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ABSTRACT OF THE DISSERTATION

Likelihood Free Inference for a Flexible Class of Bivariate Beta Distributions
by
Roberto Carlos Crackel

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2015
Dr. James Flegal , Chairperson

Several bivariate beta distributions have been proposed in the literature. In
particular, Olkin and Liu (2003) proposed a 3 parameter bivariate beta model, which
Arnold and Ng (2011) extend to 5 and 8 parameter models. The 3 parameter model
allows for only positive correlation, while the latter models can accommodate both
positive and negative correlation. However, these come at the expense of a density that
is mathematically intractable. The focus of this dissertation is on Bayesian estimation
for the 5 and 8 parameter models. Since the likelihood does not exist in closed form, we
apply approximate Bayesian computation, a likelihood free approach.

Chapter one briefly describes the univariate beta distribution and its prop-
erties. The 5 and 8 parameter bivariate beta distribution is defined and estimation
strategies are discussed. Chapter two is dedicated to the background of approximate
Bayesian computation (ABC), where the foundation and groundwork is laid. Toy ex-
amples are provided to better understand the algorithm and to study its properties.
Chapter three is the application of ABC to the 5 and 8 parameter bivariate beta model.
Simulation studies have been carried out for the 5 and 8 parameter cases under various

priors, sample sizes, and tolerance levels. We apply the 5 parameter model to a real data

vi



set by allowing the model to serve as a prior to correlated proportions of a bivariate beta
binomial model. Results and comparisons are then discussed. Chapter four attempts
to lay the ground work to modify existing ABC (accept reject) algorithms to search for
maximum likelihood type estimates in the absence of the likelihood function. Examples
are provided to demonstrate the relationship between maximum likelihood estimation
and acceptance rates. Algorithms are proposed and applied to data sets in an attempt
to search for maximum likelihood type estimates using only sufficient statistics. Results

are compared to the known maximum likelihood estimates.
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Chapter 1

The beta and bivariate beta

distributions

In this chapter, we briefly describe the univariate beta distribution and its
properties. We then provide a background discussion to the bivariate beta distribution.
In particular, we mention various definitions of the bivariate beta distribution that
authors have defined in the literature. Specifically, we focus on the 5 parameter bivariate
beta model defined by Arnold and Ng (2011). We then discuss the properties of this
model and estimation methods developed by Arnold and Ng (2011). We then briefly
discuss the 8 parameter model and an extension to the k-variate beta distribution defined

by Arnold and Ng (2011).

1.1 The beta distribution (of the first kind)

The beta distribution (of the first kind) is a continuous distribution, which
has support on the unit interval, and is controlled by two positive shape parameters a

and b. The beta distribution is used to model the random behavior of proportions such



as a batters batting average or a basketball players percentage of free throws made. In
Bayesian inference, the beta distribution serves as the conjugate prior distribution to the
binomial, negative binomial and geometric distribution. A random variable X follows a

beta distribution, if it has the following density

F(a + b) 1 b—1
;a,b) = a1 - ; 1 b .
fx(z;a,b) F(a)F(b)$ (1—-2)""0<z<1l,a>0,b>0
Here, T'(t) = [,° 2! 'e "dx is the gamma function. If X follows a beta distribution, we

denote as X~Beta(a,b). Furthermore, the first two moments and the variance, which

will be useful in parameter estimation are

BX) =~ E(X2):< a )( atl ) (1.1)

a+b a-+b a+b+1

ab
(a+0b)2(a+b+1)

Var(X) =

1.1.1 Related distributions

We can derive the beta distribution using the well known gamma distribution.
A random variable X follows a gamma distribution, if it has the following density

aflefa:/O

X
—0 0,6 > 0.
O <z <oo,a>0,0>

fx(z;a,0) =
Where a is the shape parameter and 6 is the scale parameter. If X follows a gamma
distribution, we denote as X~1I'(a,#). Suppose X; ~I'(a,f) and Xy ~I'(b,6) and are

independent, then

X1

————~DBeta(a,b).
X1+ Xo (a,5)

This definition will play a vital role in the construction of the bivariate beta distribution,

which will be discussed in the next section.



A useful transformation is known as the beta distribution of the second kind.
The support for this distribution is the entire positive real line and serves as the con-
jugate prior for Bernoulli trials expressed in odds. The beta distribution of the second

kind is derived by letting X ~Beta(a,b), and so

is said to follow a beta distribution of the second kind, which we denote as 8’'(a,b). The

density of Y is given by

Fla+0b) .4

fy(y;a,b) = I‘(a)I‘(b)y (1 +y)_(“+b);0 <y <oo,a>0,b>0.

The expectation and variance of Y is

X a .
EY)=F <1 —X> =51 conditional on b > 1
and
b—1
Var(Y) = (;(_(12—;(1)_1))2, conditional on b > 2.

Furthermore, it is straightforward to show
L
—_— b .
(b, 0)

These properties will be exploited in one of the estimation methods for the 5 parameter

bivariate beta model.

1.1.2 Estimation

If X~Beta(a,b), then we are interested in the estimation of a and b. There are
two primary methods of estimation, the first is maximum likelihood estimation (MLE)

and the second is the method of moments (MOM). We will now discuss these methods



in detail. The MLE for (a,b) is obtained via the 2-dimensional sufficient statistic

n n n n
(H X, H (1- Xl)> or equivalently (Z logX;, Zlog(l — Xz))
=1 i=1 i=1

i=1

and then obtained by solving the nonlinear equations

Y(a) —Y(a+b) = Zlog:c and (b)) —¢(a+b) = Zlogl—gvZ

where 9(-) is the digamma function. We denote the MLE’s of a and b as a and b,
respectively. The MOM estimators are obtained by setting the first two theoretical

moments at (1.1) to the sample moments, i.e.,

1< a a+1
d =) Xx?2= .
o n; i <a+b)<a+b+1>

This yields the solutions to a and b as follows

~:X’(X(l_)_()—1> and B:(1—X)<M—1>

5% 5%

1 — a
IR
ni3 a+b

where

>
Il
SR

;Xi and Sg( = ﬁ Z (Xz - Xz)2

=1
1.2 The bivariate beta distribution

Bivariate beta distributions are becoming increasingly popular across many
disciplines. Furthermore, it is common for Bayesian analysts to use them as prior
distributions to correlated binomial random variables. An incomplete list of bivariate
beta distributions includes use of the Dirichlet distribution, as well as those studied by
Arnold and Ng (2011), Jones (2002), Olkin and Liu (2003), and Nadarajah and Kotz
(2005). Furthermore, Gupta and Wong (1985) defined a bivariate beta distribution

from the Morgenstern system of bivariate distributions (Morgenstern (1956)). Likewise



Ting Lee (1996) defined a bivariate beta distribution from the Sarmanov system of
bivariate distributions (Sarmanov (1966)). Also, Gupta et al. (2011) considered a non-
central bivariate beta model. An interested reader is directed to Balakrishnan and Lai
(2009) for an extensive list of bivariate beta models along with other bivariate continuous
distributions.

Unfortunately, many bivariate beta models contain parameter and correlation
restrictions and hence may not be suitable in applications. For example, suppose Z =
(Z1, Z3) defines a bivariate beta random vector. Then, it is well known that if Z follows
a Dirichlet distribution, the marginals are beta distributed with z; +29 = 1. Further, the
family of bivariate distributions of Morgenstern (1956) has a limited correlation range
of (=1/3,1/3), as shown by Schucany et al. (1978), and the model of Olkin and Liu
(2003) only allow for positive correlation.

The focus of this dissertation is on parameter estimation for the flexible 5 and 8
parameter models of Arnold and Ng (2011), which extend the 3 parameter specification
of Olkin and Liu (2003). The models of Arnold and Ng (2011), allow for both positive
and negative correlation, that is, any correlation in (—1,1). The cost of this increased
flexibility is a joint density unavailable in closed form, but simulating pseudo-random

observations is trivial.

1.2.1 The 5 parameter model

Arnold and Ng (2011) defined the proposed 5 parameter bivariate beta distri-
bution by letting U; ind [(«;,0),i = 1,...,5 (without loss of generality, we can assume

6 = 1). The bivariate random vector Z = (Z1, Z2), as a function of the U;’s is defined



as follows

= U +Us and Z9 = U+ Us
Up+Us+ Uy + Us 2T Uy Us+Us+ Us’

Z

Therefore, Z1~Beta(ag + agz,aq + ) and Zy~Beta(as + ag, a3 + a5). We denote

the 5 parameter model as BB(aq,...,a5) or BB(«a), where a = (a1, a2, as, ag, as)’.

Furthermore,
Al Ur+Us
W pr— pr— ~Y
B e s B(on + a3, 04 + a5)
and
Z Us + U.
Wo 2= 2728 (an + au, a3 + as).

T 1-Z, Us+Us
It also follows that

1 1
Wlwﬁ'(oq + a5, 01 +a3) and %Nﬁ/(ag + a5, a0 + ).

Furthermore, some useful moments and expectations in parameter estimation are

a1 + a3
Q]+ a3+ ag+ as

E(Zf)=< o1t as >< ar +az+1 >

a1 +oa3+ a4+ as a1 +as+ag+as+1

E(Zy) =

Q9+ Qg
a9+ a3+ aq + as

E(Z22)=( a2t oy >< s+ aq+1 >

s+ a3+ ag+as o9 +ag+oag+as+1

B0 (B (G5 (55e) (e =)
— +
212 oo + oy a1 + a3 a1+ ag ar+oyg—1
(o) )
Q9 + 0y a;+az—1

as a5+ 1
1.2
+<041+0431) (Oz2+0441) ( )

E(Z3) =




-l—Zl- a4 + s
E = 1.3
71 ] a1 +az—1 ( )

(1 — Z5] a3 + as
E = 14
7o ] oy +ay —1 ( )

> 1-2; 2__ g + as g + a5+ 1
Al N a1 +az—1 o]+ az —2

> 1— 75 2__ a3 + Qs as+as+1
Zo N ag +ay —1 a9+ oy — 2 '

The lack of a closed form density eliminates maximum likelihood estimation.

Arnold and Ng (2011) derived 3 methods for the estimation of a;,7 = 1,...,5. The
first method, which the authors coined as modified maximum likelihood estimation
(MMLE), works by obtaining the MLE’s based off the marginal distributions for Z;
and Zo, and then use a method of moment estimate to obtain parameter estimates.
The second method uses the MOM estimates as a function of the sample means and
sample variances (based off the marginal distributions). The third method uses the
MOM estimates based on beta distributions of the second kind. For ease of notation,

suppose we have n observations from our bivariate beta model. Specifically, define

Z1 = (211,221, - -+, 2n1)s Z2 = (212,222, - - -, 2n2)’, and Z = (21, Z2).

a) Modified maximum likelihood estimation (MMLE)
The method of modified maximum likelihood estimation obtains the MLE’s based off
the marginals of Z; and Zs, which will yield four equations. For the fifth equation
(needed because we have 5 unknowns), a method of moment estimate is used. Hence,
the MLE’s based off Z; are obtained for a = a1 +a3 and b = a4+ a5, and are denoted
by a and i), respectively. Similarly, the MLE’s based off Zs for ¢ = as 4+ a4 and

d = a3 + aj are obtained, which we denote by ¢ and ci, respectively. Furthermore,



let

n

sz =1y Gmznllizza) (1.5
i=1 e

We set the theoretical moment at (1.2) equal to the sample moment at (1.5), and

after some algebra, we can set this equation in terms of a, b, ¢, d, and a5 as follows

S(z) = iZ Q=) - 2a) (6—éa5> (d;%)

Zil%i
i—1 11412

which yields the quadratic equation
o+ Bas +C =0 (1.6)

where

and

C=(a—1)(¢— 1)[)&— ac(a—1)(¢—1) i (1 —2z1)(1— Zﬂ).

n — Zi1%42
i=1

Therefore, the estimate for «j is the solution to (1.6). Now, it is possible that the
solution to (1.6) can be negative, however, recall that MLE’s cannot yield estimates
outside the parameter space, therefore, applying this principle, the estimate for as
will be the maximum of 0 and the larger root of the quadratic equation. Once an

estimate for as is obtained, we can then obtain point estimates for a;,7 = 1, ..., 4.



c)

The MMLE’s for the parameters «;,i = 1,...,5 are

, a4:max{0,5—d5}, dgzmax{o,a?—o%},

. { —B+\/B2—4C} .
&5 = max < 0, >

Gy =max{0,¢é — du}, and &; = max{0,a — asz} . (1.7)

Method of moments based on sample means and sample variances
We can obtain estimates for «;,i = 1,...,5 based off the sample moments obtained
from the marginals of Z; and Zs, as a function of the sample means and variances.

Denote the sample means of Z; and Z5 by

1 o 1 o
leﬁzzily Z2:HZZ1‘2
=1 i=1
and denote the sample variances of Z; and Zs by

1 & _
e DR

=1 =1

1 & _
5%1 = Z(Z’Ll - Z1)2’ S%Q =

n—1

The method of moment estimates for a, b, c and d are
o (2= Zy) - > (1 - 21)
a=7z1|———"-=-1]1, b=1-2)) | ———= -1
( 5%1 S%I

a:%(%ﬂq), CZ:<1_ZQ><Z_““(;2;Z_2>_1>.

By using the quadratic equation from (1.6), we can then obtain moment based es-
timates for a;,7 = 1,...,5 by choosing the larger root of the quadratic equation and

substituting the estimates with 0, if they are negative.

Method of moments based on beta distributions of the second kind

Using (1.3) and (1.4), we can set up the following moment equations

_ 1 <& a1 + a3
Zy==) Zn=
n = a1+ a3+ oy + as



1 — as + «
~ 2 4
22_—*2 ZiZ_—

nz’:l a9 + a3z + ag + as

I ~1-2Zy a4 + as
le_’I’L; Zil _051+043*1

79 g+ oy — 1

11— 2 as + as
mZQZEZ :
=1

and we can estimate a, b, ¢, and d as

a* _ Z_lle * _ 777121(1 —7Z_1)
Zlmzl +Zlfl7 Zlmzl + 71 —1

C* _ Z_277”LZE d* _ _m22(1 —_Z_Q) ‘
ZQmZQ—i-ZQ—l’ ngZQ—l-Zg—l

Again, by using the quadratic equation from (1.6), we can obtain estimates of «;,i =
1,...,5 by choosing the larger root of the quadratic equation and substituting the

estimates with 0, if they turn out to be negative.

