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Abstract

Spatial pattern modeling and discovery in biological
images

Aruna Jammalamadaka

Studying spatial arrangement and relationships in full tissue samples can
improve our understanding of the various developmental /pathological processes
that underlie proper organ or organism function. In particular, it has been
found that neuronal or vascular structures are pervasive in many tissues, and
oftentimes are spatially correlated with other cells. This work aims to discover
those relationships, by extracting biological knowledge from cellular and sub-
cellular imaging using spatial point process methods.

In this dissertation, we present discoveries on spatial distributions and at-
tributes of dendritic spines and retinal astrocytes, two crucial elements in the
mammalian nervous system. Although little is known about the spatial dis-
tributions of either respective to their surroundings and attributes, this thesis
attempts to pose some possible biological hypotheses based on strong statisti-
cal evidence, as well as further extend the tools used for spatial analysis. In
particular, we develop a multitype version of the linear network K-function, a
summary function used for measuring clustering or repulsion of point features

existing on a linear network.
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Chapter 1

Introduction

The large amounts of image data that can be obtained with recent ad-
vances in microscopy require mining in an objective and unbiased fashion, us-
ing automated and reproducible methods. In this way it is possible to discover
trends and hypotheses for systems that domain-experts may have very little
prior knowledge about. These improvements have especially had a profound
impact on examination of the spatial distribution and correlation of biological
entities, as the locations of large amounts of cells and other structures can be
imaged in situ. Subsequent to detection, tracing or tracking objects in im-
ages are the higher level tasks of biological inference that mine for patterns or
classify tissue conditions. Mining for spatial and biological relationships in tis-
sues, organs or organisms is of the utmost importance, as discovered patterns
represent possible underlying biological processes of cellular or anatomical orga-
nization [60,[85,/150]. In particular, it has been found that neuronal or vascular

structures are pervasive in many tissues, and oftentimes are spatially correlated
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with other cells. This work aims to discover those relationships, by extracting
biological trends from cellular and sub-cellular imaging. These trends lead us
to statistical models which can be used to determine changes in spatial distri-
butions in cases of treatments, or disease state tissues.

Classifying tissues, cells and sub-cellular features into distinct sub—groups
or pathological conditions is also an effective means to understand the origin,
function and pathology of tissue and organisms |41}[129]. Such classification can
be based on image features such as color or texture, frequently the result of
some observable biological process such as protein localization [39}40,[70,/157].
Much of this work focuses around classification based on morphology of detected
objects in images, which is especially prevalent in neuroscience where form often
corresponds to function of a cell [7,90,/152,160].

However despite the quantity and detail of biological images that can be
acquired, inferring biological conclusions from these data can be quite chal-
lenging. Biological images present unique problems that are not frequently
encountered with other types of image data. Objects in images are often highly
dense [61,/80], and exhibit a enormous variability between specimens or exper-
imental conditions. In addition, many of these biological processes need to be
captured at magnification levels that push the physical boundary of optical res-
olution, resulting in noisy and generally poor quality images. Many times the

morphological changes extractable from images do not show crucially impor-
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tant electrochemical signals that may help to determine validity of hypotheses,
however are much more costly to obtain. For these reasons we desire to assume
as little about the data as possible, and look for statistically significant results

over many repetitions of the same experiment.

1.1 Data-Driven Discovery in Biological Images

Data-driven discovery is a necessary and crucial step for furthering our
knowledge of most biological systems. The large amounts of data that can
be obtained with recent imaging methods require mining in as unbiased of a
fashion as possible, using automated and reproducible methods. In this way
it is possible to discover trends and hypotheses for systems that domain ex-
perts may have very little prior knowledge about. There are clear benefits to
a work-flow where biologists can quickly and easily generate hypotheses about
biological processes and leverage existing biological knowledge and large-scale
data to improve our understanding of a biological system of interest.

Examples of this can be found at all scales of biological systems, but this
work focuses on the cellular and sub-cellular levels. For example, it is gener-
ally known that the shapes and types of dendritic spines contribute to synaptic
plasticity. Thus the spatio-temporal distributions of different spine types are
likely to be significant in the neuronal signaling process. However, very little

is known about this population level organization of dendritic spines, making
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data driven discovery a necessity. Previous studies analyzed only a small re-
gion of interest on the largest neuronal dendrites, making it easier to manually
measure the spine type counts and dimensions but limiting the analysis to a
few neurons and a few hundred spines at a time [37,/110,{128]. We were able to
perform an exploratory analysis [79] on characteristics of 30,285 spines from 75
different neurons, 3 stages of growth, and varying locations along each dendrite
using rat dissociated hippocampal neurons, a well-established model system [81].
By quantifying these large populations of dendritic spines with unbiased and
automated tools at a global level, the resulting analysis was larger and more
comprehensive than any previous work in this field.

Another example, this time at the cellular level, can be found when analyzing
the spatial distributions of retinal astrocytes. Retinal astrocytes are one of
two types of glial cells found in the mammalian retina. In addition to being
involved in retinal vascular growth, astrocytes play an important role in diseases
and injuries, such as glaucomatous neuro-degeneration and retinal detachment.
Studying astrocytes, their cell characteristics, and their spatial relationships
to the surrounding vasculature in the retina may elucidate their role in these
conditions, however biologists are not sure of exactly how these quantities are
related. Previous studies have claimed that astrocyte cells which lie on or near
blood vessels exhibit different morphological characteristics than those which

do not |156]. However as is the case with dendritic spines even this notable and
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recent work involves a small dataset on the order of tens of astrocyte cells, hand-
picked to have distinguishable processes that can be manually counted. Our
current dataset of 7 full retinal mosaics each with 3614 — 5499 cells provides a
much richer platform for testing hypotheses such as whether there exist distinct
morphological classes of astrocytes and if so how many. In these cases as well
as many others, data-driven discovery allows us to come closer to realizing our
desire of minimizing the bias of imaging conditions, operator error, and innate
biological variations so that we can be more certain that the results of our

analyses are not due to our experimental setup.

1.2 Thesis Organization and Contributions

This thesis demonstrates that spatial pattern modeling and discovery in bio-
logical images can advance our understanding of biological processes. In particu-
lar, the statistical models derived from biological image data to describe spatial
relationships can also be used to determine changes in spatial distributions in
cases of treatments, or disease state tissues. The methods presented here rep-
resent a significant step in the mining of biological knowledge from biological
images, and have immediate biological implications with regard to dendritic
spines and retinal astrocytes as well as application in other non-biological do-

mains described above.
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Chapter [2| provides a review of the statistical tools and their extensions
that we used for discovering trends in large datasets, including finite mixture
models, generalized linear models and spatial point processes. It also provides
the necessary background for the spatial statistics methods that are used and
built upon in this thesis.

Chapter |3| performs an exploratory analysis based on the population dis-
tributions of dendritic spines with regard to their morphological characteristics
and period of growth in dissociated hippocampal neurons. We fit a log-linear
model to the contingency table of spine features such as spine type and distance
from the soma to first determine which features are important in modeling the
spines, as well as the relationships between such features. A multinomial logistic
regression is then used to predict the spine types using the features suggested
by the log-linear model, along with neighboring spine information. Finally, an
important variant of Ripley’s K-function applicable to linear networks is used
to study the spatial distribution of spines along dendrites. Our study indicated
that in the culture system, (i) dendritic spine densities are “completely spatially
random”, (ii) spine type and distance from the soma are independent quantities,
and most importantly, (iii) spines have a tendency to cluster with other spines
of the same type. Although these results may vary with other systems, our
primary contribution is the set of statistical tools for morphological modeling

of spines which can be used to assess neuronal cultures following gene manipu-
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lation such as RNAi, and to study induced pluripotent stem cells differentiated
to neurons.

Chapter 4] further extends the linear K-function analysis performed in
Chapter 3| by formulating the multi-type linear K-function for the detailed anal-
ysis of one large dendritic network. Nonparametric methods for analysing mul-
titype point patterns on a linear network are developed, and applied to the
dendritic spines data. The methodology is based on first and second moments
of a point process, extends the results of [8] to multitype patterns, and includes
some additional techniques for estimating first-order intensity functions on a
tree-like network using relative distributions and regression trees.

Chapter |5/ performs an exploratory analysis based on retinal astrocytes. In
addition to being involved in retinal vascular growth, astrocytes play an impor-
tant role in diseases and injuries, such as glaucomatous neuro-degeneration and
retinal detachment. Studying astrocytes, their morphological cell characteris-
tics, and their spatial relationships to the surrounding vasculature in the retina
may elucidate their role in these conditions. Our results show that in normal
healthy retinas, the distribution of observed astrocyte cells does not follow a
uniform distribution. The cells are significantly more densely packed around
the blood vessels than a uniform distribution would predict. We also show that
compared to the distribution of all cells, large cells are more dense in the vicinity

of veins and towards the optic nerve head whereas smaller cells are often more
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dense in the vicinity of arteries. We hypothesize that since veinal astrocytes
are known to transport toxic metabolic waste away from neurons they may be
more critical than arterial astrocytes and therefore require larger cell bodies to
process waste more efficiently.

Chapter [6] concludes the thesis with a summary of the work presented and

possibilities for future work.



Chapter 2

Statistical methods for trend
discovery and classification

This chapter serves to explain the necessary tools for understanding of the
rest of the thesis. Although the majority of the work included in this thesis per-
tains to spatial analysis of cellular and sub-cellular quantities, our exploratory
analysis of the raw image data requires usage of the classification and regression
methods outlined below. Section describes these methods in detail, while
Section introduces the spatial statistics terminology that we will be using

throughout the rest of the dissertation.

2.1 Classification and Regression Methods

In this section we review some essential tools for our data exploration, in-
cluding flexible modeling for data that may have come from different sources
via mixture models, and generalized linear models that allow a wide variety of

distributions for the response variable. This latter class encompasses models for
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categorical data viz. log-linear models, as well as multinomial logistic regression
where the response variable is categorical and we try to predict the probability

of membership in a response category based on multiple independent variables.

2.1.1 Finite Mixture Models

Finite mixture models are a flexible way of modeling data that might come
from various groups with unknown group affiliations or from multi-modal data.
Any continuous distribution can be approximated well by a finite mixture of nor-
mal densities with a common variance (or covariance, in the multivariate case).
Mixture models provide a convenient semi-parametric framework in which to
model unknown distributional shapes. A mixture model is able to model com-
plex distributions through an appropriate choice of its components to represent
accurately the local areas of support of the true distribution. It can thus handle
situations where a single parametric family is unable to provide a satisfactory
model for local variations in the observed data. Inferences about the modeled
phenomena can be made without difficulties from the mixture components, since
the latter are chosen for their tractability.

Welet Y7, ..., Y, denote a random sample of size n, where Y/ is a p-dimensional
random vector with probability density function f(y;) on RP. A realization of a

random vector is denoted by the corresponding lower-case letter. For example
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y =T, ..., ynT)T denotes an observed random sample where y; is the observed
value of the random vector Y.

We suppose that the density of f(y;) of Y; can be written in the form:

g
fy;) :Zﬂ—ifi(yj) (2.1.1)
i=1
where f;(y;) are densities and the 7; are the nonnegative quantities that sum

to one; that is,

0<m <1, (i=1,...,9)
] (2.1.2)

Zﬂ'i:l

=1

The quantities 7y, ...,m, are called the “mixing proportions” or “weights”.
The f;(y;) are called the “component densities” of the mixture. In the above
formulation the number of components ¢ is fixed. In many applications the
values of g is unknown and has to be inferred from the available data, along
with the mixing proportions and the parameters in the specified forms for the
component densities.

In many applications, the component densities f;(y;) are specified to belong
to some parametric family. In this case, the component densities f;(y;) are spec-
ified as f;(y;;6;), where 6; is the vector of unknown parameters in the postulated
form for the ith component density in the mixture. The mixture density f(y;)

can then be written as

11
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g
flyss) = Zﬂifi(yj; 0:) (2.1.3)

i=1
where the vector ¢ containing all the unknown parameters in the mixture model

can be written as

T

= (71, mgo1,E") (2.1.4)

where ¢ is the vector containing all the parameters 6, ..., 8, known a priori to
be distinct. Since the mixing proportions 7; sum to unity, we have omitted the
gth mixing proportion 7, due to redundancy.

For the case of univariate normal mixtures, the component distributions are
N(p;,0;) and therefore the parameter vector is 0; = [u;, 0;]. Multivariate normal

mixture components are often used, however out of the scope of this thesis.

Maximum-Likelihood Fitting of Mixture Models

Maximum likelihood (ML) fitting using the Expectation-Maximization (EM)
algorithm explained below, has been by far the most commonly used approach
for fitting mixture distributions.

We define the likelihood function for ¢) under the assumption of independent

data y1,...,y, as

L) = [ [ fys:0) (2.1.5)
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An ML estimate of Q@, the d-dimensional parameter vector for the postulated

density of the random vector Y is

OL(y) _
W — O (2.1.6)
or, equivalently,
dlog L(v)
- 0 (2.1.7)

The log likelihood for ¢ that can be formed from the observed data is given

by

logL(v) = ZIOg fys9) (2.1.8)
= loa{D_mifilyy:00)} (2.1.9)

The “Expectation-Maximization” (EM) algorithm [45] is an iterative method
for finding maximum likelihood or maximum a posteriori (MAP) estimates of
parameters in statistical models, where the model depends on unobserved latent
variables. The EM iteration alternates between performing an expectation (E)
step, which creates a function for the expectation of the log-likelihood evaluated
using the current estimate for the parameters, and a maximization (M) step,

which computes parameters maximizing the expected log-likelihood found in the

13
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E-step. These parameter-estimates are then used to determine the distribution
of the latent variables in the next E-step.

The E and M steps are alternated repeatedly until the difference

logL(p* ) — log L(yp™) (2.1.10)

changes by an arbitrarily small amount.

In order to estimate the correct number of components for the mixture
model, we use the Bayesian Information Criterion (BIC). BIC is a criterion
for model selection among a finite set of models. It is based on the likelihood
function and it is closely related to the Akaike information criterion (AIC),
which is explained in Section [2.1.2] When fitting models, it is possible to in-
crease the likelihood by adding parameters, but doing so may result in over
fitting. Both BIC and AIC resolve this problem by introducing a penalty term
for the number of parameters in the model; the penalty term is larger in BIC
than in AIC.

The BIC is written as:
BIC = klog(N) — 2log L(v) (2.1.11)

where N is the number of observations, k is the number of components to be es-
timated, and log L(1)) is as defined above. The optimum number of components
can be estimated by calculating the BIC for several values of k£ and selecting

the k corresponding to the lowest BIC value.

14



Chapter 2. Statistical methods for trend discovery and classification

2.1.2 Generalized Linear Models

The ML fitting of commonly used components, such as the binomial and
Poisson, can be undertaken within the framework of a mixture of generalized
linear models (GLMs). This mixture model also has the capacity to handle the
regression case, where the random variable Y; for the jth entity is allowed to
depend on the value z; of a vector of x covariates. If the first element of x is
taken to be one, then we can specialize this model to the nonregression situation
by setting all but the first element in the vector of regression coefficients to zero.

One common use of mixture models with discrete data is to handle overdis-
persion in count data. For example, in biological research, data are often col-
lected in the form of counts, corresponding to the number of times a particular
event of interest occurs. Binomial and Poisson distributions are often used be-
cause they are simple one-parameter distributions from the exponential family
for which the variance is determined by the mean.

Generalized linear model (GLM) is a flexible generalization of ordinary linear
regression that allows for response variables that have error distribution mod-
els other than a normal distribution. The GLM generalizes linear regression
by allowing the linear model to be related to the response variable via a link
function and by allowing the magnitude of the variance of each measurement

to be a function of its predicted value.

15
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Log-Linear Models

In statistics, Log-Linear Models (LLM), or Poisson regression, is a form of
regression analysis used to model count data and contingency tables. Standard
linear models assume that data is normally distributed around a certain mean,
which means that the observations can take any real value, positive, negative,

integer or fractional.

E[(Y | x)] = 0'x (2.1.12)

Log-linear models, on the other hand, assume that data is intrinsically non-
negative, typically counts that could be Poisson distributed, and allow us to
model the association and interaction patterns among categorical variables.
LLM assume the response variable Y has a Poisson distribution, and assumes
the logarithm of its expected value can be modeled by a linear combination of
unknown parameters. LLM are generalized linear models with the logarithm
as the (canonical) link function, and the Poisson distribution function as the

assumed probability distribution of the response.

E[(Y | x)] = €% (2.1.13)

We estimated this full interaction model using the least-squares maximum-

likelihood approach.

16
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The effect of the terms within the log linear model can be measured by the

Aikake Information Criterion (AIC). The AIC is defined as
AIC = 2k — 2In(L(0ly, x)) (2.1.14)

where k is the number of parameters i.e the total number of coefficients being

estimated, and

9/xn

Yn0'Xn ,—€
S (2.1.15)

N
L(Bly,x) = max H o
n=1
is the maximized value of the likelihood function for the estimated Poisson
model. In the above equations x = z1,...,2x € R? are the d-dimensional
input vectors, @ = 60, .. .0 are the parameter values, and y = y1,...,yy € R!
is the Poisson distributed output. The AIC is a commonly used goodness-of-fit
measure for a model given the observed data. Adding or subtracting terms,
whether they be main effects, pairwise interactions, or up to 3-way interactions
between attributes, will change the AIC value for the model. In the case of a
generalized linear model, oftentimes a step-wise fit algorithm is utilized. The
algorithm begins with the main effects and at each step chooses whether or not
to add one additional term, starting with possible 2-way interactions, aiming to

minimize the AIC. A lower AIC criterion indicates a better fit to the data and

therefore a better model.
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Multinomial Logistic Regression

When the response variable of a regression takes binary values, logistic re-
gression is used. This is an approach which uses a linear combination of the
predictor variables to predict the log-odds of a success (the “logit” of the prob-
ability). If the response variable can take multiple discrete values, we use a
“Multinomial Logistic Regression” (MLR) which attempts to model the proba-
bility of any of multiple possible outcomes.

Suppose the output variable categories are denoted by 0,1,2...N, with 0
being the reference category. If y; denotes the observed outcome of the output
variable, and X; is an N-dimensional input vector for the ith observation, one
regression is run for the logit probability of each category k, with [, representing
the vector of regression coefficients in the kth regression. This is done for all
but the reference category, whose probability is then obtained by subtracting
all other probabilities from one.

The regressions are then written as:

Plys—i) = —SPUX) 558 N (2.1.16)
L+ exp(BeXi)
and
al 1
Ply;=0)=1-Y P(y;=n) = (2.1.17)
; L+ 3750, exp(5.X3)

The parameters are estimated typically by using an iterative procedure such as

“Iteratively re-weighted least squares” (IRLS) or, more commonly by a quasi-

18
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Newton method such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
In our case we create an MLR using the command multinom in the R package

nnet [144] which uses BFGS by calling the R function optim. It can be seen

that

Ply; = 1)
o (P(?Ji =n)

) = 3. X; (2.1.18)
so that the beta coefficients represent the change in the log odds of the dependent

variable being in a particular category with respect to the reference category,

for a unit change of the corresponding independent variable.

2.2 Spatial Point Processes

Spatial point process analysis spans a large variety of applications, includ-
ing biology (characterizing patterns of neurons, xylem conduits), geography
(epidemiology, animal nests or plant locations, seismology), and astronomy (lo-
cations of stars and galaxies). Of course, none of these objects is exactly a
point, but in each case the size of the objects compared to the distance between
them is so small that their size can be ignored. Sometimes size is an important
attribute associated with a point’s location.

Spatial point process methods [46,77] have been used since the 1970’s to
analyse the spatial distribution of cells [27,32,{47-49,/57,(97,[107,/124] and sub-

cellular objects [38,/119,/148] observed in microscope imagery. In addition, the
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Figure 2.2.1: Point pattern of xylem conduit cross-sections. Image taken from
Mencuccini et al, American Journal of Botany, 2010

spreading of diseases, locations of different types of ants nests or patterns

of xylem conduits in wood [105] (Figure [2.2.1)).

2.2.1 Q-Q Plots

A quantile-quantile, or “Q-Q” plot, is a graphical way of comparing two
sample distributions. Although the Q-Q plot is a general statistics tool, not
just for use in spatial statistics, its usage in this thesis is related to spatial point
processes, and is described below.

Given two cumulative probability distribution functions F and G, with as-
sociated quantile functions F~' and G! (the inverse function of the CDF is
the quantile function), the Q-Q plot draws the ¢'* quantile of I’ against the ¢
quantile of G for a range of values of ¢q. Thus, the Q-Q plot is a parametric
curve indexed over [0, 1] with values in the real plane R?. A point on the plot

represents equal quantiles of each distribution. Therefore if the two distribu-
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tions being compared are similar, the points on the Q-Q plot will lie close to
the line y = x. If the distributions are linearly related but not equal, the points
will approximately lie on a line with a different slope.

If the general trend of the Q-Q plot is flatter than the line y = x, the dis-
tribution plotted on the horizontal axis is more dispersed than the distribution
plotted on the vertical axis. Conversely, if the general trend of the Q-Q plot
is steeper than the line y = x, the distribution plotted on the vertical axis is
more dispersed than the distribution plotted on the horizontal axis. Q-Q plots
are often arced, or “S” shaped, indicating that one of the distributions is more
skewed than the other, or that one of the distributions has heavier tails than
the other.

In this thesis, Q-Q plots are used specifically to compare the distribution
of relevant point features to a spatially random distribution with respect to
a gwen spatial covariate. This means that a continuously varying distance
function is defined on the space of observed points. The values of that distance
function corresponding to the observed point locations are compared to the
values corresponding to a simulated spatially random pattern. This is done
by sorting both distributions of distance values and plotting the order statistics
against each other as described above. Figure[2.2.2shows an illustrative example

of the usage referred to above. Since the Q-Q plot is a graphical method there
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is no p-value to indicate statistical significance, however it is a very useful tool

for explorations of point process intensity in space.
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Figure 2.2.2: Illustrative Q-Q plot with regard to distance covariate D which
ranges from 0 to 10 in the rectangular window of observation. Red dots rep-
resented a simulated CSR pattern, purple and green dots represent observed
patterns which vary with the distance covariate D.

2.2.2 Two-Dimensional Point Processes

Intensity

The most important property of a point process is its “intensity” or “rate”
which describes the expected frequency of occurrence of random points of the
process. In the case of 2D point processes, it is the expected number of points

per unit area. Note that this differs from the probability density function of the
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points since when integrated over the observation window it sums to the total
number of points rather than 1.

