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Abstract

Observations of T-Tauri circumstellar discs show the presence of mm or cm size
dust grains at large distances from the central star (r > 10s AU). There empirical
data challenge the currently mainstream grain growth theory, that disfavours the
formation of such large grains in the outer disc and, despite formation, predicts their
rapid inward migration due to coupling with the gas on short timescales. In this
work, we develop some improvements in the grain growth theory and implement
them in GrOG (Growth Of Grains), a new numerical solver for the coagulation and
fragmentation of grains inside a circumstellar disc. Our results revise conclusions
from previous theoretical models, as we are able to growth particles of significantly
larger size.

1 Introduction

Planets are born in the circumstellar discs typically found around young stars, which
form from the collapse of a molecular cloud core. Circumstellar discs are made of two
components: gas and dust. Observations have shown that in the outer parts of discs
grain sizes can reach values as large as mm or even cm (see Wilner et al 2005). This
is in contrast to theoretical predictions for the collisional growth of grains, which
struggle to produce grains of this dimension at large distances. Furthermore, even if
they grow to this size, they are rapidly lost due to the radial drift. This problem is
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1 Introduction 2

usually referred to as the mm size problem at 100 AU, similar to the more familiar
meter size problem at 1 AU.

The evolution of the circumstellar disc is dominated by the gas, as this component
dominates the total mass. The theory which describes the structure and evolution
of gas discs was developed in 1974 by Lynden-Bell and Pringle; they derived the
radial velocity of the gas u due to mass and angular momentum conservation inside
a viscous disc with viscosity ν:

u(r) = − 3

Σ
√
r

∂

∂r

(
Σν
√
r
)

(1)

where r is the radius and Σ gas surface density. This quantity can be evaluated
starting from the mass conservation equation and vertically integrating it:

∂Σ

∂t
+

1

r

∂

∂r
(rΣu) = 0 (2)

This equation admits self similar solutions of the kind

Σ(r, t) =
Mdisk

2πrR0T 3/2
exp (−r/R0T ) (3)

with Mdisk is the initial disc mass, R0 the initial disc radius, T = t/τν + 1, where
τν = R2

0/3νt(R0) is the viscous spreading time (the viscosity is νt(r)).
This concerns the evolution of the gas, but the disc has also a dust component.

The behavior of the dust is related to that of the gas; the dust radial velocity v is

v =

(
u− 2ητΩ

ρ0

ρ

)
/
[
1 + (ρ0τΩ/ρ)2] (4)

with ρ being the gas density, τ = (ρ(s)s) / (cρ0) the stopping time of the particle,
with ρ(s), s the density and size of the particle, c the local sound speed, ρ0 = 1g/cm3

, Ω =
√

(GMstar)/r3 the Keplerian frequency and η = − c2

Ωρ
∂ρ
∂r

. The stopping time
gives an idea of the influence of the gas pressure on the grains: if the size of the
grain is small, or if the gas density is higher, the grain is strongly coupled with the
gas, and they velocities are equal. As the particle grows, it starts decoupling from
the gas, tries to settle into a Keplerian orbit, but then feels a head-on wind from the
gas component as drifts inward. For larger particles, which are completely decoupled
from the gas, follow a Keplerian orbit and do not drift.

Beside interacting with the gas, dust grains interact with each other through col-
lisions. There are have three possible outcomes from these interactions: coagulation,
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fragmentation or bouncing. The combination of all these encounters determines the
evolution of the grain size distribution. Mathematically, these can be modeled by the
standard Smoluchowski coagulation/fragmentation equations, which have the form:

dNk

dt
=

1

2

k∑
i,j=1

CijkNiNj −
N∑
i

N∑
j=k+1

CikjNiNk −
1

2

N∑
i,j=1

FikjNiNk +
N∑

i,j=1

FijkNiNj (5)

where Nk is the number of particle of mass mk, Cijk is the coagulation kernel, so the
probability that particle i and j coagulate into particle k as a result of a collision
and in a similar way Fijk is the fragmentation kernel, so the probability that particle
k forms as a fragment from the collision between particle i and j. The kernels are
given by the number of collisions times the coagulation/fragmentation efficiency εi:

Cijk =
k∑

i,j=1

NiNjmimj∆v(si, sj)A(si, sj)εc (6)

Fijk =
N∑

i,j=1

NiNjmimj∆v(si, sj)A(si, sj)εf (7)

with ∆v(si, sj) and A(si, sj) relative velocity and cross section for the collision be-
tween particle i and j. In this report, we present the results we obtained for the grain
size evolution in the outer part of a T-Tauri disc using GrOG, a new coagulation-
fragmentation code which is a simplified version of the code presented in Brauer et
al. 2008 . In section 2 we present GrOG and the physics it implements; section
3 show our simulations and finally in section 4 we discuss our results and compare
them with previous work.

2 Methods: GrOG

We present the new coagulation-fragmentation integrator GrOG (Growth Of Grains).
This code solves the coagulation and fragmentation equation (5); we focused in
particular on four ingredients: mass distribution of the grains with their size, cross
section, relative velocity, coagulation and fragmentation probabilities. For all of these
ingredients (except the cross section), GrOG implements more than one possible
scheme. The details are given in the following sections.
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2.1 Density distribution and cross section

It is usually assumed that the internal grains density is constant throughout the
growth process, so that the mass of a particle is proportional to its size with the
power law s3. In contrast, laboratory experiments (see Blum and Wurm 2008, Ormel
et al. 2011) show evidence of a fractal growth, resulting in a size-dependent density.
Very small particles are compact, as they come from the interstellar medium; they
start growing by coagulation, but since they just randomly stick one on top of one-
other, the resulting grain has a higher porosity, where porosity can be quantified
using the volume filling factor, defined as

φ =
Volume occupied by N grains

Volume equivalent to surface area
(8)

Beyond a certain size, collisions lead to compaction. The net effect of these processes
is that the density is a complex function of the particle size. In GrOG we have thus
two optional schemes: in the first, the density is kept constant (as it is usually done
in this type of investigation). In the second scheme, internal density of grains is
given by

ρ(m ≤ mcr) = ρmax −
ρmax − ρmin

(mcr −mmin)2
(mcr −m)2 (9)

ρ(m > mcr) = ρmax (10)

where ρmin and ρmax are respectively the density for the most porous and for the
compact particle and mmin is the mass of the smaller particle. The critical mass
between the two regimes mcr is ' 10−6g.

Interactions between particles are evaluated using the geometrical cross section:

A(s, s′) = π(s+ s′)2 (11)

This assumption is consistent with our study of the outer region of the disc, where
none of the particles are expected to growth so large as to require the inclusion of
the gravitational cross section.

2.2 Relative velocity

There are four fundamental physical mechanisms that determine the velocity of dust
particles: radial drift, turbulence, vertical settling and brownian motion. The dom-
inant mechanism depends on the particle size (eg, brownian motion dominates the
collisions of very small particles, while turbulence is most important if the grains
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have very different sizes). For each pair of colliding particles, their relative velocity
is given by the maximum of the four mechanisms.

For radial drift, which is the velocity that the particle acquires via its coupling
with the gas, the relative velocity is the difference between the velocities given by
Eq. 4. Adopting the initial parameters of the disc that will be presented in Sec. 3.1,
the radial drift velocity for a particle of size s is

v(s) =
ugas − 2ηB

1 +B2
(12)

with

η =
9

4
h2

0

√
GMstar

1AU
(13)

B = ρss(2π)(3/2) R0r

Mdisk

(14)

where all the parameters are defined as in 3.1.
The relative velocities of particles induced by their interactions with turbulent

eddies were calculated by Ormel and Cuzzi 2007, and depends on the ratio of the
particle stopping time with the eddy turnover time:[

[τ(s)− τ(s′)]2

τd[τ(s)− τ(s′)]