1.3 Caution with the MMLE

Unfortunately, S(2) at (1.5) is easily influenced by observed data points near
zero. For example, in our simulation studies (discussed in detail later), a particular
data set of sample size 50, denoted D, produced the bivariate observation (2431, 2432) =
(0.1089,0.0038). Clearly z432 will severely inflate S(Z), thus affecting the MMLE at
(1.7). Furthermore, it will have an affect on our likelihood free algorithms by using S(2)
as a summary statistic (which we discuss in detail later). For illustration, Table 1.1
compares summary statistics for D to those of a more typical data set, denoted D’,
with no observed points near zero. Notice, that the sufficient statistics for the marginal
distributions of Z; and Zs are not much affected, however there is a heavy influence on
S(2).
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Z 10%321 Z lo%gig Z log(éazil) E log (éazlg) 8(2)
D -0.81 -1 -1 -0.76 47.77
D’ -0.76 -0.85 -0.76 -0.84 1.67

Table 1.1: Comparison of five summary statistics between dataset D and dataset D’.

1.4 The 8 parameter model

Arnold and Ng (2011), generalized the bivariate beta model by defining an 8
parameter model by letting U; ind p (0;,0),i=1,...,8 (without loss of generality, we can

assume ¢ = 1). Now define

_U1+U5+U7 and V_U2+U5+U8
! Us+ Ug + Usg 2 Us + U + Uy
and then define
Vi Va
S 7 R IR 72

Here, the marginal distributions for (V4, V3) are beta distributed of the second kind and
(Z1, Z2) have marginal distributions of the first kind. The 8 parameter model includes
the 5 parameter model by setting d3 = §4 = d5 = 0 and by relabeling the remaining J;
as a; = 01,9 = do, 3 = 97,4 = 0g, @5 = dg. This model also includes the Dirichlet
model, the model proposed by Jones (2002) and the 3 parameter model of Olkin and
Liu (2003). Just as the 5 parameter model gained the ability to allow for both positive
and negative correlation over the 3 parameter model at the price of a likelihood function
that does not exist in closed form, the 8 parameter model allows for extra flexibility over
the 5 parameter model but at the price of added complexity and the inability (to our

knowledge) to obtain closed form estimates for é;,7 =1, ..., 8.
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1.5 The k-variate beta distribution

Arnold and Ng (2011) defined a k-variate generalization by letting Uy, ..., Uy
and Vi, ..., Vi and W be independent gamma random variables with some common scale
parameter 6. As with the 5 and 8 parameter models, we let # = 1, and so U; nd I'(0y,;,1)

ind

and V; ~ T'(dy;,1),i=1,...,k and W i I'(dw,1). So for i =1, ..., k, define

Ui+V;
7, = s . (1.8)
Ui + Zl:1 w + W
The random vector Zp = (Z1,Za, ..., Zy) follows a k variate beta distribution with

2k+1 parameters. It may be verified that Z;,i = 1, ..., k is beta distributed of the first
kind and each random vector Z ) = (Zr, Zrys oo Zry ), b* < by € {1,2, .k}, i # 75
for ¢ # j,i,5 = 1,...,k*, has a joint distribution that is a k* variate beta distribution
defined in (1.8). For example, each random vector Zy) = (Z;, Z;),i = 1,2,....k,j =
1,2,...,k,i # j has the 5 parameter bivariate beta distribution with parameters a; =
du;, e = Ou;, a3 = Oy, a4 = Oy; and as = oy + Zf:l,l;éz}j dy,. However, estimation of

the parameters remains an open problem.
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Chapter 2

Approximate Bayesian

computation

2.1 Introduction

In this chapter, we will introduce a class of likelihood free algorithms known
as approximate Bayesian computation (ABC). We will provide a brief background on
the fundamentals of Bayesian inference and then proceed to describe ABC. In short,
ABC samples from the posterior (or approximate) distribution in the absence of the
likelihood function. There have been many developments in the history of ABC and
various algorithms have been proposed. The simplest algorithm is the accept reject
method (ABC-AR), where the resulting outcome form an i.i.d. sample from the posterior
(or approximate) distribution. However, this method suffers from low acceptance rates
and other methods have been developed to generate higher acceptances. We will detail
ABC-AR and provide toy examples to illustrate how it works and demonstrate that it
samples from the posterior distribution. We then briefly discuss other methods designed

to improve acceptance rates.
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In Bayesian inference, the posterior distribution for the parameter 8€0© is given

p(x[0)7(0)
p(x)

p(0lx) =
where one’s prior beliefs about the unknown parameter 6 is expressed through the prior
distribution (@), but is then updated by the observed data x, through the likelihood
function p(x|@). Inference for the parameter 6 is then based on the posterior distribution.
In particular, if we consider the mean squared error as our risk function, then the Baye’s
estimate of the unknown parameter 6 is the mean of the posterior distribution, i.e., 0 =
E(0]x) = [ 0p(0|x)d6. In many cases however, computing the posterior is difficult (if
not impossible) since the marginal likelihood, p(x) = [ p(x|@)7(0)d6 is mathematically
intractable. Provided the likelihood can be evaluated up to a normalizing constant,
Markov Chain Monte Carlo (MCMC) methods such as the Metropolis Hastings (MH)
algorithm or the Gibbs sampler allow us to sample from the posterior distribution.
However, these methods require that the likelihood function be known (i.e., we can
write them down). This begs the question, if we are working with a model where
the likelihood function cannot be written down, is it still possible to sample from the
posterior distribution?

To address this question, a class of algorithms, known as “likelihood-free com-
putation” or “approximate Bayesian computation” (ABC) have been developed. This
name refers to the circumventing of explicit evaluation of the likelihood by a simulation
based approximation (Brooks et al. (2011)). The underlying idea of ABC is to consider
a candidate parameter 8’ from the prior distribution and to generate an auxiliary data
set y, conditioned on @, i.e., y~p(y|@’). If y is “close” to the observed data x in some

manner, we accept 8’ as a likely candidate parameter to have generated the observed
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data x. However, if y is not “close” to x, then @’ is unlikely to have generated x and
so @ is rejected. We continue this algorithm until m candidate parameters have been
accepted. The accepted parameter values form an 7.7.d. sample from the posterior dis-
tribution p(@|x). Hence, this is an algorithm that allows us to sample from the posterior

distribution even in the absence of the likelihood function.

2.2 Likelihood free basics

Brooks et al. (2011) begins describing likelihood-free inference by augmenting

the target posterior from

p(0x) o p(x|0)m(0)  to  prr(0,yx) o p(x|y,8)p(y|6)m(6)

where the auxiliary data set y, is generated from p(y|@) on the same space as x € X.
The distribution p(x|y, @) is chosen to weight the posterior p(8|y) with high density in
regions where y and x are similar. The probability density function p(x|y, @) is assumed
to be constant with respect to 6 at the point y = x, so that p(x|x,0) = ¢, for some
constant ¢ > 0, with the result that the target posterior is recovered exactly at y = x,

ie., prr(0,x|x) o p(x|0)7(0). Ultimately, interest is typically in the marginal posterior

pLr(O]%) o 7(6) /X p(xly. 0)p(y|6) dy

where we integrate out the auxiliary data set y. The distribution then prr(0|x) becomes
an approximation to p(0|x).

The likelihood free posterior distribution pz,r(0|x) will only recover the target
posterior p(@|x) exactly when the density p(x|y, @) is precisely a point mass at y = x

and zero elsewhere. In this case
pur(8lx) o 7(6) | plxiy.0(v16) dy = p(xI6)=(6).
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However, this choice for p(x|y, @) will result in a rejection sampler with an acceptance
probability of zero unless the proposed auxiliary data set equals the observed data, i.e.,
y =X.

The first algorithm we will present is an exact algorithm, meaning that it
samples from the posterior distribution (as opposed to an approximate posterior distri-
bution). The algorithm requires that we match the auxiliary data set y, to the observed
data set x (or the sufficient statistics of y to the sufficient statistics of x). It should
be immediately clear that this algorithm will only apply to low dimensional discrete
cases. For continuous models (and for high dimensional discrete cases), an adjustment
will need to be made, however, it will come at the cost of no longer sampling from the

true posterior distribution. The ABC-AR (exact) algorithm is described as follows

Algorithm ABC-AR exact

1. Generate 8’ ~ ().

2. Generate a data set y from the model p(y|60’).
3. Accept @' if y = x, otherwise discard 6.
Continue until m observations have been accepted.

Hence, the outcome 6, ...,0", forms an i.i.d. sample from p(@|x). Now, if sufficient
statistics are known, we can replace the sufficient statistics in step 3, rather than
y = x. In other words, accept 8" if S(y) = S(x), otherwise reject 8’, where S(-) =
(S1(+), ..., Sp(+)) is the set of sufficient statistics and p > dim(€). The benefit of using
sufficient statistics, is that it will greatly reduce computational effort. Thus, our algo-

rithm becomes
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Algorithm ABC-AR exact

1. Generate 8 ~ ().

2. Generate a data set y from the model p(y|0").
3. Accept ' if S(y) = S(x), otherwise discard 6'.
Continue until m observations have been accepted.

2.2.1 Toy example one

We will now illustrate ABC-AR exact with a toy example. Suppose the ob-
served data was generated from 20 Bernoulli trials with probability of success of 0.20,
ie., {X;}2 e Ber(0.6), and we observe > x; = 12, however p is unknown. We wish
to estimate p and will take a Bayesian approach. Now suppose that the prior distribution
for p is a Beta(1, 1) or equivalently a Unif(0,1), i.e., p ~ Beta(1,1) = Unif(0,1). Here,
we can compute the exact posterior distribution, i.e., p|x~Beta(a+ > x;, f+n—>Y_ z;)
= Beta(13,9). Thus, using the mean squared error as our risk, the Bayes estimate is
% = 0.5909. So after applying ABC-AR exact, we should expect to see that as the
number of acceptances increases, the better the approximation to the posterior distri-

bution, hence, also a better approximation to the true Bayes estimate. Our algorithm

becomes

Algorithm ABC-AR exact

1. Generate p’ ~ Beta(1,1) = Unif(0,1).

2. Cenerate {Y;}22, i Ber(p)).

3. Accept p' if > y; = 12, otherwise discard p'.
Continue until m observations have been accepted.

The outcome p}, ..., p,, forms an 7.i.d. sample from a Beta(13,9) distribution. Thus, for

large m, we should obtain a good approximation to this distribution.
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Figure 2.1: Plots comparing the estimated posterior for different acceptance sizes.

Figure 2.1 show the histograms for m = 100 and m = 10,000 acceptances,
respectively. The red line is the density curve to the posterior, i.e., a Beta(13,9) dis-
tribution. We can see that the histogram for m = 10,000 acceptances is a better
approximation than for m = 100 acceptances. Furthermore, the Bayes estimate for p
under m = 10,000 is 0.5915, while the Bayes estimate for p under m = 100 is 0.5894.
Recall that the true Bayes estimate is 0.5909, and so we see that as the number of

acceptances increases, the approximation to the Bayes estimate also improves.

Method | Bayes ‘ ABC-AR exact

m — 100 10,000
Proposals — 2,141 213,715
D 0.5909 | 0.5894  0.5915

Table 2.1: Comparison of acceptance sizes.

Table 2.1 shows the Bayes estimates for m = 100 and m = 10,000 compared
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to the true Bayes estimate, but also the number of proposals required to achieve the
desired number of acceptances. Here, the number of proposals required for m = 10,000
is 231,715 compared to the 2,141 for m = 100. In this one dimensional setting, the
computing time between m = 100 and m = 10, 000 is insignificant, however in higher di-
mensional problems, the computational effort will be an issue of concern. Furthermore,
while the posterior and Bayes estimate for m = 10,000 is better than the estimate for
m = 100, the precision doesn’t differ by much. It is on this note, that for higher dimen-
sional problems, an increased number of acceptances may not be worth the additional

computational effort.

2.3 ABC-AR for continuous random variables

Under continuous models, the probability that y = x or S(y) = S(x) is zero
(or approximately zero for high dimensional discrete models). Therefore, we make an
adjustment by measuring the distance between y = x or S(y) = S(x) through some
distance function p. If this distance is within some tolerance level €, we will accept the
proposed candidate parameter. However, it does come at the cost of no longer sampling
from the posterior distribution, but rather sampling from a distribution that is an ap-

proximation to the posterior (provided that € is small). The algorithm becomes

Algorithm ABC-AR continuous

1. Generate 8’ ~ 7(8).

2. Generate a data set y from the model p(y|60’).

3. Accept ' if p(S(y),S(x)) < €, otherwise discard 6.
Continue until m observations have been accepted.
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The outcome 07, ..., 0’ then forms an i.i.d. sample from

pe(0]x) = p(0]p(S(y), S(x)) <e).

Here, the idea being, if € is small, the better the approximation to the posterior distri-
bution. In other words, the likelihood free algorithm above samples from the marginal

in y of the joint distribution

(6. y[x) = 7(0)p(y|0)la, . (¥)
B T m(@)p(y]6)dyde

x X
where I 4, (-) denotes the indicator function of the set A, x = {yeX|, p(S(y),S(x)) < €}.
So, the smaller the tolerance level €, the better the approximation to the posterior

distribution, i.e., p.(0]x) = [ pc(0,y|x)dy ~ p(0|x). Furthermore, as € tends to zero,

the posterior distribution is captured.

2.3.1 Toy example two

We will now illustrate ABC-AR continuous with another toy example. Suppose
the observed data consisted of a sample size of 30, which was generated from a normal
distribution with mean 2 and variance of 1, and suppose we observed > x; = 54.9275,
so that £ = 1.8309. Assume that the mean is unknown, however the variance is known
and we wish to estimate pu. Suppose that the prior distribution for p is a standard
normal distribution, i.e., u ~ N(0,1), and so the computed posterior distribution is

u|x~N(n”—f1, n%rl) = N(1.7719,0.0323). Therefore, the algorithm becomes

Algorithm ABC-AR continuous

1. Generate ' ~ N(0,1).

2. Cenerate {Y;}22, b N/, 1).

3. Accept g/ if | 23y — 2 3@ |=| L3y — 1.8309 |< ¢, otherwise discard /.
Continue until m observations have been accepted.
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The outcome (], ..., pl, forms an i.i.d. sample from a distribution that is approximately
normal, with a mean of 1.7719 and variance of 0.0323, i.e., N¢(1.7719,0.0323), provided

that € is small.
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Figure 2.2: Effect of € on the posterior distribution.