The common null hypothesis is that the points within the observation win-
dow are distributed uniformly. This describes a homogeneous Poisson process,
which is also termed “completely spatially random” or CSR. This means that
the density of points does not vary depending on the spatial parameters i.e. x
and y in the 2D Euclidean case, or the location along a linear network.

An unmarked homogeneous Poisson process with intensity A is characterized
by a few important properties. Firstly, N(A), the number of points in region
A, is Poisson distributed with mean A|A| V A, and has the probability function
P(N(A) = k) = e~ (NA])(AJA])*/k!. Conditional on N(A) = n, the n points
are independent and uniformly distributed in A. If Ay, A, ..., A,, are disjoint
regions, then N(A;), N(As), ..., N(A,,) are independent count variables. It has
been shown that a point process can be fully defined by its count variables

N(Ay), N(Asg), ..., N(A,,) for all subsets Ay, Ao, ..., A

Marked Point Processes

In the case of marked point processes, a mark m; € M, which can repre-
sent any relevant attributes of a point process, is associated with each point x;.
Since our mark takes on discrete values our process is termed a “multitype point

process”. For a well-studied example of a multitype point process, see Figure
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2.2.31 We leave the higher complexity full evaluation of continuous marks for
another analysis, as the trends of interest to this work are still accurately dis-
played through discretization. The intensity can then be evaluated per mark,
and their inter-dependencies studied. A homogeneous multi-type Poisson pro-
cess is one where each component process X; has a constant intensity A\; > 0
for all m; € M. The unmarked process X* has constant intensity A\* = sz\i1 A
The marks are independently and identically distributed (iid) with probability

i = Nif A

Figure 2.2.3: Point pattern of beta-type ganglion cells in the retina of a cat
recorded by Wiéssle et al. (1981). Beta cells are associated with the resolution
of fine detail in the cat’s visual system. They can be classified anatomically
as “on” or “off”. They are also labeled with the cell profile area. Image taken
from [19]
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Ripley’s K-function

Originally proposed by Ripley in 1981 [125], the purpose of the K-function
is to estimate whether or not there is clustering or repulsion present in a given
spatial point process. The K-function computes the expected number of points
within a distance t of an arbitrary point p (see Figure , therefore the
empirical value in 2D Euclidean space for the CSR case will be proportional to
the circular area, Amt?. The proportionality constant )\ represents the density
of points in the homogeneous Poisson case, and can be estimated by finding the
total number of points N divided by the total area of the observation window
A. Ripley’s K-function, which is a function of ¢, is a very useful tool because
it describes the 2"¢ order characteristics of the point process at several scales ¢.
If we ignore the edge effects due to the observation window, the observed K (1)

can be written as:

K(t) = ‘]VAJZZ[(CZH <t) (2.2.1)

i g

where I stands for the indicator function, and d;; stands for the Euclidean
distance between two points p; and p;. In the above equation, we see that the

expectation is normalized by 1/\ since A = INT\

, so we infer that theoretically
K(t) = wt? implies spatial independence of points, or a CSR point process.

Therefore, if K(t) is the theoretical CSR value of the function and K (t) is the

observed function, then K(t) > K(t) implies clustering between points and
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~

K(t) < K(t) implies repulsion. It is possible to extend this function to multi-
type point patterns (i.e. to find clustering or repulsion between specific spine

types) or to higher dimensional data (i.e. space-time, or 3D Euclidean space).
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Figure 2.2.4: An illustrative example of Ripley’s K-function in an observed
window of area A.

2.2.3 Linear Network Point Processes

In this work we will also be discussing point processes which reside on a linear
network. The most notable example of a point process on a linear network is
the Chicago street crime dataset [8]. The dataset is a record of street crimes
reported in the period 25 April to 8 May 2002, in an area of Chicago (Illinois,
USA) close to the University of Chicago. The original street crime map was
published in the Chicago Weekly News in 2002. The data give the spatial
location of each crime, and the type of crime. The types of crimes include the
following: labels are interpreted as follows: battery/assault, burglary, motor
vehicle theft, criminal damage, robbery, theft, and criminal trespassing (Figure

2.2.5).
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Figure 2.2.5: Chicago Crimes point pattern residing on a linear network
(Chicago Weekly News, 2002). Image taken from [19]

Mathematical definitions of a linear network in two-dimensional space, and
of a point process on a network, were given in [§], following is a brief summary.

A linear network in R? is defined as the union L = [ J"_, ¢; of a finite collection

of line segments ¢1,...,¢, in R®. The total length of all line segments in L is

denoted by |L|. The shortest-path distance dr,(u,v) between two points u and

v in L is the minimum of the lengths of all paths along the network from u to

v. If v cannot be reached from wu along the network, then we set dp(u,v) = co.

Intensity

For an unmarked point process X on the linear network L we say that X

has constant intensity or rate A > 0 if, for any B C L,

E[n(X N B)] = A|B],

where n(X N B) denotes the number of points of X falling in B. Thus A is the

average density of random points per unit length of the network. An unbiased
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estimator of A, given a point pattern dataset @, is A = n(x)/|L| where n(z) is
the number of points in «.
More generally the intensity may be spatially varying, and X has intensity

function A\(u) if, for any B C L,

En(XNB)| = /B)\(u) dyu, (2.2.2)

where d;u denotes integration with respect to one-dimensional arc length along
the linear network. Heuristically if [u, u+ dju] denotes an infinitesimal segment
in L, then the probability that a point of X falls in the segment is P{n(X N
[u,u + dyu]) > 0} = A(u)dju. In some applications it may be inappropriate
to assume that an intensity function exists, and we may have to rely on the
intensity measure A defined by A(B) = E[n(X N B)].

The intensity function of a point process X on a linear network can be
estimated using various kernel smoothing estimators [116,/132,(153] although

the statistical properties of these estimators are not very well understood.

Multitype Point Processes

A multitype point process Y on a linear network L is a stochastic process
whose realisations y are multitype point patterns. It can be regarded as a point
process on L x C. We write X, = {xy : (zx,tx) € Y} for the ‘projected’
or ‘unmarked’ process consisting of the locations of points of Y ignoring their

types. For each possible type i, we write X; = {zy : (x4, 1) € Y, tp = i} for

28



Chapter 2. Statistical methods for trend discovery and classification

the point process of locations of random points of type 7. Then we may regard
Y as equivalent to the multivariate process (Xi,...,X.). It is also useful to
define, for any nonempty set I C C, the point process X; = |J,.; X; of points
whose types belong to the set 1. Our notation for multitype point patterns and
point processes is borrowed from [143].

More generally it would be possible to replace the set of categories C' by any

space C of possible “marks”. Then we would define a marked point process on

L with marks in C as a point process in L x C such that the projected process
X, is a point process (meaning in particular that the number of random points,
regardless of their mark value, is almost surely finite). The mark t; attached to
the random point x; may specify any quantitative or qualitative characteristics
of the random point that are relevant to the study, such as size, arrival time,
colour, etc. The methods presented in Chapter |4 of this thesis extend to the
general case of a marked point process. However we shall confine attention to
multitype point processes for simplicity.

If Y is a multitype point process on L, we write \;(u) for the intensity
function of X;, and A;(u) for the intensity function of X; where I C C. It
follows that A;(u) = Y ..; Ai(u) and in particular the intensity of the unmarked
process Xo is Ae(u) = Y0 Ai(u).

A multitype Poisson process on L can be defined in three equivalent ways,

following [87]: firstly as a Poisson point process Y on L x C; or secondly as a
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multivariate point process Y = (X, ..., X.) such that the processes X; of ran-
dom points of each type are Poisson processes, and X7, ..., X, are independent
processes; or thirdly as a multitype point process Y with the property that the
process of locations X, is a Poisson process on L, and the marks are condition-
ally independent given X,.

A homogeneous multitype Poisson process is one in which each component
process X; has a constant intensity A\; > 0 for ¢ € C'. The unmarked process
X, then has constant intensity A\, = 2;1 A;. The marks are independent and
identically distributed, with probability p; = A\;/As for mark ¢ € C. For further

explanation, see |14,/77].

Linear Network K-function

The linear network K-function (Okabe and Yamada [114]) takes into account
the structure of the linear network on which a point process resides and imitates

Ripley’s K-function described above. It is calculated as follows:

K(t) = %ZZ[(dij <t) (2.2.3)

i=1 j#i

where /7 is the length of the total network Lp. The theoretical CSR for this

case is described as follows:

K(t) = é / G0 (2.2.4)
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where p is a point belonging to the set of all points P = {p,...,pn}, and
?,(t) is the length of the subset of the network L,(t) where the distance between
p and any other point is < ¢t. Note that here the distance d;; stands for the
linear network distance. Accounting for variability in the length ¢,(¢) means
the formula takes into account the edge effects due to the observation window
(in our case the image plane) inherently, but at the cost of added complexity.
The computation of the theoretical linear network K-function requires us to find
L,,(t), the subset of Ly where the network distance between a specific point p;
and any other point is < ¢, and £, (t), the length of that subset, for every point
pi. A visualization of the quantities d;;, Ly, {p, Ly, (t), and £,,(t) is shown in
Figure 3.

Since our application requires us to compare various linear network K-
functions in a meaningful way, we use a corrected version of the network K-

function that intrinsically compensates for the geometry of the network called

Ang’s correction [8]. The observed K-function then becomes:

N <

K(t) = ﬁzzlﬁ(;—@? (2.2.5)
where m(7, d;;) is the number of points of L lying at the exact distance ¢ away
from the point ¢ measured by the shortest path. That is, the contribution to
the function from each pair of points (i, 7) is weighted by the reciprocal of the

number of points that are situated at the same distance from 7 as j is. As a

result, the theoretical CSR case is simply K(t) =t for all 0 < t < T. This
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L, = — network
£, = lengthi(L; )
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Figure 2.2.6: Visualization of the Linear Network K-function. This figure
clarifies what is meant by the quantities d;;, Ly, ¢r, Ly, (t), and ¢,,(t) which
were used to compute the linear network K-function. Here d;; is the linear
network distance shown by the gray line between points p; and p;. Lz (in
black) is the entirety of the single dendritic network and {7 is the length of
L. Similarly, L,,(t) (in blue dashed lines) is subset of the network where the
distance between a point p; and any other point is < t and £, (¢) is the length of
L, (t). In this particular example there are 2 spines which fall within L,, (¢) and

would be counted in determining the empirical function value K (t), however
point p; falls outside this radius and would therefore not be counted.

enables direct comparison of t-values across dendrites, as we will see in Chapter

4l

2.2.4 Spatial Covariates

The homogeneous Poisson process may be generalized to an inhomogeneous
process by making A depend on the point u in space i.e, A = A(u). We can

then model the inhomogeneous Poisson process as being dependent on various
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spatial covariates, such as a distance function d(u) i.e. A = A(d(w)). Tt is
possible to model certain marks as homogeneous and others as spatially varying,
in various combinations, to arrive at an appropriate model. For a more detailed
introduction on multi-type point processes we refer the reader to ( [108]). An

245z

example of a spatially varying process with intensity A = e in a unit square

can be seen in Figure 2.2.7]

Figure 2.2.7: Inhomogeneous Poisson Point Process within a unit square, with
intensity \ = e2+5¢

The Queensland Copper dataset, which requires quantification of point dis-
tributions with respect to surrounding line segments, is of particular relevance
to this thesis (Figure . This data was introduced and analyzed by Berman
[29]. It has also been studied by Berman and Diggle (1989), Berman and Turner
(1992), Baddeley and Turner (2000, 2005), Foxall and Baddeley (2002) and Bad-

deley et al (2005). These data come from an intensive geological survey of a
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70 x 158 km region in central Queensland, Australia. They consist of 67 points
representing copper ore deposits, and 146 line segments representing geological
lineaments. Lineaments are linear features, visible on a satellite image, that are
believed to consist largely of geological faults. The analysis presented in [20)]
uses the distance the shortest distance between a point and the nearest lin-
eament and also the spatial orientation of that lineament as possible spatial
covariates. It would be of great interest to predict the occurrence of copper
deposits from the lineament pattern, since the latter can easily be observed on

satellite images.

Figure 2.2.8: Copper ore deposits and lineaments in a region of central Queens-
land. North at top of frame. Image taken from [19]
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Chapter 3

Exploring spatial and temporal
trends of dendritic spines

Dendritic spines serve as key computational structures in brain plasticity.
Much remains to be learned about their spatial and temporal distribution among
neurons. Our aim in this study is to perform exploratory analyses based on the
population distributions of dendritic spines with regard to their morphological
characteristics and period of growth in dissociated hippocampal neurons. We
fit a log-linear model to the contingency table of spine features such as spine
type and distance from the soma to first determine which features are important
in modeling the spines, as well as the relationships between such features. A
multinomial logistic regression is then used to predict the spine types using
the features suggested by the log-linear model, along with neighboring spine
information.

Previous methods used to study the number of “clustered spines” on each

dendritic segment in monkey brains [154], define a cluster as a group of 3 or more
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spines. We believe our use of the linear network K-function [114] is the first work
to analyze the locations of dendritic spines and their clustering properties in
such a principled manner. Our analysis indicates that in the culture system, (i)
dendritic spine densities are “completely spatially random”, (ii) spine type and
distance from the soma are independent quantities, and most importantly, (iii)
spines had a tendency to cluster with other spines of the same type. Although
these results may vary with other systems, our primary contribution is the set
of statistical tools for morphological modeling of spines which can be used to
assess neuronal cultures following gene manipulation such as RNAi, and to study

induced pluripotent stem cells differentiated to neurons.

3.1 Biological Background

Spines are protrusions that occur on the dendrites of most mammalian neu-
rons. They contain the post-synaptic apparatus and have a role in learning
and memory storage. Spine distribution is a critically important question for
multiple reasons. Changes in spine distributions and shape have been linked
to neurological disorders such as Fragile X syndrome [78]. Spatial distribu-
tions of spines determine the extent to which the neuropil will be electrically
sampled, i.e. dense distributions will sample the neural connectivity map more
fully [155]. It may also reflect activity patterns in these circuits, because the

synaptic pruning that occurs during neural development is dependent on this
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activity. Furthermore, the nature of optimal sampling is unknown and likely de-
pends on the surrounding anatomy and the total information content available
to dendrites. Because pruning takes place during development in an activity de-
pendent manner, spine distributions may reflect activity within neural circuits.
Distributions of spine types are biologically important because the electrical
properties of spines, such as the spine neck resistance, promote nonlinear den-
dritic processing and associated forms of plasticity and storage [72] to enhance

the computational capabilities of neurons.

Figure 3.1.1: An example image showing spines lying on a dendrite.

The shapes and types (mushroom, thin, or stubby) of dendritic spines con-

tribute to synaptic plasticity. For example, mushroom type spines are generally
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thought to be the most electrochemically mature, and are therefore more likely
to create synapses with neighboring neurons than are the stubby type or thin
type spines [112]. Because neighboring spines on the same short segment of
dendrite can express a full range of structural dimensions, individual spines
might act as separate computational units [73]. Nevertheless, the dendrite acts
in a coordinated manner and thus the spatio-temporal distributions of different
spine types is likely to be significant. Little is known about this population level
organization of dendritic spines. Our aim is to perform an exploratory analysis
of neuronal data from different time periods during the growth of rat dissociated
hippocampal neurons, a well-established model system [81]. The observations
here pertain only to the culture system and not necessarily to in vivo settings
although the analytical tools used here could be adapted to in vivo analyses.
By quantifying populations of dendritic spines with automated tools at a
global level, we are able to perform a much larger and more comprehensive
analysis than most previous studies. Many studies only analyze a small region
of interest on the largest dendrites, for example the 50 — 75um closest to the
soma [110], or 10um segments [37], making it easier to measure manually the
spine type counts and dimensions. Other works determine spine lengths and
widths by manually drawing a line along the maximal length and measuring the
length of that line [128], and therefore are only able to analyze a few neurons

and a few hundred spines at a time.
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Spine Type Cross-section Criteria
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Figure 3.1.2: A classification system for dendritic spines. Image taken from
http://www.farsight-toolkit.org/wiki/DendriticSpineFeatures

In this study we determine the ratios of spine types along the dendrites as a
function of time in culture, clustering or repulsion of spines in space, and how
best to model spine type distributions. A model that fits the spatial distribution
of spine types in healthy cultured neurons would be useful to assess neuronal
cultures following gene manipulation such as RNAi and to study features of

induced pluripotent stem cells differentiated to neurons.

3.2 Cell imaging

Dissociated hippocampal neurons from embryonic rat brains (E18) are plated

onto poly-l-lysine coated coverslips. Once neurons adhered to the coverslip, they
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are placed face-down on glial cells grown wn vitro for 15 days. These neurons
are a primary neuronal culture system, and no cell line is used. Neurons are
grown for specific time periods up to 21 days in a neuronal medium containing
B27. This co-culture of neurons and glia mimic the physiological conditions of
neuronal growth and development in mammalian brain [81].

To fill the neuronal processes including dendritic spines Green Fluorescent
Protein (GFP) is expressed from a plasmid containing the beta-actin promoter
(CAG-GFP) [159]. Of this plasmid, 2ug is transfected into each coverslip con-
taining about 50,000 neurons (including about 20% glial cells). Transfection
is performed as described in the manufacturer’s protocol (Lipofectamine 2000
from Invitrogen) with minor changes. The transfection mix and neurons are
incubated for two hours to avoid toxicity caused by lipo2000. Following trans-
fection, coverslips are flipped back onto the glial dish, where they are originally
cultured. GFP-actin transfected into the neurons at DIV4 (Day In Vitro) and
neurons are studied at three time points- DIV7, 14 and 21. These time points
survey the maturation period over which synapses and spines emerge [24]. Note
that these are not the same neurons studied over time, but each time point
represents a different population of neurons which are grown in culture up until
the point of imaging. In this way our analysis represents a study at the popu-
lation level. At each time point the number of images taken per plate depends

on the transfection efficiency of that plate. On average approximately 1% of
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cells are transfected. The plating density is set so that neurons are relatively
isolated in order to capture one neuron per image. An Olympus FluoView laser
scanning confocal microscope is used. Image slices are 2048 by 2048 pixels at
154 nm per pixel resolution. There are 7-33 z-slices per stack depending on the
depth of the neuron, taken at 200 nm steps. This means that the stacks are
315.39um x 315.39um x 1.4-6.6um. The z dimension slices are used to capture
each depth level at the optimal focus, however we cannot claim to have accu-
rate volumetric information at this resolution. A 40x oil objective lens with
no optical zoom is used. Numerical Aperture (NA) is 1.3, and illumination
conditions are kept constant. Deconvolution of the raw data before processing
is not necessary because the images are clear enough to manually annotate the
neuron traces and manually edit all the spine detections and types as described
in the following section. We perform three biological replicates, the results of
which are detailed below. All of the neuronal culturing and imaging work was
done by Dr. Sourav Banerjee at Dr. Ken Kosik’s lab in the Molecular, Cellular
and Developmental Biology department at UCSB.

Although there are other higher resolution, full volume methods, the analysis
of this data is broadly applicable to imaged neurons in other systems [81]. We
attempt to capture the entire neuron in each image, however because of limits
in available imaging techniques we find that this does not always happen. In the

cases where dendrites are truncated at the end of the image plane we assume
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that the proportion of spines in the missing data is similar to what has been
observed, and therefore the resulting distributions do not change. We verified
this assumption visually by taking tiled mosaics of a few neurons imaged in their
entirety from each DIV and checking that the branch orders, distances to soma
and spine type counts are unchanged as compared to those of the same DIV.
There is an observed increase in the dendritic length truncated by the image
plane as the DIV increased. However in our particular analyses the methods
used, such as the Log-Linear Model and Multinomial Logistic Regression, focus
on trends between spine characteristics such as distance to soma and type and
these trends are innately unaffected by the truncation of dendrites given the
above assumption. In addition, spatial point process analyses such as the linear
network K-function always include the specification of an observation window
[19], which in our case is the image plane. We verify (see Results and Discussion
section) that the overall spine density and the density of each spine type do not
vary with distance from the soma so that we can assume spine density at the ends
of the truncated dendrites are similar to the dendritic length which is observed.
We recognize that we cannot see the proximity of labeled cells to other neurons
which haven’t taken up the GFP labeling. These unlabeled neighboring neurons
may cause some difference in spine distributions which we cannot quantify. For
this reason we attempt to quantify our biological findings statistically over entire

experiments and DIV time points instead of by individual neurons, although
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in certain cases showing results from individual randomly sampled neurons is

necessary.

3.2.1 Neuronal reconstruction

There exist many automated methods for studying neuronal growth and
morphometry and therefore we present a brief review of available software for
tracing dendrites and detecting and classifying spines. In particular, NeuronJ
[104] is a widely used software; however it is only semi- automatic and one must
click several points to trace each neurite. The labeling is done manually and
the statistics output only include lengths of neurites and not spine data. HCA-
Vision [142] is a costly software with similar goals, however the parameters of
the neurite tracing are set manually with a sliding bar and thus results require
much hand-tuning. In addition, it is also focused on tracing neurites as opposed
to spine analysis. For a full review of existing methods and softwares for neuron
tracing and spine detection see [103]. We found NeuronStudio [53}/126}/147] to
be the most user-friendly, and for this reason we used it to annotate dendrites
and spines for this analysis.

