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ABSTRACT OF THE DISSERTATION

Verification and Validation of Hybrid Systems

by

Xiaoqing Jin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2013

Professor Gianfranco Ciardo, Chairperson

Hybrid systems tightly integrate software-based discrete control systems and

continuous physical phenomena. Better methods and tools for design, modeling, and

analysis are necessary as these systems become more complex, powerful, and prevalent

in our daily lives. There are two main approaches to model hybrid systems. One is

to discretize them into fully discrete systems. We focus on two discrete models: a

network of communicating FSMs (NCFSM) and event-condition-action (ECA) rules. In

this dissertation, we make several contributions to verifying discrete systems. First,

for an NCFSM, we symbolically encode and verify the properties of livelocks, strong

connectedness, and dead transitions. We also design a symbolic equivalence checker to

automatically generate test cases for fault-based testing. Second, for ECA rules, we

verify both termination and confluence properties and then provide the first practical

experimental results for the confluence property.

The second modeling method is to keep the continuous dynamics by using

hybrid automata or block diagrams. Most verification problems for hybrid automata

are undecidable even under severe limitations. However, using block diagrams, such as

Simulink, researchers model a hybrid system as an input-output signals mapping box.
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This approach has been widely adopted by industry due to its scalability. Combining

simulation and temporal logic, the validation technique is able to check whether the

temporal behavior of the system meets a set of requirements. One significant challenge

to the formal validation is that system requirements are often imprecise, non-modular,

evolving, or even simply unknown. In this dissertation, we make the several contri-

butions to tackle the requirement defects. First, we compare the performance of the

two existing falsification engines. Second, we design a requirement mining framework,

an instance of counterexample-guided inductive synthesis, which is able to mine formal

requirements from a closed-loop model. Third, we observe the importance of the mono-

tonicity of formulas for synthesis and use a satisfiability modulo theories (SMT) solver

to prove this property. Fourth, we propose weighted temporal logics to improve the

performance of this mining framework. This framework has the following two applica-

tions: mined requirements can be used to validate future modifications of the model and

enhance understanding of legacy models; the framework can also guide the process of

bug-finding through simulations. We present two case studies for requirement mining:

a simple automobile transmission controller and an industrial airpath control engine.
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Chapter 1

Introduction

Since the late 1980s, information technology (IT) has gone through several

significant revolutions, from supercomputers to personal computers, to portable and

embedded systems. Coupled with sensor networks, embedded systems, such as those

in portable devices [208], automobiles [167, 209], aerospace [82], manufacturing [175],

smart grids [191], telecommunication systems [153], civil infrastructure [206], and health-

care [147], have had tremendous impacts on every aspects of our daily lives. These ad-

vances have significantly reduced reliance on manual labor by introducing accurate high

performance automation systems. Furthermore, advancements in computing and com-

munication technologies have dramatically increased their capabilities over the years,

and at the same time reduced their cost and size. Linked together through networks,

these systems become more prevalent and form a new concept: cyber-physical sys-

tems (CPSs) [25]. CPSs are defined as the integration of computational communication

systems and physical processes [140] with more emphasis on the link between physical

processes (physical side) and the information processing (cyber side). Research on CPSs

has been extensively supported by many governmental research authorities [77, 165] and
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has become a subject of great interest in the past decade. CPSs provide us with the

ability to observe and modify the physical environment achieving stability, reliability,

robustness, and efficiency. Hybrid systems are a broad interdisciplinary domain which

links many research domains such as real-time systems, wireless sensor networks, con-

trol theory, model-based development, multi-objective optimization, and formal verifica-

tion [175]. Also, a great impetus is coming from the increasing demand for green energy,

better healthcare systems, more efficient and safer transportation systems, and space

exploration. This impetus pushes engineers to design and develop more complex and

larger scaled hybrid systems. Already in development, technologies such as autonomous

vehicles [97], smart homes [76], and robotic surgery [51] may become ubiquitous in the

near future.

One fundamental characteristic of these pervasive systems is the presence of

both continuous and discrete dynamic behaviors [8]. Hybrid systems are the integra-

tion of continuous physical processes and discrete software systems. At a higher level

of abstraction, a hybrid system “jumps” between different control modes based on con-

ditions of the system and its physical environment. This discrete “jump” behavior is

the final observable result, produced by the control software inside the system. The

control software is responsible for collecting, processing, and sharing information from

both the system and its environment. In order to adapt or to change the environment

the controller then makes a decision about which mode the system should be operated

in. At a lower level of abstraction, both the system and its environment are governed by

naturally continuous concrete physical laws, such as Newton’s laws of motion or ther-

modynamics. Take an automobile as an example. One of the variables used to describe

the system state, such as speed, is continuous. Depending on the speed, the automatic

transmission control system decides between shifting to a higher/lower gear or staying
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in the current gear. Each gear represents a different control mode of the vehicle and

is discrete. Briefly, a hybrid system consists of a discrete controller, such as the gear

shifting logic of the transmission system, and a continuous physical environment, such

as the speed and the acceleration of a vehicle.

1.1 Challenges

Due to rapid innovation in hardware technologies, modern hybrid systems have

become multi-layered, multi-functional, and increasingly large and complex. The fol-

lowing features can be observed in typical hybrid systems [140]:

• The integration of functional sensors and actuators using networks. At

a low level, the mechanism that samples a physical system affects the amount of

data to be transferred. The ability to handle a large volume of data to facilitate

information collecting and sharing hinges on the hardware architecture and the

network infrastructure. Moreover, the methods to handle network delay, packet

loss, and data rate constraints largely affect the stability and sometimes even the

correctness of the hybrid system. At a high level, the topology and network pro-

tocol can affect system performance. The system not only processes informations

from sensors but also interacts with its physical environment through actuators.

• Having one or more processing units. Since the 1970s, BMW has used

microprocessors and engine sensors to enhance the performance and efficiency of

its vehicles. A recent BMW vehicle has more than 70 networked microprocessors.

In the avionic industry, microprocessors are used to increase operational safety.

Boeing’s 777 jet airliner has more than 1,200 networked microprocessors. These

microprocessors read data from multiple sensors, calculate, interpret, and compare
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certain metrics before adjusting actuators to maintain system performance.

• Being reactive and adaptive to the environment. Safety is critical in sys-

tems which run indefinitely and in situations where suspending and rebooting are

not feasible. Moreover, time constraints, such as a maximum response time, may

be required. Sometimes the performance resulting from responding as soon as

possible is unacceptable.

• Heterogeneous architectures. Hybrid systems often have mixed system ar-

chitectures consisting of both hardware and software. Thus, the system must

handle both digital and analog signals as well as manage the resulting accuracy

and precision problems [211].

• High concurrency. Almost all components are connected through an internal

network and most of the physical processes occur simultaneously. Multiple elec-

tronic control units (ECUs) share the data from various sensors. Moreover, sensors

and actuators are normally deployed on a distributed network. Thus, a high con-

currency between control and computation of the system is imperative for both

correctness and performance.

• Severely limited resources. Due to constraints on the physical environment or

the cost budget, a hybrid system normally operates with severely limited resources,

such as network bandwidth, memory, power supply, and number of available reg-

isters, For example, a controller area network (CAN) bus, which is a standardized

message-based protocol for automotive applications, only allows up to 64 bytes of

data payload per frame [192].
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All these features make the design of a hybrid system complicated. First, many

trade-offs have to be made in order to operate with severely limited physical resources.

Second, reactive systems are quite sensitive to timing, requiring both hardware and soft-

ware to meet hard deadlines. Third, high concurrency, restricted timing requirements,

and heterogeneous architectures can cause difficulties during the modeling, testing, and

validation stages of the system. Finally, the non-deterministic nature of environmen-

tal processes results in the unpredictability of the system behavior, regardless of the

precision of the computation or sensors.

The significant social and economic impact of these systems calls for higher

reliability and predictability in designs [141], especially for life-critical systems such as

assisted living, automotive, or aerospace systems. Without consideration, mild mal-

functions, including infrequent and bizarre circuit glitches, could cause disasters. For

example, the crash of a Korean Air Boeing 747 in Guam in 1977 was caused by an insuffi-

cient minimum safe altitude warning (MSAW) system. The system failed to detect that

the altitude of the aircraft was below the safe limitation and caused 228 casualties out of

254 people on board [103]. Moreover, it is important to assure that all possible system

behaviors are within legal system’s designed manners. Failure to take this into account

may result in loss of human lives. According to an FDA study in the mid-90s [123],

about 7.7% of the deaths and injures caused by medical device failures are caused by

faulty software, and defects introduced during software maintenance are blamed for al-

most 80% of the incidents. The most well-known incident is related to Therac-25, a

radiation therapy machine. In rare circumstances, Therac-25 delivered approximately

100 times the intended dose to patients due to a race condition between concurrent

tasks that caused the key components of the system to fail to rotate into their correct

positions [142]. At least three patients died because of this software controlling error.
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A more recent example is the premature failure of the demonstration of autonomous

rendezvous technology (DART) spacecraft in 2005. Repeated excessive thruster firings

in response to incorrect data from biased navigational system estimates resulted in the

failure of this $95 million project [120].

Numerous examples evidence the dangerous and catastrophic side of these pow-

erful systems. Societies, industries, and government institutions must consider any

adverse outcome unacceptable for these life critical products and urge industries to con-

stantly strive for safety and perfection. Stricter regulations and higher standards are

made for industries of life critical products, such as IEC 61508 [121] for general electric

and electronic industries, AS/EN 9100 [1] for aerospace industries, and ISO 26262 [122]

for automotive industries. However, these regulations and standards only recommend

extensive use of traditional technologies, such as testing and simulation. Developing

new technologies to better design, model, test, and verify hybrid systems is a major

challenge for both academia and industry.

1.2 Modeling and verification

Along with the emerging of hybrid systems of the late 1980s, researchers started

to design formal methods for modeling, specification, and verification of hybrid sys-

tems. One solution is to discretize the continuous variables and analyze the resulting

fully discrete systems, since the computational subsystems of a hybrid system are nor-

mally modeled as discrete transition systems [110]. This avoids analysis in the con-

tinuous domain and paves the way for using automata theory and discrete temporal

logic to model and analyze hybrid systems. Petri nets (PNs) [161] and event-condition-

action (ECA) rules [156] are both used to model non-deterministic and complex discrete
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systems. Automata-based methods include finite state machines (FSMs), communicat-

ing FSMs (CFSMs), networks of CFSMs (NCFSMs) [115], and timed automata [9, 10].

Particularly, timed automata provide a solution to model continuous time as an integer

clock under the restriction that clock values can only be assigned to or compared with

constants. The equivalent to the automata-theoretic approach, model checking [74], a

logic-based method, analyzes the resulting discrete transition systems using temporal

logics such as computational tree logic (CTL) [69] or linear temporal logic (LTL) [170].

This formal verification technique is useful for analyzing both hardware and software sys-

tems [67]. Most importantly, this technique is able to provide valuable counterexamples

to debug the system under inspection when it fails to preserve certain properties [214].

Model checking techniques can be classified as either explicit or symbolic. Fa-

mous tools, such as SPIN [118], Murphi [193], and SPOT [87], enumerate the state space

of the system explicitly and search the state transition graph to verify critical properties.

However, all these model checker tools have to tackle a formidable challenge, the state

explosion problem [202]. Sometimes, the state space of the system is too large to be

constructed and searched. Normally, explicit methods require a considerable amount of

memory and time to perform the analysis [181]. On the other hand, in order to save

memory, symbolic strategies choose to implicitly encode transition relations and sets of

states using decision diagrams, such as binary decision diagrams (BDDs) [47], multi-way

decision diagrams (MDDs) [130], algebraic decision diagrams (ADDs) [135], and edge-

valued multi-way decision diagrams (EVMDDs) [63]. Symbolic encodings mitigate the

state explosion problem by encoding large sets of states in a relatively small and com-

pact logic representation. Also, algorithms to manipulate sets are efficient in symbolic

encodings. Thus, symbolic model checkers [157] when introduced in early 90’s, they

were considered one of the biggest breakthroughs to tackle the state explosion problem.
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Symbolic model checkers, such as CadenceSMV [158], NuSMV [65], SmArT [62], and

VIS [102] have shown their success in scaling to large state spaces.

The benefit of discretization is the ability to use results from existing research.

However, modeling the complex events and conditions of hybrid systems, as well as

the concurrent and non-deterministic environment remains challenging, even after dis-

cretization. Also, the modeling language has to be expressive, flexible, and extensible

enough to reason about interesting properties. Although discretization alleviates the

stress of analyzing a hybrid system in an infinitely continuous domain, it still has many

weaknesses. Intricate concurrency and non-determinism still drive the analysis to dif-

ficulty situations even in a discrete domain, which is safer. Discretization provides a

trade-off between complexity and precision, sometimes even at the cost of correctness.

Thus, it is important to have a generalized formal model that faithfully represents both

discrete and continuous processes, such as hybrid automata (HA).

HA enhance FSMs with a finite set of continuous variables that are used in

differential equations that describe physical phenomena. This combination results in a

powerful and expressive formalism for both modeling and analyzing a hybrid system.

However, verification of HA has been shown to be extremely difficult [14]. Most the

problems are undecidable, even under severely restricted assumptions [8].

Although model checking is successful in the verification of discrete systems,

the methodology cannot be directly applied to hybrid systems whose state spaces are

generally infinite. Thus, researchers extended the syntax of temporal logic in order

to reason about the continuous signals of hybrid systems, resulting in metric temporal

logic (MTL) [13, 132] and signal temporal logic (STL) [152]. These logics have sophis-

ticated expressive power, but the decidability problem of these logics is intrinsically

NP-hard [14].
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Figure 1.1: The traditional V design process. The whole V process iterates until the
release of the final product. Both of the software (SW) and hardware (HW) have to go
through design, implementation, verification, and testing.

1.3 Verification or testing

For better quality designs, industries adopt the traditional waterfall “V” shape

design process shown in Figure 1.1. At the bottom of the V process is the hardware and

software implementation stage. The left edge of the V represents the design process for

the system specification, the whole architecture, and each subsystem. The right edge

shows the reliance on test and verification, including software and hardware testing,

integrated system testing, as well as field deployment and system calibration. Industries

are also regulated by higher standards for life-critical products. For example, as already

mentioned general electric and electronic industries have to comply with IEC 61508 [121],

aerospace industries have to follow AS/EN 9100 [1], and automotive industries have to

abide by ISO 26262 [122]. Although these standards provide guidelines for the entire

design and development process, with regard to safety and quality control and for risk

and failure reduction, they only suggest structural coverage as a metric for testing.

Although exhaustive testing is hardly reasonable due to application complexity

and deadlines related to time-to-market, testing still consumes a tremendous amount
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of engineering work compared to design. During the system implementation life cycle,

unit testing, integration testing, system testing, and regression testing are normally re-

quired [122, 154] in different stages. Unit testing is done at the coding stage to evaluate

each individual unit. When units are integrated into subsystems or large components,

integration testing is performed to make sure that each unit cooperates correctly with

others in order to achieve a set of functionalities as a whole. Eventually, engineers will

test the whole system to evaluate whether the implemented system meets the desired

performance and specifications. Three often suggested and used code-based coverage

metrics are statement coverage, branch coverage, and modified condition/decision cov-

erage (MCDC) [54, 122, 154]. Engineers try to get higher syntactic coverage when

testing and hope that it will find sufficient bugs to assure quality. However, pure struc-

tural coverage only targets the discrete events while generated test cases can only cover

a small portion of the potentially infinite state space. Another severe limitation of test-

ing is inherited from the nature of hybrid systems, which constantly interact with and

respond to the environment. Since we are not capable of fully controlling the highly

concurrent, non-deterministic environment, it is difficult to provide and simulate sensor

data for various environmental conditions.

Although the traditional V process has been proven successful and helpful in

practice, it leaves all testing and verification until the implementation of the actual

system is finished, as shown in Figure 1.1. Bugs introduced during implementation are

relatively easy and cheap to fix and only the testing edge of the V process must be

re-applied. The worst case is having errors and bugs in the initial specifications as this

requires restarting the entire V process which is expensive and time-consuming. Fixing

a bug in the design is also costly and challenging, since it may require software redesign,

and, at times, even hardware redesign. This situation is quite common in practice which
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motivates new design methodologies that adopt early verification and validation, such

as model-based design (MBD) process.

1.4 Verification or validation

MBD provides a model-centric design process that represents mathematical

expressions and equations with visual models and uses models to design, analyze, ver-

ify, validate, and test dynamic systems [131]. MBD helps reduce development time

and improve product quality by taking advantage of early verification and validation.

Today, MBD has been widely adopted in the design of industrial-scale hybrid systems

such as control systems in automobiles and avionics [188, 164]. Models specified in

Simulink [186] are able to express complex dynamics, capture discrete state-machine

behavior by allowing both boolean and real-valued variables, and allow a layered de-

sign approach through modularity and hierarchical compositions. Thus, the high-level

system model created during the specification design stage can serve as an executable

specification. Performing high-fidelity simulations on this model sheds light on incom-

plete and inconsistent specifications. MBD helps to reduce the amount of errors found

at later design stages. Moreover, it acts as a bridge between implementation and re-

quirements and provides engineers a prototype system to verify their designs earlier in

the process compared to the traditional process.

The MBD process can also fit in a V process as shown in Figure 1.2. First,

designers capture the dynamic characteristics of the plant, the physical part of the sys-

tem, using differential, logic, and algebraic equations. This is collectively called the

plant model, and examples include the rotational dynamics model of the camshaft in

an automobile engine, the thermodynamic model of an internal combustion engine, and
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Figure 1.2: The MBD V design process. Rapid prototyping is also known as model-
in-the-loop simulation. SIL (software-in-the-loop) incorporates the production software
code into the plant model and performs offline simulation while HIL (hardware-in-the-
loop) combines the actual physical hardware with the plant model and performs real-time
simulation.

atmospheric turbulence models. Control designers then employ control laws, which are

implemented as a controller, to regulate the behavior of the physical system. The closed-

loop model consists of at least one plant and one controller. Once controller synthesis

is done, designers perform extensive offline simulations on the closed-loop model. The

objective is to analyze the time response of the dynamic system by observing the time-

varying simulation signals of interest. These signals are the results of stimulating the

closed-loop model. Simulation can immediately reveal errors and bugs in specification,

modeling, and implementation. An important aspect of this step is validation, such as

checking whether the time response of the closed-loop system matches a set of require-

ments (also called specifications). If the simulation behavior is deemed unsatisfactory,

then the designer refines or tunes the controller design and repeats the validation step.

The whole validation is done on a closed-loop model and is known as rapid prototyp-

ing or model-in-the-loop (MIL). After several iterations, the prototype system will be

automatically translated into a production code. This process is at the bottom of the

V process in Figure 1.2. SIL (software-in-the-loop) and HIL (hardware-in-the-loop) will
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then be applied to test the implementation and the system is simulated offline and in

real-time, respectively. Finally, the system is deployed and calibrated.

Verification techniques are powerful and expressive, but most problems are

undecidable [14] when analyzing hybrid systems. MBD largely depends on simulation.

Thus, researchers transplant the logics used for verification to simulation. This trans-

plantation results in an incomplete simulation-based solution that can be used to search

for falsification counterexamples with respect to some temporal logic properties. Incom-

pleteness means that even if no falsification instance is found after extensive simulations,

there is still no guarantee that the property holds for the system as there may be corner

cases unexplored by the simulations. However, if it falsifies the property, the coun-

terexample provides evidence signals leading the system to undesirable behaviors, and

is useful for debugging. S-Taliro [20] integrates the space robustness metric [92] de-

fined on MTL [132] to analyze signals of hybrid systems and uses stochastic sampling

and optimization techniques [19, 163, 182] to guide the search. Breach [83] supports

not only the space robustness metric, but also time robustness metric [22] defined on

STL [152].

Simulation-based validation is more practical than verification since it does not

need to handle the layered structure and the equations behind hybrid systems. It can

easily analyze industrial-sized models. However, without the logical foundation from

verification, pure simulation approaches are reduced to ad-hoc testing. The amount of

allowed simulation time increases confidence in the system design, but does not maximize

the potential benefits from early verification and validation. Logic-enhanced simulation-

based validation gives us hope for applying verification techniques to hybrid systems.
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1.5 Requirement defects

Ideally, design requirements, also named design specifications, should range

from higher system level requirements that describe the desirable system performance

in suitable formal logics, to lower implementation level requirements that accurately

describe the expected inputs and outputs, as well as the requested function of each com-

ponent unit. For instance, a good system-level requirement of a transmission controller

design would be “the car should not shift from gear 2 to gear 1 and back to gear 2 within

2 seconds.”

However, in reality, industry requirements are rarely documented in formal

language, but instead as informal and vague statements, often in colloquial languages.

Occasionally, they are open statements, such as, “the idle engine speed would be less

than 3000 rpm (revolutions per minute).” Also these requirements would be common

knowledge that is insufficient to evaluate test results. Moreover, a problematic situation

in industry is the existence of large amounts of undocumented legacy code and legacy

models. This makes it difficult for successors to take over a project after the departure

of the original designers. At times, the specifications are wrong or obsolete and should

be eliminated to prevent misleading and misunderstanding.

Requirement defects are considered pitfalls for software engineering and may

be hidden in all stages of the development process. Inadequate requirements result in the

delayed or aborted projects, cost overrun, or software failures after delivery [124, 148].

Since hybrid systems embrace both software and hardware, requirement defects are a

more complex and severe obstacle for hybrid system designers. First, we analyze the

reasons behind requirement defects:

• The designing process is a highly dynamic procedure and is characterized by rapid
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evolution through the whole design life cycle. This quickly makes documentation

of design requirements obsolete but engineers do not want to spend extra time and

make the extra effort to track and update documentation.

• Design engineers normally do not have the training in expressing design require-

ments using formal logic languages. Thus, the resulting documentation may be

incomplete, inadequate, or inaccurate. Ambiguous, unclear, or poorly written re-

quirements more often mislead the validation and test than convey the concrete

requirement and cause system failures [148].

• The lack of sufficient requirement management systems exacerbates requirement

defects. Lack of adherence to standards, such as using informal requirement rep-

resentations, designing a sufficient requirement management software that is able

to check the correctness, completeness, and consistency of requirements, is a long

standing obstacle. In return, lacking traceable requirements makes designers more

reluctant to update requirements when they are needed.

Requirement defects are costly and time-consuming to fix. Techniques to dis-

cover requirements to prevent the defects are highly sought [138]. Based on practical ex-

periences, researchers recommend well-known inspection methods, such as scenarios and

checklists [172], or scenario-based formal methods, such as UML [39], Statecharts [106],

and design behavior trees (DBT) [86]. Unfortunately, hybrid systems heavily interact

with the physical world. Some scenarios or items in the checklist may be very hard or

even infeasible to prepare. Others require the designed system to enter certain states

and meet some preconditions in order to be checked. Thus, these practices may not

achieve the deserved results, and requirement defects for hybrid systems can hardly be

resolved by traditional testing and inspection methods.
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Another approaches that actively mine requirements from programs and cir-

cuits are well-studied [15, 16, 88, 100, 139, 144, 183, 185, 207]. Requirement mining

techniques are numerous and vary based on the kind of requirements that are mined,

such as automata, temporal rules, and sequence diagrams. They also vary based on

the input to the miner. The input to techniques based on static analysis or model

checking is the source code, while the input to dynamic techniques is a set of execu-

tion traces. Techniques based on mining temporal rules [15, 185] try to automatically

learn an automaton representing the temporal specifications, and usually focus on ap-

plication programming interface (API) usage in libraries. The individual components

within these libraries are often terminating programs, and requirement automata focus

on legal interaction patterns between components of libraries. In contrast, we need to

mine behavioral requirements from a closed-loop hybrid control system which has vastly

different semantics from that of a software program. Thus, in the industrial setting,

techniques that act as a physician to detect model requirements are highly desired to

help defeat requirement defects.

1.6 Contributions

This thesis explores techniques used in the modeling, analysis, verification, and

validation of hybrid systems. It uses academic solutions to bridge the critical gap in

practical industry settings. The main contributions of this thesis are summarized as

follows:

• We provide a survey on the state-of-the-art of hybrid system modeling methods

and give thorough cost and benefit analysis of major methods.

• For the representative discrete system, a network of communicating FSMs, we
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provide efficient solutions to symbolically encode the system and to verify critical

and user desired properties. Specially, we demonstrate an application that uses a

symbolic equivalent checker to automatically generate a test suite for fault-based

testing [126].

• For a second discrete formalism, ECA rules, we successfully develop fully symbolic

algorithms to verify both termination and confluence properties. To the best of

our knowledge, we provide the first practical results to analyze the confluence

property [129].

• We propose a requirement mining framework [128] to alleviate requirement de-

fects. The framework automatically mines requirements and represents the mined

requirements in temporal logic. This work can be efficiently used to help designers

effectively validate systems and provide valuable counterexamples for debugging.

We demonstrate the practical applicability of our mining framework in two case

studies: a simple automatic transmission controller, and an industrial closed-loop

model of the airpath-control in an automobile engine model.

• We enhance the requirement mining framework with efficient strategies for synthe-

sizing parameters of monotonic temporal logic formulas. We propose to formulate

the query for monotonicity in fragments of first-order logic with quantifiers, real

arithmetic, and uninterpreted functions. This query is then answered by a high-

performance satisfiability modulo theories (SMT) solver.

• We further improve the mining framework by introducing weighted temporal log-

ics [127] that are able to distinguish the different contributions associated with the

components of the logic expression. Furthermore, these logics can to neutralize
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the affect of using various measurement units. Most importantly, the new logics

help the framework handle discrete events and speed up the mining process.

1.7 Organization

The remainder of the thesis is organized as follows. Chapter 2 discusses the

two main approaches for modeling hybrid systems. The first one transforms hybrid sys-

tems into discrete systems while the second one retains the original dynamic systems.

For each approach, we analyze the costs and benefits, and provide detailed examples.

Chapter 3 explores the first approach to verify discrete systems using symbolic tech-

niques. Chapter 4 details the advantages and disadvantages of retaining the original

dynamic systems and introduces a state-of-the-art temporal logic designed for analyzing

continuous signals of hybrid systems. Chapter 5 proposes a general framework for min-

ing high-level specifications from a closed-loop hybrid system. It also proposes improved

temporal logics used to enhance the result. Finally, in Chapter 6, we offer the conclusion

and the future work.
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Chapter 2

Models for Hybrid Systems

This chapter starts with a brief overview of dynamic systems and the for-

malisms used to model hybrid systems. Before proceeding, we establish some symbolic

conventions. Let R be the set of real numbers, Z be the set of integers, and N be the

set of natural numbers. Also, expressions are used to represent subsets of the these

sets, e.g., R≥0 represents the subset of real numbers greater than or equal to zero. R
n

denotes a vector space with n dimensions. Vectors in R
n are denoted in bold font and

their components are indexed from 1 to n, e.g., p = (p1, · · · , pn).

2.1 Overview of dynamic systems

Hybrid systems, ubiquitous in engineering applications, are dynamic systems

where both continuous and discrete behaviors are present. For better explanation, we

start with a review of dynamic systems. Dynamic systems are systems which automati-

cally react to the environment or to external inputs. A dynamic system can be described

by the evolution of the system state over time. System states are classified into three

types:
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Figure 2.1: A hybrid system diagram. The system interacts with the physical world,
represented as a plant which is guided by ordinary differential equations (ODE), and
a discrete cyber world, represented as a controller which is guided by a state transi-
tion system. Sensors monitor the plant and provide inputs to the controller through
an analog-to-digital (A/D) converter. The controller outputs go through a digital-to-
analog (D/A) converter and then drive the actuators.

• A continuous state is a state that has values in R
n, where n ≥ 1. We use x =

(x1, x2, . . . , xn) ∈ R
n to denote a continuous state. For instance, the continuous

variables such as speed and acceleration can be used to describe the state of an

automobile. A continuous dynamic system is a system that only has continuous

states.

• A discrete state is a state that has values in a countable set. For example, if we

use the gear position to describe the state of a four-speed automobile, its value

could be any of the four values 1, 2, 3, and 4. A discrete dynamic system is a

system where all states are discrete.

• A hybrid state is a state where parts of the state are continuous while others are

discrete. If we use speed, acceleration, and gear position to describe the state of an

automobile, then the state is hybrid. Thus, an automobile is normally considered

a hybrid system.
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The two main components of a typical hybrid system are a real-time control

system and a plant model, as shown in Figure 2.1. The plant models the continuous

dynamics of the physical system and its environment while the controller reacts to

and regulates the plant. Commonly, the controller is digital, but the plant is analog.

Thus, the hybrid system relies on sensors to monitor the plant. The controller pulls

the digitized outputs of sensors through an analog-to-digital (A/D) converter and uses

them to make logical decisions. Then, the control actions are converted to analog signals

through a digital-to-analog (D/A) converter and are applied to actuators to intentionally

regulate the plant. All components of a hybrid system form a closed-loop system so that

the system is able to constantly react to and regulate the physical world to achieve the

desired performance. In order to analyze the behavior a hybrid system, the concept of

time is key.

