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ABSTRACT OF THE DISSERTATION

Likelihood Free Inference for a Flexible Class of Bivariate Beta Distributions

by

Roberto Carlos Crackel

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2015

Dr. James Flegal , Chairperson

Several bivariate beta distributions have been proposed in the literature. In

particular, Olkin and Liu (2003) proposed a 3 parameter bivariate beta model, which

Arnold and Ng (2011) extend to 5 and 8 parameter models. The 3 parameter model

allows for only positive correlation, while the latter models can accommodate both

positive and negative correlation. However, these come at the expense of a density that

is mathematically intractable. The focus of this dissertation is on Bayesian estimation

for the 5 and 8 parameter models. Since the likelihood does not exist in closed form, we

apply approximate Bayesian computation, a likelihood free approach.

Chapter one briefly describes the univariate beta distribution and its prop-

erties. The 5 and 8 parameter bivariate beta distribution is defined and estimation

strategies are discussed. Chapter two is dedicated to the background of approximate

Bayesian computation (ABC), where the foundation and groundwork is laid. Toy ex-

amples are provided to better understand the algorithm and to study its properties.

Chapter three is the application of ABC to the 5 and 8 parameter bivariate beta model.

Simulation studies have been carried out for the 5 and 8 parameter cases under various

priors, sample sizes, and tolerance levels. We apply the 5 parameter model to a real data

vi



set by allowing the model to serve as a prior to correlated proportions of a bivariate beta

binomial model. Results and comparisons are then discussed. Chapter four attempts

to lay the ground work to modify existing ABC (accept reject) algorithms to search for

maximum likelihood type estimates in the absence of the likelihood function. Examples

are provided to demonstrate the relationship between maximum likelihood estimation

and acceptance rates. Algorithms are proposed and applied to data sets in an attempt

to search for maximum likelihood type estimates using only sufficient statistics. Results

are compared to the known maximum likelihood estimates.
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Chapter 1

The beta and bivariate beta

distributions

In this chapter, we briefly describe the univariate beta distribution and its

properties. We then provide a background discussion to the bivariate beta distribution.

In particular, we mention various definitions of the bivariate beta distribution that

authors have defined in the literature. Specifically, we focus on the 5 parameter bivariate

beta model defined by Arnold and Ng (2011). We then discuss the properties of this

model and estimation methods developed by Arnold and Ng (2011). We then briefly

discuss the 8 parameter model and an extension to the k-variate beta distribution defined

by Arnold and Ng (2011).

1.1 The beta distribution (of the first kind)

The beta distribution (of the first kind) is a continuous distribution, which

has support on the unit interval, and is controlled by two positive shape parameters a

and b. The beta distribution is used to model the random behavior of proportions such
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as a batters batting average or a basketball players percentage of free throws made. In

Bayesian inference, the beta distribution serves as the conjugate prior distribution to the

binomial, negative binomial and geometric distribution. A random variable X follows a

beta distribution, if it has the following density

fX(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1; 0 < x < 1, a > 0, b > 0 .

Here, Γ(t) =
∫∞

0 xt−1e−xdx is the gamma function. If X follows a beta distribution, we

denote as X∼Beta(a, b). Furthermore, the first two moments and the variance, which

will be useful in parameter estimation are

E(X) =
a

a+ b
, E(X2) =

(
a

a+ b

)(
a+ 1

a+ b+ 1

)
(1.1)

V ar(X) =
ab

(a+ b)2(a+ b+ 1)
.

1.1.1 Related distributions

We can derive the beta distribution using the well known gamma distribution.

A random variable X follows a gamma distribution, if it has the following density

fX(x; a, θ) =
xa−1e−x/θ

Γ(a)θa
; 0 < x <∞, a > 0, θ > 0.

Where a is the shape parameter and θ is the scale parameter. If X follows a gamma

distribution, we denote as X∼Γ(a, θ). Suppose X1 ∼Γ(a, θ) and X2 ∼Γ(b, θ) and are

independent, then

X1

X1 +X2
∼Beta(a, b).

This definition will play a vital role in the construction of the bivariate beta distribution,

which will be discussed in the next section.
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A useful transformation is known as the beta distribution of the second kind.

The support for this distribution is the entire positive real line and serves as the con-

jugate prior for Bernoulli trials expressed in odds. The beta distribution of the second

kind is derived by letting X∼Beta(a, b), and so

Y =
X

1−X

is said to follow a beta distribution of the second kind, which we denote as β′(a, b). The

density of Y is given by

fY (y; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1 + y)−(a+b); 0 < y <∞, a > 0, b > 0.

The expectation and variance of Y is

E(Y ) = E

(
X

1−X

)
=

a

b− 1
, conditional on b > 1

and

V ar(Y ) =
a(a+ b− 1)

(b− 2)(b− 1)2
, conditional on b > 2.

Furthermore, it is straightforward to show

1

Y
∼β′(b, a).

These properties will be exploited in one of the estimation methods for the 5 parameter

bivariate beta model.

1.1.2 Estimation

If X∼Beta(a, b), then we are interested in the estimation of a and b. There are

two primary methods of estimation, the first is maximum likelihood estimation (MLE)

and the second is the method of moments (MOM). We will now discuss these methods

3



in detail. The MLE for (a,b) is obtained via the 2-dimensional sufficient statistic(
n∏
i=1

Xi,
n∏
i=1

(1−Xi)

)
or equivalently

(
n∑
i=1

logXi,
n∑
i=1

log(1−Xi)

)

and then obtained by solving the nonlinear equations

ψ(a)− ψ(a+ b) =
1

n

n∑
i=1

logxi and ψ(b)− ψ(a+ b) =
1

n

n∑
i=1

log(1− xi)

where ψ(·) is the digamma function. We denote the MLE’s of a and b as â and b̂,

respectively. The MOM estimators are obtained by setting the first two theoretical

moments at (1.1) to the sample moments, i.e.,

1

n

n∑
i=1

Xi =
a

a+ b
and

1

n

n∑
i=1

X2
i =

(
a

a+ b

)(
a+ 1

a+ b+ 1

)
.

This yields the solutions to a and b as follows

ã = X̄

(
X̄(1− X̄)

S2
X

− 1

)
and b̃ = (1− X̄)

(
X̄(1− X̄)

S2
X

− 1

)

where

X̄ =
1

n

n∑
i=1

Xi and S2
X =

1

n− 1

n∑
i=1

(Xi − X̄i)
2.

1.2 The bivariate beta distribution

Bivariate beta distributions are becoming increasingly popular across many

disciplines. Furthermore, it is common for Bayesian analysts to use them as prior

distributions to correlated binomial random variables. An incomplete list of bivariate

beta distributions includes use of the Dirichlet distribution, as well as those studied by

Arnold and Ng (2011), Jones (2002), Olkin and Liu (2003), and Nadarajah and Kotz

(2005). Furthermore, Gupta and Wong (1985) defined a bivariate beta distribution

from the Morgenstern system of bivariate distributions (Morgenstern (1956)). Likewise

4



Ting Lee (1996) defined a bivariate beta distribution from the Sarmanov system of

bivariate distributions (Sarmanov (1966)). Also, Gupta et al. (2011) considered a non-

central bivariate beta model. An interested reader is directed to Balakrishnan and Lai

(2009) for an extensive list of bivariate beta models along with other bivariate continuous

distributions.

Unfortunately, many bivariate beta models contain parameter and correlation

restrictions and hence may not be suitable in applications. For example, suppose Z =

(Z1, Z2) defines a bivariate beta random vector. Then, it is well known that if Z follows

a Dirichlet distribution, the marginals are beta distributed with z1+z2 = 1. Further, the

family of bivariate distributions of Morgenstern (1956) has a limited correlation range

of (−1/3, 1/3), as shown by Schucany et al. (1978), and the model of Olkin and Liu

(2003) only allow for positive correlation.

The focus of this dissertation is on parameter estimation for the flexible 5 and 8

parameter models of Arnold and Ng (2011), which extend the 3 parameter specification

of Olkin and Liu (2003). The models of Arnold and Ng (2011), allow for both positive

and negative correlation, that is, any correlation in (−1, 1). The cost of this increased

flexibility is a joint density unavailable in closed form, but simulating pseudo-random

observations is trivial.

1.2.1 The 5 parameter model

Arnold and Ng (2011) defined the proposed 5 parameter bivariate beta distri-

bution by letting Ui
ind∼ Γ(αi, θ), i = 1, ..., 5 (without loss of generality, we can assume

θ = 1). The bivariate random vector Z = (Z1, Z2), as a function of the Ui’s is defined

5



as follows

Z1 =
U1 + U3

U1 + U3 + U4 + U5
and Z2 =

U2 + U4

U2 + U3 + U4 + U5
.

Therefore, Z1∼Beta(α1 + α3, α4 + α5) and Z2∼Beta(α2 + α4, α3 + α5). We denote

the 5 parameter model as BB(α1, ..., α5) or BB(α), where α = (α1, α2, α3, α4, α5)′.

Furthermore,

W1 =
Z1

1− Z1
=
U1 + U3

U4 + U5
∼β′(α1 + α3, α4 + α5)

and

W2 =
Z2

1− Z2
=
U2 + U4

U3 + U5
∼β′(α2 + α4, α3 + α5).

It also follows that

1

W1
∼β′(α4 + α5, α1 + α3) and

1

W2
∼β′(α3 + α5, α2 + α4).

Furthermore, some useful moments and expectations in parameter estimation are

E(Z1) =
α1 + α3

α1 + α3 + α4 + α5

E(Z2
1 ) =

(
α1 + α3

α1 + α3 + α4 + α5

)(
α1 + α3 + 1

α1 + α3 + α4 + α5 + 1

)

E(Z2) =
α2 + α4

α2 + α3 + α4 + α5

E(Z2
2 ) =

(
α2 + α4

α2 + α3 + α4 + α5

)(
α2 + α4 + 1

α2 + α3 + α4 + α5 + 1

)

E

[
(1− Z1)(1− Z2)

Z1Z2

]
=

(
α4

α2 + α4

)(
α3

α1 + α3

)
+

(
α3

α1 + α3

)(
α5

α2 + α4 − 1

)
+

(
α4

α2 + α4

)(
α5

α1 + α3 − 1

)
+

(
α5

α1 + α3 − 1

)(
α5 + 1

α2 + α4 − 1

)
(1.2)
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E

[
1− Z1

Z1

]
=

α4 + α5

α1 + α3 − 1
(1.3)

E

[
1− Z2

Z2

]
=

α3 + α5

α2 + α4 − 1
(1.4)

E

[(
1− Z1

Z1

)2
]

=

(
α4 + α5

α1 + α3 − 1

)(
α4 + α5 + 1

α1 + α3 − 2

)

E

[(
1− Z2

Z2

)2
]

=

(
α3 + α5

α2 + α4 − 1

)(
α3 + α5 + 1

α2 + α4 − 2

)
.

The lack of a closed form density eliminates maximum likelihood estimation.

Arnold and Ng (2011) derived 3 methods for the estimation of αi, i = 1, ..., 5. The

first method, which the authors coined as modified maximum likelihood estimation

(MMLE), works by obtaining the MLE’s based off the marginal distributions for Z1

and Z2, and then use a method of moment estimate to obtain parameter estimates.

The second method uses the MOM estimates as a function of the sample means and

sample variances (based off the marginal distributions). The third method uses the

MOM estimates based on beta distributions of the second kind. For ease of notation,

suppose we have n observations from our bivariate beta model. Specifically, define

~z1 = (z11, z21, . . . , zn1)′, ~z2 = (z12, z22, . . . , zn2)′, and z̃ = (~z1, ~z2).

a) Modified maximum likelihood estimation (MMLE)

The method of modified maximum likelihood estimation obtains the MLE’s based off

the marginals of Z1 and Z2, which will yield four equations. For the fifth equation

(needed because we have 5 unknowns), a method of moment estimate is used. Hence,

the MLE’s based off Z1 are obtained for a = α1+α3 and b = α4+α5, and are denoted

by â and b̂, respectively. Similarly, the MLE’s based off Z2 for c = α2 + α4 and

d = α3 + α5 are obtained, which we denote by ĉ and d̂, respectively. Furthermore,

7



let

S(z̃) =
1

n

n∑
i=1

(1− zi1)(1− zi2)

zi1zi2
. (1.5)

We set the theoretical moment at (1.2) equal to the sample moment at (1.5), and

after some algebra, we can set this equation in terms of â, b̂, ĉ, d̂, and α5 as follows

S(z̃) =
1

n

n∑
i=1

(1− zi1)(1− zi2)

zi1zi2
=

(
b̂− α5

ĉ

)(
d̂− α5

â

)

+

(
d̂− α5

â

)(
α5

ĉ− 1

)

+

(
b̂− α5

ĉ

)(
α5

â− 1

)

+

(
α5(α5 + 1)

(â− 1)(ĉ− 1)

)

which yields the quadratic equation

α2
5 +Bα5 + C = 0 (1.6)

where

B = b̂ĉ+ âĉ+ âd̂− b̂− d̂

and

C = (â− 1)(ĉ− 1)b̂d̂− âĉ(â− 1)(ĉ− 1)

n

n∑
i=1

(1− zi1)(1− zi2)

zi1zi2
.

Therefore, the estimate for α5 is the solution to (1.6). Now, it is possible that the

solution to (1.6) can be negative, however, recall that MLE’s cannot yield estimates

outside the parameter space, therefore, applying this principle, the estimate for α5

will be the maximum of 0 and the larger root of the quadratic equation. Once an

estimate for α5 is obtained, we can then obtain point estimates for αi, i = 1, ..., 4.
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The MMLE’s for the parameters αi, i = 1, ..., 5 are

α̂5 = max

{
0,
−B +

√
B2 − 4C

2

}
, α̂4 = max

{
0, b̂− α̂5

}
, α̂3 = max

{
0, d̂− α̂5

}
,

α̂2 = max {0, ĉ− α̂4} , and α̂1 = max {0, â− α̂3} . (1.7)

b) Method of moments based on sample means and sample variances

We can obtain estimates for αi, i = 1, ..., 5 based off the sample moments obtained

from the marginals of Z1 and Z2, as a function of the sample means and variances.

Denote the sample means of Z1 and Z2 by

Z̄1 =
1

n

n∑
i=1

Zi1, Z̄2 =
1

n

n∑
i=1

Zi2

and denote the sample variances of Z1 and Z2 by

S2
Z1

=
1

n− 1

n∑
i=1

(Zi1 − Z̄1)2, S2
Z2

=
1

n− 1

n∑
i=1

(Zi2 − Z̄2)2.

The method of moment estimates for a, b, c and d are

ã = Z̄1

(
Z̄1(1− Z̄1)

S2
Z1

− 1

)
, b̃ = (1− Z̄1)

(
Z̄1(1− Z̄1)

S2
Z1

− 1

)

c̃ = Z̄2

(
Z̄2(1− Z̄2)

S2
Z2

− 1

)
, d̃ = (1− Z̄2)

(
Z̄2(1− Z̄2)

S2
Z2

− 1

)
.

By using the quadratic equation from (1.6), we can then obtain moment based es-

timates for αi, i = 1, ..., 5 by choosing the larger root of the quadratic equation and

substituting the estimates with 0, if they are negative.

c) Method of moments based on beta distributions of the second kind

Using (1.3) and (1.4), we can set up the following moment equations

Z̄1 =
1

n

n∑
i=1

Zi1 =
α1 + α3

α1 + α3 + α4 + α5
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Z̄2 =
1

n

n∑
i=1

Zi2 =
α2 + α4

α2 + α3 + α4 + α5

mZ1 =
1

n

n∑
i=1

1− Zi1
Zi1

=
α4 + α5

α1 + α3 − 1

mZ2 =
1

n

n∑
i=1

1− Zi2
Zi2

=
α3 + α5

α2 + α4 − 1

and we can estimate a, b, c, and d as

a? =
Z̄1mZ1

Z̄1mZ1 + Z̄1 − 1
, b? =

mZ1(1− Z̄1)

Z̄1mZ1 + Z̄1 − 1

c? =
Z̄2mZ2

Z̄2mZ2 + Z̄2 − 1
, d? =

mZ2(1− Z̄2)

Z̄2mZ2 + Z̄2 − 1
.

