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ABSTRACT 

The analysis of the response of a photoelectrochemical system to a variable 
light source offers a convenient means for the characterization of a semiconductor­
electrolyte interface. We present analytic solutions for the minority-carrier concen­
trations at the semiconductor surface during pulse, step, sinusoidal, and periodic­
square-pulse illumination. The analytic solutions can be used to describe the 
loto-leuel-injection behavior of wide-band-gap semiconductors employed in photo­
electrolysis cells and other photoelectrochemical systems. 

Introduction 

Since Brattain a.nd Garett's fundamental study of the semiconductor-electrolyte 
interface (1), there have been large research efforts directed towards understanding 
and characterizing semiconductor-liquid junctions. Promising photoelectrolysis 
and solar cell schemes have been advanced based on such an interface (2). Bard 
(3) and Heller (4) have recently reviewed efficient photoelectrochemical (PEC) 
systems, elucidating problems and progress. 

A useful technique in the characterization of PEC cells is to analyze the sys­
tem's response to a varying light source (5,6,7). This is analogous to varying the 
current or potential ( chronopotentiometry or chronoamperometry, respectively) in 
the study of traditional, non-photoactive electrochemical systems. In this work, 
we present analytic solutions for minority-carrier transport equations that allow 
for the description of a PEC cell subject to pulse, step, sinusoidal, and periodic 
square-pulse illumination. This treatment is an extension of existing steady-state 

2 Current a.ddreaa: Electrochemistry Department, General Motors Research Laboratories, Warren, 
· Michigan, 48090-9055. 
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models by Gartner (8) and Dewald (9). These models have been shown by anum­
ber of authors to predict accurately the behavior of wide-band-gap PEC systems 
(10,11,12,13,14). 

The response of a photoactive system to a varying light intensity has been the 
subject of many studies. van Roosbroeck examined injected current-carrier trans­
port in a semiconductor as a means to determine carrier lifetimes and surface­
recombination velocities (15). Following van Roosbroeck's study, numerous re­
searchers have addressed the response of PEC systems under varying illumination 
intensities (e.g. 16,17 ,18,19,20). In addition, Laser and Bard implemented a more 
general digital-simulation model to study transient charge injection in a PEC cell 
(21). 

The major emphasis of this treatment deals with the solution to the equa­
tions describing minority-carrier transport in the semiconductor; this is because 
semiconductor-electrolyte interfaces are often analogous to Schottky barriers in 
metal-semiconductor contacts, and the electrolyte-species transport usually plays 
a minor role in the determining the PEC system behavior (1,22). For the descrip~ 
tion of many PEC systems, it is necessary to incorporate kinetic resistances at 
the interface (23,24). The next section of this work addresses the proper use of 
a semiconductor-electrode kinetic expression. Following this, we present solutions 
for the minority-carrier transport equations. 

The Interfacial Kinetic Expression 

A number of treatments for the analysis of semiconductor-electrolyte interfaces 
indicate that a Butler-Volmer type equation is the best expression available to 
describe the current-potential relationship (e.g. 2,11,13,25). In the following; 
we shall demonstrate the use of a Butler-Volmer equation for the description of 
the current-potential relationship of a PEC cell. Particular attention must be 
paid to the metal-semiconductor space-charge region as well as the semiconductor­
electrolyte region of charge separation. . 

In the following discussion, we treat the reaction of semiconductor electrons 
with species in the electrolyte. An analogous treatment can be used to describe 
reactions with semiconductor holes. We shall not address activi~y coefficient cor-
rections in this work. For the electrochemical reaction ~ 

(1) 

the current-potential relationship is 

I CR Co 
-F = kaexp((1- ,B)nfV]-- kcexp(-f3nfV)-ce-, 
n h h 

(2) 
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where surface concentrations are used, f = F /(RT), and 

v = [ 
8 1 " (Ci,re/)] E + U,.e/ - --

1 
L.-J Si,re/ln -- -

nref i Po 
(3) 

A~IR- A~sE- ll.~Ms . 