]1/2

ve if τ(s),τ(s′) ≤ τν (15)

ve if τ(s′) ≤ τd ≤ τ(s) (16)[
τd

τd + τ(s)
+

τd
τd + τ(s′)

]
ve if τd ≤ τ(s), τ(s′) (17)

3

τ(s) + τ(s′)

(
max(τ(s), τ(s′))

τd

)1/2

ve otherwise (18)

where ve '
√
αc is the velocity for the smaller eddy, τd =

√
GM(< r)/r3 is the

dynamical timescale of the disc and τν = τdRe
−1 is the dissipation timescale of the

disc, with Re ' 1014 Reynold number for a viscous disc. Heuristically, this can be
interpreted in the following way: the first case corresponds to two small particles
both being trapped within the smallest eddy, so very affected by the turbulence. In
the second case, one of the particle is larger and its motion is still affected by the
eddies, but not longer dominated by them, while the second particle is. In the third
case, both particles have large enough stopping times to be just slightly influenced
by the turbulence. The fourth case covers all the other possibilities (eg, one particle
is no longer inside the smaller eddy, but has not decoupled yet from the turbulence).
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The vertical settling velocity describes the velocity acquired by the particles that
are above the midplane while they fall on it. In this case we adopt the same scheme
as in Birnstiel (2011):

vS(s) = min(0.5, τ(s)/τd)h(r)min

(
1.0,

√
α

(1 + (τ(s)/τd)
2)min(0.5, τ(s)/τd)

)
Ω

(19)
where Ω is the Keplerian angular velocity. The relative settling velocity is simply
vS(s)− vS(s′).

The brownian motion gives relative velocities:

∆vB(s, s′) =

√
8kB

m(s) +m(s′)

πm(s)m(s′)
(20)

where kB is the Boltzmann constant.
Using these equations, we visualize the relative collision velocity of two particles

over a range of sizes. Our result is presented in Fig. 1 and recovers the work of
Brauer et al. 2008.

2.3 Coagulation and fragmentation efficiency

A number of laboratory experiments have been run to determine which is the dom-
inant outcome (fragmentation, coagulation or bouncing) of a collision between two
particles given their sizes and relative velocity (Blum 2010, Blum and Wurm 2008).
Unfortunately, usually silicate grains are used in these experiments, while in the
outer part of circumstellar disc , which is the region we are interested in, the grains
are mainly composed by ices. There exist only a few experiments and models in this
contest, among which the collisional fusion model of Wettlaufer (2011), which seems
to be promising and will need to be taken into account in future studies.

The results of these experiments have been recently implemented in numerical
models simulating the evolution of the grain size distribution in a circumstellar disc
has been developed. In this report we will call ”Brauer model” the one implemented
in Brauer et al (2008) and we will use it as a reference. This scheme includes only
fragmentation and coagulation, but ignores cratering. Given a critical fragmentation
velocity vf = 30 m/s, the fragmentation efficiency εf is

εf (∆v) =

(
∆v

vf

)ψ
Θ(vf −∆v) + Θ(∆v − vf) (21)
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with ψ = 1 and Θ Heaviside step function. If fragmentation happens, the total mass
of the two colliding grains is redistribuited following the mass distribution function

n(m)dm ∝ m−εdm (22)

where usually ε = 1.83, as given by laboratory experiments (Mathis et al. 1977,
Draine and Lee 1984). The coagulation probability in this scheme is εc = 1 −
εf . Fig. 2 shows the coagulation and fragmentation probabilities given a critical
fragmentation velocity vf = 30 m/s. Note that for relative velocities larger than the
critical value, the coagulation probability is always zero. This means that once the
particles have grown large enough that collisional velocities are always longer than
that threshold, it is impossible for them to grow further and only fragmentation can
happen. Effectively, there is a maximal size that particles can not overcome, called
the ”fragmentation barrier”, as it has been pointed out in Birnstiel (2011).

