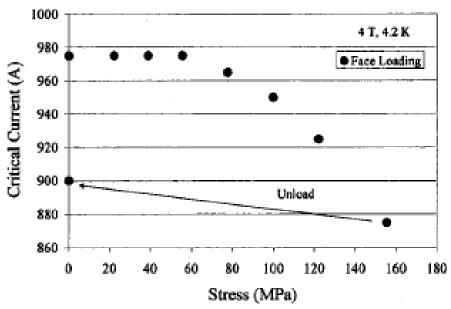
Material	Insulation	Construction	Quench
			propagation
NbTi	Polyimide	Stainless Steel	$> 20 \text{ ms}^{-1}$
Nb ₃ Sn	S/R-Glass	Stainless Steel	$\sim 20~\mathrm{ms^{-1}}$
Bi-2212	Ceramic	Super alloy	$\sim 0.04~\mathrm{ms^{-1}}$

- Solutions
 - ◆ Chemically compatible
 - → Mechanically compatible
 - → Quench development
 - → Heat treatment optimization
 - Oxygen flow during reaction

Technological challenges - II


Strain issues, longitudinal

- Irreversible J_c reduction
 - → Thermal contraction matching


Strain issues, transverse

- 60 MPa transverse load limit?
 - → Early generation cable
- Additional measurements
 - Stress management

Data from Bi-2212 tapes around 1995

Ten Haken, ToM **32** (1996)

Dietderich, TAS 11 (2001)

Intrinsic axial strain in Bi-2212

Technological challenges – III

Table 1. Potential and observed reactivity between test oxides used in this study and BSCCO constituent oxides. Data from published phase diagrams are given as follows: C indicates systems with known binary compounds; SS indicates that a solid solution forms that has at least a few at.% solubility at 900 °C; X indicates no compound or solid solution forms; NPD indicates no phase diagram was found in the literature. The observed reactivity of the test oxides with BSCCO cations by solid-state diffusion through the Ag sheath is defined s follows: U is a non-reactive oxide; R is a reactive oxide and the compound or solid solution that formed is shown; Ag indicates an oxide that reacts with the Ag sheath.

BSCCO constituent oxides						
Test oxide	Bi ₂ O ₃	SrO	CaO	CuO	Reactivity	
Al ₂ O ₃ CeO ₂ SiO ₂ (pure) Y ₂ O ₃ ZrO ₂ CaZrO ₃ ¹	C [7] — [7]° C [7] C [10] — [7]° C	C [7] C [9] C [7] C [10] C [13]	C [7] SS [10] C [7] C [12] C [7]	C [8] X [11] X [8] C [11] X [8]	U U U U U	
SrZrO ₃ a Fe ₂ O ₃ NiO MgO Cr ₂ O ₃ SiO ₂ -based glass ^b	C C [7] — [7]° — [7]° C [12] —	C C [14] NPD X [9] C [15]	C C [7] SS [7] SS [7] C [7]	C C[7] SS [14] C[9] C[12]	U R-CuFe ₂ O ₄ R-Ni(Cu)O R-Mg(Cu)O Ag Ag	

^a The phase diagrams for CaZrO₃ or SrZrO₃ and each of the BSCCO oxides are not available. The possibility of chemical reactions occurring is based on CaO or SrO from the zirconate reacting with each constituent BSCCO oxide.

Wesolowski, SuST 18 (2005)

Insulation options

Fiber based sleeve / tape
OK?

Metal – OxidesX?

Fiber / binder paper
OK?

Sol – gel coatings X?

Plasma spray coatings
OK?

Fiber based

S/R Glass (Nb₃Sn)

→ Chem = X (B₂O₃), Temperature = X

Al₂O₃/SiO₂/B₂O₃ (various combinations)

 \rightarrow Chem = $X (B_2O_3)$

Pure (>99.97%) SiO₂

→ Chem = X (Contaminations)

Al₂O₃/SiO₂ 72/28

→ OK (?)

Pure (>99%) Al₂O₃

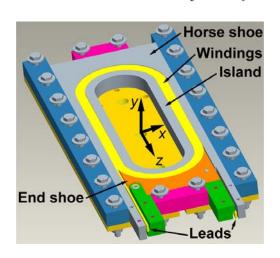
◆ Chem = OK, sleeve = X, cloth OK

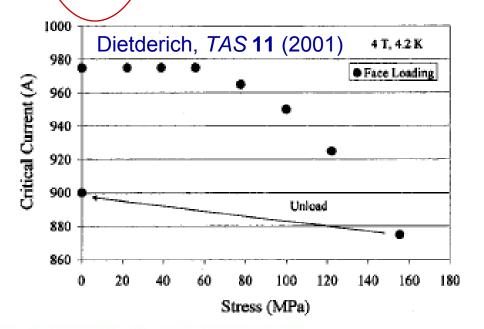
b The same compounds could form as with pure SiO₂ plus additional compounds could from reactions with other oxides in the glass.

^c Data are not reported for the CeO₂, ZrO₂, NiO, and MgO-rich side of the Bi₂O₃-MO_y phase diagram.

