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A REAL-TIME ATTENTIONAL-ASSOCIATIVE NETWORK
FOR CLASSICAL CONDITIONING OF THE RABBIT’S NMR

Nestor A. Schmajuk
Center for Adaptive Systems
Department of Mathematics
Boston University
and
John W. Moore
Department of Psychology
University of Massachusetts

INTRODUCTION

Schmajuk and Moore (1986) described two real-time
attentional models of classical conditioning. In their
present form, both models are capable of real-time
descriptions of many classical conditioning paradigms.
However, the models do not encompass higher-order
conditioning paradigms or sensory preconditioning. They also
lack performance rules that permit realistic descriptions of
conditioned responding in real time. These considerations
prompted the development of a new class of models that
incorporate higher-order conditioning, sensory
preconditioning, and performance rules.

Because of the large amount of data on classical
conditioning of the rabbit’s nictitating membrane (NM), this
preparation is particularly attractive for a formal
treatment. Therefore, the present paper contrasts
experimental results regarding classical conditioning using

the NM preparation, with computer simulations.

794



SCHMAJUK AND MOORE

SECOND-ORDER ATTENTIONAL-ASSOCIATIVE NETWORKS

This section describes a class of attentional-
associative network that can be applied to CS-CS as well as
CS-US paradigms.

Consider the case of one CS, CSi, that predicts event k.
Net associative value, &ik, represents the first-order
prediction of event k by CSi. Consider now the case of two
CSs, CSi and CSr, that predict event k. It is assumed that
CS1 predicts k directly by Vik and indirectly by predicting
CSr, by Vir. In turn CSr predicts k by Vek. The second
order prediction of k by CSi, is expressed as the product
‘}1' \v"r".

Bik , the first- and second-order prediction of event k
by CSi , is

Bik = ( Vik + Sr wit Vit Vek) i . [ 1)

ﬁtk is the net associative value of CSi with event k. The
sum over the index r involves all CSs with index r # k. Vir
is the net associative value of CSi with all CSs with index

r ¥ k. Vit is the net associative value of all CS with event
k. i is the trace of CSi . The mathematical expression for
Ti is given below. Coefficient wir serves to adjust the
relative weights of first- and second- order predictions in
paradigms such as conditioned inhibition. In order to avoid
redundant CSi -US and CSi -CSi - US associations, wir = 0 when i
= r, and wit > 0 when i Z r. Bk , the aggregate prediction
of event k made upon all CSs (including the context) with T >

0 at a given moment, is

Bk = 3i Bik . [ 2]

795



SCHMAJUK AND MOORE

As described below, variable Bk participates in the
computation of Vik . In addition, through adequate
performance rules, BUS determines the topography of the NM
response.

THE M-S-S NETWORK
This section describes an attentional-associative
network that incorporates variable Bk. Net associative
values, eik, are computed with the rules proposed by Moore
and Stickney (1980, 1982, 1985; see also Schmajuk and Moore,
1986).
Changes in associative values.

When the CSi is accompanied or followed by event k, the

associative value between CSi and event k, Vik , increases by
AVik =8 ai wi (1 - Vik ), [ 3]

and the antiassociative value, Nik , decreases by
ANk = 8’ai i (0 - Nik ), [ 32]

When event k does not occur, Vik decreases by

AVik = 8" ai s (0 - Vik ) Bk, [ 4 ]

and Nik increases by

ANk = 8" ai i (1 - Nik ) Bk, [ 4’]

where ai is CS's associability, 8 ( 0 < 8 ¢ 1 ) is the rate of
change in Vik , 8’ ( 0 < 8’ < 8 ) is the rate of change in
Nik , i is the trace of CSi , and Bk is defined by Equation
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The net associative value of CSi and event k is
Vik = Vik - Nik, [ 5]

Changes in associability

The associability of CSi , ai , may increase, decrease,
or remain unchanged depending on the associative value of CSi
with event k and the associative value of another CS, CSj; ,
with the same event k.

When CSi , CS; , and event k are presented together, and
provided that Vik > @jk

Aaik = ¢c (1 -oai ) ( ik - Vik ), [ 6]

where &Jk is the second highest net associative value with
respect to event k of all the CSs present with the CSi ,
including the context.

When le 2 i;k

Aaik = ¢ (0 -ai ) ( Vyk - Vik ), (73

where &Jk is the highest net associative value with respect
to k of all the CSs present with the CSi . Parameter c in
Equations 6 and 7 is a constant set 0 < ¢ < 1.

When all the components of A aik related to a given CSi
or the US have been computed, they are combined in the
expression

Aai = 2k ¥ aik / Zn In . [ 8]

The sum over the index k in the numerator involves all the
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events present with the CSi . The sum over the index h in the
denominator involves all the events the subject has
encountered in previous experiences in the same context, even
though they may not be present at the time A ai is computed.
The weighting factors, & , are selected such that %us > &cs >
¥x , because the US is presumed to be biologically more
significant than the CSs and the context (X).