Figure 2.2 shows the histograms for ¢ = 1, ¢ = 0.5, and ¢ = 0.01. Here, we

can clearly see that as e is decreasing, the better the approximation to the posterior
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distribution. Furthermore, the true Bayes estimate for p is 1.7719, and so we see that as
€ is tending toward 0, we also obtain a better approximation to the true Bayes estimate.
It is worth noting that for this example, we see two sources of bias. The first source
of bias is coming from the N(0,1) prior, which is proposing candidate values that are
centered around 0. This is no surprise, since it is a fact that Bayes estimates are always
biased. However, there is a second source of bias that is stemming from the value of e.
In histogram (a), we see a large number of proposed candidate parameters (that have
small numerical values) that are being accepted due to the large €, thus further weighing
down our approximate Bayes estimate. However, in histogram (c), because € is small,
the parameters that are being accepted for ¢ = 1 are now being rejected at a much

higher rate, and so the bias stemming from a large e vanishes.

Method | Bayes ‘ ABC-AR continuous

€ - 1 0.5 0.01
Proposals - 4,692 12,112 643,754
i 1.7719 | 1.3332 1.6501 1.7715

Table 2.2: Comparing the effect of e.

Table 2.2 shows that as € is decreasing, the estimate of u converges to the true
Bayes estimate. Furthermore, we see the effect of € on computational effort. For e = 1,
4,692 proposals were needed, however 643,754 proposals were needed for e = 0.01. As
with the first toy example, because this is a one dimensional problem, the difference in
computing time is almost insignificant, however for higher dimensional problems, the
choice of € will have an impact. From the first and second toy examples, we can see that
computing time is a function of the number of acceptances and the size of €. This is a

balance we will seek when applying ABC-AR in higher dimensions.
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2.4 Summary statistics

Often sufficient statistics are unknown and it is common practice to replace the
set of unknown sufficient statistics with a set of summary statistics or “near” sufficient
statistics. The cost of this replacement is that it will further hurt the degree of the
approximation of the posterior distribution. Furthermore, as € goes to zero, we will
no longer capture the posterior distribution. How much precision is lost depends on
the information contained within the choice of summary statistics. For our 5 and 8
parameter bivariate beta models, because the likelihood function cannot be written
down, we cannot identify the sufficient statistics and so we must heuristically choose
a set of summary statistics. Discussion for the choice of summary statistics will be
discussed in detail later. The interested reader is directed to Burr and Skurikhin (2013),
Joyce and Marjoram (2008), and Fearnhead and Prangle (2012) for more discussion on

the choice of summary statistics.

2.5 ABC Metropolis Hastings

In scenarios where the prior distribution is far from the posterior distribution,
it will lead to low acceptance rates (albeit, one of the advantages of the ABC-AR algo-
rithm is that because the proposals are independent, we can use embarrassingly parallel
computation to reduce computing time.). To this end, Marjoram et al. (2003) proposed
embedding the Metropolis Hastings (MH) algorithm in the ABC-AR algorithm, which
we will denote as ABC-MH, in order to improve acceptance rates. Before describing the
ABC-MH algorithm, let us review the MH algorithm. Recall that the MH algorithm
is used to obtain a sequence of dependent samples from a probability distribution for

which direct sampling is nearly impossible. The MH algorithm is particularly useful in
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Bayesian analysis, where calculation of the posterior distribution is difficult due to the
complexity of the marginal likelihood. This sequence is then used to approximate the
distribution through histograms and/or integrals. The MH algorithm (in a Bayesian

context) is described as follows

Algorithm Metropolis Hastings
1. Initialize 8, v = 1.
2. Generate 6’ ~ q(@]O(”)), where ¢ is some proposal density.

/ / )19’
3. Set 0t = @ with probability h :min{l, p(x|07)m(6 )a(67|0') )},

p(x|0")7m(8™))q(0' |0
otherwise set 911 = ()
4. Continue for N iterations.

The output of this algorithm are dependent draws from the posterior distri-
bution, from which we can estimate various Bayes estimators. To implement the MH
algorithm in the ABC-AR algorithm, we add 2 steps between the second and third
step of the MH algorithm. The first step is to generate an auxiliary data set from
the likelihood model and the second step is to compare the sufficient statistics from the

auxiliary data set to the observed data set. The ABC-MH (exact) algorithm is as follows

Algorithm ABC-MH exact

1. Initialize 0(1), v=1.

. Generate ' ~ q(9|0(”))7 where ¢ is some proposal density.
. Generate a data set y from the model p(y|0’).

. If S(y) = S(x), go to step 5, otherwise remain at 6*).
m(0')a(0™|6")
(0)q(0'10")

W N

o

Set 6T = 0" with probability h = {1, )}, otherwise

set 9t — g()
6. Continue for N iterations.

The output of the ABC-MH algorithm will sample from the stationary distribution, i.e.,

p(0]x). We prove this as follows
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Theorem 1 p(6|x) is the stationary distribution of the chain (Marjoram et al. (2003)).

Proof.
Denote the transition mechanism of the chain by 7(6']6")) and without loss of

generality, choose 0 # 0w satisfying

m(6')a(6")10')

(00 (@107 21

Then

p(69x)r(816) = p(8|x)q (6|0 )p(x|6 )
GO O) [ w8406
=T {q<9 ORI 60 g0100)
p(x[6)7(6)

= 1@ enxle™)

— p(8'|x)q(6)]6)p(x]0"))h

=p(6'[x)r(6"6").

The argument when the ratio on the left of (2.1) is > 1 is analogous. Thus, p(0|x) sat-
isfies the detailed balance equations, which implies that indeed p(0|x) is the stationary

distribution of the chain, and the proof is complete. =

There are two special cases (Marjoram et al. (2003)):
1. If ¢(0™)|0") = q(6')6)) then h depends only on the prior.
2. If ¢ is reversible with respect to m, (so that 7(8)q(0'|0™)) = 7 (8')q(6")|0"), for all
oW = ¢ ), then h = 1, and the algorithm reduces to a rejection method with correlated
outputs.

Just as with ABC-AR exact, the ABC-MH algorithm is valid for only low
dimensional discrete models. As with ABC-AR continuous, we make extension to con-

tinuous models by comparing S(y) to S(x) through some distance function p. Thus,
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we adjust ABC-MH exact by approximating the intractable likelihood ratio by 1, if the
auxiliary data set and observed data set are sufficiently close, and 0 otherwise. The

ABC-MH (continuous) algorithm is described as follows

Algorithm ABC-MH continuous

1. Initialize 8, v = 1.

2. Generate @' ~ ¢(0]0)), where ¢ is some proposal density.
3. Generate a data y from the model p(y|6’).

(6)a(6)16)
(67))q(6'16"))

4. Set 0t = @’ with probability h = {1,

I(p(S(y),S(x)) < 6)},

otherwise set 811 = g(®),
5. Continue for N iterations.

One of the major problems of the ABC-MH continuous algorithm, is that it gen-
erates a sequence of serially and highly correlated samples from p(8|p(S(y), S(x)) < €).
Determination of the chain length, N, is therefore obtained through a careful assessment
of convergence and consideration of the chain’s ability to explore the parameter space,

i.e., chain mixing (Sisson et al. (2007)).

2.6 Other ABC methods

To improve upon the inefficiency of ABC-AR and ABC-MH, there have been
a large number of proposed methods that incorporate sequential Monte Carlo (SMC)
techniques. Sisson et al. (2007) was one of the first to make use of SMC methodology,
proposing coupling SMC with partial rejection control and a biased approximation of
the posterior distribution. Beaumont et al. (2009) further proposed utilizing population
Monte Carlo methods of Cappé et al. (2004). Similarly, Toni et al. (2009) proposed an

algorithm derived from the framework of sequential importance sampling. Peters et al.
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(2012) embed the partial rejection control mechanism of Liu (2001), which incorporates
a mutation and correction step within the standard SMC sampler algorithm. This
incorporation of a mutation kernel reduces the variability of the importance weights
when compared to more standard SMC algorithms.

Another class of algorithms that improve ABC-AR is to incorporate regression
methodology. The pioneer of this approach was Beaumont et al. (2002), who assumed
that the conditional density can be described by a regression model. The idea was to
weight the parameters by comparing the auxiliary summary statistics with the observed
summary statistics. An interested reader is directed to Blum and Frangois (2010) and
Leuenberger and Wegmann (2010) for extensions of this approach. Unfortunately, these
methods focus on univariate settings, though some authors comment that an extension

using multivariate regression is straightforward.
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Chapter 3

Application of ABC to the

bivariate beta model

3.1 Introduction

In this chapter, we will apply approximate Bayesian computation (ABC) to the
5 and 8 parameter models proposed by Arnold and Ng (2011). In order to apply ABC,
we will need to choose prior distributions and so we will begin by first describing the
selected prior distributions used in our simulation studies. We then discuss simulation
settings, i.e., true parameter settings, sample sizes, summary statistics, and tolerance
levels. Our work considers both the ABC-AR and ABC-MH algorithms. The bivariate
beta distributions are continuous models, so we will be applying the continuous versions
of the algorithms. For simplicity, we will refer to ABC-AR continuous simply as ABC-
AR, and likewise call ABC-MH continuous as ABC-MH. Given the ease in which one
can simulate bivariate beta random vectors, we did not consider SMC or regression
methodology in our study. We then close the chapter by discussing simulation results.

Much of this chapter is the work of Crackel and Flegal (2014).
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3.2 Prior distributions

We consider 4 prior distributions in our simulation study. Since «; > 0, we
select prior distributions that reflect this support. A natural prior to consider is a gamma
prior. In our study, «;,¢ = 1,...,5 will be independent and identically distributed, i.e.,
o iid I'(A, 3), where A and 8 are the hyperparameters. Specifically, our simulations
consider I'(2.5,0.52) and I'(2.5,1.04), denoted G1 and G2, respectively.

We also consider a modified uniform distribution. For the modified uniform
distribution, the density curve is uniform on the interval (0, ). At o = p, the density
curve then tails off, i.e., f(a) approaches 0 as a goes to 0o (see Figure 3.1). In other

words, we can choose p and p such that P(a€(0, 1)) = p and P(a€(p, 00)) = 1 —p. The

density function is

=8

if ac(0, )
flalp,p) =

peap (SH51)

The motivation for the modified uniform is to reflect a lack of information on

if ae(p,00).

the interval (0, ). The tail is added to cover the entire support to maintain a proper
prior. We denote the modified uniform as U,(0, ). Our simulations consider Uy (0, 2)
and Uy s(0,4), which we denote as U1 and U2 respectively.

To compare the gamma and modified uniform priors, we have selected hyper-
parameters resulting in the same mean and variance for G1 and U1, and for G2 and U2.
Since the «;’s are i.i.d., for the 5 parameter case, we have 7(a) = lé[l mi(cy;). Likewise,

1=
for the 8 parameter case, we assume the ¢;’s are i.i.d., and so we have 7(d) = ﬁ i (0;),

where § = (61, 02, 03, 04, 05, I, 07, Jg)’.
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Figure 3.1: Plot of priors, G1 in red, U1 in black, G2 in green, and U2 in purple.

There are a number of other potential priors including the uniform, trian-
gle, Epanechnikov or Gaussian (truncated on R*) kernels. In applications, these may
increase acceptance rates for the ABC-AR algorithm, which is a direction of future

research.

3.3 Summary statistics and distance function

Given the joint likelihood is unavailable in closed form, sufficient statistics
cannot be determined. Thus, we are forced to choose informative summary or near
sufficient statistics. First, consider the 5 parameter model where we will use 5 summary

statistics. Since the marginals of Z; and Zs are distributed as beta random variables,
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we choose the corresponding univariate sufficient statistics. Specifically, we have sum-
mary statistics S1(2) = L Y log zi1, S2(2) = 2 Y- log zi2, S3(2) = 2 > log (1 — 1), and
S4(2) = L Y log (1 — 22).

For our fifth summary statistic, we first considered S(Z) at (1.5) used in MMLE.
As we have illustrated in Table 1.1, S(2) is influenced by small observed values. The
implications in a preliminary simulation study showed that a small portion of simulated
datasets contained severely inflated values of S(Z), one of which is illustrated in Ta-
ble 1.1. Thus, there would be difficulty generating an auxiliary dataset gy, where S(g)
is close to that of the observed data set, S(Z), and further resulting in extremely low
acceptance rates.

Given the problems with §(Z) as a summary statistic, we require an alternative

to capture the correlation that offers more stability for any observed values. To this end,

we will use the Pearson correlation between Z; and Zo, that is

- Y (zin — z1)(zi2 — Z2)
S5(z) = . 3.1
(%) V2 (zin — 21)2 (212 — 22)? (3

Thus, S(Z) = (S1(2), S2(2), S3(2), S4(2), S5(2)) is the vector of summary statistics used
for ABC-AR in the 5 parameter model. The use of S5(2) instead of S(2) vastly improved
acceptance rates, which will be further discussed in section 3.5.5.

Finally, we considered the distance function

Investigation of alternative distance functions is outside the scope of this dissertation.
Preliminary simulations showed the 5 summary statistics had approximately equal vari-
ability for a variety of distance cutoff values, hence, there is no need to consider weights

or a scale adjustment in the distance function.
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Next, consider the 8 parameter model where we will use 8 summary statistics.
We begin by including the 5 summary statistics from the 5 parameter sub model. In
order to capture additional dependency between Z; and Z5, we added the Spearman

rank correlation and Kendall correlation, that is

Sﬁ(é)zl—ﬂ

n(n® —1) where d; = z;1 — 22

and

5:(2) (number of concordant pairs) — (number of discordant pairs)
7 — 1 .
sn(n—1)

Finally, we consider Sg(2) = %Z /Zi1zi2 as our eight summary statistic. Our distance

function is, p(S(§). () = X3, IS:(5) - Si(2)].