The potential of a. platinum wire, intimately contacted to the semiconductor, with 
respect to a reference electrode is the measured cell potential E. The bracketed 
term in Eq. 3 represents a Nernst expression for the reference electrode, denoted 
henceforth as u;:,. The cell ohmic-potential drop is represented by ll.~IR· The 
potential differences across the space-charge regions in the semiconductor near 
the metal-semiconductor and semiconductor-electrolyte interfaces are denoted by 
ll.~Ms and ll.~sE, respectively. The symbol fl. preceding ~Ms and ~sE refers to 
spatial differences; hence fl.~ MS is the value of the electric potential at the metal 
side of the metal-semiconductor space-charge region less the value of the electric 
potential at the semiconductor side of the space-charge region. Similarly, A~ SE is 
the value of the electric potential at the semiconductor side of the semiconductor­
electrolyte space-charge region less the value of the electric potential at the elec­
tr">lyte side of the space-charge region. Therefore, the potential difference between 
a platinum wire contacted to the semiconductor and a normal hydrogen electrode 
(:'iHE), corrected for ohmic drop and potential differences across the space-charge 
rt.gions, is represented by V. The potential difference across the diffuse portion 
of the double layer in the electrolyte is usually very small and is neglected in this 
work (2). 

At equilibrium, i = 0, and Eq. 2 reduces to 

yer1 = _!:.._In kc + _!_ In CoC~-
nf k11o nf CR 

(4) 

Or' 

(5) 

In this work, we make use of the following dilute-solution expression for the elec­
trochemical potential (26,27) 

J.'i = p.~e/ + RT In Ci + Z;F~. (6) 

The first two terms on the right side of Eq. 6 represent purely chemical contri­
butions. The superscript fJ in Eq. 5 denotes a reference state of infinite dilution 
in an aqueous phase. Since the rate constants are related to the NHE, the super­
script o, Pt is required to denote the standard state electrochemical potential of 
the electrons in platinum, the electrode material used in the NHE. Equation 5 can 
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be combined with Eq. 3 to yield the measured, equilibrium cell voltage 

F Eeq = .!:_(J.'~ + nJ.':~ - J.'~) + RT In co + J.':o!t- J.':~ + (7) 
n n CR 

RTlnce- + F(.6.~MS + .6.~sE- u::,), 
where J.':~ represents the standard-state electrochemical potential of electrons in 
the semiconductor. 

In dilute solutions that are under equilibrium conditions, a Boltzmann expres­
sion can be used to relate ionic concentrations to potential differences within a 
conducting phase (28): 

c.- - c!~exp(-f.6.~sE) 
c!~ - c;~exp(-f.6.~Ms) 

(8) 
(9) 

where· the superscript b, 8 denotes the bulk semiconductor. The cell voltage can 
then be expressed by inserting Eqs. 8 and 9 into Eq. 7: 

(10) 
~~ 

!¥:f. 

,, 

The first two terms on the right side ofEq. 10 represents the potential difference 
between the platinum contact and the bulk semiconductor. The third and fourth 
terms represent the potential difference across the semiconductor-electrolyte in­
terface. The last two terms indicate that a hydrogen reference electrode has been 
assumed. This is the same expression that is obtained if the cell potential is 

j 

expressed by summing the potential differences between. the various phases at 
equilibrium (29). Equation 10 can be further simplified by canceling the semi­
conductor terms (denoted with superscript 8) and platinum terms (denoted with 
superscript Pt). As is expected, the open-circuit cell potential is independent of 
the semiconductor phase. 

It is important to note that the potential difference across the space-charge 
region near the metal-semiconductor contact .6.~Ms had to be included in order 
to develop rigorously the cell-potential expression. This term is often neglected in 
semiconductor-electrode analyses. l::i.~Ms is also a function of cell polarization; for 
a uniformly doped semiconductor, a Schottky-barrier analysis may suffice. It is 
also possible to alter the dopant concentration to minimize .6.~Ms (30). In general, 
the theory is well developed for metal-semiconductor contacts, and we will only 
address the semiconductor-electrolyte contact. 