The physical dynamics modeled by the plant evolve over continuous time

T = R
≥0. This type of system is generally defined as a continuous-time system, and

its state space model [27, 45] is guided by the following set of ordinary differential

equations (ODE) [149]:























ẋ(t) = f(x(t),u(t), t)

y(t) = h(x(t),u(t), t),

(2.1)

where t ∈ T, x ∈ R
n, u ∈ R

m, y ∈ R
p, f : Rn × R

m × T→ R
n, h : Rn × R

m × T→ R
p;

x is a continuous state of the system; the vector space R
n is known as the state space

of the system and n is normally referred to as order or dimension of the system; t is

real time; ẋ(t) is the first derivative of x(t); u and y represent the input and output

functions, respectively, while m and p are their dimensions. We call the continuous-time

state evolution continuous flow. The function f specifies which direction the state of
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the system flows and is known as controlled vector field. Note that (2.1) only involves

first order differential equations. However, the system dynamics for many applications

are described by higher order differential equations. These systems can be transformed

to an equivalent state space form by introducing new variables [18].

The classic approach to analyze continuous-time systems is to use sampled-

data theory [146]. This theory assumes that the measurements and control actions are

polled at a fixed sampling rate. Thus, at discrete instants of time k, the input and state

are measured and the vectors x, y, and u are defined, where k ranges over the set of

nonnegative integers N. Thus, the time domain changes to T = N and the system is

defined as a discrete-time system. The state space model of a discrete-time system is

then described as a set of difference equations of the form [166]:






















x(k + 1) = f(x(k),u(k))

y(k + 1) = h(x(k),u(k)),

(2.2)

where k is the time-stamp when sampling, x(k) an n-dimensional state vector at time k,

u(k) an m-dimensional input vector at time k, and y(k) a p-dimensional output vector

at time k. Functions f and h in (2.2) can be written in matrix format as:






















f(x,u) = Ax +Bu

h(x,u) = Cx +Du,

(2.3)

where A is an n-by-n matrix, B an n-by-m matrix, C a p-by-n matrix, and D a p-

by-m matrix. Sampling not only helps to transform a continuous-time system into a

discrete-time system, but also simplifies the system. It provides the ability to analyze

challenging problems more efficiently [46]. This efficiency comes with cost, however.

For example, discrete-time models might miss some system behavior if under-sampled.

Thus, it is critical to choose an appropriate sampling period in order to reduce the
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Figure 2.2: The simplified gear shift logic of a four-speed transmission.

risk of fatal errors in some applications. Moreover, both discrete-time and continuous-

time systems can be further classified into linear or nonlinear systems depending on

whether the differential equations or difference equations are linear or nonlinear. Note

that most physical phenomena are nonlinear, which is one of the main reasons analyzing

continuous time dynamic systems is computationally expensive. For nonlinear hybrid

systems, researchers can only approach them through piecewise-constant polyhedral

approximation [112] or Taylor model-based flow-pipe construction [53] and hope that

the approximation analysis has enough precision and good convergence for the original

system.

The correct computation is merely the first step. Time is also an important

concept for the controller of a hybrid system. The time when computations are per-

formed affects the order of operations, which is critical to the interaction between the

plant and the controller [184]. Since the controller handles various types of sensors and

actuators, naturally, it is an asynchronous or event-driven system due to varying sam-

pling schemes, potential packet loss, and possible transmission delays. Normally, this

type of system is formalized as an automaton, an FSM or an NCFSM. Take our four-

speed automobile example again. A simplified version of the gear shift logic is shown

in Figure 2.2. The transmission position can only be one of the four gear values. The
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transition between any adjacent gears depends on a finite set of predefined events. For

example, if the transmission is at gear 3 and the speed of the vehicle increases to a

threshold predefined according to the current gear position, the gear shift logic emits

the gear UP signal which causes the physical gear to move up. We call this discrete

mode transition, discrete jump. Considerations such as how fast the controller responds

to the environmental changes, how long signals take to reach the controller from sensors

or arrive at actuators from the controller, and how frequently the controller samples the

environment are critical to the design of a controller. Although the controller might not

be directly affected by physical time, it has to change the physical environment before

or at a specific time.

A hybrid system naturally involves both continuous flows and discrete jumps.

It normally has a heterogeneous architecture and works in a highly concurrent fashion.

How to maintain the safety, stability, robustness, and reliability of the system strongly

depends on verification and validation analysis.

2.2 Modeling discrete systems

Recall that one option to model a hybrid system is to discretize a continuous

plant model to formalize the whole system into a discrete system. Then, we can ana-

lyze it using well-developed theories and tools. However, the complexity of events and

conditions as well as the non-determinism of the environment call for more powerful

and expressive formalisms such as a network of communicating FSMs (NCFSM) [115],

event-condition-action (ECA) rules [156], or Petri nets (PNs) [161]. These formalisms

provide better support for modeling and analysis. Here, we focus on the two important

and powerful formalisms: NCFSM and ECA rules.
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2.2.1 A network of communicating FSMs

The formalism of a network of communicating FSMs (NCFSM) was originally

proposed to model concurrent systems [44], such as communication systems and multi-

processor computers, consisting of several components communicating with each other

via first-in-first-out (FIFO) queues. Each component is modeled as a communicating

FSM (CFSM). In general, the state space of an NCFSM with unbounded queues is

infinite but the slow environment assumption [115], e.g., the system only reacts to the

environmental events only after consuming all internal events, avoids the need to manage

infinite state spaces. Fortunately, this assumption is satisfied by most systems. Here,

we tackle an NCFSM in a slow environment and model the communication channel as

a single global queue of size one.

2.2.1.1 CFSM

Let K ≥ 2 be the number of CFSM components in an NCFSM.

Definition 2.1. (communicating finite state machine) A communicating finite

state machine (CFSM) Mk (1 ≤ k ≤ K) is a six-tuple (Sk,Xk,Yk, δk, λk, sk), where:

• Sk is a finite set of local states, represented as circles.

• Xk is a finite set of input symbols, which can come from the environment or other

CFSMs.

• Yk is a finite set of output symbols, which can be absorbed by the environment or

become input symbols to other CFSMs.

• δk : Sk ×Xk → Sk is the local state transition function.

• λk : Sk ×Xk → Yk is the output function.
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c/ad/b
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Figure 2.3: An example of NCFSM Mex = (M1,M2) where S1 = S2 = {1, 2}, X1 =
{a, b}, X2 = {c, d}, Y1 = {c, x, y}, Y1 = {a, b, x}, and s1 = s2 = 1. M1 and M2

communicate with each other through a global channel with buffer size 1. Edge b/c
means that, in order to take the transition, the precondition of the state is the presence
of an input symbol b and the postcondition is the generation of an output symbol c. If
CFSMs M1 and M2 are at state 1, the presence of symbol a makes M1 take the transition
a/x and move to state 2 with an output symbol x.

• sk ∈ Sk is the initial state, indicated by the start mark. ✷

Given a CFSM Mk, for all i, j ∈ Sk, a ∈ Xk, and b ∈ Yk, if δk(i, a) = j and

λk(i, a) = b, we say that, when Mk is in local state i and receives input symbol a, it goes

to local state j and emits output symbol b. We write this local, or internal, transition

as i [Mk, a/b〉 j. Take CFSM M1 in Figure 2.3 for example. M1 has two states and the

local transition 1 [M1, a/x〉2 shows the precondition, the presence of symbol a, and the

postcondition, the generated symbol x, of the transition from state 1 to state 2.

This definition assumes that each CFSM component Mk is deterministic and

completely specified since for any i ∈ Sk and a ∈ Xk there exists exactly one j ∈ Sk

and one b ∈ Yk such that i [Mk, a/b〉 j. In practice, even if CFSMs are non-deterministic,

we can always transform them into deterministic ones using the powerset construction

method [119]. Also, if CFSMs are not completely specified, we can add self-loops to

generate an empty symbol ǫ to complete all missing transitions without changing the
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behavior of the system. A CFSM is initially connected if every local state can be reached

from its initial local state sk, and is strongly connected if every local state can be reached

from any other local state by feeding the CFSM an appropriate input string.

Extending δk and λk to input sequences by recursively applying λk and δk

results in for all i ∈ Sk, a ∈ Xk, and α ∈ X ∗
k ,

δk(i, ǫ) = i δk(i, aα) = δk(δk(i, a), α)

λk(i, ǫ) = ǫ λk(i, aα) = λk(i, a)λk(δk(i, a), α),

where ǫ is the empty symbol. We define that input sequence α ∈ X ∗
k distinguishes local

states i, j ∈ Sk if λk(i, α) 6= λk(j, α), and two local states are distinguishable if there is

a sequence that distinguishes them, otherwise they are equivalent. A CFSM is minimal

if it does not contain any two equivalent local states.

The main difference between a CFSM and an FSM is the ability to commu-

nicate. This means that a transition in one CFSM might cause transitions in other

CFSMs. It is straightforward to change a CFSM into an FSM with a FIFO channel

that links all FSMs and the environment. This channel is used to transport symbols

within the system as well as between the system and the environment. In the networks

and distributed systems literature, it is quite common to represent symbols as messages.

Here, we use buffer β to represent this FIFO channel.

In most real systems, the communication between CFSMs cannot be inter-

rupted by the environment. If the output symbol a of a CFSM can be absorbed by

another CFSM as an input symbol, then the system does not accept any other input

symbol from the environment until a has been consumed. This property is named slow

environment in the literature [115]. Another property states that the input alphabets

of any two CFSMs are disjoint. This property is important to prevent fatal errors due

to race conditions. We assume that both properties hold for our systems.
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2.2.1.2 NCFSM

Definition 2.2. (network of communicating finite state machine) A network

of CFSMs (NCFSM) is a (K+1)-tuple M = (β,M1,M2, ...,MK), where each Mk, for

1 ≤ k ≤ K, is a CFSM and β is a FIFO buffer with size 1 which can contain symbols

in transit among CFSMs. The semantics of an NCFSM is that of its product machine

Mprod, another six-tuple (S,X ,Y, δ, λ, sinit), where:

• Y =
⋃

1≤k≤K Yk is a finite set of output symbols.

• X =
⋃

1≤k≤K Xk is a finite set of input symbols and Xk∩Xh = ∅ for 1 ≤ k < h ≤ K.

• S is a finite set of global states. A global state is a (K + 1)-tuple (iβ , i1, ..., iK)

where iβ ∈ {ǫ} ∪ Y ∪ X and ik ∈ Sk, for 1 ≤ k ≤ K. Thus, S is the cross-product

({ǫ} ∪ Y ∪ X )× S1 × ...× SK .

• δ : S × ({ǫ} ∪ X )→ S is the global state transition function.

• λ : S × ({ǫ} ∪ X )→ Y is the global output function.

• sinit = (ǫ, s1, ..., sK) ∈ S is the initial global state. ✷

Let Zint = Y ∩ X be the set of internal symbols that can be placed in buffer

β; we underline these symbols to stress they are internal, e.g. in a. Let Yext = Y \ X

be the set of external output symbols of the NCFSM. Yext includes all output symbols

that can be absorbed by the environment and is disjoint from Zint. Let Xext be the set

of external input symbols that only the environment can place into buffer β, but can

also include any symbol in Zint, thus, X \ Y ⊆ Xext ⊆ X .

Given i = (i1, ..., iK), define i|k:jk to be the vector (i1, ..., jk, ..., iK), obtained

from i by setting the kth component to jk. A global state (iβ , i1, ..., iK) is considered
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stable if iβ = ǫ, and we represent it as i. Otherwise, it is unstable and we represent it as

a.i, where a ∈ Zint. Let Sst and Sunst be the set of reachable stable and unstable states

of the NCFSM, respectively, and let Srch = Sst ∪ Sunst be the set of reachable states.

If there is a local transition ik [Mk, a/x〉 jk, λ and δ are defined as:

• δ(i, a) = i|k:jk and λ(i, a) = x, with a ∈ Xext, and x ∈ Yext. The system transitions

between stable global states, so we write i [M,a/x〉 i|k:jk . M is omitted when it is

clear from the context.

• δ(i, a) = x.i|k:jk and λ(i, a) = ǫ, with a ∈ Xext and x ∈ Zint. The system transi-

tions from a stable global state to an unstable global state, so we write i [a/x〉x.i|k:jk .

• δ(a.i, ǫ) = i|k:jk and λ(a.i, ǫ) = x, with a ∈ Zint and x ∈ Yext. The system

transitions from an unstable global state to a stable global state, so we write

a.i [a/x〉 i|k:jk .

• δ(a.i, ǫ) = x.i|k:jk and λ(a.i, ǫ) = ǫ, with a ∈ Zint and x ∈ Zint. The system

transitions between unstable global states, so we write a.i [a/x〉x.i|k:jk .

Due to the slow environment assumption [115], a buffer of size one is sufficient,

as β can only contain zero or one symbol from Zint. Moreover, when in unstable global

states, the internal symbol held in β is not externally observable.

Also, we can extend δ and λ on global stable states to accept finite external

input symbol sequences as follows:

δ(i, ǫ) = i λ(i, ǫ) = ǫ

δ(i, aα) = δ(δ(i, a), α) λ(i, aα) = λ(i, a)λ(δ(i, a), α)

δ(a.i, α) = δ(i, aα) λ(a.i, α) = λ(i, aα).

Definition 2.3. (reachable stable global states) The set of reachable stable global
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states is defined as:

Sst = {j : ∃α ∈ X ∗
ext, δ(sinit, α) = j} ⊆ S,

while the set of reachable unstable global states contains all unstable global states reach-

able from any reachable stable global state:

Sunst = {a(n).i(n) : ∃i(0) ∈ Sst, ∃a
(0) ∈ Xext, ∃a

(1) · · · a(n) ∈ Z+
int,

i(0) [a(0)/a(1)〉a(1).i(1) [a(1)/a(2)〉 · · · [a(n−1)/a(n)〉a(n).i(n)} ⊆ S. ✷

Thus, the set of reachable global states is Srch = Sst∪Sunst. Given an NCFSM,

due to the slow environment assumption, neither the unstable global states traversed

nor the symbols in β are observable; only the symbols in Yext are. An NCFSM behaves

as a black box. Thus, we care more about the transitions between stable global states,

instead of invisible local transitions. These global state transitions have the following

definitions:

Definition 2.4. (stable global transition and stable output function) NCFSM in

stable global state i, if presented with external symbol a, proceeds through the sequence

of transitions:

i [a/a(1)〉a(1).i(1) [a(1)/a(2)〉 · · · [a(n−1)/a(n)〉a(n).i(n) [a(n)/b〉 j,

where n ≥ 0, j is a stable global state, and b is an external output symbol which will be

absorbed by the environment. The effect of this sequence can be merged and represented

as i [[M,a/b〉〉 j where M can be omitted when it is clear from the context. Correspondingly,

the stable global transition is defined as δobs(i, a) = j. Similarly, the stable global output

function is defined as λobs(i, a) = b. ✷

Definition 2.5. (observable product machine) The observable product machine

Mobs of an NCFSM is a six-tuple (Sst,Xext,Yext, δobs, λobs, sinit), where:
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Figure 2.4: The observable product machine Mobs for NCFSM Mex in Figure 2.3 where
Zint = {a, b, c}, Xext = {a, b, c, d}, Yext = {x, y}, and Sst = {(ǫ, 1, 1), (ǫ, 2, 1), (ǫ, 2, 2)} ⊂
{ǫ} × S1 × S2, and sinit = (ǫ, 1, 1).

• Sst is the set of reachable stable global states of Mprod.

• Xext is the set of external input symbols of Mprod.

• Yext is the set of external output symbols of Mprod.

• δobs : Sst × Xext → Sst is the stable global state transition function of Mprod.

• λobs : Sst ×Xext → Yext is the stable global output function of Mprod.

• sinit is the initial global state of Mprod. ✷

Consider NCFSM Mex in Figure 2.3, with Zint = {a, b, c}, Xext = {a, b, c, d},

Yext = {x, y}, sinit = (ǫ, 1, 1), and Sst = {(ǫ, 1, 1), (ǫ, 2, 1), (ǫ, 2, 2)} ⊂ {ǫ}×S1×S2. The

global state with i1 = 1 (M1) and i2 = 2 (M2) can only be unstable, as all incoming

transitions (not counting self-loops) to i2 = 2 and i1 = 1 only emit symbols in Zint. The

corresponding Mobs is shown in Figure 2.4. Mobs is required to verify the observational

equivalence of NCFSMs [150] between the specification and the implementation when

testing.

Let a1/b1, · · · , an/bn ∈ (Xext × Yext)∗ be a sequence from a state i ∈ Sst if
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λobs(i, a1 · · · an) = b1 · · · bn. Let Tr(i) be the set of all sequences from i ∈ Sst and let

Tr(M) = Tr(sinit). Then, we have Tr(Mobs) = Tr(M).

2.2.2 ECA rules

Another powerful formalism that can be used to model and analyze discrete

systems is event-condition-action (ECA) rules [156]. ECA rules are known for their ex-

pressiveness to describe complex events and reactions. Thus, this event-driven formalism

is widely used to specify complex systems [2, 23], e.g., for industrial-scale management,

and to improve efficiency when coupled with technologies such as embedded systems

and sensor networks. Active database management systems (DBMS) also enhance se-

curity and semantic integrity of traditional DBMSs using ECA rules; these are now

found in most enterprise DBMSs and academic prototypes thanks to the SQL3 stan-

dard [133]. ECA rules are used to specify a hybrid system’s response to events [23], and

are written in the format: On the occurrence of a set of events, if certain conditions

hold, perform these actions. This self-triggering manner for monitoring a physical sys-

tem uses resources efficiently, while providing stability to the system due to a flexible

knowledge-based control [21].

2.2.2.1 ECA rule syntax

ECA rules have the syntax: on events if condition do actions. If the events

have been activated and the boolean condition is satisfied, the rule is triggered and its

actions will be performed. In DBMSs, events are normally produced by explicit database

operations such as insert and delete [2] while, in reactive systems, they are produced by

sensors monitoring environment variables [23], e.g., temperature. Many current ECA

languages can model the environment and distinguish between environmental and
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env vars := environmental env var read-only bounded natural number

loc vars := local loc var read-and-write bounded natural number

factor := loc var | env var | ( exp ) | number “number” is a constant ∈ N

term := factor | term ∗ term | term / term “/” is integer division

exp := exp − exp | exp + exp | term

rel op := ≥ | ≤ | =

assignment := env var into loc var [, assignment]

ext ev decl := external ext ev [ activated when env var rel op number ] [ read (assignment) ]

int ev decl := internal int ev

ext evs := ext ev | (ext evs or ext evs) | (ext evs and ext evs)

int evs := int ev | (int evs or int evs) | (int evs and int evs)

condition := (condition or condition) | (condition and condition) | not condition | exp rel op exp

action := increase (loc var, exp) | decrease (loc var, exp) |

set (loc var, exp) | activate (int ev)

actions := action | (actions seq actions) | (actions par actions)

ext rule := on ext evs [if condition] do actions

int rule := on int evs [if condition] do actions [with priority number]

system := [env vars]+[loc vars]∗[ext ev decl]+[int ev decl]∗[ext rule]+[int rule]∗

Figure 2.5: The designed syntax of ECA rules. “/” is integer division. “number” is a
constant ∈ N. The superscript “+” indicates the match-one-or-more quantifier and “*”
the match-zero-or-more quantifier.

local variables [4, 29, 56, 145, 162, 178]. Thus, we designed a language to address these

issues, able to handle more general cases and allow different semantics for environmental

and local variables shown in Figure 2.5.

Environmental variables are used to represent environment states that can

only be measured by sensors but not directly modified by the system. For instance, if
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we want to increase the temperature in a room, the system may choose to turn on a

heater, eventually achieving the desired effect, but it cannot directly change the value of

the temperature variable. Thus, environmental variables capture the nondeterminism

introduced by the environment, beyond the control of the system. On the other hand,

local variables can be both read and written by the system. They may be associated

with an actuator, a record value, or an intermediate value describing part of the system

state; we provide operations to set (absolute change) their value to an expression, or

increase or decrease (relative change) it by an expression; these expressions may depend

on environmental variables.

Events can be combinations of atomic events activated by environmental or

internal changes. We use keywords external and internal to classify them. An external

event can be activated when the value of an environmental variable crosses a threshold;

at that time, it may take a snapshot of some environmental variables and read them

into local variables to record their current values. Only the action of an ECA rule

can activate internal events. Internal events are useful to express internal changes or

required actions within the system. These two types of events cannot be mixed within

a single ECA rule. Thus, rules are external or internal, respectively. Then, we say that

a state is stable if only external events can occur in it, unstable if actions of external

or internal rules are being performed (including the activation of internal events, which

may then trigger internal rules). The system is initially stable and, after some external

events trigger one or more external rules, it transitions to unstable states where internal

events may be activated, triggering further internal rules. When all actions complete, the

system is again in a stable state, waiting for environmental changes that will eventually

trigger external events.

The condition portion of an ECA rule is a boolean expression on the value of
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environmental and local variables; it can be omitted if it is the constant true.

The last portion of a rule specifies which actions must be performed, and in

which order. Most actions are operations on local variables which do not directly affect

environmental variables, but may cause some changes that will probably be reflected

in their future values. Thus, all environmental variables are read-only from the per-

spective of an action. Actions can also activate internal events. Moreover, to handle

complex action operations, the execution semantics can be specified as any partial order

described by a series-parallel graph; this is obtained through an appropriate nesting of

seq operators, to force a sequential execution, and par operators, to allow an arbitrary

concurrency. The keyword with priority enforces a priority for internal rules. If no

priority is specified, the default priority of an internal rule is 1, the lowest priority, the

same as that of external rules.

2.2.2.2 ECA rule semantics

In this section, we focus on the choices of execution semantics for the designed

ECA rule syntax, in order to support the modeling of reactive systems. The first choice is

how to couple the checking of events and conditions for our ECA rules. There are at least

two options: immediate and deferred. The event-condition checking is immediate if the

corresponding condition is immediately evaluated when the events occur; it is deferred

if the condition is evaluated at the end of a cycle with a predefined frequency. One

critical requirement for the design of reactive systems is that the system should respond

to external events from the environment [140] as soon as possible. Thus, we choose

immediate event-condition checking: when events occur, the corresponding condition is

immediately evaluated to determine whether to trigger the rule.

Although we choose to use immediate event-condition checking, deferred check-
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ing can still be modeled using immediate checking, for example by adding an extra vari-

able for the system clock and changing priorities related to rule evaluation to synchronize

rule evaluations. However, the drawback of deferred checking is that the design has to be

tolerant of false ECA rule triggering or non-triggering scenarios. Since there is a time

gap between event activation and condition evaluation, the environmental conditions

that trigger an event might change during this period of time, causing rules supposed

to be triggered at the time of event activation to fail because the “current ” condition

evaluation is now inconsistent.

Another important choice is how to handle and model the concurrent and

nondeterministic nature of reactive systems. We introduce the concept of batch for

external events, similar to the concept of transaction in DBMSs [176]. Formally, the

boundary of a batch of external events is defined as the end of the execution of all

triggered rules. Then, the system starts to receive external events and immediately

evaluates the corresponding conditions. The occurrence of an external event closes a

batch if it triggers one or more ECA rules; otherwise, the event is added to the current

batch. Once the batch closes and the rules to be triggered have been determined, the

events in the current batch are cleaned-up to prevent multiple (and erroneous) triggerings

of rules.

For example, consider ECA rules ra: “on a do · · · ” and rac: “on (a and c)

do · · · ”, and assume that the system finishes processing the last batch of events and

is ready to receive external events for the next batch. If external events occur in the

sequence “c, a, . . .” the first occurrence of c alone cannot trigger any rule so it begins,

but does not complete, the current batch. Then, the occurrence of a triggers both rule

ra and rac, and thus, closes the current batch. Both rules are triggered and will be

executed concurrently. This example shows how, when the system is in a stable state,
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the occurrence of a single external event may trigger one or more ECA rules, since there

is no “contention” within a batch on “using” an external event: rule ra and rac share

event a and both rules are triggered and executed. If instead the sequence of events

is “a, c, . . .”, event a by itself constitutes a batch, as it triggers rule ra. This event is

then discarded by the clean-up so, after executing ra and any internal rule (recursively)

triggered by it, the system returns to a stable state and the subsequent events “c, . . .”

begin the next batch.

Also, all external events in one batch are processed concurrently, and the system

finishes processing all events in one batch prior to considering the next one. Thus, unless

there is a termination error, the system will process all triggered rules, including those

triggered by the activation of internal events during the current batch, before considering

new external events. This batch definition provides maximum nondeterminism on event

order, which is useful to discover design errors in a set of ECA rules.

Under this semantics, during rule execution the system does not respond to

any external events and temporarily becomes unresponsive. Therefore, rule execution

should be as close to instantaneous as possible. However, from a verification perspec-

tive, environmental changes and external event occurrences are nondeterministic and

asynchronous. Thus, our semantic allows the verification process to explore all possi-

ble combinations without missing errors due to the order in which events occur and

environmental variables change.

2.2.2.3 ECA rules for a smart home

Next, the expressiveness of the designed ECA rules will be shown through an

automatic light control subsystem in a smart home for senior housing. Figure 2.6 lists the
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environmental Mtn, ExtLgt, Slp

local lMtn, lExtLgt, lSlp, lgtsTmr, intLgts

external SecElp read (Mtn into lMtn, ExtLgt into lExtLgt, Slp into lSlp)

MtnOn activated when Mtn = 1

MtnOff activated when Mtn = 0

ExtLgtLow activated when ExtLgt ≤ 5

internal LgtsOff, LgtsOn, ChkExtLgt, ChkMtn, ChkSlp

(R1) When the room is unoccupied for 6 minutes, turn off lights if they are on.

r1 on MtnOff if (intLgts > 0 and lgtsTmr = 0) do set (lgtsTmr, 1)

r2 on SecElp if (lgtsTmr ≥ 1 and lMtn = 0) do increase (lgtsTmr, 1)

r3
on SecElp if (lgtsTmr = 360 and lMtn = 0)

do ( set (lgtsTmr, 0) par activate (LgtsOff ) )

r4 on LgtsOff do ( set (intLgts, 0) par activate (ChkExtLgt) )

(R2) When lights are off, if external light intensity is below 5, turn on lights.

r5 on ChkExtLgt if (intLgts = 0 and lExtLgt ≤ 5) do activate (LgtsOn)

(R3) When lights are on, if the room is empty or a person is asleep, turn off lights.

r6 on LgtsOn do ( set (intLgts, 6) seq activate (ChkMtn) )

r7
on ChkMtn if (lSlp = 1 or (lMtn = 0 and intLgts ≥ 1) )

do activate (LgtsOff )

(R4) If the external light intensity drops below 5, check if the person is asleep and set the

lights intensity to 6. If the person is asleep, turn off the lights.

r8 on ExtLgtLow do ( set (intLgts, 6) par activate (ChkSlp) )

r9 on ChkSlp if (lSlp = 1) do set (intLgts, 0)

(R5) If the room is occupied, set the lights intensity to 4.

r10 on MtnOn do ( set (intLgts, 4) par set (lgtsTmr, 0) )

Figure 2.6: ECA rules for the automatic light control subsystem of a smart home for
senior housing.

requirements (R1 to R5) of such a system. Using motion and pressure sensors, the system

attempts to reduce energy consumption by turning off the lights in unoccupied rooms or

if the occupant is asleep. Passive sensors emit signals when an environmental variable

value crosses a significant threshold. The motion sensor measure is expressed by the

boolean environmental variable Mtn. The system also provides automatic adjustment
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for indoor light intensity based on an outdoor light sensor, whose measure is expressed

by the environmental variable ExtLgt ∈ {0, ..., 10}. A pressure sensor detects whether

the person is asleep and is expressed by the boolean environmental variable Slp.

MtnOn, MtnOff , and ExtLgtLow are external events activated by the environ-

mental variables discussed above. MtnOn and MtnOff occur when Mtn changes from

0 to 1 or from 1 to 0, respectively. ExtLgtLow occurs when ExtLgt drops below 6. Ex-

ternal event SecElp models the system clock, occurs every second, and takes a snapshot

of the environmental variables into local variables lMtn, lExtLgt , and lSlp, respectively.

Additional local variables lgtsTmr and intLgts are used. Variable lgtsTmr is a timer for

R1, to convert the continuous condition “the room is unoccupied for 6 minutes” into

360 discretized SecElps events. Rule r1 initializes lgtsTmr to 1 whenever the motion

sensor detects no motion and the lights are on. The timer then increases as time elapses,

provided that no motion is detected (rule r2). If the timer reaches 360, internal event

LgtsOff is activated to turn off the lights and to reset lgtsTmr to 0 (rule r3). Variable

intLgts acts as an actuator control to adjust the internal light intensity.