3.4 Simulations

For the 5 parameter model, we considered 3 parameter settings. Within each
parameter setting, we used each of the 4 priors described above, G1, G2, U1, and U2.
For each prior, we considered 2 sample sizes, n € {50, 100}, and for each sample size, we
considered 4 tolerance levels, € € {0.2,0.4,0.6,0.8}. All together, this will account for a
total of 96 settings. To draw comparisons between the ABC-AR algorithm to MMLE,
each setting was repeated across 200 datasets to obtain an estimate of the bias and MSE.
For each data set, the ABC-AR algorithm ran for 1,000 acceptances or 15e6 proposals,
whichever came first. Furthermore, we wish to compare the behavior of each of the
priors and the precision of estimation as the tolerance level decreases. For ABC-AR,
simulations were ran for both the old S5, (S(2) at (1.5)), and the new Ss (the Pearson
correlation at (3.1)). For ABC-MH, simulations were only ran using the old Ss, 1e6

iterations, and € € {0.4,0.6,0.8}.
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Similarly, for the 8 parameter model, we considered 2 parameter settings, the
4 prior distributions, a sample size of n = 100, and the 4 tolerance levels as with the 5
parameter case. This totaled 32 settings, and we ran each setting across 200 datasets
to estimate the bias and MSE, and the same stopping rule of 1,000 acceptances or 15e6
proposals was used. The results were not compared to a baseline, since we know of no
other method applicable in this setting.

Results of the simulations are shown in the appendix. For Tables A.1 — A.12
and Tables A.19 — A.20, the average number of proposals required to reach the desired
m = 1,000 acceptances or 15e6 proposals are reported along with the standard deviation
(in parenthesis). For Tables A.13 — A.18, the average number of acceptances are re-
ported along with the standard deviation (in parenthesis). Furthermore, for Tables A.1
— A.12, the results for ¢ = 0.6 and for Tables A.19 — A.20, the results for ¢ = 0.4 and

€ = 0.6 are not shown to preserve space.

3.5 5 parameter model

We considered the following three parameter settings, 41 = (1,1,1,1,1)’, Ay =
(3,2.5,2,1.5,1), and A3 = (1,1,2,6,1)". The first two settings were used by Arnold and
Ng (2011), while the third was added of our own accord. Figure 3.2 below shows a
scatter plot for a data set (when n = 100), for each parameter setting. Fach of these

parameter settings have a negative correlation.
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Figure 3.2: Scatterplots of Z; and Z5 and the estimated correlation.

3.5.1 Results using the old &;

Table A.1 shows the results for A; and n = 100. We can see that as we decrease
the tolerance level from € = 0.8 to € = 0.2, the bias and MSE decrease substantially.

Compared to the MMLE, G1 and 1 had a smaller MSE for each &;,7 = 1,...,5 while
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there was a decrease in the MSE for &3 and &4 under G2 and U2. For each prior, as €
is decreasing, we start seeing a dramatic increase in the required number of proposals.
For example, when € = 0.2, the G1 prior required an average of slightly more than 5.6e6
proposals while /2 required a little more than 6.5e6 proposals.

Table A.2 shows the results for Ao and n = 100. For € = 0.2, only the G1 prior
had a smaller MSE for each &;,i = 1,...,5 compared to the MMLE, whereas the other
3 priors had a decrease in the MSE for certain &;. The results for A3 and n = 100 are
shown in Table A.3. For ¢ = 0.2, G1 and U1 reduced the MSE for &1, &2, and é&s5, when
compared to the MMLE, while for G2 and 42, there was a reduction in MSE for certain
&;. Furthermore, we see the affect of ay = 6, by observing larger MSE’s and required
number of proposals for the G1 and U1 priors. The MSE improves substantially for a4
when using the G2 and U2 priors, while also reducing the overall computational effort.
This is due to G1 and U1 primarily proposing values in low posterior regions.

In summary, for each of the parameter settings, the bias and MSE decreases as
€ decreases. Reduction in MSE for &; is dependent on the parameter setting and prior
distribution. For example, under the A; and A, setting, the G1 prior performed the
best with respect to MSE, when compared to the MMLE, and in particular under the
Aj setting, it performed exceptionally well. Furthermore, under the A; setting, the G1
prior required the fewest number of proposals, while under the A, and Ag setting, the
G2 prior required the fewest proposals. Results for n = 50 are similar and are shown in

Tables A.4 — A.6.

3.5.2 Results using the new S;

Table A.7 shows the results for A; when n = 100. For € = 0.2, compared to

the MMLE, G1, U1, and G» had a smaller MSE for each &;,7 = 1,...,5 while there was
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a decrease in the MSE under U2 for &;,7 = 1,...,3. We observe however, that the G1
prior clearly performs the best. Table A.8 shows the results for Ay when n = 100. For
€ = 0.2, compared to the MMLE, G1 and &1 had a smaller MSE for each &;,7=1,...,5
while there was a decrease in the MSE under G2 and U2 for certain &;. The results for
As and n = 100 are shown in Table A.9. For ¢ = 0.2, U2 decreased the MSE for &1, &g,
Ay, and &g, whereas the other 3 priors had a decrease in the MSE for certain &;, when
compared to the MMLE. As with the old S5, we see the affect of ay = 6 by observing
the large MSE’s and number of proposals required for the G1 and U1 priors but the
reduction in MSE and computing time by using the G2 and /2 priors.

Figure 3.3 below shows the histograms for &;,7 = 1,...5 using the ABC-AR
algorithm and the G1 prior, superimposed on the histogram using the MMLE. The
histograms were generated under the A; setting for n = 100 and ¢ = 0.2. The black
vertical line represents the true parameter values, i.e., a; = 1,7 =1,...,5. Here, we can
clearly see the bias that is present using the ABC-AR algorithm, however, we see larger
variability using the MMLE. As a whole, there has been a reduction in the MSE using

the ABC-AR algorithm as opposed to the MMLE (for this particular setting).
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Figure 3.3: Histograms comparing ABC-AR and the G1 prior to the MMLE, under A,

n =100, and € = 0.2 for &;,71 =1, ..., 5.
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In summary, as € decreases, the precision of estimation improves. Under the
Aj setting, we see a decrease in the MSE for almost every &; using each of the priors.
For the As and As settings, the reduction in the MSE for ¢&;, when compared to the
MMLE, is dependent on the prior. Furthermore, under the A; setting, the G1 prior
required the fewest number of proposals, while under the As and As setting, the G2
prior required the fewest proposals. Results for n = 50 are similar and are shown in
Tables A.10 — A.12.

Comparing computational effort between the old and new Ss, under the A;
setting, the Pearson correlation required significantly fewer proposals using G1, G2, and
U1, but the old S5 required fewer proposals for Us (which is consistent with the results
described in subsection 3.5.5). For the As setting, the old S5 tended to require fewer
proposals, while for the A3 setting, the required amount of proposals favored the new Ss.
In general, replacing the old S5 with the Pearson correlation improved on acceptance
rates. Recall that Tables A.1 — A.12 and Tables A.19 — A.20 report the average number
of proposals required to reach the desired m = 1, 000 acceptances or 15e6 proposals and
says nothing about the percentage of data sets that reached (or did not reach) the
m = 1,000 acceptances. Subsection 3.5.5 discusses these percentages between the old

and new Ss, under the A; setting, n = 100 and € = 0.2.

3.5.3 ABC-MH results

Table A.13 shows the results for A; and n = 100. We see a slight decrease
in the bias and MSE as the tolerance level decreases from ¢ = 0.8 to ¢ = 0.4 for each
prior. For € = 0.4, the G1 prior had a smaller MSE for &;,7 = 1,...,5 while U1 offered
and a decrease for &;,7 = 1,...,4 when compared to the MMLE. The G2 and U2 priors

decreased the MSE for &3 and &4 when compared to the MMLE. For ¢ = 0.8, the
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G1 and U1 priors averaged 3,517 and 3,370 acceptances, respectively, while G2 and U2
averaged 6,777 and 6,637 acceptances, respectively. Here, we see that G2 and U2 had a
higher acceptance rate than G1 and U1. However, for ¢ = 0.4, G1 and U1 averaged 403
and 389 acceptances, respectively, while G2 and U2 averaged 437 and 467 acceptances,
respectively. So the decreasing of ¢ appeared to even out the number of acceptances
between the 4 priors.

The results for Ay and n = 100 are shown in Table A.14. For ¢ = 0.4, the
G1 prior had a smaller MSE for &;,7 = 2,...,5, while U1, G2, and U2 had a smaller
MSE for certain ¢&;, when compared to the MMLE. For ¢ = 0.4, the G1 and U1 priors
averaged 3,568 and 2,844 acceptances, respectively, while the G2 and U2 prior averaged
13,412 and 12,236 acceptances, respectively. In this case, the G2 and U2 priors clearly
had better acceptance rates. The results for A3 and n = 100 are shown in Table A.15.
For ¢ = 0.4, when compared to the MMLE, the G1 and U1 priors had a smaller MSE
for &y, &s, and &s, while the G2 and U2 priors had a smaller MSE for only é&4. Under
€ = 0.4, the G1 and U1 priors averaged 1,535 and 1,156 acceptances, respectively, while
the G2 and U2 priors averaged 7,762 and 6,314 acceptances, respectively. As with the
Ao setting, the G2 and U2 priors had better acceptance rates. Results for n = 50 are
similar and are shown in Tables A.16 — A.18.

In summary, for all 3 parameter settings, there was some decrease in the bias
and MSE as € decreased. Due to the low probability of acceptance, we did not attempt
e = 0.2. As a whole, between the 4 priors, the G1 prior performed the best with
respect to reducing the MSE when compared to the MMLE, while the G2 and U2 priors
tended to have a higher number of acceptances. Again, the drawback of ABC-MH
is that the draws are highly correlated as auto correlation function plots showed (not

produced in this dissertation). Nevertheless, there was some improvement over the
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MMLE (with respect to MSE), depending on the parameter setting, prior distribution
and the parameter being estimated. However, due to the highly correlated draws, it is

suggested to use ABC-MH with caution.

3.5.4 Summary of simulations

The use of a Bayesian approach introduced significant bias in most settings,
however, in general, there tended to be a reduction in the MSE relative to the MMLE.
Under certain parameter settings and prior distributions, there was a noticeable im-
provement in the estimation compared to the MMLE, and there were settings where
there was little or no improvement. Furthermore, there were scenarios where the MSE
was smaller using MMLE than ABC-AR. Also, there were circumstances where a par-
ticular &; had a small MSE under a particular parameter setting and prior, and a large
MSE under a different parameter setting and the same prior. For example, under A,
n = 100, using the Pearson correlation and the G1 prior, the MSE for &4 was 0.047, while
under the Aj setting, n = 100, using the Pearson correlation and the G1 prior, the MSE
for a4 was 4.463. Generally, the gamma priors tended to perform better with respect
to reducing MSE and computational effort, relative to the modified uniform priors. For

this reason, we suggest use of a gamma prior in conjunction with a “small” e.

3.5.5 Comparison of acceptances between old and new Ss

Table 3.1 shows the acceptances between the old and new S5 under the A; set-
ting, n = 100 and € = 0.2 for each prior distribution. Recall that we ran each simulation
setting across 200 data sets, and for each data set, we ran it for 1,000 acceptances or

15e6 proposals.
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g1 Ul
Acceptances Old S5 New S; Old S; New S5

<10 0 0 1 0
11-250 10 0 10 0
251-500 3 0 8 0
501-750 3 0 13 0
750-999 6 0 11 0

1000 178 200 157 200

Total 200 200 200 200

G2 U2
Acceptances Old S5 New S; Old S5 New S5

<10 13 0 2 0
11-250 100 17 23 49
251-500 32 21 7 69
501-750 19 22 10 29
750-999 9 25 5 11

1000 27 115 153 42

Total 200 200 200 200

Table 3.1: Comparing acceptance rates between the old and new S5, under A, n = 100,

and € = 0.2.

For the G1 and U1 priors, using the old Ss, we can see that there were 10 and
11 data sets, respectively, that had less than 250 acceptances. In fact, under the U1
prior, there was 1 data set that had no more than 10 acceptances. Furthermore, there
were 178 and 157 data sets that reached the desired 1,000 acceptances. Contrast this
with the Pearson correlation, where we see that all 200 data sets achieved the desired
1,000 acceptances for both the G1 and U1 priors.

For the G2 prior, using the old S5, there were 13 data sets that had no more than
10 acceptances, 132 data sets that had between 11 and 500 acceptances, and only 27 data
sets that achieved the full 1,000 acceptances. Using the Pearson correlation, there were
no data sets that had no more than 10 acceptances, 38 data sets that had between 11 and

500 acceptances and 115 data sets that achieved the full 1,000 acceptances. Thus, for
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the G2 prior, using the Pearson correlation, while the acceptance rates suffered relative
to the G1 and U1 priors, the acceptance rates were still significantly better than using
the old Ss.

For the U2 prior, using the old Ss, there were 2 data sets that had no more
than 10 acceptances, compared to 0 data sets using the Pearson correlation. However,
for the old S5, there were 30 data sets that had between 11 and 500 acceptances and
153 data sets that achieved the full 1,000 acceptances, while for the Pearson correlation,
there were 118 data sets that had between 11 and 500 acceptances and only 42 data
sets that achieved the full 1,000 acceptances. So for the U2 prior, the old S5 had better
acceptance rates than the Pearson correlation, which was an unexpected result.

Overall, we can see that using the Pearson correlation improved on the ac-
ceptance rates, however, this improvement is dependent on the prior. Under the G1
and U1 priors, there was vast improvement in acceptance rates, while there was con-
siderable improvement under the G2 prior. However, we do note that for the /2 prior,
the acceptance rate was better using the old Ss, so we suggest using careful attention
when selecting the prior and summary statistics. Comparisons for other settings are not

produced in this dissertation.

3.6 8 parameter model

For the 8 parameter model, we consider settings A4 = (2,1,1,2,4,6,2,1)" and
As =(3.5,2,1.5,4,1,2.5,3,4.5)", both for a sample size n = 100. Table A.19 displays the
results for the Ay setting. As with the 5 parameter model, the bias and MSE decreases
as € decreases from 0.8 to 0.2. We notice that there is a significant amount of bias and

large MSE for a5 and &g under the G1 and U1 priors, however, the situation improves
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significantly under the G2 and U2 priors. This is due to G1 and U1 primarily proposing
values in low posterior regions. Table A.20 shows the results for As. Here, we can see
that there is a significant amount of bias and MSE for &, é4, and &g under the G1 and
U1 priors, but is not present for the G2 and U2 priors. Due to the complexity of the 8
parameter model and not having a baseline to compare results, we did not invest much

effort into the inference of this model.