' 
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Evaluation of the Minority-Carrier Concentration 

Although the treatment we present in this section for the solution to the 
minority-carrier transport is approximate, its steady-state counterpart has proved 
to be a valuable tool for the description of many PEC systems. More complete 
discussions of the full equations governing electron, hole, and ionic transport have 
been presented by Orazem and Newman (25,31). In order to develop the cell 
current-potential relationship, the relation between the cell current and .6.~MS 
is required, and Gauss' law must be incorporated to solve for .6. ~ sE and for 
the surface overpotential associated with the charge-transfer reaction across the 
Helmholtz layer. For extrinsic semiconductors, usually the depletion approxima­
tion can be used to simplify the evaluation of .6.~sE, resulting in a parabolic 
potential distribution across the space-charge region. ( cf. ref. 2, Eq. 23) The 
potential drop across the Helmholtz layer is usually assumed to vary linearly. ( cf. 
ref. 25, Eqs. 29 and 30) 

The three regions of interest in this analysis, the electrolyte, the semiconductor 
space-charge layer, and the neutral semiconductor, are shown in Fig. 1. The 
semiconductor is represented by a space-charge region for 0 < x < w and an 
electrically neutral region for x > w. 

The space-charge layer is modeled as an equilibrated region of minority carriers 
(electrons in a p-semiconductor, holes in an n-semiconductor). The equilibrium 
assumption is usually justified because small concentration and potential variations 
across the thin space-charge region give rise to large gradients in concentration and 
potential, and to large, opposing diffusion and migration fluxes. A minority-carrier 
flux balance on the region yields 

- ,F· + {'~~~ I(t)ae- 11zdx = Nlz=w + v.(c'~~~- cb). 
Zi lo (11) 

The first term is related to the flux of minority carriers into the region by electro­
chemical reaction. For holes, Zi = 1 and for electrons, Zi = -1. Anodic currents 
are taken as positive in this work. The second term represents generation by il­
lumination. The flux of minority carriers out of the region, Nlz=w, is obtained 
by solving the continuity equation for the minority carrier in the semiconductor. 
The last term in Eq. 11 represents a very approximate treatment for surface re­
combination. The surface-recombination term is similar to a Shockley, Hall, Read 
surface-recombination model (32,33) if the energies of the trap sites are located 
near midgap, the hole and electron capture cross sections are identical, and the 
charge carriers are at low concentration. 

In Gartner's treatment surface recombination is neglected, and the minority­
carrier concentration is set to zero at x = w. The Gartner model begins to fail for 
systems with negligible space-charge widths, or small potential drops across the 
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space-charge region. Including the recombination term and a non-zero minority­
carrier concentration at x = w represent additions to the Gartner model that 
appear in Dewald's work and improve the analysis of PEC cells (13). 

The dilute-solution, one-dimensional equation of continuity for the description 
of the minority-carrier transport within the bulk semiconductor is 

ac a2c c- c6 

at = D ax2 - -r- + I(t)ae-CIZ. (12) 

Migration terms are not included in the continuity expression since· the majority­
carrier concentration is assumed large and invariant, thus acting as a supporting 
electrolyte and reducing the effect of the electric field on minority-carrier trans­
port. This is usually a good assumption for extrinsic semiconductors. The bulk­
recombination model, which makes use of the carrier lifetime r is analogous to the 
surface-recombination model used in Eq. 11 and embodies the same assumptions. 
The exclusion of the electric field effects and the use of a simple recombination 
model are more valid approximations for low-level-injection situations. In general, 
the treatment we present is analogous to th~ ideal-diode analysis, in which both 
of these assumptions are made (34,35,36). 