Again, by using the quadratic equation from (1.6), we can obtain estimates of αi, i =

1, ..., 5 by choosing the larger root of the quadratic equation and substituting the

estimates with 0, if they turn out to be negative.

1.3 Caution with the MMLE

Unfortunately, S(z̃) at (1.5) is easily influenced by observed data points near

zero. For example, in our simulation studies (discussed in detail later), a particular

data set of sample size 50, denoted D, produced the bivariate observation (z43,1, z43,2) =

(0.1089, 0.0038). Clearly z43,2 will severely inflate S(z̃), thus affecting the MMLE at

(1.7). Furthermore, it will have an affect on our likelihood free algorithms by using S(z̃)

as a summary statistic (which we discuss in detail later). For illustration, Table 1.1

compares summary statistics for D to those of a more typical data set, denoted D′,

with no observed points near zero. Notice, that the sufficient statistics for the marginal

distributions of Z1 and Z2 are not much affected, however there is a heavy influence on

S(z̃).
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∑ log zi1
50

∑ log zi2
50

∑ log (1−zi1)
50

∑ log (1−zi2)
50 S(z̃)

D -0.81 -1 -1 -0.76 47.77
D′ -0.76 -0.85 -0.76 -0.84 1.67

Table 1.1: Comparison of five summary statistics between dataset D and dataset D′.

1.4 The 8 parameter model

Arnold and Ng (2011), generalized the bivariate beta model by defining an 8

parameter model by letting Ui
ind∼ Γ(δi, θ), i = 1, ..., 8 (without loss of generality, we can

assume θ = 1). Now define

V1 =
U1 + U5 + U7

U3 + U6 + U8
and V2 =

U2 + U5 + U8

U4 + U6 + U7

and then define

Z1 =
V1

1 + V1
and Z2 =

V2

1 + V2
.

Here, the marginal distributions for (V1, V2) are beta distributed of the second kind and

(Z1, Z2) have marginal distributions of the first kind. The 8 parameter model includes

the 5 parameter model by setting δ3 = δ4 = δ5 = 0 and by relabeling the remaining δi

as α1 = δ1, α2 = δ2, α3 = δ7, α4 = δ8, α5 = δ6. This model also includes the Dirichlet

model, the model proposed by Jones (2002) and the 3 parameter model of Olkin and

Liu (2003). Just as the 5 parameter model gained the ability to allow for both positive

and negative correlation over the 3 parameter model at the price of a likelihood function

that does not exist in closed form, the 8 parameter model allows for extra flexibility over

the 5 parameter model but at the price of added complexity and the inability (to our

knowledge) to obtain closed form estimates for δi, i = 1, ..., 8.
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1.5 The k-variate beta distribution

Arnold and Ng (2011) defined a k-variate generalization by letting U1, ..., Uk

and V1, ..., Vk and W be independent gamma random variables with some common scale

parameter θ. As with the 5 and 8 parameter models, we let θ = 1, and so Ui
ind∼ Γ(δUi , 1)

and Vi
ind∼ Γ(δVi , 1), i = 1, ..., k and W

ind∼ Γ(δW , 1). So for i = 1, ..., k, define

Zi =
Ui + Vi

Ui +
∑k

l=1 Vl +W
. (1.8)

The random vector Z [k] = (Z1, Z2, ..., Zk) follows a k variate beta distribution with

2k+1 parameters. It may be verified that Zi, i = 1, ..., k is beta distributed of the first

kind and each random vector Z [k?] = (Zτ1 , Zτ2 , ..., Zτk? ), k? ≤ k, τi ∈ {1, 2, ..., k} , τi 6= τj

for i 6= j, i, j = 1, ..., k?, has a joint distribution that is a k? variate beta distribution

defined in (1.8). For example, each random vector Z [2] = (Zi, Zj), i = 1, 2, ..., k, j =

1, 2, ..., k, i 6= j has the 5 parameter bivariate beta distribution with parameters α1 =

δUi , α2 = δUj , α3 = δVi , α4 = δVj and α5 = δW +
∑k

l=1,l 6=i,j δVl . However, estimation of

the parameters remains an open problem.
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Chapter 2

Approximate Bayesian

computation

2.1 Introduction

In this chapter, we will introduce a class of likelihood free algorithms known

as approximate Bayesian computation (ABC). We will provide a brief background on

the fundamentals of Bayesian inference and then proceed to describe ABC. In short,

ABC samples from the posterior (or approximate) distribution in the absence of the

likelihood function. There have been many developments in the history of ABC and

various algorithms have been proposed. The simplest algorithm is the accept reject

method (ABC-AR), where the resulting outcome form an i.i.d. sample from the posterior

(or approximate) distribution. However, this method suffers from low acceptance rates

and other methods have been developed to generate higher acceptances. We will detail

ABC-AR and provide toy examples to illustrate how it works and demonstrate that it

samples from the posterior distribution. We then briefly discuss other methods designed

to improve acceptance rates.
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In Bayesian inference, the posterior distribution for the parameter θ∈Θ is given

by

p(θ|x) =
p(x|θ)π(θ)

p(x)

where one’s prior beliefs about the unknown parameter θ is expressed through the prior

distribution π(θ), but is then updated by the observed data x, through the likelihood

function p(x|θ). Inference for the parameter θ is then based on the posterior distribution.

In particular, if we consider the mean squared error as our risk function, then the Baye’s

estimate of the unknown parameter θ is the mean of the posterior distribution, i.e., θ̂ =

E(θ|x) =
∫
θp(θ|x)dθ. In many cases however, computing the posterior is difficult (if

not impossible) since the marginal likelihood, p(x) =
∫
p(x|θ)π(θ)dθ is mathematically

intractable. Provided the likelihood can be evaluated up to a normalizing constant,

Markov Chain Monte Carlo (MCMC) methods such as the Metropolis Hastings (MH)

algorithm or the Gibbs sampler allow us to sample from the posterior distribution.

However, these methods require that the likelihood function be known (i.e., we can

write them down). This begs the question, if we are working with a model where

the likelihood function cannot be written down, is it still possible to sample from the

posterior distribution?

To address this question, a class of algorithms, known as “likelihood-free com-

putation” or “approximate Bayesian computation” (ABC) have been developed. This

name refers to the circumventing of explicit evaluation of the likelihood by a simulation

based approximation (Brooks et al. (2011)). The underlying idea of ABC is to consider

a candidate parameter θ′ from the prior distribution and to generate an auxiliary data

set y, conditioned on θ′, i.e., y∼p(y|θ′). If y is “close” to the observed data x in some

manner, we accept θ′ as a likely candidate parameter to have generated the observed
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data x. However, if y is not “close” to x, then θ′ is unlikely to have generated x and

so θ′ is rejected. We continue this algorithm until m candidate parameters have been

accepted. The accepted parameter values form an i.i.d. sample from the posterior dis-

tribution p(θ|x). Hence, this is an algorithm that allows us to sample from the posterior

distribution even in the absence of the likelihood function.

2.2 Likelihood free basics

Brooks et al. (2011) begins describing likelihood-free inference by augmenting

the target posterior from

p(θ|x) ∝ p(x|θ)π(θ) to pLF (θ,y|x) ∝ p(x|y,θ)p(y|θ)π(θ)

where the auxiliary data set y, is generated from p(y|θ) on the same space as x ∈ X .

The distribution p(x|y,θ) is chosen to weight the posterior p(θ|y) with high density in

regions where y and x are similar. The probability density function p(x|y,θ) is assumed

to be constant with respect to θ at the point y = x, so that p(x|x,θ) = c, for some

constant c > 0, with the result that the target posterior is recovered exactly at y = x,

i.e., pLF (θ,x|x) ∝ p(x|θ)π(θ). Ultimately, interest is typically in the marginal posterior

pLF (θ|x) ∝ π(θ)

∫
X
p(x|y,θ)p(y|θ) dy

where we integrate out the auxiliary data set y. The distribution then pLF (θ|x) becomes

an approximation to p(θ|x).

The likelihood free posterior distribution pLF (θ|x) will only recover the target

posterior p(θ|x) exactly when the density p(x|y,θ) is precisely a point mass at y = x

and zero elsewhere. In this case

pLF (θ|x) ∝ π(θ)

∫
X
p(x|y,θ)p(y|θ) dy = p(x|θ)π(θ).
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However, this choice for p(x|y,θ) will result in a rejection sampler with an acceptance

probability of zero unless the proposed auxiliary data set equals the observed data, i.e.,

y = x.

The first algorithm we will present is an exact algorithm, meaning that it

samples from the posterior distribution (as opposed to an approximate posterior distri-

bution). The algorithm requires that we match the auxiliary data set y, to the observed

data set x (or the sufficient statistics of y to the sufficient statistics of x). It should

be immediately clear that this algorithm will only apply to low dimensional discrete

cases. For continuous models (and for high dimensional discrete cases), an adjustment

will need to be made, however, it will come at the cost of no longer sampling from the

true posterior distribution. The ABC-AR (exact) algorithm is described as follows

Algorithm ABC-AR exact

1. Generate θ′ ∼ π(θ).
2. Generate a data set y from the model p(y|θ′).
3. Accept θ′ if y = x, otherwise discard θ′.
Continue until m observations have been accepted.

Hence, the outcome θ′1, ...,θ
′
m forms an i.i.d. sample from p(θ|x). Now, if sufficient

statistics are known, we can replace the sufficient statistics in step 3, rather than

y = x. In other words, accept θ′ if S(y) = S(x), otherwise reject θ′, where S(·) =

(S1(·), ..., Sp(·)) is the set of sufficient statistics and p ≥ dim(θ). The benefit of using

sufficient statistics, is that it will greatly reduce computational effort. Thus, our algo-

rithm becomes
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Algorithm ABC-AR exact

1. Generate θ′ ∼ π(θ).
2. Generate a data set y from the model p(y|θ′).
3. Accept θ′ if S(y) = S(x), otherwise discard θ′.
Continue until m observations have been accepted.

2.2.1 Toy example one

We will now illustrate ABC-AR exact with a toy example. Suppose the ob-

served data was generated from 20 Bernoulli trials with probability of success of 0.20,

i.e., {Xi}20
i=1

i.i.d.∼ Ber(0.6), and we observe
∑
xi = 12, however p is unknown. We wish

to estimate p and will take a Bayesian approach. Now suppose that the prior distribution

for p is a Beta(1, 1) or equivalently a Unif(0, 1), i.e., p ∼ Beta(1, 1) ≡ Unif(0, 1). Here,

we can compute the exact posterior distribution, i.e., p|x∼Beta(α+
∑
xi, β+n−

∑
xi)

≡ Beta(13, 9). Thus, using the mean squared error as our risk, the Bayes estimate is

13
22 = 0.5909. So after applying ABC-AR exact, we should expect to see that as the

number of acceptances increases, the better the approximation to the posterior distri-

bution, hence, also a better approximation to the true Bayes estimate. Our algorithm

becomes

Algorithm ABC-AR exact

1. Generate p′ ∼ Beta(1, 1) ≡ Unif(0, 1).

2. Generate {Yi}20
i=1

i.i.d.∼ Ber(p′).
3. Accept p′ if

∑
yi = 12, otherwise discard p′.

Continue until m observations have been accepted.

The outcome p′1, ..., p
′
m forms an i.i.d. sample from a Beta(13, 9) distribution. Thus, for

large m, we should obtain a good approximation to this distribution.
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(a) m = 100, p̂ = 0.5894
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(b) m = 10, 000, p̂ = 0.5915

Figure 2.1: Plots comparing the estimated posterior for different acceptance sizes.

Figure 2.1 show the histograms for m = 100 and m = 10, 000 acceptances,

respectively. The red line is the density curve to the posterior, i.e., a Beta(13, 9) dis-

tribution. We can see that the histogram for m = 10, 000 acceptances is a better

approximation than for m = 100 acceptances. Furthermore, the Bayes estimate for p

under m = 10, 000 is 0.5915, while the Bayes estimate for p under m = 100 is 0.5894.

Recall that the true Bayes estimate is 0.5909, and so we see that as the number of

acceptances increases, the approximation to the Bayes estimate also improves.

Method Bayes ABC-AR exact

m – 100 10,000
Proposals – 2,141 213,715

p̂ 0.5909 0.5894 0.5915

Table 2.1: Comparison of acceptance sizes.

Table 2.1 shows the Bayes estimates for m = 100 and m = 10, 000 compared
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to the true Bayes estimate, but also the number of proposals required to achieve the

desired number of acceptances. Here, the number of proposals required for m = 10, 000

is 231,715 compared to the 2,141 for m = 100. In this one dimensional setting, the

computing time between m = 100 and m = 10, 000 is insignificant, however in higher di-

mensional problems, the computational effort will be an issue of concern. Furthermore,

while the posterior and Bayes estimate for m = 10, 000 is better than the estimate for

m = 100, the precision doesn’t differ by much. It is on this note, that for higher dimen-

sional problems, an increased number of acceptances may not be worth the additional

computational effort.

2.3 ABC-AR for continuous random variables

Under continuous models, the probability that y = x or S(y) = S(x) is zero

(or approximately zero for high dimensional discrete models). Therefore, we make an

adjustment by measuring the distance between y = x or S(y) = S(x) through some

distance function ρ. If this distance is within some tolerance level ε, we will accept the

proposed candidate parameter. However, it does come at the cost of no longer sampling

from the posterior distribution, but rather sampling from a distribution that is an ap-

proximation to the posterior (provided that ε is small). The algorithm becomes

Algorithm ABC-AR continuous

1. Generate θ′ ∼ π(θ).
2. Generate a data set y from the model p(y|θ′).
3. Accept θ′ if ρ(S(y),S(x)) < ε, otherwise discard θ′.
Continue until m observations have been accepted.
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The outcome θ′1, ...,θ
′
m then forms an i.i.d. sample from

pε(θ|x) = p(θ|ρ(S(y),S(x)) < ε).

Here, the idea being, if ε is small, the better the approximation to the posterior distri-

bution. In other words, the likelihood free algorithm above samples from the marginal

in y of the joint distribution

pε(θ,y|x) =
π(θ)p(y|θ)IAε,x(y)∫

Aε,x×θ
π(θ)p(y|θ)dydθ

where IAε,x(·) denotes the indicator function of the set Aε,x = {y∈X |, ρ(S(y),S(x)) < ε}.

So, the smaller the tolerance level ε, the better the approximation to the posterior

distribution, i.e., pε(θ|x) =
∫
pε(θ,y|x)dy ≈ p(θ|x). Furthermore, as ε tends to zero,

the posterior distribution is captured.

2.3.1 Toy example two

We will now illustrate ABC-AR continuous with another toy example. Suppose

the observed data consisted of a sample size of 30, which was generated from a normal

distribution with mean 2 and variance of 1, and suppose we observed
∑
xi = 54.9275,

so that x̄ = 1.8309. Assume that the mean is unknown, however the variance is known

and we wish to estimate µ. Suppose that the prior distribution for µ is a standard

normal distribution, i.e., µ ∼ N(0, 1), and so the computed posterior distribution is

µ|x∼N( nx̄
n+1 ,

1
n+1) ≡ N(1.7719, 0.0323). Therefore, the algorithm becomes

Algorithm ABC-AR continuous

1. Generate µ′ ∼ N(0, 1).

2. Generate {Yi}30
i=1

i.i.d.∼ N(µ′, 1).
3. Accept µ′ if | 1

n

∑
yi − 1

n

∑
xi |=| 1

n

∑
yi − 1.8309 |< ε, otherwise discard µ′.