3.7 Application to correlated binomial random variables

To motivate our application of the 5 parameter bivariate beta distribution, let
us consider the example from Arnold and Ng (2011), in which they describe the use of
the 5 parameter model as the prior distribution to correlated binomial random variables.
They describe the ABC-AR algorithm to draw samples from the posterior distribution.
We will demonstrate this example by letting X1~ Bin (15, p1) and Xo~Bin(15, p2), where
p1 and pg are unknown, and further assume that X; and X, are correlated. Table 3.2

shows the outcome of this experiment.

X1
X5 ‘ 0 1 ‘ Total
0 [3 4] 7
1 |2 6] 8
Total | 5 10 | 15

Table 3.2: Bivariate binomial counts.

For convenience, call Table 3.2 as T. We wish to estimate (pi,p2) using a
Bayesian approach. Since p; and po are correlated, we can use the 5 parameter bivariate
beta model as the prior distribution. Since this is a low dimensional discrete model,

we can simulate from the posterior distribution. However, we wish to make compar-
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isons between drawing from the posterior and the approximate posterior distribution.
To do this, we compare the generated auxiliary table T’ to the observed table T. If T’
is sufficiently close to T, we accept the proposed candidate parameter. Here, we must
define what it means for T/ &~ T. While there are numerous ways of defining “close”, we
simply consider the absolute difference between the cells of T/ and T. In other words,
let T = {a;;} and T' = {b;;}, and the distance function be p = 37, 23:1 lag; — bijl.
Thus, to draw from the posterior, we accept the candidate parameter if T = T. For the
case of drawing from the approximate posterior, we accept the candidate parameter if
p= lez1 23:1 la;; — bij| < e. We consider € € {2,6,10}, and let o = (1,1,2,4,1)" be
the hyperparameters and run the algorithm for m = 1,000 acceptances. The algorithm

for the latter case is described as follows

Algorithm ABC-AR

1. Generate (p1,p2)'|a ~ BB(cx), where a = (1,1,2,4,1)".

2. Generate X1|pj~Bin(15,p}) and Xo|ph~Bin(15,p}), i.e., this will gener-
ate an auxiliary table T’.

3. Accept (p1,p2) if p = S0, 23:1 laj; — bij| < €, otherwise discard
(p1,p2)"-

Continue until 1,000 observations have been accepted.

The outcome (p1,p2)7, -+ (P1,P2)7 oo 18 an é.i.d. sample from the approximate posterior
distribution, conditioned on €. Table 3.3 below, compares the results of drawing from

the posterior distribution to an approximate posterior distribution.
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Method ‘ Exact ‘ Approximate
€ - 10 6 2
Proposals 488,111 2,692 10,521 481,152

(pr,p2) | (0.5571, 0.5173) | (0.4911, 0.5535) (0.5344, 0.5335) (0.5611, 0.5181)

Table 3.3: Results comparing draws from the posterior distribution to an approximate

posterior distribution.

o —

We can see that (p1,p2) is approximately the same for € = 2 compared to sam-
pling from the (true) posterior, and that the computational effort is also approximately
equal. For e = 6, we see that (@) is comparable to sampling from the (true) posterior,
however it requires roughly 2% of the computational effort. For e = 10, we notice that
the precision of estimation suffers, but are still reasonable, however, it requires roughly
0.5% of the computational effort. Hence, as we saw in section 2.3.1, we conclude that
for the sake of computing time, we can consider different tolerance levels without much

sacrifice in the precision of our estimates, and so this is a balance that we will seek when

selecting our tolerance levels.

3.8 Bacon and eggs

In this section, we apply the 5 parameter bivariate beta model of Arnold and
Ng (2011), to a real data example previously analyzed by Danaher and Hardie (2005).
The objective of the study was to observe the behavior of households and their grocery
store habits. In particular, we study the probabilities and correlation of purchasing
bacon and eggs on a single shopping trip. In the study, a sample of 548 independent
households were taken and details of what the household purchased at the market were
recorded over 4 consecutive trips. For each trip, it was recorded whether or not the

household purchased bacon or eggs or both, see Table 3.4. We will refer to Table 3.4 as
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T, and note that the correlation found in 7 is 0.23.

Eggs
Bacon | 0 1 2 3 4| Total
0 254 115 42 13 6| 430
1 34 29 16 6 1 86
2 8 8 3 3 1 23
3 0 0 4 1 1 6
4 1 1 1 0 0 3
Total | 297 153 66 23 9| 548

Table 3.4: Bivariate binomial counts describing bacon and egg purchases.

Let Xip and X represent the number of times the k" customer purchased
bacon and eggs over the course of the 4 trips, respectively. Clearly, X, and X, are
correlated, and so Danaher and Hardie (2005) proposed a bivariate beta binomial model
to capture the over dispersion and correlation. Let py and p. denote the probability
of purchasing bacon and eggs, respectively. In this model, (py,pe) is a bivariate ran-
dom vector, where the requirement is that it follow some bivariate joint density, where
the marginals are beta distributed. Thus, (Xkp, Xke)|(Pb, Pe) ~ BivBin(4, py, pe) where
BivBin is the notation we use to denote a bivariate binomial distribution. Furthermore,
Xpp and X are conditionally independent given (pp,pe), i.e., Xgp|pp~Bin(4,py) and
Xpe|pe~Bin(4,pe). The unconditional correlation between Xy, and Xy, is introduced
through the bivariate distribution of (pp, pe).

Danaher and Hardie (2005) proposed using the bivariate beta model from the
Sarmanov system of bivariate distributions (Sarmanov (1966)), which can be described
as g(py, Pe) = fo(Pb) fe(pe)[l + wdp(pp)Pe(pe)], Where ¢p(pp) is a bounded non-constant
“mixing” function, such that [ ¢,(1)fp(1)dl=0 (and similarly for “eggs”). The parameter

w determines the correlation between p, and p. and must satisfy the condition 1 +
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wop(pp)Pe(pe) > 0, for all p, and p. to be a valid joint density function. Furthermore,
the marginals are beta distributed, i.e., py~Beta(ay, £p) and p.~Beta(ae, Be). Letting
ou(py) = py — 1y, Where

Qp
ap + ap

= E(py) = (3.2)

and likewise for “eggs,” yields a closed form likelihood enabling estimation via maximum
likelihood. In our analysis, we define py, and pe as the probability that the k** household
will purchase bacon and eggs, respectively. Therefore, we have pg,~Beta(ay, £p) and

pkeNBeta(aey Be)-

3.8.1 Simulation setup

As a competitor to the bivariate beta distribution used by Danaher and Hardie
(2005), we propose use of the 5 parameter bivariate beta model of Arnold and Ng (2011),

as the prior distribution to (pgp, pke), that is

(pkbapk‘e)NBB(ala a2, (3, 04, 045).

Therefore,

pry~DBeta(ai + a3, aq + a5) = Beta(ay, Bp)

and

pre~Beta(ag + ag, ag + as) = Beta(ae, fe) -

Furthermore, we introduce an additional hierarchical step, meaning, we place
a prior distribution on «. Thus, after generating a candidate parameter o’ ~ 7(-),
we generate (pgp, pre) ~ BB(a/), k = 1,...,548. For notational convenience, let B, =

(P1bs D2bs - - -y P5asy)’ and B, = (P1e, P2e, - - - s P5age) be the generated proportions and let
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P = (Py, D). As we've already seen, the likelihood cannot be written down, and so we ap-
ply ABC-AR in the estimation of «;,7 = 1,...,5. In this context, since we are simulating
548 bivariate binomial random variables, it is theoretically possible to simulate T ex-
actly. However, due to the large dimensionality, the probability of this event is almost 0,
therefore, we compare 7 to 7’. Extending the distance function defined in section 3.7, let
T = {ay;} and T" = {by;}, and the distance function becomes p = 3>_, Z?zl lag; — by

We consider both the ABC-AR and ABC-MH algorithms with ¢ = 100 and
€ = 40. For the ABC-AR algorithm, the simulation was run for 500 acceptances and is

described as follows

Algorithm ABC-AR

1. Generate o' ~ m(-).

2. Generate (pip, pre)|@’ ~ BB(a) for k =1, ..., 548.

3. Generate an auxiliary table 77| p.

4. Accept o' if p= Zle Z?:1 lai; — bij| < €, otherwise discard.
Continue until 500 observations have been accepted.

Selection of prior distributions will be discussed in subsection 3.8.2. The ABC-MH al-

gorithm is described as follows

Algorithm ABC-MH
1. Initialize ), v = 1.

2. Generate a candidate parameter o ~ N(agv),af),i =1,..,5.

3. Generate an auxiliary table 7| p.

4. Accept o if p =377, Z?Zl lai; — byj| < €, otherwise discard.

5. Set a1 = o/ with probability

D PRGNSR ) herwi (+1) = )
=1 @) (P—ZZWU— 11 < €) ¢, otherwise set =a'V.

=1 j=1
6. Continue for 5e6 iterations.

For ABC-MH, the simulation was run for 5e6 iterations using a random walk
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(with a normally distributed proposal). The component standard deviations (o;) se-
lected were 0.10, 0.10, 0.001, 0.001, and 0.2 for ¢ = 1, ..., 5, respectively. Since we know

a; > 0, any draws that yielded negative values resulted in an automatic rejection.

3.8.2 Prior distributions / Empirical Bayes

For the ABC-AR algorithm, we consider gamma priors using an empirical Bayes
approach, in other words, we use the data in the selection of the prior distributions.
Specifically, we computed marginal MLE’s under the beta binomial model and used
this as a guide. Using the beta binomial distribution family function within the VGAM
package in R, we have the following MLE’s, &; = 0.3571, Bb = 4.4552, &, = 0.8592, and

Be = 3.9593. Linking our bivariate beta parameters to these estimates, we have

—

o1 + as = &y = 0.3571 ox + as = By = 4.4552

o —

02 + = Ge = 0.8592 a3 + a5 = B, = 3.9593 . (3.3)

We wish to choose values for &; such that «; will center around &;, and have a variance
of 1, ie., a; ~ I'(&%,1/&;),i = 1,....,5. (Note that in this context (section 3.8.2), &;
denotes the values of the hyperparameters. However, in the next section, &; will denote
the posterior estimates). Furthermore, we choose &;,i = 1,...,5 such that the Monte
Carlo correlation estimate for BB(éy, ..., s) is close to the correlation found in Table 3.4.
We are presented with the problem of having 4 equations and 5 unknowns. Here, we
simply choose &;,i = 1,...,5 close to the constraints in (3.3), subject to a correlation of
near 0.23. Our chosen values are &1 = 1.0487, o = 1.6649, &3 = 0.1012, &4 = 0.1128,
&5 = 3.7697, where the Monte Carlo correlation is 0.2336. As we will see, this choice

allows for exploration of the parameter space with reasonable computational effort.
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3.8.3 Results for the bacon and egg analysis

Table 3.5 shows the estimated posterior means and correlations for ABC-AR
and ABC-MH, where we can see that each simulation setting yielded similar results.
However, there was a vast computational difference between ¢ = 100 and ¢ = 40. Specif-
ically, for the ABC-AR algorithm, the number of proposals required were 47,219 and
more than 6.18e8 (not shown in Table 3.5) for e = 100 and e = 40, respectively. For
ABC-MH, from the 5e6 iterations, there were 242,729 and 14 acceptances (not shown
in Table 3.5) in the chain for e = 100 and e = 40, respectively. Given the similarity of
the estimates, it appears that use of € = 40 may be too computationally demanding and
the larger € value will suffice. Furthermore, the estimates of &g and &4 are near 0, which

suggests that the 3 parameter model of Olkin and Liu (2003) may be more appropriate.

‘ (3[1 dg (543 544 d5 r
ABC-AR (e =100) | 0.3295 0.8760 0.0029 0.0047 4.4429 0.1178
ABC-AR (e = 40) 0.3525 0.9256 0.0015 0.0026 4.5349 0.1224
ABC-MH (e = 100) | 0.3067 0.9186 0.0321 0.0054 4.6023 0.1062
ABC-MH (e =40) | 0.3421 0.8345 0.0004 0.0005 4.0853 0.1271

Table 3.5: Comparison of results between ABC-AR and ABC-MH algorithms.

Table 3.6 compares our results to the model proposed by Danaher and Hardie
(2005), where we can see the estimates are similar. The obvious difference is between
the estimated correlations, when compared to the observed table correlation of 0.23. In
short, our model underestimates this correlation (where as Danaher and Hardie (2005)
overestimates the table correlation), but still provides a better fit than that of Danaher

and Hardie (2005).
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~

OAéb /Bb de /Be r
D&H (2005) 0.3571 4.4551 0.8592 3.9593 0.4300
ABC-AR (e =100) | 0.3324 4.4476 0.8807 4.4458 0.1178
ABC-AR (e = 40) 0.3540 4.5375 0.9282 4.5364 0.1224
ABC-MH (e =100) | 0.3388 4.6077 0.9240 4.6344 0.1062
ABC-MH (e =40) | 0.3425 4.0858 0.8350 4.0857 0.1271

Table 3.6: Comparison of results between BB(a) and Danaher and Hardie (2005).

Table 3.7 shows observed average cell counts based on accepted parameters for

ABC-AR. Comparing Table 3.7 to Table 3.4, we can see there is no apparent pattern of

bias between the tables. However, we do see a reduction in bias as € is decreased from

100 to 40. Hence, it is clear the observed bias stems from the ABC-AR approximation

rather than the prior.

e = 100, Eggs
Bacon 0 1 2 3 4 Total
0 253.48 116.00 48.10 17.04 3.98 | 438.60
1 41.01  21.67 10.02 3.58 0.88 | 77.16
2 12.00 6.57 3.41 142 042 | 23.82
3 3.29 1.86 1.14 0.53 0.19 | 7.01
4 0.57 0.42 0.25 0.11 0.05| 1.40
Total | 310.35 146.52 62.92 22.68 5.52 548
e = 40, Eggs
Bacon 0 1 2 3 4 Total
0 254.03 115.64 43.87 14.73 4.66 | 432.93
1 36.27 27.66 13.80 4.82 0.93 | 83.48
2 10.16 7.72 3.30 192 048 | 23.58
3 2.30 1.45 1.78 0.59 0.23| 6.35
4 0.72 0.47 0.33 0.11 0.03| 1.66
Total | 303.48 152.94 63.08 22.17 6.33 548

Table 3.7: Average cell counts based on the 500 accepted parameters of the ABC-AR

algorithm.
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3.8.4 Alternate analysis

In this section, we briefly consider an alternative analysis of the bacon and
eggs data with negative correlation. In this case, the model of Olkin and Liu (2003)
would be inappropriate, since it only allows for positive correlation. To this end, we
consider a partial transpose of the data as shown in Table 3.8 below, where the observed

correlation is -0.23.