The boundary conditions and initial condition are: 

c(t,oo) - cb (13) 

c(t, w) - cw (14) 

c(O, x) - cinit(x) (15) 

The first boundary condition states that the minority-carrier concentration reaches 
its bulk value at large distances from the interface. This boundary condition is 
valid for semiconductor thicknesses substantially greater VTD, the characteristic 
length for this transport problem, also denoted by L, the diffusion length. The 
second boundary condition sets the concentration at x = w. In the last condition, 
the initial concentration profile is set equal to the steady-state value for constant 
illumination. The full steady-state solution, with constant illumination intensity 
I, is: 

c(x) (16) 

At zero current (i = 0) and no illumination (J = 0), the minority-carrier concen­
tration is equal to its bulk value for all x 2:: w. For the problems solved in this 
work, the interface was initially not illuminated. 

7 
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The solution to the system of equations 12 - 15 can be combined with Eq. 11 
to yield cw. If the quasi-equilibrium assumption is invoked, the charge carriers 
are assumed to be in translational equilibrium across the space-charge region (9), 
and the surface concentration can be related to cw by a Boltzmann factor, c•ur/ = 
Cw exp(Zif .6-~sE)• 

Equations 12 - 15 can be non-dimensionalized with the following definitions: 

x-w 
(17) ~ - L 

f) 
t 

(18) - r 

e c - c6 
(19) - c6 

0: - aL (20) 

..\ ' (21) -
ZiF(v. + £-)c6 

4> 
I(t)are-""' 

(22) - c6 

These definitions ~an be used to restate the problem: 

ae 829 . 
(23) - =-- 9 + tf>(IJ)e-a' 

86 8~2 

9(1J,oo) - 0 (24) 
9(6,0) - 9VI (25) 

9(0,~) - ..\e-f (26) 

Equation 23 is a linear, partial-differential equation with constant coefficients. 
The Laplace transform technique can be used to reduce Eq. 23 to an ordinary 
differential equation: 

(27) 

where 8 is the Laplace transform variable and an overbar indicates a transformed 
variable. The transformed boundary conditions are: 

e(oo) - 0 
ew 

9(0) -
8 

The solution to the system of equations 27 - 29 is 

e = [(ew- ..\) - t/>(8) l e-v'i+Tr + ~e-' + t/>(8)e-ar . 
8 8 + 1 - o:2 8 8 + 1 - o:2 

8 
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(29) 

(30) 
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The :flux of the minority carrier at x = w, in Laplace space, is 

Nl = -cbD de 
z=w L d~' ' ) r=o 

where 

(31) 

de = _ [(ew - ;\) _ </>(8) l v's+T _ ~ _ </>(8)a • (32) 
d~ r=o 8 8 + 1 - a 2 8 8 + 1 - a 2 

The inversion of Eq. 31 yields Nlz=w' which can be used in Eq. 11 to obtain 
the minority-carrier concentration c"', e"' in dimensionless terms. Combining the 
inverted expression for Eq. 31 with Eq. 11 yields 

-=:-VI de e -al- =a2, 
d~ r=o 

(33) 

where «11 and «12 are dimensionless groups introduced for convenience: 

D 
«1t -

Lv. 
(34) 

a2(t) - --1- [~ + I(t)(e_11
., - 1)] 

v.cb z.F 
(35) 

The next portion of this work addresses the evaluation of ~~ I and ew. 
'"' r=o 

Light impulse - The light-flux function is shown in Fig. 2. In the limit of 
vanishingly small pulse width At, the Laplace transform of the light impulse with 
area Io is </>(8) = 4>o in dimensionless form (ref. 37, p. 65). Substituting this value 
of </>(8) into Eq. 32, and inverting yields 

del [ 1 ] T = (;\- e"')e-• '-ii + e'erf(v'e) + 
· ~ r=o v 1rfJ 

(36) 

</>oe-• [ );o + aea
2
f erf( av'O) ]- ;\ - </>0 ae<a2-l)l . 