Continue until m observations have been accepted.

20



The outcome µ′1, ..., µ
′
m forms an i.i.d. sample from a distribution that is approximately

normal, with a mean of 1.7719 and variance of 0.0323, i.e., Nε(1.7719, 0.0323), provided

that ε is small.
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(a) ε = 1, µ̂ = 1.3332
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(b) ε = 0.5, µ̂ = 1.6501
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(c) ε = 0.01, µ̂ = 1.7715

Figure 2.2: Effect of ε on the posterior distribution.

Figure 2.2 shows the histograms for ε = 1, ε = 0.5, and ε = 0.01. Here, we

can clearly see that as ε is decreasing, the better the approximation to the posterior

21



distribution. Furthermore, the true Bayes estimate for µ is 1.7719, and so we see that as

ε is tending toward 0, we also obtain a better approximation to the true Bayes estimate.

It is worth noting that for this example, we see two sources of bias. The first source

of bias is coming from the N(0, 1) prior, which is proposing candidate values that are

centered around 0. This is no surprise, since it is a fact that Bayes estimates are always

biased. However, there is a second source of bias that is stemming from the value of ε.

In histogram (a), we see a large number of proposed candidate parameters (that have

small numerical values) that are being accepted due to the large ε, thus further weighing

down our approximate Bayes estimate. However, in histogram (c), because ε is small,

the parameters that are being accepted for ε = 1 are now being rejected at a much

higher rate, and so the bias stemming from a large ε vanishes.

Method Bayes ABC-AR continuous

ε – 1 0.5 0.01
Proposals – 4,692 12,112 643,754

µ̂ 1.7719 1.3332 1.6501 1.7715

Table 2.2: Comparing the effect of ε.

Table 2.2 shows that as ε is decreasing, the estimate of µ converges to the true

Bayes estimate. Furthermore, we see the effect of ε on computational effort. For ε = 1,

4,692 proposals were needed, however 643,754 proposals were needed for ε = 0.01. As

with the first toy example, because this is a one dimensional problem, the difference in

computing time is almost insignificant, however for higher dimensional problems, the

choice of ε will have an impact. From the first and second toy examples, we can see that

computing time is a function of the number of acceptances and the size of ε. This is a

balance we will seek when applying ABC-AR in higher dimensions.

22



2.4 Summary statistics

Often sufficient statistics are unknown and it is common practice to replace the

set of unknown sufficient statistics with a set of summary statistics or “near” sufficient

statistics. The cost of this replacement is that it will further hurt the degree of the

approximation of the posterior distribution. Furthermore, as ε goes to zero, we will

no longer capture the posterior distribution. How much precision is lost depends on

the information contained within the choice of summary statistics. For our 5 and 8

parameter bivariate beta models, because the likelihood function cannot be written

down, we cannot identify the sufficient statistics and so we must heuristically choose

a set of summary statistics. Discussion for the choice of summary statistics will be

discussed in detail later. The interested reader is directed to Burr and Skurikhin (2013),

Joyce and Marjoram (2008), and Fearnhead and Prangle (2012) for more discussion on

the choice of summary statistics.

2.5 ABC Metropolis Hastings

In scenarios where the prior distribution is far from the posterior distribution,

it will lead to low acceptance rates (albeit, one of the advantages of the ABC-AR algo-

rithm is that because the proposals are independent, we can use embarrassingly parallel

computation to reduce computing time.). To this end, Marjoram et al. (2003) proposed

embedding the Metropolis Hastings (MH) algorithm in the ABC-AR algorithm, which

we will denote as ABC-MH, in order to improve acceptance rates. Before describing the

ABC-MH algorithm, let us review the MH algorithm. Recall that the MH algorithm

is used to obtain a sequence of dependent samples from a probability distribution for

which direct sampling is nearly impossible. The MH algorithm is particularly useful in
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Bayesian analysis, where calculation of the posterior distribution is difficult due to the

complexity of the marginal likelihood. This sequence is then used to approximate the

distribution through histograms and/or integrals. The MH algorithm (in a Bayesian

context) is described as follows

Algorithm Metropolis Hastings

1. Initialize θ(1), v = 1.

2. Generate θ′ ∼ q(θ|θ(v)), where q is some proposal density.

3. Set θ(v+1) = θ′ with probability h =min

{
1,

p(x|θ′)π(θ′)q(θ(v)|θ′)
p(x|θ(v))π(θ(v))q(θ′|θ(v))

}
,

otherwise set θ(v+1) = θ(v).
4. Continue for N iterations.

The output of this algorithm are dependent draws from the posterior distri-

bution, from which we can estimate various Bayes estimators. To implement the MH

algorithm in the ABC-AR algorithm, we add 2 steps between the second and third

step of the MH algorithm. The first step is to generate an auxiliary data set from

the likelihood model and the second step is to compare the sufficient statistics from the

auxiliary data set to the observed data set. The ABC-MH (exact) algorithm is as follows

Algorithm ABC-MH exact

1. Initialize θ(1), v = 1.

2. Generate θ′ ∼ q(θ|θ(v)), where q is some proposal density.
3. Generate a data set y from the model p(y|θ′).
4. If S(y) = S(x), go to step 5, otherwise remain at θ(v).

5. Set θ(v+1) = θ′ with probability h =

{
1,

π(θ′)q(θ(v)|θ′)
π(θ(v))q(θ′|θ(v))

}
, otherwise

set θ(v+1) = θ(v).
6. Continue for N iterations.

The output of the ABC-MH algorithm will sample from the stationary distribution, i.e.,

p(θ|x). We prove this as follows
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Theorem 1 p(θ|x) is the stationary distribution of the chain (Marjoram et al. (2003)).

Proof.

Denote the transition mechanism of the chain by r(θ′|θ(v)) and without loss of

generality, choose θ′ 6= θ(v) satisfying

π(θ′)q(θ(v)|θ′)
π(θ(v))q(θ′|θ(v))

≤ 1. (2.1)

Then

p(θ(v)|x)r(θ′|θ(v)) = p(θ(v)|x)q(θ′|θ(v))p(x|θ′)h

=
p(x|θ(v))π(θ(v))

p(x)

{
q(θ′|θ(v))p(x|θ′) π(θ′)q(θ(v)|θ′)

π(θ(v))q(θ′|θ(v))

}

=
p(x|θ′)π(θ′)

p(x)

{
q(θ(v)|θ′)p(x|θ(v))

}
= p(θ′|x)q(θ(v)|θ′)p(x|θ(v))h

= p(θ′|x)r(θ(v)|θ′).

The argument when the ratio on the left of (2.1) is > 1 is analogous. Thus, p(θ|x) sat-

isfies the detailed balance equations, which implies that indeed p(θ|x) is the stationary

distribution of the chain, and the proof is complete.

There are two special cases (Marjoram et al. (2003)):

1. If q(θ(v)|θ′) = q(θ′|θ(v)) then h depends only on the prior.

2. If q is reversible with respect to π, (so that π(θ(v))q(θ′|θ(v)) = π(θ′)q(θ(v)|θ′), for all

θ(v) = θ′), then h = 1, and the algorithm reduces to a rejection method with correlated

outputs.

Just as with ABC-AR exact, the ABC-MH algorithm is valid for only low

dimensional discrete models. As with ABC-AR continuous, we make extension to con-

tinuous models by comparing S(y) to S(x) through some distance function ρ. Thus,
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we adjust ABC-MH exact by approximating the intractable likelihood ratio by 1, if the

auxiliary data set and observed data set are sufficiently close, and 0 otherwise. The

ABC-MH (continuous) algorithm is described as follows

Algorithm ABC-MH continuous

1. Initialize θ(1), v = 1.

2. Generate θ′ ∼ q(θ|θ(v)), where q is some proposal density.
3. Generate a data y from the model p(y|θ′).

4. Set θ(v+1) = θ′ with probability h =

{
1,

π(θ′)q(θ(v)|θ′)
π(θ(v))q(θ′|θ(v))

I(ρ(S(y),S(x)) < ε)

}
,

otherwise set θ(v+1) = θ(v).
5. Continue for N iterations.

One of the major problems of the ABC-MH continuous algorithm, is that it gen-

erates a sequence of serially and highly correlated samples from p(θ|ρ(S(y),S(x)) < ε).

Determination of the chain length, N , is therefore obtained through a careful assessment

of convergence and consideration of the chain’s ability to explore the parameter space,

i.e., chain mixing (Sisson et al. (2007)).

2.6 Other ABC methods

To improve upon the inefficiency of ABC-AR and ABC-MH, there have been

a large number of proposed methods that incorporate sequential Monte Carlo (SMC)

techniques. Sisson et al. (2007) was one of the first to make use of SMC methodology,

proposing coupling SMC with partial rejection control and a biased approximation of

the posterior distribution. Beaumont et al. (2009) further proposed utilizing population

Monte Carlo methods of Cappé et al. (2004). Similarly, Toni et al. (2009) proposed an

algorithm derived from the framework of sequential importance sampling. Peters et al.
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(2012) embed the partial rejection control mechanism of Liu (2001), which incorporates

a mutation and correction step within the standard SMC sampler algorithm. This

incorporation of a mutation kernel reduces the variability of the importance weights

when compared to more standard SMC algorithms.

Another class of algorithms that improve ABC-AR is to incorporate regression

methodology. The pioneer of this approach was Beaumont et al. (2002), who assumed

that the conditional density can be described by a regression model. The idea was to

weight the parameters by comparing the auxiliary summary statistics with the observed

summary statistics. An interested reader is directed to Blum and François (2010) and

Leuenberger and Wegmann (2010) for extensions of this approach. Unfortunately, these

methods focus on univariate settings, though some authors comment that an extension

using multivariate regression is straightforward.
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Chapter 3

Application of ABC to the

bivariate beta model

3.1 Introduction

In this chapter, we will apply approximate Bayesian computation (ABC) to the

5 and 8 parameter models proposed by Arnold and Ng (2011). In order to apply ABC,

we will need to choose prior distributions and so we will begin by first describing the

selected prior distributions used in our simulation studies. We then discuss simulation

settings, i.e., true parameter settings, sample sizes, summary statistics, and tolerance

levels. Our work considers both the ABC-AR and ABC-MH algorithms. The bivariate

beta distributions are continuous models, so we will be applying the continuous versions

of the algorithms. For simplicity, we will refer to ABC-AR continuous simply as ABC-

AR, and likewise call ABC-MH continuous as ABC-MH. Given the ease in which one

can simulate bivariate beta random vectors, we did not consider SMC or regression

methodology in our study. We then close the chapter by discussing simulation results.

Much of this chapter is the work of Crackel and Flegal (2014).
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3.2 Prior distributions

We consider 4 prior distributions in our simulation study. Since αi > 0, we

select prior distributions that reflect this support. A natural prior to consider is a gamma

prior. In our study, αi, i = 1, ..., 5 will be independent and identically distributed, i.e.,

αi
i.i.d.∼ Γ(λ, β), where λ and β are the hyperparameters. Specifically, our simulations

consider Γ(2.5, 0.52) and Γ(2.5, 1.04), denoted G1 and G2, respectively.

We also consider a modified uniform distribution. For the modified uniform

distribution, the density curve is uniform on the interval (0, µ). At α = µ, the density

curve then tails off, i.e., f(α) approaches 0 as α goes to ∞ (see Figure 3.1). In other

words, we can choose µ and p such that P (α∈(0, µ)) = p and P (α∈(µ,∞)) = 1−p. The

density function is

f(α|µ, p) =


p
µ if α∈(0, µ)

p
µexp

(
−p(α−µ)
µ(1−p)

)
if α∈(µ,∞).

The motivation for the modified uniform is to reflect a lack of information on

the interval (0, µ). The tail is added to cover the entire support to maintain a proper

prior. We denote the modified uniform as Up(0, µ). Our simulations consider U0.8(0, 2)

and U0.8(0, 4), which we denote as U1 and U2 respectively.

To compare the gamma and modified uniform priors, we have selected hyper-

parameters resulting in the same mean and variance for G1 and U1, and for G2 and U2.

Since the αi’s are i.i.d., for the 5 parameter case, we have π(α) =
5∏
i=1

πi(αi). Likewise,

for the 8 parameter case, we assume the δi’s are i.i.d., and so we have π(δ) =
8∏
i=1

πi(δi),

where δ = (δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8)′.
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Figure 3.1: Plot of priors, G1 in red, U1 in black, G2 in green, and U2 in purple.

There are a number of other potential priors including the uniform, trian-

gle, Epanechnikov or Gaussian (truncated on R+) kernels. In applications, these may

increase acceptance rates for the ABC-AR algorithm, which is a direction of future

research.

3.3 Summary statistics and distance function

Given the joint likelihood is unavailable in closed form, sufficient statistics

cannot be determined. Thus, we are forced to choose informative summary or near

sufficient statistics. First, consider the 5 parameter model where we will use 5 summary

statistics. Since the marginals of Z1 and Z2 are distributed as beta random variables,

30



we choose the corresponding univariate sufficient statistics. Specifically, we have sum-

mary statistics S1(z̃) = 1
n

∑
log zi1, S2(z̃) = 1

n

∑
log zi2, S3(z̃) = 1

n

∑
log (1− zi1), and

S4(z̃) = 1
n

∑
log (1− zi2).

For our fifth summary statistic, we first considered S(z̃) at (1.5) used in MMLE.

As we have illustrated in Table 1.1, S(z̃) is influenced by small observed values. The

implications in a preliminary simulation study showed that a small portion of simulated

datasets contained severely inflated values of S(z̃), one of which is illustrated in Ta-

ble 1.1. Thus, there would be difficulty generating an auxiliary dataset ỹ, where S(ỹ)

is close to that of the observed data set, S(z̃), and further resulting in extremely low

acceptance rates.

Given the problems with S(z̃) as a summary statistic, we require an alternative

to capture the correlation that offers more stability for any observed values. To this end,

we will use the Pearson correlation between ~z1 and ~z2, that is

S5(z̃) =

∑
(zi1 − z̄1)(zi2 − z̄2)√∑

(zi1 − z̄1)2
∑

(zi2 − z̄2)2
. (3.1)

Thus, S(z̃) = (S1(z̃),S2(z̃),S3(z̃),S4(z̃), S5(z̃)) is the vector of summary statistics used

for ABC-AR in the 5 parameter model. The use of S5(z̃) instead of S(z̃) vastly improved

acceptance rates, which will be further discussed in section 3.5.5.

Finally, we considered the distance function

ρ(S(ỹ),S(z̃)) =

5∑
i=1

|Si(ỹ)− Si(z̃)| .

Investigation of alternative distance functions is outside the scope of this dissertation.

Preliminary simulations showed the 5 summary statistics had approximately equal vari-

ability for a variety of distance cutoff values, hence, there is no need to consider weights

or a scale adjustment in the distance function.
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Next, consider the 8 parameter model where we will use 8 summary statistics.

We begin by including the 5 summary statistics from the 5 parameter sub model. In

order to capture additional dependency between Z1 and Z2, we added the Spearman

rank correlation and Kendall correlation, that is

S6(z̃) = 1− 6
∑
d2
i

n(n2 − 1)
where di = zi1 − zi2

and

S7(z̃) =
(number of concordant pairs)− (number of discordant pairs)

1
2n(n− 1)

.