However, we have also implemented another more realistic coagulation and frag-
mentation scheme in GrOG, here called the ”Tail model”. In this scheme we assume
that the fragmentation probability function is a step function, with value 1 for rel-
ative velocities larger than vf and 0 in the other case. We take into account that
the relative velocity of colliding particles is not fixed by Eq. 12 - 20, but follows a
Maxwellian distribution centered on the value determined by these equations. By
making the convolution of this two functions, we obtain that the fragmentation effi-
ciency is

εf = exp (−vf/(2σf ))2 +
v2
f

4σ2
f

exp (−vf/(2σf )2) (23)

with σf =
√
π∆v/4. In analogy, we define the coagulation probability to be 1 for

relative velocities smaller than a critical value vc and 0 otherwise and following the
same procedure, the coagulation efficiency is

εc = exp (−vc/(2σc))2 +
1

4σ2
c

exp (−vc/(2σc))2(vc)
2 (24)

with σc =
√
π∆v/4. Note that in this scheme the coagulation efficiency is never zero,

and for large velocities behaves like ∝ ∆v−4; this implies that there is no theoretical
maximum size for successful coagulation - only the probability gets very low -. Note
also that, if onte assumes vf = vc, then εf +εc = 1; if instead vc < vf there is a region
where εf + εc < 1 which naturally defines a bouncing region. In figure 3 we show
the coagulation and fragmentation efficiency for the Tail model with and without
bouncing.

Finally recent laboratory experiments (see the review by Blum, 2010) show that
collision of porous dust aggregates on compact objects reveal a second sticking regime
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Tab. 1: Simulations

Sim Model Porosity vc [m/s] vf [m/s] II Sticking regime
A Brauer No 30.0 30.0 NO
B Brauer ρmin = 0.1 g/cm3 30.0 30.0 NO
C Brauer ρmin = 0.01 g/cm3 30.0 30.0 NO
D Brauer NO 30.0 30.0 sc = 10
E Tail NO 30.0 30.0 NO
F Tail ρmin = 0.1 g/cm3 30.0 30.0 NO
G Tail ρmin = 0.01 g/cm3 30.0 30.0 NO
H Tail NO 30.0 50.0 NO
I Tail NO 30.0 100.0 NO
L Tail NO 30.0 30.0 sc = 10

beyond the bouncing region (in velocity space), so that in high-velocity encounters
fragmentation doesn’t occur. We have implemented this scenario into the Tail model.
Because in our model only large particles can become compact, for size ratios larger
than a critical value sc the coagulation efficiency is set to one.

In Fig. 4 we compare the coagulation efficiencies that are determined implement-
ing the different models presented in this section.

3 Results

This section presents the results of our simulations based on GrOG. We studied
the evolution of the grain size distribution at r = 100 AU for a T-Tauri disc using
different coagulation-fragmentation schemes. Table 1 summarizes the parameters for
the simulations presented.

3.1 Initial conditions

The initial grain size distribution is assumed to be a Gaussian centered on s = 10µm.
The circumstellar disc is assumed, for simplicity, to have a surface density profile
constant in time and with a radial dependence:

Σ(r) =
Mdisk

2πR0r
(25)
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Here we focus on the outer disc at r = 100 AU. Our disc parameters are those
observationally determined for the TW Hydrae disc:

Mstar = 0.8M� (26)

Mdisk = 0.1Mstar (27)

R0 = 200AU (28)

α = 0.01 (29)

Re = 1014 (30)

h(r = 100AU) = 10AU (31)

gas to dust ratio = 0.01 (32)

ρmax = 1g/cm3 (33)

mcr = 4× 10−6g (34)

3.2 Brauer Model

Simulations from A to D implement the Brauer model. In all these cases we assume
that fragmenting and coagulation critical velocities are the same, and have value 30
m/s. This value is taken from Brauer et al. (2008), for case of comparison. When
the porosity is implemented, the maximal density is assumed to be ρmax = 1 g/cm3,
while the minimum value changes in simulations B and C (see table) by respectively
one or two order of magnitude. In the last simulation (case D), we implement the
second sticking region, assuming as the size ratio threshold sc = 10. The results for
the grain size evolution are presented in figure 5.