Despite the abundance of automated software, neuronal reconstructions are
still largely performed by hand [2] and this is is especially essential for a study
like this one, where the traversed distance of the dendrites and number of spines

and their shapes are analyzed in such detail. Using automated reconstruction
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algorithms on raw data is prone to both false positive and false negative de-
tections of spines, as well as misleading spine shape measurements. In cases
where neurites from neighboring neurons enter into an image (e.g. Figure m
panes B and C), NeuronStudio often incorrectly traces these neurites as be-
longing to the neuron of interest. For this reason we manually traced each
dendritic branch and soma of each neuron, ran NeuronStudio’s automated spine
detection/classification algorithm and then manually inspected and verified each
spine’s location and type. The verification and tracing are done by the primary
author and an undergraduate biology student working in the Kosik Lab (see Ac-
knowledgments). They are both familiar with dendrite and spine morphology
and the resulting annotations from each are cross-checked by the other.
Relevant spine attributes output from the NeuronStudio software include
branch order (BO), type (stubby, mushroom or thin), distance to soma along
dendrite (SD), length (tip of spine to dendrite) and width at widest point (head
diameter or HD). However since NeuronStudio uses the length and width of the
spines to determine the spine type, we chose to make use of spine type and
discard the other 2 measurements. NeuronStudio uses centrifugal labeling for
branch orders, meaning it starts at 1 at the cell body and moves outwards, incre-
menting at every y-shaped bifurcation regardless of the diameter of the daugh-
ter branches. Note that the entire image stack with z-dimension information is

loaded into NeuronStudio for the spine classification, and that the software has

44



Chapter 3. Exploring spatial and temporal trends of dendritic spines

interpolation algorithms to estimate the spine type in 3D. For spine detection
the default cut-offs are used, i.e. a required spine height between 0.2 — 3um,
a maximum spine width of 3um, a minimum stubby size of 10 voxels (at the
imaging resolution given above), a minimum non-stubby size of 5 voxels, and
automatic z-smear compensation. For spine classification, the default settings
are also used, i.e. a head-to-neck ratio threshold of 1.1um, an aspect ratio
(spine height-to-width) threshold of 2.5um and a minimum mushroom head
size of 0.35um. NeuronStudio delineates spine types by these 3 thresholds. It
is generally known that mushroom spines have a large head and a narrow neck,
thin spines have a small head and a narrow neck, and stubby spines display no
obvious subdivision in head and neck. If the head-to-neck ratio is above the
threshold and the minimum mushroom head size is met, the spine is considered
mushroom. If both the head-to-neck and aspect ratios are lower than the re-
spective thresholds then the spine is considered stubby. The remaining cases
result in thin spines. For further information on NeuronStudio reconstruction,
detection, and spine classification algorithms please refer to [1264|147]. In addi-
tion to the spine information, a trace file is output which labels the cell body,
branch points and end points of the dendrites. The trace provides a skeletoniza-
tion, or centerline, of the dendrite which we used to compute the linear network

distances in the following analyses.
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Table 3.1: Number of Neurons collected per Experiment and DIV

EXP | DIVT | DIV14 | DIV21

1 8 9 7
2 10 10 10
3 7 7 7

3.2.2 Dataset Detalils

We performed three biological replicate experiments resulting in a total of 75
neurons from the following time points: DIV 7, DIV 14, and DIV 21 (Table .
This provided a rich and complete data set resulting in 485 dendritic branches
and 30,285 spines. Example images from each DIV along with zoomed in den-
dritic segments where spines and annotations are visible are shown in Figure
[3.2.1] Scale bars are shown in red in panels A-C and the yellow rectangular
boxes in panels A-C show the region of interest which has been zoomed in on
in panels D-F respectively. Panels D-F are all at the same resolution.

The number of spines per um, or A, for each dendrite in different experiments
and time points is shown in Figure We chose to include this in order to
help the reader compare these neuronal culture results with other experimental
paradigms with which they may be more familiar. It is clear from the histograms
that the distribution of spine density for DIV7 is skewed toward lower values as

compared to the density for DIV21, as expected. The image data as well as spine
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Table 3.2: Number of each type of spine per experiment

EXP | mushroom | stubby | thin

1 4035 3224 | 1915
2 5400 6619 | 2570
3 2388 3485 | 649

and trace annotations are made publicly available through the BISQUE reposi-
tory [92] at http://bisque.ece.ucsb.edu/client_service/view?resource=
http://bisque.ece.ucsb.edu/data_service/dataset/2653471. We chose
BISQUE over other databases like NeuroMorpho.Org [10] because it allows us
to upload multiple layers of annotations as opposed to only the digital recon-
struction files.

We calculated a 2-way contingency table over all experiments and spine
types and obtained Table [3.2] From this table we note the high frequency of
mushroom and stubby spines as compared to thin spines, and also the fact that
the ratio of types does not remain the same per experiment even though they
are indeed biological replicates. In fact, a Pearson’s Chi-Squared test on Table
shows dependence between the spine type counts and experiment number,
X2(df =4, N = 30285) = 659.87,p < 0.0001.

We believe that the large experimental variation between spine type propor-

tions and counts in each experiment is a positive result because this meant that
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statistical agreement across all 3 experiments relating to spine type clustering
and density estimation carries heavier weight than if the 3 experiments are more
uniform in these quantities, or if we had pooled data from all 3 experiments to-
gether. Also, if all 3 experiments are unusually homogeneous there could be a
possibility that it is a result of our specific culturing, imaging or spine extraction
methods rather than a true representation of the underlying biological process.
The various biological systems to which these techniques will be applied will

certainly have this type of variability.

3.3 Log-Linear Model

To find the most influential attributes with regard to prediction and spatio-
temporal modeling of spines we fit a log-linear model to the feature data, as
described in Section 2.1.2] The co-occurrence frequencies of the features in
question are essentially a large multidimensional contingency table of counts.
The attributes under consideration are BO, Type, SD and DIV. Again, since the
type of spine is quite directly dependent on the length and the head diameter
of the spine, we left these latter variables out of the modeling.

In order to analyze the data using a log-linear model, the various features
must be in a categorical form or discretized. In an exploratory analysis such as
this, one does not know what dependencies among features to expect; however

we would like to note that these dependencies are not lost in the discretization
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process since trends in increasing and decreasing feature values would be pre-
served. To ensure that there are a reasonable number of observations at the
higher branch orders, we pooled BO values of 5 or higher into a single category
called “higher-order branches”. We created a categorical variable to represent
the continuous variable soma distance (SD) where categories are determined
using the 4 quartiles of the SD spine data pooled over all 3 experiments. Specif-
ically, SD values of less than 65.65um are classified into the first group, from
this value to less than 108.99um the second, from this to less than 157.04um
the third, and the rest (less than the most distal spine which lay at 413.25um
from the cell body) fell in the fourth group. Binning the observed data for the
continuous variables is the best way to get a general feel for how these quantities
relate to each other. After this post-processing of the data we arrived at 5 cate-
gories of branch order, 4 categories of soma distance, 3 spine types (mushroom,
stubby, and thin), and 3 DIVs (7, 14, and 21 days).

Using the observed frequencies for the aforementioned attributes, we created
a four-way contingency table and fit the model using the ‘glm’ function in
the R package ‘stats’. The table of the frequency of occurrences of the four
attributes is modeled as Poisson with each entry being a simple count of the
co-occurrences of that bin. We called this count f;;,; with each of the subscripts
1, 7, k, [ corresponding to a different attribute. The method uses the link function

Yijiw = log(fijr), and treats the model as a regular linear model. Each entry
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Yijr is modeled by a combination of coefficients: the intercept, plus main effects,
plus every combination of interactions between these four attributes, as shown

below.

Yijkt = B+ a; + B+ + 0+ (aB)ij + (ay)ix + (ad)y + ... +error.  (3.3.1)

We estimated this full interaction model using the least-squares maximum-
likelihood approach. We also used a stepwise fit algorithm, which begins with a
model that includes only the constant term, and at each step chooses whether or
not to add one additional term. The algorithm begins with the main effects then
tries each possible 2-way interaction, aiming to minimize the Akaike Information
Criterion (AIC) as explained in Chapter . To compute the stepwise fit we used
the R function ‘step’. For more information on the stepwise fit algorithm as
well as the AIC criterion we ask that the readers refer to the ’step’ function
reference ( [36], Chapter 6). We ran both of these LLM fitting procedures
for all 3 experiments separately expecting to find general agreement between
coefficients of the corresponding models created.

The stepwise-fit of the log-linear model (Section starts with just a
constant term, and at each step choosing to add the main effects (div, type,
bo and sd) and possible 2-way interactions between main effects one-by-one if
they decreased the corresponding AIC value. The captions above Tables 3.9

show the final models arrived at for each of the 3 experiments as well as their
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Table 3.3: EXP 1 Stepwise Final Model: freq ~ div + type + bo + sd + bo-sd
+ div-bo + div-type + div-sd + type-bo + type-sd, AIC = 1557.05

Df | Deviance | AIC

none 530.4 1557.1

omit type-sd term | 6 545.0 1559.6

omit type-bo term | 8 55H8.8 1569.4

omit div-sd term 6 569.6 1584.2

omit div-type term | 4 648.0 1666.6

omit div-bo term 8 1324.1 2334.7

omit bo-sd term 12 4142.4 5145.0

corresponding AIC values. The tables indicate the change in the AIC value that
would occur from adding or omitting each of the terms in the first column. This
gives us an idea of how important that term is to the model. The rows of the
table are ordered by their overall contribution to the model, i.e. the term in
the first column of the first row of each table had the lowest AIC value and is
therefore the most important to the overall model. If the reader requires further
information on the AIC criterion or how to interpret this table we ask them to
refer to Chapter 6 of [36].

Despite the fact that they are included in the final stepwise fit model for
experiments 1 and 3, the AIC values in Tables [3.3 show that in all 3 ex-

periments the interaction between spine type and soma distance (“type-sd”)
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Table 3.4: EXP 2 Stepwise Final Model: freq ~ div + type + bo + sd + bo-sd
+ div-bo + div-sd + div-type, AIC = 1243.13

Df | Deviance | AIC

none 470.2 1243.1

add type-sd term | 6 461.3 1246.3

add type-bo term | 8 465.5 1254.4

omit div-type term | 4 610.4 1375.3

omit div-sd term 6 696.0 1456.9

omit div-bo term 8 906.5 1663.5

omit bo-sd term 12 5208.2 5957.1

Table 3.5: EXP 3 Stepwise Final Model: freq ~ div 4+ type + bo + sd + bo-sd
+ div-sd + div-type + div-bo + type-sd + type-bo, AIC = 1441.29

Df | Deviance | AIC

none 482.24 | 1441.3

omit type-bo term | 8 522.95 | 1466.0

omit type-sd term | 6 542.08 | 1489.1

omit div-bo term 8 606.34 1549.4

omit div-type term | 4 630.62 | 1581.7

omit div-sd term 6 715.38 1662.4

omit bo-sd term 12 | 2825.69 | 3760.7
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as well as spine type and branch order (“type-bo”) are the least important
in modeling the overall frequency table of occurrences. This implies that the
correlation between these quantities is not very high, therefore we reason that
it is not necessary to use either SD or BO to predict the spine type in the
MLR created in the following section. We also noticed that the term mark-
ing the interaction between BO and SD is the most important pairwise term
in all stepwise fit models. It is expected that BO and SD are correlated be-
cause both necessarily increase as we move away from the cell body. Indeed,
running a 2-way Chi-square test on the contingency table of the discretized ver-
sions of these variables showed us high dependence, x?(df = 12, N = 30285) =
11635.19, p < 0.0001. We also saw a high level of dependence between DIV and
SD (x2(df = 6, N = 30285) = 681.76,p < 0.0001) and between DIV and BO
(X%(df = 8, N = 30285) = 1604.75,p < 0.0001). This is intuitive as well since
we expect both BO and SD to generally increase with DIV.

It is possible that the Type vs. SD relationship could have also been esti-
mated using a Sholl-type analysis ( [133]) where we count the number of each
type occurring within concentric circles from the soma and verify that it is con-
stant, however this would not necessarily produce the same results. The crucial
difference between our approach and the Sholl approach is that in our approach
the “distance from soma measures” the actual distance along the centerline of

the dendrite instead of the radial distance from the cell center. This is espe-
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cially important for dendrites with high tortuosity (which we find prevalent in
our data), since the radial distance in those cases will not correspond to the
dendritic distance from the cell body. Many studies of cultured neurons use
Sholl analysis, however they use it in its original form for counting dendritic
intersections and do not comment on the relation to spine density or type. To
our knowledge this is the first study to quantify the spine density vs. distance
to the soma in dissociated neuronal cultures.

Three-way and 4-way interactions are generally known to be weak (not as
explanatory as the main effects and 2nd order interactions) and difficult to
interpret, however in the interest of exploring all possibilities we computed the
maximum likelihood fit using all 4 attributes as well as a stepwise fit model
which allows for 3-way interactions between attributes. The table presented
in results from the LLM which models all possible interactions of all 4
attributes, i.e. up to the fourth order. The coefficients presented in the table
are those which are significant at the 0.1% level, and the corresponding p-
values are shown in the last column. The table contains the interactions which
are more important to the model, and shows that of these interactions only one
(highlighted in green) between type and either BO or SD, is shown as being
significant over all experiments. This verifies once again that neither BO nor
SD are highly correlated with the spine type. In addition to this, the stepwise

fit models in Table show that if we did allow 3rd order interactions, the
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strongest 3rd order correlation over all experiments is that of DIV, SD and BO,
again affirming that all 3 of these quantities should intuitively increase together.

The resulting models corresponding to Table |3.7] are:

e EXP 1 Stepwise Final Model:
freq div 4+ type + bo + sd + bo:sd + div:bo + div:type + divisd +

type:bo + type:sd + div:bo:sd + div:type:bo, AIC=1243.92

o EXP 2 Stepwise Final Model:
freq div 4+ type + bo + sd + bo:sd + div:bo + div:isd + div:type +

div:bo:sd, AIC=927.75

o EXP 3 Stepwise Final Model:
div + type + bo + sd + bo:sd + div:sd + div:type + div:bo + type:sd +

type:bo + div:bo:sd + div:type:sd + div:type:bo, AIC=1165.38

95



Chapter 3. Exploring spatial and temporal trends of dendritic spines

Figure 3.2.1: Examples of Cell Imaging Results. This figure shows exam-
ple images from each DIV (in order from top to bottom: DIV7, DIV14, DIV21)
along with corresponding close-up images of dendritic segments where spines are
clearly visible. Scale bars are shown in red in panels A-C and the yellow rect-
angular boxes in panels A-C show the region of interest which has been zoomed
in on in panels D-F respectively. Panels D-F are all at the same resolution.
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Figure 3.2.2: Histograms of spine density per dendrite for each experiment
and DIV. This figure shows histograms of the number of spines per um, or
A, for each dendrite in different experiments and time points. We choose to
include this in order to help the reader compare these neuronal culture results
with other experimental paradigms with which they may be more familiar. It
is clear from the histograms that the distribution of spine density for DIVT is
skewed toward lower values as compared to the density for DIV21, as expected.
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Table 3.6: This table shows the 4-way interaction LLM

coefficients which are significant at the 0.1% level. Note

that only one interaction between type and either branch

order or soma distance (highlighted in green) is signifi-

cant in the entire table.

bo3:sd2

2.124e4-00

2.837e-01

Estimate | Std.Error | z-value | Pr(> |z|)
Experiment 1

(Intercept) 4.585e+00 | 1.010e-01 | 45.389 | < 2e-16 ***
dival 5.683¢-01 | 1.264e-01 | 4.495 | 6.950-06 ***
typestubby -5.960e-01 | 1.695e-01 | -3.517 | 0.000437 ***
typethin | -1.280e-+00 | 2.174e-01 | -5.931 | 3.01e-09 ***
bo3 -8.714e-01 | 1.860e-01 | -4.685 | 2.80e-06 ***
hod -2.187¢4+00 | 3.180e-01 | -6.878 | 6.07c-12 ***
bob -3.892e+00 | 7.143e-01 | -5.449 | 5.08e-08 ***
sd2 -1.253e+00 | 2.143e-01 | -5.846 | 5.03e-09 ***
sd3 ~1.58904+00 | 2.4540-01 | -6.477 | 9.36e-11 ***
div7:typethin 8.992e-01 | 2.703e-01 | 3.327 | 0.000878 ***

7.486

7.10e-14 ***

bo4:sd2

3.249e+00

3.862¢-01

8.413

< 2e-16 **
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bobd:sd2 4.703e+00 | 7.495e-01 | 6.274 | 3.5le-10 ***
bo3:sd3 2.065e+00 | 3.158e-01 | 6.539 | 6.18e-11 ***
bo4:sd3 3.509e+00 | 4.055e-01 | 8.653 | < 2e-16 ***
bob:sd3 6.002e+00 | 7.525e-01 | 7.976 | 1.51le-15 ***
Experiment 2

(Intercept) 5.094e4+00 | 7.833e-02 | 65.033 | < 2e-16 ***
div7 -6.511e-01 | 1.338e-01 | -4.867 | 1.14e-06 ***
typethin 3.573e-01 | 1.021e-01 | 3.499 | 0.000467 ***
bo4 -1.405e+00 | 1.765e-01 | -7.962 | 1.70e-15 ***
bob -1.483e+00 | 1.821e-01 | -8.143 | 3.86e-16 ***
sd2 -1.380e+00 | 1.747e-01 | -7.900 | 2.80e-15 ***
sd3 -2.609e+00 | 2.991e-01 | -8.722 | < 2e-16 ***
sd4 -2.897e4+00 | 3.424e-01 | -8.459 | < 2e-16 ***
div21:bo3 -1.256e+00 | 2.071e-01 | -6.068 | 1.30e-09 ***
div7:bo3 -8.222e-01 | 2.348e-01 | -3.501 | 0.000463 ***
bo2:sd2 8.531e-01 | 2.059e-01 | 4.143 | 3.42e-05 ***
bo3:sd2 1.657e4+00 | 2.067e-01 | 8.018 | 1.08e-15 ***
bo4:sd2 3.005e+00 | 2.459e-01 | 12.220 | < 2e-16 ***
bob:sd2 2.917e+00 | 2.517e-01 | 11.587 | < 2e-16 ***
bo2:sd3 1.327e4+00 | 3.313e-01 | 4.006 | 6.18e-05 ***
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bo3:sd3 2.128¢+00 | 3.281e-01 | 6.485 | 8.88e-11 ***
bod:sd3 4.090e+00 | 3.466e-01 | 11.801 | < 2e-16 ***
bo5:sd3 4.982e+00 | 3.450e-01 | 14.441 | < 2e-16 ***
bo3:sd4 1.777e+00 | 3.814e-01 | 4.659 | 3.18e-06 ***
bod:sd4 3.551e+00 | 3.940e-01 | 9.014 | < 2e-16 ***
bob:sd4 5.590e+00 | 3.822¢-01 | 14.625 | < 2e-16 ***
Experiment 3

(Intercept) | 3.689e+00 | 1.581e-01 | 23.331 | < 2e-16 ***
sd3 -1.743e+00 | 4.097e-01 | -4.254 | 2.10e-05 ***
sd4 -2.079e+00 | 4.743e-01 | -4.384 | 1.17e-05 ***
bod:sd2 2.015e+00 | 4.073e-01 | 4.946 | 7.56e-07 ***
bo3:sd3 1.725e4+00 | 4.508e-01 | 3.827 | 0.000130 ***
bod:sd3 2.182e+00 | 4.739e-01 | 4.605 | 4.12e-06 ***
bo5:sd3 2.902e+00 | 5.000e-01 | 5.805 | 6.44e-09 ***
bob:sd4 3.818e+00 | 5.463e-01 | 6.988 | 2.79e-12 ***
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3.4 Multinomial Logistic Regression to predict

spine type from neighbor types

In order to predict spine type we first determined which attributes con-
tributed most to spine type prediction. Given the complexity of the multidi-
mensional LLM and the various interactions and conditional frequencies that
would impinge on this issue, we decided to determine these attributes by ana-
lyzing 2-way contingency tables for spine type vs. SD, BO, DIV, as well as the
spine types of the 3 nearest neighbors. This analysis helped us pick attributes
that would be useful as the predictors in the multinomial logistic regression
(MLR) [76] explained below.

When the response variable of a regression takes binary values “Logistic
Regression” is used. This is an approach which uses a linear combination of
the predictor variables to predict the log-odds of a success (the “logit” of the
probability). Since our response variable is spine type and it can take 3 values
(mushroom, stubby or thin), we needed to use a “Multinomial Logistic Re-
gression” (MLR) which attempts to model the probability of any of multiple
possible outcomes, as described in Section [2.1.2] We did not use the attributes
SD or BO as predictors variables since the results of both the LLM analysis and
2-way contingency tables mentioned above told us that these quantities are not

as relevant for spine type prediction. Therefore our model consisted of spine
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Table 3.7: AIC Stepwise-fit models of LLM with up to 3-way interactions

Df | Deviance AIC

Experiment 1

none 137.31 1243.9

- type:sd 6 154.00 1248.6

+ div:type:sd | 12 | 118.35 1249.0

+ type:bo:sd | 24 96.12 1250.7

- div:type:bo | 16 | 191.02 1265.6

- div:bo:sd 24 478.78 1537.4

Experiment 2

none 106.83 927.75

+ type:sd 6 97.94 930.87

+ type:bo 8 102.10 939.03

- div:type 4 247.02 | 1059.95

- div:bo:sd | 24 | 470.21 | 1243.13

Experiment 3

none 102.32 1165.4

- divitypesbo | 16 | 134.54 | 1165.6

+ type:bo:sd | 24 68.79 1179.8

- divitype:sd | 12 | 147.51 1186.6

- div:bo:sd 4 398.35 1413.4
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type as the output variable and the DIV, 1st, 2nd and 3rd nearest neighbor
type along the dendrite as the predictor variables. We tried using only 1 or
2 nearest neighbors, however the results proved inconclusive because the pre-
diction probabilities for each of the 3 types are predominantly close to 1/3. If
we used more than the 3 nearest neighbors we sometimes ended up spanning
a segment of dendrite which we did not consider to be “local”, so we decided
that 3 nearest neighbors provide the most useful information in the case of this
study:.

The MLR analysis we performed in this chapter does disregard the actual
inter-spine distances, meaning that if the 3 nearest neighbors are very close
or very far apart we still treat them the same. We did this partially because
adding the distance variables would complicate the model significantly, but also
because we believe that over a large population of spines such as the one we
have, these differences in distance will average out and we will still get a general
picture of the trends between neighboring spine types. To verify that this is
true we computed a histogram showing the distribution of 3rd nearest neighbor
distances for each spine, shown in Figure[3.4.1] Although the maximum distance
to any 3rd nearest neighbor is extremely high (248.31um) we can see from the
histogram as well as the fact that the median 3rd nearest neighbor distance is
5.34pm that this distance is clearly an outlier case and that the majority of 3rd

nearest neighbor distances lie below 25um.
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Figure 3.4.1: Histogram of 3rd Nearest Neighbor Distances. This figure shows
the distribution of 3rd nearest neighbor distances in order to get an idea of the
physical neighborhood of spine types used for the MLR. It shows that although
the maximum distance to any 3rd nearest neighbor is extremely high (248.31um)
this distance is clearly an outlier case.

Suppose the output variable categories are denoted by 0, 1,2 corresponding
to mushroom, stubby or thin spines, with 0 being the reference category. If y;
denotes the spine type, and X, is the vector of the 3 neighbor types and DIV
for the 7th observation, we compute [, the vector of regression coefficients in
the kth regression. Note that because the predictor variables are spine types,
which are nominal as opposed to ordinal variables, the predictor variables X;

must be represented with a “dummy coding”. This means each neighbor type
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is represented by 2 predictor variables, where (1,0) corresponded to mushroom
type, (0,1) corresponded to stubby type and (0,0) corresponded to thin type.
This does not need to be done for the output variable y. With the addition of
the DIV, which does not have to be dummy coded since it is an ordinal variable,
this made each X; vector of length 7.