Finally, we consider S8(z̃) = 1
n

∑√
zi1zi2 as our eight summary statistic. Our distance

function is, ρ(S(ỹ),S(z̃)) =
∑8

i=1 |Si(ỹ)− Si(z̃)|.

3.4 Simulations

For the 5 parameter model, we considered 3 parameter settings. Within each

parameter setting, we used each of the 4 priors described above, G1, G2, U1, and U2.

For each prior, we considered 2 sample sizes, n ∈ {50, 100}, and for each sample size, we

considered 4 tolerance levels, ε ∈ {0.2, 0.4, 0.6, 0.8}. All together, this will account for a

total of 96 settings. To draw comparisons between the ABC-AR algorithm to MMLE,

each setting was repeated across 200 datasets to obtain an estimate of the bias and MSE.

For each data set, the ABC-AR algorithm ran for 1,000 acceptances or 15e6 proposals,

whichever came first. Furthermore, we wish to compare the behavior of each of the

priors and the precision of estimation as the tolerance level decreases. For ABC-AR,

simulations were ran for both the old S5, (S(z̃) at (1.5)), and the new S5 (the Pearson

correlation at (3.1)). For ABC-MH, simulations were only ran using the old S5, 1e6

iterations, and ε ∈ {0.4, 0.6, 0.8}.
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Similarly, for the 8 parameter model, we considered 2 parameter settings, the

4 prior distributions, a sample size of n = 100, and the 4 tolerance levels as with the 5

parameter case. This totaled 32 settings, and we ran each setting across 200 datasets

to estimate the bias and MSE, and the same stopping rule of 1,000 acceptances or 15e6

proposals was used. The results were not compared to a baseline, since we know of no

other method applicable in this setting.

Results of the simulations are shown in the appendix. For Tables A.1 − A.12

and Tables A.19 − A.20, the average number of proposals required to reach the desired

m = 1, 000 acceptances or 15e6 proposals are reported along with the standard deviation

(in parenthesis). For Tables A.13 − A.18, the average number of acceptances are re-

ported along with the standard deviation (in parenthesis). Furthermore, for Tables A.1

− A.12, the results for ε = 0.6 and for Tables A.19 − A.20, the results for ε = 0.4 and

ε = 0.6 are not shown to preserve space.

3.5 5 parameter model

We considered the following three parameter settings, A1 = (1, 1, 1, 1, 1)′, A2 =

(3, 2.5, 2, 1.5, 1)′, and A3 = (1, 1, 2, 6, 1)′. The first two settings were used by Arnold and

Ng (2011), while the third was added of our own accord. Figure 3.2 below shows a

scatter plot for a data set (when n = 100), for each parameter setting. Each of these

parameter settings have a negative correlation.
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Figure 3.2: Scatterplots of Z1 and Z2 and the estimated correlation.

3.5.1 Results using the old S5

Table A.1 shows the results for A1 and n = 100. We can see that as we decrease

the tolerance level from ε = 0.8 to ε = 0.2, the bias and MSE decrease substantially.

Compared to the MMLE, G1 and U1 had a smaller MSE for each α̂i, i = 1, ..., 5 while
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there was a decrease in the MSE for α̂3 and α̂4 under G2 and U2. For each prior, as ε

is decreasing, we start seeing a dramatic increase in the required number of proposals.

For example, when ε = 0.2, the G1 prior required an average of slightly more than 5.6e6

proposals while U2 required a little more than 6.5e6 proposals.

Table A.2 shows the results for A2 and n = 100. For ε = 0.2, only the G1 prior

had a smaller MSE for each α̂i, i = 1, ..., 5 compared to the MMLE, whereas the other

3 priors had a decrease in the MSE for certain α̂i. The results for A3 and n = 100 are

shown in Table A.3. For ε = 0.2, G1 and U1 reduced the MSE for α̂1, α̂2, and α̂5, when

compared to the MMLE, while for G2 and U2, there was a reduction in MSE for certain

α̂i. Furthermore, we see the affect of α4 = 6, by observing larger MSE’s and required

number of proposals for the G1 and U1 priors. The MSE improves substantially for α̂4

when using the G2 and U2 priors, while also reducing the overall computational effort.

This is due to G1 and U1 primarily proposing values in low posterior regions.

In summary, for each of the parameter settings, the bias and MSE decreases as

ε decreases. Reduction in MSE for α̂i is dependent on the parameter setting and prior

distribution. For example, under the A1 and A2 setting, the G1 prior performed the

best with respect to MSE, when compared to the MMLE, and in particular under the

A1 setting, it performed exceptionally well. Furthermore, under the A1 setting, the G1

prior required the fewest number of proposals, while under the A2 and A3 setting, the

G2 prior required the fewest proposals. Results for n = 50 are similar and are shown in

Tables A.4 − A.6.

3.5.2 Results using the new S5

Table A.7 shows the results for A1 when n = 100. For ε = 0.2, compared to

the MMLE, G1, U1, and G2 had a smaller MSE for each α̂i, i = 1, ..., 5 while there was
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a decrease in the MSE under U2 for α̂i, i = 1, ..., 3. We observe however, that the G1

prior clearly performs the best. Table A.8 shows the results for A2 when n = 100. For

ε = 0.2, compared to the MMLE, G1 and U1 had a smaller MSE for each α̂i, i = 1, ..., 5

while there was a decrease in the MSE under G2 and U2 for certain α̂i. The results for

A3 and n = 100 are shown in Table A.9. For ε = 0.2, U2 decreased the MSE for α̂1, α̂3,

α̂4, and α̂5, whereas the other 3 priors had a decrease in the MSE for certain α̂i, when

compared to the MMLE. As with the old S5, we see the affect of α4 = 6 by observing

the large MSE’s and number of proposals required for the G1 and U1 priors but the

reduction in MSE and computing time by using the G2 and U2 priors.

Figure 3.3 below shows the histograms for α̂i, i = 1, ...5 using the ABC-AR

algorithm and the G1 prior, superimposed on the histogram using the MMLE. The

histograms were generated under the A1 setting for n = 100 and ε = 0.2. The black

vertical line represents the true parameter values, i.e., αi = 1, i = 1, ..., 5. Here, we can

clearly see the bias that is present using the ABC-AR algorithm, however, we see larger

variability using the MMLE. As a whole, there has been a reduction in the MSE using

the ABC-AR algorithm as opposed to the MMLE (for this particular setting).
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Figure 3.3: Histograms comparing ABC-AR and the G1 prior to the MMLE, under A1,

n = 100, and ε = 0.2 for α̂i, i = 1, ..., 5.
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In summary, as ε decreases, the precision of estimation improves. Under the

A1 setting, we see a decrease in the MSE for almost every α̂i using each of the priors.

For the A2 and A3 settings, the reduction in the MSE for α̂i, when compared to the

MMLE, is dependent on the prior. Furthermore, under the A1 setting, the G1 prior

required the fewest number of proposals, while under the A2 and A3 setting, the G2

prior required the fewest proposals. Results for n = 50 are similar and are shown in

Tables A.10 − A.12.

Comparing computational effort between the old and new S5, under the A1

setting, the Pearson correlation required significantly fewer proposals using G1, G2, and

U1, but the old S5 required fewer proposals for U2 (which is consistent with the results

described in subsection 3.5.5). For the A2 setting, the old S5 tended to require fewer

proposals, while for the A3 setting, the required amount of proposals favored the new S5.

In general, replacing the old S5 with the Pearson correlation improved on acceptance

rates. Recall that Tables A.1 − A.12 and Tables A.19 − A.20 report the average number

of proposals required to reach the desired m = 1, 000 acceptances or 15e6 proposals and

says nothing about the percentage of data sets that reached (or did not reach) the

m = 1, 000 acceptances. Subsection 3.5.5 discusses these percentages between the old

and new S5, under the A1 setting, n = 100 and ε = 0.2.

3.5.3 ABC-MH results

Table A.13 shows the results for A1 and n = 100. We see a slight decrease

in the bias and MSE as the tolerance level decreases from ε = 0.8 to ε = 0.4 for each

prior. For ε = 0.4, the G1 prior had a smaller MSE for α̂i, i = 1, ..., 5 while U1 offered

and a decrease for α̂i, i = 1, ..., 4 when compared to the MMLE. The G2 and U2 priors

decreased the MSE for α̂3 and α̂4 when compared to the MMLE. For ε = 0.8, the

38



G1 and U1 priors averaged 3,517 and 3,370 acceptances, respectively, while G2 and U2

averaged 6,777 and 6,637 acceptances, respectively. Here, we see that G2 and U2 had a

higher acceptance rate than G1 and U1. However, for ε = 0.4, G1 and U1 averaged 403

and 389 acceptances, respectively, while G2 and U2 averaged 437 and 467 acceptances,

respectively. So the decreasing of ε appeared to even out the number of acceptances

between the 4 priors.

The results for A2 and n = 100 are shown in Table A.14. For ε = 0.4, the

G1 prior had a smaller MSE for α̂i, i = 2, ..., 5, while U1, G2, and U2 had a smaller

MSE for certain α̂i, when compared to the MMLE. For ε = 0.4, the G1 and U1 priors

averaged 3,568 and 2,844 acceptances, respectively, while the G2 and U2 prior averaged

13,412 and 12,236 acceptances, respectively. In this case, the G2 and U2 priors clearly

had better acceptance rates. The results for A3 and n = 100 are shown in Table A.15.

For ε = 0.4, when compared to the MMLE, the G1 and U1 priors had a smaller MSE

for α̂1, α̂2, and α̂5, while the G2 and U2 priors had a smaller MSE for only α̂4. Under

ε = 0.4, the G1 and U1 priors averaged 1,535 and 1,156 acceptances, respectively, while

the G2 and U2 priors averaged 7,762 and 6,314 acceptances, respectively. As with the

A2 setting, the G2 and U2 priors had better acceptance rates. Results for n = 50 are

similar and are shown in Tables A.16 − A.18.

In summary, for all 3 parameter settings, there was some decrease in the bias

and MSE as ε decreased. Due to the low probability of acceptance, we did not attempt

ε = 0.2. As a whole, between the 4 priors, the G1 prior performed the best with

respect to reducing the MSE when compared to the MMLE, while the G2 and U2 priors

tended to have a higher number of acceptances. Again, the drawback of ABC-MH

is that the draws are highly correlated as auto correlation function plots showed (not

produced in this dissertation). Nevertheless, there was some improvement over the
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MMLE (with respect to MSE), depending on the parameter setting, prior distribution

and the parameter being estimated. However, due to the highly correlated draws, it is

suggested to use ABC-MH with caution.

3.5.4 Summary of simulations

The use of a Bayesian approach introduced significant bias in most settings,

however, in general, there tended to be a reduction in the MSE relative to the MMLE.

Under certain parameter settings and prior distributions, there was a noticeable im-

provement in the estimation compared to the MMLE, and there were settings where

there was little or no improvement. Furthermore, there were scenarios where the MSE

was smaller using MMLE than ABC-AR. Also, there were circumstances where a par-

ticular α̂i had a small MSE under a particular parameter setting and prior, and a large

MSE under a different parameter setting and the same prior. For example, under A1,

n = 100, using the Pearson correlation and the G1 prior, the MSE for α̂4 was 0.047, while

under the A3 setting, n = 100, using the Pearson correlation and the G1 prior, the MSE

for α̂4 was 4.463. Generally, the gamma priors tended to perform better with respect

to reducing MSE and computational effort, relative to the modified uniform priors. For

this reason, we suggest use of a gamma prior in conjunction with a “small” ε.

3.5.5 Comparison of acceptances between old and new S5

Table 3.1 shows the acceptances between the old and new S5 under the A1 set-

ting, n = 100 and ε = 0.2 for each prior distribution. Recall that we ran each simulation

setting across 200 data sets, and for each data set, we ran it for 1,000 acceptances or

15e6 proposals.
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G1 U1

Acceptances Old S5 New S5 Old S5 New S5

≤ 10 0 0 1 0
11-250 10 0 10 0
251-500 3 0 8 0
501-750 3 0 13 0
750-999 6 0 11 0

1000 178 200 157 200

Total 200 200 200 200

G2 U2

Acceptances Old S5 New S5 Old S5 New S5

≤ 10 13 0 2 0
11-250 100 17 23 49
251-500 32 21 7 69
501-750 19 22 10 29
750-999 9 25 5 11

1000 27 115 153 42

Total 200 200 200 200

Table 3.1: Comparing acceptance rates between the old and new S5, under A1, n = 100,

and ε = 0.2.

For the G1 and U1 priors, using the old S5, we can see that there were 10 and

11 data sets, respectively, that had less than 250 acceptances. In fact, under the U1

prior, there was 1 data set that had no more than 10 acceptances. Furthermore, there

were 178 and 157 data sets that reached the desired 1,000 acceptances. Contrast this

with the Pearson correlation, where we see that all 200 data sets achieved the desired

1,000 acceptances for both the G1 and U1 priors.

For the G2 prior, using the old S5, there were 13 data sets that had no more than

10 acceptances, 132 data sets that had between 11 and 500 acceptances, and only 27 data

sets that achieved the full 1,000 acceptances. Using the Pearson correlation, there were

no data sets that had no more than 10 acceptances, 38 data sets that had between 11 and

500 acceptances and 115 data sets that achieved the full 1,000 acceptances. Thus, for
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the G2 prior, using the Pearson correlation, while the acceptance rates suffered relative

to the G1 and U1 priors, the acceptance rates were still significantly better than using

the old S5.

For the U2 prior, using the old S5, there were 2 data sets that had no more

than 10 acceptances, compared to 0 data sets using the Pearson correlation. However,

for the old S5, there were 30 data sets that had between 11 and 500 acceptances and

153 data sets that achieved the full 1,000 acceptances, while for the Pearson correlation,

there were 118 data sets that had between 11 and 500 acceptances and only 42 data

sets that achieved the full 1,000 acceptances. So for the U2 prior, the old S5 had better

acceptance rates than the Pearson correlation, which was an unexpected result.

Overall, we can see that using the Pearson correlation improved on the ac-

ceptance rates, however, this improvement is dependent on the prior. Under the G1

and U1 priors, there was vast improvement in acceptance rates, while there was con-

siderable improvement under the G2 prior. However, we do note that for the U2 prior,

the acceptance rate was better using the old S5, so we suggest using careful attention

when selecting the prior and summary statistics. Comparisons for other settings are not

produced in this dissertation.

3.6 8 parameter model

For the 8 parameter model, we consider settings A4 = (2, 1, 1, 2, 4, 6, 2, 1)′ and

A5 = (3.5, 2, 1.5, 4, 1, 2.5, 3, 4.5)′, both for a sample size n = 100. Table A.19 displays the

results for the A4 setting. As with the 5 parameter model, the bias and MSE decreases

as ε decreases from 0.8 to 0.2. We notice that there is a significant amount of bias and

large MSE for α̂5 and α̂6 under the G1 and U1 priors, however, the situation improves
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significantly under the G2 and U2 priors. This is due to G1 and U1 primarily proposing

values in low posterior regions. Table A.20 shows the results for A5. Here, we can see

that there is a significant amount of bias and MSE for α̂1, α̂4, and α̂8 under the G1 and

U1 priors, but is not present for the G2 and U2 priors. Due to the complexity of the 8

parameter model and not having a baseline to compare results, we did not invest much

effort into the inference of this model.

3.7 Application to correlated binomial random variables

To motivate our application of the 5 parameter bivariate beta distribution, let

us consider the example from Arnold and Ng (2011), in which they describe the use of

the 5 parameter model as the prior distribution to correlated binomial random variables.