Our ECA rules contain internal events to express internal system actions or

checks not observable from the outside. LgtsOff , activated by rule r3 or r7, is used to

turn the lights off and activate another check on an outdoor light intensity through the

internal event ChkExtLgt (rule r4). ChkExtLgt activates LgtsOn if lExtLgt ≤ 5 (rule r5).

ChkSlp is activated by rule r8 to check whether a person is asleep. If true, the event

triggers an action that turns the lights off (rule r9). Internal event ChkMtn, activated

by rule r6, activates LgtsOff if the room is unoccupied and all lights are on, or if the

room is occupied but the occupant is asleep (rule r7).

When translating a set of requirements expressed in plain English into ECA

rules, two similar ECA rules may have very subtle differences. For example, consider R4
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in Figure 2.6 that is translated to rules r8 and r9 using the external event ExtLgtLow . An-

other translation could have directly used the external event SecElp as rule r′8: on SecElp

if (lExtLgt ≤ 5) do ( set (intLgts, 6) par activate (ChkSlp) ). The difference is that

r8 triggers the change of light setting as soon as the exterior light intensity falls below 6

monitored by external event ExtLgtLow , while r′8 would do this at the first occurrence

of SecElp after the exterior light falls below 6. The hybrid system using rule r′8 is more

tolerant of the potential small gap between these two events’ occurrence but it avoids the

need to use an external event which might result in reducing state space dramatically,

recalling the state space explosion problem.

2.3 Modeling hybrid systems

Although all aforementioned discrete modeling methods have strong and well-

developed computing theory to support analysis, discretizing inherited continuous vari-

ables and dynamics is still a detour to model hybrid systems. Researchers conclude that

a good modeling language for hybrid systems must have the following features [196]:

• Have consistent, rigorous, and expressive syntax and semantics for continuous-

time, discrete-time, and logic-based components.

• Support hierarchical composition and modular model construction.

• Have the ability to handle uncertainty in the environment and the system state

evolution.

Many languages have been proposed [8, 125, 160, 169, 186, 195, 196, 197, 198]. Some of

them provide rigorous semantics [8, 197] and allow logic checking and validation, but lack

accommodation for hierarchical composition model construction. Others [160, 186, 195]
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provide vivid visual representation and powerful simulation engines, but lack rigorous

semantics and the power to express uncertainty. HA and Simulink models are two

representatives. We will focus on these modeling methods in the following section.

2.3.1 Hybrid automata

HA are a well-studied formal language to model hybrid systems [6, 8, 12]. The

language itself is quite expressive. However, it is not compositional and abstraction-

friendly. Syntactically, a hybrid automaton extends normal FSMs with a set of continu-

ous variables and uses edges to represent discrete jumps that are instantaneous actions,

vertices to describe continuous flows, and time elapsing activity through differential

equations [107].

Definition 2.6. (hybrid automaton) A hybrid automaton is defined by a eight-tuple

as H = (Loc,Var ,Labels,ΣInit , Inv ,Flow ,Edges, Jump), where:

• Loc is a set of vertices, which are called locations or control modes.

• Var is a set of continuous variables. Each variable x ∈ Var takes values in R. ˙Var

represents the first derivatives of these variables. We use V ⊆ R
n to represent the

set of all possible valuations of Var where n is the number of variables and also

the dimension of the hybrid system. V is also called the data region and is a finite

union of convex polyhedra in R
n.

• Labels is a finite set of synchronization labels and is used to define the parallel

composition of two or more HA.

• ΣInit ⊆ Σ is a set of initial states, where Σ = Loc×V denotes the potential hybrid

state space of H, normally infinite state space.
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• Inv : Loc → V is a set of invariants for each location, also called guard conditions.

The system must leave location l if the invariant Inv(l) does not hold.

• Flow is a set of activity functions which assigns a set of activities to each location

l ∈ Loc. Each activity defines the rates at which the values of continuous variables

change in control location l. Normally, activities are in the form of differential

equations.

• Edges is a set of transitions. Each transition e = (l, a, l′) where l is the “from”

location, a a synchronization symbol in Labels, and l′ the “to” location.

• Jump is a labeling function that assigns to each transition e ∈ Edges, a boolean

condition and all variable changes during the transition. Only when the condition

is true, the transition is enabled and subsequently executed, and then all values

of variables are changed nondeterministically. For example, Jump(e) = ({x}, x ≥

25, 30 ≤ x′ ≤ 40) states that transition e can happen only if the value of x is at

least 25 and the value of x can be nondeterministically chosen between 30 and

40, with all other variables, if any, remaining unchanged. The former part of the

labeling function, x ≥ 25, is a trigger condition while the latter, 30 ≤ x′ ≤ 40,

assigns values to all continuous variables.

Solving verification problems for HA is extremely hard, and most are unde-

cidable even under severe restrictions [8, 14]. Researchers have limited themselves to

rectangular hybrid automata (RHA) [108, 110], or linear hybrid automata (LHA) [8, 12].

RHA define initial, invariant, and jump labeling functions and actions in rectangular

regions, a cartesian product of intervals on R all of whose endpoints are rational [108].

Thus, an activity of a vertex flow 5 ≤ ẋ ≤ 10 defines that x rises at any rate between 5

and 10. This is also called rectangular activity. LHA restrict all these functions further
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to boolean combinations of linear combinations of real variables. Also, flow functions

only contain free variables in Var ∪ ˙Var and all flows are defined in the form of ẋ = Z.

For instance, the invariant condition of a vertex could be 0 ≤ x ≤ 100, which indicates

that the state stays in this vertex as long as the value of x is in the range from 0 to 100,

and the activity of the flow could be ẋ = 5, which defines the increase rate of x is 5.

A special case of LHA is timed automata [10]. A timed automaton has an

implicit time variable xl for all control locations l ∈ Loc and a default activity ẋl =

1. Timed automata have shown success in modeling and verifying both hardware [42]

and software [40] and are well-supported by many tools [17, 33, 35, 36, 41, 43, 81,

136]. Although the severe restriction makes the analysis easier but less expressive for

real problems, the critical problems for nondeterministic timed automata are that, the

language itself is not closed under complement, and the universality problem, checking

whether the language of a given timed automaton over the alphabet A comprises all

timed words over A, is undecidable [10, 137].

2.3.1.1 Hybrid automata semantics

Recall that the state of HA H is a pair (l,v) which specifies a control location

and a valuation for all real variables. H can evolve in two ways. After a nonnegative

time duration I, v changes to v′ according to the location flow functions, the invariants

associated with the location should still hold, and the location remains the same. This

type of system evolution is named time progress, represented as (l,v) ⇒t (l,v′). At

some time point t, when a flow violates invariants at a location and action predicates

are enabled, H will take a transition progress through a transition e resulting in changing

the control location and resetting some variables, represented as (l,v)⇒e (l′,v′). This

type of discrete transition is normally assumed to be instantaneous, allowing multiple
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discrete transitions to happen theoretically at the same time [151]. After this discrete

jump, the continuous flow resumes. Then, we can aggregate both progress and define

simple progress as (l,v) ⇒ (l1,v1) iff there exists v′,v1 ∈ V and l1 ∈ Loc such that

(l,v) ⇒t (l,v′) ⇒e (l1,v1). Moreover, the simple progress relation ⇒ can be extended

to sets of states. For instance, if (l,v), (l1,v1) ∈ Σ and Σ1,Σ2 ⊆ Σ define (l, v)⇒ Σ1 iff

(l,v)⇒ (l1,v1) ∧ (l1,v1) ∈ Σ1. Also, define Σ1 ⇒ Σ2 iff (l,v)⇒ Σ2 ∧ (l,v) ∈ Σ1.

Formally, the evolution of a hybrid system must follow the following conven-

tions:

• The system starts at an initial state in ΣInit at time t0 = 0.

• Only the action predicates enable discrete transitions even if the flow in a location

violates the defined invariants.

• Discrete transitions have priority when both discrete transitions and continuous

evolution are able to proceed and during the continuous evolution the discrete

location remains the same.

The parallel composition of two HA H1 and H2 over a common set of variable

Var can be used to model complex hybrid systems. Similar to CFSMs, H1 and H2 com-

municate with each other through the mutual labels Labels1∩Labels2. H1||H2 uses spe-

cial timed semantics and time-abstract semantics to keep things simple: if both share the

label a, they must synchronize on a-transitions; otherwise, a transition takes 0 duration

for the other HA. Also, both HA share the same duration during the flow transition. The

resulting H1||H2 is still a hybrid system defined on Loc1 × Loc2 ,Var ,Labels1 ∪ Labels2,

and ΣInit1 × ΣInit2 . The transition edges contain three cases: H1 makes transition

progress, H2 makes transition progress, or both make a move on the shared synchro-

nization label. All the other predicates and conditions are the conjunction of those from
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ẋ = K(H − x)

20 ≤ x ≤ 25
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ẋ = −Kx
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Figure 2.7: The HA for a thermostat controlling the indoor room temperature using
a heater which is represented as a continuous variable x. A heating device will be
automatically turned on if the room temperature, x, drops below 20◦C and be turned
off once x reaches 25◦C. The temperature will fall according to ẋ = −Kx without
the heater and rises according to ẋ = K(H − x), where K and H are constants for
thermodynamics.

H1 and H2.

2.3.1.2 A thermostat example

Here, we use a simple example to demonstrate how to model hybrid systems

using HA. A thermostat is an automatic control system to regulate indoor temperature

using heating devices, shown in Figure 2.7. The system constantly monitors the room

temperature and decides to turn a heater on or off. The thermodynamics are governed

by differential equations on room temperature represented by a continuous variable x.

We simply assume that x decreases according to the exponential function x(t) = x0 ·e
−Kt

when the heater is off and increases according to x(t) = x0 · e
−Kt +H(1− e−Kt) where

x0 is the initial room temperature, constant H is determined by the power of the heater,

and constant K is adjusted according to the dimension of the room [6]. Thus, the flow

activity is ẋ = K(H − x) for control location on and ẋ = −Kx for location off . The

heater will be turned on if the room temperature drops below 20◦C and be turned off

if the temperature rises above 25◦C. We assume the heater is on in the initial state.

Thus, the thermostat system is a hybrid automaton with:
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• Loc = {On,Off };

• Var = {x} where V = R;

• Labels = ∅;

• ΣInit = {On × V };

• Inv(On) = Inv(Off ) = {x ∈ V : 20 ≤ x ≤ 25};

• Flow(On) = {x ∈ V : ẋ = K(H − x)} and Flow(Off ) = {x ∈ V : ẋ = −Kx};

• Edges = {(On,Off ), (Off ,On)};

• Jump(On,Off ) = {x ∈ V : x > 25, x′ = x} and Jump(Off ,On) = {x ∈ V : x <

20, x′ = x}.

Formalisms such as timed automata [10] and HA [8] emphasize the underly-

ing mathematical principles and discrete transition structures of design systems. This

provides them with rigorous theoretical background, but less practical problem solving

ability. Especially when modeling real hybrid systems, their lack of ability to handle

compositional construction and abstraction hinders their adoption in solving real prob-

lems [31]. However, if we analyze hybrid systems only by their physical behaviors with

respect to time, this eases the burden of analyzing mathematical equations and complex

hierarchical composition structures and provides us with visual results of how hybrid

systems evolve.

For instance, Figure 2.8 shows a simulation of the thermostat system in Fig-

ure 2.7 across 24 hours with initial temperature x0 = 21 at t0, H = 32, and K = 0.2.

The system has 12 discrete jumps marked as switching points. The heater is on at initial

state and stays on during the time interval I0 = [t0, t1]. At time t1, the temperature
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Figure 2.8: One simulation result of the thermostat in Figure 2.7 in the duration of 24
hours with initial room temperature x0 = 21 and the heater is on. The values chosen
for the constants are H = 32 and K = 0.2. All switching points are marked by dark
circles.

is over 25◦C and the discrete transition switches off the heater. The heater remains

off during I1 = [t1, t2], until the temperature drops below 20◦C. The system turns the

heater back on at time t2. The fluctuation of temperature is always within the range

[19,26] and the system achieves its purpose of temperature regulation. This type of

modeling and simulation analysis strategy is explained in the next section.

2.3.2 Signals and hybrid systems

Analyzing hybrid systems based on simulation signals gives us more flexibility

to handle and analyze larger or even industrial-sized hybrid systems. This simulation-

based modeling method tries to model hybrid systems in a more computationally sci-

entific way and provides a view using numerical algorithms and approximations. This

method relies on numerical integration algorithms [179], called solvers to compute the

system dynamics over time at discrete time points. Between discrete time points, lin-

ear or polynomial interpolation will be used to provide the numerical solution within
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a predefined precision. Intervals between discrete time points are called steps, the size

of which could be fixed or variable according to solvers. In MATLAB [174], Simulink

and Stateflow provide continuous and discrete simulations, respectively. The methods

integrate well with the MBD trend.

We define a signal, also named trajectory, as a function mapping the time

domain T = R
≥0 to the reals R. Boolean signals, used to represent discrete dynamics, are

signals whose values are restricted to false (denoted ⊥) and true (denoted ⊤). Likewise,

a multi-dimensional signal x is a function from T to R
n such that ∀t ∈ T, x(t) =

(x1(t), · · · , xn(t)). A hybrid system S (such as a Simulink model [186]) is an input-

output mapping: it maps a set of initial operating conditions and input signals u(t) to

output signal x(t). A trace is a collection of output and input signals resulting from the

simulation of a system which can be viewed as a multi-dimensional signal. An implicit

assumption for analyzing hybrid systems only using signals is that, for each special

initial condition and input signals u(t), the computed output signals x(t) have to be

unique [3, 210]. In other words, the considered system has to be deterministic or the

numerical algorithms for simulation have to be deterministic.

2.3.2.1 A four-speed automatic transmission example

Consider as an example a closed-loop model designed for a four-speed auto-

matic transmission controller of a vehicle as shown in Figure 2.9. Although this model

is not a real industrial model, it has all the necessary mechanical components: models

for an engine controller, a transmission controller, and a plant model for a vehicle. The

transmission block computes the transmission ratio (Ti) using the current gear status

and computes the output torque from the engine speed (Ne), the gear status, and the
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Figure 2.9: The closed-loop Simulink model of an automatic transmission controller.
The inputs to the model are the throttle position and the brake torque. The outputs
are gear position, engine speed in rpm, and the vehicle speed in mph. The discrete gear
shift logic is done using Stateflow. The continuous plant model in Vehicle modular is
constructed using continuous block in Simulink.

transmission RPM. The other two blocks represent the gear shift logic and the related

threshold speed calculation. The model takes the percentage of the throttle position

and the brake torque as inputs.

The transmission controller has four gears, and the system switches from gear

i up to gear i+1 or down to gear i−1 based on certain conditions on the current gear i,

the current speed of the vehicle, and the applied throttle. Switching gears is necessary

for energy efficiency because the engine generates less power at very low or very high

speeds. Thus, for efficiency, at a certain gear position the automatic transmission will

shift gear up or down when the engine speed reaches the threshold speed. The threshold

speed for each gear is specified in a look-up table that is indexed by the current gear and

the applied throttle. The interesting signals are the vehicle speed measured in miles per

hour (mph), the transmission gear position, and engine speed measured in rotations

per minute (rpm).

The correctness of the design is confirmed if all possible system behaviors are
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Figure 2.10: Falsifying trace for the automatic transmission controller and the require-
ment that RPM never goes beyond 4500 rpm or speed beyond 120 mph.

as expected. However, each simulation result is an individual instance of the system

behavior. Moreover, the potential state space is normally infinite, so it is impossible to

obtain all possible simulation results. Thus, the problem of validation is more practical.

Suppose the designer of this transmission system wants to ensure the requirement that

the engine speed never exceeds 4500 rpm and that the vehicle never drives faster than

120 mph. After simulating the closed-loop system we can show that these requirements

are not met, as illustrated in Figure 2.10.

However, the straightforward result for a human being is not obvious for a

machine. Later, in Chapter 4, rigorous temporal logic will be introduced to specify

acceptable behaviors and automatically verify whether a trace satisfied the specification.

Moreover, this negative result does not provide further insight into the model. If a

requirement does not hold, we would like to know what does hold for the controller, and
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by how much the controller misses the requirements. Such a characterization would shed

more light on the workings of the system, especially in the context of legacy systems

and for reverse engineering the behavior of a very complex system. In the context of

this example, it would help to know the maximum speed and RPM that the model can

reach, or the minimum dwell time that the transmission enforces to avoid frequent gear

shifts. In Chapter 5, we present a technique to automatically obtain such requirements

from the model.

2.4 Conclusion

In this chapter, we focused on modeling methods for hybrid systems. Since hy-

brid systems contain both continuous dynamics and discrete transitions, each modeling

method has its own perspective for viewing hybrid systems and has its own advantages

and disadvantages. Discretizing the whole system results in a discrete system such as

an NCFSM. This simplifies the considered system and reduces the potential state space

to be analyzed in the future. ECA rules provide more powerful syntax and semantics to

model both the environment and the system due to their expressive power to describe

complex events and conditions. However, discretization ignores inherent continuous dy-

namics and can cause critical errors when analyzing time-sensitive systems. On the

other hand, directly modeling hybrid systems can be done using HA, which have rigid

theoretical and mathematical foundations. However, the syntax and semantics do not

have good support for hierarchical compositional design; also the analysis of HA without

severe constraints is NP-hard. All these facts limit their usage in real applications. A

promising modeling method that is widely adopted by industry treats hybrid systems

as signals. This largely releases the burden of analyzing complex continuous dynamics
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and hierarchical composition structures and uses numerical algorithms to compute the

trajectories of the system. However, the numerical precision and the algorithm stability

are the remaining problems. Also, the deterministic requirement is another restriction

of modeling hybrid systems. All the modeling methods introduced in this chapter will

be used to explore techniques to analyze hybrid systems in the following chapters.
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Chapter 3

Symbolic Verification of Discrete

Systems

Traditional techniques to analyze discrete systems can be classified as either ex-

plicit or symbolic. Explicit methods enumerate and store each state individually. They

normally use graph-based search algorithms such as breadth-first search (BFS) or depth-

first search (DFS) to explore the state space and to verify its properties. Symbolic meth-

ods, on the other hand, encode states implicitly by using compact data structures, called

decision diagrams. Symbolic encoding also provides efficient manipulation algorithms

for state sets. Although both techniques still suffer from the state space explosion prob-

lem, they also provide different solutions to reduce its impact. Explicit methods exploit

symmetries [70, 71] within the model and use partial order reduction [95, 101, 117, 202]

to effectively reduce the state space. Symbolic methods naturally have the advantage

that they are able to encode large state sets compactly without losing any information.

Research efforts focus on how to reduce the peak size of the data structure during the

computation [49, 58], how to find a good encoding strategy [24, 38, 98, 59], and how to
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increase the convergence speed [168, 177, 190]. In this chapter, we mainly focus on using

symbolic techniques to improve both capability and efficiency when verifying discrete

systems.

3.1 Decision diagrams

The key ingredient of symbolic approaches is to use decision diagrams, more

often referred to as binary decision diagrams (BDDs) [47]. BDDs were originally de-

signed to encode and manipulate binary functions. These methods have been widely

adopted and evolved to new forms, such as multi-way decision diagrams (MDDs) [130]

and edge-valued multi-way decision diagrams (EV+MDDs) , and successfully used to

analyze circuits [48, 50, 114], concurrent systems [78], probabilistic systems [134], and

real-time systems [113] for the past few decades. We choose to use MDDs to encode

boolean functions for sets and EV+MDDs [64] to encode partial integer functions where

∞ means “undefined”.

Given L domain variables vl (1 ≤ l ≤ L) having finite domain Vvl and a

boolean range variable v0, ordered vL ≻ · · · ≻ v1 ≻ v0, a (quasi-reduced) MDD is a

directed acyclic edge-labeled graph where:

• Each nonterminal node p is associated with a domain variable vl. We write p.v =

vl.

• The terminal nodes are 0 and 1, and are the only nodes with 0.v = 1.v = v0.

• A nonterminal node p with p.v = vl has, for each i ∈ Vvl , an edge pointing to node

q, with either q.v = vl−1 or q = 0. We write p[i] = q. We must have at least one

p[i] 6= 0.
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• For canonicity, there are no duplicates: given two nonterminal nodes p and q with

p.v = q.v, there must be at least one i ∈ Vp.v such that p[i] 6= q[i].

A nonterminal MDD node p with p.v = vl encodes the set of tuples recursively

defined by Bp =
⋃

i∈Vvl

{i} · Bp[i], with terminal cases B0 = ∅, the empty set, and

B1 = {ǫ}, the empty tuple, where “·” indicates tuple concatenation.

To encode partial integer functions, we need a variant of the above. A normal-

ized EV+MDD [64] is a directed acyclic edge-labeled graph where:

• Ω is the only terminal node, with Ω.v = v0.

• A nonterminal node a with a.v = vl has, for each i ∈ Vvl , an edge labeled with

ρ ∈ N ∪ {∞} pointing to node b. We write a[i] = 〈ρ,b〉, b = a[i].node, and

ρ = a[i].val. We must have b = Ω if ρ =∞, b.v = vl−1 otherwise, and at least one

a[i].val = 0.

• For canonicity, there are no duplicates: given two nonterminal nodes a and b with

a.v = b.v, there must be at least one i ∈ Vp.v such that a[i] 6= b[i], i.e., either

a[i].node 6= b[i].node, or a[i].val 6= b[i].val, or both.

Given EV+MDD node a with a.v = vl and n ∈ N, 〈n,a〉 encodes the function

f〈n,a〉 : Vvl × · · · × Vv1 → N ∪ {∞} recursively defined by f〈n,a〉 = n + fa[vl], with base

case f〈n,Ω〉 = n.

Union(a, b) and Intersection(a, b) are two operators used to compute the MDD

encoding Ba∪Bb and Ba∩Bb. Analogously, Minimum(〈n,a〉, 〈m,b〉), returns the EV+MDD

encoding min(f〈n,a〉, f〈m,b〉), and Normalize puts an EV+MDD in canonical form [64],

i.e., normalizes edge values so that at least one is zero for each node, while still encoding

the same function.
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To make MDDs more compact and their manipulation more efficient, edges

can skip variables under various reduction rules [47, 204]. These rules ensure canonicity

and implicitly define the meaning of skipping edges. We associate a reduction rule

RR(vl) ∈ {F, I,Q} to each variable vl with the following interpretations:

• RR(vl) = F . The fully-reduced rule forbids redundant nodes. Node p, associated

with vl, is a redundant node, if and only if for all i ∈ Vvl , p[i] lead to the same

node.

• RR(vl) = I. The identity-reduced rule forbids singular nodes. If node q has the

only outgoing edge q[iq] 6= 0 and edge p[iq] points to q, node q is a singular node.

• RR(vl) = Q. The quasi-reduced rule forbids edges skipping variables. For any

i ∈ Vpv , if p[i] = q 6= 0 we have p.v ≻ q.v in the predefined variable order list.

The same technique can be applied to EV+MDDs.

3.2 LTL and CTL

Temporal logics provide a formalism to describe the properties of discrete sys-

tems. It extends first-order logic with temporal operators. Computational tree logic

(CTL) [69, 74] and linear temporal logic (LTL) [170] are two widely used logics. CTL

considers the system evolution as a branching tree with potentially different future

branches, while LTL treats it as a set of evolution paths, so that for each of these path

the future lies in one direction. Both are defined on a set of atomic propositions AP

with a labeling function which maps each state to a subset of AP. Temporal formulas are

formed using the following temporal operators: “always” (denoted as G), “eventually”

(denoted as F), “next” (denoted as X), and “until” (denoted as U).
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Definition 3.1. (LTL syntax) An LTL formula over a set of atomic propositions AP

is inductively defined using the following grammar:

ϕ := ⊤ | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 Uϕ2

where a is an atomic proposition in set AP . ✷

Both the “eventually” operator F and the “always” operator G can be derived

from the “until” operator U, as follows:

Fϕ = ⊤Uϕ (3.1)

Gϕ = ¬F¬ϕ (3.2)

An LTL formula describes the property of paths, infinite behaviors. The semantics of

LTL formula ϕ is defined as a language that contains all infinite words over 2AP satisfying

ϕ. Here, given an infinite word σ = A0A1A2 . . . ∈ (2AP )ω, σi = AiAi+1Ai+2 . . . denotes

the suffix of σ starting from symbol Ai.

Definition 3.2. (LTL semantics) Given an infinite word σ = A0A1A2 . . . over a set

of atomic propositions AP, the LTL semantics of formula ϕ are defined as follows:

σ |= a iff A0 |= a (a ∈ A0)

σ |= ¬ϕ iff σ |=/ ϕ

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ϕ1 Uϕ2 iff ∃ j ≥ 0 s.t. σj |= ϕ2 and ∀ 0 ≤ i < j, σi |= ϕ1

where a ∈ AP . ✷

The derived operators have then the following semantics:

σ |= Fϕ iff ∃ j ≥ 0 s.t. σj |= ϕ

σ |= Gϕ iff ∀ j ≥ 0 s.t. σj |= ϕ
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The LTL is linear due to its qualitative interpretation of time: at each point

in time there is only one possible successor state. Thus, the interpretation of an LTL

formula can be also defined on an infinite sequence of states. Each state s is associated

with a set of atomic propositions that is satisfied in that state. We define label function

L(s) which returns the satisfied atomic proposition set in state s. Instead of an infinite

path, CTL considers a branching notion of time [26] at each state. Thus, there may

exist many possible successor states for each state, and we define function Path(s)

which returns all paths starting from s. Then, an infinite word equals to one possible

infinite path starting from s and we have σ = s0s1s2 . . .. We use function σ[i] = si to

denote the ith state of a path. CTL defines path quantifier “existential” (denoted as

E) and “universal” (denoted as A) to allow CTL formulas to express “some” or “all”

computations from a state in an infinitely branching tree.

Definition 3.3. (CTL syntax) A CTL state formula is inductively defined using the

following grammar:

φ := ⊤ | a | ¬φ | φ1 ∧ φ2 | Aϕ | Eϕ

where a ∈ AP and ϕ is a path formula formed using the following grammar:

ϕ := Xφ | φ1 Uφ2

where φ, φ1, φ2 are state formulas. ✷

Definition 3.4. (CTL semantics) Given a set of atomic propositions AP, label func-

tion L, and function Path(s) for generating all paths starting from s, the CTL semantics
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of a state formula φ at a state s are defined as follows:

s |= a iff a ∈ L(s)

s |= ¬φ iff s |=/ φ

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= Eϕ iff ∃σ ∈ Path(s) s.t. σ |= ϕ

s |= Aϕ iff ∀σ ∈ Path(s) s.t. σ |= ϕ

and

σ |= Xφ iff σ[1] |= φ

σ |= φ1 Uφ2 iff ∃ j ≥ 0 s.t. σ[j] |= φ2 and ∀ 0 ≤ i < j, σ[i] |= φ1

where σ is a path from s; ϕ is a path formula; φ, φ1, and φ2 are state formulas. ✷

Also, from the definitions of F and G operators in (3.1) and (3.2), we can derive

the following operators:

AFφ = A(⊤Uφ) (3.3)

EFφ = E(⊤Uφ) (3.4)

AGφ = ¬EF¬φ (3.5)

EGφ = ¬AG¬φ (3.6)

Both CTL and LTL have shown their success in software and hardware verification [52,

94, 105]. Many properties can be specified using either CTL or LTL, but their expres-

siveness is incomparable [68]. Some CTL formulas have no equivalent LTL formulas and

vice versa.
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Figure 3.1: A simple example of system evolution for Mex in Figure 2.3. Figures (a),
(c), (e), and (g) are MDDs encoding states while (b), (d), and (f) are MDDs encoding
transitions. Shaded arrows mean to apply transitions to states and slim arrows point to
the result.

3.3 Symbolic verification of a network of communicating

FSMs

3.3.1 Symbolic encoding of an NCFSM

Given an NCFSM with K component CFSMs and a system buffer, variables

(wK ,. . . ,w1,wb) describe the global state. The first K variables individually store the

local state components of each CFSM, while wb stores the current buffer content. In

the following, we use the quasi-reduced rule for MDDs encoding the set of global states

S. The initial global state sinit of Mex in Figure 2.3 is shown in Figure 3.1(a). For all

MDD figures, we only display paths leading to terminal 1 and omit the terminal nodes.

We capture the global state transition function δ and output function λ with

a next-state function T : S × (X ∪ {ǫ}) → S × (Y ∪ {ǫ}) encoded using MDDs on

2(K + 1) variables (wK , w
′
K , ..., w1, w

′
1, wb, w

′
b), so that T (x, y) = (x′, y′) iff δ(x, y) = x′

and λ(x, y) = y′, where x and x′ are stable or unstable global states and y and y′ are

symbols in X ∪ Y ∪ {ǫ}. The unprimed and primed variables represent the interleaved
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Figure 3.2: A demonstration of applying fully-reduced and identity-reduced rules. Fig-
ure (a) encodes transitions in quasi-reduced rule. Applying identity-reduced rule on
variable w′

1 in (a) results in (b) and applying fully-reduced rule on variable w1 in (b)
results in (c).