The regressions are then written as:

exp(/1X;)

P =1 = T o Bix,) + ep(X) (341)
o exp(B2X;)
Plyi=2)= 1+ exp(51X;) + exp(f2X;) (3:4.2)
and
Py = 0) = 1— P(y; = 1) — P(y; = 2) - (3.4.3)

T 1+ exp(51X;) + exp(f2X5)

The parameters are estimated typically by using an iterative procedure
such as “iteratively re-weighted least squares” (IRLS) or, more commonly by a
quasi-Newton method such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method. In our case we create an MLR using the command multinom in the R

package nnet [144] which uses BFGS by calling the R function optim. It can be

seen that

P(yz' = 1) _
log (m) =X (3.4.4)
log (%) = B X; (3.4.5)
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so that the beta coefficients represent the change in the log odds of the dependent
variable being in a particular category with respect to the reference category
i.e. the thin type, for a unit change of the corresponding independent variable.
To check if the models created from all three experiments are in agreement, we
ran the MLR separately for each experiment.

To satisfy one of the major assumptions of this analysis, namely that the
data must be a set of independent observations, we took 200 randomly sampled
spines of each type from each experiment (600 spines per experiment total) to
use for the parameter estimation. We select equal proportions of each spine type
in order to remove any bias in the model towards the less frequent thin spines,
and 200 is the largest number we could justify using since there are only 649
thin spines in experiment 3. We verified that these randomly sampled spines
did not lie within 10um of the image border so that we are fairly certain their
nearest neighbors did not fall outside of the image plane. Although the soma
is generally centered in the image plane, due to the tortuosity of the dendritic
structure this does not mean that our sample is necessarily fully biased towards
spines which are proximal to the soma. We did not verify explicitly that the
sampled spines are not neighbors of each other, since we assumed that the
variation captured by the random sampling is enough to ensure some level of
independence. The idea is to aim for an independent set of observations which

represented the entire “population” of spines in that experiment.To be clear we
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used all 30,285 spines for the LLM model and K-function analysis, only the
MLR model required random sampling since we are using neighbor information
which would have been redundant if we considered every spine.

To verify that the prediction of spine type provided by the MLR is better
than what we would get purely by their relative abundance i.e. without neigh-
boring spine type information, we computed something similar to a “Bayes
Factor” [84]. Bayes factor is a method of choosing between two models on the
basis of the observed data. In our case, the first prediction model is simply
the prior global probability of finding a given spine type based on its frequency
in the particular experiment under consideration. The second model is the
MLR prediction model using the neighbor type information. We computed
P(Y =i|X)/P(Y = i) and reasoned that values considerably larger than one
indicated the neighboring spine type information is helpful in the prediction of
the central spine type.

In creating a regression model, we first ascertain that the predictor variables
used are not only useful in predicting the output variable, but also that they
do not provide redundant information as this can throw off the model fitting
process. Using all spines in the dataset, we performed a Chi-square test on the
2-way contingency tables of spine type versus binned SD and BO, DIV, and the
types of the 3 nearest neighbors (N1, N2, N3) as described in the Log-Linear

Model section above. Due to the aforementioned dependence between the type
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Table 3.8: Chi-square results for spine type vs. other attributes

EXP1, N = 9174 EXP2, N = 14589 EXP3, N = 6522

Type-SD, df =6 | x2=09.13,p=0.1665 | x*=233.64,p < 0.0001 | y*= 25.08, p = 0.0003302

Type-BO, df =8 | x2 = 29.02,p = 0.0003147 | ¥ = 12.39,p = 0.1348 | y* = 26.53, p = 0.0008516

Type-DIV, df =4 | x*=119.78,p < 0.0001 | y* = 358.25,p < 0.0001 | 2 = 139.28,p < 0.0001

Type:N1, df =4 | y2=225.93,p < 0.0001 | x2=212.87,p < 0.0001 | ¥ = 246.74,p < 0.0001

Type:N2, df =4 | y2=163.67,p < 0.0001 | 2 =226.31,p < 0.0001 | ¥ =127.91,p < 0.0001

Type-N3, df =4 x* =90.33, p < 0.0001 x? = 153.11,p < 0.0001 | x* = 131.96,p < 0.0001

and experiment number we performed the test separately for each experiment
and the results are shown in Table[3.8] From the table we can see that the DIV
and the 3 nearest neighbors showed clear dependency with spine type in all
experiments, whereas SD and BO showed independence at the 5% significance
level in experiments 1 and 2 respectively. Since we expected SD and BO to have
a similar relationship with type due to the high correlation mentioned above,
and we had found this is not a very strong relationship, we chose to use only
DIV, N1, N2 and N3 as predictors for spine type in the MLR model.

The resulting beta coefficients for each of the predictor variables are shown
in Table Here “N1-Varl” refers to the beta coefficent of the first dummy
variable for the type of the first nearest neighbor; “N1-Var2” refers to the second
dummy variable, and so on. The “mushroom” row is omitted because it is the
reference category and its probability is obtained as shown in eqn. 6. We com-

puted the prediction probabilities for each spine type given each combination
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Table 3.9: MLR Beta Coefficients for all 3 experiments

EXP1 | (Intercept) | N1-Varl | N1-Var2 | N2-Varl | N2-Var2 | N3-Varl | N3-Var2 | DIV

stubby 0.06 0.04 0.47 -0.52 0.10 0.09 0.25 -0.01

thin 1.05 -0.57 -0.34 -0.84 -0.57 -0.23 -0.32 0.00

EXP2 | (Intercept) | N1-Varl | N1-Var2 | N2-Varl | N2-Var2 | N3-Varl | N3-Var2 | DIV

stubby 0.08 0.03 0.67 -0.14 0.05 -0.20 -0.09 |-0.02

thin 0.25 -0.76 -0.17 -0.61 -0.37 -0.06 -0.05 | -0.02

EXP3 | (Intercept) | N1-Varl | N1-Var2 | N2-Varl | N2-Var2 | N3-Varl | N3-Var2 | DIV

stubby -0.36 -0.24 0.33 -0.14 0.19 -0.03 0.30 0.01

thin 0.35 -0.66 -0.58 -0.33 -0.28 -0.25 -0.33 -0.02

of neighbor types for each experiment separately to determine the agreement
between experiments. A selected set of results are shown below in tables [3.10
[3.12] The highest probability for each row is marked by an asterisk. Note that
in these tables all DIVs in all experiments predicted the spine type to be mush-
room when its 3 nearest neighbors are mushroom type, and stubby when the
3 nearest neighbors are stubby type. Thin types are the most probable when
the three nearest neighbors are thin type in all but experiment 2 DIV14 and
DIV21. The probabilities for cases where all 3 of the nearest neighbors are not
of the same type have been omitted for brevity and because they did not show
any clear trends.

The Bayes factor results in table show that the proportional gain in

information for the spine type in question is always greater than one for the
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Table 3.10: Prediction Probabilities: N1 = mushroom, N2 = mushroom, N3
= mushroom. The highest probability for each row is marked by an asterisk.

DIVT7 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.45% 0.30 0.25
2 0.51%* 0.35 0.13
3 0.54* 0.27 0.20
DIV14 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.45* 0.28 0.26
2 0.55% 0.33 0.12
3 0.54* 0.28 0.18
DIV21 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.46* 0.27 0.27
2 0.59* 0.30 0.11
3 0.54* 0.30 0.16
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Table 3.11: Prediction Probabilities: N1 = stubby, N2 = stubby, N3 = stubby.

The highest probability for each row is marked by an asterisk.

DIVT7 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.24 0.55% 0.21
2 0.30 0.52%* 0.18
3 0.32 0.55% 0.12
DIV14 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.25 0.53* 0.22
2 0.33 0.50%* 0.17
3 0.32 0.58%* 0.11
DIV21 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.26 0.51%* 0.23
2 0.37 0.47* 0.16
3 0.31 0.60* 0.09
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Table 3.12: Prediction Probabilities: N1 = thin, N2 = thin, N3 = thin. The
highest probability for each row is marked by an asterisk.

DIVT7 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.20 0.20 0.60*
2 0.33 0.31 0.36*
3 0.33 0.25 0.42%*
DIV14 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.20 0.19 0.61*
2 0.37* 0.30 0.34
3 0.34 0.27 0.39*
DIV21 | EXP | P(mushroom) | P(stubby) | P(thin)
1 0.20 0.17 0.62*
2 0.41%* 0.28 0.32
3 0.34 0.30 0.36*
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prediction of a particular type when the neighborhood types are all of that same
type. Due to the low frequency of thin spines, their corresponding Bayes factors
are higher than that of other types, meaning that their prediction probabilities

benefit more than other types from neighborhood type information.

3.5 Linear network K-function shows spatial

randomness of spines

Originally proposed by Ripley in 1981 [125], the purpose of the K-function
is to estimate whether or not there is clustering or repulsion present in a given
spatial point process. The common null hypothesis is that the points within the
observation window are distributed as a homogeneous Poisson process, which is
also termed ” completely spatially random” or CSR. This means that the density
of points does not vary depending on the spatial parameters i.e. x and y in the
2D Euclidean case, or the location along the dendritic network in our case. In
order to determine if this is a valid null hypothesis for our data, we created Q-
Q plots |151] for individual dendrites which compared the quantiles of the SD
values of observed spines to the theoretical quantiles for the CSR case. If the
two distributions (observed and CSR) being compared are similar, the points in
the Q-Q plot would approximately lie on the line y = . In order to create the

theoretical quantiles it is necessary to know the values of SD at any location
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Table 3.13: Bayes Factors

BF (mushroom): N1 = mushroom, N2 = mushroom, N3 = mushroom

EXP DIV7 DIV14 DIV21
1 1.02 1.03 1.05
2 1.39 1.49 1.60
3 1.47 1.47 1.47

BF(stubby): N1 = stubby, N2 = stubby, N3 = stubby

EXP DIV7 DIV14 DIV21
1 1.56 1.50 1.44
2 1.15 1.10 1.05
3 1.03 1.08 1.12

BF(thin): N1 = thin, N2 = thin, N3 = thin

EXP DIV7 DIV14 DIV21
1 2.85 2.91 2.98
2 2.04 1.92 1.79
3 4.22 3.87 3.54
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on the given network, not just at the spine locations. Once we have this we
can partition the network into epsilon small segments and assign each segment
a value 1 if it contains a spine and 0 otherwise based on the CSR assumptions.
We did this using code provided to us by Adrian Baddeley and Gopal Nair at
the Commonwealth Scientific and Industrial Research Organization (CSIRO),
Australia.

The K-function computes the expected number of points within a distance ¢
of an arbitrary point p, therefore the empirical value in 2D Euclidean space for
the CSR case will be proportional to the circular area, Art?. The proportionality
constant A represents the density of points in the homogeneous Poisson case,
and can be estimated by finding the total number of points N divided by the
total area of the observation window A. Ripley’s K-function, which is a function
of t, is a very useful tool because it describes the 2"¢ order characteristics of
the point process at several scales t. If we ignore the edge effects due to the

observation window, the observed K (t) can be written as:

= |A]
K(t) = 15 Z > I(di; < t) (3.5.1)
where I stands for the indicator function, and d;; stands for the Euclidean

distance between two points p; and p;. In the above equation, we see that the

N

A]y SO we infer that theoretically

expectation is normalized by 1/ since A =

K(t) = wt* implies spatial independence of points, or a CSR point process.
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Therefore, if K (t) is the theoretical CSR value of the function and K (t) is the
observed function, then K (t) > K(t) implies clustering between points and
K (t) < K(t) implies repulsion. It is possible to extend this function to multi-
type point patterns (i.e. to find clustering or repulsion between specific spine
types) or to higher dimensional data (i.e. space-time, or 3D Euclidean space).

Since our particular point process consists of spines which lie along the “lin-
ear network” of the dendritic tree we are primarily concerned with inter-spine
distances along the dendrite as opposed to in Euclidean space. Therefore we
used a version of the K-function developed recently for linear networks by Okabe
and Yamada [114]. This modified version of the K-function takes into account
the structure of the linear network on which the point process resides and im-

itates the Euclidean space K-function described above. The linear network

K-function is calculated as follows:

K(t) = <5 ZZI(dlj <t) (3.5.2)
where /7 is the length of the total network L. The theoretical CSR for this
case is described as follows:

K(t) = % / G (3.5.3)

where p is a point belonging to the set of all points P = {p,...,pn}, and
?,(t) is the length of the subset of the network L, (t) where the distance between

p and any other point is < ¢. Note that here the distance d;; stands for the
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linear network distance along the dendrite. Accounting for variability in the
length ¢,(t) means the formula takes into account the edge effects due to the
observation window (in our case the image plane) inherently, but at the cost
of added complexity. The computation of the theoretical linear network K-
function requires us to find L,, (), the subset of Ly where the network distance
between a specific point p; and any other point is < ¢, and ¢, (), the length
of that subset, for every point p;. A visualization of the quantities d;;, Lr, {7,
Ly, (t), and £,,(t) is shown in Figure 3.5.1]

Note that although many biological applications of point processes treat in-
dividual observations as replicate patterns coming from the same underlying
distribution, we cannot do that using the above definition of the network lin-
ear K-function due to the change in linear network structure from dendrite to
dendrite. The term “dendrite” here refers to the entire dendritic tree resulting
from a single root branch of a neuron. Other in vivo studies [66,74] focus on
clustering of spines which lie on the same unbranched section of the dendrite,
however we focus on the entire dendritic tree under the hypothesis that it follows
rule-based distributions of spines due to anatomical constraints and integration
of the a signal over the entire dendrite. One can infer from Figure 3 that since
the geometry of the linear network changes from dendrite to dendrite, so do the
total lengths of the networks ¢7, the ranges of possible t-values and the amount

of dendritic length that is present within a given distance of any point. We
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L, = — network

L; = length(L; )

Li(t) = - - - network Td{.
£(t) = length(L (t) ) t [”

Figure 3.5.1: Visualization of the Linear Network K-function. This figure
clarifies what is meant by the quantities d;;, Ly, r, Ly, (t), and ¢,,(t) which are
used to compute the linear network K-function. Here d;; is the linear network
distance shown by the gray line between points p; and p;. Ly (in black) is the
entirety of the single dendritic network and ¢ is the length of Ly. Similarly,
L,,(t) (in blue dashed lines) is subset of the network where the distance between
a point p; and any other point is < ¢ and ¢, (¢) is the length of L, (). In this
particular example there are 2 spines which fall within L, () and would be
counted in determining the empirical function value K (), however point p;
falls outside this radius and would therefore not be counted.

did not simply normalize the lengths of the networks to a [0, 1] scale because
it is desirable for the t-axis to retain its real physical values in order to make
conclusions about the scale (in pm) of clustering or repulsion among spines.
However, we did desire to compare the linear network K-functions of various

dendrites in a meaningful way. For this reason we used a corrected version of
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the network K-function that intrinsically compensates for the geometry of the

network called Ang’s correction [§]. The observed K-function then becomes:

N
K(t) = ZZ d@ ;t (3.5.4)
1 is)

where m(7, d;;) is the number of points of L lying at the exact distance ¢ away
from the point ¢ measured by the shortest path. That is, the contribution to
the function from each pair of points (i, 7) is weighted by the reciprocal of the
number of points that are situated at the same distance from 7 as j is. As a
result, the theoretical CSR case is simply K(t) =t for all 0 < t < T. This
enables direct comparison of t-values across dendrites, as we will see in the

results section.

3.5.1 Simulations and g-values

To test the null hypothesis that the locations of spines on the dendrites are
indeed CSR, we created a summary statistic which encompasses the difference
between the empirical K (t) and the theoretical K (¢) under CSR. The summary

or “test statistic” we used, is the max absolute difference (MAD) over ¢, viz.
d = max |K(t) - K(t)].

One method for obtaining a distribution of d proposed by Diggle [3] is to boot-
strap the residuals, or differences between the observed and theoretical values.

However a more heuristic and intuitive way is to simulate the CSR case for each
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dendrite, compute the K-function for each of these simulations, and find the
simulated distribution of our test statistic. We then found the p-value of the
observed difference d from this simulated distribution.

Specifically, we carried out 1000 CSR simulations for each dendrite by plac-
ing uniform points on a line [0, /7|, and mapping them to that specific dendrite’s
linear network structure. The number of points simulated per dendrite equaled
the number of observed spines for that dendrite, thus preserving the overall
density A. This means the same number of spines that existed on each dendrite
are randomly placed along the linear network specific to that dendrite. We used
these simulations to obtain 1000 values of the summary statistic, say d[i]. Then
the p-value for each dendrite is simply the proportion of simulated values that
fell above the observed or experimental value of d, i.e. the rank of this d within
the 1000 values of d[i].

This p-value approach is similar to the test which rejects the null hypothesis
if the graph of the observed K-function lies outside the “point-wise simulation
envelope” at any value of £. A simulation envelope is essentially a graphical mea-
sure of how far a function can deviate from the theoretical value without being
considered significant at a given level. As mentioned above in our case the enve-
lope is calculated by first creating the 1000 CSR simulations of a point pattern
on a given dendritic network with the same observed network intensity, then

calculating the linear K-function for each of these 1000 simulations. To perform
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a two-sided significance test at the 10% level, the 5% and 95% percentiles are
then calculated based off the 50 lowest and 50 highest linear K-function values
per t-value, hence the term “point-wise”. Plotting these values as a function of
t gives one a visual idea of the spread that is produced by chance mechanisms
alone. If the observed K-function for a given t-value does not fall outside these
percentiles, it is considered insignificant for that t-value at the 10% significance
level. We make use of the R package ‘spatstat’ [19] for obtaining the point-wise
simulation envelope.

Because we have a multitude of hypothesis tests and p-values (one for each
dendrite), to reach a conclusion about the general trend for each DIV and
experiment, we used the concept of False Discovery Rate (FDR) [2§]. The FDR

is defined as

# true null tests
TN =
0 # total tests

(3.5.5)

Controlling the overall FDR, or expected proportion of incorrectly rejected null
hypotheses termed “false discoveries”, is a statistical method commonly used
in multiple hypothesis testing which increases the statistical power of each test.
What is more general and useful however, is a test-specific FDR measure. This
essentially allows us to look at all possible significance thresholds at once, as
well as provide each test with a measure of significance that can be easily inter-
preted. This is accomplished by calculating an analogue of the p-value for each

test called a “g-value” [138]. A p-value of 0.05 implies that 5% of all tests will
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result in false positives, whereas a g-value of 0.05 implies that 5% of significant
tests will result in false positives. Since the latter is clearly a far smaller quan-
tity, g-values generally indicate fewer significant tests than p-values for a given
significance threshold and provide a far more accurate indication of the level of
false positives in the case of multiple hypothesis testing. For g-value estimation

we used the ‘qvalue’ package available from [44].

3.5.2 Evaluation of results

We created Q-Q plots as described above based on the quantiles of spine
counts vs. distance from the soma and found that upon visual inspection almost
all dendrites follow the theoretical uniform distribution closely enough to assume
that the density of the spines is homogeneous and therefore the CSR case is a
viable null hypothesis. We selected 9 (out of 485) example dendrites and their
Q-Q plots are shown in Figure[3.5.2 We randomly selected 1 dendrite from each
DIV and each biological replicate (experiment) to ensure the diversity of the set.
The y = z line is marked in red, and the observed Q-Q values are marked as
black circles. Note that because this is a graphical method for comparing two
probability distributions there is no p-value or significance level associated.

Of all the 485 dendrites analyzed, only three of them (Exp. 1 DIV 21, Exp.
2 DIV 14, and Exp. 2 DIV 21) are considered non-CSR at the 5% significance

level. Figure [3.5.3] shows histograms of the p-values of all 485 dendrites sepa-
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Figure 3.5.2: Q-Q Plots of spine density vs. soma distance for a set of 9
example dendrites. This figure presents the Q-Q plots of spine density vs.
distance from soma for 9 (of the 485) example dendrites. We randomly selected
1 dendrite from each DIV and each biological replicate (experiment) to ensure
the diversity of the set. The y = z line is marked in red, and the observed Q-Q
values are marked as black circles. Visual inspection of these plots show that
they follow the line y = x closely enough to assume that the spine locations
being CSR is a viable null hypothesis.

rated into each DIV and experiment number. The 5% significance level is shown
by the red vertical line in each case. We then computed the g-values for each
dendrite and found that they are all equal to 1. This is not surprising according
to the explanation of the g-value above. Recall that g-values equal to 1 imply

that 100% of the significant tests resulted in false positives, i.e. there are no
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significant tests. We therefore conclude that regardless of the maturity of the
neuron, or the variation over biological replicate experiments, the locations of

spines along all of the dendrites we analyzed are completely spatially random.
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Figure 3.5.3: P-values of linear network K-function MAD statistic for each
experiment and DIV. This figure shows histograms of all dendrite p-values per
experiment and DIV before FDR is applied. In each case the 5% significance
level is marked by a red vertical line. Q-values are not included as a separate
figure because they are all zero.

As mentioned above, the K-function is a function of the inter-point distance,
t, that we consider around each observed point. The range of t-values is deter-

mined by the total length of the network ¢, therefore because each dendrite has

a different network length it also has a different range of t-values. Our chosen
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summary statistic throws away this information by computing the maximum
absolute deviation (MAD) over all ¢ in order to determine whether that value
deviates significantly from the spatially random case. However it may be of
interest to determine whether clustering or repulsion between spines occured at
specific inter-point distances t. Ang’s correction normalizes the K-function such
that the theoretical K(t) =t for all ¢, so we can easily use this as a reference
point. Figure shows the K-function for the same 9 example dendrites used
for the Q-Q plots of Figure m Each graph shows the observed K (t) function
(black), the theoretical K (t) function (red) as well as the two-sided 5% and 95%
point-wise simulation envelopes as a function of the radius ¢t. Following the de-
scription of the point-wise simulation envelope above we calculated these lower
and upper envelopes at the 5% and 95% percentiles per t-value in the interest
of checking if any t-value fell outside of this range. Since the black curves do
not leave the gray shaded area for any value of t, the deviation from spatially
random is insignificant at the 10% level for every t-value and is in agreement
with our previous conclusion using the MAD statistic. This observation holds
for almost all of the 485 dendrites we inspected visually, with no specific t-value

evidencing either repulsion or clustering.
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Figure 3.5.4: Theoretical and observed K-functions and simulation envelopes
for a set of 9 example dendrites. This figure shows the K-function for the same 9
(of 485) example dendrites used for the Q-Q plots of Figure . We randomly
selected 1 dendrite from each DIV and each biological replicate (experiment) to
ensure the diversity of the set. Each graph shows the observed K (t) function
(black), the theoretical K (t) function (red) as well as the two-sided 5% and 95%
point-wise simulation envelopes as a function of the radius ¢t. We see here that
the black curves do not leave the gray shaded area for any value of t, which
means that the deviation from spatially random is insignificant at the 10% level
for every t-value.