Eggs®
Bacon |0 1 2 3 4 | Total
0 6 13 42 115 254 | 430
1 1 6 16 29 34 86
2 1 3 3 8 8 23
3 1 1 4 0 0 6
4 0 0 1 1 1 3
9

Total 23 66 153 297 | 548

Table 3.8: Transposed data to illustrate a negative correlation.

We apply ABC-AR and ABC-MH. Under the new table, the MLE’s are &; =
0.3571, By = 4.4552, &, = 3.9593, and . = 0.8592. Linking our bivariate beta model,

we have the following

o1 +as = &, = 0.3571 oy + as = By = 4.4552
02 + 0y = Ge = 3.9593 a3 + a5 = B, = 0.8592 . (3.4)

Therefore, &;,i = 1, ..., 5 are chosen close to the constraints in (3.4), subject to a correla-
tion of near -0.23 (again, in this context, &; denotes the values of the hyperparameters).
The chosen values are &; = 0.3697, & = 0.2714, &3 = 0.1892, &4 = 3.6822, and
a5 = 0.7661, where the Monte Carlo correlation is -0.2338.

As with before, we ran the ABC-AR and ABC-MH algorithms for e = 100 and

€ = 40, and the results are summarized in Table 3.9. The results from each method are
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similar, though there is more variability than in the original analysis. Here, perhaps a
4 parameter model would suffice, since &; is near zero for most settings. In general, the
Monte Carlo correlation is considerably smaller (approximately -0.55) for three of the
settings than the observed correlation in Table 3.8. However, the estimated correlation
under ABC-AR and e¢ = 40 is -0.2679, which is close to the table correlation of -0.23.
One explanation as to why the results vary significantly for ABC-AR and ¢ = 40 could
be due to the fact that we are choosing values for &;,i = 1,...5 from the 4 equations

in (3.4), and so there may not exist unique solutions to &;,i = 1, ...5.

dl dg dg d4 d5 r
ABC-AR (e =100) | 0.1906 0.2509 0.1642 4.0214 0.7247 -0.2679
ABC-AR (e = 40) 0.0245 0.1265 0.3655 4.2917 0.5761 -0.5647
ABC-MH (e = 100) | 0.0261 0.1618 0.3313 4.1398 0.6108 -0.5312
ABC-MH (e =40) | 0.0094 0.5725 0.3872 4.2807 0.6235 -0.5617

Table 3.9: Comparison of results for ABC-AR and ABC-MH using the partially trans-

posed data.

Table 3.10 below shows the posterior estimates for ag, 8y, e, e, and the cor-
relation under the 4 settings. The results are similar, where the only exception is in the

estimated correlation under ABC-AR and € = 40.

| @ B G Be r
ABC-AR (e = 100) 0.3548 4.7461 4.2723 0.8889 -0.2679
ABC-AR (e = 40) 0.3900 4.8678 4.4182 0.9416 -0.5647
ABC-MH (e = 100) 0.3574 4.7506 4.3016 0.9421 -0.5312
ABC-MH (e = 40) 0.3966 4.9042 4.8532 1.0107 -0.5617

Table 3.10: Comparison of results for ABC-AR and ABC-MH using the partially trans-

posed data.
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Chapter 4

Proposed methods for

improvement over ABC-AR

4.1 Introduction

The motivation for this chapter stems from the low acceptance rates of the
ABC-AR algorithm. Here, the ideas presented is to develop new approaches that are
two fold, first, to search for maximum likelihood type estimates in the absence of the
likelihood function and second, to reduce the computational effort that is required of
ABC-AR (and other existing ABC methods without the cost of highly correlated draws).
The ideas presented in this chapter are founded on the fact that maximum likelihood
estimates are viewed as the parameter value(s) that are most likely to have produced the
observed data. In this chapter, the proposed algorithms use steps within the ABC-AR
algorithm to allow exploration of the parameter space, to identify parameter values that
are unlikely to have generated the observed data, and thus sequentially “move” to the

parameter region that is highly likely to have generated the observed data.
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4.2 Motivation to modify ABC-AR

As discussed (and seen) in previous chapters, the ABC-AR algorithm can pro-
duce low acceptance rates. The acceptance rates are a function of the tolerance level and
prior distributions. If a prior distribution is chosen that leads to a high percentage of
“bad” proposals, then there will be a low rate of acceptances. This is the issue that we
wish to address. Consider toy example two from section 2.3.1. Recall that the data was
generated from a sample size of 30 from a normal distribution with unknown mean 2 and
known variance of 1 and we observed > x; = 54.9275 (or £ = 1.8309). The prior for p

followed a standard normal distribution, i.e., u ~ N(0, 1), and the ABC-AR algorithm is

Algorithm ABC-AR continuous

1. Generate p/ ~ N(0,1).

2. Cenerate {Y;}22, b N/, 1).

3. Accept g/ if | 3y — 2 3@ |=| £ 3y — 1.8309 |< ¢, otherwise discard /.
Continue until m observations have been accepted.

The outcome pf, ..., u), is an i.i.d. sample from N.(1.7719,0.0323). The results for

e €{0.1,0.5,1} and m = 1,000 acceptances are presented again in Table 4.1.

Method | Bayes ‘ ABC-AR continuous

€ - 1 0.5 0.01
Proposals - 4,692 12,112 643,754
i 1.7719 | 1.3332 1.6501 1.7715

Table 4.1: Results from toy example two using a N(0, 1) prior.

From Table 4.1, since the prior distribution is proposing values in high accep-
tance regions, the computational effort is not too intensive. Here, we observed 4,692

proposals for € = 1 and 643,754 for ¢ = 0.01. Now, let us consider the computational
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effort when we choose a prior distribution that is far from the posterior (or in low ac-

ceptance regions), say, let u ~ N(6,1). The results are summarized in Table 4.2.

Method ‘ ABC-AR continuous
€ 1 0.5 0.01
Proposals | 1,153,090 6,727,694 559,975,842
i 2.6642 2.2265 1.9689

Table 4.2: Results from toy example two using a N(6, 1) prior.

From Table 4.2, we can see the effect of choosing a prior distribution in low
acceptance regions. For ¢ = 1, the number of proposals required is more than 1.5e6 and
slightly less than 6e8 for ¢ = 0.01. This is a drastic change compared to the N(0, 1)
prior. Now, let us consider a prior that is centered far from the posterior, but has a
large enough variance so that it will still propose plausible values to have generated the

data, say u ~ N(8,2). The results are summarized in Table 4.3.

Method ABC-AR continuous
€ 1 0.5 0.01
Proposals | 203,629 526,167 29,711,780
il 2.3360  1.9887 1.8917

Table 4.3: Results from toy example two using a N(8,2) prior.

From Table 4.3, for ¢ = 1, the number of proposals required was 203,629 and
slightly less than 3e7 for e = 0.01. Therefore, we can see that the acceptance rates are
better than using the N(6,1) prior even though the mean is at 8 (as opposed to 6),
which is due to the larger variance, which allows the prior to propose values in higher

acceptance regions with a higher frequency. Now, for illustration, let’s examine the be-
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havior for when the prior distribution is centered around the MLE, which is £ = 1.8309,

and with a variance 1, i.e., let u ~ N(1.8309,1). The results are

Method ABC-AR continuous

€ 1 0.5 0.01
Proposals | 1,445 2,665 126,415
7 1.8412 1.8344 1.8271

Table 4.4: Results from toy example two using a N(1.8309, 1) prior.

From Table 4.4, we see that the number of proposals for ¢ = 1 is 1,445 and
the number of proposals for ¢ = 0.01 is 126,415. This is a dramatic decrease in the
acceptance rates found in Table 4.2. Therefore, the higher rate of proposals that are
“close” to the MLE, the higher the acceptance rate. This observation motivates our

proposed work in the next section.

4.3 Maximum likelihood

If the sample is representative of a population and we assume that the popula-
tion belongs to a family of distributions with unknown parameters, then the maximum
likelihood estimate is the parameter value that will maximize the likelihood function. In
other words, the maximum likelihood estimate seeks to find the parameter value that is
most likely to have generated the data under the assumption that the data follows some

parametric model.

Y



Definition 1: Let X = (X, Xy, ..., X,;) be a random vector with PDF (PMF)

flx1,x9,...,2,;0), 8 € O. The function
L(6;x1,x9,...,2p) = f(x1,22,...,2,;0),

considered as a function of 8, is called the likelihood function.
Definition 2: The principle of maximum likelihood estimation consists of choosing as
an estimator of @, a 8(X) that maximizes L(0; 21, %2, ..., ), that is, to find a mapping

0 of R, — R that satisfies

L(@; X1, X2, .oy Ty) = sup L(0;z1, 2, ..., Tp). (4.1)
0cO

If a 6 exists in (4.1), we call it a maximum likelihood estimator (MLE).

We will now provide some examples illustrating the relationship between the MLE and

acceptance rates.

4.3.1 Toy example one

Let X~Bin(20,0.6), where p = 0.6 is unknown. Suppose we observed >z =
13, and 80 pPypie = % = 0.65. Therefore, if we were to simulate Y ~Bin(20,p) for every
p € (0,1) and observe the rate for which >y = 13, we would expect p = 0.65 to produce

the highest acceptance rate. We propose the following algorithm to validate our claim

Algorithm MLE exact

1. Let P = {0.01,0.02, ..., 0.99}.

2. For each p € P, generate Y ~Bin(20,p). Now repeat 50,000 times.
3. Evaluate the proportion of times where )y = 13.

Figure 4.1 shows the acceptance rate for each p € P (in increments of 0.01).

We see that the acceptance rate is zero for p € (0,0.3), then starts to gradually increase,
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and reaches its maximum around p = 0.65 and then starts to tail off. This picture

confirms our expectation.

0.15
1

— MLE=0.65

0.10
1

Acceptance Rate

0.05
1

0.00
1

Figure 4.1: Values near p = 0.65, generate the highest proportion of acceptances.

This example was a univariate, discrete model, and so there is a positive proba-
bility that we can match sufficient statistics, however, this is not the case for continuous
models, so we adjust our algorithm by allowing sufficient statistics to be “close” to each

other (similar to the ABC-AR continuous algorithm from section 2.3).

4.3.2 Toy example two

Suppose X;~N(10,16),i = 1,...,25, where p = 10 is unknown and o2 = 16
is known and suppose we observe >z = 260.5526, so that £ = 10.4221. If we were
to simulate Y;~N(10,16),: = 1,...,25, for every p and observe the rate for which
|9 Sy — 5= 2@ = |55 >y —10.4221] < 0.01, we would expect 1 = 10.4221 to produce
the highest acceptance rate. Now, it is impossible to simulate every value for u (since
the parameter space for y is the entire real line), so we’ll restrict our range to pu € (7,13),

which contains the MLE of £ = 10.4221. Our algorithm is
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Algorithm MLE continuous

1. Consider P = {7,6.1,...,12.9,13}.

2. For each p € P generate Y;~N(a,16),i = 1,...,25. Now repeat 50,000 times.
3. Evaluate the proportion of times where |5= >~y — 10.4221| < 0.01.

From Figure 4.2 below, we see that the acceptance rates increase in the neigh-
borhood of the MLE (z = 10.4221), and indeed the value that produced the highest

acceptance rate was near y = 10.4221.

1

— MLE=10.4221

1 1 1

Acceptance Rate

1

1

0.000 0.002 0.004 0.006 0.008 0.010

Figure 4.2: Values near = 10.4221, generate the highest proportion of acceptances.

4.3.3 Toy example three

Let us consider another example for the continuous case. Suppose X;~Exp(2),i =
1,...,30, where A = 2 is unknown. Suppose we observe Y x = 54.3492 so that A=z =
1.8116. If we were to simulate Y;~Exp(2),i = 1,...,30 for every A (here we will consider
A € (0,6)) and observe the rate for which |35 >y — 5 > @] = |35 >y — 1.8116] < 0.01,

we would expect A = 1.8116 to produce the highest acceptance rate. Our algorithm is
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Algorithm MLE continuous

1. Consider P = {0.1,0.2,...,5.8,6}.

2. For each p € P, generate Y;~Exp(a),i = 1,...,30. Now repeat 50,000 times.
3. Evaluate the proportion of times where \% >y —1.8116| < 0.01.

From Figure 4.3 below, we see that the value that produced the highest accep-

tance rate was near A = 1.8116, thus concluding our expectations.

0.020
1

0.015
1

— MLE=1.8116

Acceptance Rate
0.010
I

0.005
1

0.000
1

Figure 4.3: Values near A = 1.8116, generate the highest proportion of acceptances.

4.4 Proposed method one

In our first toy example, we considered a discrete model and demonstrated
through simulation efforts that there is a correspondence between the MLE and the
proportion of times that the simulated data matches the observed data. For the second
and third examples, we used continuous models to make the same establishment, however
the difference in the continuous case is that we needed to impose a small tolerance
distance between the simulated and the observed data.

Now that we’ve heuristically shown that the MLE is the most likely parameter

value to reproduce the data, lets try and embed this idea into an ABC context. The
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proposed algorithm, which we’ll call “Algorithm proposed method one” (Algorithm PM

one for short) is described as follows

Algorithm PM one

1. Generate a large set of candidate parameters based off the prior distribu-
tions.

2. Generate an auxiliary data set (or multiple data sets) from each of the
candidate parameter values and compare the average of auxiliary sufficient
statistics to that of the observed sufficient statistics through some distance
function.

3. Keep the d parameter values that generated the average of auxiliary
sufficient statistics that were nearest to that of our observed data set. Now
use these d parameter values to “update” our prior distributions, where the
center is at the average of the d accepted values.

4. Generate a new set of candidate parameters from the “updated” priors.

5. Evaluate how much the previous “updated” parameters have changed.
If this change is within some tolerance level, we stop, otherwise we repeat
steps 2-4.