W&R Bi-2212 magnet program

Magnetic fields and forces

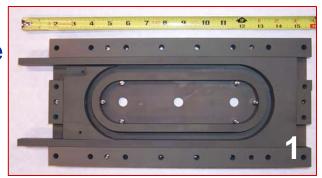

~ 5000 A

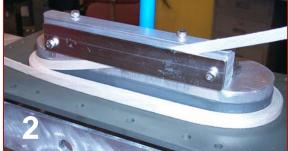

WIND-AND-REACT BI-2212 SUBSCALE COIL TEST CONFIGURATIONS

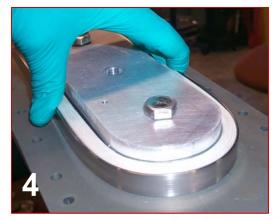
Layout	Turns	$\mu_0 H$ [T]	I _{ss} [A]	L [mH]	P_x [MPa]	P_y [MPa]	P_z [MPa]
Bi-2212 stand alone	2×6	2.6	6213	0.036	1.1	0	1.9
Bi-2212 stand alone	2×19	4.9	5179	0.25	9.7	0	9.4
Bi-2212 common coil ^a	2×19	5.8	4948	0.28	27	7.5	15
Bi-2212 dipole ^a	2×19	6.6	4777	1.2	1.6	14	3.2
1× Bi-2212 / 2× Nb ₃ Sn hybrid dipole ^{ab}	$2 \times 19 \ (Bi-2212)$	8.5	4595	2.4	(34)	0	20
	$2\times 20\;(\times 2\;Nb_3Sn)$						
1× Bi−2212 / 2× Nb ₃ Sn hybrid dipole ^{ac}	$2 \times 19 \ (Bi-2212)$	9.9	4486 (Bi-2212)				
	$2\times 20\;(\times 2\;Nb_3Sn)$		6112 (Nb ₃ Sn)				

^a With an iron insert inside the Bi-2212 subscale island

c Bi-2212 and Nb₃Sn driven independently


b Bi-2212 and Nb₃Sn in series connected and Bi-2212 limited


Subscale coil manufacture


- Strand→ Cable
- →Al₂O₃/SiO₂ Sleeve → Sizing removal → on cable
- → Wind coil on INCONEL alloy 600 island
- → Enclose with Alloy 600 heat treatment package
- → Ship to Showa for heat treatment



Manufactured subscale coils

8 coils manufactured

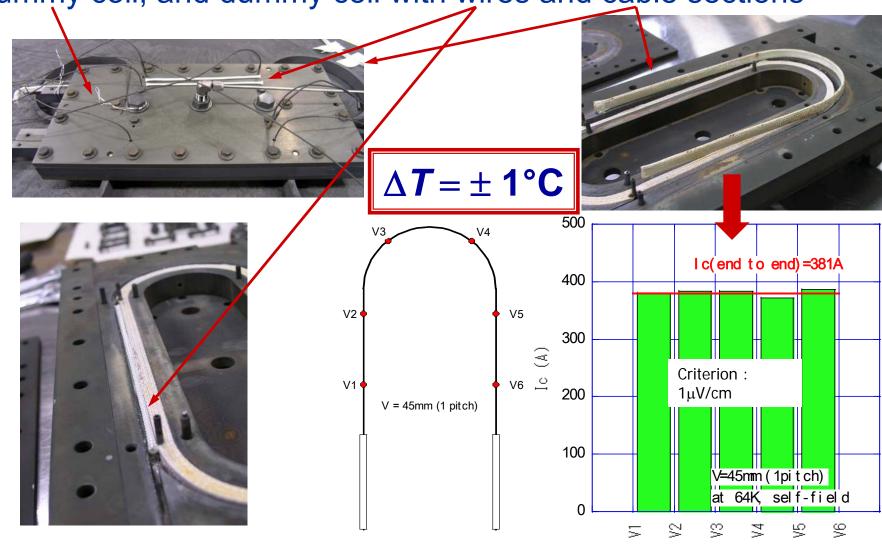
WIND-AND-REACT BI-2212 SUBSCALE COILS

Coil ID	Cable	Insulation	Sizing	
HTS-SC01	Ag-alloy dummy	Pure SiO ₂	Present	UT entimization
HTS-SC02	Ag dummy	Pure SiO ₂	Present	HT optimization
HTS-SC03	Untwisted Showa strand	Al_2O_3/SiO_2	Present	
HTS-SC04	Untwisted OST strand	Al_2O_3/SiO_2	Present	
HTS-SC05	Twisted Showa strand	$\mathrm{Al_2O_3/SiO_2}$	600°C/1h*	