The inversions required to obtain Eq. 36 can be found in most Laplace transform 
tables (e.g. 38,39,40) after the translation properties of Laplace transform (ref. 
37, pp. 60-61) are used on the function ~f!l . 

'"' r=o 
The concentration ew can be found by substituting Eq. 36 into Eq. 33: 

e"' = «12 + a1 ;\e- --+ 1 ( { ·[1 
1 + a 1e-• [},;:; + e1erf( v'o)] V1r6 

(37) 

e1erf(v'e)- e'] + <f>oe-1 [ );o + aea
21 

(erf(av'e) -1)]}) 
9 



For long times, ew = u2/(1 + Ut), or 

' ew - ----r--~ 
- ZiFc6 (v. +f) (38) 

which is the expected result in view of Eq. 16. 

Light step - The light-step function is shown in Fig. 3. For this step function, 
4>( s) = <Po/ s. Substituting this value of 4>( s) into Eq. 32, we obtain the following 

expression for ~~ j t=O: 

de [e"' -A <Po l v'S+1 A <f>oa. 
d~ t=O =- s - s(s + 1- a.2) 8 + 1 --;- s(s + 1- a.2) (39) 

The inversion of v'S+T/[s(s + 1- a.2)] is presented in the Appendix. The com­
plete inversion of Eq. 39 gives 

de 

d~ t=O 
- ( .\ - e•)e-• [ J.r, +e'er£( v'6)] + (40) 

<Po [a.erf( a.v's)e(all-1)11 - erf( VO)] -
a.2 -1 

.\ - </Joa. [e(all-1)11 - 1] • 
a.2 -1 

Combining Eqs. 33 and 40 yields 

1 
0"' = 

1 + u1e-' [j,;;- + e6erf(Ji)] x 
(41) 

( u2 + u1 { Ae-• [;, +e'er£( v's) - e'] + 

a.24>:_ 1 [ a.erf( a.v'O)e(all-1)6 - erf( y's) + a. ( 1 - e(all-1)11)] } ) . 

For long times, 

(42) 

or 
ew __ & - 10 [1- S] 

- c6 (v. + ¥) (43) 

This agrees with Eq. 16 evaluated at x = w. 
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Periodic square-pulse illumination- The light source is depicted in Fig. 4. The 
light source can be expressed by a Fourier series (41) 

I(t) = Jo + lo (J. _ l ) 2 ~ ! . (i1riJ) 
2 + o o L- . sm () , 

1r i=1,3,&, ... I T 
(44) 

where the dimensionless half-cycle period is fJT = T Jr. The treatment for a si­
nusoidal light source is identical to this problem, as can be seen by inspection of 
Eq. 44. Inverting and substituting Eq. 44 into Eq. 32 yields: 

(45) 

where 'Yi = i 1r / IJx and 'Ill i is the operator 

'Ill·_ 2(Jo- 10 )are-wca 
'- , cbfJT 

00 

L· 
i=1,3,5, ••• 

(46) 

The term ( ~~t=O) "'~~represents a light step to (Io+Jo)/2, which can be evaluated 

with Eq. 39. The inversion of Eq. 45 is outlined in the Appendix. The result is 

de 

d~ t=O 

The step solution (~~I _ ) is expressed in Eq. 40, with 
t-0 lfep 

<Po= (10 + J0 )are-wca /(2cb). The functions 81 and 82 are: 

1 oo oo ( -1)i+A='Yi2Hl(Ji+2H3/2 

Eh - y'i ~~j!(2k + 1)!(j + 2k + 3/2) 

1 oo oo ( -1)i+A='Yi2A:(Ji+2Hl/2 
82 

- Vi f;~j!(2k)!(j + 2k + 1/2) 

11 
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For long times, the exponential terms in Eq. 4 7 vanish, and the functions Eh and 
82 reach limiting values (see Appendix): 

1/2 

8 1 = [V1 + '1l- 1
] (e-+ oo) (50) 