“from” and “to” global states, distinguished by their background color (black for “from”

and white for “to”). wk and w′
k describe states of the same component. Thus, they

share the same variable domain Vwk
and variable order position. wb and w′

b correspond

to input and output symbols in buffer β. In conclusion, we can symbolically encode S

and T using (K+1)-variable and 2(K+1)-variable MDDs, respectively (types mdd and

mdd2 in the following algorithms).

Transitions that affect a given component only change the corresponding vari-

able (we call this locality). Thus, we store the MDDs encoding T in disjunctive form

as T = (
⋃

1≤k≤K Tk) ∪ Tβ , where Tk encodes the next-state function of Mk, and Tβ

encodes the interaction between the system and the environment. For further efficiency,

we adopt the quasi-fully-identity-reduced (QFI) rule [205] to more compactly encode

each disjunct. Take partial transitions for example. The quasi-reduced encoded MDD

is shown in Figure 3.2(a). Nodes at variable w1 and w′
1 qualify for identity reduction

since edges from w1 to w′
1 have the same indexes and all the edges point to the same
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Figure 3.3: QFI-reduced MDDs encoding transition T of Mex in Figure 2.3, where (a)
for T1, (b) for T2, and (c) for Tβ .

node. The resulting I-reduced MDD in (b), is amenable to fully-reduced rule on variable

w1 since the domain of w1 is {1, 2}, all nodes for w1 have full edges, and all edges for

each node lead to the same child. The final QFI-reduced MDDs in (c) encode the same

information as Q-reduced MDDs but use fewer nodes. Thus, if the interpretation of

the missing nodes along these long jumping edges is well-defined, applying the appro-

priate reduction rule can save memory while encoding the same amount of information.

Applying the QFI-rule to T of Mex in Figure 2.3, the results are shown in Figure 3.3,

where (a) for T1, (b) for T2, and (c) for Tβ . MDDs following the QFI-reduced rule have a

compact encoding of transitions and are easy to build. QFI-rule will be extensively used

in advanced algorithms to achieve great improvement, as discussed in the next section.

Next, we use Figure 3.1 to show how to apply T to S symbolically. Here, shaded

arrows signify an application of T and slim arrows point to the result. The system starts

from sinit of NCFSM Mex in (a). Applying (b), the next-state function encoding the
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arrival of external input symbol a, results in a new global state (c), with two unchanged

local states and symbol a in buffer β. Then, next-state function (d) becomes enabled,

which changes the local state of M1 and outputs symbol x, as the result state in (e). Due

to x is an external output symbol, it is absorbed by the environment (f), and the system

reaches another stable global state (g). Thus, (c)-(e) together correspond to the step

a.(1, 1) [a/x〉 (1, 2) and (a)-(e) represent stable global transition (1, 1) [[a/x〉〉 (1, 2). While

the sets manipulated in this illustrative example contain only a single state, symbolic

algorithms normally manipulate very large sets of states when applied to real models.

3.3.2 Reachability analysis for an NCFSM

Reachability analysis is the fundamental step in the study of discrete systems.

With symbolic encoding, applying transition relations to a set of reachable states obtains

the next set of reachable states. The simplest algorithm for reachability analysis is based

on BFS [157], which starts from an initial global state set sinit and repeatedly applies

next-state function T on currently reachable states to search successive reachable states,

until no more can be found. Thus, the reachable state set is Srch = {sinit} ∪ T (sinit) ∪

T 2(sinit)∪ · · · . Procedure BFS contains these heavyweight global fixed-point iterations

at Lines 2-6 of Figure 3.4. Procedure RelProd applies transition to states to generate

the next reachable states. Procedure BFS calls RelProd with Line 14b.

Due to locality, the saturation algorithm [60], shown as Procedure Saturate in

Figure 3.4, tends to be much more efficient than BFS for asynchronous discrete-state

systems. The MDD roots of the disjuncts in the QFI encoding of T = (
⋃

1≤k≤K Tk)∪Tβ

are assigned to distinct variables. Saturation exploits the property that Tk cannot change

any state variable above wk, and proceeds in phases, from the bottom variable wb up to
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mdd BFS (mdd sinit, mdd2 r)
1 mdd s← sinit;

2 repeat

3 mdd spre ← s;

4 mdd snext ← RelProd(spre, r); •Use 14b to generate the next reachable

state set

5 s← Union(spre, snext);

6 until s = spre; •Reach the fixed-point

7 return s;

mdd RelProd(mdd s,mdd2 r)
8 if s = 1 then return s ∧ r;

9 mdd t← 0;

10 if CacheLookUp(RelProdCode, s, r, t) then return t;

11 foreach i ∈ Vs.v s.t. s[i], r[i] 6= 0 do

12 foreach i′ ∈ Vr[i].v s.t. r[i][i′] 6= 0 do

13 t[i′]← Union(t[i′],RelProd(s[i], r[i][i′]));

14b t← UniqueTableInsert(t); • for BFS

14s t← Saturate(UniqueTableInsert(t)); • for Saturation

15 CacheInsert(RelProdCode, s, r, t);

16 return t;

mdd Saturate(mdd s)
17 if s.v = v0 then return s;

18 mdd t← 0;

19 if CacheLookUp(SaturateCode, s, t) then return t;

20 foreach i ∈ Vs.v s.t. s[i] 6= 0 do

21 t[i]← Saturate(s[i]); • saturate its children

22 repeat

23 foreach r ∈ T s.t. r.v = s.v, t[i] 6= 0 and r[i] 6= 0 do

24 foreach i′ ∈ Vr[i].v s.t. r[i][i′] 6= 0 do

25 t[i′]← Union(t[i′],RelProd(t[i], t[i][i′])); • use 14s

26 until t does not change;

27 t← UniqueTableInsert(t);

28 CacheInsert(SaturateCode, s, t);

29 return t;

Figure 3.4: The BFS and saturation algorithms for reachability analysis.

wK . At the phase considering a particular variable wk, it “saturates” all MDD nodes

associated with it by applying Tk to them until no more new states can be found. If this

creates a new node associated to a lower variable, it recursively saturates this new node

first, by applying the appropriate disjuncts for lower level variables, before continuing

the saturation of the current node associated with wk. In this way, the saturation

algorithm greedily exploits event locality and consists of exhaustive lightweight local

64



fixed-point iterations. Lines 20-21 first saturate all children of s and then Lines 22-26

generate the saturated next reachable states by calling Procedure RelProd with Line

14s. As a result, the algorithm significantly reduces the number of intermediate nodes

which disappear in the final MDDs and is often orders of magnitude more efficient in

memory and runtime than BFS. It is often able to generate state spaces with 1020 or

even 10100 states in a matter of seconds or minutes.

All MDD algorithms fall in the dynamic programming category, and caches

are heavily used to save intermediate results for efficiency. Procedures CacheLookUp

and CacheInsert are for this purpose. Procedure UniqueTableInsert uses a hash table

to ensure the canonicity of MDDs. For more details, interested readers can refer to [61].

Procedure Saturate stops when the root, associated with wK , is saturated and

the saturation result encodes the desired Srch. Then, it is easy to split Srch into Sst and

Sunst by checking the content of wb. If wb = ǫ, the global state is stable, otherwise it

is unstable. This is symbolically done through the Intersection operation mentioned in

Section 3.1.

3.3.3 Symbolic observable product machine generation

In order to symbolically generate the observable product machine for an NCFSM,

defined in Section 2.2.1.2, the next step is to develop an algorithm to compute the stable

next-state function Tobs encoding both δobs and λobs. We build it from the perspective of

transition relations, instead of from reachable global states. First, we define the unstable

transitive closure (UTC):

Definition 3.5. (transition transitive closure) Given the next-state function T of

NCFSM M , UTC is the smallest relation containing T and satisfying:

(c.j, ǫ) ∈ T (b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC(a.h, ǫ)⇒ (c.j, ǫ) ∈ UTC(a.h, ǫ),
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Figure 3.5: Composition operation on the transition relation

(c.j, ǫ) ∈ T (b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC(h, a)⇒ (c.j, ǫ) ∈ UTC(h, a),

(j, c) ∈ T (b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC(a.h, ǫ)⇒ (j, c) ∈ UTC(a.h, ǫ),

(j, c) ∈ T (b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC(h, a)⇒ (j, c) ∈ UTC(h, a). ✷

Thus, UTC captures all transition sequences in M between global states that

start from stable or unstable states to stable or unstable states and do not pass through

stable global states. As with T , UTC can be encoded using 2(K + 1)-variable MDDs.

After building UTC , we can obtain its restriction to global stable transitions by applying

the Intersection operator to select the elements with wb ∈ Xext and w′
b ∈ Yext as

Tobs = {(a.i, b.j) ∈ UTC : i, j ∈ Sst, a ∈ Xext, b ∈ Yext}.

The calculation of UTC is based on combining the effect of sequentially firing

several transitions into one transition. Figure 3.5 illustrates this operation on Mex.

Again, we assume that each set contains only one transition for better explanation. In
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mdd ComposeRelProd(mdd2 p,mdd2 r)
1 if r = 1 or p = 1 then return p;

2 mdd t← 0, s← 0;

3 if CacheLookUp(ComposeRelProdCode, p, r, t) then return t;

4 if p.v = r.v then

5 foreach i, i′ ∈ Vp.v s.t. p[i][i′] 6= 0,r[i′] 6= 0 do

6 if r.v = r[i′].v then

7 foreach j ∈ Vr.v do

8 s← ComposeRelProd(p[i][i′], r[i′][j]);

9 t[i][j]← Union(t[i][j], s);

10 else • r[i′].v is I-reduced

11 s← ComposeRelProd(p[i][i′], r[i′]);

12 t[i][i′]← Union(t[i][i′], s);

13 else • r.v is FI-reduced

14 foreach i, i′ ∈ Vp.v s.t. p[i][i′] 6= 0 do

15 s← ComposeRelProd(p[i][i′], r);

16 t[i][i′]← Union(t[i][i′], s);

17b t← UniqueTableInsert(t); • for UTC BFS

17s t← UTC Saturate(UniqueTableInsert(t)); • for UTC Saturate

18 CacheInsert(ComposeRelProdCode, p, r, t);

19 return t;

Figure 3.6: The algorithm for the operation to combine the effect of sequential firing
transitions into one transition.

(a), “to” state i′ = (2, 1, c) is identical to one of the “from” states of (b). Recall that we

are using the QFI-rule, so arcs skipping variables imply that the value of those variables

is unchanged. We can combine the effect of (a) and (b), resulting in (c), which directly

acts on i = (2, 2, a), the “from” state of (a), and moves to j = (2, 1, a), the “to” state of

(b). Similarly, transition (e) is the result of further combination of transitions (c) and

(d). With respect to the UTC definition, transitions (c) and (e) are in the UTC for

(a). Procedure ComposeRelProd in Figure 3.6 is proposed to compute this composition

effect of two next-state functions encoding in two 2(K + 1)-variable MDDs. Compared

with Procedure RelProd in Figure 3.4 which works on state sets, ComposeRelProd deals

with two variables at a time instead of one variable.

As for reachability, UTC can be obtained by repeatedly applying Procedure
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mdd2 UTC BFS (mdd2 T )
1 mdd2 z ← T , s← 0, zpre ← 0;

2 repeat

3 zpre ← z;

4 znext ← ComposeRelProd(zpre, T ); • use 17b

5 z ← Union(zpre, znext);

6 until z = zp;

7 return z;

mdd2 UTC Saturate(mdd2 z)
8 if p.v = v0 then return z;

9 mdd2 t← 0, s← 0;

10 if CacheLookUp(UTC SaturateCode, z, t) then return t;

11 foreach i, i′ ∈ Vp.v s.t. p[i][i′] 6= 0 do •Vp.v = Vp[i].v
12 t[i][i′]← UTC Saturate(p[i][i′]);

13 repeat

14 foreach i, i′ ∈ Vp.v, r ∈ T s.t. t.v = r.v, p[i][i′] 6= 0, r[i′] 6= 0 do

15 if r.v = r[i′].v then • r: QFI-reduced

16 foreach j ∈ Vr.v s.t. r[i′][j] 6= 0 do

17 s← ComposeRelProd(p[i][i′], r[i′][j]); • use 17s

18 t[i][j]← Union(t[i][j], s);

19 else • r[i′].v is I-reduced

20 s← ComposeRelProd(p[i][i′], r[i′]); • use 17s

21 t[i][i′]← Union(t[i][i′], s);

22 until t does not change;

23 t← UniqueTableInsert(t);

24 CacheInsert(UTC SaturationCode, z, t);

25 return t;

Figure 3.7: The BFS and saturation algorithms for computing transition transitive
closure.

ComposeRelProd to T until all possible merged next-state functions are found, as in the

BFS algorithm, shown in Procedure UTC BFS in Figure 3.7. Again, the global fixed-

point computation is located at Lines 2-6 and uses ComposeRelProd on Line 17b. On the

other hand, the saturation algorithm can be employed too, as Procedure UTC Saturate

in Figure 3.7. It first saturates the grandchildren, (the children’s “to” nodes), at Line

12 and then at the current “from” node. UTC Saturate operates on two successive

variables in each recursion at Line 13-22 and uses ComposeRelProd with Lines 17s. Our

experience shows that the more components an NCFSM has, the greater improvement

saturation achieves.
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Figure 3.8: A simple variation of NCFSM Mex in Figure 2.3. The small modification
is that local transition 1 [M1, a/x〉2 is changed to 1 [M1, a/d〉2. The resulting new NCFSM
contains a livelock when giving external input c at the initial state.

3.3.4 Symbolic livelocks verification

The difference between a livelock and a deadlock is that, in the former, the

system keeps running instead of halting. Researchers [89] provided a sound, but in-

complete solution for the livelock identification problem using integer programming.

Explicit model checking tools, such as SPIN [118], solve this problem by enumerating

non-progress cycles using reachability analysis.

An NCFSM does not terminate on an input if it reaches a livelock (a cycle of

transitions on unstable global states):

a(1).i(1) [a(1)/a(2)〉 · · · a(n).i(n) [a(n)/a(1)〉a(1).i(1).

Figure 3.8 shows a variation of Mex in Figure 2.3. It changes local transition

1 [M1, a/x〉2 to 1 [M1, a/d〉2. This new NCFSM enters the livelock given external input c in

global state (1, 1) as

(1,1) [c/a〉a.(1,2) [a/d〉d.(2,2) [d/b〉 b.(2,1) [b/c〉 c.(1,1) [c/a〉a.(1,2).

If an NCFSM has a livelock, it will indefinitely delay the consumption of the next input
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symbol from the environment. Thus, a livelock is a fatal flaw in the design and is

normally the first property to be verified.

If an NCFSM contains livelocks, the MDD encoding TUTC contains transitions

where:

• the “from” global state is the same as the “to” global state.

• the input symbol is identical to the output symbol and belongs to Zint.

The filter for these livelock conditions is easy to build using QFI reduction rules. Then,

using the Intersection operator on the resulting set from the filter with the set UTC

yields all potential livelocks as a 2L-variable MDD. Next, all “from” global states Slock

can be extracted from the resulting MDD. Finally, we check if any state in Slock is

actually reachable which can be done through an Intersection with Srch, the result of

reachability analysis. In conclusion, this algorithm not only verifies livelock freeness,

when the resulting MDD encodes the empty set, but also finds all reachable livelock-

originating states in the design, when the check fails. In the latter case, traces from

sinit to each s ∈ Slock can be generated efficiently [63] using a CTL model checker

to help designers eliminate the livelock. Trace generation is similar to distinguishing

sequence generation, discussed later. Generating a shortest trace, however, is essentially

the minimal EG witness generation problem for CTL model checking. Fortunately, our

symbolic model checker has an efficient solution [214]. Generating a shortest trace from

sinit to the error-inducing state (ignoring the length of the livelock itself), on the other

hand, is not difficult, and can be done by reverse reachability analysis used in the next

section.
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3.3.5 Symbolic strong connectedness verification

Many traditional FSM analysis algorithms require that the observable product

machine is strongly connected. This property is satisfied if all reachable stable global

states are mutually reachable.

However, we can also define this property in the following way: an NCFSM is

strongly connected iff the initial state sinit is reachable from every reachable state i ∈ Sst.

To check this property, we build the MDD for T −1, the inverse of T : if i [a/x〉 j ∈ T then

j [x/a〉 i ∈ T −1. The MDD encoding T −1 can be built by changing the variable order

of T : each w′
k appears before, instead of after, its corresponding wk by swapping two

adjacent variables. This is a standard and efficient MDD operation. Then, we perform a

backward state-space search from sinit along T −1, and build the set of reachable states

S−1
st using BFS or saturation. Finally, the global state space is strongly connected iff

Sst = S−1
st ∩ Srch.Note that T −1 may be non-deterministic even if T is deterministic,

though this does not hinder the applicability of symbolic methods.

3.3.6 Symbolic dead transition verification

For a system modeled by an NCFSM, dead transitions mean wasteful designs or

useless functions, thus it is important to detect and eliminate them. Formally, transition

ik [Mk, a/b〉 jk is dead if it is never used in the product machine of the NCFSM, i.e., if T

does not contain any transition i [a/b〉 j, a.i [a/b〉 j, i [a/b〉 b.j, or a.i [a/b〉 b.j, where ik is the

kth component of i , which then implies that j = i|k:jk .

As we have already built Srch = Sst ∪ Sunst, dead transitions can be easily

detected through MDDs operations. Specifically, for each ik [Mk, a/b〉 jk, we can first

check if Sunst contains an unstable state with wk = ik and wb = a; if it does, then
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Figure 3.9: A fully masked mutant of Mex in Figure 2.3, Mex
(1)

= (M1,M2). The
introduced modification is that local transition 2 [M1, b/c〉1 of Mex is changed to 2 [M1, b/c〉2

of Mex
(1)

.

ik [Mk, a/b〉 jk is not dead. Otherwise, if a ∈ Xext, we check if Srch contains a stable state

with wk = ik (and, obviously, wb = ǫ); if it does, then ik [Mk, a/b〉 jk is not dead, since ik is

the kth component of a global stable state, and a can be received from the environment

in that state. Otherwise, ik [Mk, a/b〉 jk is dead.

3.3.7 Symbolic equivalence verification and its application

Equivalence checking is introduced by mutation analysis for fault-based test-

ing [155]. Given an NCFSM requirement, there are many different ways to implement

the design. Among these implementations, there are correct and incorrect ones. In

order to assure the conformity between the implementation and the design, fault-based

testing is proposed by actively introducing one or more errors to construct mutants from

the original requirement [154]. Among these mutants, some of them are equivalent to

the original requirement. They share the same behavior as the requirement and are

indistinguishable. For example, Figure 3.9 is a mutant of Mex in Figure 2.3 where local
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Figure 3.10: A partially masked mutant of Mex in Figure 2.3, Mex
(2)

= (M1,M2). The
introduced modification is that local transition 2 [M1, b/c〉1 of Mex is changed to 1 [M1, b/d〉2

of Mex
(2)

.

transition 2 [M1, b/c〉1 is changed to 2 [M1, b/c〉2. The error is fully masked, due to local

transitions 1 [M2, c/a〉2, 2 [M2, c/a〉2, and 2 [M1, a/c〉1. Instead, consider Figure 3.10, with an

introduced error on local transition 2 [M1, b/d〉1. This error is partially masked if M2 is at

state 1, due to local transition 1 [M2, d/x〉1. However, the sequence c/x, b/x ∈ Tr(sinit)

is able to distinguish this mutant from Mex, also called killing the mutant, since its

corresponding resulting sequence from Mex
(2)

is c/x, b/y instead. Thus, if a mutant is

not equivalent to the original NCFSM, there must exist an input sequence to distinguish

them. This distinguishing sequence can be contributed to a test suite which is able to

kill all non-equivalent mutants. The final test suite can then be used to test the real

implementation. These fault-based testing methods have achieved great success in web

applications and other collaborative systems [173] due to their scalability. The key of

these methods is to verify the equivalence between an NCFSM and its mutants.

Structural-based methods are another way to generate test cases for an NCFSM.

These methods can be mainly categorized into two classes. One is to is to transform an

NCFSM into Mobs [150]. Standard test derivation techniques for an FSM, such as the
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W-method, Wp-method, and UIO-method, can then be employed. Although these algo-

rithms are well-studied, the transformation limits the applicability of this approach. For

instance, even if all component CFSMs are deterministic, minimal, completely specified,

and strongly connected, the resulting Mobs might not enjoy these properties. However,

all above traditional testing generation methods have these strong restrictions on the

generated Mobs. Mobs is deterministic and completely specified only if the NCFSM is

livelock-free, otherwise, it is not completely specified. Minimality and strong connected-

ness are not guaranteed either. Since Yext ⊆ Y, the limited number of external output

symbols could reduce the ability to distinguish global states of Mobs. For example, in

Figure 2.4, states (2, 1) and (2, 2) in Mobs are state equivalent, thus Mobs is not min-

imal. For strong connectedness, there could exist a subset of stable global states in

Mobs that only has outgoing global transitions to themselves; the state sets {(2, 2)} and

{(2, 1), (2, 2)} in Mobs. Since none of these properties being minimal, strong connected,

and completely specified can be guaranteed in Mobs, standard structural FSM-based test

derivation algorithms cannot be directly applied.

Another approach of generating test cases from an NCFSM is to try to obtain

test cases without building Mobs [104, 116, 143]. so it avoids an expensive full reacha-

bility analysis and instead uses branching coverage [143] or heuristic techniques [104].

Researchers [116] provides a method to check local transitions instead of global transi-

tions and is able to reduces testing efforts under the assumption that the system only

has one fault. It extends the notion of unique input/output (UIO) sequences to a con-

strained identification sequences (CIS) that distinguishes a global state from others in

which only one local state is different, under a set of constraints about other local state

restrictions. The CISs are generated through BFS and then combined to form sequences

that check global states. A dependency digraph is provided to prevent dependency cir-
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cularity caused by constraint conflicts. However, if the dependency digraph contains

cycles, the algorithm may not find the appropriate order of local CISs to check global

states. An order graph is suggested to reduce the required number of resetting the sys-

tem. However, if the order graph contains cycles, finding the appropriate CIS sets to be

sequenced or the minimal sequencing order are exhaustive search problems as well, for

which the author proposes greedy or heuristic algorithms.

Both structure-based and fault-based approaches have advantages and limita-

tions. Although a fault-based approach is more applicable and scalable and having fewer

constraints on the requirement model, the major challenge of equivalence checking is the

ability to handle a large number of mutants and to generate a distinguishing sequence

for each non-equivalent mutant [155] efficiently. All distinguishing sequences together

will form a test suite. Note that all mutants have a similar structure to the requirement

system. Thus, symbolic strategies will have great advantages in terms of both storage

and computation.

Before going into more detail of test generation algorithms, we first introduce

the mutant operators used to generate a set of first-order mutants U given specification

NCFSM M , as follows:

• Alter the initial state. Create a mutant by changing one of the local states in the

initial state sinit. This generates
∑

1≤k≤K(|Sk| − 1) mutants.

• Alter the output of a local transition. Create a mutant by changing local transition

i [Mk, a/b〉 j to i [Mk, a/b
′〉 j, for b′ ∈ Yk \ {b}. This generates

∑

1≤k≤K |δk|(|Yk| − 1)

mutants, where |δk| is the number of local transitions in Mk, thus |δk| = |Xk|·|Sk|

if the model is completely specified.

• Alter the destination state of a local transition. Create a mutant by changing

75



w2

w2

w1

w1

wb

wb

1

1

1

1

ǫ

ǫ

Ω

fdis

(a)

0

0

0

0

0

0

0

w2

w′
2

w1

w′
1

wb

w′
b

1

2

1

2

c

x

M

1

2

1

2

c

x

M

w2

w′
2

w1

w′
1

wb

w′
b

G

(b)

w2

w2

w1

w1

wb

wb

1 2

1 2

1 2

1 2

ǫ c

ǫ x

Ω

fdis

(c)(c)

0 0

0 0

0 0

0 0

0 0

0 1

0

w2

w2

w1

w1

wb

wb

2

2

2

2

b

x

b/x, y

D

(d)

Match

Figure 3.11: Encoding distance function fdis, next-state-pair function G, and

distinguishable-state-pair D of Mex in Figure 2.3 and Mex
(2)

in Figure 3.10.

local transition i [Mk, a/b〉 j to i [Mk, a/b〉 j′, where j′ ∈ Sk \ {j}. This generates

∑

1≤k≤K |δk|(|Sk| − 1) mutants.

Given a mutant M of specification M (“a” indicates quantities related to the

mutant), our objective is to find a sequence a1/b1,. . ., an/bn as a test case that kills this

mutant if it is not equivalent, where each ai/bi pair corresponds to an input symbol

and the corresponding expected output of the specification M . Let α = a1a2 · · · an−1

and β = b1b2 · · · bn−1, then λobs(s,α) = β = λobs(s,α) and λobs(δobs(s, α), an) = bn 6=

λobs(δobs(s, α), an). The general idea is to simultaneously process both Mobs and Mobs

from their initial state with same α, until we reach a pair of states that are distinguish-

able by introducing an.
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evmdd PairRelProd(evmdd 〈µ,p〉,mdd g1,mdd g2)
1 if g1.v=wb or g2.v=wb then

2 return 〈µ,MDD2EV (g1)〉; •We should have g1 = g2
3 if CacheLookUp(PairRelProdCode, p, g1, g2, 〈λ,r〉) then return〈λ+ µ,r〉;

4 evmdd 〈λ,t〉;

5 t← 0;

6 λ← 0;

7 foreach i, i′∈Vp.v, s.t. p[i].val 6=∞∧ g1[i][i′] 6=0 do

8 foreach j,j′∈Vp.v s.t. g2[j][j′] 6=0 ∧ p[i][j].val 6=∞ do

9 evmdd 〈η,u〉 ← PairRelProd(p[i][j], g1[i][i′], g2[j][j′]);

10 t[i′][j′]← Minimum(t[i′][j′], 〈η,u〉);

11 〈λ,t〉 ← Normalize(t);

12 UniqueTableInsert(t);

13 CacheInsert(PairRelProdCode, p, g1, g2, 〈λ,t〉);

14 return 〈λ+ µ,t〉;

seq TCGen(evmdd r,mdd G, evmdd fdis, seq a/x)
15 seq tr ← a/x;

16 while r.val > 0 do

17 foreach Gb/y ∈ G do

18 if t∈f−1
dis(fdis(r)−1) ∧ r=Gb/y(t) then

19 r ← t; • predecessor

20 tr ← b/y · tr;

21 break;

22 return tr

Figure 3.12: The algorithms for the PairRelProd operator and the test generation.

If the state pair set is P = Sst × Sst, define the next-state-pair function G =

{Ga/b : a ∈ X , b ∈ Y} and the distinguishable-state-pairs D = {Da/b : a ∈ X , b ∈ Y}:

Ga/b = {
(

(a.i, b.j), (a.i, b.j)
)

: (a.i, b.j) ∈ Tobs ∧ (a.i, b.j) ∈ Tobs},

Da/b = {(a.i, b.i) : ∃(a.i, b.j) ∈ Tobs ∧ ∃(a.i, b.j) ∈ Tobs ∧ b 6= b}.

These sets can be built through symbolic operations on the MDDs for Sst, Tobs, and

Tobs. Consider Mex in Figure 2.3 and Mex
(2)

in Figure 3.10. Figure 3.11(b) shows an

element in G, encoding (1, 1) [[Mex, c/x〉〉 (2, 2) and (1, 1) [[Mex, c/x〉〉 (2, 2) as a pair of transi-

tions. Figure 3.11(d) shows an element in D, the pair of states ((b, 2, 2), (b, 2, 2)), which

are distinguishable because (2, 2) [[Mex, b/x〉〉 (2, 2) while (2, 2) [[Mex, b/y〉〉 (1, 1).

Our test derivation algorithm takes in input the set U of mutants, the stable
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next-state function Tobs, and v(p)init = (iinit, iinit). For each mutant M , we first run

the current test suite to check whether an existing test kills M . If not, we build Tobs

for M and encode the next-state-pair function G and the distinguishable-state-pairs D.

The algorithm is analogous to state-space exploration, except that we explore pairs of

states (one from M and one from M), and keep track of the distance of each such pair

from v(p)init by using a 2(K + 1)-variable EV+MDD instead of (K + 1)-variable MDD.

This EV+MDD encodes the distance function:

fdis : P → N ∪ {∞} s.t. fdis(v(p))=min{d : v(p)∈Gd(v(p)init)},

so that fdis(v(p)) = ∞ iff v(p) has not yet been reached in the exploration, starting

with the initialization fdis(v(p)init) = 0 and fdis(v(p)) = ∞ for v(p) 6= v(p)init. We

also define its reverse function: f−1
dis (d) = {v(p) : fdis(v(p))=d}, where d ∈ N.

The algorithm uses a BFS algorithm to generate the distance function for

reachable state pairs until the search reaches a distinguishing state pair v(p)err in D. If

no such pair is reachable, M is equivalent to M , and the algorithm builds a fixed-point

Prch containing all the pairs of states that can be reached from v(p)init by providing

the same input sequence to both M and M .