NM RESPONSE CONDITIONING

During acquisition of the NM conditioned response (CR),
percentage of CRs generated in each session increases, CR
latency decreases, and CR amplitude increases.
Gormezano, Kehoe, & Marshall, 1983)
The trace hypothesis

Conditioning is typically more efficacious when the CS
precedes the US than when the two are presented together.
Hull (1943) proposed that stimuli give rise to traces in the

central nervous system that somehow impinge simultaneously on
critical loci of learning,

(see

despite the non-simultaneous
arrangement as observed in the periphery.

It is assumed that a CSi generates a trace, Ti , that
increases over time to a maximum, stays at this level for a

period of time independent of the CS duration, and then
gradually decays back to zero.

Formally, trace Tt is defined for t <= 200 msec by

T(t) = CSmax ( 1 - e -( k1 t ) ), [ 9]

where CSmax is the maximum intensity of the CS and kl is a

constant, 0 < k1l < 1. Parameter kl is selected so that the
ISI for optimal conditioning is 200 msec.

T(t) remains equal to CSmax as long as the CS does not
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decay. If the CS = 0 and t > 200 msec, T (t) decays by
T(t) = CSmax ( exp -( k1 t ) ), [ 10 ]

If CSi is not present 200 msec after its onset, the trace
decays to zero by Equation 10.
Performance Rules

Performance rules were selected to relate variable BUS
to the topography of NM responses.

Time of CR onset is the earliest time t such that

Zter=zed4 Zj BjUB(t’) »>= L1 , f 11 ]}

where ti denotes the time step at which CSi onset occurs.
The sum over the index j involves BjUS of all CSs with T©j >
0 , excluding the context. Sum over index t involves all
time steps for which Tj > 0 , starting at the time step when
the amplitude of the NM response as defined by Equation 11
equals zero. L1 is a threshold greater than zero. Equation
11 implies that as BjU® increases over trials, CR onset moves
progressively to an asymptote determined by Ll.

During the CS period, for time steps t > ti, the
amplitude of the NM response, NMR(t), is changed by

ANMR (t) = k2 ( BUS(t) - NMR(t)), [ 12 ]

where k2 is a constant ( 0 < k2 < 1).

During the US period, while BUS (t)¢A US(t), is given by
Equation 12. However, when BUS (t) >)\U8(t), NMR (t) increases
by

ANMR (t) = k2 ( \US(t) - NMR(t)), [ 13 ]
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When BUS (t) and )\ UB(t) equal zero, NMR(t) decays to
baseline by

A NMR (t) = - k2 NMR(t). [ 14 ]

COMPUTER SIMULATIONS

In the simulations, continuous time was converted to
discrete time steps or bins of 10 msec in duration. Each
trial consisted of 60 bins. Otherwise specified, the
simulations assumed 200 msec CSs, the last 50 msec of which
overlaps the US.

Parameters values for variations of associative values
were : 8 = 0.1, and 8’ = 0.001. For antiassociative value
were: 8 = 0.005 and 68’= 0.1, with exception of the inhibitory
conditioning cases for which 8 = 0.05. For variations in

associability : %us = 1, & = 0.16, ¥ = 0.16, & = 0.01, and c

0.6. Initial values of Vs and Ns were zero for all i’s.
Initial values of associability were always selected ax = 0.1
and aA = aBe = 0.5. For computations of Bik : wik = 0.4 when i
# r; and wik = 0 when i = r. For computations of the NM CR :
L1 = 2. For computation of the trace: kl = 0.1 , and for the
NM response topography : k2 = 0.5.

Simulation results.

Acauisition. Figure 1 shows simulations of a delay
conditioning paradigm. As CR acquisition proceeds, CR onset
latency decreases, and CR amplitude increases. Maximal
response amplitude (CR peak) is located at the time of the US
occurrence. Context associability decreases and CS
associability increases over trials. Simulation results
agree with data on delay conditioning (see Gormezano, et al.,
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Figure 1. Delay conditioning. A : CS(A). X : Context.

Left Panels: NM response topography in 10 reinforced trials.
Upper-Right Panels: Net associative values (VT) at the end
of each trial, as a function of trials. Lower-Right Panels:
Associability (ALPHA) at 350 msec, as a function of trials.
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Figure 2. Conditioned Inhibition. A : CS(A). B : CS(B).