3.3 Tail Model

Simulations from E to L implement different versions of the Tail model. In the
simplest configuration (set E), there is no porosity nor bouncing nor second sticking
regime. The influence of the porosity is studied in simulations F and G, for two
different values of the minimum density. Simulations H and I introduce the bouncing
regime by increasing the critical fragmenting velocity. Last, case L implement the
second sticking regime. The results are shown in figure 6.

4 Discussion and Future Work

The results for the Brauer model simulations are in agreement with what has been
found before: the size distribution reaches an equilibrium state quite fast (in our
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case, less than 104 yrs), with a maximum size that can’t be overcome. Including
the porosity increases this maximum size, although its value is still an order of
magnitude smaller than the mm-size. This situation is solved by the inclusion of the
second sticking regime.

The introduction of the Tail model changes in a significative way the outcome of
the grain size distribution. Please note that the results presented herein are evolved
for a maximal time t = 3.5× 104 yrs, as these simulations are computationally more
time demanding. The first effect of this new model is that it is possible to overcome
the maximum size: comparing simulation A and E indeed shows that in the latter
case the evolution doesn’t freeze for long time. This leads to the formation of larger
grains, up to 0.5 mm. The introduction of the grains porosity (simulations F and G,
see Tab 1 for details) doesn’t help the formation of larger size particles, but leads
to the formation of a depleted part in the size distribution around s = 0.01 cm.
Implementation of the bouncing region in simulation H has no effect (compare with
simulation E), but if we expand this region (simulation I) it is possible to see that this
helps the very small grains (size less than 0.001 cm) to coagulate in larger particles.
This is not a linear effect; what is supposed to be happening is that the presence of
the bouncing stops the medium-size particles from growing, giving more time to the
small ones to coagulate on them. Last, simulation L shows the effects of considering
a second sticking regime. Also in this scenario, the net outcome is that the small
grains are helped to coagulate, as they don’t cause fragmentation any more when
they encounter a large grain.

Our work presents the results for the evolution of the grain size distribution of
particles for the outer part of a circumstellar disc using a new code, GrOG. We
were able to reproduce previous results, and we also presented some improvements
in the physical model for coagulation and fragmentation, the Tail model. Note that,
although the implementation of this new model leads to the formation of larger size
particles, we still don’t observe mm or cm size objects, as detected in real discs. It is
expected that by running these simulations for longer times we will be able to form
them. In the future, there are still some aspects that need to be improved inside this
code, as the turbulence model used for deriving the relative velocities, the porosity
description, that needs to be more realistic, a physically meaningful evaluation of
the critical velocities using the collisional fusion model.
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Fig. 1: Relative velocity as a function of the size of the colliding particles. On the
left there is a 3D plot; on the right a 2D map. All the units are in cgs.

Fig. 2: Coagulation (in green) and fragmentation (in blue) efficiency as a function
of relative velocity in the Brauer model, assuming vf = 30 m/s.
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Fig. 3: Coagulation (in green) and fragmentation (in blue) efficiency as a function of
relative velocity in the Tail model. On the left, the critical velocities are vf = vc = 30
m/s; on the right, vf = 30 m/s and vc = 10 m/s, so there is a bouncing region, whose
probability is represented by the red line.
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Fig. 4: Coagulation efficiency for the different models that are implemented in GrOG
as a function of the particle size (in cm). From top to botton, from left to right:
Brauer model, Brauer + porosity (ρmin = 10−2 g/cm3), Tail model, Tail + porosity,
Tail + bouncing (vc = 30 m/s and vf = 50 m/s), Tail + second sticking regime (size
ratio = 10).
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Fig. 5: Evolution of the grain size distribution. dN(s) is the number of particle inside
a box of radius a = 0.001 au. From top to bottom, from left to right: simulation A,
B, C and D.
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Fig. 6: Evolution of the grain size distribution. dN(s) is the number of particle inside
a box of radius a = 0.001 au. From top to bottom, from left to right: simulation E,
F, G, H, I and L.