To estimate the unknown parameters, we consider 3 options. The first option
is to take the average of all the values within the chain. The second option is to take
the average of the previous d values, and the third option is to use the last value in
the chain. We will apply 2 settings of this general algorithm to a data set. Under
the first setting, we will generate 1 auxiliary data set for each candidate parameter.
For the second setting, we will generate multiple auxiliary data sets for each candidate

parameter.

4.4.1 Iron intake example

Consider the data set taken from the food and nutrition board of the national
academy of sciences taken from Mendenhall et al. (2012). The data consists of iron
intakes, in milligrams, which were obtained during a 24 hour period for 45 randomly

selected adult females under the age of 51. The data is
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15.0 181 144 146 109 181 182 183 15
16.0 12.6 16.6 20.7 198 11.6 128 156 11
153 94 195 183 145 16.6 11.5 164 12.5
14.6 119 125 18.6 13.1 121 10.7 173 124
170 6.3 16.8 125 163 14.7 127 16.3 11.5

For this data set, we will assume that X; i " N(p,0?), i = 1,...,45, where
p and o2 are unknown. The Shapiro Wilk test for normality yielded a p-value of
0.5008, so the assumption of normality is valid. The observed summary statistics are

= (> 2,3 2%) = (660.6,10115.88) and so (Z,x2) = (14.68,224.7973). Applying PM

one, we have

Algorithm PM one

1. Generate 0, i () W), ,...,m where 0 = (u;,02)". Here, let
; m(})(-) and o? gt 7r((712)(-), where 7(1)(+) denotes the initial prior

distribution.
2. For each candidate parameter 6, we will generate r auxiliary data
sets, ie, yij (j = 1,..,7). Let Si() = (Cy,> %) be the sum-
mary statistics of y;;. Take the average of summary statistics gener-
ated by 0/, i.e., (Zy,2y2)i1+.7.".+(2y,2y2)w = >y, 92)i. Now com-
pare this to the observed summary statistics S, via the distance function
=y =z +>Xv? - > 2%;. Let p = (p1,...,pm) be the set of
computed distances.
3. Let p; = (p1), ...,p(m)) be the ordered set of p. Keep only p(1) and p(y)
and consider the 0 that generated p(1) and p(z) and denote these candidate
values as 0’(1) and 9’(2), respectively. Taking the average of these values, we

0/ g (op
= ((“15“2),( It 22;)) (fin,02) = 5. Here, v denotes the

have
h iteration.

!
<1>+9<2>
2

4. Generate a new set of candidate values, 07 i ﬂ(“)( -), i

i=
an “updated” prior, i.e., u; i 7@(;))(-) and o? S 7r () Here, both p;

and O'Z-2 center around fi, and &2 respectively.

5. To monitor the change in “updated” values, we look at the previous 6 sets
of 8@, ie., 64 0D 5§05 and measure the change in these distances
between i and 62, i.c., let g = |fia— (- R 1)~ F-2) |+ (a1
Fe(d— 5"""7(1 (d1‘+‘0d 1~ ( )H' +‘0(d4) (d5)‘

If ¢ < 3 then stop, otherwise, repeat steps 2-4.

1,...,m from
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We now apply two settings under this algorithm. For the first setting, we drew
m = 100,000 candidate parameters and for each parameter, generated only one data
set, i.e., 7 = 1. For the second setting we drew m = 1,000 candidate parameters, and
for each parameter, we generated » = 100 data sets. Furthermore, we also repeated the
simulations using S = (3, /> #2) to draw comparisons.

Table 4.5 below shows the initial prior distributions used. Both p; and o7 have
a mean of 6 and a variance of 4 and are independent. For the updated priors, both u;

and o7 center around fi; and 5’12, respectively, with a variance of 4.

Prior | Distribution

m. (+) | N(6,4)
7 () | N, 4)

)
)

7 () | T(6%/4,4/6)
) | T(((67)%)/4,4/5})

Table 4.5: Prior distributions for PM one and the iron intake data.

Table 4.6 displays the results for the two settings. Again,  and o? are esti-
mated by taking the average of all the values in the chain, the average of the previous
5 values in the chain, and the last value in the chain. These estimates are presented in

the third, fourth, and fifth columns, respectively.
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m = 100,000, r = 1
S() Iterations (ﬂ? &Z)All (/&7 5—2)5 (:&7 &2)1
.5 22) 70 (14.62,9.62) (14.36,8.25)  (14.49,7.60)

Sz, /3 22 93 (14.66,9.36)  (14.70,7.89)  (14.74,8.32)

m = 1,000, r = 100
S() Iterations (:&’7 (}2)All (/la &2)5 (:&'7 &2)1
DEDIED) 54 (14.57,8.8%) (14.65,10.81) (14.64,11.13)

Sz, /3 22 8 (14.37,8.62)  (14.67,9.09)  (14.67,8.85)

Table 4.6: Results using PM one and the iron intake data.

The MLE’s for our data set are (ji,52) = (14.68,9.29). We can see that under
both settings and regardless if the estimate was calculated using the entire chain, the
average of the previous 5 values in the chain, or the last value in the chain, that the
estimate for p is close to the MLE. The estimate for o2 had some variation, but were
all still comparable. The first setting (m = 100,000 and r = 1), under both S =
(X 2,3 2% and S = (3 z, /> 22) and using the average of the entire chain, yielded
the closest estimates to the MLE. Furthermore, the first setting required more iterations

than for the second setting (m = 1,000 and r = 100) until convergence.

4.5 Proposed method two

The idea behind our second proposed method is to propose candidate parame-
ters within a region of the parameter space and conditioned off this parameter, simulate
a data set (based off a large sample size) and use the information to decide whether or
not the candidate parameter is likely to have generated the data. For example, think
of the observed sufficient statistics, s = (3, ..., %”) as the “true” theoretical moments.
Now, generate an auxiliary data set y (based off a large sample size m), and suppose

* *
51 Sp

we observed auxiliary sufficient statistics, s* = (7%, ..., -2

) such that
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P ElfiiY)],i=1,..,p as m — oc.

3 [

From the auxiliary data y, we can construct a confidence interval for E[f;(Y)],i =
1,...,p. If the observed sufficient statistics, >*,7 = 1,...,p are within each of the confi-
dence intervals, this is evidence that the proposed candidate value generated the data.

First, a “general” algorithm will be proposed (called Algorithm PM two) and

then we will describe the algorithm applied to normal data (u and o2 are unknown) and

then make application to the iron intake data.

Algorithm PM two

1. Generate 0’ = (61, ...,0,) ~7(-).

2. Generate a data set y (based off a “large” sample size m) from the model
p(yl6').

3. Construct a confidence interval for E[f;(Y)],i =1,...,p, and call it C;.
Note: If the exact distribution of S;(-) is not known, we can use Monte
Carlo methods to estimate C;.

4. Accept 0" if 2t € C; for all i =1, ..., p.

Repeat until k acceptances.

Take the mean of accepted values 6, ..., 8}, to be the estimate of 8. As a side note, up
until this now we have used m to represent the number of acceptances, but we will now

use m to represent the “large” sample size and k as the number of acceptances.

4.5.1 Application to normally distributed data

We make application of PM two to normally distributed data as follows
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Algorithm PM two

1. Generate 8 "% 7(-), where @' = (11, 02)', and p~N (), ) and o2~T'(a, §)
and observe (u/,0?).

2. Generate Y; i N, 02/), i =1,...,m where m is sufficiently large.

3. Construct confidence intervals for E(Y') and E(Y?), and call them C; and
Cs, respectively.

4. Accept 0' = (u,0?), if Z, € C; and z2 € Co, where Z, = % and

Repeat until k acceptances.

Take the mean of accepted values, (u,02)],..., (1, 02)} to be the estimate of (u,0?).
Since m is large, we can rely on asymptotic theory for sample moments to construct

confidence intervals for § and y2. We use the following result

m

Thus, in our normal example, we have

2 2

o — 5 20
%wN<m> amly%~N<¥+w,(f+2f0-

m m

So, an approximate 100(1 — )% confidence interval for E(Y) and E(Y?) is

<Zy s 2y 8>

=g , ==
m 2 m

3

and

[N]})

Yy B 252(s2 +272) Y y? o 25%(s? + 272?)
vm " m B vm ’

respectively.

4.5.2 Iron intake example revisited

We apply PM two with a sample size of m = 10,000 and k£ = 100 acceptances.
Here, we considered 4 “priors”, where each of the priors have a variance of 4 (for both

w and o?). The first prior was centered near the MLE’s, while the other 3 priors were
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centered away from the MLE’s to compare computing time. The 4 prior distributions

are described in Table 4.7 below.

() | ¢ g’

P1 | N(14,4) T(9%/4,4/9)
Py | N(8,4) T'(6%/4,4/6)
Py | N(10,4) T'(122/4,4/12)
Py | N(20,4) T'(4,1)

Table 4.7: Prior distributions for PM two and the iron intake data.

Table 4.8 below, shows that regardless of the prior, the estimates are close to
the MLE. Even the P prior (which required the most proposals), where the centering
values are significantly far from the MLE’s, still yielded estimates close to the MLE. The
P; prior required the fewest proposals (no surprise) and yielded the closest estimates to

the MLE.

m(+)  Proposals f o2
P1 16,284 14.6738  9.5248
Po 210,652  14.6842 8.5534
Ps3 37,098 14.6557 10.6451
Py 467,247  14.6940 8.4712

MLE’s - 14.6800  9.2949

Table 4.8: Results using PM two and the iron intake data.

4.6 Proposed method three

In this section, we extend the above proposed method (and call it Algorithm
PM three) to allow for an update in the prior distribution. Here, the idea is to run PM
two, and based on the accepted values, we then update the prior distributions based on

the average and variability of the accepted values. We then run PM two again for k
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acceptances (but now using the updated priors). Additionally, after each iteration of k
acceptances, we have the option of increasing m. The thought being, that during the
first iteration of k acceptances, we gain some insight of plausible candidate parameters
to have generated the data, and thus, as to where to propose values. Also, after the
second iteration, we might consider increasing m to further discard “implausible” values,
and thus get “closer” to the MLE. We continue this process until the distance between
the average of accepted sufficient statistics and the observed sufficient statistics are

sufficiently small.

4.6.1 Application to normally distributed data

Let us apply PM three to a population where the observations are normally
distributed. To better describe the proposed algorithm in the context of normal data,

let us define the following notation, let

phoof
/ 2! (v)
o’ o
P(v) = 2 2 = </:l: 6:2>
W o

be the matrix of accepted parameters for the v iteration. Here, denote the mean
and variance based on fi as ./\/l,(f) and V,Sv), respectively and denote the mean and

variance based on &2 as .Mg_vg) and ij;), respectively. Further, denote the accepted
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sample moments as

Yr Y1
= .92
G) _ Ya Y3
Yk y;%

and now take the average of the accepted sample moments, i.e.,

(v) (v)
Y1 +Yot g =
S*(U) _ k _ Y

yi+ys++yi 2
z

We now apply PM three to normally distributed data as follows

Algorithm PM three

1. Propose (/~N (X, 3) and 0% ~T'(av, §) and observe (1/,0?).

2. Generate Y; i N/ 0%),i=1,..,m.

3. Construct confidence intervals for E(Y) and E(Y?), and call them C; and

Cy respectively.

4. Accept 0" = (i/,0%) if T € C; and 22 € Cs.

Repeat until k£ acceptances.

5. Compute M,(f), V,(f), ./\/l((;;) and Vg).

6. Compute d = |[§ — Z| + |y% — 22|

7. Ifd < E( ;chen( S;tOp, else repeat steps 1-7 by using M’NN(MSJ), ﬁv)) and
2(v v

Note: To prevent the variance of the prior from getting too small, we take

the max {Vg), bo} or max {V,(f), bo} where bg is some positive real number.

Optional: Increase m to obtain better precision.

4.6.2 Iron intake example revisited

We ran PM three using 4 (initial) priors, which is representative of different

centers and variability. We also use large variances to allow for the proposal of plausible
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candidate parameters. For each iteration, we ran it for k£ = 500 acceptances. For the first
iteration, we used m = 100, for the second iteration, we used m = 1,000, and for each
iteration afterward, we used m = 10,000. Furthermore, we used ¢ = 0.02 and by = 0.5.
The 4 prior distributions are described in Table 4.9, and the results are summarized in

Table 4.10.

() | p o’

P | N(3,14) T(3%/12,12/3)
Py | N(6,14) T(42/9,9/4)
P3| N(16,10) T'(14%/3,3/14)
Py | N(22,8) T'(162/6,6/16)

Table 4.9: Prior distributions for PM three and the iron intake data.
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P; Iteration Proposals Distance i 52

1 1,513,301  3.0422  14.5885  6.8530
2 3,842 0.0274  14.6789  9.3641
3 15,497 0.1361  14.6769  9.5872
P1 : : : E :
20 6,357 0.1012  14.6770 9.4510
21 6,345 0.0297  14.6751  9.4021
22 6,411 0.0046  14.6779  9.3785
Iteration Proposals Distance i 52
1 126,846 2.5852  14.6551 6.1970
P 2 4,022 0.4154  14.6980 8.4177
3 13,313 0.0018  14.6796  9.3359
Iteration Proposals Distance I 52
1 3,050 4.0252  14.6663 14.2421
2 2,274 2.5301  14.6094 13.9981
3 48,969 1.2380 14.6367 11.7381
Py : : : z
30 6,209 0.0919  14.6755 9.4123
31 6,119 0.0741  14.6780 9.4115
32 6,080 0.0144  14.6779 9.4161
Iteration Proposals Distance i 52
1 70,475 8.8433  14.9024 15.9534
2 2,932 3.4648  14.5997 15.6505
3 112,957 1.2879  14.6401 11.8187
Py : : : : :
60 6,226 0.0466  14.6809 9.3578
61 5,935 0.0453  14.6741 9.3771
62 6,527 0.0062  14.6777 9.3774

Table 4.10: Results for PM three and the iron intake data.

From Table 4.10, we can see that regardless of the prior distribution, the pa-
rameter values are “moving” closer to the MLE’s of (j1,62) = (14.68,9.2949), and that
the estimate (the final parameter value in the chain), between each of the priors are all
comparable. The major difference being the number of iterations required to “move”
sufficiently close to the MLE. The number of iterations required were 22, 3, 32, and

62 for P1, P2, Ps, and Py, respectively. Notice that f is sufficiently close to the MLE
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(within the first iteration under all 4 prior distributions) and that it is 62 that is slow
to be within sufficient distance of the MLE. This is probably explained by the fact that
> X2 has a large variance (compared to the variance of > X).