X : Context. Left Panels: NM response topography in A+,
(A+B)-, A-, and B-trials, after 10 alternated A+ and (A+B)-
trials. Upper-Right Panels: Net associative values (VT) at
the end of each trial, as a function of trials. Lower-Right
Panels: Associability (ALPHA) at 350 msec, as a function of
trials.
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1983)

Conditioned Inhibition. Figure 2 shows simulations of a
conditioned inhibition paradigm. During conditioned
inhibition two types of trials were alternated: reinforced
trials consisted of a single reinforced CS (A), and
nonreinforced trials consisted of a compound CS (A and B).
Stimulus B was the conditioned inhibitor. After 10 simulated
trials, the CR elicited by A and B together was smaller than
that elicited when A was presented alone because B has
acquired inhibitory associative value. Associabilities of
both CSs increased and context associability decreased over
trials. Simulation results agree with data on conditioned
inhibition reported by Marchant, Miss, and Moore (1972).

Blocking. Figure 3 shows simulations of a blocking
paradigm. Experimentals received 5 trials with one CS
(blocker) paired with the US followed by 5 trials with the
same CS and a second (blocked CS) paired with the US.
Controls received 5 two-CS trials in which both CSs were
presented together and paired with the US. Controls were
subject to mutual overshadowing between the two component
CSs. The network showed simulated blocking because CR for
the designated blocked CS was smaller than CR for the blocker
CS, both after 5 training trials. The results agree with
blocking data in the rabbit NM response preparation as
reported by Marchant and Moore (1973).

Sensory preconditioning. Figure 4 shows simulations of a
sensory preconditioning paradigm. In the first phase, 5
nonreinforced trials with a compound CS(A and B). During the
second phase, one of the nonreinforced CSs (A) was reinforced
for 5 trials. A test trial assessed the CR to CS(B) never
paired with the US. Simulations showed that context
associability decreases during preconditioning. In the
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Figure 3. Blocking. A : CS(A). B : CS(B). X : Context.
Left Panels: NM response topography in A- and B- test trials,
after 5 CS(A) reinforced trials and 5 CS(A) and CS(B)
reinforced trials. Upper-Right Panels: Net associative
values (VT) at the end of each trial, as a function of
trials. Lower-Right Panels: Associability (ALPHA) at 350
msec, as a function of trials.
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Figure 4. Sensory preconditioning. A : CS(A). B : CS(B).

X : Context. Left Panels: NM response topography in A+ and
B-trials, after 5 CS(A) and CS(B) nonreinforced trials and 5
CS(A) reinforced trials. Upper-Right Panels: Net associative
values (VT) at the end of each trial, as a function of
trials. Lower-Right Panels: Associability (ALPHA) at 350
msec, as a function of trials.
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nonreinforced test trial CS(B) acquired inhibitory
associative value because it was presented in a context with
excitatory associative value. CS(B) generated a CR.

Simulation results are in agreement with data reported
by Port and Patterson (1984).

DISCUSSION
The present paper illustrates how the M-S-S network, a
second-order attentional-associative architecture, describes
several classical conditioning paradigms in real-time. The
network incorporates performance rules that convert net

associative values into strength and timing of the rabbit’s
NM response.

REFERENCES

Gormezano, I., Kehoe, E.J., & Marshall, B.S. (1983).
Twenty years of classical conditioning research with the
rabbit. Progress in Psychobiology and Physiological
Psychology, 10, 197- 275.

Hull, C.L. (1943). Principles of Behavior. New York:
Appleton-Century-Crofts.

Marchant, H.G., Miss, F.W., & Moore, J.W. (1972).
Conditioned inhibition of the rabbit’s nictitating membrane
response. Journal of Experimental Psychology, 95, 408-411.

Marchant, H.G., & Moore, J.W. (1973). Blocking of the
rabbit’s conditioned nictitating membrane response in Kamin’s
two-stage paradigm. Journal of Experimental Psychology, 101,
155-158.

Moore, J.W., & Stickney, K.J. (1980). Formation of
attentional-associative networks in real time: Role of the

hippocampus and implications for conditioning. Physiological
Psychology, 8, 207-217,

806



SCHMAJUK AND MOORE

Moore, J.W., & Stickney, K.J. (1982). Goal tracking in
attentional-associative networks: Spatial learning and the
hippocampus. Physiological Psychology, 10, 202-208.

Moore, J.W., & Stickney, K.J. (1985). Antiassociations:
Conditioned inhibition in attentional-associative networks.
In R.R. Miller and N.E. Spear (Eds.), Information processing
in animals: Conditioned Inhibition. Hillsdale: Lawrence
Erlbaum.

Port, R.L., & Patterson, M.M. (1984). Fimbrial lesions
and sensory preconditioning. Behavioral Neuroscience, 98,
584-589.

Schmajuk, N.A., & Moore, J.W. (1986). Real-time
attentional models for classical conditioning and the
hippocampus. Physiological Psychology, 13, 278-290.

807



	cogsci_1986_794-807