3.6 Discussion

The models used in this work allow spatial prediction of spine types, which
has not previously been studied. The conclusions presented here relate to quali-

ties of neurons in dissociated culture. We acknowledge that some of these results
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will most likely not hold for in vivo settings due to neuronal interactions not
modeled here, but maintain that the statistical methods used here will be useful
and easily applicable. Specifically, we found here that spine type and density
are not dependent on the distance from the cell body, and these observations
are likely to change for in wvitro slices or micro-injection of fixed brain tissue.

Although in this study the spine distributions seemed to be completely spa-
tially random it is possible that we will find studies using different neuronal
types and treatments where this is not true. In these cases, where spine den-
sity may vary with distance from the cell body, it would be interesting to test
for inhomogeneous patterns of points such as the hard core Strauss Process
used in [18]. We could also place an exponentially decaying function to model
the interaction between spine types within a certain radius or experiment with
other pairwise interaction functions such as those used by Diggle, Gates and
Stibbard [50] or Diggle and Gratton in [51].

We find it an interesting result that spines are not spatially clustered when
type is disregarded, as shown by the linear network K-function analysis, how-
ever spine types do tend to group together as shown by the MLR analysis. We
would like to note that these results are not contradictory because they are in
fact measuring different quantities. The MLR results tells us that, regardless of
their densities along the dendrite, if we have a spine which is of a given type, its

3 nearest neighbors are likely to be of the same type. The K-function, on the
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other hand, tells us that regardless of type the spines’ locations along the den-
dritic network are spatially random. These two results provide complementary
information and together could aid us in future modeling tasks such as simu-
lation of neuronal growth. For example, we could first place spines uniformly
along the dendritic network, and then decide the types of those spines based
on the type of information given by the MLR model. As future work we plan
to analyze the network cross K-function [114] of the dendritic network, which
models the spine distribution as a multi-type point process and therefore pro-
vides information about repulsion and clustering of each spine type with each
other spine type, modeling both density and type simultaneously.

Generally previous studies such as [34,5598,/121] have relied on physiology
or biochemical markers to validate their neuronal properties. The quantitative
morphological features described here provide an additional phenotypic dimen-
sion for these analyses. Likewise these approaches can be applied to phenotypic
analyses of neuronal cultures following over-expression or suppression of spe-
cific genes to capture their effect on a complex phenotype. As mentioned in
the introduction section, the only other study we are aware of which analyzes
clustering of dendritic spines in monkey brains is [154]. The authors of this
work study the number of ”clustered spines” on each dendritic segment, where
a cluster is defined as a group of 3 or more spines. The method used here defines

clustering as a statistically significant positive deviation in the linear K-function
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from the theoretical value of the spatially random linear K-function. We believe
our method to be more principled and our results easier to interpret than those
of [154] due to the more formal statistical definition of clustering.

We chose to use dissociated hippocampal cultures because they are widely
used and they allow us to perform an in-depth and automated analysis with
larger spine populations than most previous studies. These approaches will be
important in assessing features of neurons derived from human induced pluripo-
tent stem cells which have so far not been characterized by detailed morpholog-
ical features. This chapter utilizes a highly simplified neuronal culture system
to develop the statistical and computational tools for more advanced in vivo
studies needed to address the aforementioned bigger biological questions. Our
overall hypothesis is that we can utilize imaging and statistical analyses to cap-
ture features of spine distributions that can be used for testing hypotheses in in
vivo settings. Indeed, we have been conservative about hypotheses and findings
concerning spine type clustering because any conclusions we might reach on the
specifics of spine distribution would be limited to the neuronal culture system

we studied.
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Chapter 4

A Multi-type Linear Network
K-function for Analysis of
Dendritic Spine Clustering

This chapter develops nonparametric methods for analysing multitype point
patterns on a linear network, and applies them to the dendritic spines data. The
methodology is based on first and second moments of a point process, extends
the results of [8] to multitype patterns, and includes some additional techniques
for estimating first-order intensity functions on a tree-like network using relative
distributions and regression trees.

The plan of the Chapter is as follows. Section sketches the scientific
background to the dendrite example. Section gives some formal defini-
tions and background. Our contributions for second-order analysis using the
K-function and pair correlation function are described in Section under the
assumption of homogeneity, and in Section for the case where inhomo-

geneity is present. A single dendritic branch is analyzed in detail in Section [4.3]
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followed by a brief analysis of the dendritic dataset described in Chapter |3 and

we end with a Discussion.

4.1 Biological Background

4.1.1 Dendrite Data

The data originates from the study of neuronal development in cell cultures
presented in Chapter |3|and in [79]. In a series of replicate experiments, neurons
are grown in glial culture and visualised once. The details of this controlled,
replicated experiment are presented in chapter [3, We confine attention to the
single example pattern shown in [£.1.1] which is taken from the fifth neuron in
the second biological replicate experiment, observed on the fourteenth day in
vitro. The network shown in [4.1.1]is one of the ten dendrites of this neuron. A
dendritic tree consists of all dendrites issuing from a single root branch off the
cell body; each neuron typically has 4 to 10 dendritic trees. This example is
chosen because it is large enough to demonstrate our techniques clearly, without
being too large for graphical purposes.

To avoid errors inherent in automated reconstruction algorithms, the den-
drite network is traced manually, and spine locations and types are verified man-
ually, by trained observers. The linear network trace of each dendritic branch

as well as the spine locations and types as shown in Fig. are obtained
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from the images using the software package NeuronStudio [126,(147]. The full
image stack as well as the annotation files are publicly available at the website
of Bisque [92] as detailed in chapter 3]

Although the material is three-dimensional, and was originally visualised
in three dimensions, it is very shallow in the third dimension, so that a two-
dimensional projection is adequate for representing the spatial layout of the
dendrites. Three-dimensional information was nevertheless essential to deter-
mine which parts of the network are physically joined. The resulting linear
network is shown in two-dimensional projection in Figure [£.1.3]

Figure 4.1.1| shows a microscope image of part of the dendrite network of

a rat neuron in a cell culture. Small protrusions called spines are more clearly

visible at higher digital magnification, as shown in Figure £.1.2] Three types
of spines are distinguished by their shapes, exemplified in Figure [4.1.2] For a
better understanding of normal function and disease processes, it is important
to characterize the joint spatial distribution of spines of different types. For ex-
ample, changes in spine shape and distribution have been linked to neurological
disorders [78§].

is a representation of the dendrite network extracted from [£.1.1] to-
gether with the locations and types of the spines. These data can be described as
a multitype point pattern on a linear network. In a “multitype” point pattern,

the points are classified into several different categories or “types”. Equiva-
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Figure 4.1.1: Microscope image of dendrite network (white lines) and part of
cell body (white area) of a rat neuron in cell culture. Width 232 microns; height
168 microns; depth 2.6 microns; projected image. Laser-scanning confocal mi-
croscope, green fluorescent protein staining.

. —

Figure 4.1.2: Examples of spines of three types: thin (left), mushroom (mid-
dle), and stubby (right) in m

lently, to each point x; of the point pattern we associate a categorical variable
t; indicating its type. In other examples the “types” could be different kinds of
road accidents, criminal offences, and so on. While it is usually straightforward
to generalise point process tools to apply to multitype point processes, experi-
ence shows that their interpretation may be subtly different in the multitype

case, and that statistical inference requires careful attention [14.|67.71}77,/143].

93



Chapter 4. A Multi-type Linear Network K-function for Analysis of Dendritic
Spine Clustering

Figure 4.1.3: Extracted representation of a branch of the dendrite network
(lines) and multitype point pattern of spines (o: mushroom, A: stubby, +:
thin).

4.1.2 Previous Studies

Spatial point process methods [46,77] have been used since the 1970’s to
analyse the spatial distribution of cells [27],32,/47-49,57,/97,107,124] and subcel-
lular objects [38,/119,148] observed in microscope imagery. The unusual feature
here is that the spines are not free to lie anywhere on the two-dimensional im-
age plane, but are constrained to lie on the one-dimensional dendrite network.
Since the dendrites propagate electrical signals, and convey most of the nu-
trients and molecular genetic signals, the network structure is highly relevant.
To our knowledge, very few previous studies have attempted to analyze the
arrangement of dendritic spines along the dendrites |79}/154]. The application
of methods from spatial statistics may provide a deeper understanding of the

spatial organization of dendritic spines.

94



Chapter 4. A Multi-type Linear Network K-function for Analysis of Dendritic
Spine Clustering

Methods for spatial analysis on linear networks have been developed over
the past decade, principally by Prof. A. Okabe and collaborators [115,/117],
and include analogues of standard point process techniques such as Ripley’s K-
function [114]. Recently it was shown that these methods can be improved by
adjusting for the geometry of the network [8]. In |154] clusters of three or more
spines are identified using hierarchical clustering of distances along the dendrite
network. In [79], the spatial pattern of spine locations was studied using the
linear network K-function of [8] and found to be completely spatially random.
In order to assess dependence between the types of neighbouring spines, 79
fitted a multinomial logistic regression of spine type against the types of the
three nearest neighbours. This suggested positive association between the type

of a spine and those of its neighbours.

4.2 Extension to Multitype Linear Network Second-

order Statistics

Here we develop the analogue, for point patterns on a linear network, of
the second-order analysis of processes of several types of points. Ripley’s K-
function [123]/124] was generalised to multitype point patterns in two dimensions

by [95] and [71]. The K-function was adapted to linear networks by [114] and
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a geometrically-corrected version of the K-function was proposed by [8]. Here

we extend the geometrically-corrected K-function to the multitype case.

4.2.1 Key Quantities

An important quantity introduced in [§] is

m(u,r) =#{v e L: dy(u,v) =r}, (4.2.1)

the number of locations v on the network which lie exactly r units away from the
location u by the shortest path. This quantity can be regarded as the perimeter

of a “disc” of radius r in the linear network, centred at u. Let

R =sup{r : m(u,r) >0 forallu € L}. (4.2.2)

This can be interpreted as the “circumradius” of the network as explained in [8].

4.2.2 Multitype Pair Correlation Function

For simplicity we make the regularity assumption that the multitype point
process Y has intensity functions of first and second order. That is, for any ¢« € C
the subprocess X; has an intensity function \;(u) as defined in equation ([2.2.2));

and for any 4,7 € C the sub-processes X; and X; have a second moment

intensity function \;;(u,v) defined to satisfy
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for disjoint line segments A, B C L. Heuristically \;;(u,v)d;ud;v is the joint
probability that two given infinitesimal intervals, of lengths d;u and d;v, around
the locations v and v will each contain a random point, of types 7 and j respec-
tively. For a multitype Poisson process Y we have \;;(u,v) = A;(u)\;(v) for
u # v.
Equation implies the ‘second-order Campbell formula’
E[ Z Z h(xk,xg)} = / / h(u,v)A;j(u,v) dyudyo, (4.2.4)
ThEX; TEX, LJL

which holds for any measurable real function h on L x L for which the right
side is finite.

We define the multitype pair correlation function between X; and X by

phi(u,v) = W, u,v € L. (4.2.5)

This is a non-centred correlation function with the heuristic interpretation
pis(u,v) = B[L(u)I;(v)]/(E[I;(u)] E[I;(v)]), where for any possible type k, Ij(u)
is the indicator that equals 1 if the interval of length d;u around w contains a
random point of type k.

The following useful result can easily be proved.

Lemma 1. Suppose Y is a multitype point process on a linear network L whose

first and second moment intensities exist. Then

1. If'Y s a multitype Poisson process, then p;z =1 for all i, j;
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2. If the component processes X;,1 € C are independent, then pz-Lj =1 for all
40 F g

3. If Y has the random labelling property that the marks are conditionally

independent and identically distributed given the locations X, then p;; =

p* for all i, j, where p* is the univariate pair correlation function of X,.

For an unmarked point process, a pair correlation function that is identi-
cally equal to 1 would usually be taken as indicating that the point process
is consistent with a Poisson process, despite some caveats [23]. However for a
multitype point process, the finding that p;z =1 for ¢ # j suggests merely that
the component processes X;, X; are uncorrelated.

In the application to dendritic spines, there is a possibility of misclassification
of spine types. It is useful to note that cases (a) and (c) of Lemma I still
apply if spine types are independently randomly misclassified. Suppose that the
observed types " are conditionally independent given the true types #;; and
that P{t¢" = j | t, = i} does not depend on k. Then case (c) remains true in
that, if the true process Y has the random labelling property, then the observed
process Y °" also has the random labelling property, and the conclusion of case

(c) holds for Y°P. The Poisson process case (a) is a special case of (c).
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4.2.3 Estimation Assuming Homogeneity
For the rest of this section we assume that the point process is homogeneous
in the following sense.

Definition 1. A multitype point process Y on a linear network L is called

second-order pseudostationary if the first order intensities are constant, \j(u) =

Ai, and the second-order intensities depend only on shortest-path distance,
Nij(u,v) = Nij(dr(u,v)), dp(u,v) < 0. (4.2.6)

It follows that the multitype pair correlations also depend only on shortest-

path distance,
pfj(u,v) = pZ-Lj(dL(u,v)), dp(u,v) < 0. (4.2.7)

The condition that dr(u,v) < oo means that we consider only pairs of points u
and v that are connected by a path in L. See [§] for further discussion. In the
dendrite network, all points are connected.

Given a multitype point pattern dataset y = {(x1,t1), ..., (Zn, t,)} assumed
to come from a second-order pseudostationary process, we estimate the intensity
A for i € C by A\ = n;/|L|, where n; = n(x;) is the number of points of
type i. The multitype pair correlation function ,oiLj(r) can be estimated by
kernel smoothing of the interpoint distances, with appropriate weighting for the

geometry of the network [8]:

L 5~ o olduloe ) = 1) (12.8)
Z L €X; vpEX; xk’dL Lk x£)>
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where x(-) is any smoothing kernel function on R, with n;; = n;n; if i # j and
ni = ni(n; — 1). The weighting factor m(zy, dr(xg, x,)) in , defined in
(-2.1)), counts the number of locations v on the network such that dp (zy,v) =
dr(zy,z¢). This compensates for the variable geometry of the network, and

ensures the following ‘unbiasedness’ property.

Lemma 2. If'Y is second-order pseudostationary, the smoothing estimator
(4.2.8)) satisfies

E [Ny i(r)] = ML Py (r), (4.2.9)

where pi;(r) = [ K(t —r)pf5(t) dt is a kernel-smoothed version of pf(r). Here
Ni; is the random variable N;j = N;N; for i # j and Ny = N;(N; — 1) with

N; =n(X;), N; = n(Xj;).

A proof is given below.

Let Z(r) = ny;py;(r)/|L| denote the double sum in (#.2.§). By the second-

order Campbell formula (4.2.4])

=N\ // ldi(u, 0) )pfj(u,v) dijudyv. (4.2.10)

(u,dr(u,v))

For fixed w, the mapping v +— dr(u,v) is a piecewise linear function with unit

Jacobian. Invoking the change-of-variables

/L h(dy (1, v)) dyv = /0 " h®)mu,t) dt (4.2.11)
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for any measurable function h : [0,00) — R (shown in [§]) equation (4.2.10)

becomes

k(dp(u,v) —71) | -
/L m(u, dg(u,v)) pij(u,v) dyv =

‘foZ;?L;W .

2.
vidp, (u,v)=

2
vidp, (u,v)=

(t—T)

(provided m(u,t) > 0 for all t < r) since the sum contains m(u,t) terms. Hence
EZ(r) = /\i/\j|L|ﬁij(r>

and the result follows.

In the special case of a multitype Poisson process, it is easy to show that
E[N;;] = MN|LI%, so that implies that pj;(r) is the ratio of unbiased
estimators. It will be a consistent and asymptotically normal estimator of p;;(r)
under a large sample limit regime, and will be consistent for p;;(r) with an
appropriate bandwidth selection rule. For non-Poisson processes, the quantity
ni; could be a biased and even inconsistent estimator of A\;\;|L|?, leading to
possible bias in the estimation of the pair correlation. This problem is familiar

from two-dimensional spatial statistics [46,/123].
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4.2.4 Multitype K-function

Following is the multitype version of the geometrically-corrected K function

introduced in [§].

Definition 2. Let' Y be a multitype point process on the linear network L. For

any types t,7 € C' define

K (u,r) = %EL,&ZX 1{(;n<(udi&ux’ik>§> r} ( ue XZ} (4.2.12)

for any location w € L and any r € [0, R) where R is the circumradius defined

in ([£.2.2).

In heuristic terms, the K-function of the process gives the expected number
of random points of type j that lie within a given distance r of a typical random
point of type ¢, normalised by the intensity of points of type j. The conditional
expectation on the right side of is formally defined as an expectation

with respect to the Palm distribution of Y given a point of X; at the location

u. See [143] for explanation.
Again the denominator m(u, dp(u, x)) in (4.2.12]) compensates for the vari-
able geometry of the network, and ensures the following result, which effectively

states that the K-function is well-defined.

Lemma 3. If' Y is second-order pseudostationary, then for any possible types

i and j, Kl (u,r) = K[(r) does not depend on the choice of u.
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We call K[(r) the (geometrically corrected) multitype K-function. When

i =7, K& (r) reduces to the geometrically corrected K-function of X; as defined

(23

in [8].

Lemma 4. IfY is second-order pseudostationary then for any possible types i
and 7,

Kl(r) = /0 pi(t) dt. (4.2.13)

Lemma {4] is analogous to the connection between the K-function and pair
correlation function in the two-dimensional case. It leads to the following, prac-

tically important, result.
Lemma 5. Suppose Y is second-order pseudostationary. Then

1. If'Y is a multitype Poisson process, then KZ%(T) =7 foralli,j and 0 <

r<R;

2. If the component processes X;,i € C are independent, then Ki?(r) =r for

alli#j and 0 <r < R;

3. If Y has the random labelling property that the marks are condition-

ally independent and identically distributed given the locations X,, then
KlL(r) = K*(r), where K" is the geometrically corrected K-function of

X,.

The proof is straightforward.
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Result (a) of Lemma [5| is important because it means that it is valid to
compare K-functions on different linear networks. It is further evidence that
the geometrical correction factor m(u,r) in is appropriate.

Given a multitype point pattern dataset y = {(x1,t1), ..., (Tn, t,)} assumed
to come from a second-order pseudostationary process, we estimate the multi-

type K function by

KE(r) Z 3 Lidp (o, 2e) S} (4.2.14)

o, nj m(xy, dr(zr, z¢))

rreX; xgEX

The double sum in (4.2.14]) has an unbiasedness property
E[Nz’j f?}-?(?")] = NN LIPE () (4.2.15)

for r < R. If Y is a multitype Poisson process, then I/(\'Z?(r) is the ratio of
unbiased estimators, and is consistent and asymptotically normal under an ap-
propriate large sample limit. For a non-Poisson process, the denominator N;;
may contribute bias.

Note that the result is valid only for »r < R. This is similar to
the constraint imposed by [113] for validity of Ripley’s estimator of the two-
dimensional K-function.

The variance of the estimator can be calculated by a straightforward
adaptation of the results of [§]. For a homogeneous multitype Poisson process,
the variance of K Z6(7‘) is approximately constant as a function of r, over a large

range of r values.
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4.2.5 Mark Connection Function

Experience with the analysis of two-dimensional point patterns [6}|46,|77]
suggests that it may be useful, especially when investigating the random la-

belling property, to estimate the mark connection function [77] between marks

1 and j

AN pi(r)

pij(r) = 3 pE(r) (4.2.16)

and the mark equality function

p(r) = > _palr). (4.2.17)

Loosely speaking p;;(r) is the conditional probability, given that there is a pair
of points separated by a distance equal to r, that the points have types ¢ and
J respectively. Similarly, p(r) is the conditional probability that the two points
have the same type. Under any of the scenarios listed in Lemmal[I] the functions
pij(r) and p(r) are constant.

A practical strategy for analysis (assuming second-order pseudostationarity)
is to start by plotting the mark equality function p(r). If this appears not to be
a constant function, then the data are apparently inconsistent with each of the
scenarios in Lemma [T} the form of p(r) may suggest the type of dependence.
Alternatively if p(r) appears to be a constant function, and if the individual
functions p;;(r) also appear to be constant, then the pair correlation functions

,oiLj should be inspected to discriminate between the three scenarios in Lemma .
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The plug-in estimator of the mark connection function p;;(r), obtained by

substituting (4.2.8)) into (4.2.16)), collapses to

(1) = oeXs e, Suel)
Pty = >k Zl;ék: Ske(T)

where sy (1) = k(dr(zk, x0) — 17)/m(x), dr(2k, 20)). Up to a constant factor,

(4.2.18)

the denominator and numerator are unbiased estimators of the second moment

density of all points, and of pairs of types ¢ and j, respectively.

4.2.6 Inhomogeneous Second-order Statistics

For a spatial point process with non-constant intensity, inhomogeneous ana-
logues of the K-function and pair correlation function were proposed in [21]
for two-dimensional point processes, and in [§] for point processes on a linear
network. Here we extend this idea to multitype point processes on a linear

network.

Definition 3. Let'Y be a multitype point process on the linear network L for
which the first and second moment intensity functions exist. The process will be

called (multitype) correlation stationary if, for all i,5 € C, the multitype pair

correlation pf; is a function of distance only, i.e. pj5(u,v) = pij(dg(u,v)).