Procedure PairRP , shown in Figure 3.12, applies G to the distance function

fdis and returns a set of state pairs with an incremented value of fdis. To help with

test-case generation, we observe that v(p) consists of a pair of stable global states,

thus iβ = iβ = ǫ by definition. For efficiency, we then use iβ and iβ to store instead

an input/output symbol pair leading to this state pair. For example, Figure 3.11c

encodes fdis((c, 2, 2), (x, 2, 2)) = 1 instead of fdis((ǫ, 2, 2), (ǫ, 2, 2)) = 1. We can achieve

this through a minor change when dealing with terminal cases in Procedure PairRP

Line 2. Procedure MDD2EV transforms an MDD into an EV+MDD with value 0 for
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elements encoded by the MDD, ∞ to the rest.

We again use Mex and Mex
(2)

to illustrate. Figure 3.11(a) encodes v(p)int

with a distance of 0, where nodes with the same color correspond to one of the stable

states in the pair. Applying Figure 3.11(b) to Figure 3.11(a) results in the fdis ≤ 1 of

Figure 3.11(c), containing v(p)err =
(

(2, 2), (2, 2)
)

, which can be found in D, explained

above. v(p)err is used to generate a sequence as a new test case which is added to the

test suite C. Procedure TCGen in Figure 3.12 uses the distance function to generate a

sequence leading M and M from v(p)init to v(p)err. Starting from v(p) at distance n,

there must exist a predecessor q, i.e., satisfying v(p) = G(q), at distance n − 1. Thus,

we keep reducing the distance value until reaching v(p)init, at distance 0. In the above

example, sequence (c/x, b/x) is built and added to the test suite. Finally, Procedure

Minimize eliminates test cases subsumed by other test cases, to form a minimal test

suite.

3.3.8 Experimental results

We implement the proposed framework using our MDD library [204], and re-

port experimental results on an Intel Xeon 2.53GHz workstation with 36GB RAM run-

ning Linux. The main metrics of our comparison are runtime (in seconds) and peak

memory (in MB). For BFS and saturation, we compare the cumulative time to compute

the transition transitive closure on all mutants (UTC bfs and UTC sat), and the total

runtime and peak memory (Totbfs and Totsat). For each model, we list the number

of components (K), of mutants (Tot), of non-equivalent mutants (NE), of test cases

(Num), as well as the average length of the tests in the suite (Avg). The total time

includes runtime for preprocessing, livelock checking, and test suite generation.
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Model Mutants Test Suite UTC bfs UTC sat Totbfs Totsat

M K Tot NE Num Avg time time mem time mem time

Completely specified models

Mex 2 26 20 6 2.33 0.002 0.003 2.23 0.003 2.19 0.004

Mse 3 96 96 27 3.19 0.053 0.021 3.63 0.427 3.42 0.235

Mhs 3 81 81 16 2.81 0.044 0.018 3.60 0.301 3.30 0.158

Incompletely specified models

M
′

ex 2 17 8 3 1.67 <0.001 <0.001 2.12 <0.001 2.10 <0.001

M
′

se 3 90 90 23 3.30 0.039 0.014 3.28 0.245 3.10 0.192

M
′

hs 3 77 77 13 3.08 0.041 0.012 3.24 0.252 3.00 0.126

Control systems

Mhcs 4 179 157 12 11.17 0.17 0.03 7.01 1.00 6.54 0.48

Mtr 4 177 150 12 2.50 0.17 0.09 6.72 1.00 5.33 0.20

Mtr3 5 1024 849 43 3.14 4.69 3.35 69.75 9.25 50.72 7.74

Communication protocols

ABP 2 96 81 12 3.83 0.005 0.004 2.90 0.49 2.90 0.32

BGP 2 4898 1613 79 5.16 344.26 24.10 96.48 1230.0 82.41 438.6

EGP 3 69066 27883 3501 9.24 38928 14631 7085.84 63384 5183.89 25904

Table 3.1: Test case generation results (time in seconds and memory in MB).

Table 3.1 presents results for four sets of models. The first set, shown un-

der “completely specified models”, consists of Mex in Figure 2.3, our running example,

Mse [115], and Mhs [116]. All components in these models are completely specified, min-

imized, strongly connected, and deterministic. We obtain the second set by modifying

these three models, eliminating some selfloops to derive three corresponding incom-

pletely specified models: M
′

ex, M
′

se, and M
′

hs. The third set consists of several control

systems: a heating controller system [90] and a train gate controller [32] with two trains,
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Mtr, or three trains, Mtr3. The fourth set includes three communication protocols: the

alternating bit protocol (ABP) [194], the border gateway protocol (BGP) [180], and the

exterior gateway protocol (EGP) [159]. ABP is used to guarantee correct data deliv-

ery between a sender and a receiver connected by an error-prone channel. BGP and

EGP are two important TCP/IP exterior routing protocols. BGP is currently used on

fully decentralized inter-autonomous systems. Both EGP and BGP contain some sig-

nal events undefined in many local states, so they are incompletely specified. We only

consider mandatory events.

We first discuss the results on the first two sets of models. As these are rel-

atively small and have only up to three components, the runtime in the result is the

average time over 50 runs. For Mex and M
′

ex, the saturation algorithm is less efficient.

As stated before, the saturation algorithm works better for large models, because of its

complex recursive structure. The overhead is not paid off if not enough locality can be

exploited. However, the memory consumption is still less. For the other models, the

saturation algorithm works better in both time and memory, although only minor im-

provements are observable for Mse, Mhs, and their corresponding incompletely specified

models.

Consider the set of control system models. The runtime and memory con-

sumption are all reduced with only minor improvements. Turning to communication

protocols, BGP models a connection between two routers and contains two compo-

nents, both of which, according to the specification [180], maintain a separate CFSM

for each configured peer (for this model, we only consider mandatory events). Thus,

including the component for the environment, we encode the model with 5 variables.

There are 1,153 reachable global states and 40,939 global transitions. Saturation is

clearly superior, 14 times faster than BFS when computing the UTC for all mutants.
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Similar trends can be observed for EGP with three peers: saturation saves more than

10 hours and almost 2GB over BFS. There are about 1.2×105 global states, 6.7×105

local transitions, and 1.5×106 global transitions for the considered EGP model.

The benefit of symbolic encodings can be clearly seen in our results, as the

memory consumption remains stable even if the number of generated mutants increases

by an order of magnitude when growing the number of components. Also, we can

observe that the number of generated test cases and the average length of the test suite

are stable even if the number of mutants increases dramatically. This is important for

complex models in practice, as it reduces testing efforts.

A further advantage of our symbolic approach is that no constraints are re-

quired of investigating models. Most state-of-the-art test generation methods assume re-

quirement models to be completely specified and strongly connected, which can hardly be

met in many real models. Moreover, our framework can be extended to non-deterministic

NCFSMs by returning instead of distinguishing sequences, test cases as pairs, each con-

sisting of an input string and a set of all correct output strings.

3.4 Petri nets

In this section, we will introduce a self-modifying Petri net [201] (PN) with pri-

orities and inhibitor arcs, described by a seven-tuple (P, T , π,D−,D+,D◦, sinit), where:

• P is a finite set of places, drawn as circles, and T is a finite set of transitions,

drawn as rectangles, satisfying P ∩ T = ∅ and P ∪ T 6= ∅.

• π : T → N assigns a priority to each transition.

• D− : P ×T ×N
P → N, D+ : P ×T ×N

P → N, and D◦ : P ×T ×N
P → N∪ {∞}

are the marking-dependent cardinalities of the input, output, and inhibitor arcs.
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• sinit ∈ N
P is the initial marking, the number of tokens initially in each place.

Transition t has concession in marking m ∈ N
P if, for each p ∈ P, the input arc

cardinality is satisfied, i.e., mp ≥ D−(p, t,m), and the inhibitor arc cardinality is not,

i.e., mp < D◦(p, t,m). If t has concession in m and no other transition t′ with priority

π(t′) > π(t) has concession, then t is enabled in m and can fire and lead to marking

m′, where m′
p = mp −D−(p, t,m) + D+(p, t,m), for all places p (arc cardinalities are

evaluated in the current marking m to determine the enabling of t and the new marking

m′). In our figures, tk(p) indicates the number of tokens in p for the current marking,

a thick input arc from p to t signifies a cardinality tk(p), i.e., a reset arc, and we omit

arc cardinalities 1, input or output arcs with cardinality 0, and inhibitor arcs with

cardinality ∞.

The PN defines a discrete-state model (Spot,Sinit,A, {Nt : t ∈ A}). The poten-

tial state space is Spot = N
P (in practice we assume that the reachable set of markings

is finite or, equivalently, that there is a finite bound on the number of tokens in each

place, but we do not require to know this bound a priori). Sinit ⊆ Spot is the set of

initial states, {sinit} in our case (assuming an arbitrary finite initial set of markings is

not a problem). The set of (asynchronous) model events is A = T . The next-state

function for transition t is Nt, such that Nt(m) = {m′}, where m′ is as defined above

if transition t is enabled in marking m, and Nt(m) = ∅ otherwise. Thus, the next-state

function for a particular PN transition is deterministic, although the overall behavior

remains nondeterministic due to the choice of which transition should fire when multiple

transitions are enabled.

PNs are a great candidate to express ECA rules. The nondeterministic inter-

leaving execution semantics of PNs can naturally model unforeseen interactions between

83



ECA rule executions and environmental changes. Also, we can conveniently map pri-

orities of PNs to rule priorities. Thus, an intermediate step in verifying ECA rules,

discussed in the next section, is to translate them into a self-modifying PN with priori-

ties and inhibitor arcs.

3.5 Symbolic verification of a set of ECA rules

Given a set of ECA rules, termination and confluence are two fundamental

properties that assure the correctness of the design. Termination guarantees that the

system does not remain “busy” internally forever without responding to external events

so that the designed system fulfills the constantly reactive requirement. Confluence,

on the other hand, ensures that any possible interleaving of a set of triggered rules

yields the same final result so that the designed system behaves consistently regardless

of the nondeterministic nature in both the hybrid system and the environment. While

termination has been studied extensively and many algorithms have been proposed to

verify it, in real applications, confluence is particularly challenging due to a potentially

large number of rule interleavings [4].

Researchers began studying these properties for active databases in the early

90’s [4, 29, 145, 162], by transforming ECA rules into some form of graphs and applying

various static analysis techniques on it to verify properties. These approaches based on

a static methodology worked well to detect redundancy, inconsistency, incompleteness,

and circularity. However, since static approaches may not explore the whole state space,

they could easily miss some errors. Also, they could find scenarios that did not actu-

ally result in errors due to the fact that found error states that may not be reachable.

Moreover, they had poor support to provide concrete counterexamples and analyze ECA
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rules with priorities. Researchers [4] looked for cycles in the rule-triggering graph to dis-

prove termination, but the cycle-triggering conditions may be unsatisfiable. Later, this

work was improved [29] with an activation graph describing when rules are activated;

while its analysis detects termination where previous works failed, it may still report

false positives when rules have priorities. Another work [30] proposed an algebraic ap-

proach emphasizing the condition portion of rules, but did not consider priorities. Other

researchers [145, 162] chose to translate ECA rules into a Petri Net (PN), whose non-

deterministic interleaving execution semantics naturally models unforeseen interactions

between rule executions. However, as the analysis of the set of ECA rules was through

structural PN techniques based on the incidence matrix of the net, false positives were

again possible.

To overcome these limitations, dynamic analysis approaches using model check-

ing tools such as SMV [178] and SPIN [56] have been proposed to verify termination.

While closer to our work, these approaches require manually transforming ECA rules

into an input script, assume a priori bounds for all variables, provide no support for

priorities, and require the initial system state to be known; our approach does not have

these limitations. Researchers [75] analyzes both termination and confluence by trans-

forming ECA rules into Datalog rules through a “transformation diagram”; this supports

rule priority and execution semantics, but requires the graph to be commutative and re-

stricts event composition. However, most of these works show limited results, and none

of them properly addresses confluence; we present detailed experimental results for both

termination and confluence. Statecharts defined in unified modeling language (UML)

[203] provide visual diagrams to describe the dynamic behavior of reactive systems and

can verify these properties, but event dispatching and execution semantics are not as

flexible as for PNs [161].
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Our approach transforms a set of ECA rules into a PN, then dynamically

verifies termination and confluence and, if errors are found, provides concrete coun-

terexamples to help with debugging. It uses our tool SmArT, which supports PNs with

priorities to model rule priorities. Moreover, a single PN can naturally describe both

the ECA rules as well as their nondeterministic concurrent environment and, while our

MDD-based symbolic model-checking algorithms [212] require a finite state space, they

do not require knowing the variable bounds a priori(i.e., the maximum number of to-

kens each place may contain). Finally, our approach is not restricted to termination and

confluence, but can be easily extended to verify a broader set of properties.

3.5.1 Transforming a set of ECA rules into a PN

We now explain the procedure to transform a set of ECA rules into a PN.

First, we put each ECA rule into a regular form where both events and condition are

disjunctions of conjunctions of events and relational expressions, respectively. All rules

of the smart home example in Figure 2.6 are in this form. While this transformation

may in principle cause the expressions for events and conditions to grow exponentially

large, each ECA rule usually contains a small number of events and conditions, hence

this is not a problem in practice. Based on the immediate event-condition checking

assumption, a rule is triggered iff “trigger ≡ events ∧ condition” holds.

Next, we map variables and events into places, and use PN transitions to model

event testing, condition evaluation, and action execution. Any change of variable values

is achieved through input and output arcs with appropriate cardinalities. Additional

control places and transitions allow the PN behavior to be organized into “phases”, as

shown next. ECA rules r1 through r10 of Figure 2.6 are transformed into the PN of
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Figure 3.13: The PN for ECA rules in Figure 2.6.

Figure 3.13 (dotted transitions and places are duplicated and arcs labeled “if (cond)”

are present only if cond holds).
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3.5.1.1 Occurring phase

This phase models the occurrence of external events, due to environment

changes over which the system has no control. The PN firing semantics perfectly matches

the nondeterministic asynchronous nature of these changes. For example, in Figure 3.13,

transitions EnvMotOn and EnvMotOff can add or remove the token in place Mtn, to

nondeterministically model the presence or absence of people in the room (the inhibitor

arc from place Mtn back to transition EnvMotOn ensures that at most one token re-

sides in Mtn). Firing these environmental transitions might nondeterministically enable

the corresponding external events. Here, firing EnvMotOn generates the external event

MtnOn by placing a token in the place of the same name, while firing EnvMotOff gen-

erates event MtnOff , consistent with the change in Mtn. To ensure that environmental

transitions only fire if the system is in a stable state (when no rule is being processed)

we assign the lowest priority, namely 0, to these transitions. As the system does not

directly affect environmental variables, rule execution does not modify them. However,

we can take snapshots of these variables by copying the current number of tokens into

their corresponding local variables using marking-dependent arcs. For example, tran-

sition EnvSecElp has an output arc to generate event SecElp, and arcs connected to

local variables to perform the snapshots, e.g., all tokens in lMtn are removed by a reset

arc (an input arc that removes all tokens from its place), while the output arc with

cardinality tk(Mtn) copies the value of Mtn into lMtn.

3.5.1.2 Triggering phase

This phase starts when trigger ≡ events ∧ condition holds for at least one

external ECA rule. If, for rule rk, events and condition consist of nd and nc disjuncts,
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respectively, we define nd · nc test transitions rkTst i,j with priority P + 2, where i and

j are the index of a conjunct in events and one in condition, respectively, while P ≥ 1

is the highest priority used for internal rules (in our example, all internal rules have

default priority P = 1). Then, to trigger rule rk, only one of these transitions, e.g.,

r7Tst1,1 or r7Tst1,2, needs to be fired (we omit i and j if nd = nc = 1). Firing a test

transition means that the corresponding events and conditions are satisfied and results

in placing a token in each of the triggered places rkTrg1, . . . , rkTrgN , to indicate that

Rule rk is triggered, where N is the number of outermost parallel actions (recall that

par and seq model parallel and sequential actions). Thus, N = 1 if rk contains only one

action, or an outermost sequential series of actions. Inhibitor arcs from rkTrg1 to test

transitions rkTsti,j ensure that, even if multiple conjuncts are satisfied, only one test

transition fires. The firing of test transitions does not “consume” external events, thus

we use double-headed arrows between them. This allows one batch to trigger multiple

rules, conceptually “at the same time”. After all enabled test transitions for external

rules have fired, place Ready contains one token, indicating that the current batch of

external events can be cleared: transition CleanUp, with priority P+1, fires and removes

all tokens from external and internal event places using reset arcs, since all the rules

that can be triggered have been marked. This ends the triggering phase and closes the

current batch of events.

3.5.1.3 Performing phase

This phase executes all actions of external rules marked in the previous phase.

It may further result in triggering and executing internal rules. Transitions in this

phase correspond to the actions of rules with priority in [1, P ], the same as that of the
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TransformECAintoPN (Rext,Rint,Venv,Vloc,Eext,Eint)
1 normalize Rext and Rint into regular form and set P to the highest rule priority

2 create a place Ready • to control “phases” of the net

3 create transition CleanUp with priority P + 1 and Ready −[1]→CleanUp

4 foreach event e ∈ Eext ∪Eint do

5 create place pe and pe−[tk(pe)]→CleanUp

6 create place pv, for each variable v ∈ Vloc

7 foreach variable v ∈ Venv with range [vmin, vmax] do

8 create place pv and transitions tvInc and tvDec with priority 0

9 create tvDec−[if(tk(pv) > vmin)1 else 0]→ pv
10 create tvInc−[1]→ pv and pv −[vmax]−◦ tvInc
11 foreach event e ∈ Eext activated when v op val, for op ∈ {≥ | =} do

12 create tvInc−[if(tk(pv) op val)1 else 0]→ pe
13 if e reads v ∈ Venv into v′ ∈ Vloc then

14 create pv′ −[if(tk(pv) op val)tk(pv′) else 0]→ tvInc
15 create tvInc−[if(tk(pv) op val)tk(pv) else 0]→ pv′

16 foreach event e ∈ Eext activated when v op val, for op ∈ {≤ | =} do

17 create tvDec−[if(tk(pv) op val)1 else 0]→ pe
18 if e reads v ∈ Venv into v′ ∈ Vloc then

19 create pv′ −[if(tk(pv) op val)tk(pv′) else 0]→ tvDec

20 create tvDec−[if(tk(pv) op val)tk(pv) else 0]→ pv′

21 foreach event e ∈ Eext without an activated when portion do

22 create te and te−[if(tk(pe) = 0)1 else 0]→ pe
23 if e reads v ∈ Venv into v′ ∈ Vloc then

24 create pv′ −[tk(pv′)]→ te and te −[tk(pv)]→ pv′

25 foreach rule rk ∈ Rext ∪ Rint with nd event disjuncts, nc condition disjuncts,
actions A, and priority p ∈ [1, P ] do

26 create trans. rkTst i,j ,i ∈ [1, nd], j ∈ [1, nc],w/priority P + 2 if rk ∈ Rext, else p

27 foreach event e in disjunct i do

28 create pe−[1]→ rkTst i,j
29 create rkTst i,j −[1]→ pe, if e ∈ Eext

30 foreach conjunct v ≤ val or v = val in disjunct j do

31 create pv −[val + 1]−◦ rkTst i,j
32 foreach conjunct v ≥ val or v = val in disjunct j do

33 create pv −[val]→ rkTst i,j and rkTst i,j −[val]→ pv
34 if actions A is “(A1 par A2)” then na = 2;

35 else na = 1, A1 = A;

36 foreach l ∈ [1, na] do

37 create places rkTrg l and transitions rkAct l with priority p

38 create rkTrg l−[1]→ rkAct l and rkTst i,j −[1]→ rkTrg l
39 SeqSubGraph(Al, “rkAcl l”, l, p)

40 foreach rk ∈ Rext, i ∈ [1, nd], j ∈ [1, nc] do

41 create rkTst i,j −[if(tk(Ready) = 0)1 else 0]→Ready and rkTrg1−[1]−◦ rkTst i,j

Figure 3.14: Transforming ECA rules into a PN: a−[k]→ b means “an arc from a to b
with cardinality k; a−[k]−◦ b means “an inhibitor arc from a to b with cardinality k.
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ParSubGraph(Pars ,Pre, p) •Pars : parallel actions, Pre: prefix
1 foreach l ∈ {1, 2} do • according to the syntax Pars2 has two components

2 create place PreAct lTrg lSeq l and transition PreAct l w/priority p

3 create Pre −[1]→PreAct l and PreAct l−[1]→PreAct lTrg lSeq l
4 SeqSubGraph(Pars l, “PreAct lTrg lSeq l”, l, p);

Figure 3.15: Processing par.

SeqSubGraph(Seqs ,Pre, i, p) •Seqs : sequential actions, Pre: prefix
1 if Seqs sets variable v to val then

2 create pv −[tk(pv)]→Pre and Pre −[val]→ pv
3 else if Seqs increases variable v by val then

4 create Pre −[val]→ pv
5 else if Seqs decreases variable v by val then

6 create pv −[val]→Pre

7 else if Seqs activates an internal event e then

8 create Pre −[1]→ pe
9 else if the outermost operator of Seqs is par then

10 ParSubGraph(Seqs , “Pre”, p) •Recursion on parallel part

11 else if the outermost operator of Seqs is seq then

12 SeqSubGraph(Seqs1, “Pre”, 1, p) •Seqs1 is the first part of Seq

13 create place PreTrg iSeq1 and transition PreAct iSeq1
14 create Pre −[1]→PreTrg iSeq1 and PreTrg iSeq1−[1]→PreAct iSeq1
15 SeqSubGraph(Seqs2, “PreTrg iSeq1”, 2, p) •Seqs2 is the second part of Seq

Figure 3.16: Processing seq.

corresponding rule. An action activates an internal event by adding a token to its place.

This token is consumed as soon as a test transition of any internal rule related to this

event fires. This is different from the way external rules “use” external events. Internal

events not consumed in this phase are cleared when transition CleanUp fires in the next

batch. When all enabled transitions of the performing phase have fired, the system is

in a stable state where environmental changes (transitions with priority 0) can again

happen and the next batch starts.

3.5.1.4 ECA rules to PN translation algorithms

The algorithm in Figure 3.14 takes external and internal ECA rules Rext, Rint,

with priorities in [1, P ], environmental and local variables Venv, Vloc, and external
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and internal events Eext, Eint, and generates a PN. After normalizing the rules and

setting P to the highest priority among the rule priorities in Rint, it maps environmental

variables Venv, local variables Vloc, external events Eext, and internal events Eint, into

the corresponding places (Lines 5, 6, and 8). Then, it creates phase control place Ready ,

transition CleanUp, and reset arcs for CleanUp (Lines 4-5). We use arcs with marking-

dependent cardinalities to model expressions. For example, together with inhibitor

arcs, these arcs ensure that each variable v ∈ Venv remains in its range [vmin, vmax]

(Lines 8-10). These arcs also model the activated when portion of external events

(Line 17), rule conditions (Line 33), and assignments of environmental variables to local

variables (Lines 19-20 and lines 14-15). The algorithm also models external events

and environmental changes (Lines 11-24); it connects environmental transitions such as

tvInc and tvDec to their corresponding external event places, if any, with an arc whose

cardinality evaluates to 1 if the corresponding condition becomes true upon the firing

of the transition and the event place does not contain a token already, 0 otherwise (e.g.,

the arcs from EnvExtLigDec to ExtLgtLow).

Next, rules are considered (Lines 25-41). A rule with nd event disjuncts and nc

condition disjuncts generates nd ·nc testing transitions. To model the parallel-sequential

action graph of a rule, we use mutually recursive procedures, one for parallel actions in

Figure 3.15 and the other for sequential actions in Figure 3.16. Procedure SeqSubGraph

first tests all atomic actions, such as “set”, “increase”, “decrease”, and “activate”. Then,

it recursively calls ParSubGraph at Line 10 if it encounters parallel actions. Otherwise,

it calls itself to unwind another layer of sequential actions at Line 12 and Line 15 for

the two portions of the sequence. Procedure ParSubGraph creates control places and

transitions for the two branches of a parallel action and calls SeqSubGraph at Line 4.
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Figure 3.17: The initialization phase for the smart home example.

3.5.2 Verifying properties

The first step towards verifying correctness properties is to define Sinit, the

set of initial states, corresponding to all the possible initial combinations of system

variables (e.g., ExtLgt can initially have any value in [0, 10]). One could consider all these

possible values by enumerating all legal stable states corresponding to possible initial

combinations of the environmental variables, then start the analysis from each of these

states, one at a time. However, in addition to requiring the user to explicitly provide

the set of initial states, this approach may require enormous runtime, also because

many computations are repeated in different runs. Our approach instead computes the

initial states symbolically, thanks to the nondeterministic semantics of PNs, so that the

analysis is performed once starting from a single, but very large, set Sinit.

To this end, we add an initialization phase that puts a nondeterministically

chosen legal number of tokens in each place corresponding to an environmental variable.

This phase is described by a subnet consisting of a transition InitEnd with priority P+3,

a place Init with one initial token, and an initializing transition with priority P + 3 for

every environmental variable, to initialize the number of tokens in the corresponding

place. Figure 3.17 shows this subnet for our running example. We initialize the PN

by assigning the minimum number of tokens to every environmental variable place and
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leaving all other places empty, then we let the initializing transitions nondeterministi-

cally add a token at a time, possibly up to the maximum legal number of tokens in each

corresponding place. When InitEnd fires, it disables the initializing transitions, freezes

the nondeterministic choices, and starts the system’s normal execution.

This builds the set of initial states, ensuring that the PN will explore all possible

initial states, and avoids the overhead of manually starting the PN from one legal initial

marking at a time. Even though the overall state space might be larger (it equals the

union of all the state spaces that would be built starting from each individual marking),

this is normally not the case. Having to perform just one state space generation is

obviously enormously better.

After the initialization step, we proceed with verifying termination and con-

fluence using our tool SmArT, which provides symbolic reachability analysis and CTL

model checking with counterexample generation [57].

3.5.2.1 Termination

Reactive systems constantly respond to external events. However, if the system

has a livelock, a finite number of external events can trigger an infinite number of rule

executions (i.e, activate a cycle of internal events), causing the system to remain “busy”

internally, a fatal design error. When generating the state space, all legal batches of

events are considered. Due to the PN execution semantics, we can again avoid the need

for an explicit enumeration, this time, of event batches.

Proposition 3.6. A set G of ECA rules satisfies termination if no infinite sequence of

internal events can be triggered in any possible execution of G. This can be expressed

in CTL as ¬EF(EG(unstable)), stating that there is no cycle of unstable states reachable

from an initial, thus stable, state.
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bool Term(mdd Sinit,mdd2 Nint)
1 mdd Srch ← StateSpaceGen(Sinit,Next ∪ Nint);

2 mdd Sunst ← Intersection(Srch,ExtractUnprimed(Nint));

3 mdd Sp ← EF(EG(Sunst));

4 if Sp 6= ∅ then return false • provide error trace

5 else return true;

mdd ExtractUnprimed(mdd2 p) • p unprimed
6 if p = 1 then return 1;

7 if CacheLookUp(ExtractUnprimedCode, p, r) return r;

8 foreach i ∈ Vp.v do

9 mdd ri ← 0;

10 if p[i] 6= 0 then • p[i] is the node pointed edge i of node p

11 foreach j ∈ Vp.v s.t. p[i][j] 6= 0 do

12 ri ← Union(ri,ExtractUnprimed(p[i][j]))

13 mdd r ← UniqueTableInsert({ri : i ∈ Vp.v});

14 CacheInsert(ExtractUnprimedCode, p, r);

15 return r;

Figure 3.18: Algorithms to verify the termination property.

Both traditional breadth-first-search (BFS) and saturation-based [213] algo-

rithms are suitable to compute the EG operator. Figure 3.18 uses saturation, which

tends to perform much better in both time and memory consumption when analyzing

large asynchronous systems. We encode transitions related to external events and envi-

ronmental variable changes into Next. Thus, the internal transitions are Nint = N \Next.

After generating the state space Srch using constrained saturation [212], we build the set

of states Sunst by symbolically intersecting Srch with the unprimed, or “from”, states

extracted from Nint. Then, we use the CTL operators EG and EF to identify any non-

terminating path (i.e., cycle).

3.5.2.2 Confluence

Confluence is another desirable property to ensure consistency in systems ex-

hibiting highly concurrent behavior.

Proposition 3.7. A set G of ECA rules satisfying termination also satisfies confluence
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if, for any legal batch b of external events and starting from any particular stable state

s, the system eventually reaches a unique stable state.