^{*} Sizing removal reaction on insulation prior to insulating the cable

Twisted Showa strand – Al₂O₃/SiO₂ – Cleaned @ 825°C/4h

- •HTS-SC07
- •HTS-SC09
- •HTS-SC11


Various degrees of confinement

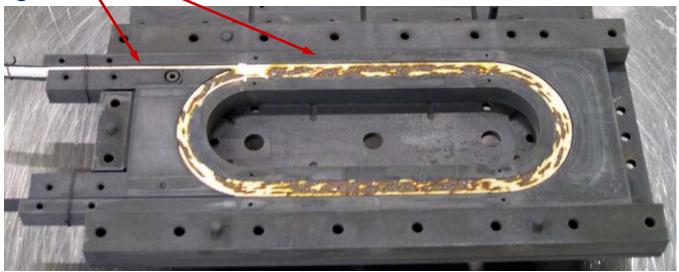
Heat treatment optimizations

Dummy coil, and dummy coil with wires and cable sections

AWRENCE BERKELEY NATIONAL LABORATORY

Position

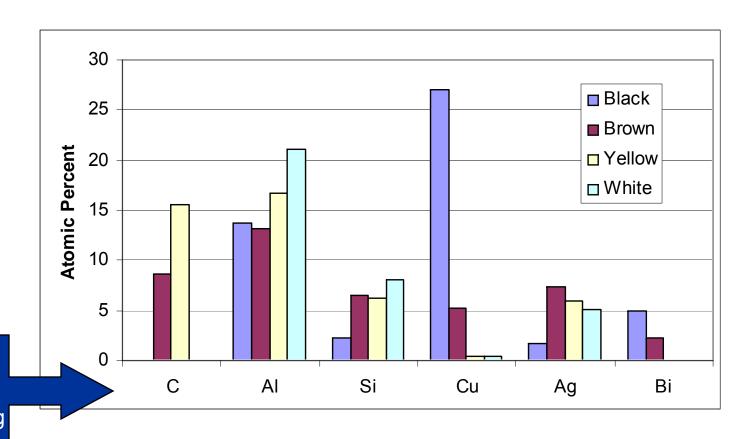
Subscale coil after HT



Leakage occurred

Not at the leads

- But inside the package
- More severe at straight sections
 - Better confined


Leakage is absent in HT optimizations and insulated "free" wires and cables

Leakage: EDX on colored insulation

- From lightest off-white through yellow, brown, and black
 - Mainly increasing Cu

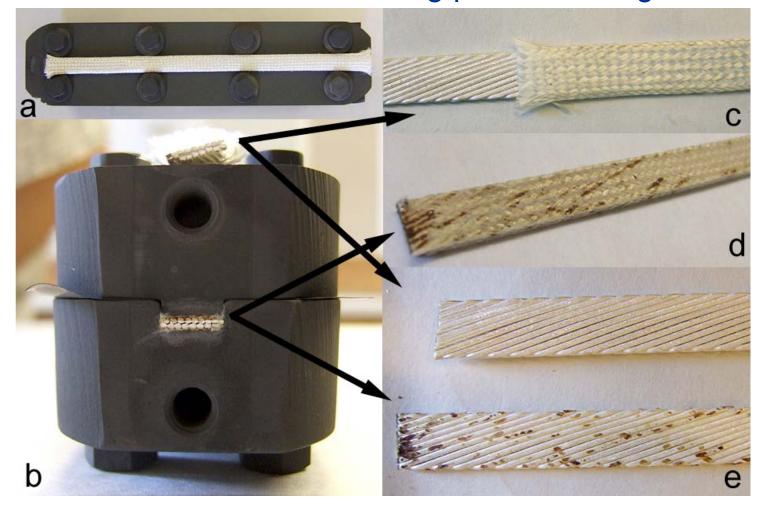
C most probably arises from C tape for sample mounting

Origin of leakage?

Non-confined wires and cables exhibit no leakage

Chemical compatibility is apparently OK

Confined winding pack exhibits leakage


- Mechanical
 - → Cable expansion during heat treatment
 - Ag-alloy expansion larger than INCONEL alloy 600
 - Both are presently not accounted for
- Oxygen household in package (too little lowers melt T)
 - ◆Remaining sizing → Oxygen depletion through burn-off
 - 0.4 gram sizing on 7 m insulated cable
 - Organic sizing → assume 50% H and 50% C plus O₂ → H₂O and CO₂
 - Requires about 1.2 gram $O_2 \rightarrow 2$ L/h (1 atm, 300K)
 - No remaining sizing → insufficient O₂ flow
- Free Cr₂O₃? (E. Hellstrom)

Test: Free versus confined cables

Load structure to simulate winding pack with single cable

● Free vs. confined → clear difference

Summary

- Progress in W&R Bi-2212 accelerator magnet technology
 - 8 subscale coils manufactured
 - Three in HT with varying degree of confinement
- •Al₂O₃/SiO₂ 72%/28% insulation with 80 μm wall thickness
 - ◆Sizing removed before application to cable → Nb₃Sn?
 - Chemically compatible if not confined in Inconel package
- Inconel alloy 600 package
 - ◆ Favorable thermal contraction
- Coils exhibit leakage
 - ◆ Due to confinement
 - ◆Mechanical and/or Oxygen related?
 - Chemical might also still be an issue inside a package
 - ◆Solvable