Figures 4.4-4.7 below show the trace plots for i and 62 for P;, i = 1,2,3,4,
where the red line represents the MLE. From the figures, we see the quick convergence
of /i and eventual convergence of 62. Notice that even for the initial priors in low
acceptance regions (provided that there is a large variance), this algorithm is “moving”

the parameter estimates close to the MLE’s.

15
1

—— MLE=9.2949
~
—
— MLE=14.68
o
—

T T T T T T T T
5 10 15 20 5 10 15 20

Iteration Iteration

(a) Trace plot for f (b) Trace plot for 52

Figure 4.4: Trace plots for /i and 62 under P;.
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Figure 4.6: Trace plots for /i and 62 under Ps.
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Figure 4.7: Trace plots for fi and % under P;.

4.7 Logistic regression

Now we wish to apply PM two and PM three to a logistic regression problem
and then propose an extension of PM two. Consider the following data set, which
consists of 40 people who are asked whether or not they would subscribe to a new
newspaper. Gender, age, and whether or not they would subscribe to the newspaper were
recorded (0=No and 1=Yes). The following data set was taken from the SAS support

site demonstrating an example of logistic regression and is summarized in Table 4.11.
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Gender Age Subscription Gender Age Subscription

Female 35 0 Male 44 0
Male 45 1 Female 47 1
Female 51 0 Female 47 0
Male 54 1 Male 47 1
Female 35 0 Female 34 0
Female 48 0 Female 56 1
Male 46 1 Female 59 1
Female 46 1 Male 59 1
Male 38 1 Female 39 0
Male 49 1 Male 42 1
Male 50 1 Female 45 0
Female 47 0 Female 30 1
Female 39 0 Female 51 0
Female 45 0 Female 43 1
Male 39 1 Male 31 0
Female 39 0 Male 34 0
Female 52 1 Female 46 0
Male 58 1 Female 50 1
Female 32 0 Female 52 1
Female 35 0 Female 51 0

Table 4.11: Data describing newspaper subscription behavior.

The fitted logistic regression model to this data is

ePot+B1Xi1+B2Xia

P(Y;=1)=pi= 1 + efotb1Xin+P2Xia’ L=

1,...,40.

Here 1 represents the age effect and (5 is the gender effect.

4.7.1 Newspaper subscription example using PM two

Since the observations are not identically distributed, we cannot choose an

arbitrary sample size m and so we need to make a slight adjustment and instead generate

ind

an m number of auxiliary data sets. Let D;= {Zij}?gl ~ Ber(p;), and so, if m is large,

we have

ZE P pog)
nm
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as m — o0.

Thus our algorithm becomes

Algorithm PM two

1. Generate S(~N(Xo,d0), Bi~N(A1,01), and B5~N(A2,d2) and observe
(B4, B B5).

2. Generate Dj based on (£, 5], 55),7 = 1,...,m where m is sufficiently
large.

3. Construct confidence intervals for F(Z), E(Zx1), and E(Zz2) and call
them Cy, C2, and Cs respectively.

4. Accept (B), 81, By) if 2 € €y, =V € €y, and 2222 € (3.

Repeat until k acceptances.

Take the mean of accepted values (5,51, 55)1s - (85, 81, B5)k to be the estimate of
(Bo, P1, B2). Since the distribution for the sufficient statistics are unknown, we used
Monte Carlo simulation to estimate Cq, Co, and Cs.

Table 4.12 shows the prior distribution (P) that was used. Here, we allowed
for a relatively large variance for each parameter. Furthermore, we used k£ = 100 accep-

tances and m = 100.

() Bo b1 B
P | N(=3,4) N(02,4) N(=1,4)

Table 4.12: Prior distributions for PM two.

Table 4.13 below shows the results for PM two under PP. Here, we see that

the estimates for $; and B2 are comparable to the MLE’s, and that the estimate for S
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is a little off. Interestingly enough, it is the parameter estimates for the main effects
that are comparable. It is also worth noting, that due to the extra complexity of the
model (the observations are not identically distributed) that & = 100 and m = 100 are

perhaps a little small and that by increasing k and m, estimation may very well improve.

() Bo B1 B2
P -4.2512 0.1302 -2.3196

MLE’s -5.762 0.1649 -2.4224

Table 4.13: Results for PM two and the newspaper subscription data.

4.7.2 Newspaper subscription example revisited using PM three

We will now apply PM three. To better describe PM three in the context of a

logistic regression, let us define the following notation. Let

Bor B B

Boe Pl B (4 . _,>(”)
2

/ / /
Bor Bu Bau

be the matrix of accepted parameter values for the v iteration. Here, denote the mean
and variance based on [3’0 as M /3(()11) and Vﬁ(()v), respectively, denote the mean and variance

based on ,@1 as M 551)) and Vggv), respectively, and denote the mean and variance based
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on BQ as M BS’) and V@év), respectively. Further, denote accepted sample moments as

(), (), (o)

go_ | Gy (), (5,

(v)

z z z ( ) ( )
(§m)1+ §m)2+'“+(§m)k : e :
k nm
oo — | )+ G), e+, | — | o
k nm
(2”262)1—’— Z"i::2>2+ +(E”j’gf2)k 2 2T2
k nm

As with PM two, we used Monte Carlo simulation to estimate C1, Cs, and C3. Using the

newspaper subscription data, the algorithm is as follows

Algorithm PM three

1. Propose B)~N(Xo, ), Bi~N(A1,01), and B5~N(A2,02) and observe
(), 8, B

2. Generate Dj based on (5,51, 35),7 = 1,...,m where m is sufficiently
large.

3. Construct confidence intervals for F(Z), E(Zx1), and E(Zxz2) and call
them Ci, Co, and C3 respectively.

4. Accept (8), 81, B5) if % € (y, % € Cy, and % € C3. Repeat until
k acceptances.

5. Compute d = |% - %| + |%f;fl - ng | + ]27:;? - Znym |.

6. Compute Mg(()v), Vg(()v), M5§”), vﬂﬁv), Mggv) and Vgév).

7. If d < e then stop, else repeat steps 1-7 by using BéwN(Mg(()v),Vgév)),
Bi~N (Mg, Vi), and By~N(MgS", Vs8").

Note: To prevent the variance of the prior from getting too small, we take
the max {Vg((]”), bo}, max {V@%v), bo}, and max {Vﬁgv), bo} where by is some
positive real number.

Optional: Increase m to obtain better precision.
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4.7.3 Results of newspaper subscription using PM three

We used the same initial prior distributions as those used in Table 4.12. For
each iteration, we ran it for £k = 15 acceptances and m = 100. Furthermore, we used

e = 0.2 and by = 0.5.

P Iteration Proposals Distance Bo 51 B
1 4,807 0.2464  -3.0122 0.0809 -0.8603
2 200,479 0.2025 -3.5180 0.1120 -2.1868
3 11,668 0.0402  -4.4598 0.1356 -2.3576

Table 4.14: Results for PM three and the newspaper subscription data.

Table 4.14 shows the results for PM three. The algorithm converged after 3
iterations. As with PM two, we see that the estimates for 81 and (33 are comparable to
the MLE while the estimate for fy is a little distant to the MLE (but still reasonable).
Figures 4.8 below show the trace plots for Bo; Bl, and Bg under P, where the red line
represents the MLE. Again, we see that Bl and Bg are close to the MLE, however Bo is
a little distant, but appears to be converging. If perhaps a smaller € was chosen and/or

a larger k and m was used, Bo would converge.

80



Bo

L L

By

-0.5 0.0
L L

7 —— MLE=0.1649
— MLE=-5.7620
- °

1.0

0.5
1

o
] S |
T T T T T ! T T T T T
10 15 20 25 30 1.0 15 2.0 25 30
Iteration Iteration
(a) Trace plot for Bo (b) Trace plot for 31

-1

— MLE=-2.4224

B,
-2
1

-3

-4
1

T T T T T
1.0 15 2.0 25 3.0

Iteration

(¢) Trace plot for B2

Figure 4.8: Trace plots for Bo, Bl, and Bg.

4.8 Proposed method four

The final proposed algorithm (which we will call PM four), is an extension of

PM two. The first step will apply PM two for k acceptances, i.e., (5;, B1;: 85),t = 1, ...,k
based on size m. For step 2, take each of the (8y;, 51;, 85;),% = 1, ..., k and apply PM two,

where the center for the prior for 3(,, 81;, and 5);, are at (), 81;, and j5;, respectively,
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coupled with a small variance (say o2), and run it for k1 acceptances, i.e., (8;, B1:» 55;)
will generate (80,;, 81, By;;):J = 1, ..., k1 (based on size my).

For step 3, for each of the accepted k candidate parameters (from step 1), take
each of the k; acceptances (that each of the k parameters produced), and measure the
distance between the auxiliary sufficient statistics to the observed sufficient statistics.
For example, consider the first accepted parameter in step 1, say (8, 811, B51). Now,
(Bo1s B11s Bb1) will have generated a set of ky acceptances, i.e., (511, 8111, S511)- Further,
(Bo11s Bhi1s Bhy1) will have generated m; data sets of size 40. From these m; data sets,
compute the distance between the auxiliary sufficient statistics to the observed sufficient

statistics, i.e.,

4, = KZ) o

nmi

_i_‘(ZZ”Ul)Z”_ ngl

nmi

*‘(Zml-‘zm

nmi n

and take the average of these distances, i.e.,

Mo
dizzjkl],z’zl,...,k
1

(the idea being that the smaller the distance, the closer we are to the MLE). For step
4, order and keep the ¢ (where ¢; < k) parameter values that produced the smallest
c1 distances, and call them (B((]t), gt), ﬁét)),t =1,...,c1 (here, in this context, the super-
script (t) represents the ordered value and not the iteration). Step 5 is to update our
prior distribution by centering the prior for Bét),ﬁgt), and ﬁét) at the average of the k;
parameters (that ( (()t), B%t),ﬁgt)) generated), which we denote as, Mgét), /\/lggt), Mggt),
respectively, (and again use a “small” variance). Now repeat steps 2-4 (now for ko and
mg) and keep the cp parameter values that produced the smallest co distances (where

¢y < c1). Keep repeating this cycle until we only keep the 1 candidate parameter that

produced the smallest distance and take the average of the parameters (that this 1 pa-
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rameter generated) as our estimate for (S, 81, 82). Note that at each cycle, the size of
candidate parameters reduces from k to ¢; to ¢ and so forth until 1.

A few comments are in order. First, it’s up the individual at what rate they
wish to decrease the size of candidate parameters, and second, as described above, the
number of acceptances and the size of the generated data sets can increase between each

iteration. PM four is described as follows

Algorithm PM four

1. Run PM two for k acceptances and size m. Hence, the output is, P =
{61, ..., 6} where 6; = (55, B, B;)-

2. For each @) € P, run PM two, i.e., 85;~N(Bh;, %), B1,~N(8};, %), and
Bhi~N (B, 0?) for ky acceptances and size m.

3. For each (B, 8};, 85;),i =1, ..., k, compute d;.

4. Order and keep the c; parameter values that produced the smallest cq
distances.

5. Update the prior distributions that center around Mgét), Mggt) , and
./\/lgét) respectively.

Repeat steps 2-4 until we only keep the 1 parameter value that produced
the smallest distance and take the average of the parameters that this 1
parameter generated as our estimate for (fy, 51, 52).

We now apply PM four to our logistic regression problem. For the initial prior
distributions, we use the same priors that were used in Table 4.12. For step 1, we
will run PM two for £ = 100 acceptances and size m = 100. For step 2, we will use
k1 = 100 and m; = 100. For step 4, we keep the 10 parameters that generated the
10 smallest (i.e., ¢; = 10) distances, and we update our priors. We repeat by using
ko = 1,000 and mg = 100, and keep the parameter that produced the smallest distance
and take the average of the parameters that this 1 parameter generated as our estimate

for (Bo, B1, B2). We repeat the simulation twice using o = 0.01 and o2 = 0.04.
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4.8.1 Results of newspaper subscription using PM four

o Bo b1 b1
0.1 | -3.9327 0.1267 -2.5102
0.2 | -3.6211 0.1171 -2.3533

Table 4.15: Results for PM four and the newspaper subscription data.

Table 4.15 shows the results after applying PM four. The estimates for 51 and
(B9 are similar to PM two and PM three, however, the estimate for Gy did not perform
quite as well as with PM two and PM three. We note that the implementation of
PM two, PM three, and PM four on this example was very limited, in the sense that
the simulations were not exhaustive. We feel confident that with extensive simulation
studies and perhaps with appropriate tweaking, these algorithms can accomplish the

end goal.

4.9 Summary

In summary of chapter 4, we constructed algorithms in an attempt to provide
estimates that are comparable to the MLE. In the algorithms that we proposed, we
made application to a data set where the observations were assumed to be normally
distributed and to another data set where logistic regression was used. For the normal
example, each of the algorithms seemed to work well (in particular PM two and PM
three), however we keep in mind that it is a rather simple and low dimensional problem.
The logistic regression example was more challenging, in that the observations were not
identically distributed, and so more computational effort was required. Given this, we
are pleased the estimates for 81 and (o were close to the MLE and 5y was still rather

reasonable. We are confident that heavier computational effort will improve on the
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convergence of Bo to the MLE. We feel that we laid some groundwork for finding a way
to obtain MLE type estimates in the absence of the likelihood. At the start of this work,
one of the goals was to improve on the acceptance rates over ABC-AR (and perhaps
over other ABC methods without the cost of highly correlated draws), however, time
did not allow for this development. Nonetheless, we feel that one can implement the
ideas that allow for an “update” in the prior distributions and develop ways to improve
on the low acceptance rates.

We don’t believe that PM one has much value since it was not founded on any
theoretical justification, however, we believe that the PM two, PM three, and PM four
algorithms do have promise because it is founded on large sample asymptotic theory. We
feel that with more tweaking and refining, an algorithm can be developed that can work
well in models where sufficient statistics are known. Once this has been established, one
can apply these ideas to models where sufficient statistics are unknown and replaced

with summary statistics.
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Appendix A

Simulation tables
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