We stress that what constitutes a legal batch b of events depends on state s,

since the condition portion of one or more rules might affect whether b (or a subset of b)

can trigger a rule (thus close a batch). Given a legal batch b occurring in stable state s,

the system satisfies confluence if it progresses from s by traversing some (nondetermin-

istically chosen) sequence of unstable states, eventually reaching a stable state uniquely

determined by b and s. Checking confluence is therefore expensive [4], as it requires

verifying the combinations of all stable states reachable from Sinit with all legal batches

of external events when the system is in that stable state. A straightforward approach

enumerates all legal batches of events for each stable state, runs the model, and checks

that the set of reachable stable states has cardinality one. We instead only check that,

from each reachable unstable state, exactly one stable state is reachable; this avoids

enumerating all legal batches of events for each stable state. Since nondeterministic

execution in the performing phase is the main reason for a system violates confluence,

checking the evolution starting from unstable states will fulfill the purpose.

The brute force algorithm ConfExplicit in Figure 3.19 enumerates unstable

states and generates reachable states only from unstable states using constrained sat-

uration [212]. Then, it counts the stable states in the obtained set. We observe that,

starting from an unstable state u, the system may traverse a large set of unstable states

before reaching a stable state. If unstable state u is reachable, so are the unstable states

reachable from it. Thus, the improved version ConfExplicitImproved first picks an un-

stable state i and, after generating the states reachable from i and verifying that they

include only one stable state, it excludes all visited unstable states (Line 11). Further-
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bool ConfExplicit(mdd Sst,mdd Sunst,mdd2 Nint)
1 foreach i ∈ Sunst
2 mdd Si ← StateSpaceGen(i,Nint);

3 if Cardinality(Intersection(Si,Sst)) > 1 then

4 return false; • provide error trace

5 return true;

bool ConfExplicitImproved(mdd Sst,mdd Sunst,mdd2 Nint,mdd2 N )
5 mdd Sfrontier ← Intersection(RelProd(Sst,N ),Sunst);

6 while Sfrontier 6= ∅ do • if Sfrontier is empty, it explores all Sunst
7 pick i ∈ Sfrontier;

8 mdd Si ← StateSpaceGen(i,Nint);

9 if Cardinality(Intersection(Si,Sst)) > 1 then

10 return false; • provide error trace

11 else • exclude all unstable states reached by i

12 Sfrontier ← Sfrontier \ Intersection(Si,Sunst);

13 return true;

Figure 3.19: Explicit algorithms to verify the confluence property.

more, it starts only from states i in the frontier, i.e., unstable states reachable in one

step from stable states (all other unstable reachable states are by definition reachable

from this frontier). However, we stress that these, as most symbolic algorithms, are

heuristics, so they are not guaranteed to work better than the simpler approaches.

Next, we introduce a fully symbolic algorithm to check confluence in Fig-

ure 3.20. It first generates the transition transitive closure (TC) set from Nint us-

ing constrained saturation [213], where the “from” states of the closure are in Sunst

(Line 1). The resulting set encodes the reachability relation from any reachable unsta-

ble state without going through any stable state. Then, it filters this relation to obtain

the relation from reachable unstable states to stable states by constraining the “to”

states to set Sst. Thus, checking confluence reduces to verifying whether there exist two

different pairs (i, j) and (i, j′) in the relation: Procedure CheckConf implements this

check symbolically. While computing TC is an expensive operation [213], this approach

avoids separate searches from distinct unstable states and is particularly appropriate

when Sunst scales to large sizes.
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bool ConfSymbolic(mdd Sst,mdd Sunst,mdd2 Nint)
1 mdd2 T C ← ConstraintedTransitiveClosure(Nint,Sunst);

2 mdd2 T Cu2s ← FilterPrimed(T C,Sst);

3 return CheckConf (T Cu2s);

bool CheckConf (mdd2 p)
4 if p = 1 then return true

5 if CacheLookUp(CheckConfCode, p, r) return r;

6 foreach i ∈ Vp.v, s.t. exist j, j
′ ∈ Vp.v, j 6= j′, p[i][j] 6= 0, p[i[j′] 6= 0 do

7 foreach j, j′ ∈ Vp.v, j 6= j′ s.t. p[i][j] 6= 0, p[i[j′] 6= 0 do

8 if p[i][j] = p[i][j′] return false; •Confluence does not hold

9 mdd fj ← ExtractUnprimed(p[i][j]); •Result will be cached

10 mdd fj′ ← ExtractUnprimed(p[i][j′]); •No duplicate computation

11 if Intersection(fi, fj′) 6= 0 then return false;

12 foreach i, j ∈ Vp.v s.t. p[i][j] 6= 0 do

13 if CheckConf (p[i][j]) = false return false;

14 CacheInsert(CheckConfCode, p, true);

15 return true;

Figure 3.20: Fully symbolic algorithm to verify the confluence property.

3.5.3 Experimental results

Table 3.2 reports results for a set of models run on an Intel Xeon 2.53GHz

workstation with 36GB RAM under Linux. For each model, it shows the state space

size (|Srch|), the peak memory (Mp), and the final memory (Mf ). For termination, it

shows the time used to verify the property (Tt) and to find the shortest counterexample

(Tc). For confluence, it reports the best runtime between our two explicit algorithms

(Tbe) and for our symbolic algorithm (Ts). Memory consumption accounts for both

decision diagrams and operation caches.

Net PN t is the model corresponding to our running example in Figure 2.6,

and fails the termination check. Even though the state space is not very large, coun-

terexample generation is computationally expensive [214] and consumes most of the

runtime. The shortest counterexample generated by SmArT has a long tail consisting of

1885 states and leads to the 10-state cycle of Figure 3.21 (only the non-empty places
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Termination (time: sec, memory: MB)

Model |Srch| Tt Tc Mp Mf

PN t 2.66 · 106 0.009 9.665 358.68 88.36

PN c 2.61 · 106 0.005 9.497 344.42 87.88

PN 1 8.99 · 106 0.010 11.559 391.52 89.78

PN 2 1.78 · 107 0.010 24.477 673.33 158.66

PN 3 2.61 · 107 0.010 85.171 1686.46 559.52

PN 4 5.02 · 107 0.010 14.541 491.80 105.90

Confluence (time: min, memory: GB, –: out of memory)

Model |Srch|
Best Explicit Symbolic

Tbe Mp Mf Ts Mp Mf

PN c 2.38 · 106 4.51 4.24 4.10 5.11 2.02 0.22

PN 1 8.12 · 106 40.25 14.53 14.33 6.40 2.31 0.27

PN 2 1.61 · 107 34.40 0.85 0.08 10.11 2.59 0.25

PN 3 2.33 · 107 > 120.00 – – 60.09 2.59 0.25

PN 4 4.55 · 107 > 120.00 – – 23.33 4.66 0.52

Table 3.2: Results of verifying the ECA rules for a smart home in Figure 2.6.

are listed for each state, and edges are labeled with the corresponding PN transition).

Analyzing the trace, we can clearly see (in bold) that, when lights are about to be turned

off due to the timeout, lMtn = 0, and the external light is low, ExtLgt ≤ 5, the infinite

sequence of internal events (LgtsOff ,ChkExtLgt ,LgtsOn,ChkMtn)ω prevents the system

from terminating. Thus, rules r4, r5, r6, and r7 need to be investigated to fix the error.

Among the possible modifications, we choose to replace rule r5 with r′5 : on ChkExtLgt

if ((intLgts = 0 and lExtLgt ≤ 5) and lMtn = 1) do activate (LgtsOn), resulting in

99



lgtsTmr = 1

r6Trg1 = 1

lgtsTmr = 1

r6Trg1Seq1 = 1

intLgts = 6
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Figure 3.21: A termination counterexample (related to rules r4 to r7).

s0
ExtLgtLow = 1

intLgts = 0

ChkSlp = 0

lSlp = 1

s2
ExtLgtLow = 0

intLgts = 0
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lSlp = 1
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ExtLgtLow = 0

intLgts = 6

ChkSlp = 1

lSlp = 1

· · ·· · ·· · · · · ·

Figure 3.22: A confluence counterexample (related to rules r8 and r9).

the addition of an input arc from lMtn to r5Tst . The new corrected model is called

PN c in Table 3.2, and SmArT verifies it holds the termination property.

We then run SmArT on PN c to verify confluence, and found 72,644 bad states.

Figure 3.22 shows one of these unstable states, s0, reaching two stables states, s1 and

s2. External event ExtLgtLow closes the batch in s0 and triggers rule r8, which sets

intLgt to 6 and activates internal event ChkSlp, which in turn sets intLgt to 0 (we omit

intermediate unstable states from s0 to s1 and to s2). Recall rule r8: on ExtLgtLow

do ( set (intLgts, 6) par activate (ChkSlp) and rule r9: on ChkSlp if (lSlp = 1)

do set (intLgts, 0), in Figure 2.6. We correct and replace them with r′8: on ExtLgtLow

if lSlp=0 do set (intLgt , 6) and r′9: on ExtLgtLow if lSlp = 1 do set (intLgt , 0);

resulting in model PN fc. Checking this new model for confluence, we find that the

number of bad states decreases from 72,644 to 24,420. After investigation, we determine

that the remaining problem is related to rules r2 and r3. After changing rule r2 to
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on SecElp if ((lgtsTmr ≥ 1 and lgtsTmr ≤ 359) and lMtn = 0) do increase (lgtsTmr ,

1), the model passes the check. This demonstrates the effectiveness of counterexamples

to help a designer debug a set of ECA rules.

We then turn our attention to larger models, which extend our original model

by introducing four additional rules and increasing variable ranges. In PN 1 and PN 2,

the external light variable ExtLgt ranges in [0, 20] instead of [0, 10]; for PN 4, it ranges

in [0, 50]. PN 2 also extends the range of the light timer variable lgtTmr to [0, 720];

PN 3 to [0, 3600]. We observe that, when verifying termination or confluence, the time

and memory consumption tends to increase as the model grows; also, our symbolic

algorithm scales much better than the best explicit approach when verifying confluence.

For the relatively small state space of PN t, enumeration is effective, since computing

TC is quite computationally expensive. However, as the state space grows, enumerating

the unstable states consumes excessive resources. We also observe that the supposedly

improved explicit confluence algorithm sometimes makes things worse. The reason may

lie in the fact that a random selection of a state from the frontier has different statistical

properties than for the original explicit approach, and also in the fact that operation

caches save many intermediate results. However, both explicit algorithms run out of

memory on PN 3 and PN 4. Comparing the results for PN 3 and PN 4, we also observe

that larger state spaces might require fewer resources. With symbolic encodings, this

might happen because the corresponding MDD is more regular than the one for a smaller

state space.
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3.6 Conclusion

This chapter presented a way to use symbolic techniques to verify discrete

systems. We mainly focused on discrete systems specified using an NCFSM or ECA

rules. For an NCFSM system, the details of how to encode an NCFSM using symbolic

encoding give the foundation for applying advanced saturation algorithms. Symbolic al-

gorithms are derived to check for livelocks, dead transitions, and strong connectedness.

Then, we explain one of our main contributions: designing and using a symbolic equiv-

alence checker to generate a test suite consisting of input sequences which distinguish

all non-equivalent mutants of an NCFSM requirement. The challenge lies in storing and

computing a large amount of similarly structured mutants, along with the well-known

state space explosion problem for verification. The experimental results demonstrate

the effectiveness of symbolic algorithms. For hybrid systems specified using ECA rules,

we tackle two critical problems to verify both termination and confluence properties.

The challenge comes from the systems’ highly concurrent and nondeterministic nature.

We propose an approach to verify these properties using a self-modifying PN with in-

hibitor arcs and priorities. Our approach is general enough to give precise answers to

questions about other properties, certainly those that can be expressed in CTL. The

important contribution is to develop a fully symbolic algorithm to verify the confluence

property for a set of ECA rules and provide the first practical experimental results. The

counterexample provided by the algorithm leads us to design flaws and helps designers

to fix errors. We show this whole debugging process through a light control subsystem

from a smart home for senior housing. In this chapter, we use discretization to analyze

hybrid systems; the next chapter will explore techniques without discretization.
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Chapter 4

Verification and Validation of

Hybrid Systems

Analyzing hybrid systems in a discrete manner simplifies the problem and

allows us to use powerful tools we would not otherwise be able to apply. However,

handling the continuous nature of hybrid systems requires many workarounds in our

analysis, for instance, discretizing continuous time into integers used in analyzing ECA

rules. The choice of granularity and precision in such instances is often critical to the

analysis. Too large of steps results in the oversight of time sensitive errors while too fine

of steps results in wasting computational resources unnecessarily. In this chapter, we

will analyze hybrid systems directly as opposed to discretizing continuous dynamics. On

the positive side, we have powerful modeling languages such as HA to model physical

phenomena accurately with mathematical formulas, which also provide a way to verify

the properties of hybrid systems by checking the execution trajectories of given HA. On

the negative side, reachability analysis for HA is undecidable [108] even under severe

limitations. Thus, modeling and analyzing real applications with HA is not practical.
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Instead, simulation-based approaches, i.e., modeling hybrid systems as signals, are con-

sidered a reasonable approach, and have been widely adopted in industry due to their

scalability and expressiveness. Moreover, the temporal logic designed for analyzing HA

can be directly transplanted to this approach to analyze signals. In this chapter, we will

cover both approaches.

4.1 Verification of hybrid automata

Recall that a hybrid automatonH = (Loc,Var ,Labels,ΣInit, Inv ,Flow ,Edges, Jump)

generally has an infinite potential state space Σ as defined in Section 2.3.1. As in Chap-

ter 3, reachability analysis is the foundation to verify HA. If it is able to compute a

set of hybrid states Σrch reached by executions of H starting from ΣInit through both

discrete jumps and continuous flow, a large portion of verification problems, for instance

safety verification, can be done through checking whether Σrch ∩ Σbad is empty or not,

where Σbad denotes the unsafe hybrid states. However, it is well known that the exact

computation of Σrch is undecidable for general HA [6, 108]. Even for our simple ther-

mostat example shown in Figure 2.7, the reachability problem is still undecidable since

the flow activities ẋ = K(H − x) and ẋ = −Kx are nonlinear.

Thus, researchers restrict to LHA and initialized RHA for verification purposes

because both lie on the boundary between decidable and undecidable problems. If LHA

are simple enough to be transfered into timed automata, the reachability problem can

be solved by an algorithm designed for timed automata [5]. Normally, the simplicity

condition restricts all functions in Inv and Jump to be of the form x ≤ k or x ≥ k,

where x ∈ Var and k ∈ Z [6]. However, the reachability problem is undecidable for

2-rate timed systems or simple integrator systems [6]. For initialized RHA, there are
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bool ForwardAnalysis(Σbad,ΣInit)
1 Σold ← ∅;

2 Σcur ← ΣInit;

3 while Σcur ∩ Σbad = ∅ ∧ Σcur 6= Σold do

4 Σnext ← Post(Σcur);

5 Σold ← Σold ∪ Σcur;

6 Σcur ← Σnext;

7 end while

8 return Σcurr ∩ Σbad 6= ∅;

bool BackwardAnalysis(Σbad,ΣInit)
1 Σold ← ∅;

2 Σcur ← Σbad;

3 while Σcur ∩ Σinit = ∅ ∧ Σcur 6= Σold do

4 Σprev ← Prev(Σcur);

5 Σold ← Σold ∪ Σcur;

6 Σcur ← Σprev;

7 end while

8 return Σcurr ∩ ΣInit 6= ∅;

Figure 4.1: Fixed-point algorithms for the forward and backward analysis on state
regions of HA.

two important limitations: (1) all initial hybrid states, Inv , and (2) Flow are defined

in rectangular regions and any continuous variable has to be reinitialized whenever it

takes a discrete jump transition [108]. These limitations strongly limit real applications

that can be modeled and analyzed using HA.

Assuming the reachability problem of the inspected HA is decidable, the ordi-

nary fixed-point algorithms operating on state sets do not work properly. Thus, instead

of directly analyzing state sets, researchers define state regions that are finite quotients

of the state space [8, 12]. A state region contains a hybrid state (l, v) as the kernel and

other states that are reachable from the time transition (l, v) ⇒t (l, v′). Since all the

functions and conditions are linear, the values of all real variables change linearly. Thus,

a set of possible valuations can be defined by a set of linear formulas. Intuitively, if Var

has n real variables, a set of evaluations can be graphically represented by the union of

polyhedra in R
n. Then, a state region can be represented by a location indicator as a

set of linear formulas. State region representation is the cornerstone of the Prev and

Post computations, which are defined as:

Prev(Σcur) = {(l,v) ∈ Σ|Σcur ⇒ (l,v)}
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start
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Figure 4.2: The initialized RHA for the thermostat in Figure 2.7.

and

Post(Σcur) = {(l,v) ∈ Σ|(l,v)⇒ Σcur},

where l ∈ Loc, v ∈ V , and the simple progress ⇒ is defined in Section 2.3.1.1.

Figure 4.1 shows the algorithms for forward and backward fixed-point com-

putations on state regions [6]. These algorithms provide a semi-decision procedure for

reachability analysis of linear hybrid systems. If the final number of state regions is

infinite, these algorithms do not terminate. Otherwise, they would verify whether the

system can reach any of the states in the bad state region Σbad from the initial state

region Σinit. If we further simplify our thermostat example in Figure 2.7 to the ini-

tialized RLA shown in Figure 4.2 with ΣInit = {(On, 20 ≤ x ≤ 25)}, we obtain that

Σrch = {(On, 20 ≤ x ≤ 25), (Off , 20 ≤ x ≤ 25)}. Thus, the safety property with

Σbad = {Off ∨On, x < 20 ∧ x > 25} holds.

Researchers extended CTL, which was originally defined to reason about the

temporal behaviors of discrete reactive systems, to temporal logics that are able to reason

both continuous and discrete behaviors of a hybrid system and express properties related

to time, such as real-time computational tree logic (TCTL) [7] and integrator computa-

tional tree logic (ICTL) [12]. TCTL was originally proposed for timed automata [109]
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and introduces an extra set of clock variables and a reset quantifier. ICTL enhances

TCTL by allowing the integrator, a stop watch that can be stopped and restarted. The

integrator is useful when expressing duration of properties. Both logics are implemented

in the symbolic model checking tool Hytech [111] based on the above two fixed-point

algorithms in Figure 4.1. The exact analysis of LHA is undecidable for both TCTL and

ICTL [7].

Similar extensions from LTL are timed propositional temporal logic (TPTL) [13]

and metric temporal logic (MTL) [132]. MTL introduces time-bounded temporal oper-

ations and has been widely adopted by validating hybrid systems modeled as signals,

since linear time based logic is more natural than branching time based logic to describe

signals. Again, the satisfiability problem for MTL is undecidable [11].

4.2 STL and MTL

MBD promotes the use of executable block diagrams to represent and simu-

late a hybrid system, such as the model designed using Simulink in Figure 2.9. This

model and design method seamlessly combines visualization and simulation in a manner

well-suited for hierarchical and compositional design. Graphical block diagrams, which

represent mathematical equations, are supported by a simulation engine to generate

signals as outputs. Also, MBD provides the ability to directly generate production code

from models which greatly reduces the possibility of introducing errors during the imple-

mentation. Then, early validation can be applied to models, and increase the probability

of discovering errors even at the design phase. Since the verification of hybrid systems

is extremely challenging, inevitably expensive, and possibly non-terminating, even for

severely limited hybrid systems, researchers have shifted their focus from rigorous veri-
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fication to more relaxed simulation-based validation [92, 66, 171, 199].

Researchers have adopted fruitful results from verification to develop, metric

temporal logic (MTL) [132] and, more recently, signal temporal logic (STL) [152] to an-

alyze systems modeled as input and output signals. STL and MTL extend the temporal

operators G, F, and U from LTL. Each temporal operator is indexed by an interval of

the form (a, b), (a, b], [a, b), [a, b], (a,∞), or [a,∞), where both a and b are non-negative

real-valued constants with a ≤ b.

The subtle difference between STL and MTL is in how they to map signals

to atomic propositions. STL is more specific than MTL and uses predicates to express

constraints on signals. These predicates can then be reduced to inequalities of the form

µ = f(x) ∼ πconst, (4.1)

where f is a scalar-valued function over the signal x, ∼ ∈ {<,≤,≥, >,=, 6=}, and πconst

is a real number. In the following sections, we mainly focus on STL.

Definition 4.1. (STL syntax) Given an interval I, an STL formula is inductively

defined by the following grammar:

ϕ := ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

where µ is a predicate defined on signal x as in Equation (4.1). ✷

Similar to LTL, the always and eventually operators are derived from the until

operator as follows:

FIϕ = ⊤UI ϕ GIϕ = ¬FI¬ϕ.

When the interval I is omitted, the default interval [0,+∞) is implied.

Intuitively, the semantics of STL formulas are defined as follows. The signal x

satisfies f(x) > 10 at time t, where t ≥ 0, if f(x(t)) > 10. It satisfies ϕ = G[0,2) (x > −1)
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if for all time 0 ≤ t < 2, x(t) > −1. The signal x1 satisfies ϕ = F[1,2)x1 > 0.4 iff

there exists time t such that 1 ≤ t < 2 and x1(t) > 0.4. The two-dimensional signal

x = (x1, x2) satisfies the formula ϕ = (x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time

u where 2.3 ≤ u ≤ 4.5 and x2(u) < 1, and for all time v in [2.3, u), x1(v) is greater than

10.

Definition 4.2. (STL boolean semantics) Given a signal x at time t, the boolean

semantics of an STL formula ϕ is inductively defined as follows:

(x, t) |= µ iff x satisfies µ at time t

(x, t) |= ¬ϕ iff (x, t) |=/ ϕ

(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃ t′ ∈ [t+ a, t+ b] s.t. (x, t′) |= ϕ2 and ∀ t′′ ∈ [t, t′], (x, t′′) |= ϕ1 ✷

Extending the above semantics to other kinds of intervals (open, open-closed,

and closed-open) is straightforward. We write x |= ϕ as a shorthand for (x, 0) |= ϕ.

4.3 Quantitative semantics

The boolean semantics combined with the definition of an atomic proposition

µ abstract the real value signal x to a set of boolean signals based on inequalities.

This abstraction keeps the information of timing, but largely loses information such as

amplitude, which is sometimes critical when designing hybrid systems. For instance,

given an STL formula ϕ = G(x < 15 ∧ x > −15), two signals x1 and x2 shown in

Figure 4.3 will be abstracted to the same boolean signal, straight true through the

whole time domain. However, it is obvious that x1 is closer to the threshold than x2.

A little perturbation on the system generating x1, introduced by environmental noise
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Figure 4.3: With respect to STL formula ϕ = G(x < 15 ∧ x > −15), using Boolean
semantics, signals x1 and x2 will be abstracted to the same Boolean signal, straight true
for the whole time domain. Thus, both of them satisfy ϕ. However, it is straightforward
that x1 is closer to the threshold to violate ϕ, comparing to x2. Unfortunately, Boolean
semantics is unable to recognize this difference.

or the measurement precision of devices, will cause the resulting signal to violate ϕ, as

in Figure 4.4. Unfortunately, the boolean semantics is unable to distinguish whether

x2 is more tolerant than x1 with respect to ϕ. Thus, instead of qualitative semantics,

we need an advanced semantics based on quantitative measurement to differentiate the

tolerance of signals against perturbation, also referred as robustness.

The quantitative semantics of STL can be defined using a real-valued function

ρ of a signal x, a formula ϕ, and time t satisfying the following property:

ρ(ϕ,x, t) ≥ 0 iff (x, t) |= ϕ. (4.2)

This quantitative semantics preserves the satisfaction of boolean semantics and also

perfectly captures the notion of robustness satisfaction of ϕ by a signal x. For example,

whenever the absolute value of ρ(ϕ,x, t) is large, a little perturbation on the system is

less likely to affect the boolean satisfaction (or violation) of ϕ by x. In [85], different

quantitative semantics for STL have been proposed. The most commonly-used semantics
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Figure 4.4: After introduced some random noise to the system generating x1 in Fig-
ure 4.3, the resulting signal violates the same STL formula ϕ = G(x < 15 ∧ x > −15).

is defined inductively from the quantitative semantics for predicates and inductive rules

for each STL operator. The quantitative semantic is similar to the robust semantic of

MTL which is based on the definition of a metric on the state space of signals [92].

This metric should be able to identify each predicate with the set in which the predicate

holds.

Definition 4.3. (metric) Let d be a metric on R
n with the usual extension to the

signed distance from a point p ∈ P to a set P ′ ⊆ P:

d(x,P ′) =



















− inf
p′∈P

d(p, p′) if x /∈ P ′

inf
p′∈P\P ′

d(p, p′) otherwise

where d(p, p′) is a normal distance function which satisfies the following conditions:

• non-negativity: d(p, p′) ≥ 0;

• identity of indiscernibles: d(p, p′) = 0 iff p = p′;

• symmetry: d(p, p′) = d(p′, p);
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• triangle inequality: d(p, p′′) ≤ d(p, p′) + d(p′, p′′), where p′′ ∈ P. ✷

The signed distance provides a way to measure whether a point belongs to a set

and how far it is from the set. For example, when the point belongs to the set, the signed

distance is the shortest non-negative distance from the point to the boundary of the set.

For each MTL predicate µ, first define its truth set O(µ) as: x, t |= µ iff x(t) ∈ O(µ)

and let ρd(µ,x, t) = d(x(t),O(µ)).

Without loss of generality, an STL predicate µ can be identified by an inequality

of the form f(x) ≥ 0. Other forms of inequalities can be transformed into this form.

From this form, a straightforward quantitative semantics for predicate µ is defined as

ρ(µ,x, t) = f(x(t)). (4.3)

Thus, we can conclude that the robust semantics of MTL is a special case of the quan-

titative semantics of STL. When the associated function f for each predicate in STL is

defined as the signed distance d, ρd and ρ coincide.

Definition 4.4. (STL quantitative semantics) Given signal x, the quantitative

semantics of STL formula ϕ is defined inductively as follows:

ρ(¬ϕ,x, t) = −ρ(ϕ,x) (4.4)

ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t), ρ(ϕ2,x, t)) (4.5)

ρ(ϕ1UIϕ2,x, t) = sup
t′∈t+I

(

min(ρ(ϕ2,x, t
′), inf

t′′∈[t,t′)
ρ(ϕ1,x, t

′′)
)

, (4.6)

where sup and inf are the supremum and infimum functions. ✷

Additionally, by combining Equation (4.6), and the derived definition of FIϕ

112



and GIϕ, we can obtain:

ρ(FIϕ,x, t) = sup
t′∈t+I

ρ(ϕ,x, t′) (4.7)

ρ(GIϕ,x, t) = inf
t′∈t+I

ρ(ϕ,x, t′). (4.8)

Example 4.5. For the automatic transmission controller model from Section 2.3.2.1,

suppose we want to specify that the speed should never exceed 120 mph and RPM should

never exceed 4500 rpm. The predicate specifying the former constraint is speed>120

and the latter is RPM>4500. The STL formula expressing these to be always false,

ϕ = G(speed ≤ 120) ∧ G(RPM ≤ 4500), (4.9)

has two predicates µ1 : speed ≤ 120 and µ2 : RPM ≤ 4500. We put them into the

standard form µi : fi(x) ≥ 0, and define x = (speed, RPM), f1(x) = 120 − speed and

f2(x) = 4500− RPM. From (4.3), we get the quantitative semantics:

ρ(speed ≤ 120,x, t) = 120− speed(t).

Applying rule (4.8) for the semantics of G, we get:

ρ(G(speed ≤ 120),x, t) = inf
t∈T

(120− speed(t)).

Similarly for µ2,

ρ(G(RPM ≤ 4500),x, t) = inf
t∈T

(4500− RPM(t)).

Finally, by applying rule (4.5):

ρ(ϕ,x, t) = min(inf
t∈T

(120− speed(t)), inf
t∈T

(4500− RPM(t)). (4.10)

In other words, the resulting satisfaction function ρ looks for the maximum speed and

RPM over time and returns the minimum of the differences with the thresholds 120 and

4500.
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4.4 Falsification of hybrid systems

Unlike formal verification, which tries to study a hybrid system based on its

fundamental mathematical representation and complex structure, validation only fo-

cuses on observable behaviors, namely input and output signals from simulation results.

Validation and falsification treat a hybrid system as a black box. Moreover, they require

no knowledge of its internal theory and complex hierarchical structure and no advanced

or sophisticated techniques to track internal system state changes. For some cases, such

as intellectual property (IP) protection, it is mandatory to validate the system design

as a black box. Another advantage of this approach is its scalability, as it is able to

handle industrial models without requiring excessive effort and puts no requirements on

the dynamics of the considered hybrid system.

Given an STL formula ϕ and signal x, the validation result can be directly

obtained from quantitative semantics, or called robustness estimation, of the system

with respect to the requirement formula. If we look at the robustness estimation from

another point of view, it can be used in an entirely new application. For instance, it can

be used to guide the search of input signals that may cause undesired system behaviors.