They describe the ABC-AR algorithm to draw samples from the posterior distribution.

We will demonstrate this example by lettingX1∼Bin(15, p1) andX2∼Bin(15, p2), where

p1 and p2 are unknown, and further assume that X1 and X2 are correlated. Table 3.2

shows the outcome of this experiment.

X1

X2 0 1 Total

0 3 4 7
1 2 6 8

Total 5 10 15

Table 3.2: Bivariate binomial counts.

For convenience, call Table 3.2 as T. We wish to estimate (p1, p2) using a

Bayesian approach. Since p1 and p2 are correlated, we can use the 5 parameter bivariate

beta model as the prior distribution. Since this is a low dimensional discrete model,

we can simulate from the posterior distribution. However, we wish to make compar-
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isons between drawing from the posterior and the approximate posterior distribution.

To do this, we compare the generated auxiliary table T′ to the observed table T. If T′

is sufficiently close to T, we accept the proposed candidate parameter. Here, we must

define what it means for T′ ≈ T. While there are numerous ways of defining “close”, we

simply consider the absolute difference between the cells of T′ and T. In other words,

let T = {alj} and T′ = {blj}, and the distance function be ρ =
∑2

l=1

∑2
j=1 |alj − blj |.

Thus, to draw from the posterior, we accept the candidate parameter if T′ = T. For the

case of drawing from the approximate posterior, we accept the candidate parameter if

ρ =
∑2

l=1

∑2
j=1 |alj − blj | < ε. We consider ε ∈ {2, 6, 10}, and let α = (1, 1, 2, 4, 1)′ be

the hyperparameters and run the algorithm for m = 1, 000 acceptances. The algorithm

for the latter case is described as follows

Algorithm ABC-AR

1. Generate (p1, p2)′|α ∼ BB(α), where α = (1, 1, 2, 4, 1)′.
2. Generate X1|p′1∼Bin(15, p′1) and X2|p′2∼Bin(15, p′2), i.e., this will gener-
ate an auxiliary table T′.
3. Accept (p1, p2)′ if ρ =

∑2
l=1

∑2
j=1 |alj − blj | < ε, otherwise discard

(p1, p2)′.
Continue until 1,000 observations have been accepted.

The outcome (p1, p2)′1, ..., (p1, p2)′1,000 is an i.i.d. sample from the approximate posterior

distribution, conditioned on ε. Table 3.3 below, compares the results of drawing from

the posterior distribution to an approximate posterior distribution.
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Method Exact Approximate

ε – 10 6 2
Proposals 488,111 2,692 10,521 481,152
̂(p1, p2) (0.5571, 0.5173) (0.4911, 0.5535) (0.5344, 0.5335) (0.5611, 0.5181)

Table 3.3: Results comparing draws from the posterior distribution to an approximate

posterior distribution.

We can see that ̂(p1, p2) is approximately the same for ε = 2 compared to sam-

pling from the (true) posterior, and that the computational effort is also approximately

equal. For ε = 6, we see that ̂(p1, p2) is comparable to sampling from the (true) posterior,

however it requires roughly 2% of the computational effort. For ε = 10, we notice that

the precision of estimation suffers, but are still reasonable, however, it requires roughly

0.5% of the computational effort. Hence, as we saw in section 2.3.1, we conclude that

for the sake of computing time, we can consider different tolerance levels without much

sacrifice in the precision of our estimates, and so this is a balance that we will seek when

selecting our tolerance levels.

3.8 Bacon and eggs

In this section, we apply the 5 parameter bivariate beta model of Arnold and

Ng (2011), to a real data example previously analyzed by Danaher and Hardie (2005).

The objective of the study was to observe the behavior of households and their grocery

store habits. In particular, we study the probabilities and correlation of purchasing

bacon and eggs on a single shopping trip. In the study, a sample of 548 independent

households were taken and details of what the household purchased at the market were

recorded over 4 consecutive trips. For each trip, it was recorded whether or not the

household purchased bacon or eggs or both, see Table 3.4. We will refer to Table 3.4 as
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T , and note that the correlation found in T is 0.23.

Eggs
Bacon 0 1 2 3 4 Total

0 254 115 42 13 6 430
1 34 29 16 6 1 86
2 8 8 3 3 1 23
3 0 0 4 1 1 6
4 1 1 1 0 0 3

Total 297 153 66 23 9 548

Table 3.4: Bivariate binomial counts describing bacon and egg purchases.

Let Xkb and Xke represent the number of times the kth customer purchased

bacon and eggs over the course of the 4 trips, respectively. Clearly, Xkb and Xke are

correlated, and so Danaher and Hardie (2005) proposed a bivariate beta binomial model

to capture the over dispersion and correlation. Let pb and pe denote the probability

of purchasing bacon and eggs, respectively. In this model, (pb, pe) is a bivariate ran-

dom vector, where the requirement is that it follow some bivariate joint density, where

the marginals are beta distributed. Thus, (Xkb, Xke)|(pb, pe) ∼ BivBin(4, pb, pe) where

BivBin is the notation we use to denote a bivariate binomial distribution. Furthermore,

Xkb and Xke are conditionally independent given (pb, pe), i.e., Xkb|pb∼Bin(4, pb) and

Xke|pe∼Bin(4, pe). The unconditional correlation between Xkb and Xke is introduced

through the bivariate distribution of (pb, pe).

Danaher and Hardie (2005) proposed using the bivariate beta model from the

Sarmanov system of bivariate distributions (Sarmanov (1966)), which can be described

as g(pb, pe) = fb(pb)fe(pe)[1 + ωφb(pb)φe(pe)], where φb(pb) is a bounded non-constant

“mixing” function, such that
∫
φb(l)fb(l)dl=0 (and similarly for “eggs”). The parameter

ω determines the correlation between pb and pe and must satisfy the condition 1 +
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ωφb(pb)φe(pe) > 0, for all pb and pe to be a valid joint density function. Furthermore,

the marginals are beta distributed, i.e., pb∼Beta(αb, βb) and pe∼Beta(αe, βe). Letting

φb(pb) = pb − µb, where

µb = E(pb) =
αb

αb + αb
(3.2)

and likewise for “eggs,” yields a closed form likelihood enabling estimation via maximum

likelihood. In our analysis, we define pkb and pke as the probability that the kth household

will purchase bacon and eggs, respectively. Therefore, we have pkb∼Beta(αb, βb) and

pke∼Beta(αe, βe).

3.8.1 Simulation setup

As a competitor to the bivariate beta distribution used by Danaher and Hardie

(2005), we propose use of the 5 parameter bivariate beta model of Arnold and Ng (2011),

as the prior distribution to (pkb, pke), that is

(pkb, pke)∼BB(α1, α2, α3, α4, α5).

Therefore,

pkb∼Beta(α1 + α3, α4 + α5) ≡ Beta(αb, βb)

and

pke∼Beta(α2 + α4, α3 + α5) ≡ Beta(αe, βe) .

Furthermore, we introduce an additional hierarchical step, meaning, we place

a prior distribution on α. Thus, after generating a candidate parameter α′ ∼ π(·),

we generate (pkb, pke) ∼ BB(α′), k = 1, ..., 548. For notational convenience, let ~pb =

(p1b, p2b, . . . , p548b)
′ and ~pe = (p1e, p2e, . . . , p548e)

′ be the generated proportions and let
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p̃ = (~pb, ~pe). As we’ve already seen, the likelihood cannot be written down, and so we ap-

ply ABC-AR in the estimation of αi, i = 1, ..., 5. In this context, since we are simulating

548 bivariate binomial random variables, it is theoretically possible to simulate T ex-

actly. However, due to the large dimensionality, the probability of this event is almost 0,

therefore, we compare T to T ′. Extending the distance function defined in section 3.7, let

T = {alj} and T ′ = {blj}, and the distance function becomes ρ =
∑5

l=1

∑5
j=1 |alj − blj |.

We consider both the ABC-AR and ABC-MH algorithms with ε = 100 and

ε = 40. For the ABC-AR algorithm, the simulation was run for 500 acceptances and is

described as follows

Algorithm ABC-AR

1. Generate α′ ∼ π(·).
2. Generate (pkb, pke)|α′ ∼ BB(α′) for k = 1, ..., 548.
3. Generate an auxiliary table T ′| p̃.

4. Accept α′ if ρ =
∑5

l=1

∑5
j=1 |alj − blj | < ε, otherwise discard.

Continue until 500 observations have been accepted.

Selection of prior distributions will be discussed in subsection 3.8.2. The ABC-MH al-

gorithm is described as follows

Algorithm ABC-MH

1. Initialize α(1), v = 1.

2. Generate a candidate parameter α′i ∼ N(α
(v)
i , σ2

i ), i = 1, ..., 5.
3. Generate an auxiliary table T ′| p̃.

4. Accept α′ if ρ =
∑5

l=1

∑5
j=1 |alj − blj | < ε, otherwise discard.

5. Set α(v+1) = α′ with probability

h =

1,
π(α′)

π(α(v))
I(ρ =

5∑
l=1

5∑
j=1

|alj − blj | < ε)

, otherwise set α(v+1) = α(v).

6. Continue for 5e6 iterations.

For ABC-MH, the simulation was run for 5e6 iterations using a random walk
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(with a normally distributed proposal). The component standard deviations (σi) se-

lected were 0.10, 0.10, 0.001, 0.001, and 0.2 for i = 1, ..., 5, respectively. Since we know

αi > 0, any draws that yielded negative values resulted in an automatic rejection.

3.8.2 Prior distributions / Empirical Bayes

For the ABC-AR algorithm, we consider gamma priors using an empirical Bayes

approach, in other words, we use the data in the selection of the prior distributions.

Specifically, we computed marginal MLE’s under the beta binomial model and used

this as a guide. Using the beta binomial distribution family function within the VGAM

package in R, we have the following MLE’s, α̂b = 0.3571, β̂b = 4.4552, α̂e = 0.8592, and

β̂e = 3.9593. Linking our bivariate beta parameters to these estimates, we have

α̂1 + α3 = α̂b = 0.3571 α̂4 + α5 = β̂b = 4.4552

α̂2 + α4 = α̂e = 0.8592 α̂3 + α5 = β̂e = 3.9593 . (3.3)

We wish to choose values for α̂i such that αi will center around α̂i, and have a variance

of 1, i.e., αi ∼ Γ(α̂2
i , 1/α̂i), i = 1, ..., 5. (Note that in this context (section 3.8.2), α̂i

denotes the values of the hyperparameters. However, in the next section, α̂i will denote

the posterior estimates). Furthermore, we choose α̂i, i = 1, ..., 5 such that the Monte

Carlo correlation estimate for BB(α̂1, ..., α̂5) is close to the correlation found in Table 3.4.

We are presented with the problem of having 4 equations and 5 unknowns. Here, we

simply choose α̂i, i = 1, ..., 5 close to the constraints in (3.3), subject to a correlation of

near 0.23. Our chosen values are α̂1 = 1.0487, α̂2 = 1.6649, α̂3 = 0.1012, α̂4 = 0.1128,

α̂5 = 3.7697, where the Monte Carlo correlation is 0.2336. As we will see, this choice

allows for exploration of the parameter space with reasonable computational effort.
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3.8.3 Results for the bacon and egg analysis

Table 3.5 shows the estimated posterior means and correlations for ABC-AR

and ABC-MH, where we can see that each simulation setting yielded similar results.

However, there was a vast computational difference between ε = 100 and ε = 40. Specif-

ically, for the ABC-AR algorithm, the number of proposals required were 47,219 and

more than 6.18e8 (not shown in Table 3.5) for ε = 100 and ε = 40, respectively. For

ABC-MH, from the 5e6 iterations, there were 242,729 and 14 acceptances (not shown

in Table 3.5) in the chain for ε = 100 and ε = 40, respectively. Given the similarity of

the estimates, it appears that use of ε = 40 may be too computationally demanding and

the larger ε value will suffice. Furthermore, the estimates of α̂3 and α̂4 are near 0, which

suggests that the 3 parameter model of Olkin and Liu (2003) may be more appropriate.

α̂1 α̂2 α̂3 α̂4 α̂5 r

ABC-AR (ε = 100) 0.3295 0.8760 0.0029 0.0047 4.4429 0.1178
ABC-AR (ε = 40) 0.3525 0.9256 0.0015 0.0026 4.5349 0.1224
ABC-MH (ε = 100) 0.3067 0.9186 0.0321 0.0054 4.6023 0.1062
ABC-MH (ε = 40) 0.3421 0.8345 0.0004 0.0005 4.0853 0.1271

Table 3.5: Comparison of results between ABC-AR and ABC-MH algorithms.

Table 3.6 compares our results to the model proposed by Danaher and Hardie

(2005), where we can see the estimates are similar. The obvious difference is between

the estimated correlations, when compared to the observed table correlation of 0.23. In

short, our model underestimates this correlation (where as Danaher and Hardie (2005)

overestimates the table correlation), but still provides a better fit than that of Danaher

and Hardie (2005).
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α̂b β̂b α̂e β̂e r

D&H (2005) 0.3571 4.4551 0.8592 3.9593 0.4300
ABC-AR (ε = 100) 0.3324 4.4476 0.8807 4.4458 0.1178
ABC-AR (ε = 40) 0.3540 4.5375 0.9282 4.5364 0.1224
ABC-MH (ε = 100) 0.3388 4.6077 0.9240 4.6344 0.1062
ABC-MH (ε = 40) 0.3425 4.0858 0.8350 4.0857 0.1271

Table 3.6: Comparison of results between BB(α) and Danaher and Hardie (2005).

Table 3.7 shows observed average cell counts based on accepted parameters for

ABC-AR. Comparing Table 3.7 to Table 3.4, we can see there is no apparent pattern of

bias between the tables. However, we do see a reduction in bias as ε is decreased from

100 to 40. Hence, it is clear the observed bias stems from the ABC-AR approximation

rather than the prior.

ε = 100, Eggs
Bacon 0 1 2 3 4 Total

0 253.48 116.00 48.10 17.04 3.98 438.60
1 41.01 21.67 10.02 3.58 0.88 77.16
2 12.00 6.57 3.41 1.42 0.42 23.82
3 3.29 1.86 1.14 0.53 0.19 7.01
4 0.57 0.42 0.25 0.11 0.05 1.40

Total 310.35 146.52 62.92 22.68 5.52 548

ε = 40, Eggs
Bacon 0 1 2 3 4 Total

0 254.03 115.64 43.87 14.73 4.66 432.93
1 36.27 27.66 13.80 4.82 0.93 83.48
2 10.16 7.72 3.30 1.92 0.48 23.58
3 2.30 1.45 1.78 0.59 0.23 6.35
4 0.72 0.47 0.33 0.11 0.03 1.66

Total 303.48 152.94 63.08 22.17 6.33 548

Table 3.7: Average cell counts based on the 500 accepted parameters of the ABC-AR

algorithm.
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3.8.4 Alternate analysis

In this section, we briefly consider an alternative analysis of the bacon and

eggs data with negative correlation. In this case, the model of Olkin and Liu (2003)

would be inappropriate, since it only allows for positive correlation. To this end, we

consider a partial transpose of the data as shown in Table 3.8 below, where the observed

correlation is -0.23.

Eggsc

Bacon 0 1 2 3 4 Total

0 6 13 42 115 254 430
1 1 6 16 29 34 86
2 1 3 3 8 8 23
3 1 1 4 0 0 6
4 0 0 1 1 1 3

Total 9 23 66 153 297 548

Table 3.8: Transposed data to illustrate a negative correlation.