Theorem 1. Let Y be a correlation-stationary multitype point process on a

linear network L. For fived w € L and for subsets i,7 € C' define

KL (u, 1) E[Z ¥ l{dL“kaT} ’ueXi]. (4.2.19)

=g m(u,dr(u, xy))
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Then

K" (u,r) = K" (r) = / ph(t) di (4.2.20)
0

does not depend on u, and will be called the multitype inhomogeneous K -function

of Y. Furthermore

Lib(,) — 1{0 < dL<.§L’g,SL’k> <r}
Kl ’L’ > o o di ]| (4.2.21)

rpeX; xkEX

The intensity function A\;(u), u € L can be estimated by parametric or non-
parametric methods as described in [8]. Then a plug-in geometrically corrected

estimator of Ki?’ih(r) is given by

REM ) = Z 10 < di(we ) < 7} (4.2.22)

ox: apex; Ni(@o)Aj(wr)m(ae, di (e, 2r))
where \;(u) is an estimator of \;(u).
Similarly, the multitype pair correlation function of a correlation-stationary

point process can be estimated by

pLib(r) = |L|Z Z )“”’xk) ) , (4.2.23)

€X; wpeX; (e, di (e, 1)),
with x again being a kernel function on R.
An analogue of the mark connection function (4.2.16) is available for inho-
mogeneous processes, under the additional assumption that p;(u) = X\;(u)/A(u)
is constant for each type 7. Since p;(u) is the probability that a point at location

u has type 7, this amounts to assuming that the distribution of types does not
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depend on location. Then for points u,v € L with dp(u,v) = r we have

Ai(w) A (v)pj; (u, v) pij(u,v)

MA@ (w0) T i (u,0)

(4.2.24)

and we define this quantity to be the generalisation of p;;(r) to the inhomoge-
neous case. A little algebra shows that (4.2.24)) can be estimated using the same
ratio-of-sums estimator (4.2.18]) as in the homogeneous case. The explanation

given below equation (4.2.18|) continues to hold.

4.3 Analysis of a Single Dendritic Network

The techniques developed in the previous sections will now be applied to
the dendritic spines data. Intensities are studied in Section [£.3.1] The results
of this analysis lead us to split the data into two subsets, which are analysed
respectively in Section m (assuming pseudostationarity) and Section m

(using inhomogeneous summary functions).

4.3.1 Intensity of Spines

The linear network depicted in has a total edge length of 1934 microns.
There are n, = 566 spines in total, broken down into n; = 228 mushroom, ny =
223 stubby, and n3 = 115 thin spines, where we henceforth use the numerals
1, 2, 3 to refer to mushroom, stubby and thin spines respectively. Assuming

constant intensity for each spine type, unbiased estimates \; = n;/|L| of the
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intensities are 0.118, 0.115, 0.059 spines per micron for the mushroom, stubby
and thin spines respectively, and \e = ne /|L| = 0.293 total spines per micron.
Kernel estimation of intensity is discussed in [102,/116,132,/153]. shows
a kernel-smoothing estimate of the spatially-varying intensity of the spines re-
gardless of type, using the “equal-split continuous” method of Section 5 of [116]
with a Gaussian kernel with standard deviation 10 microns. The ribbon width
in[4.3.1]is proportional to the intensity estimate, which ranges between 0.01 and

(0.78 spines per micron.

Figure 4.3.1: Kernel smoothing estimates of intensity of spines. Smoothing
bandwidth 10 microns. Intensity value is proportional to ribbon width.
Despite the risk that spatial inhomogeneity may be mistaken for cluster-
ing [25,26], strongly suggests that different branches of the dendrite net-
work have different intensities of spines. The single unbroken filament in the
lower right of the figure appears to have relatively low intensity of spines. The
remainder of the network could be divided into upper and lower halves, with

the lower half having greater intensity than the upper half. A similar conclusion
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is suggested when the same technique is applied separately to the spines of each
type.

In biological terms it is conceivable that a dendrite network may exhibit
different structural characteristics in different branches. A neuron has a sin-
gle cell body which exerts centralised control over the transcription of genes
into molecular messages which are then distributed throughout the entire den-
dritic tree. Uneven distribution of the messages may result in uneven structural
development.

For any proposed split of the network into several subsets Si, ..., Sk, the
x? test of the null hypothesis of constant intensity, against the alternative of
different constant intensities in each subset, is based on X2 = Y, (n(X,NSy) —
exr)? /e, with e, = nly /¢, where n(X, N Sy) is the number of spines in the kth
subset and ¢y is the length of dendrite in the kth subset, while ¢/ = ", ¢ and
n =, n(X.NSy) are totals. Similarly for spines of a given type . This test
ignores the spine types, but the analogous test could also be performed on the
sub-process X,i of points of type 1.

Selection of an appropriate split of the network into branches is a problem of
model selection; in our case, because the network is a tree, we adopt a recursive
splitting approach similar to that used for classification and regression trees [33].
Starting from the cell body as the root of the tree, we visit each successive

branching point of the network, and apply the x? test statistic of uniformity to
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the subset beyond this branch point. The data will be split if the null hypothesis
is rejected at, say, the 5% level. Of course the usual significance interpretation
of the tests is not applicable in this context where multiple tests are performed

on the same data.

PR o b

Figure 4.3.2: Division of the dendrite spine data into three branches labelled
A, B and Z (left to right).

The result is a split into the three branches shown in Branch A has
ne = 419 spines along |L| = 1203.2 microns of dendrites, with average intensity
A= n/|L| = 0.348 spines per micron, and the breakdown by spine type is
ny = 173, ny = 161, ng = 85. Branch B has n, = 128 spines along |L| = 569.6
microns of dendrites, with average intensity A =0.225 spines per micron, broken
down into ny = 49, ny = 54, ng = 25. Branch Z contains only 4 spines of each
type in 132 microns of dendrite, and has several idiosyncrasies; for simplicity
we delete this subset in the analysis reported here.

It is also of interest whether the intensity depends on distance from the cell
body. Assume that, within a particular branch of the network, the intensity

function Aj(u),u € L of spines of type j depends only on distance to the soma
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(cell body)

Aj(u) = fi(d(u)), weL, (4.3.1)

where f; is a function to be estimated, and d(u) is the distance from the location
u € L to the cell body, measured by the shortest path in the dendrite network.
Inference about f; can be performed by comparing the empirical and theoretical
distributions of distance: that is, comparing the observed distribution of dis-
tance values d(x;) at the data points x; with the theoretical distribution of d(U)
for a random point U uniformly distributed over the network L. This approach
is practical because it does not involve the geometry of the linear network, once
the distance values have been computed.

Our analysis suggests that, within each branch of the dendrite network,
spines of a given type have constant intensity, except for the thin spines in
branch B. [4.3.3] shows Q-Q plots of distance to the soma for spines of each
type, in branch B. Order statistics of the observed distances d(x;) for spines
of a given type are plotted against theoretical quantiles of distance d(U) at a
uniformly random point U on the network. We computed the quantiles of d(U)
by creating a fine grid of equally-spaced locations uy € L, evaluating d(uy) at
each grid point, and sorting the values. Another approach would be to generate
a large number of independent uniform random points U in L and evaluate the
distance d(U) at these points. The plot suggests that f; may be constant for

the mushroom and stubby types j = 1 and 2, but not for the thin type spines.
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Figure 4.3.3: Q-Q plots of distance to soma for mushroom (left), stubby
(middle) and thin (right) spine types in branch B of the dendrite network.
Order statistics of the observed distances from spines to the cell body (vertical
axis) are plotted against quantiles of distance from a uniformly random point
to the cell body (horizontal axis).

Assuming holds, the function f; is related to the slope of the Q-Q
plot. One can use the nonparametric kernel-smoothing estimators of f; devel-
oped for spatial point processes |15,68] which apply without modification to the
case of a linear network, since again these do not depend on the geometry of the
spatial domain. The resulting estimates of f; are shown in £.3.4 Grey shad-
ing shows pointwise 95% confidence intervals based on the asymptotic normal
approximation. The horizontal dashed line shows the estimate assuming f; is
constant. Rug plots [141] show the observed values d(z;).

Formal tests of the hypothesis that f; is constant (assuming that
holds and that the process is Poisson) are also available for spatial point pro-
cesses [29,93,[145] and again these can be adapted immediately to linear net-
works. The tests compare the observed distribution of the covariate d at the

data points with the null distribution of the covariate at a random point on the
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Figure 4.3.4: Smoothing estimates of the function f; for mushroom (left),
stubby (middle) and thin (right) spine types in branch B of the dendrite network.

network. Table shows the p-values obtained for the Kolmogorov-Smirnov
test and for Berman’s Z; and Z5 tests. The Z; test statistic of [29] is a stan-
dardised version of ) . d(x;) while the Z, statistic is a standardised version of
> Fo(d(x;)) where Fy is the cumulative distribution function of d(U') under the
null hypothesis. The provisional conclusion is that the mushroom and stubby
spine types have constant intensity, but the intensity of the thin spines is in-

creasing with greater distance from the soma, in branch B.

4.3.2 Second Order Analysis of Dendrite Branch A

Here we apply the methods of Section [£.2]to branch A of the dendritic spines
dataset identified in [4.3.2] Branch A is tentatively believed to have uniform
intensity of each spine type. We assume the underlying process is second-order
pseudostationary.

For estimating pair correlation functions, the smoothing kernel x in (4.2.8)),

(4.2.18) or (4.2.23) will be the Gaussian density, with standard deviation se-
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Table 4.1: p-values for tests of constant intensity for each spine type, assuming
(4.3.1)) holds, within each branch.

BRANCH SPINE TYPE TEST

K-S 71 72

Branch A  mushroom 0.299 0.917 0.590
stubby 0.373 0.902 0.953

thin 0.228 0.588 0.188

Branch B mushroom 0.662 0.912 0.751
stubby 0.187 0.911 0.941

thin 0.018 0.411 0.034

lected by Silverman’s rule of thumb (eq. 3.31, p.48 |135]) although this seems
to produce slight under-smoothing.

shows estimates of the geometrically-corrected K-function K% (r) and
pair correlation function pl(r) for the unmarked point pattern X, of spines
regardless of type. Grey shading represents the pointwise envelope of the sum-
mary functions obtained from 39 simulations of a uniform Poisson process with
the same estimated intensity. There is strong evidence of spatial clustering (as-
suming uniform intensity), confirmed by formal Monte Carlo tests based on the
maximum absolute deviation or integrated squared deviation of the summary

statistic [eq. (8.5.42), p. 667], [43], pleq. (2.7), p. 12], |46].
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Figure 4.3.5: Second order summaries of spine locations (regardless of type)
in branch A assuming constant intensity. Left: Centred K-function KX (r) —r
plotted against r; Right: pair correlation function p(r). Solid lines show empir-
ical estimate. Grey shading represents the pointwise envelope of the summary
functions obtained from 39 simulations of a uniform Poisson process with the
same estimated intensity.

shows the estimates (4.2.18)) of the mark connection function p;;(r) of

equation , computed for the data in branch A. Grey shading shows the
pointwise envelope of the estimates obtained from 39 random patterns obtained
by randomly permuting the spine type labels while holding the spine locations
fixed. These plots and the associated Monte Carlo tests suggest no evidence
against the hypothesis of random labelling.

Thus a tentative conclusion for branch A is that spine locations have uni-
form intensity but are spatially clustered; the distribution of spine types does
not depend on location; and the types of neighbouring spines are independent.
The evidence for spatial clustering seems strong, but is quite sensitive to mis-
specification of the intensity; for example, the strength of evidence depends on

how the network is divided into sub-branches.
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Figure 4.3.6: Estimates of the mark connection function between
each pair of types, for branch A, assuming constant intensity of each type. Grey
shading represents the pointwise envelope of the summary functions obtained
from 39 simulations of random labelling.

4.3.3 Second Order Analysis of Branch B

Here we apply the methods of Section to branch B of the dendritic
spines dataset indentified in 4.3.2 For branch B, the intensity function of X,
is estimated by

~

No() = A+ Ao+ f(d(w)), (4.3.2)

where ;\1 and 5\2 are the estimated intensities of mushroom and stubby spines

respectively, assuming these are constant, while f3(d(u)) is the estimated inten-
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sity of thin spines at a distance d(u) from the cell body, assuming (4.3.1)) holds

for the thin spines.

Kufr}-r
oulr}

0 o 40 &0 a0 100 ¢ A 40 &0 a0 100

Figure 4.3.7: Second order summaries of spine locations (regardless of type)
in branch B using inhomogeneous intensity estimate (4.3.2)). Left: Centred

inhomogeneous K-function KX (r) — 7 plotted against r; Right: inhomoge-
neous estimate of pair correlation function pX(r). Grey shading represents
the pointwise envelope of the summary functions obtained from 39 simulations
of an inhomogeneous Poisson process with the same estimated intensity.

4.3.7| shows the estimated inhomogeneous K-function and inhomogeneous
pair correlation function for the unmarked pattern of spines of all types in
branch B, using the estimated intensity function 5\.(u) It does not suggest any
evidence of spatial clustering.

shows the multitype pair correlation functions for each pair of spine
types in branch B, together with pointwise significance bands computed in the

following way. Simulated point patterns were generated by assigning new ran-

dom types to the spines, holding their locations fixed. For a spine at location
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Figure 4.3.8: Inhomogeneous multitype pair correlation functions (solid lines)
for each pair of spine types in branch B, together with envelopes of simulations
from inhomogeneous random labelling, as explained in the text.

u, the probabilities of assigning the labels mushroom, stubby and thin were

pr(w) = A /A(u), pa(u) = Aa/Ae(u) and py(u) = fi(d(uw))/Ae(u) respectively.

Figures [4.3.7] and [4.3.8| suggest no evidence against the null hypothesis of an

inhomogeneous Poisson process.
In conclusion, there is strong evidence that different branches of the dendrite
network may have different patterns of spines. There are large branches within

which the mushroom and stubby spines appear to have uniform intensity. In

119



Chapter 4. A Multi-type Linear Network K-function for Analysis of Dendritic
Spine Clustering

some branches of the network (B and Z) there is evidence that the intensity
of thin spines is increasing with distance from the cell body. In one branch
(A) there is evidence of spatial clustering of the locations of spines, assuming
uniform intensity; this requires further investigation to validate the assump-
tion of uniformity. Conditional on the spine locations, there is no evidence of

dependence between the spine types.

4.4 A Brief Multitype Analysis of the Entire

Dendritic Dataset

We restrict our analysis in this section to dendrites which contain more than
10 spines of each type, in order to avoid outlier dendrites with few spines on

them. This leaves us 117 out of the 485 dendrites.

4.4.1 Q-Q Plot Analysis

We calcuate the Q-Q plots with respect to distance from the soma, and
Berman’s Z; test as described above to determine whether there is significant de-
viation from the CSR case, for each of the 3 spine types as well as the unmarked
process, for comparison. These two test the same null hypothesis, namely that
the distribution of spines does not vary with distance from the soma along

the geodesic distance of the dendrite, however the p-value resulting from the
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Berman test allows us to quickly determine statistically significant deviation
over all 117 dendrites, whereas the Q-Q plot is only a graphical measure that
must be visually inspected.

The Q-Q plot analysis for each of the 485 dendrites show no significant
deviation from CSR with respect to soma distance per type. Figure [4.4.1|shows
Q-Q plots for 3 randomly selected dendrites from varying DIVs and experiments.

There were 7 dendrites which had significant deviation from CSR along the
dendritic length according to the Berman’s Z1 Test, along with the plot of their
dendritic structure and spines. The attributes of these non-CSR dendrites show
no particular trend in either DIV, experiment (EXP) or in which of the 3 spine
types deviates from the uniform distribution. Therefore we conclude that there
is no clear evidence against spatial randomness and these outliers may be due

to noise in the data extraction process.

4.4.2 Multitype Linear Network K-function Analysis

Figures[d.4.2H4.4.2| shows the cross K-function for these same 3 dendrites. As
we can see, using 100 simulations of CSR to calculate the point-wise envelope as
is done in Chapter [3|also gives us no evidence of clustering or repulsion between
spine types, at various scales t.

Figure[4.4.2|shows the histogram of g-values computed from the MAD statis-

tic as described in Section We have partitioned the histograms by DIV but
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Figure 4.4.1: Q-Q plots for various spine types with respect to SD for 3
randomly selected dendrites

pooled over experiments to get a general idea of how the clustering of spines is

affected over the growth of the neurons.
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Figure 4.4.2: Multitype Linear Network K-function for various spine type
interactions for 1 randomly selected dendrite from DIV 7, EXP 1

4.5 Discussion

This chapter develops and demonstrates generic tools, based mainly on first
and second moments, for analysing a multitype point pattern on a linear net-

work. In any field of statistics, estimates of correlations or interactions are
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Figure 4.4.3: Multitype Linear Network K-function for various spine type
interactions for 1 randomly selected dendrite from DIV 14, EXP 2

highly sensitive to misspecification of the first moment or main effect. This
caveat also applies to spatial point processes and in particular to the data

analysis in this chapter.
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Figure 4.4.4: Multitype Linear Network K-function for various spine type
interactions for 1 randomly selected dendrite from DIV 21, EXP 3

For the application to dendritic networks, careful attention to the intensity
is crucial. Visual inspection of the raw and kernel-smoothed data suggested
several new models for inhomogeneous intensity functions that are scientifically

meaningful. The second-order analysis is highly sensitive to the fitted intensity.
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Figure 4.4.5: Resulting conditional density for each mark on GFP1

This is not the case with the other applications we have studied . It is con-
ceivable that strong inhomogeneity is more likely to occur in tree-like branching
networks, such as the dendritic network, than in networks with loops, such as
road networks. Alternatively the dendrite example could be anomalous, per-
haps by virtue of the highly-structured molecular and genetic messaging in the

network.
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A different analysis [79], of a suite of data that included [£.1.1] found posi-
tive association between the types of immediately neighbouring spines, condi-
tional on the spine locations. That analysis needs to be revisited to determine
whether the positive association still persists when the network is divided into
homogeneous branches as we did above. If it does persist, then the most likely
explanation of the different conclusions from the two analyses is that there is
very short-range nearest-neighbour dependence between spines.

The analysis of all dendrites using individual type Q-Q plots and the multi-
type linear network K-function shows that individual marked processes for each
type also follow a random distribution. Although we had originally thought
that this could be the result of lack of directive signals that would be present
in a in vivo case, a recent work [109] has shown that this is the case in in vivo
samples of the human cerebral cortex as well.

Dendritic networks are three-dimensional, but existing computational tech-
niques for spatial data on linear networks [117] mostly assume the network lies
in two-dimensional space. Fortunately, neurons in cell culture in vitro are al-
most flat, so that we may ignore the third dimension, except when resolving
the connectivity of the network. Thus, existing computational techniques are
applicable to neurons in cell culture, but would require algorithmic modification

to deal with neurons in vivo.
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The data came from a designed experiment in which the ‘response’ for each
experimental unit is a point pattern. It is possible to pool first- and second-order
summary statistics across replicate point patterns [22,[27,[49] but additional
methodology needs to be developed.

Numerous caveats apply to the biological interpretation of our results. The
findings of a cell culture experiment do not necessarily extrapolate to cells in
vivo. However, subject to those caveats, we have demonstrated evidence that
different branches of a dendrite network appear to have different, homogeneous
concentrations of spines. Evidence for clustering is at best equivocal.

A more searching analysis of the entire dendrite dataset might require the
ability to fit explicit statistical models to the data. Point process modelling on

a linear network is under development and will be demonstrated in future work.
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Characterizing spatial
distributions of astrocytes in the
mammalian retina

Studying the spatial arrangement and relationships in full tissue samples can
improve our understanding of the various development or pathological processes
that underlie proper organ or organism function [149|. In particular, it has been
found that neuronal or vascular structures are pervasive in many tissues, and
oftentimes are spatially correlated with other cells [9,/139)].

The goal of our analysis is to determine if the spatial distribution of astro-
cytes in the retina correlates with the vascular network, or with morphological
cell characteristics such as area and perimeter. For instance, if the large area
cells exist only in certain parts of the retina or along certain parts of the vas-
culature, this would be an interesting finding. To accomplish this, we extract
astrocyte and blood vessel data for large image mosaics of the retinal NFL. We

then segment the astrocytes using 2 different segmentation methods in order
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to assess the dependence of our resulting morphological characteristics on the
cell segmentation step of the analysis pipeline. Following this we perform an
exploratory correlation analysis of cell characteristics to decide which to incor-
porate into our overall model and which are redundant. We also offer some
possible spatial covariates for the cell distribution, whose importance will be
tested on all cells and on each type of cell resulting from the study of cell char-
acteristics. From these results we will arrive at an overall model for the density
of astrocyte cells in the retina. We now present each part of our analysis in
detail.

Our results show that in normal healthy retinas, the distribution of observed
astrocyte cells does not follow a uniform distribution. The cells are significantly
more densely packed around the blood vessels than a uniform distribution would
predict. We also show that compared to the distribution of all cells, large cells
are more dense in the vicinity of veins and towards the optic nerve head whereas
smaller cells are often more dense in the vicinity of arteries. We hypothesize
that since veinal astrocytes are known to transport toxic metabolic waste away
from neurons they may be more critical than arterial astrocytes and therefore

require larger cell bodies to process waste more efficiently.
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5.1 Biological Background

In this study we are particularly interested in astrocytes, one of two types
of glial cells found in the nerve fiber layer (NFL) of the mammalian retina.
Astrocytes can be found between vasculature and retinal neurons and although
many functions of astrocytes in the retina are poorly understood, it is widely
accepted that they play an essential role in the development and function of the
retinal vasculature, blood flow and blood-retinal barrier (BRB) [91]. Studying
astrocytes and their spatial distributions within the healthy retina may give us
some insight into their function in disease cases such as such as glaucomatous
neuro-degeneration and retinal detachment.

With regard to cell characteristics, one work determines that there are 2
types of astrocyte cells in developing rat white matter, and that they can be
differentiated by their morphology, but only analyzes a total of fewer than 1000
cells and measurements to quantify the cells are made manually [122]. Another,
more recent work reports that astrocyte cells which lie on or near blood vessels
exhibit different morphological characteristics (specifically angles and lengths of
primary processes) than those which do not [156]. This work involves a small
dataset on the order of tens of astrocyte cells, hand-picked to have distinguish-
able processes that can be manually counted. Our current dataset of 7 full
retinal mosaics, each containing 3614 — 5499 cells, provides a much richer plat-

form for testing hypotheses such as whether there exist distinct morphological
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classes of astrocytes and if so, how many. Our automated processing pipeline
minimizes bias from manual measurements, while also testing the uncertainty of
cell characteristic clustering results, which rely on automated cell segmentation.