This is known as the falsification problem:

Problem 4.6. (the falsification problem) Given a system S and an STL formula ϕ,

the falsification problem is to find a signal u such that S(u) |=/ ϕ. ✷

Using quantitative semantics, this is equivalent to finding a trace x = S(u)

such that ρ(ϕ,x, 0) < 0. The problem can be solved by

Solve ρ∗ = min
u∈U

ρ(ϕ,S(u), 0) (4.11)

Then, if ρ∗ < 0, we return u∗ = arg min
u∈U

ρ(ϕ,S(u), 0), otherwise, S |= ϕ.
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Unfortunately, the resulting minimization (4.11) is a non-linear and non-convex

optimization problem for general hybrid systems [210]. No solver can guarantee con-

vergence, uniqueness, or even existence of a solution. Formally, letting ϕ be a simple

safety property establishes a reduction from the reachability problem for general hybrid

systems, which is undecidable [108]. Thus, the falsification problem is undecidable.

On the other hand, many heuristics can be used to find an approximate solution

for MTL and STL formulas. Researchers proposed and implemented different strate-

gies for MTL in S-Taliro, namely Monte-Carlo [163], ant-colony optimization [19],

and the cross entropy method [182]. STL uses Nelder-Mead non-linear optimization

in Breach [128]. Although different optimization algorithms might achieve various

performance, they all use the same general framework:

1. Define the space of permissible input signals with the help of m input control

parameters k = (k1, . . . , km) which take values from a set Pu, and a generator

function g such that u(t) = g(v(k))(t) is a permissible input signal for S for any

valuation v(k) ∈ Pu.

2. Sample the space of the control parameters in a uniform, random fashion to obtain

Ninit distinct valuations vi(k) ∈ Pu.

3. For i ≤ Ninit, solve ρi = min
v(k)∈Pu

ρ(ϕ,S(g(v(k))), 0) using different optimization

algorithms and vi(k) as an initial guess.

4. Return the corresponding u with the minimal ρ value.

For example, if permissible input signals are step functions, the input parame-

ters would characterize the amplitude of the step and the time at which the step input

is applied. Note that g does not necessarily generate all possible inputs to the system.
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Figure 4.5: The closed-loop Simulink model of a thermostat system. This model is more
advanced than the one in Section 2.3.1.2. It details the physical plant in the House
block that allows designers to specify thermal properties, such as the materials of walls
and windows, the geometry of the house, the temperature of the heater flow. Moreover,
the model also estimates the heating cost for this specific house. The inputs of the
model are the indoor temperature threshold for the thermostat and the initial outdoor
temperature that is able to affect the thermal resistance of the whole system.

However, it is useful in a very generic way to restrict the search space of possible input

signals. The falsification engine in Breach is more flexible in the definition of input

parameters than that in S-Taliro.

4.5 Experimental results

We revisit the thermostat system that we attempted to verify using HA in Sec-

tion 2.3.1.2. Here, we provide an advanced model using Simulink, shown in Figure 4.5,

which originally comes from the Simulink tutorial demo [187] with some modifications.

This model details the physical plant in the House block that allows designers to specify

thermal properties, such as the materials of walls and windows, the geometry of the

house, and the temperature of the heater flow. Moreover, the model also estimates the

heating cost for this specific house. The inputs of the model are the indoor temperature

threshold for the thermostat and the initial outdoor temperature that is able to affect
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S-Taliro falsification Breach falsification

Formula Time #Sim Rob./x Time #Sim Rob./x

ϕ50
eff 9.635 17 0.566 0.362 10 0.036

ϕ80
eff 18.342 43 0.432 0.929 12 0.036

ϕcost > 3.977 > 1000 0.003 0.135 27 0.005

Table 4.1: The falsification results for the thermostat system in Figure 4.5.

the thermal resistance of the whole system. All properties discussed later are tried on

the two falsification engines Breach and S-Taliro. The comparison results are shown

in Table 4.1, including the total time for falsification, the number of simulations, and

the time to compute the robustness value.

The first interesting property to verify is the efficiency of the designed heating

system. One goal is to make sure that, when the room temperature drops 2.5◦C below

the threshold, the system is able to raise the room temperature to at least 1◦C lower than

the threshold within 15 minutes (since the simulation time unit is hour, 15 minutes equals

0.25 hour) and maintain the status for at least 15 minutes. The difference between the

room temperature and the threshold is marked by the output signal TempDiff . Thus,

the property can be formalized as

ϕeff = G((TempDiff > 2.5)⇒ (F[0,0.25](G[0,0.25](TempDiff < 1)))).

The counterexample provided by the falsification engine is shown in Figure 4.6.

It shows that the heating system is not strong enough to raise the room temperature

to 26◦C, the user defined temperature threshold. Increasing the heat flow temperature

from 50◦C to 80◦C solves this problem. Thus, in the results table, formulas ϕ50
eff and

ϕ80
eff are used to distinguish this predefined heat flow temperature.
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Figure 4.6: A counterexample of the formula with the condition that the predefined heat
flow temperature is 50◦C, ϕ50

eff = G((TempDiff > 2.5) ⇒ (F[0,0.25](G[0,0.25](TempDiff <

1)))).

However, the falsification engine returns another counterexample shown in Fig-

ure 4.7. It informs us that the system is capable of raising the room temperature fast

enough, but the sealing and insulating of the house is not energy efficient enough to

maintain the temperature. Thus, we double the thickness of windows and walls and

reduce the total window area to increase the house insulation.

The next property is related to the daily cost. Since the heating power is

boosted, the cost for electricity will increase. However, we also improve the insulation

which in turn decreases the cost. The requirement specifying that the daily heating cost
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Figure 4.7: A counterexample of the formula with the condition that the predefined heat
flow temperature is 80◦C, ϕ80

eff = G((TempDiff > 2.5) ⇒ (F[0,0.25](G[0,0.25](TempDiff <

1)))).
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Figure 4.8: Simulation results of 100 runs against ϕcost = G(HeatCost < 8).

should be less then $8 can be formalized as

ϕcost = G(HeatCost < 8).

Figure 4.8 shows the simulation results with 100 runs using Breach, which finds a
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counterexample with the settings: the threshold temperature as 26.5◦C and the initial

outdoor temperature as −10◦C. Unfortunately, S-Taliro fails to find any counterex-

ample after over 1000 attempts.

We observe that the performance of S-Taliro is not stable. S-Taliro uses

convex stochastic optimization techniques. However, the dynamics of most hybrid sys-

tems is non-convex which causes its unstable performance. Thus, in Table 4.1, we use

the average time with several runs to falsify the formula for S-Taliro. For instance, for

ϕ80
eff, the longest run takes 46.495 seconds after 110 attempts but the most successful

run costs only 3.8181 seconds with 8 attempts. As stated earlier, for ϕcost, S-Taliro

fails all runs even with 1000 attempts. If more runs are allowed, S-Taliro may be able

to falsify the formula. In comparison, Breach is relatively stable even for relatively

complex formulas. The results demonstrate that the Nelder-Mead algorithm provides

a good trade-off between global randomized exploration and local optimization. Also,

S-Taliro computes the robustness value using the monitoring algorithm [93]. As for

Breach, signals are computed before computing the robustness value. Thus, the down-

grade in performance of S-Taliro with the complexity of the formula may be a result

of some hidden costs due to merging robustness computation and signal generation [84].

4.6 Conclusion

This chapter illustrated verification and validation techniques for hybrid sys-

tems. Although formal modeling languages such as HA offer a solid mathematical

foundation, the majority of verification problems are undecidable, even for the basic

reachability problem under severe limitations. Thus, analyzing real applications using

HA is not realistic. The fact that development and even maintenance of the famous HA
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verification tool HYTECH [111] has been stopped for a long time is a consideration.

On the other hand, the fruitful result from the combination of simulation and

formal methods, validation, gives hope of tackling this problem by ignoring the inter-

nal mathematical theory and complex hierarchical structure. The boolean semantics of

validation is enhanced into multi-valued logics [79], and researchers use quantitative se-

mantics to describe the robustness of the model with respect to a temporal logic formula.

Falsification is the direct result of this extension. It uses quantitative semantics to search

the input space for a counterexample that falsifies the formula. The valuable counterex-

ample provides both input and output signals for designers to debug the designed hybrid

system. These methods have been highly acknowledged as an important breakthrough.

In this chapter, we also compared the performance of the two falsification engines from

S-Taliro and Breach. Breach is more stable and flexible and gives better results

in general, compared with S-Taliro. On the other hand, S-Taliro uses stochastic

optimization techniques, and it can sometimes generate good quality counterexamples

within a short time. However, the random nature of stochastic optimization occasion-

ally frustrates design engineers because of its unstable performance. The falsification

engines used in this chapter will be part of a requirement mining framework to mine

formal specifications from a closed-loop model developed in the next chapter.
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Chapter 5

Requirement Mining for Hybrid

Systems

Industrial-scale controllers used in automobiles and avionics are now commonly

developed using a MBD paradigm [188, 164]. The MBD process consists of a sequence

of steps. In the first step, the designer captures the plant model, i.e., the dynamic

characteristics of the physical parts of the system, using differential, logic, and algebraic

equations. The next step is to design a controller that employs some specific control

law to regulate the behavior of the physical system. The closed-loop model consists

of at least one plant and one controller. Then, the designer may perform extensive

simulations on the closed-loop model.

In an ideal world, all requirements, including high-level specifications, are well-

documented and can later be used in system testing and property validation. Thus, the

objective is to analyze the controller design by observing the time-varying behavior of

the signals of interest. These signals result from exciting the exogenous time-varying in-

puts of the closed-loop model. An important aspect of this step is to use validation and
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falsification, discussed in the previous chapter, to check if the time-varying behavior of

the closed-loop system matches a set of requirements. Unfortunately, in practice, these

requirements are often high-level and vague. Examples of requirements include, “better

fuel-efficiency”, “signal should eventually settle”, and “resistance to turbulence”. Dif-

ferent designers may have various interpretations of the same requirements. If designers

are not satisfied with the simulation results, they will refine or tune the controller and

repeat the validation process.

In the formal methods literature, a requirement (also called a specification) is

a mathematical expression of the design goals or desirable design properties, expressed

in a suitable logic. In an industrial setting, requirements are rarely expressed formally,

and it is common to find them written in natural language. Control designers then

validate their design manually by comparing experimental time traces to these informal

requirements. In some cases, they simply use simulation-data and their domain expertise

to determine the quality of the design. Moreover, to date, formal validation tools have

been unable to digest the format or scale of industrial-scale requirements. As a result,

widespread adoption of formal tools has been restricted to testing syntactic coverage

of the controller code, with the hope that higher coverage implies better chances of

discovering bugs. It is clear that even simulation-based tools would benefit from the

more semantic notions of coverage offered by formal requirements.

In this chapter, we propose a scalable technique to systematically mine require-

ments from the closed-loop model of an industrial-scale control system from observations

of the system behavior. In addition to the closed-loop model, our technique takes as

input a template requirement. The final output is a synthesized requirement matching

the template. We assume that the model is specified in Simulink [186], an industry-wide

standard that is able to:
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• Express complex dynamics such as differential and algebraic equations.

• Capture discrete state-machine behavior by allowing both boolean and real-valued

variables.

• Allow a layered design approach through modularity and hierarchical composition.

• Perform high-fidelity real-time simulations.

5.1 Parametric STL

Parametric Signal Temporal Logic (PSTL) is an extension of STL introduced in

[22] to define template formulas containing unknown parameters. Syntactically speaking,

a PSTL formula is an STL formula where numeric constants, either in the constraints

given by the predicates µ or in the time intervals of the temporal operators, can be

replaced by symbolic parameters. These parameters are divided into two types:

• A Scale parameter π is a parameter appearing in a predicate of the form µ =

f(x) ∼ π.

• A Time parameter τ is a parameter appearing in the interval of a temporal oper-

ator.

An STL formula is obtained from a PSTL formula by using a valuation function

that assigns a value to each symbolic parameter. Consider the PSTL formula ϕ(τ, π)

= G[0,τ ]x > π, with a scale parameter π in the comparison with the signal value x and

a time parameter τ to specify the uncertainty of the duration for the G operator. The

STL formula G[0,10]x > 1.2 is an instance of ϕ obtained with the valuation v = {τ 7→

10, π 7→ 1.2}.
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Example 5.1. Consider again the STL property in Formula (4.9):

ϕ = G(speed ≤ 120) ∧ G(RPM ≤ 4500).

To turn this into a PSTL formula, we rewrite it by introducing parameters πspeed and

πRPM :

ϕ(πspeed , πrpm) = G(speed ≤ πspeed ) ∧ G(RPM ≤ πrpm). (5.1)

The STL formula ϕ is then obtained by using the valuation v = (πspeed 7→

120, πrpm 7→ 4500) in the PSTL Formula (5.1).

On the other hand, if we want to know how long the system will maintain that

speed never exceeds 120 mph and RPM never exceeds 4500 rpm, the following PSTL can

be used:

ϕ = G[0,τd](speed ≤ 120 ∧ RPM ≤ 4500) (5.2)

where time parameter τd is used to specify the unknown duration. The STL requirement

that within the first 10 seconds speed never exceeds 120 mph and RPM never exceeds

4500 rpm can be derived from Formula (5.2) by using the valuation v = (τd 7→ 10).

5.2 Weighted STL and parametric weighted STL

Formalisms such as MTL and STL are adept at capturing both the real-valued

and time-varying behaviors of hybrid control systems. PSTL is particularly well-suited

to express template requirements to be mined. Thus, STL and PSTL are perfect candi-

dates for the requirement mining framework.

However, we observe that STL and PSTL do not distinguish the different con-

tributions associated with each predicate when computing the quantitative robustness

value. Consider Example 5.1 for the automatic transmission model in Figure 2.9. Pred-

icates G(speed ≤ 120) and G(RPM ≤ 4500) contribute the same even though speed and
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RPM are measured in different units. For example, speed = 150 has the same robust-

ness value contribution as RPM = 4530 according to the semantics defined in Section 4.3

because both values are 30 over their thresholds. Even so, a counterexample with a

30 mph increase on speed is much more meaningful than one with a 30 RPM increase.

To better describe the desirable and valuable behaviors of the system, we propose new

weighted temporal logics: weighted STL (WSTL) and parametric weighted STL (PW-

STL).

Definition 5.2. (WSTL syntax) Similar to STL, given an interval I, a WSTL formula

is inductively defined using the following grammar:

ϕ := ⊤ | µ.ω | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

where µ.ω is a predicate defined on signal x and its associated weight ω ∈ R
>0 to express

the interest or the importance of the predicate. ✷

Since ω ∈ R
>0, the definition of WSTL preserves the boolean semantics of its

corresponding STL formula which assumes all weight parameters are 1. However, this

definition affects the quantitative semantics by allowing more contribution from more

important predicates, while still capturing the robustness of satisfaction. Thus, the

quantitative semantics of WSTL is defined using a real-valued function ρw satisfying

the property:

ρw(ϕ.ω,x, t) ≥ 0 iff (x, t) |= ϕ.ω, (5.3)

where ω = {ω1, ω2, . . . , ωm}, ωi ∈ R
>0, and m is the number of predicates in ϕ. The

quantitative semantics for each predicate µ with a weight parameter ω in WSTL is

defined as:

ρw(µ.ω,x, t) = ω · f(x(t)). (5.4)
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Similar to STL, ρw can be inductively defined using the same rules (4.4-4.6).

As for PSTL, we equip WSTL with scale and time parameters to obtain PW-

STL, where the scalar parameter π in predicates is in the form of

µ.ω = ω · (f(x) ∼ π). (5.5)

STL and PSTL are the special case for WSTL and PWSTL when ω is a vector of ones.

Consider the PWSTL formula ϕ(π, τ).ω = G[0,τ ]((x > π).ω). Applying the G

rule (4.8) and the predicate semantics (5.4) and choosing f(x) = π − x,

ρw(G[0,τ ]((x > π).ω), x, t) = inf
t∈[0,τ ]

(ω · (π − x(t)))

= ω · inf
t∈[0,τ ]

(π − x(t))

= ω · ρ(G[0,τ ](x > π), x, t),

recalling that ρ is the STL quantitative semantics.

Example 5.3. We could improve Formula (4.10) by expressing it as the WSTL formula

ϕsp rpm w = ϕ.{ω1, ω2} = G((speed ≤ 120).ω1) ∧ G((RPM ≤ 4500).ω2). (5.6)

Further, we could change PSTL Formula (4.9) to PWSTL:

ϕ(πspeed , πrpm).{ω1, ω2} = G((speed ≤ πspeed ).ω1) ∧ G((RPM ≤ πrpm).ω2). (5.7)

If choosing f1 = πspeed − speed and f2 = πrpm − RPM, applying rules (4.5) and

(4.8) the qualitative semantics of the WSTL formula is defined as:

ρw(ϕ(πspeed , πrpm).{ω1, ω2},x, t)

= min(inf
t∈T

(ω1 · (πspeed − speed(t))), inf
t∈T

(ω2 · (πrpm − RPM(t))))

= min(ω1 · inf
t∈T

(πspeed − speed(t)), ω2 · inf
t∈T

(πrpm − RPM(t)))
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Figure 5.1: Flowchart of the requirement mining framework. This framework is an
instance of a counterexample-guided inductive synthesis procedure. After given a PSTL
or PWSTL template requirement formula, the synthesis engine will find an appropriate
valuation for parameters in the parametric formula to form a STL or WSTL formula
as a candidate requirement. The candidate requirement will be used by the falsification
engine to search a counterexample to falsify the formula. If found, the counterexample
trace, together with previous traces, is passed to the synthesis engine to start the next
iteration.

An especially meaningful case would be choosing ω1 = 1/πspeed and ω2 = 1/πrpm which

eliminates the impact of different units of measure. Moreover, if ω1/ω2 > πrpm/πspeed ,

we assign more weight to predicate speed ≤ 120, indicating that scenarios where speed

is over the threshold are more critical.

5.3 Requirement mining framework

Figure 5.1 shows the proposed framework to mine STL or WSTL requirements

from a closed-loop model. Note that the weight parameters ω are predefined by users

and are not targets for mining. This framework is an instance of a counterexample-

guided inductive synthesis procedure [189]. Since STL and PSTL are a special case for
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WSTL and PWSTL, the following sections give algorithms and explanations in WSTL

and PWSTL. The corresponding framework for STL and PSTL simply changes a WSTL

formula ϕ.ω to an STL formula ϕ and replaces the quantitative semantics ρw to ρ defined

in Formulas (5.4) and (4.1).

Given a system S with a set U of inputs, a PWSTL formula with n symbolic

parameters ϕ(p).ω where p = {p1, . . . , pn} and pi could either be a scale parameter π

or a time parameter τ , two key components in the framework are:

1. A falsification engine is required to search the system’s input space for a coun-

terexample that falsifies the given WSTL formula. Formally, given a formula ϕ.ω,

the falsification engine generates an input u such that x(t) = S(u)(t) |=/ ϕ.ω, if

there exists such a u, and returns ⊥ otherwise. We denote this functionality by

FalsifyAlgo.

2. A synthesis engine is required to search the state space of the PWSTL parameters

for a proper valuation. Moreover, the instantiated WSTL formula from the valua-

tion must be satisfied by a set of recorded counterexample traces. Formally, given

a set of traces {x1, . . . ,xk} and a parametric formula ϕ(p).ω, the synthesis engine

finds parameters p such that ∀i, xi |= ϕ(p).ω. We denote this functionality by

FindParam.

As an example, consider the following natural language specification: “eventu-

ally, between time 0 and some unspecified time τ1, the signal x1 is less than some value

π1, and from that point, for some τ2 seconds, the signal x2 is greater than some value

π2”. For simplicity, all predicates have the same weight, so we can express this property

using PSTL as:

F[0,τ1](x1 < π1 ∧ G[0,τ2](x2 > π2)),
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with two unspecified time parameters τ1 and τ2 as well as two scale parameters π1 and

π2. The proposed mining algorithm iterates the following steps:

• FindParam synthesizes a candidate requirement as a WSTL formula from a given

template requirement expressed in PWSTL and a set of simulation traces of the

model. Initially, we use a random input u to generate the first trace.

• FalsifyAlgo tries to falsify the candidate WSTL formula using a falsification

engine, such as that in S-Taliro [20] or Breach [83].

• If FalsifyAlgo finds a counterexample, add this trace to the existing set of

simulation traces, go to Step 1, and start the next iteration. If no counterexample

is found, the algorithm terminates and returns the inferred WSTL requirement.

As shown in Figure 5.1, the inferred STL formula would be F[0,1.1](x1 < 3.7 ∧

G[0,5](x2 > 0.1)) which indicates that within 1.1 seconds the signal x1 of the system is

less than 3.7, and from that point the signal x2 is always greater than 0.1 for at least

0.5 seconds. If the designers are not satisfied with the system performance, the stored

counterexamples will give them sufficient knowledge of the temporal behavior and help

to debug and redesign. Next, we will detail each component of the proposed framework.

5.4 Revisiting the falsification problem

The mining framework requires us to implement a function

x = FalsifyAlgo(S, ϕ)
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such that x is a valid output signal of a system S and x |=/ ϕ. This is the falsification

problem we solved using quantitative semantics in Section 4.4:

Solve ρ∗ = min
u∈U

ρ(ϕ,S(u), 0)

if ρ∗ < 0, return u∗ = arg min
u∈U

ρ(ϕ,S(u), 0), otherwise, S |= ϕ.

Unfortunately, this is an undecidable problem for general hybrid systems, ex-

cept for subclasses such as initialized RHA [108]. For the latter subclasses, the mining

technique can be complete, i.e., absence of a counterexample means that we have found

the strongest requirement. However, as discussed in Section 4.4, in general it is possible

that the falsification tool may not be able to find a counterexample even if one exists.

On the bright side, a requirement mined in this fashion is still useful as it is

something that FalsifyAlgo is unable to disprove even after extensive simulations,

and is thus likely to be close to the actual requirement. An alternative is to use a sound

verification tool that employs abstraction [99, 200]. However, these tools have not scaled

to the complex control systems that we consider here.

5.5 Parameter synthesis

The general problem of parameter synthesis can be formalized as follows:

Problem 5.4. Given a system S with a PWSTL formula with n symbolic parameters

ϕ(p1, . . . , pn), the objective is to find a tight valuation function v such that

∀u ∈ U : S(u) |= ϕ(v(p1), . . . , v(pn)).ω,

where U is the input space. ✷

Note that U is an infinite set. Clearly, it is impossible to explore all input

signals to find the best function v. Instead, FindParam synthesizes a set of repre-
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v FindParam(x, ϕ.ω, p, δ)
1 if ∃v s.t. x |= ϕ(v⊤) •A trace x, a PWSTL Formula ϕ.ω and parameter set p

2 v⊤ ← v;

3 else

4 return ⊥; •ϕ is unsatisfied .

5 if ∃v s.t. x |=/ ϕ(v⊤)

6 v⊥ ← v;

7 else

8 return ⊤; •ϕ is trivially satisfied and v may not be tight.

9 v ← v⊤;

10 fori = 1 to n

11 Find vi and set v(pi) = vi s.t. x |=
i
δ ϕ(v); • precision δ > 0

12 return v;

Figure 5.2: The FindParam algorithm for synthesizing a candidate valuation from a
given template requirement in PWSTL.

sentative traces which are the recorded counterexamples found by FalsifyAlgo. For

clarity, we restrict our explanation of FindParam algorithm to one trace even though

in Figure 5.1 FindParam is applied to a set of traces. The generalization to a set

of traces is straightforward. Thus, the problem is reduced to given a trace x, find a

valuation v for the parameters p1, . . . , pn, of ϕ such that x satisfies ϕ(v(p1), . . . , v(pn)),

which we sometimes abbreviate in ϕ(v) in the following. This problem is the dual of the

falsification problem in Formula (4.11) and can be solved in a similar way:

max
v
ρ(ϕ(v).ω,x, 0). (5.8)

However, an important difference is that the cost function can be expressed as a closed-

form expression of the decision variable v whereas Formula (4.11) is a function of u.

The second issue is how to characterize the notion of “tight” more precisely. By

tight, we mean to enforce mining of non-trivial or not overly conservative requirements.

One solution is to impose an additional constraint to the parameter synthesis problem.

Thus, the WSTL formula mined should be tightly satisfied by the system up to a given

precision δ ≥ 0. Formally, we have the following definition:
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lines are isolines for the satisfaction function ρ.

Definition 5.5. ((δ-satisfaction) The signal x δ-satisfies ϕ(v).ω for pi denoted by

x |=i
δ ϕ(v).ω iff x |= ϕ(v).ω and there exists a valuation v′ such that |v(pi)− v

′(pi)| ≤ δ

and x |=/ ϕ(v′).ω. The signal x δ-satisfies ϕ(v).ω, denoted by x |=δ ϕ(v).ω if ∀i,

x |=i
δ ϕ(v).ω. ✷

The rationale is that, for a specification to be useful, it should not be too

conservative. For instance, the requirement that “the car cannot go faster than 500

mph” is not very interesting. This means that it is not enough to find a satisfying

valuation, and each parameter needs to be optimized to get δ-satisfaction. If there is

more than one parameter, then the solution is not unique. In fact, all valuations that

are within a distance δ from the boundary of the validity domain of ϕ and x, i.e., the

set of valuation v for which x |= ϕ(v), are valid solutions.

Example 5.6. Consider an STL formula for Figure 2.9, ϕ(π, τ) = G[0, τ ](speed < π)
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and the scenario where the vehicle constantly accelerates at throttle = 100. The

validity domain of ϕ is plotted on Figure 5.3. The algorithm will return different values

depending on the tightness parameter δ and on whether we order the parameters as

(π,τ) or (τ, π). Here, the order represents the preference in optimizing a parameter over

the other when mining for a tight specification.

In [22], researchers noted that, if the formula is monotonic, then this bound-

ary has the properties of a Pareto surface for which there are efficient computational

methods, basically equivalent to a multi-dimensional binary search. Fortunately, many

formulas are monotonic. For example, for the property F[0,τ ](x > π), the satisfaction

value monotonically increases in the parameter τ and decreases in π. Here, we propose

an algorithm for monotonic formulas that takes advantage of this property when im-

plementing FindParam in Figure 5.2. It starts by trying to find a valuation v⊤ that

satisfies the property and a valuation v⊥ that violates it in a parameter range P pro-

vided by the user. If the property is monotonic, it is sufficient to check the corners of

P for the existence of v⊤ and v⊥. Then, each parameter i is adjusted by using a binary

search initialized with v⊤(pi) and v⊥(pi). The user can also specify the priorities among

different input parameters which define the optimization order.

5.5.1 Satisfaction monotonicity

Since if PSTL formulas are monotonic the corresponding PWSTL formulas

share the same property, we will use PSTL for explanation in this section. We first show

that checking whether an arbitrary PSTL formula is monotonic in a given parameter is

undecidable.

Theorem 5.7. The problem of checking if a PSTL formula ϕ(p) is monotonic in a given
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parameter pi is undecidable. ✷

Proof. First, we observe that STL is a superset of MTL. We know from [11] that the

satisfiability problem for MTL is undecidable. Thus, it follows that the satisfiability

problem for STL is also undecidable. This, in turn, implies undecidability of the satis-

fiability problem of PSTL with at most one parameter (denoted as PSTL-1-SAT). We

now show that PSTL-1-SAT can be reduced to a special case of the problem of checking

monotonicity of a PSTL formula.

Let ϕ(p) be an arbitrary PSTL formula where the set of parameters p is

the singleton set with one time parameter τ (thus, τ ≥ 0). Construct the formula

ψ(p)
.
= (τ=0) ∨ ϕ(p).

Consider the monotonicity query for ψ(p) in parameter τ :

∀v, v′,x : [x |=ψ(v(τ)) ∧ v(τ)≤v′(τ)] ⇒ x |=ψ(v′(τ)).

Consider the specialization of this formula for the case v(τ) = 0. Note that, in this case,

ψ(0) = ⊤, and that v′(τ) ≥ 0 for all v′. Thus, the query simplifies to

∀v′,x : x |=ψ(v′(τ)),

which is checking the validity of the PSTL formula ψ(τ).

If one needs to check monotonicity of PSTL formula ϕ in one parameter τ , one

needs to check that the negation of ψ(τ) is unsatisfiable. Thus, the above specialization

of the problem of checking the monotonicity of PSTL formulas is also undecidable,

implying undecidability of the general case.

Monotonicity is closely related to the notion of polarity introduced in [22],

in which syntactic deductive rules are given to decide whether a formula is monotonic

based on the monotonicity of its subformulas. Thus, one way to tackle undecidability is

135



to first query whether the given PSTL formula belongs to the syntactic class described

in [22]. Unfortunately, the syntactic rules described therein are not complete; there

are monotonic PSTL formulas that do not belong to this syntactic class, for instance,

formulas with intervals in which both end-points are parameterized, such as

G[τ,τ+1]((x ≥ 3)⇒ F(0,∞)(x < 3)). (5.9)

Next, we show how we can use SMT solving to query monotonicity of a for-

mula. If the SMT solver succeeds, it tells us that the formula is monotonic and allows

us to use a more efficient search in the parameter space. For instance, we were able to

show that the PSTL formula represented in Formula (5.9) is monotonically decreasing

in the parameter τ .