We apply ABC-AR and ABC-MH. Under the new table, the MLE’s are α̂b =

0.3571, β̂b = 4.4552, α̂e = 3.9593, and β̂e = 0.8592. Linking our bivariate beta model,

we have the following

α̂1 + α3 = α̂b = 0.3571 α̂4 + α5 = β̂b = 4.4552

α̂2 + α4 = α̂e = 3.9593 α̂3 + α5 = β̂e = 0.8592 . (3.4)

Therefore, α̂i, i = 1, ..., 5 are chosen close to the constraints in (3.4), subject to a correla-

tion of near -0.23 (again, in this context, α̂i denotes the values of the hyperparameters).

The chosen values are α̂1 = 0.3697, α̂2 = 0.2714, α̂3 = 0.1892, α̂4 = 3.6822, and

α̂5 = 0.7661, where the Monte Carlo correlation is -0.2338.

As with before, we ran the ABC-AR and ABC-MH algorithms for ε = 100 and

ε = 40, and the results are summarized in Table 3.9. The results from each method are
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similar, though there is more variability than in the original analysis. Here, perhaps a

4 parameter model would suffice, since α̂1 is near zero for most settings. In general, the

Monte Carlo correlation is considerably smaller (approximately -0.55) for three of the

settings than the observed correlation in Table 3.8. However, the estimated correlation

under ABC-AR and ε = 40 is -0.2679, which is close to the table correlation of -0.23.

One explanation as to why the results vary significantly for ABC-AR and ε = 40 could

be due to the fact that we are choosing values for α̂i, i = 1, ...5 from the 4 equations

in (3.4), and so there may not exist unique solutions to α̂i, i = 1, ...5.

α̂1 α̂2 α̂3 α̂4 α̂5 r

ABC-AR (ε = 100) 0.1906 0.2509 0.1642 4.0214 0.7247 -0.2679
ABC-AR (ε = 40) 0.0245 0.1265 0.3655 4.2917 0.5761 -0.5647
ABC-MH (ε = 100) 0.0261 0.1618 0.3313 4.1398 0.6108 -0.5312
ABC-MH (ε = 40) 0.0094 0.5725 0.3872 4.2807 0.6235 -0.5617

Table 3.9: Comparison of results for ABC-AR and ABC-MH using the partially trans-

posed data.

Table 3.10 below shows the posterior estimates for αb, βb, αe, αe, and the cor-

relation under the 4 settings. The results are similar, where the only exception is in the

estimated correlation under ABC-AR and ε = 40.

α̂b β̂b α̂e β̂e r

ABC-AR (ε = 100) 0.3548 4.7461 4.2723 0.8889 -0.2679
ABC-AR (ε = 40) 0.3900 4.8678 4.4182 0.9416 -0.5647
ABC-MH (ε = 100) 0.3574 4.7506 4.3016 0.9421 -0.5312
ABC-MH (ε = 40) 0.3966 4.9042 4.8532 1.0107 -0.5617

Table 3.10: Comparison of results for ABC-AR and ABC-MH using the partially trans-

posed data.
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Chapter 4

Proposed methods for

improvement over ABC-AR

4.1 Introduction

The motivation for this chapter stems from the low acceptance rates of the

ABC-AR algorithm. Here, the ideas presented is to develop new approaches that are

two fold, first, to search for maximum likelihood type estimates in the absence of the

likelihood function and second, to reduce the computational effort that is required of

ABC-AR (and other existing ABC methods without the cost of highly correlated draws).

The ideas presented in this chapter are founded on the fact that maximum likelihood

estimates are viewed as the parameter value(s) that are most likely to have produced the

observed data. In this chapter, the proposed algorithms use steps within the ABC-AR

algorithm to allow exploration of the parameter space, to identify parameter values that

are unlikely to have generated the observed data, and thus sequentially “move” to the

parameter region that is highly likely to have generated the observed data.
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4.2 Motivation to modify ABC-AR

As discussed (and seen) in previous chapters, the ABC-AR algorithm can pro-

duce low acceptance rates. The acceptance rates are a function of the tolerance level and

prior distributions. If a prior distribution is chosen that leads to a high percentage of

“bad” proposals, then there will be a low rate of acceptances. This is the issue that we

wish to address. Consider toy example two from section 2.3.1. Recall that the data was

generated from a sample size of 30 from a normal distribution with unknown mean 2 and

known variance of 1 and we observed
∑
xi = 54.9275 (or x̄ = 1.8309). The prior for µ

followed a standard normal distribution, i.e., µ ∼ N(0, 1), and the ABC-AR algorithm is

Algorithm ABC-AR continuous

1. Generate µ′ ∼ N(0, 1).

2. Generate {Yi}30
i=1

i.i.d.∼ N(µ′, 1).
3. Accept µ′ if | 1

n

∑
yi − 1

n

∑
xi |=| 1

n

∑
yi − 1.8309 |< ε, otherwise discard µ′.

Continue until m observations have been accepted.

The outcome µ′1, ..., µ
′
m is an i.i.d. sample from Nε(1.7719, 0.0323). The results for

ε ∈ {0.1, 0.5, 1} and m = 1, 000 acceptances are presented again in Table 4.1.

Method Bayes ABC-AR continuous

ε – 1 0.5 0.01
Proposals – 4,692 12,112 643,754

µ̂ 1.7719 1.3332 1.6501 1.7715

Table 4.1: Results from toy example two using a N(0, 1) prior.

From Table 4.1, since the prior distribution is proposing values in high accep-

tance regions, the computational effort is not too intensive. Here, we observed 4,692

proposals for ε = 1 and 643,754 for ε = 0.01. Now, let us consider the computational

55



effort when we choose a prior distribution that is far from the posterior (or in low ac-

ceptance regions), say, let µ ∼ N(6, 1). The results are summarized in Table 4.2.

Method ABC-AR continuous

ε 1 0.5 0.01
Proposals 1,153,090 6,727,694 559,975,842

µ̂ 2.6642 2.2265 1.9689

Table 4.2: Results from toy example two using a N(6, 1) prior.

From Table 4.2, we can see the effect of choosing a prior distribution in low

acceptance regions. For ε = 1, the number of proposals required is more than 1.5e6 and

slightly less than 6e8 for ε = 0.01. This is a drastic change compared to the N(0, 1)

prior. Now, let us consider a prior that is centered far from the posterior, but has a

large enough variance so that it will still propose plausible values to have generated the

data, say µ ∼ N(8, 2). The results are summarized in Table 4.3.

Method ABC-AR continuous

ε 1 0.5 0.01
Proposals 203,629 526,167 29,711,780

µ̂ 2.3360 1.9887 1.8917

Table 4.3: Results from toy example two using a N(8, 2) prior.

From Table 4.3, for ε = 1, the number of proposals required was 203,629 and

slightly less than 3e7 for ε = 0.01. Therefore, we can see that the acceptance rates are

better than using the N(6, 1) prior even though the mean is at 8 (as opposed to 6),

which is due to the larger variance, which allows the prior to propose values in higher

acceptance regions with a higher frequency. Now, for illustration, let’s examine the be-
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havior for when the prior distribution is centered around the MLE, which is x̄ = 1.8309,

and with a variance 1, i.e., let µ ∼ N(1.8309, 1). The results are

Method ABC-AR continuous

ε 1 0.5 0.01
Proposals 1,445 2,665 126,415

µ̂ 1.8412 1.8344 1.8271

Table 4.4: Results from toy example two using a N(1.8309, 1) prior.

From Table 4.4, we see that the number of proposals for ε = 1 is 1,445 and

the number of proposals for ε = 0.01 is 126,415. This is a dramatic decrease in the

acceptance rates found in Table 4.2. Therefore, the higher rate of proposals that are

“close” to the MLE, the higher the acceptance rate. This observation motivates our

proposed work in the next section.

4.3 Maximum likelihood

If the sample is representative of a population and we assume that the popula-

tion belongs to a family of distributions with unknown parameters, then the maximum

likelihood estimate is the parameter value that will maximize the likelihood function. In

other words, the maximum likelihood estimate seeks to find the parameter value that is

most likely to have generated the data under the assumption that the data follows some

parametric model.
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Definition 1: Let X = (X1, X2, ..., Xn) be a random vector with PDF (PMF)

f(x1, x2, ..., xn;θ), θ ∈ Θ. The function

L(θ;x1, x2, ..., xn) = f(x1, x2, ..., xn;θ),

considered as a function of θ, is called the likelihood function.

Definition 2: The principle of maximum likelihood estimation consists of choosing as

an estimator of θ, a θ̂(X) that maximizes L(θ;x1, x2, ..., xn), that is, to find a mapping

θ̂ of Rn 7→ Rk that satisfies

L(θ̂;x1, x2, ..., xn) = sup
θ∈Θ

L(θ;x1, x2, ..., xn). (4.1)

If a θ̂ exists in (4.1), we call it a maximum likelihood estimator (MLE).

We will now provide some examples illustrating the relationship between the MLE and

acceptance rates.

4.3.1 Toy example one

Let X∼Bin(20, 0.6), where p = 0.6 is unknown. Suppose we observed
∑
x =

13, and so p̂mle = 13
20 = 0.65. Therefore, if we were to simulate Y∼Bin(20, p) for every

p ∈ (0, 1) and observe the rate for which
∑
y = 13, we would expect p = 0.65 to produce

the highest acceptance rate. We propose the following algorithm to validate our claim

Algorithm MLE exact

1. Let P = {0.01, 0.02, ..., 0.99}.
2. For each p ∈ P , generate Y∼Bin(20, p). Now repeat 50,000 times.
3. Evaluate the proportion of times where

∑
y = 13.

Figure 4.1 shows the acceptance rate for each p ∈ P (in increments of 0.01).

We see that the acceptance rate is zero for p ∈ (0, 0.3), then starts to gradually increase,
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and reaches its maximum around p = 0.65 and then starts to tail off. This picture

confirms our expectation.
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Figure 4.1: Values near p = 0.65, generate the highest proportion of acceptances.

This example was a univariate, discrete model, and so there is a positive proba-

bility that we can match sufficient statistics, however, this is not the case for continuous

models, so we adjust our algorithm by allowing sufficient statistics to be “close” to each

other (similar to the ABC-AR continuous algorithm from section 2.3).

4.3.2 Toy example two

Suppose Xi∼N(10, 16), i = 1, ..., 25, where µ = 10 is unknown and σ2 = 16

is known and suppose we observe
∑
x = 260.5526, so that x̄ = 10.4221. If we were

to simulate Yi∼N(10, 16), i = 1, ..., 25, for every µ and observe the rate for which

| 1
25

∑
y− 1

25

∑
x| = | 1

25

∑
y− 10.4221| < 0.01, we would expect µ = 10.4221 to produce

the highest acceptance rate. Now, it is impossible to simulate every value for µ (since

the parameter space for µ is the entire real line), so we’ll restrict our range to µ ∈ (7, 13),

which contains the MLE of x̄ = 10.4221. Our algorithm is
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Algorithm MLE continuous

1. Consider P = {7, 6.1, ..., 12.9, 13}.
2. For each p ∈ P generate Yi∼N(a, 16), i = 1, ..., 25. Now repeat 50,000 times.
3. Evaluate the proportion of times where | 1

25

∑
y − 10.4221| < 0.01.

From Figure 4.2 below, we see that the acceptance rates increase in the neigh-

borhood of the MLE (x̄ = 10.4221), and indeed the value that produced the highest

acceptance rate was near µ = 10.4221.
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Figure 4.2: Values near µ = 10.4221, generate the highest proportion of acceptances.

4.3.3 Toy example three

Let us consider another example for the continuous case. SupposeXi∼Exp(2), i =

1, ..., 30, where λ = 2 is unknown. Suppose we observe
∑
x = 54.3492 so that λ̂ = x̄ =

1.8116. If we were to simulate Yi∼Exp(2), i = 1, ..., 30 for every λ (here we will consider

λ ∈ (0, 6)) and observe the rate for which | 1
30

∑
y− 1

30

∑
x| = | 1

30

∑
y− 1.8116| < 0.01,

we would expect λ = 1.8116 to produce the highest acceptance rate. Our algorithm is
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Algorithm MLE continuous

1. Consider P = {0.1, 0.2, ..., 5.8, 6}.
2. For each p ∈ P , generate Yi∼Exp(a), i = 1, ..., 30. Now repeat 50,000 times.
3. Evaluate the proportion of times where | 1

30

∑
y − 1.8116| < 0.01.

From Figure 4.3 below, we see that the value that produced the highest accep-

tance rate was near λ = 1.8116, thus concluding our expectations.
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Figure 4.3: Values near λ = 1.8116, generate the highest proportion of acceptances.

4.4 Proposed method one

In our first toy example, we considered a discrete model and demonstrated

through simulation efforts that there is a correspondence between the MLE and the

proportion of times that the simulated data matches the observed data. For the second

and third examples, we used continuous models to make the same establishment, however

the difference in the continuous case is that we needed to impose a small tolerance

distance between the simulated and the observed data.

Now that we’ve heuristically shown that the MLE is the most likely parameter

value to reproduce the data, lets try and embed this idea into an ABC context. The
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proposed algorithm, which we’ll call “Algorithm proposed method one” (Algorithm PM

one for short) is described as follows

Algorithm PM one

1. Generate a large set of candidate parameters based off the prior distribu-
tions.
2. Generate an auxiliary data set (or multiple data sets) from each of the
candidate parameter values and compare the average of auxiliary sufficient
statistics to that of the observed sufficient statistics through some distance
function.
3. Keep the d parameter values that generated the average of auxiliary
sufficient statistics that were nearest to that of our observed data set. Now
use these d parameter values to “update” our prior distributions, where the
center is at the average of the d accepted values.
4. Generate a new set of candidate parameters from the “updated” priors.
5. Evaluate how much the previous “updated” parameters have changed.
If this change is within some tolerance level, we stop, otherwise we repeat
steps 2-4.

To estimate the unknown parameters, we consider 3 options. The first option

is to take the average of all the values within the chain. The second option is to take

the average of the previous d values, and the third option is to use the last value in

the chain. We will apply 2 settings of this general algorithm to a data set. Under

the first setting, we will generate 1 auxiliary data set for each candidate parameter.

For the second setting, we will generate multiple auxiliary data sets for each candidate

parameter.

4.4.1 Iron intake example

Consider the data set taken from the food and nutrition board of the national

academy of sciences taken from Mendenhall et al. (2012). The data consists of iron

intakes, in milligrams, which were obtained during a 24 hour period for 45 randomly

selected adult females under the age of 51. The data is
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15.0 18.1 14.4 14.6 10.9 18.1 18.2 18.3 15
16.0 12.6 16.6 20.7 19.8 11.6 12.8 15.6 11
15.3 9.4 19.5 18.3 14.5 16.6 11.5 16.4 12.5
14.6 11.9 12.5 18.6 13.1 12.1 10.7 17.3 12.4
17.0 6.3 16.8 12.5 16.3 14.7 12.7 16.3 11.5

For this data set, we will assume that Xi
i.i.d.∼ N(µ, σ2), i = 1, ..., 45, where

µ and σ2 are unknown. The Shapiro Wilk test for normality yielded a p-value of

0.5008, so the assumption of normality is valid. The observed summary statistics are

S = (
∑
x,
∑
x2) = (660.6, 10115.88) and so (x̄, x2) = (14.68, 224.7973). Applying PM

one, we have

Algorithm PM one

1. Generate θ′i
i.i.d.∼ π(1)(·), i = 1, ...,m where θ′i = (µi, σ

2
i )
′. Here, let

µi
i.i.d.∼ π

(1)
µ (·) and σ2

i
i.i.d.∼ π

(1)
σ2 (·), where π(1)(·) denotes the initial prior

distribution.
2. For each candidate parameter θ′i, we will generate r auxiliary data
sets, i.e., yij (j = 1, ..., r). Let Sij(·) = (

∑
y,
∑
y2)ij be the sum-

mary statistics of yij . Take the average of summary statistics gener-

ated by θ′i, i.e., (
∑
y,
∑
y2)i1+...+(

∑
y,
∑
y2)ir

r = (
∑
y,
∑
y2)i. Now com-

pare this to the observed summary statistics S, via the distance function
ρi = |

∑
y −

∑
x|i + |

∑
y2 −

∑
x2|i. Let ρ = (ρ1, ..., ρm) be the set of

computed distances.
3. Let ρs = (ρ(1), ..., ρ(m)) be the ordered set of ρ. Keep only ρ(1) and ρ(2)

and consider the θ′i that generated ρ(1) and ρ(2) and denote these candidate
values as θ′(1) and θ′(2), respectively. Taking the average of these values, we

have
θ′(1)+θ′(2)

2 = ((µ1+µ2
2 ), (

σ2
1+σ2

2
2 ))′ ≡ (µ̄v, σ̄

2
v)
′ ≡ δ(v). Here, v denotes the

vth iteration.