Astrocyte processes physically contact the vascular structure [118], and they
also play a key functional role in the development of the retinal vasculature
[106]. An apparent spatial correlation between astrocytes and the blood vessels
has been noted [137], but only observational evidence of such a relationship
has been provided. The vasculature is a large heterogeneous structure with
specific arterial and venous delineations [52,/63]. In order to quantify spatial
distributions of astrocyte cells with respect to it, we need to image the entire
retina. Strong evidence of astrocyte spatial correlation with various vascular
properties would lend further support to additional hypotheses of astrocyte
function, such as the suspected role of astrocytes in vasodilation and constriction
[86]. However, quantifying spatial properties of astrocytes in retinal tissue can
be a challenging task. One must be careful in selecting proper spatial mining
methods, because of issues such as rotation and scaling [6982]. In addition,
we may need to identify distance metrics that operate in geodesic spaces, such
as along the linear network of the blood vessels. This rules out traditional
spatial quantification methods such as co-location [130], or nearest neighbor

methods [43] which operate in Euclidean space.
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To our knowledge, there has been only one previous work focused specifically
on the analysis of spatial distributions of astrocytes in the retina |127]. Using
manually marked cell centers and automatically traced blood vessels, the work
attempts to determine existence of spatial relationships between the two in both
detached and healthy retinas. Astrocytes and 2um blood vessel segments are
represented by 4-dimensional features that quantify their respective locations.
Astrocytes are mapped to their nearest blood vessel segment via euclidean pro-
jection and 2D histograms of the features are computed with respect to the
width of the blood vessel segment and the geodesic vascular distance to the op-
tic nerve head (ONH). The article postulates that a correlation of astrocyte cell
locations with the structure of the vasculature can be determined by comparing
these histograms. The study concluded that it is unlikely that the astrocytes
are randomly distributed along the structure of the vasculature, regardless of
the retina being normal or detached. The paper also reported that arterial as-
trocytes are spatially distributed as random samples from the arterial structure,
whereas venous astrocytes spatially deviate from the venous spatial structure.
While this study presents a novel method for spatial analysis of astrocyte and
blood vessel distributions, many scale and rotation invariant analysis techniques
for this type of data are already in existence. In fact there has been much previ-
ous work in spatial statistics dating back to 1986 [29,58| regarding quantifying

point distributions with respect to surrounding line segments or linear networks.
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For example, the distribution of the astrocyte projections on the blood vessel
structure as compared to a uniform distribution can easily be analyzed using
the linear network K-function and other related functions found in [8.[79]. We
choose to make use of such spatial statistics tools, making our approach a more
in-depth and intuitive way to represent and analyze this type of data. The
conclusions arrived at here differ from the those of [127] and we attribute that
to the use of more principled methodology, as mentioned above, as well as a
larger and more accurate dataset. Our dataset consists of 7 healthy retinas,
whereas [127] had 9 retinas, only 4 of which were healthy. Our dataset also
utilizes GFP-transgenic mice, which are injected at their embryonic stage such
that the astrocyte nuclei are stained, allowing us to more accurately manually
mark the nuclei.

Metrics computed on cell morphology and location within specific regions of
the retina may lead to further information on their functionality. The method-
ology presented here can be used for spatial studies between other vasculature
structures and cells, which occur in many places in the mammalian body. We
present a new segmentation algorithm for astrocytes and compare it to the re-
sults of [94]. Using point process models from spatial statistics we show that
we can systematically quantify the spatial distribution of astrocyte cells within
the mammalian retina, and provide a foundation for future research aimed at

studying the spatial distribution of various biological components in large tis-
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sue images. Our results show that in normal healthy retinas, the distribution of
observed astrocyte cells is more densely packed around the blood vessels than
a uniform distribution would predict. We also show that compared to the dis-
tribution of all cells, large cells are more densely packed in the vicinity of veins
and towards the ONH whereas smaller cells are often more densely packed in

the vicinity of arteries.

5.2 Image Acquisition and Pre-processing

Our method is designed to quantify the spatial relationship between large
biological structures and point data such as cellular locations. Hence, we acquire
images of the entire retinal NFL, which allow us to capture the complete retinal
vasculature and all astrocytes present in the retina. Images of mouse retinal
NFL are viewed and collected on a laser scanning confocal microscope using
an automated stage to capture optical sections at 0.5um intervals in the z-axis
and pixel resolution of 1024 x 1024 in the x-y direction, with 20% overlap in
the x-y plane. Approximately 350 — 400 3D images are acquired per retina,
which are then used to create maximum-intensity projections. The resulting
projections are then stitched together using the bio-imaging software Imago to
create a seamless single mosaic on the order of ~ 17,500 pixels by ~ 17,500

pixels (~ 54002um? ).
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A total of 7 mosaics are created for this study, denoted as GFP1, GFP2,
GFP3, GFPS, GFP11, GFP12, and GFP13. All retinas are stained with anti-
GFAP and anti-collagen IV. Astrocytes express glial fibrillary acidic protein
(GFAP), outlining the cytoskeleton of each astrocyte in the retina. GFP-
transgenic mice are injected at their embryonic stage such that their astro-
cyte nuclei are stained. However due to false negatives centers of the as-
trocytes are still manually marked. The retinal vasculature is captured by
examining the anti-collagen IV labeling with anti-GFP. An example mosaic
is shown in Figure . A 1/8th size downsampled version of the 7 reti-
nal image mosaics described in this article can be found on BISQUE [92]
at http://bisque.ece.ucsb.edu/client_service/view?resource=http://
bisque.ece.ucsb.edu/data_service/dataset/6566968. Incisions are made
in the retina to flatten for imaging, hence the cross-shape. The retinal vascula-
ture is clearly visible as the tree-like structures within the images. Individual
astrocytes are visible as small star-shaped cells and can be seen in detail in
Figure All of the tissue preparation, staining and imaging were done by
Gabriel Luna in Steven Fisher’s Retinal Cell Biology Lab at UCSB.

Several manual pre-processing steps are taken prior to the automated anal-
ysis which follows. These include manual marking of astrocyte cell centers,
and tracing of the major blood vessels using NeuronStudio [147]. We estimate

the average cell radius by measuring the distance from the cell center to the
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Figure 5.2.1: (a) An example retinal mosaic used in the study. Astrocytes are
seen in green, vasculature is in blue, and nuclei are stained in red. (b) Magnified
view of the Anti-GFAP astrocyte channel.

farthest point of the cell from the center. We also label the major blood ves-
sels as either arteries, or veins, which are easily identified by their “conveying”
type branching [62]. Although an entirely automated method for analysis would
be preferred we perform these steps manually in order to ensure the biological

accuracy of the results of our spatial analysis.
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() (b)

Figure 5.2.2: Example manual binarization of major blood vessels for GFP11.
(a) Original Blood Vessel Channel. (b) Binarized Major Blood Vessels

5.3 Cell Segmentation

5.3.1 Random Walk Segmentation

The random walk based segmentation [94] is an algorithm for probabilistic
cell segmentation that requires taking a large number of jumps to various pixels
within the image. The algorithm starts at the center of the cell of interest,
and each at each step jumps to one of the 8 pixels neighboring the current
location in the image, chosen at random, but not uniformly. The decision is
biased by the relative intensity of the neighbors so that the step is more likely
to be in the direction of a bright neighbor pixel. Otherwise the algorithm

will jump back to the cell center with “restart” probability that attempts to

138



Chapter 5. Characterizing spatial distributions of astrocytes in the mammalian
retina

prevent the algorithm from traveling to other nearby astrocytes, since a single
cell segmentation is what we desire. A separate matrix of the same dimensions
as the image is updated at each step to keep count of how many times each pixel
has been visited and conclusions about which pixels belong to the cell with what

¢

probability will be based on this “visit record” matrix. The number of visits
to each pixel is normalized to provide an output segmentation probability map

for the cell. The restart parameter for the random walk restart parameter was

optimized for similar data in [127] and found to be 5 x 1075.

5.3.2 Adaptive Threshold Segmentation

An alternative segmentation is arrived at using local adaptive thresholding
[1], an algorithm which separates the foreground from the background, allowing
for nonuniform illumination. As opposed to applying a global threshold to the
astrocyte (GFAP) + nuclei (Lucifer Yellow) channels of the entire 501 x 501
region of interest, we first normalize the region of interest (ROI) to the scale
[0, 1] and move through the image considering sliding windows of size ws x ws,
at each step thresholding the foreground at mean — C. For best results we
used ws = 501, C' = 0.5. We then mask the original ROI with the foreground
and apply a Gaussian decay to the resulting image, which is centered at the
cell center and has 0 = 50um, which is a slightly inflated manually calculated

average cell radius. The masking step is analogous to the restart parameter of
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the random walk in that it is necessary to ensure that the adaptive thresholding
does not leak outside the actual cell extent. We normalize the resulting image
again to the scale [0, 1] and treat this as a segmentation probability map. Note
that this segmentation method is much lower in computational complexity than
the random walk, and as we will see in later sections, produces statistically

similar results.

5.3.3 Adaptive Threshold Binarization

In order to calculate morphological cell characteristics the output probability
maps from both cell segmentation algorithms are then binarized using adaptive
thresholding once again.

Binarization is done using a simple three step process for both segmentation
results. First we create the binary Mask 1, which is the local adaptive thresh-
olding (ws = 501, C = 0.5) of the output segmentation probability map. Then
we create the binary Mask 2, which is a low global thresholding (at mean + 30)
of the probability map. The output binarization is the largest connected compo-
nent of Mask 1 “AND” Mask 2. Parameters are adjusted such that the resulting
binarized cells visually agreed with the input probability maps, as shown in Fig-
ure [5.3.1] Note that we perform exactly the same binarization procedure for

the probability maps resulting from both segmentation methods.
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(d)

Figure 5.3.1: Example Segmentation Pipeline. (a) Input ROI, (b) Adaptive
Threshold Segmentation, (c¢) Binarized Adaptive Threshold Segmentation, (d)
Random Walk Segmentation, (e) Binarized random walk segmentation

5.3.4 Segmentation Similarity

We run a 2-sample Kolmogorov-Smirnov test between the cell characteristics
derived from the two different segmentation methods to evaluate the dependence
of our analysis on the segmentation step. For this test we pool values for each
of 4 attributes (Area, Eccentricity, Fraction of the Convex Hull and Perimeter)
over all retinas and found there is no statistically significant difference for any
of them (p > 0.9993). The exceptional similarity between resulting attributes

verifies our visual summary of the segmentation results and allows us to proceed
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using either one of the methods for further analysis steps. We choose to use
the adaptive segmentation method as opposed to the random walk due to its

simplicity and computational efficiency.

5.4 Cell Characteristics

Since we know very little about which morphological characteristics of astro-
cytes are important in differentiating classes of cells, we perform an exploratory

search for possible relevant features which begins with a correlation analysis.

5.4.1 Correlation Analysis

We start with seven attributes for each binarized cell which include Area,
Perimeter, Eccentricity, Equivalent Diameter, Euler Number, Orientation, Frac-
tion of Convex Hull (also called “Solidity”). For details on the definition of these
attributes we refer the reader to the Matlab help page [100]. We normalize each
of the characteristics with respect to its mean and standard deviation per retina
to minimize minor imaging inconsistencies. Upon calculating correlation coef-
ficients for each of these and dropping all correlations above .70 we arrive at
only 4 four characteristics, Area, Eccentricity, Fraction of the Convex Hull and
Perimeter whose correlations are each no higher than +/ —0.56. Equivalent Di-

ameter is dropped due to its .99 correlation with Area, Euler Number is dropped
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due to its 0.79 correlation with Area, and Orientation is dropped due to the fact

that the retinas are not registered to a particular orientation.

5.4.2 Clustering

We use an unsupervised Gaussian Mixture model clustering on each charac-
teristic separately using the BIC criterion [59] and allowing for anywhere from
1 to 15 clusters in order to find the naturally occurring classes of cells. We
arrive at 3 clusters for Area, 5 classes for Eccentricity, 4 classes for FracHull,
and 4 classes for Perimeter. We verify that the distributions of clustered classes
remain the same regardless of which of the two segmentation methods is used.

For brevity, and due to the spatial similarities found with regard to clus-
ters of each attribute described below, we choose to continue our analysis using

the Area attribute only. We find that in general the cells which are lower in

eccentricity, higher in fraction of convex hull, and lower in perimeter follow a

similar pattern to the large area cells, i.e. close to the ONH and oftentimes more

dense around veins. This can be seen in Figures below (and correspond-

ing Supplementary Figures), where we have included color-graded plots of the
various classes for the 3 remaining characteristics along with their normalized
means in the legend. Each point in these figures represents one astrocyte, the
color of which is associated with its class. The color gradation is equally spaced

from low values (red) to high values (black). Area classes are not presented here
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because they are shown in detail in the following sections. The analysis that
follows is repeated for each of these 3 remaining characteristics with no modi-
fication however the biological insights gained were determined to be minimal
because of the aforementioned similarity in patterns. Possible future work in-
cludes exploring other cell characteristics such as the angle, length and number

of primary processes, although these can be hard to define.
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Figure 5.4.1: Estimated classes for GFP11. Each point represents 1 astrocyte,
the color of which is associated with its class. Note that cells which are lower
in eccentricity, higher in fraction of convex hull, and lower in perimeter follow
a similar pattern i.e. close to the ONH and often more dense around veins.
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5.4.3 Kernel Smoothed Intensity Function

To get an overall view of how the classes of cells described above vary spa-
tially within the retina, we first compute a kernel smoothed intensity function for
each class separately using a Gaussian kernel with standard deviation 150um.
We chose this value because it is three times the average nearest neighbor dis-
tance between cell centers, an approximation to the 30 value normally used.

In Figure below we show the intensity estimation results for the char-
acteristic “Area” and make note of some observed spatial trends for both small
cells (Mark 1) and large cells (Mark 3). Specifically, we can see that large
area cells seem to hug the veinal structure and there seem to have greater in-
tensity closer to the ONH, whereas small area cells seem to hug the arterial
structure and do not necessarily have greater intensity closer to the ONH. Note
that these patterns recur in all 7 retinas shown in Supplementary Figures [7.2.1}
[7.2.6] however GFP11 may be one of the clearest examples of the spatial pattern

mentioned above.
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Figure 5.4.2: Estimation of astrocyte intensity for each mark on GFP11. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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5.5 Multitype Point Process Model

In the example of the Queensland dataset [29] where ore deposits surround-
ing geological lineaments are modeled, the covariates considered include d(u, L),
the distance from any location u to the nearest lineament L, and 6(u, L) the
orientation of that lineament. In our case we would like to use the following
spatial covariates, which for the case of GFP11, are visualized as heatmaps in

Figure [5.5.1

e dO(u,ONH), the radial distance from any location to the ONH

e d1(u,V), the distance from any location to the nearest point on the vas-

culature, V

e d2(u,V,ONH) the geodesic distance from the projected point on the

vasculature to the optic disk along the linear network of the vasculature

For simplicity of notation we will refer to them as d0, d1, and d2, dropping
the explicit dependencies on ONH and V. Note that these quantities are depen-
dent on the retinal window, and the structure of the vasculature, and therefore
modeling of these quantities within the retina must be done on a retina-by-retina
basis. There are a variety of methods that can be used to evaluate the depen-
dence of the point process intensity on these covariates, including visual tests
such as Q-Q plots and kernel-smoothing estimates, and formal tests of constant

intensity such as Kolmogorov-Smirnov test. We choose to use the Q-Q plot for
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visualization, and for d2 we use the linear network version of the Q-Q-plot as

described in [16}[79).
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(a) dO (b) d1 (c) d2

Figure 5.5.1: Heat-map visualizations of the proposed distance measures do0,
d1 and d2 for retina GFP11.

5.5.1 Test of homogeneity

We first ran a test of homogeneity for each mark separately to determine
whether the usage of spatial covariates is necessary or if a constant lambda
model will suffice. We perform a test of Complete Spatial Randomness for the
observed point pattern corresponding to each mark, based on quadrat counts
. The retinal window is divided into tiles and the number of data points in
each tile is counted. The expected number of points in each quadrat according to
CSR is also calculated and a x? goodness-of-fit test is performed. The resulting
p-values are highly significant (p < 2.2e71%) for each cell size and each retina.

Our next goal is to evaluate the previously proposed spatial covariates using

the tools described above.
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5.5.2 dO, radial distance from ONH

The Q-Q plot in Figure (and Supplementary Figures[7.3.1{7.3.6|) show
that the various mark distributions are dependent on the quantity d0, much
more so than the unmarked process (in red). The large area cells (Mark 3)
seem to be more clustered around the ONH than would be expected from a
uniform distribution of cells, and the small cells are repulsed by the ONH. The
medium size cells (Mark 2) seem to be closer to uniform and follow the pattern
of the unmarked process fairly closely. Figure|5.5.2|also shows an example of the
large and small cells reversing their roles at the highest distances from the ONH,
and upon inspection of the original image data it is clear that this is due to the
presence of major veins running along the outer border of the retina. For this
reason, and because we find that d2 captures this trend in a more biologically

accurate way, we decide to drop d0 from our analysis.
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Figure 5.5.2: Q-Q plots corresponding to spatial covariate dO for each mark
in GFP11. Large cells are more clustered around the ONH and small cells are
slightly repulsed from the ONH, as compared to a uniform distribution of cells.
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5.5.3 dl1, distance to the nearest blood vessel

We first calculate the d1 variable over all cells and the results are shown in

figure [5.5.3|
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| |
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|
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All
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T T T T T
0 500 1000 1500 2000

d1(uniform)

Figure 5.5.3: Q-Q plots corresponding to spatial covariate d1 for each mark
in GFP11. Large cells have lower intensity farther from the blood vessels but
overall all marks are relatively close to the uniform distribution.

The plot does not show much difference between marks, although the dif-
ference seems apparent in the the kernel smoothed intensity shown in Figure
(.42l Since we noticed that the arteries and veins seem to have different kernel
smoothed intensities, we decide to separate results from arteries and veins and
these more informative results are shown in Supplementary Figures 7.4.7,
Please note that the arteries and veins are differentiated in the title of each

plot, where A stands for artery, and V stands for vein. For clarity, an example

selected vein and artery from GFP11 Q-Q plot can be found in Figure [5.5.4]
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Figure 5.5.4: Q-Q plots corresponding to spatial covariate d2 for each mark
in GFP11. Plots (a) and (b) correspond to 2 different major blood vessels of

GFP11. See Figure for legend.

Now that the blood vessels are separated into veins and arteries, we can see
that there is actually a difference in spatial distribution of cell sizes between the
two. The graphs in Figure show that small size cells are found closer to
the arteries and large size cells are found near the veins. This is verified by the
kernel smoothing images in Supplementary Figures and by the Q-Q

plots for the remaining retinas in Supplementary Figures [7.4.1{7.4.7]
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5.5.4 d2, geodesic distance from the projected point along

the blood vessel to the ONH

For d2 blood vessels must necessarily be measured separately due to the
definition of the distance. Note that there are gaps in the Q-Q-plots where
the blood vessel trace falls outside of the retinal window, since we dealt with
the empty sections of blood vessel traces caused by retinal incisions by simply
also removing the simulated uniform points along the blood vessel which fall
outside of the retinal window. This phenomena is especially apparent in the
d2 Q-Q plots for GFP2, GFP8, GFP12 and GFP13. In the Q-Q plots of the
two major blood vessels shown in Figure we can see that large type cells
typically exist closer to the ONH than small cells, medium cells, or all cells. This
distinction is clearer for veins than for arteries. In addition, the distributions of
all cell types seem closer to uniform when the nearest blood vessel is an artery
instead of a vein. This is also generally true of the remaining retinas shown in
Supplementary Figures[7.5.17.5.7 Please note that in these figures the arteries
and veins are differentiated in the title of each plot, where A stands for artery,
and V stands for vein. Some of the shortest veins have a lower number of
cells total and this could also attribute to the somewhat erratic nature of the

corresponding graphs.
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Figure 5.5.5: Q-Q plots corresponding to spatial covariate d2 for each mark
in GFP11. Plots (a) and (b) correspond to the same 2 major blood vessels of

GFP11 shown in Figure . See Figure for legend.

5.6 Inhomogeneous Poisson Intensity Model

Based on our preliminary analyses above, we fit a point process model to
an observed point pattern using the covariates d1, d2, and whether the nearest
blood vessel is an artery or vein. A quadrature scheme is constructed which spec-
ifies both the data point pattern and a dense grid of dummy points. The model
is fitted by maximizing the pseudolikelihood [31] using the Berman-Turner com-
putational approximation [18]30]. Maximum pseudolikelihood is equivalent to
maximum likelihood if the model is a Poisson process, either homogeneous or
inhomogeneous, as is the case in our implementation. We use the standard bor-

der correction in which the quadrature window (the domain of integration of
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the pseudolikelihood) is obtained by trimming off a margin of fixed width from
the observation window of the data pattern.

The total intensity model for astrocyte cells in the retina is

)\all == )\1 + )\2 + )\3 (561)
/\z<u, ONH, v) _ 52 expali*dl(u,V)—l—aQi*d2(u,V)+oz3i>kAV (562)

where the parameters 3, al, a2, a3 are estimated separately for each cell
size. The resulting estimated parameters are shown in Tables |5.1 From
these tables we can see that using a Z-test all coefficients are significant (“***’
implies p < 0.001, “**’ implies p < 0.01, “*" implies p < 0.05) except for the
artery-vein variable for medium size cells, which is as previously observed. We
also notice that the large cells have the most distinct pattern as influenced by
the spatial covariates listed. As we noticed in the kernel smoothing estimate and
in the Q-Q plot of d1, small cells have a positive coefficient for the artery (av=1)
or vein (av=0) variable whereas large cells have a highly negative coefficient,
and medium cells are closer to the neutral coefficient of 0. Small and large
cells have a negative coefficient for d1, meaning that as one moves away from
the blood vessels the intensity drops exponentially. Large cells drop off more
quickly than small cells, and medium cells are more uniformly distributed in

the retina with less regard to the vasculature. As for the covariate d2, it is

negative for small and large cells, and more negative for medium cells. This
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Estimate S.E. Z-test

(Intercept) | -1.126699¢+01 | 7.204313e-02 | na

dl -1.759398e-04 | 8.129692¢-05 | *
d2 -1.681820e-05 | 7.718820e-06 | *
av 3.672846e-01 5.848168¢e-02 | ***

Table 5.1: Parameters for point process model of small cells.

Estimate S.E. Z-test

(Intercept) | -1.111994e+-01 | 6.861090e-02 | na

dl 1.826383e-04 8.422412e-05 | *
d2 -5.027523e-05 | 7.912743e-06 | ***
av -1.099779e-01 | 5.884300e-02

Table 5.2: Parameters for point process model of medium cells.

implies that medium cells are more clustered around the ONH along the blood
vessels and we postulate that this is just an artifact of the random distribution
of medium-size cells in this particular retina, as we do not observe this in many
of the 6 remaining retinas as shown in Section of Supplementary Data. We
refrain from remarking in detail on the parameters estimated for the rest of the
retinas as we find it more useful and comprehensible to compare the conditional

density maps, estimated as described below.
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Estimate S.E. Z-test

(Intercept) | -1.050428e+-01 | 6.675239¢-02 | na

dl -4.386068e-04 | 1.179140e-04 | ***
d2 -1.175673e-04 | 9.142585¢-06 | ***
av -9.134728e-01 | 6.562339¢-02 | ***

Table 5.3: Parameters for point process model of large cells.