Encoding PSTL as constraints. Given a PSTL formula ϕ, we define the SMT

encoding of ϕ in a fragment of first-order logic with real arithmetic and uninterpreted

functions. Let E(ϕ) denote the encoding of ϕ, which we define inductively as:

• Consider a constraint µ
.
= g(x) > τ , where x = (x1, . . . , xn). We model each signal

xi as an uninterpreted function χi from R to R. We create a new free variable t of

the type Real (defined in an SMT solver) and replace each instance of the signal

xi in g(x) by χi(t). We assume that the function g itself has a standard SMT

encoding. For example, consider the formula g(x) > τ , where x = {x1, x2}, and

g(x) = 2 · x1 + 3 · x2. Then E(µ) is: 2 · χ1(t) + 3 · χ2(t) > τ .

• For boolean operations, the SMT encoding is inductively applied to the subformu-

las, i.e., if ϕ = ¬ϕ1, then E(ϕ) = ¬E(ϕ1). If ϕ = ϕ1∧ϕ2, then first we ensure that

if E(ϕ1) and E(ϕ2) both have a free time-domain variable, we make it the same
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variable, and then, E(ϕ) = E(ϕ1)∧ E(ϕ2). Note that as a consequence, there is at

most one free time-domain variable in any subformula.

• Consider ϕ = H(a,b)(ϕ1), where a, b are constants or parameters, and H is a unary

temporal operator (i.e., F,G). There are two possibilities:

(1) The SMT encoding E(ϕ1) has one free variable t. In this case, we bound the

variable t over the interval (a, b) using a quantifier that depends on the type of

the temporal operator H. With F, we use ∃ as the quantifier, and with G we use

∀. E.g., let ϕ = F(2.3,τ)(x > π), then E(ϕ) is:

∃t : (2.3 < t < τ) ∧ (χ(t) > π).

(2) The SMT encoding E(ϕ1) has no free variable. This can only happen if ϕ1 is ⊤

or ⊥, or if all variables in ϕ1 are bound. In the former case, the encoding is done

exactly as in case 1. In the latter case, the encoding proceeds as before, but all

bound variables in the scope are additionally offset by the top-level free variable.

Suppose, ϕ = G(0,∞)F(1,2)(x > 10). Then, the encoding of the inner F-subformula

has no free variable. Note how the bound variable of this formula is offset by the

top-level free variable in the underlined portion in E(ϕ) below:

∀t : [∃u : [(t+ 1 < u < t+ 2) ∧ (χ(u) > 10)]].

• Consider ϕ = ϕ1U(a,b)ϕ2, where a, b are constants or parameters. For simplicity,

consider the case where ϕ1 and ϕ2 have no temporal operators, i.e., E(ϕ1) and

E(ϕ2) both have exactly one free variable each. Let t1 be the free variable in

E(ϕ1) and t2 the free variable in E(ϕ2). Then E(ϕ) is given by the formula:

∃t2 : [(t2 ∈ (a, b)) ∧ E(ϕ2) ∧ ∀t1 : [(t1 ∈ (a, t2))⇒ E(ϕ1))].
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Formula Monot. Time

G(0,∞)(x < π) + < 0.09

G[s,s+1](x≥3⇒ F(0,∞)x<3) – 0.1

G(0,100)((x < π)⇒ F(0,5)(x > π)) – < 0.09

geariU(s,s+5)geari+1 * 0.13

Table 5.1: Proving monotonicity with an SMT solver. Time is measured in seconds.

If ϕ1, ϕ2 contain no free variables, then t1, t2 are respectively used to offset all

bound variables in their scope as before.

Using an SMT solver to check monotonicity. To check monotonicity, we check

the satisfiability of the negation of each of the following assertions:

E(ϕ(τ)) ∧ (τ > τ ′) ∧ ¬E(ϕ(τ ′)) and E(ϕ(τ)) ∧ (τ < τ ′) ∧ ¬E(ϕ(τ ′)).

If either of these queries is unsatisfiable, this means that satisfaction of ϕ is

indeed monotonic in τ . If both queries are satisfiable, this means that there is an

interpretation for the (uninterpreted) function representing the signal x and valuations

for τ, τ ′ which demonstrates the non-monotonicity of ϕ. We conclude by presenting a

small sample of formulas for which we could prove or disprove monotonicity using the

Z3 SMT solver [80] in Table 5.1. The symbols +, –, and * represent monotonically

increasing, decreasing, and non-monotonic formulas, respectively.

5.6 Case studies

First, we compare the performance of STL-based mining frameworks using the

falsification engine from S-Taliro and Breach. We also show the performance of the
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S-Taliro-based mining

Template Parameter values Fals. Synth. #Sim. Rob./x

ϕsp rpm(π1, π2) (155 mph, 4858 rpm) 55 12 255 0.004

ϕrpm100(π, τ) (3278.3 rpm, 49.91 sec) 6422 26.5 9519 0.327

ϕrpm100(τ, π) (4997 rpm, 12.20 sec) 8554 53.8 18284 0.149

ϕstay(π) 1.79 sec 18886 0.868 130 147.2

Breach-based mining

Template Parameter values Fals. Synth. #Sim. Rob./x

ϕsp rpm(π1, π2) (155 mph, 4858 rpm) 197.2 23.1 496 0.043

ϕrpm100(π, τ) (3273 rpm, 49.92 sec) 267.7 10.51 709 0.026

ϕrpm100(τ, π) (4997 rpm, 12.20 sec) 147.8 5.188 411 0.021

ϕstay(π) 0.102 sec 430.9 2.157 1015 0.032

Table 5.2: Results on mining requirements for the automatic transmission control model.
We compare runs of requirement mining algorithm using either S-Taliro or Breach as
falsifiers. In each case and for each template formula, we give the parameters valua-
tions found, the time spent in falsification, and in parameter synthesis, the number of
simulations, and the averaged time spent computing the quantitative satisfaction of the
formula by one trace. Time is measured in seconds.

parameter synthesis algorithm implemented in Breach.

5.6.1 Automatic transmission model

For the model described in Section 2.3.2.1, we tested the following different

STL (or transformed equivalent MTL for S-Taliro) and PSTL requirements:

1. Requirement ϕsp rpm(π1, π2) specifying that always the speed of the system is
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always below π1 and the RPM is below π2 :

G ( (speed < π1) ∧ (RPM < π2) ) .

2. Requirement ϕrpm100(τ, π) specifying that the vehicle cannot reach the speed of

100 mph in τ seconds with RPM always below π:

¬(F[0,τ ](speed > 100) ∧G(RPM < π)).

3. Requirement ϕstay(τ) specifying that whenever the system shifts to gear 2, it

dwells in gear 2 for at least τ seconds:

G
((

gear 6= 2 ∧ F[0,ε]gear = 2
)

⇒ G[ε,τ ]gear = 2
)

.

Here, the left-hand-side of the implication captures the event of the transition

from gear 2 to another gear. The operator F[0,ε] here is an STL substitute for

a next-time operator. With dense time semantics, ε should be an infinitesimal

quantity but, in practice, we use a value close to the simulation time-step.

The above requirements have strong correlation with the quality of the con-

troller. The first is a safety requirement characterizing the operating region for the

engine parameters speed and RPM. The second is a measure of the performance of the

closed loop system. By mining values for τ , we can determine how fast the vehicle can

reach a certain speed, while by mining π we find the lowest RPM needed to reach this

speed. The third requirement encodes undesirable transient shifting of gears. Rapid

shifting causes abrupt output torque changes leading to a jerky ride.

Results about the mined specifications are given in Table 5.2. We used the

Z3 SMT solver [80] to show that all of the requirements were monotonic. As expected,

the FindParam algorithm takes only a fraction of the total time in the entire mining
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process. For the second template, we try two possible orderings for the parameters. By

prioritizing the time parameter τ , we obtain the δ-tight requirement that the vehicle

cannot reach 100 mph in less than 12.2 seconds (we set δ to 0.1). As the requirement

mined is δ-tight, it means that we find a trace for which the vehicle reaches 100 mph in

12.3 seconds. Similarly, by prioritizing the scale parameter π, we get the result that

the vehicle could reach 100 mph in 50 seconds while keeping RPM below 3278 (δ = 5 in

that case). For the third requirement, we find that the transmission controller could

trigger a transient shift in as short as 0.112 seconds. This corresponds to the up-shifting

sequence 1-2-3.

The comparison between S-Taliro and Breach falsification engines in Ta-

ble 5.2 shows that the requirement mining has better performance with the Breach

engine. The result is similar to the one we conclude in Chapter 4. The Breach engine

is able to find stronger requirements using fewer of simulations and less computational

time. Also, we have the following observations:

• The space of input signals needs to be parameterized with a sensible number of

signal-parameters. If too many parameters are used, the search space is too big

and falsification becomes difficult. For instance, the short transient shifting of

ϕstay is found by introducing a signal-parameter controlling the time of initial

acceleration and by preventing acceleration and braking at the same time. We

remark that the flexibility of Breach to enforce such constraints over the input

signal space is a key reason for its better performance, and a fair comparison would

be possible only after repeating these steps for S-Taliro.

• Requirements involving discrete modes are challenging, because they induce “flat”

quantitative satisfaction functions that are challenging to optimizers and thus have
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limited value in guiding the falsifier. This is related to the problem of finding a

good metric between discrete states in hybrid systems. This was particularly an

issue when mining the ϕstay requirement. We are able to tune our falsifier by

turning off its local optimization phase and using uniform random sampling which

led us to obtaining a tighter requirement than with S-Taliro.

• While both falsifiers are expected to exhibit run-times linear in the size of the

traces and the formula [85, 91], in some cases, Breach runs faster. In particular,

S-Taliro is more sensitive to parameter priorities. For the same template ϕrpm100,

depending on which parameter τ or π is prioritized, S-Taliro performs differently.

This can be explained by the fact that τ affects the horizon of the temporal

operator F. We conjecture that the difference in run-times and mined parameter

values for the ϕstay template is due to our inability express signal parameterization

in S-Taliro.

Next, we compare the WSTL- and PWSTL-based requirement mining results.

Unfortunately, S-Taliro does not support these two advanced temporal logic. Breach,

on the other hand, uses predicates to express property and is very flexible. Thus, we

extend WSTL and PWSTL in Breach, and the following experiments are carried out

only on Breach. WSTL and PWSTL embrace users’ knowledge to set up the correct

weights. However, if variables of weighted predicates are correlated, applying weight

does not improve much on the results. Next, we examine two requirements in detail:

1. Requirement ϕsp rpm w(π1, π2) having the same same specification as ϕsp rpm with

ω1 = 50 for the speed predicate and ω2 = 0.01 for the RPM predicate:

G ( (speed < π1).ω1 ∧ (RPM < π2).ω2 ) .
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STL-based mining

Template Parameter values Fals. Synth. #Sim. Rob./x

ϕsp rpm(π1, π2) (155 mph, 4858 rpm) 197.2 23.1 496 0.043

ϕgs(τ) (5.40 sec) 348.1 8.15 682 0.029

WSTL-based mining

Template ω value Parameter values Fals. Synth. #Sim. Rob./x

ϕsp rpm w(π1, π2) (50, 0.01) (155 mph, 4858 rpm) 172.6 26.3 468 0.043

ϕgs w(τ) (1000) (5.40 sec) 215.6 15.31 426 0.030

Table 5.3: Results on STL- and WSTL-based mining requirements for the automatic
transmission control model using Breach. In each case and for each template formula,
we give the chosen weight vector, the parameters valuations found, the time spent in
falsification and in parameter synthesis, the number of simulations, and the averaged
time spent computing the quantitative satisfaction of the formula by one trace. Time is
measured in seconds.

2. Requirement ϕgs specifying that within the first τ seconds, the vehicle is unable to

shift to gear 4 and, if the speed reaches 70 mph in 2 seconds, it is able to decrease

and stay below 30 mph within 10 seconds.

(¬F[0,7] (gear = 4)) ∧ ((F[0,2] speed > 70)⇒ (G[10,∞) speed < 30).

The corresponding WSTL ϕgs w is

(¬F[0,7] (gear = 4).ω) ∧ ((F[0,2] speed > 70)⇒ (G[10,∞) speed < 30),

with ω = 1000. This requirement only applies to the special case where the vehicle

speeds up for the first several seconds and then brakes for the rest of the time to

simulate an emergency situation. Thus, the inputs of the model are the initial

throttle position, with the range in [0,100]%, and the starting time to brake
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with the range in [0,20] seconds.

Results given in Table 5.3 show the benefits of using WSTL. For ϕsp rpm w, the

advantage is not obvious, because speed and RPM are correlated. Maximizing speed

is indirectly maximizing RPM, although the gear shifting logic limits the maximum RPM

based on speed and gear value. However, the use of weights still saves over 20 seconds

from the falsification engine.

For weakly-related constraints, especially for non-convex problems, the STL-

based requirement mining framework can only leverage the priority to choose better

parameters from the validity domain. However, WSTL formulas directly affect the cal-

culation of the robustness value through weights. Consider requirements ϕgs and ϕgs w

with ω = 1000. Assuming, in the mining process, that the synthesis engine gives the

valuation v = {τ = 7}, the robustness satisfaction value of ϕgs at 100 sample points

throughout the input domain is shown in Figure 5.4 and that for ϕgs w is shown in Fig-

ure 5.5. The first observation is that the robustness surface is much smoother for ϕgs w

than for ϕgs. The smoother surface helps to speed up the falsification engine to find

counterexamples. Also, since this requirement contains two conjunctive predicates, fal-

sifying any would result in a negative robustness value. However, if paying no attention

to the predicate related to the discrete gear mode changes, the “flat” quantitative will

make the falsification engine concentrate on the other predicate related to the contin-

uous speed value. To falsify the second predicate, speed has to reach 70 mph, which

normally indicates that the vehicle is in a high gear position. Thus, giving weight to the

discrete predicate will indirectly help the falsification engine look in the right direction.

The results confirm this observation. Falsifying ϕgs w uses about half as much time as

ϕgs and fewer simulations. This is the main reason for the better performance of the
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Figure 5.4: The robustness satisfaction surface of PSTL ϕgs with v(τ) = 7 consists
of 100 sample points from the input domain. The inputs are the position of throttle
throttle and the initial time to start to brake tbrake with the range of throttle in
[0,100]% and [0,20] seconds for tbrake.
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Figure 5.5: The robustness satisfaction surface of PWSTL ϕgs w with v(τ) = 7 and
ω = 1000 consists of 100 sample points from the input domain. The inputs are the
position of throttle throttle and the initial time to start to brake t with the range of
throttle in [0,100]% and [0,20] seconds for t.
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WSTL-based framework. However, we notice that the synthesis engine spends more

time to find parameter valuations. Since both formulas are monotonic, the overhead is

quite low. Also, introducing weight does not affect the computation of robustness values

in Breach.

5.6.2 Industrial diesel engine model

Next, we consider an industrial-scale, closed-loop Simulink model of an exper-

imental airpath controller for a diesel engine. This model has more than 4000 Simulink

blocks such as data store memories, integrators, 2D-lookup tables, functional blocks

with arbitrary Matlab functions, S-Function blocks, and blocks that induce switching

behaviors such as level-crossing detectors and saturation blocks. The models take two

signals as inputs: the fuel injection rate and the engine speed. The output signal is the

intake manifold pressure denoted by x. For proprietary reasons, we suppress the mined

values of the parameters and the time-domain constants from our requirements. We

replace the time-domain constants by symbols such as c1 and c2.

We find from the control designers that characterizing the overshoot behavior

is important for the signal under consideration. The inputs to the closed-loop model are

a step function of the fuel injection rate input at time c1, and a constant value for the

engine speed input. The first requirement is:

ϕovershoot(π) = G(c1,∞)(x < π).

This template characterizes the requirement that the signal x never exceeds π during the

time interval (c1,∞), i.e., it finds the maximum peak value π of the step response. Our

mining algorithm obtained seven intermediate candidate requirements that are falsified

by S-Taliro, until we found a requirement that it could not falsify in its 8th iteration.
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Figure 5.6: The simulation trace (in blue) for the signal x denoting the difference
between the intake manifold pressure and its reference value found when mining
ϕsettling time(τ, π) displays unstable behavior. The maximum error threshold that we
expected to mine is depicted in red. The ideal x signal is in green. The values along the
axes have been suppressed for proprietary reasons. We remark that the actual values
are irrelevant and the intention is to show an oscillating behavior arising from a real
bug in the design.

The total number of simulations is 7000 over a period of 13 hours.

Next, we choose to mine the settling behavior of the signal. The settling time

is the time after which the amplitude of a signal is always within a small range from

its calculated ideal reference value. We wish to mine both the range and how fast the

signal settles. Such a template requirement is given by the following PSTL formula:

ϕsettling time(τ, π) = G[τ,∞)(|x| < π).

It specifies that the absolute value of x is always less than π starting from the time

τ to the end of the simulation. The smaller the settling time and the error, the more

stable the system is. We find out from the control designer that a smaller settling time

needs to be prioritized over the range (as long as the range lies within 10% of the signal

amplitude), so we prioritize minimizing τ over minimizing π.

After four iterations, the procedure stops as the inferred value for τ is very

close to the end of the simulation trace, but the range is still larger than the tolerance.
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The implication here is that the algorithm pushed the falsifier to finding a behavior

in the model that exhibits hunting behavior, or oscillations of magnitude exceeding

the tolerance. This output signal is shown in Figure 5.6.This behavior is unexpected;

discussions with the designers revealed that it was a real bug. Investigating further,

we trace the root-cause to an incorrect value in a lookup table; such lookup tables

are commonly used to speed up the computation time by storing pre-computed values

approximating the control law.

This experiment demonstrates the use of requirement mining as an advanced,

guided debugging strategy. Instead of verifying correctness with a concrete formal re-

quirement, the process of trying to infer what requirement a model must satisfy can

reveal erroneous behaviors that could be otherwise missed. In the course of our ex-

periments, we encounter other suspicious (for instance Zeno-like) behaviors, which we

suspect to be either an error in the model, or an improper tuning of the numerical solver

leading to discontinuities in the dynamics.

5.7 Conclusion

This chapter proposed a scalable requirement mining framework that is able to

mine requirements from a closed-loop model and express them in a temporal logic. The

major components of this framework are a falsification engine and a synthesis engine.

STL and PSTL are particularly well-suited for this framework. However, we

observed a drawback in STL and PSTL: they do not distinguish the different contri-

butions associated with each component constraint in a complex requirement nor do

they consider the effect of different units of measure used for various signals. Thus, we

propose WSTL and PWSTL to improve this framework.
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We observed that the satisfaction monotonicity of PSTL or PWSTL plays an

important role to find a tight parameter value for the synthesis engine. If monotonicity

holds, we can get exponential savings when searching over the parameter space, by using

methods like binary search. Though syntactic rules for polarity of a PSTL property

identified in previous work [22] ensure satisfaction of monotonicity, these rules are not

complete. Hence, we provide a general way of reasoning about monotonicity of arbitrary

PSTL properties using an SMT solver.

Finally, we demonstrated the application of this mining framework to two non-

trivial models, one of which comes from a real industrial study. The framework is able

not only to generate high-level requirements, but also to serve as an important bug

finding tool.
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Chapter 6

Summary and Future Research

6.1 Summary

In this thesis, we focused on verification and validation methods for improving

the design efficiency and safety of hybrid systems. In Chapter 2, we gave a brief review

of the dynamics of hybrid systems and presented the major modeling methods. The

fundamental characteristic of hybrid systems is the exhibition of both discrete control

logic and physical continuous dynamics. One straightforward modeling approach is to

discretize continuous dynamics and analyze the resulting full discrete systems, such as

via NCFSMs or ECA rules. In Chapter 3, we described important contributions of using

symbolic techniques to verify these two types of discrete systems. For an NCFSM model,

we further introduced an application that uses equivalence verification to generate a

test suite for fault-based testing. For ECA rules, we tackled two critical problems to

verify termination and confluence properties. In particular, we proposed a fully symbolic

algorithm to verify the confluence property and provided the first practical experimental

results in the field.

Discretization gives us a chance to analyze an infinite hybrid system using
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well-studied methods, such as model checking techniques. However, it largely ignores

the inherent continuous dynamics and might cause critical errors when analyzing time-

sensitive systems. HA were then proposed to faithfully model hybrid systems and repre-

sent continuous dynamics as flow activities. However, the weak scalability and the lack

of accommodation for hierarchical composition designs of HA encourage researchers to

model a hybrid system simply as an input-output signal mapping black box based on

simulation results. This modeling method is widely adopted by industry due to its

great scalability and the trend of toward MBD design process. In Chapter 4, we used a

thermostat system to demonstrate both modeling methods. Although HA offer a solid

mathematical foundation, most verification problems are undecidable, even for the basic

reachability problem under severe limitations. However, modeling a hybrid system as

signals, together with advanced temporal logics, such as STL or MTL, provide a scal-

able solution to validate the system instead of verifying it. The validation techniques

use boolean semantics to reason about whether the system satisfies a set of temporal

logic formulas that express properties of interest. Moreover, the quantitative seman-

tics of STL or MTL offers a better way to measure the robustness or tolerance of the

system with respect to these formulas. One direct application of the quantitative seman-

tics is a falsification engine that uses this semantics to search stimulating input signals

for undesirable system behaviors as counterexamples for designers to debug the design

system.

Requirement defects are considered as pitfalls for hybrid system designs. In-

adequate requirements cause a formidable challenge to the adoption of formal valida-

tion approaches in an industrial setting. One of the major contributions of this thesis,

the proposed general framework in Chapter 5, is able to bridge the gap for high-level

requirement defects. It is based on the counterexample-guided refinement procedure
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which was proposed for software verification [72] and mines requirements in a temporal

logic formula from a closed-loop model. We further improved the performance of this

mining framework by introducing weighted temporal logics: WSTL and PWSTL. Also,

we observed that monotonicity improves the performance of the synthesis engine. We

proposed to formulate the query for monotonicity in a fragment of first-order logic with

quantifiers, real arithmetic, and uninterpreted functions so that we can then use an SMT

solver to check the monotonicity of an STL or WSTL formula. We used two non-trivial

models to demonstrate the mining results, one of which is from a real industrial model.

This framework has the following two applications: mined requirements can be used to

validate future modifications of the model and they can be used to enhance understand-

ing of legacy models; the framework can also guide the process of bug-finding through

simulations.

6.2 Future research

As shown in this dissertation, modeling, analyzing, validating, and verifying

hybrid systems are extraordinarily challenging research areas. Many researchers have

devoted themselves to these research areas for the past few decades and have achieved

great success. However, current approaches still have many limitations and restrictions.

In this section, we suggest some preliminary future research directions to extend the

work of this thesis.

• Model-based testing using symbolic model checkers. In Section 3.3.7, we

have successfully shown that symbolic equivalence verification is able to generate

a test suite that guarantees to kill all first-order mutants. This test suite can then

be used to test implementations. This technique is called model-based testing [96].
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This work can be extended to automating graphical user interface (GUI) testing.

Adequate GUI testing enhances the safety, robustness, and usability of the whole

system. GUI testing is also resource-intensive. GUI test cases require testers to

follow some complex sequences of GUI events in order to test certain functionality.

Also, even with the help of advanced automated test scripts, the regression test

for GUIs is a major problem since the GUI may change significantly during devel-

opment. Fortunately, GUIs can be modeled using FSM-based formalisms [34, 55].

Symbolic model checkers can then be applied to traverse the state space and gener-

ate test cases with great coverage of the graph or to automatically generate useful

counterexamples against temporal logic requirements for critical paths, and they

can be used for fault-based testing as well.

• Applying abstraction to improve the scalability of verification algo-

rithms. Symbolic techniques help to relieve the stress of the state space explosion

problem. However, for many applications, especially when the structure of the sys-

tem is irregular, symbolic techniques can only help to a certain extent. On the

other hand, abstraction is an active research area to improve scalability. Here

are some successful examples: the counterexample-guided abstraction refinement

framework [73] can analyze larger models; predicate abstraction is another active

research area. Its application includes two famous model checkers for C programs,

SLAM [28] and Blast [37]. This technology can certainly be used to verify discrete

systems. For instance, when analyzing ECA rules in Section 3.5, the condition

of an ECA rule normally consists of predicates in the form: as some variable is

below or above a certain threshold. If we can divide the domain of the variable

into disjunctive regions based on these predicates, mapping a larger domain into a
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smaller one will significantly reduce the state space analyzed. However, consider-

ations such as whether the abstraction is sound need further research. Also, if the

initial abstraction is unsound, the counterexample guided refinement framework

may still be able to be applied to refine the abstraction.

• Requirement management system. The requirement mining framework pro-

posed provides a solution to mine formal requirements from a closed-loop model.

In order to thoroughly resolve requirement defects, a requirement management

system is still in demand. From our experience, the requirement management sys-

tem should have the following features: first, the system should integrate a version

control system; second, the system should be able to automatically mine require-

ments, to automatically use these requirements to validate future versions of the

design, and to report the results; third, the system should be capable of checking

the completeness and consistency of requirements, since all requirements are rep-

resented in a formal format; last but not least, a good GUI design is definitely of

significant importance. Since the mined requirements are in the form of STL or

WSTL formulas, design engineers, without knowledge of verification or temporal

logic, may have a difficult time understanding these formulas. Sometimes, writing

correct PSTL or PWSTL formulas is tricky even for experienced people. Thus, if

the management system is able to automatically form the correct temporal logic

formulas from lower-level language or even plain English, it will motivate design

engineers to use this tool in their daily work.

• Improving the efficiency of the synthesis and falsification engines. The

synthesis and falsification engines are the two major components of the require-

ment mining framework. The performance of the framework depends on both of
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them. If the synthesis engine cannot find tight bound parameters, the resulting

STL or WSTL formulas are either trivial or extremely difficult to falsify. On the

other hand, if the falsification engine is not able to falsify reasonable formulas,

the whole mining process aborts too early to generate requirements closer to real

system behaviors. Also, if monotonicity holds for PSTL or PWSTL formulas,

the synthesis engine is able to find relatively tight bounds efficiently. However, if

the property does not hold, improving the accuracy of synthesis results is worth

further research. For the falsification engine, current approaches rely heavily on

convex optimization or stochastic optimization techniques. However, many sys-

tems are non-convex and the random nature of stochastic optimization sometimes

frustrates design engineers. We propose searching for and developing better opti-

mization algorithms to improve the performance of the falsification engine.
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[15] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface spec-
ifications for Java classes. In ACM SIGPLAN Notices, volume 40, page 98109,
2005.

[16] G. Ammons, R. Bodk, and J. R. Larus. Mining specifications. In ACM Sigplan
Notices, volume 37, page 416, 2002.

[17] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times ba tool
for modelling and implementation of embedded systems. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 460–464. Springer, 2002.

[18] W. Ang and Y. Park. Ordinary Differential Equations: Methods and Applications.
Universal Publishers, 2008.

[19] Y. S. R. Annapureddy and G. E. Fainekos. Ant colonies for temporal logic falsifi-
cation of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE
Industrial Electronics, pages 91–96, 2010.

[20] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A
Tool for Temporal Logic Falsification for Hybrid Systems. In Proc. of TACAS,
pages 254–257, 2011.

[21] A. Anta and P. Tabuada. Self-triggered stabilization of homogeneous control sys-
tems. In American Control Conference, 2008, pages 4129–4134. IEEE, 2008.
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[66] E. Clarke, A. Donzé, and A. Legay. On simulation-based probabilistic model
checking of mixed-analog circuits. Formal Methods in System Design, 36(2):97–
113, 2010.

[67] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency Reflections and Perspectives, pages 124–175.
Springer, 1994.

[68] E. M. Clarke and I. Draghicescu. Expressibility results for linear-time and
branching-time logics. In Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, pages 428–437. Springer, 1989.

[69] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, LNCS 131, pages 52–71. Springer, 1981.

[70] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in
model checking. In Computer Aided Verification, pages 147–158. Springer, 1998.

[71] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1-2):77–104, 1996.

[72] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, pages 154–169, 2000.

160



[73] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, Sept.
2003.

[74] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[75] S. Comai and L. Tanca. Termination and confluence by rule prioritization. IEEE
Transactions on Knowledge and Data Engineering, 15:257–270, 2003.

[76] D. J. Cook, M. Youngblood, E. O. Heierman III, K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja. Mavhome: An agent-based smart home. In Per-
vasive Computing and Communications, 2003.(PerCom 2003). Proceedings of the
First IEEE International Conference on, pages 521–524. IEEE, 2003.

[77] CORDIS. European commission CORDIS, seventh framework programme FP7.
http://cordis.europa.eu/fp7/home en.html.

[78] J. Cortadella. Combining structural and symbolic methods for the verification of
concurrent systems. In Proc. of the International Conference on Application of
Concurrency to System Design, pages 2–7, Mar. 1998.

[79] L. De Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for
quantitative transition systems. In Automata, Languages and Programming, pages
97–109. Springer, 2004.

[80] L. De Moura and N. Bjrner. Z3: An efficient SMT solver. Tools and Algorithms
for the Construction and Analysis of Systems, page 337340, 2008.
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