4. Generate a new set of candidate values, θ?i
i.i.d.∼ π(v)(·), i = 1, ...,m from

an “updated” prior, i.e., µi
i.i.d.∼ π

(v)
µ (·) and σ2

i
i.i.d.∼ π

(v)
σ2 (·). Here, both µi

and σ2
i center around µ̄v and σ̄2

v respectively.
5. To monitor the change in “updated” values, we look at the previous 6 sets
of δ(v), i.e., δ(v), δ(v−1), ..., δ(v−5) and measure the change in these distances
between µ̂ and σ̂2, i.e., let q = |µ̄d− µ̄(d−1)|+ |µ̄(d−1)− µ̄(d−2)|+ ...+ |µ̄(d−4)−
µ̄(d−5)|+ |σ̄2

d − σ̄2
(d−1)|+ |σ̄

2
(d−1) − σ̄

2
(d−2)|+ ...+ |σ̄2

(d−4) − σ̄
2
(d−5)|.

If q < 3 then stop, otherwise, repeat steps 2-4.
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We now apply two settings under this algorithm. For the first setting, we drew

m = 100, 000 candidate parameters and for each parameter, generated only one data

set, i.e., r = 1. For the second setting we drew m = 1, 000 candidate parameters, and

for each parameter, we generated r = 100 data sets. Furthermore, we also repeated the

simulations using S = (
∑
x,
√∑

x2) to draw comparisons.

Table 4.5 below shows the initial prior distributions used. Both µi and σ2
i have

a mean of 6 and a variance of 4 and are independent. For the updated priors, both µi

and σ2
i center around µ̄l and σ̄2

l , respectively, with a variance of 4.

Prior Distribution

π
(1)
µ (·) N(6, 4)

π
(v)
µ (·) N(µ̄l, 4)

π
(1)
σ2 (·) Γ(62/4, 4/6)

π
(v)
σ2 (·) Γ(((σ̄2

l )
2)/4, 4/σ̄2

l )

Table 4.5: Prior distributions for PM one and the iron intake data.

Table 4.6 displays the results for the two settings. Again, µ and σ2 are esti-

mated by taking the average of all the values in the chain, the average of the previous

5 values in the chain, and the last value in the chain. These estimates are presented in

the third, fourth, and fifth columns, respectively.
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m = 100, 000, r = 1

S(·) Iterations (µ̂, σ̂2)All (µ̂, σ̂2)5 (µ̂, σ̂2)1

(
∑
x,
∑
x2) 70 (14.62,9.62) (14.36,8.25) (14.49,7.60)

(
∑
x,
√∑

x2) 93 (14.66,9.36) (14.70,7.89) (14.74,8.32)

m = 1, 000, r = 100

S(·) Iterations (µ̂, σ̂2)All (µ̂, σ̂2)5 (µ̂, σ̂2)1

(
∑
x,
∑
x2) 24 (14.57,8.88) (14.65,10.81) (14.64,11.13)

(
∑
x,
√∑

x2) 8 (14.37,8.62) (14.67,9.09) (14.67,8.85)

Table 4.6: Results using PM one and the iron intake data.

The MLE’s for our data set are (µ̂, σ̂2) = (14.68, 9.29). We can see that under

both settings and regardless if the estimate was calculated using the entire chain, the

average of the previous 5 values in the chain, or the last value in the chain, that the

estimate for µ is close to the MLE. The estimate for σ2 had some variation, but were

all still comparable. The first setting (m = 100, 000 and r = 1), under both S =

(
∑
x,
∑
x2) and S = (

∑
x,
√∑

x2) and using the average of the entire chain, yielded

the closest estimates to the MLE. Furthermore, the first setting required more iterations

than for the second setting (m = 1, 000 and r = 100) until convergence.

4.5 Proposed method two

The idea behind our second proposed method is to propose candidate parame-

ters within a region of the parameter space and conditioned off this parameter, simulate

a data set (based off a large sample size) and use the information to decide whether or

not the candidate parameter is likely to have generated the data. For example, think

of the observed sufficient statistics, s = ( s1n , ...,
sp
n ) as the “true” theoretical moments.

Now, generate an auxiliary data set y (based off a large sample size m), and suppose

we observed auxiliary sufficient statistics, s? = (
s?1
m , ...,

s?p
m ) such that
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s?i
m

p.w.→ E[fi(Y )], i = 1, ..., p as m→∞.

From the auxiliary data y, we can construct a confidence interval for E[fi(Y )], i =

1, ..., p. If the observed sufficient statistics, si
n , i = 1, ..., p are within each of the confi-

dence intervals, this is evidence that the proposed candidate value generated the data.

First, a “general” algorithm will be proposed (called Algorithm PM two) and

then we will describe the algorithm applied to normal data (µ and σ2 are unknown) and

then make application to the iron intake data.

Algorithm PM two

1. Generate θ′ = (θ1, ..., θp)
′∼π(·).

2. Generate a data set y (based off a “large” sample size m) from the model
p(y|θ′).
3. Construct a confidence interval for E[fi(Y )], i = 1, ..., p, and call it Ci.
Note: If the exact distribution of Si(·) is not known, we can use Monte
Carlo methods to estimate Ci.
4. Accept θ′ if si

n ∈ Ci for all i = 1, ..., p.
Repeat until k acceptances.

Take the mean of accepted values θ′1, ...,θ
′
k to be the estimate of θ. As a side note, up

until this now we have used m to represent the number of acceptances, but we will now

use m to represent the “large” sample size and k as the number of acceptances.

4.5.1 Application to normally distributed data

We make application of PM two to normally distributed data as follows
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Algorithm PM two

1. Generate θ′
i.i.d.∼ π(·), where θ′ = (µ, σ2)′, and µ∼N(λ, β) and σ2∼Γ(α, δ)

and observe (µ′, σ2′).

2. Generate Yi
i.i.d.∼ N(µ′, σ2′), i = 1, ...,m where m is sufficiently large.

3. Construct confidence intervals for E(Y ) and E(Y 2), and call them C1 and
C2, respectively.

4. Accept θ′ = (µ, σ2)′, if x̄n ∈ C1 and x2
n ∈ C2, where x̄n =

∑
x
n and

x2
n =

∑
x2

n .
Repeat until k acceptances.

Take the mean of accepted values, (µ, σ2)′1, ..., (µ, σ
2)′k to be the estimate of (µ, σ2).

Since m is large, we can rely on asymptotic theory for sample moments to construct

confidence intervals for ȳ and y2. We use the following result

∑
yk

m

◦∼ N
(
E(Y k),

V ar(Y k)

m

)
.

Thus, in our normal example, we have

ȳm∼N
(
µ,
σ2

m

)
and y2

m
◦∼ N

(
σ2 + µ,

2σ2

m
(σ2 + 2µ2)

)
.

So, an approximate 100(1− α)% confidence interval for E(Y ) and E(Y 2) is

(∑
y

m
− zα

2

s√
m
,

∑
y

m
+ zα

2

s√
m

)

and (∑
y2

m
− zα

2

√
2s2(s2 + 2x̄2)√

m
,

∑
y2

m
+ zα

2

√
2s2(s2 + 2x̄2)√

m

)
,

respectively.

4.5.2 Iron intake example revisited

We apply PM two with a sample size of m = 10, 000 and k = 100 acceptances.

Here, we considered 4 “priors”, where each of the priors have a variance of 4 (for both

µ and σ2). The first prior was centered near the MLE’s, while the other 3 priors were
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centered away from the MLE’s to compare computing time. The 4 prior distributions

are described in Table 4.7 below.

π(·) µ σ2

P1 N(14, 4) Γ(92/4, 4/9)
P2 N(8, 4) Γ(62/4, 4/6)
P3 N(10, 4) Γ(122/4, 4/12)
P4 N(20, 4) Γ(4, 1)

Table 4.7: Prior distributions for PM two and the iron intake data.

Table 4.8 below, shows that regardless of the prior, the estimates are close to

the MLE. Even the P4 prior (which required the most proposals), where the centering

values are significantly far from the MLE’s, still yielded estimates close to the MLE. The

P1 prior required the fewest proposals (no surprise) and yielded the closest estimates to

the MLE.

π(·) Proposals µ̂ σ̂2

P1 16,284 14.6738 9.5248
P2 210,652 14.6842 8.5534
P3 37,098 14.6557 10.6451
P4 467,247 14.6940 8.4712

MLE’s – 14.6800 9.2949

Table 4.8: Results using PM two and the iron intake data.

4.6 Proposed method three

In this section, we extend the above proposed method (and call it Algorithm

PM three) to allow for an update in the prior distribution. Here, the idea is to run PM

two, and based on the accepted values, we then update the prior distributions based on

the average and variability of the accepted values. We then run PM two again for k
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acceptances (but now using the updated priors). Additionally, after each iteration of k

acceptances, we have the option of increasing m. The thought being, that during the

first iteration of k acceptances, we gain some insight of plausible candidate parameters

to have generated the data, and thus, as to where to propose values. Also, after the

second iteration, we might consider increasing m to further discard “implausible” values,

and thus get “closer” to the MLE. We continue this process until the distance between

the average of accepted sufficient statistics and the observed sufficient statistics are

sufficiently small.

4.6.1 Application to normally distributed data

Let us apply PM three to a population where the observations are normally

distributed. To better describe the proposed algorithm in the context of normal data,

let us define the following notation, let

P (v) =



µ′1 σ2′
1

µ′2 σ2′
2

...
...

µ′k σ2′
k



(v)

=

(
~µ ~σ2

)(v)

be the matrix of accepted parameters for the vth iteration. Here, denote the mean

and variance based on ~µ as M(v)
µ and V(v)

µ , respectively and denote the mean and

variance based on ~σ2 as M(v)
σ2 and V(v)

σ2 , respectively. Further, denote the accepted
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sample moments as

S(v) =



y1 y2
1

y2 y2
2

...
...

yk y2
k



(v)

and now take the average of the accepted sample moments, i.e.,

S?(v) =


y1+y2+···+yk

k

y21+y22+···+y2k
k


(v)

=

 ȳ

ȳ2


(v)

.

We now apply PM three to normally distributed data as follows

Algorithm PM three

1. Propose µ′∼N(λ, β) and σ2′∼Γ(α, δ) and observe (µ′, σ2′).

2. Generate Yi
i.i.d.∼ N(µ′, σ2′), i = 1, ...,m.

3. Construct confidence intervals for E(Y ) and E(Y 2), and call them C1 and
C2 respectively.

4. Accept θ′ = (µ′, σ2′) if x ∈ C1 and x2 ∈ C2.
Repeat until k acceptances.

5. Compute M(v)
µ , V(v)

µ , M(v)
σ2 and V(v)

σ2 .

6. Compute d = |ȳ − x̄|+ |ȳ2 − x2|.
7. If d < ε then stop, else repeat steps 1-7 by using µ′∼N(M(v)

µ ,V(v)
µ ) and

σ2′∼Γ(
M2(v)

σ2

V(v)

σ2

,
V(v)

σ2

M2(v)

σ2

).

Note: To prevent the variance of the prior from getting too small, we take

the max
{
V(v)
σ2 , b0

}
or max

{
V(v)
µ , b0

}
where b0 is some positive real number.

Optional: Increase m to obtain better precision.

4.6.2 Iron intake example revisited

We ran PM three using 4 (initial) priors, which is representative of different

centers and variability. We also use large variances to allow for the proposal of plausible
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candidate parameters. For each iteration, we ran it for k = 500 acceptances. For the first

iteration, we used m = 100, for the second iteration, we used m = 1, 000, and for each

iteration afterward, we used m = 10, 000. Furthermore, we used ε = 0.02 and b0 = 0.5.

The 4 prior distributions are described in Table 4.9, and the results are summarized in

Table 4.10.

π(·) µ σ2

P1 N(3, 14) Γ(32/12, 12/3)
P2 N(6, 14) Γ(42/9, 9/4)
P3 N(16, 10) Γ(142/3, 3/14)
P4 N(22, 8) Γ(162/6, 6/16)

Table 4.9: Prior distributions for PM three and the iron intake data.
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Pi Iteration Proposals Distance µ̂ σ̂2

1 1,513,301 3.0422 14.5885 6.8530
2 3,842 0.0274 14.6789 9.3641
3 15,497 0.1361 14.6769 9.5872

P1
...

...
...

...
...

20 6,357 0.1012 14.6770 9.4510
21 6,345 0.0297 14.6751 9.4021
22 6,411 0.0046 14.6779 9.3785

Iteration Proposals Distance µ̂ σ̂2

1 126,846 2.5852 14.6551 6.1970
P2 2 4,022 0.4154 14.6980 8.4177

3 13,313 0.0018 14.6796 9.3359

Iteration Proposals Distance µ̂ σ̂2

1 3,050 4.0252 14.6663 14.2421
2 2,274 2.5301 14.6094 13.9981
3 48,969 1.2380 14.6367 11.7381

P3
...

...
...

...
...

30 6,209 0.0919 14.6755 9.4123
31 6,119 0.0741 14.6780 9.4115
32 6,080 0.0144 14.6779 9.4161

Iteration Proposals Distance µ̂ σ̂2

1 70,475 8.8433 14.9024 15.9534
2 2,932 3.4648 14.5997 15.6505
3 112,957 1.2879 14.6401 11.8187

P4
...

...
...

...
...

60 6,226 0.0466 14.6809 9.3578
61 5,935 0.0453 14.6741 9.3771
62 6,527 0.0062 14.6777 9.3774

Table 4.10: Results for PM three and the iron intake data.

From Table 4.10, we can see that regardless of the prior distribution, the pa-

rameter values are “moving” closer to the MLE’s of (µ̂, σ̂2) = (14.68, 9.2949), and that

the estimate (the final parameter value in the chain), between each of the priors are all

comparable. The major difference being the number of iterations required to “move”

sufficiently close to the MLE. The number of iterations required were 22, 3, 32, and

62 for P1, P2, P3, and P4, respectively. Notice that µ̂ is sufficiently close to the MLE
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(within the first iteration under all 4 prior distributions) and that it is σ̂2 that is slow

to be within sufficient distance of the MLE. This is probably explained by the fact that∑
X2 has a large variance (compared to the variance of

∑
X).