Given each point process model fitted to its corresponding a point pattern,
we compute the fitted conditional intensity [17] of the model at the points of the
quadrature scheme used to fit the model. From this we obtain A(u, ONH, BV)
values for each of the quadrature points. We then perform spatial smoothing of
lambda values observed at the set of quadrature locations using Gaussian kernel
smoothing [111},146]. From this we obtain a heatmap of conditional density for
each point process model, as shown in Figure (and Supplementary Figures
. From these heat-maps we can see that the large cells (Mark 3) seem
to have a high point-process intensity in a flower-like shape around the ONH,
with petals centered on the veins. The likelihood of finding small cells in this
area is low. The veins and arteries are drawn in black in these figures for the

reader’s benefit.
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Figure 5.6.1: Resulting conditional density for each mark on GFP11

5.7 Discussion

In this chapter we develop a simple method for astrocyte segmentation which
performs with similar accuracy to the state-of-the-art method used in ,.
We then use the resulting segmentations to characterize groups of cells based
on their area, and other morphological characteristics. We employ various tech-
niques in spatial statistics including point-process models to discover spatial
trends of astrocyte distribution with respect to the cell characteristics. Our
methods have an immediate impact on our understanding of the underlying
biological processes occurring in the retina. Our results show that in normal
healthy retinas, the distribution of observed astrocyte cells is more densely
packed around the blood vessels than a uniform distribution. We also show
that compared to the distribution of all cells, large cells are more densely packed
in the vicinity of veins and towards the ONH whereas smaller cells are often
more densely packed in the vicinity of arteries. The conditional density maps

shown in Figures show that the density of large cells is clearly higher
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in a flower-shaped region with the petals centered on the retinal veins, whereas
small cells have low density in these regions.

A possible explanation for this phenomena is related to the vascular function
within the retina. The retinal vasculature enters the retina through the cen-
tral retinal artery via the ONH, and after being distributed through the retinal
tissue, it leaves the tissue through the retinal vein. Astrocytes sit between vascu-
lature and retinal neurons and although many functions of astrocytes in healthy
retinas are poorly understood, it is widely accepted that they play an essential
role in the development and function of the retinal vasculature, blood flow and
blood-retinal barrier [91]. In fact glial cell dysfunction in retinal pathologies is
associated with retinal swelling and BRB breakdown [35,[88,/131]. Astrocytes
transport small molecules (glucose, glutamate, small proteins or polypeptides)
from the blood stream to the neurons at the arteries and take metabolic byprod-
ucts away from the neurons back into the blood stream at the veins. We hy-
pothesize that the latter process may be more critical, since for example it is
well-known that too many metabolic waste products can be toxic to neurons.
We speculate that this criticality may be the reason for the astrocytes residing
on the veins to be the largest, as larger cells can presumably process waste more
efficiently.

Although the above biological conclusions can be surmised simply from the

intensity estimates discussed in Section [5.4.3] our contribution lies in the prin-
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cipled statistical framework for measuring such spatial patterns of cells. The
fitted point process models resulting from this study can be used for predic-
tion, and modeling of normal retinal tissues in order to allow us to measure
differences in cases of disease such as macular degeneration. Due to this clear
differentiation between arteries and veins, the results of this work could also
potentially aid in automated differentiation between arteries and veins in the
retina, which has proven to be a difficult task [120].The methodology presented
here can be used on spatial studies between other vasculature structures and

cells, which occur many places in the body.
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Discussion and Future Work

In this work we apply and develop statistical methods to study spatial re-
lationships in two specific biological contexts. The first contribution is a linear
network analysis of dendritic spine distributions. The second is a tool for multi-
type analysis on a linear network, with specific application to the problem of
dendritic spine type clustering. The third is an inhomogeneous Poisson process
model for astrocyte distributions in the healthy mammalian retina. We are able
to present meaningful biological results for both in vitro datasets. Possible fu-
ture work entails studying in vivo data for both biological systems under study,
including development of the 3-dimensional analysis tools that might be needed

in these cases.
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6.1 Dendritic Spine Analysis

6.1.1 Discussion

The models used in Chapters[3|and 4] allow spatial prediction of spine types,
which had not previously been studied. Numerous caveats apply to the bio-
logical interpretation of our results. The conclusions presented here relate to
qualities of neurons in dissociated culture. We acknowledge that some of these
results will most likely not hold for n vivo settings due to neuronal interactions
not modeled here, but maintain that the statistical methods used here will be
useful and easily applicable.

In chapter 4] we demonstrate evidence that different branches of a dendrite
network appear to have different, homogeneous concentrations of spines. Evi-
dence for clustering is at best equivocal. A different analysis in Chapter [3|found
positive association between the types of immediately neighboring spines, con-
ditional on the spine locations. That analysis needs to be revisited to determine
whether the positive association still persists when the network is divided into
homogeneous branches as we did above. If it does persist, then the most likely
explanation of the different conclusions from the two analyses is that there is

very short-range nearest-neighbor dependence between spines.
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6.1.2 Future Work

Dendritic networks are three-dimensional, but existing computational tech-
niques for spatial data on linear networks [117] mostly assume the network
lies in two-dimensional space. Fortunately, neurons in cell culture in vitro are
almost flat, so that we may ignore the third dimension, except when resolving
the connectivity of the network. Thus, existing computational techniques are
applicable to neurons in cell culture, but would require algorithmic modification
to deal with neurons in vivo.

The data comes from a designed experiment in which the ‘response’ for each
experimental unit is a point pattern. It is possible to pool first- and second-order
summary statistics across replicate point patterns [22,27,149] but additional
methodology needs to be developed.

A more searching analysis of the dendrite data would require the ability
to fit explicit statistical models to the data. Although in this study the spine
distributions seemed to fit either a homogeneous or inhomogeneous Poisson
Process, it is possible that we will find studies using different neuronal types
and treatments where this is not true. In these cases, where spine density
may vary with distance from the cell body, it would be interesting to test for
inhomogeneous patterns of points such as the hard core Strauss Process used

in [18], or the even further generalized Geyer Model [64].
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In a Hard Core (HC) model, one specifies a min and max radius of interac-

tion, so that

y=1|u—v|>r (6.1.1)

y=0,llu—v|| <r (6.1.2)

where 7 is the HC radius and u,v are the coordinates of the points x;,z;. It
is impossible for points to be closer to each other than r, often times the size
of the objects being approximated as points. Besides r, assumes no pairwise
interaction and if » = 0 reduces to the Poisson model.

In a Geyer model, the max radius and max total contribution to the potential
from each point (from its pairwise interaction with all other points) is measured
as:

£ () = o)y e (6.1.3)

where t(x;) denotes the number of neighbors within a given radius r of x; and
s is a saturation parameter. If s =0 or 7 = 1 the model reduces to a Poisson
Process and if v = 0 reduces to a HC process.

We could also place an exponentially decaying function to model the inter-
action between spine types within a certain radius or experiment with other
pairwise interaction functions such as those used by Diggle, Gates and Stib-

bard [50] or Diggle and Gratton in [51].
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6.2 Retinal Astrocyte Analysis

6.2.1 Discussion

In Chapter [5| we develop a new fast and simple method for astrocyte seg-
mentation which performs with similar accuracy but more efficiently than the
state-of-the-art method used in ( [94,127]). We then use the resulting segmen-
tations to characterize groups of cells based on their area, and other morpholog-
ical characteristics. We employ various techniques in spatial statistics including
point-process models to discover spatial trends of astrocyte distribution with
respect to the cell characteristics. Our methods have an immediate impact on
our understanding of the underlying biological processes occurring in the retina.
Our results show that in normal healthy retinas, the distribution of observed
astrocyte cells is more densely packed around the blood vessels than a uniform
distribution. We also show that compared to the distribution of all cells, large
cells are more densely packed in the vicinity of veins and towards the ONH
whereas smaller cells are often more densely packed in the vicinity of arteries.
The density of large cells is clearly higher in a flower-shaped region with the
petals centered on the retinal veins, whereas small cells have low density in
these regions. We conclude by providing a possible biological explanation for

this phenomena.
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6.2.2 Future Work

The fitted point process models resulting from our study can be used for
prediction, and modeling of normal retinal tissues in order to allow us to measure
differences in cases of disease such as macular degeneration. We could also
perform a goodness of fit test using the models we arrived at on a hold-out set of
retinas which were not used to evaluate the coefficients of the spatial covariates.
This would give us a good idea of how well the model fits a new retina, and
therefore of the overall validity of the model. Due to this clear differentiation
between arteries and veins, the results of this work could also potentially aid in
automated differentiation between arteries and veins in the retina, which has
proven to be a difficult task ( [120]).The methodology presented here can be
used on spatial studies between other vasculature structures and cells, which
occur many places in the body.

Possible future work includes exploring other morphological astrocyte cell
characteristics such as the angle, length and number of primary processes, al-
though these can be hard to define. The results on our much larger and more
consistent (rather than hand-picked) dataset could then be compared to those
of [156] to see if their conclusions regarding the angles and lengths of primary
processes of astrocytes lying on or near the blood vessels hold. The study
by [127] could also be revisited to see whether the results on detached retinas dif-

fer from healthy retinas using these new methods of analysis. It is possible that
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the study of detached retinas, those in disease states, or other neuro-vascular
tissues will also require more complex models than just the homogeneous and in-
homogeneous Poisson used in this thesis, such as the ones mentioned in Section

and computation tools for those cases will also be needed at that time.

6.3 Concluding Remarks

In summary, this dissertation explored and developed spatial methods for
cellular and sub-cellular analysis in biological images. More specifically, we
investigate the problems of spine and spine type organization along the dendritic
branching structure, and astrocyte distribution with respect to blood vessels
within the mammalian retina. The methods developed and applied here lead
to potentially significant results which can lead us to further our understanding
of the underlying biological systems. This chapter concludes the dissertation,
with a brief summary of salient aspects from various chapters, along with a

discussion on possibilities for future research.
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Chapter 5 Supplementary Data

7.1 Clustering Results for Perimeter, Eccen-

tricity and Fraction of Convex Hull
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Figure 7.1.1: Estimated classes for GFP1. Each point represents 1 astrocyte,
the color of which is associated with its class. Note that cells which are lower
in eccentricity, higher in fraction of convex hull, and lower in perimeter follow
a similar pattern i.e. close to the ONH and often more dense around veins.
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Figure 7.1.2: Estimated classes for GFP2. Each point represents 1 astrocyte,
the color of which is associated with its class. Note that cells which are lower
in eccentricity, higher in fraction of convex hull, and lower in perimeter follow
a similar pattern i.e. close to the ONH and often more dense around veins.
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Figure 7.1.3: Estimated classes for GFP3. Each point represents 1 astrocyte,
the color of which is associated with its class. Note that cells which are lower
in eccentricity, higher in fraction of convex hull, and lower in perimeter follow
a similar pattern i.e. close to the ONH and often more dense around veins.

172



Chapter 7. Chapterlgl Supplementary Data

21 + M1, mean-1.69

» M2, mean -0.46

* M3, mean0.18
= + M4, mean 0.65

* MBS, mean 1.09

+ M1, mean-1.22
Si4 * M2, mean-0.29
2 + M3, mean 0.55

+ M4, mean 1.81

Eccentricity

)

(b

(a) Perimeter

+ M1, mean -0.88
é + M2, mean -0.36
el + M3, mean 0.47

* M4, mean 2.32

Frac. of Convex Hull

)

C

(

Estimated classes for GFPS8. Each point represents 1 astrocyte,

the color of which is associated with its class. Note that cells which are lower

1.4:

7

Figure

and lower in perimeter follow

a similar pattern i.e. close to the ONH and often more dense around veins.

Y

in eccentricity, higher in fraction of convex hull

173



Chapter 7. Chapterlgl Supplementary Data

+ M1, mean-1.7
M2, mean -0.45
M3, mean 018
M4, mean 0.65
M5, mean 1.11

* M2, mean-0.25
+ M3, mean 0.55
+ M4, mean 1.65

PR

(a) Perimeter (b) Eccentricity

# + M1, mean-0.79

+ M2, mean -0.37

#57 + M3, mean 0.39
* M4, mean 2.71

(c) Frac. of Convex Hull

Figure 7.1.5: Estimated classes for GFP12. Each point represents 1 astrocyte,
the color of which is associated with its class. Note that cells which are lower
in eccentricity, higher in fraction of convex hull, and lower in perimeter follow
a similar pattern i.e. close to the ONH and often more dense around veins.
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Figure 7.1.6: Estimated classes for GFP13. Each point represents 1 astrocyte,
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7.2 Estimation of Astrocyte Intensity for Each

Mark
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Figure 7.2.1: Estimation of astrocyte intensity for each mark on GFP1. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.2.2: Estimation of astrocyte intensity for each mark on GFP2. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.2.3: Estimation of astrocyte intensity for each mark on GFP3. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.2.4: Estimation of astrocyte intensity for each mark on GFPS8. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.2.5: Estimation of astrocyte intensity for each mark on GFP12. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.2.6: Estimation of astrocyte intensity for each mark on GFP13. The
heat-map scale bar is in points per um?. Blood vessels are drawn in black.
Large cell intensity is greater near veins, and towards the ONH, while small cell
intensity is greater near arteries.
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Figure 7.3.1: d0 Q-Q plot for GFP1
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Figure 7.3.2: d0 Q-Q plot for GFP2
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Figure 7.3.3: d0 Q-Q plot for GFP3
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Figure 7.3.4: d0 Q-Q plot for GFPS
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Figure 7.3.5: d0 Q-Q plot for GFP12
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Figure 7.3.6: d0 Q-Q plot for GFP13
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7.4 Q-Q plots for d1 separated by Major Blood
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Figure 7.4.1: d1 Q-Q plot for GFP1
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Figure 7.4.2: d1 Q-Q plot for GFP2
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Figure 7.4.3: d1 Q-Q plot for GFP3
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Figure 7.4.4: d1 Q-Q plot for GFPS
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Figure 7.4.5: d1 Q-Q plot for GFP11
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Figure 7.4.6: d1 Q-Q plot for GFP12
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Figure 7.4.7: d1 Q-Q plot for GFP13
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7.5 Q-Q Plots for d2
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Figure 7.5.1: d2 Q-Q plot for GFP1
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Figure 7.5.2: d2 Q-Q plot for GFP2
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Figure 7.5.3: d2 Q-Q plot for GFP3
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Figure 7.5.4: d2 Q-Q plot for GFPS

199



Chapter 7. Chapterlgl Supplementary Data

GFP11_Al.swc GFP11_A2.swc GFP11_A3.swc
o
o _ o
3 3 o
— © o
S o 3
o o
N g
g - g g
o « i
o o o
T T T T T T T T T T
0 1000 3000 5000 0 1000 3000 5000 0 2000 4000 6000
GFP11_A4.swc GFP11_A5.swc GFP11_A6.swc
8 8 I
3 3 @
o o Q
S S =3
S g S
o o o
o o o
& Q &
o o o
T T T T T T T T T T T T
0 1000 3000 5000 0 1000 3000 5000 0 1000 3000 5000
GFP11_V1.swc GFP11_V2.swc GFP11_V3.swc
-y o 73 =
S o S /r; 8
n * —
- P 5 O =)
- : * X s 7 3
7’
o o
o - o o
T T T T T T T
0 500 1000 1500 0 5000 10000 15000 0 200 600 1000
GFP11_V4.swc GFP11_V5.swc GFP11_V6.swc
Rk > - T
. 7 _ 7
o ** Pd (= o
S *k S | =]
EL R [ 7z 8 3
1o 3
o * =3 =
8 H o < 3
n *f -1 n
o —*»,u- o -t o
T T T T T T T T T T T T
0 500 1000 1500 2000 0 2000 6000 10000 0 500 1000 1500 2000

Figure 7.5.5: d2 Q-Q plot for GFP11
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Figure 7.5.6: d2 Q-Q plot for GFP12
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Figure 7.5.7: d2 Q-Q plot for GFP13
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7.6 Astrocyte Point Process Model Parame-

ters
Estimate S.E. Z-test
(Intercept) | -1.134535e+01 | 6.325798e-02 | na
d1 6.436037¢e-06 5.950789¢-05
d2 4.268662¢e-05 7.193712e-06 | ***

av

5.867920e-02

5.169866e-02

Table 7.1: Parameters for M1, small cells, GFP1

Estimate S.E. Z-test
(Intercept) | -1.085175e+01 | 5.820270e-02 | na
dl 1.617168e-04 | 5.592877e-05 | **
d2 -6.693338e-05 | 9.586143e-06 | ***

av

4.507846e-02

4.882032¢-02

Table 7.2: Parameters for M2, medium cells, GFP1
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Estimate S.E. Z-test
(Intercept) | -1.039639e+01 | 6.183329¢-02 | na
dl -1.369614e-04 | 7.926248e-05
d2 -1.880157e-04 | 1.392883e-05 | ***

av

-3.400189e-01

5.671419e-02

kkx

Table 7.3: Parameters for M3, large cells, GFP1

Estimate S.E. Z-test
(Intercept) | -1.174983e+01 | 6.030234e-02 | na
d1 2.222189e-05 5.097771e-05
d2 6.632133e-05 5.054189e-06 | ***

av

1.944625e-01

5.026676e-02

kkx

Table 7.4: Parameters for M1, small cells, GFP2

Estimate S.E. Z-test
(Intercept) | -1.105994e+-01 | 5.249135¢-02 | na
d1 2.992044¢e-05 | 5.252228¢-05
d2 -1.629217e-05 | 5.761056e-06 | **

av

-1.326236e-01

4.612846e-02

k%

Table 7.5: Parameters for M2, medium cells, GFP2
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Estimate S.E. 7-test
(Intercept) | -1.068546e+01 | 5.675582e-02 | na
dl -3.961348e-04 | 7.091058e-05 | ***
d2 -9.522312e-05 | 8.312819e-06 | ***

av

-3.660021e-01

5.302327e-02

kkx

Table 7.6: Parameters for M3, large cells, GFP2

Estimate S.E. Z-test
(Intercept) | -1.219846e+01 | 8.136323e-02 | na
dl 1.354535e-04 | 5.587403e-05 | *
d2 7.709507e-05 | 8.627677e-06 | ***

av

2.612334e-01

6.568654e-02

kkx

Table 7.7: Parameters for M1, small cells, GFP3

Estimate S.E. Z-test
(Intercept) | -1.135386e+01 | 7.072102¢-02 | na
dl -1.845237e-04 | 6.912429¢-05 | **
d2 -3.058483e-05 | 1.051476e-05 | **

av

-9.428497e-02

6.161102e-02

Table 7.8: Parameters for M2, medium cells, GFP3
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Estimate S.E. 7-test
(Intercept) | -1.076541e+01 | 6.978139¢-02 | na
d1 -5.409147c-04 | 1.011964e-04 | ***
d2 -1.400847e-04 | 1.424098e-05 | ***

av

-6.604382e-01

6.864280e-02

kkx

Table 7.9: Parameters for M3, large cells, GFP3

Estimate S.E. Z-test
(Intercept) | -1.174343e+01 | 6.863084e-02 | na
dl 1.868449¢-04 5.471182e-05 | ***
d2 6.785948e-07 6.127559¢e-06

av

1.110288e-01

2.277362e-02

Table 7.10: Parameters for M1, small cells, GFPS8

Estimate S.E. Z-test
(Intercept) | -1.182459¢+-01 | 7.387026e-02 | na
d1 1.044985e-04 | 6.140334¢-05
d2 -2.732918e-06 | 6.656718e-06

av

2.556640e-02

5.721520e-02

Table 7.11: Parameters for M2, medium cells, GFP8
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Estimate S.E. Z-test
(Intercept) | -1.113606e+01 | 7.131385e-02 | na
d1 -9.985732e-04 | 9.454941e-05 | ***
d2 -1.545966e-05 | 6.568623e-06 | *
av -6.647207e-01 | 6.227933e-02 | ***
Table 7.12: Parameters for M3, large cells, GFP8

Estimate S.E. Z-test
(Intercept) | -1.165506e+01 | 8.004278e-02 | na
dl -7.173005e-04 | 1.062916e-04 | ***
d2 3.693129e-07 | 6.807371e-06
av 4.406969¢-02 | 6.152533e-02
Table 7.13: Parameters for M1, small cells, GFP12

Estimate S.E. Z-test
(Intercept) | -1.161688e+01 | 7.410564e-02 | na
dl -3.554434e-05 | 8.864146e-05
d2 -2.227107e-05 | 6.749176e-06 | ***
av 1.182195e-01 5.556339¢e-02 | *
Table 7.14: Parameters for M2, medium cells, GFP12
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Estimate S.E. 7-test
(Intercept) | -1.127913e+01 | 8.020608e-02 | na
dl -5.334600e-04 | 1.121541e-04 | ***
d2 -7.169297e-05 | 8.524646e-06 | ***
av -2.945998e-01 | 6.393769e-02 | ***

Table 7.15: Parameters for M3, large cells, GFP12

Estimate S.E. Z-test
(Intercept) | -1.196008e+-01 | 7.400359¢-02 | na
dl -1.687806e-04 | 4.191075e-05 | ***
d2 3.515090e-05 6.672555e-06 | ***
av 6.942003e-02 5.945369e-02

Table 7.16: Parameters for M1, small cells, GFP13

Estimate S.E. Z-test
(Intercept) | -1.16519¢+01 | 6.935819¢-02 | na
dl -2.51501e-05 | 3.837177e-05
d2 -1.60209e-05 | 7.211534e-06 | *
av -1.65947e-01 | 5.854563e-02 | **
Table 7.17: Parameters for M2, medium cells, GFP13
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Estimate S.E. Z-test
(Intercept) | -1.104610e+01 | 7.131286e-02 | na
d1 -1.661216e-05 | 4.783340e-05
d2 -1.862515e-04 | 1.196072e-05 | ***

av

-4.392534e-01

6.682614e-02

kkx

Table 7.18: Parameters for M3, large cells, GFP13
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7.7 Astrocyte Conditional Intensity Maps
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Figure 7.7.1: Resulting conditional density for each mark on GFP1
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Figure 7.7.2: Resulting conditional density for each mark on GFP2
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Figure 7.7.3: Resulting conditional density for each mark on GFP3
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Figure 7.7.4: Resulting conditional density for each mark on GFPS8
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