Figures 4.4-4.7 below show the trace plots for µ̂ and σ̂2 for Pi, i = 1, 2, 3, 4,

where the red line represents the MLE. From the figures, we see the quick convergence

of µ̂ and eventual convergence of σ̂2. Notice that even for the initial priors in low

acceptance regions (provided that there is a large variance), this algorithm is “moving”

the parameter estimates close to the MLE’s.
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(b) Trace plot for σ̂2

Figure 4.4: Trace plots for µ̂ and σ̂2 under P1.
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Figure 4.5: Trace plots for µ̂ and σ̂2 under P2.
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Figure 4.6: Trace plots for µ̂ and σ̂2 under P3.
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Figure 4.7: Trace plots for µ̂ and σ̂2 under P4.

4.7 Logistic regression

Now we wish to apply PM two and PM three to a logistic regression problem

and then propose an extension of PM two. Consider the following data set, which

consists of 40 people who are asked whether or not they would subscribe to a new

newspaper. Gender, age, and whether or not they would subscribe to the newspaper were

recorded (0=No and 1=Yes). The following data set was taken from the SAS support

site demonstrating an example of logistic regression and is summarized in Table 4.11.
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Gender Age Subscription Gender Age Subscription

Female 35 0 Male 44 0
Male 45 1 Female 47 1
Female 51 0 Female 47 0
Male 54 1 Male 47 1
Female 35 0 Female 34 0
Female 48 0 Female 56 1
Male 46 1 Female 59 1
Female 46 1 Male 59 1
Male 38 1 Female 39 0
Male 49 1 Male 42 1
Male 50 1 Female 45 0
Female 47 0 Female 30 1
Female 39 0 Female 51 0
Female 45 0 Female 43 1
Male 39 1 Male 31 0
Female 39 0 Male 34 0
Female 52 1 Female 46 0
Male 58 1 Female 50 1
Female 32 0 Female 52 1
Female 35 0 Female 51 0

Table 4.11: Data describing newspaper subscription behavior.

The fitted logistic regression model to this data is

P (Yi = 1) = pi =
eβ0+β1Xi1+β2Xi2

1 + eβ0+β1Xi1+β2Xi2
, i = 1, ..., 40.

Here β1 represents the age effect and β2 is the gender effect.

4.7.1 Newspaper subscription example using PM two

Since the observations are not identically distributed, we cannot choose an

arbitrary sample size m and so we need to make a slight adjustment and instead generate

an m number of auxiliary data sets. Let Dj= {Zij}40
i=1

ind∼ Ber(pi), and so, if m is large,

we have

∑
z

nm

p.w.→ E(Z)
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∑
zx1

nm

p.w.→ E(Zx1)

∑
zx2

nm

p.w.→ E(Zx2)

as m→∞.

Thus our algorithm becomes

Algorithm PM two

1. Generate β′0∼N(λ0, δ0), β′1∼N(λ1, δ1), and β′2∼N(λ2, δ2) and observe
(β′0, β

′
1, β
′
2).

2. Generate Dj based on (β′0, β
′
1, β
′
2), j = 1, ...,m where m is sufficiently

large.
3. Construct confidence intervals for E(Z), E(Zx1), and E(Zx2) and call
them C1, C2, and C3 respectively.

4. Accept (β′0, β
′
1, β
′
2) if

∑
y
n ∈ C1,

∑
yx1
n ∈ C2, and

∑
yx2
n ∈ C3.

Repeat until k acceptances.

Take the mean of accepted values (β′0, β
′
1, β
′
2)1, ..., (β

′
0, β
′
1, β
′
2)k to be the estimate of

(β0, β1, β2). Since the distribution for the sufficient statistics are unknown, we used

Monte Carlo simulation to estimate C1, C2, and C3.

Table 4.12 shows the prior distribution (P) that was used. Here, we allowed

for a relatively large variance for each parameter. Furthermore, we used k = 100 accep-

tances and m = 100.

π(·) β0 β1 β1

P N(−3, 4) N(0.2, 4) N(−1, 4)

Table 4.12: Prior distributions for PM two.

Table 4.13 below shows the results for PM two under P. Here, we see that

the estimates for β1 and β2 are comparable to the MLE’s, and that the estimate for β0
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is a little off. Interestingly enough, it is the parameter estimates for the main effects

that are comparable. It is also worth noting, that due to the extra complexity of the

model (the observations are not identically distributed) that k = 100 and m = 100 are

perhaps a little small and that by increasing k and m, estimation may very well improve.

π(·) β̂0 β̂1 β̂2

P -4.2512 0.1302 -2.3196

MLE’s -5.762 0.1649 -2.4224

Table 4.13: Results for PM two and the newspaper subscription data.

4.7.2 Newspaper subscription example revisited using PM three

We will now apply PM three. To better describe PM three in the context of a

logistic regression, let us define the following notation. Let

P (v) =



β′01 β′11 β′21

β′02 β′12 β′22

...
...

...

β′0k β′1k β′2k



(v)

=

(
~β0

~β1
~β2

)(v)

be the matrix of accepted parameter values for the vth iteration. Here, denote the mean

and variance based on ~β0 asMβ
(v)
0 and Vβ

(v)
0 , respectively, denote the mean and variance

based on ~β1 as Mβ
(v)
1 and Vβ

(v)
1 , respectively, and denote the mean and variance based
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on ~β2 as Mβ
(v)
2 and Vβ

(v)
2 , respectively. Further, denote accepted sample moments as

S(v) =



(∑
z

nm

)
1

(∑
zx1
nm

)
1

(∑
zx2
nm

)
)1(∑

z
nm

)
2

(∑
zx1
nm

)
2

(∑
zx2
nm

)
2

...
...

...(∑
z

nm

)
k

(∑
zx1
nm

)
k

(∑
zx2
nm

)
k



(v)

and then take the average of the accepted sample moments

S?(v) =



(∑
z

nm

)
1
+
(∑

z
nm

)
2
+···+

(∑
z

nm

)
k

k(∑
zx1
nm

)
1
+
(∑

zx1
nm

)
2
+···+

(∑
zx1
nm

)
k

k(∑
zx2
nm

)
1
+
(∑

zx2
nm

)
2
+···+

(∑
zx2
nm

)
k

k



(v)

=



∑
z

nm∑
zx1
nm∑
zx2
nm



(v)

.

As with PM two, we used Monte Carlo simulation to estimate C1, C2, and C3. Using the

newspaper subscription data, the algorithm is as follows

Algorithm PM three

1. Propose β′0∼N(λ0, δ0), β′1∼N(λ1, δ1), and β′2∼N(λ2, δ2) and observe
(β′0, β

′
1, β
′
2).

2. Generate Dj based on (β′0, β
′
1, β
′
2), j = 1, ...,m where m is sufficiently

large.
3. Construct confidence intervals for E(Z), E(Zx1), and E(Zx2) and call
them C1, C2, and C3 respectively.

4. Accept (β′0, β
′
1, β
′
2) if

∑
y
n ∈ C1,

∑
yx1
n ∈ C2, and

∑
yx2
n ∈ C3. Repeat until

k acceptances.

5. Compute d = |
∑
z

nm −
∑
y
n |+ |

∑
zx1
nm −

∑
yx1
n |+ |

∑
zx2
nm −

∑
yx2
n |.

6. Compute Mβ
(v)
0 , Vβ

(v)
0 , Mβ

(v)
1 , Vβ

(v)
1 , Mβ

(v)
2 and Vβ

(v)
2 .

7. If d < ε then stop, else repeat steps 1-7 by using β′0∼N(Mβ
(v)
0 ,Vβ

(v)
0 ),

β′1∼N(Mβ
(v)
1 ,Vβ

(v)
1 ), and β′2∼N(Mβ

(v)
2 ,Vβ

(v)
2 ).

Note: To prevent the variance of the prior from getting too small, we take

the max
{
Vβ

(v)
0 , b0

}
, max

{
Vβ

(v)
1 , b0

}
, and max

{
Vβ

(v)
2 , b0

}
where b0 is some

positive real number.
Optional: Increase m to obtain better precision.
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4.7.3 Results of newspaper subscription using PM three

We used the same initial prior distributions as those used in Table 4.12. For

each iteration, we ran it for k = 15 acceptances and m = 100. Furthermore, we used

ε = 0.2 and b0 = 0.5.

P Iteration Proposals Distance β̂0 β̂1 β̂2

1 4,807 0.2464 -3.0122 0.0809 -0.8603
2 200,479 0.2025 -3.5180 0.1120 -2.1868
3 11,668 0.0402 -4.4598 0.1356 -2.3576

Table 4.14: Results for PM three and the newspaper subscription data.

Table 4.14 shows the results for PM three. The algorithm converged after 3

iterations. As with PM two, we see that the estimates for β1 and β2 are comparable to

the MLE while the estimate for β0 is a little distant to the MLE (but still reasonable).

Figures 4.8 below show the trace plots for β̂0, β̂1, and β̂2 under P , where the red line

represents the MLE. Again, we see that β̂1 and β̂2 are close to the MLE, however β̂0 is

a little distant, but appears to be converging. If perhaps a smaller ε was chosen and/or

a larger k and m was used, β̂0 would converge.
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Figure 4.8: Trace plots for β̂0, β̂1, and β̂2.

4.8 Proposed method four

The final proposed algorithm (which we will call PM four), is an extension of

PM two. The first step will apply PM two for k acceptances, i.e., (β′0i, β
′
1i, β

′
2i), i = 1, ..., k

based on size m. For step 2, take each of the (β′0i, β
′
1i, β

′
2i), i = 1, ..., k and apply PM two,

where the center for the prior for β′0i, β
′
1i, and β′2i, are at β′0i, β

′
1i, and β′2i, respectively,
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coupled with a small variance (say σ2), and run it for k1 acceptances, i.e., (β′0i, β
′
1i, β

′
2i)

will generate (β′0ij , β
′
1ij , β

′
2ij), j = 1, ..., k1 (based on size m1).

For step 3, for each of the accepted k candidate parameters (from step 1), take

each of the k1 acceptances (that each of the k parameters produced), and measure the

distance between the auxiliary sufficient statistics to the observed sufficient statistics.

For example, consider the first accepted parameter in step 1, say (β′01, β′11, β′21). Now,

(β′01, β′11, β′21) will have generated a set of k1 acceptances, i.e., (β′011, β′111, β′211). Further,

(β′011, β′111, β′211) will have generated m1 data sets of size 40. From these m1 data sets,

compute the distance between the auxiliary sufficient statistics to the observed sufficient

statistics, i.e.,

dij =

∣∣∣∣∣
(∑

z

nm1

)
ij

−
∑
y

n

∣∣∣∣∣+

∣∣∣∣∣
(∑

zx1

nm1

)
ij

−
∑
yx1

n

∣∣∣∣∣+

∣∣∣∣∣
(∑

zx2

nm1

)
ij

−
∑
yx2

n

∣∣∣∣∣
and take the average of these distances, i.e.,

d̄i =

∑k1
j=1 dij

k1
, i = 1, ..., k

(the idea being that the smaller the distance, the closer we are to the MLE). For step

4, order and keep the c1 (where c1 < k) parameter values that produced the smallest

c1 distances, and call them (β
(t)
0 , β

(t)
1 , β

(t)
2 ), t = 1, ..., c1 (here, in this context, the super-

script (t) represents the ordered value and not the iteration). Step 5 is to update our

prior distribution by centering the prior for β
(t)
0 ,β

(t)
1 , and β

(t)
2 at the average of the k1

parameters (that (β
(t)
0 , β

(t)
1 , β

(t)
2 ) generated), which we denote as, Mβ

(t)
0 , Mβ

(t)
1 , Mβ

(t)
2 ,

respectively, (and again use a “small” variance). Now repeat steps 2-4 (now for k2 and

m2) and keep the c2 parameter values that produced the smallest c2 distances (where

c2 < c1). Keep repeating this cycle until we only keep the 1 candidate parameter that

produced the smallest distance and take the average of the parameters (that this 1 pa-
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rameter generated) as our estimate for (β0, β1, β2). Note that at each cycle, the size of

candidate parameters reduces from k to c1 to c2 and so forth until 1.

A few comments are in order. First, it’s up the individual at what rate they

wish to decrease the size of candidate parameters, and second, as described above, the

number of acceptances and the size of the generated data sets can increase between each

iteration. PM four is described as follows

Algorithm PM four

1. Run PM two for k acceptances and size m. Hence, the output is, P =
{θ′1, ...,θ′k} where θ′i = (β′0i, β

′
1i, β

′
2i).

2. For each θ′i ∈ P , run PM two, i.e., β′0i∼N(β′0i, σ
2), β′1i∼N(β′1i, σ

2), and
β′2i∼N(β′2i, σ

2) for k1 acceptances and size m1.
3. For each (β′0i, β

′
1i, β

′
2i), i = 1, ..., k, compute d̄i.

4. Order and keep the c1 parameter values that produced the smallest c1

distances.

5. Update the prior distributions that center around Mβ
(t)
0 , Mβ

(t)
1 , and

Mβ
(t)
2 respectively.

Repeat steps 2-4 until we only keep the 1 parameter value that produced
the smallest distance and take the average of the parameters that this 1
parameter generated as our estimate for (β0, β1, β2).

We now apply PM four to our logistic regression problem. For the initial prior

distributions, we use the same priors that were used in Table 4.12. For step 1, we

will run PM two for k = 100 acceptances and size m = 100. For step 2, we will use

k1 = 100 and m1 = 100. For step 4, we keep the 10 parameters that generated the

10 smallest (i.e., c1 = 10) distances, and we update our priors. We repeat by using

k2 = 1, 000 and m2 = 100, and keep the parameter that produced the smallest distance

and take the average of the parameters that this 1 parameter generated as our estimate

for (β0, β1, β2). We repeat the simulation twice using σ2 = 0.01 and σ2 = 0.04.
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4.8.1 Results of newspaper subscription using PM four

σ β̂0 β̂1 β̂1

0.1 -3.9327 0.1267 -2.5102
0.2 -3.6211 0.1171 -2.3533

Table 4.15: Results for PM four and the newspaper subscription data.

Table 4.15 shows the results after applying PM four. The estimates for β1 and

β2 are similar to PM two and PM three, however, the estimate for β0 did not perform

quite as well as with PM two and PM three. We note that the implementation of

PM two, PM three, and PM four on this example was very limited, in the sense that

the simulations were not exhaustive. We feel confident that with extensive simulation

studies and perhaps with appropriate tweaking, these algorithms can accomplish the

end goal.

4.9 Summary

In summary of chapter 4, we constructed algorithms in an attempt to provide

estimates that are comparable to the MLE. In the algorithms that we proposed, we

made application to a data set where the observations were assumed to be normally

distributed and to another data set where logistic regression was used. For the normal

example, each of the algorithms seemed to work well (in particular PM two and PM

three), however we keep in mind that it is a rather simple and low dimensional problem.

The logistic regression example was more challenging, in that the observations were not

identically distributed, and so more computational effort was required. Given this, we

are pleased the estimates for β1 and β2 were close to the MLE and β0 was still rather

reasonable. We are confident that heavier computational effort will improve on the
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convergence of β̂0 to the MLE. We feel that we laid some groundwork for finding a way

to obtain MLE type estimates in the absence of the likelihood. At the start of this work,

one of the goals was to improve on the acceptance rates over ABC-AR (and perhaps

over other ABC methods without the cost of highly correlated draws), however, time

did not allow for this development. Nonetheless, we feel that one can implement the

ideas that allow for an “update” in the prior distributions and develop ways to improve

on the low acceptance rates.

We don’t believe that PM one has much value since it was not founded on any

theoretical justification, however, we believe that the PM two, PM three, and PM four

algorithms do have promise because it is founded on large sample asymptotic theory. We

feel that with more tweaking and refining, an algorithm can be developed that can work

well in models where sufficient statistics are known. Once this has been established, one

can apply these ideas to models where sufficient statistics are unknown and replaced

with summary statistics.
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