2('-y'f + 1) 
1/2 

82 = [yl + ry'f + 1] (51) 2('1'f + 1) (e-+ oo) 

Inserting Eq. 47 into Eq. 33 yields 9 10
: 

(52) 

-u1 'IIi ( [Eh cos( "''ie) - 82 
sin( "''ie)] + 

1 + u1e-1 [J;:e + e1erf(VB)] "Yi "Yi 

a { 
1 

- a
2 
sin("Yie) - cos ("''ie) + eCa2

- 1)1 - erf( av'o)eCa2
- 1)1 + 

(a2
- 1)2 + ry'f "Yi 

a(
1 ~ a

2
) (F31cos("Yie)- 82sin("Yie)] +a [81sin("Yie) + E2cos("Yie)]}) 

where ew,.tep is represented by the mathematical expression of Eq. 41. It should 
be noted, however, that u2 is a function of time. Hence, ew,•tep, wh:u-:h contains 
a2(e), will vary since I(t) changes periodically from Io to J0 • For long times, 

ew,•tep = 172
(l)+#r

171 and the exponential terms in Eq. 52 vanish leaving the 
1+171 ' ' 

following long-time solution: 

u2(e)+!.:r a1wi ([81 ( e) E2. ( e)]+ ---~ - -cos "Yi - -sm "'/i 
1 + O't 1 + 0'1 "'/i "Yi 

(53) 

a {1- a
2 

( 2 )2 2 sin("Yie) - cos("Yie)+ 
a -1 + "Yi "Yi 

a [E1sin("Yie) + E2cos("Yie)j + 

a(l ~ a
2
) [E1cos("Yie) - 82sin("Yie)j}) , 

To implement Eq. 53, the long-time representations for 81 and 82, which are 
given in Eqs. 50 and 51, should be used. The function ew attains a uniform and 
sustained periodic state. Since the system reaches a periodic state, and the math­
ematical description is analytic and straightforward, this technique is promising 
as a convenient analytical tool. 

12 



Table 1. Input values for Figs. 5, 6, 7, and 8. 

Quantity Value Units 
a 1667 1/cm t 
cb 1.660 X 10-19 mol/cm3 

D 0.2567 cm2/s t 
Io 6.392 X 10-16 mol/cm2 - s t 
Jo 6.392 X 10-16 mol/cm2 - s 
T 9.739 X 10-9 s t 
v. 2567 cm/s 

t These values were obtained from the work of Butler (11) and are characteristic 
of W Oa. All other values were estimated. 
* For the sinusoidal light-flux function, Io = 0. 

Results 

In this. section, we examine the behavior of the derived equations. Since the 
model work is most applicable to wide-band-gap semiconductors, available values 
for the physicochemical parameters characteristic of W03 , a wide-band-gap semi­
conductor studied by Butler (11), were employed in our analysis. The -..ralues of 
the parameters required for the analysis are presented in Table 1. 

The purpose of this section is to illustrate the behavior of the solutions to the 
transport equations. For this reason, we investigate cases with minimal resistance 
to charge-transfer reactions and negligible ohmic loss. Under these conditions, a 
convenient reference potential is the flat-band potential, Vpp. The flat-band po­
tential corresponds to the potential that the working electrode must be maintained 
for there to be no charge separation at the semiconductor-electrolyte interface. At 
this potential, the width of the space-charge region w is zero. 

A further simplification that we use is the depletion approximation, which was 
discussed briefly at the beginning of the previous section. With this approxima-
tion, 

where AD is a Debye length 

1 w 2 

v - Vp B = -! '2 ' 
Zo "'D 

(54) 

(55) 

To examine the behavior of the minority-carrier transport solutions, we present 
results for the case of c"' = 0. For example, under the stated conditions, the 
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steady-state current density can be expressed as ( cf. Eq. 16) 

(56) 

where hrM is the steady-state limiting-current density of the minority carrier when 
the semiconductor is not illuminated: 

iLIM = Z;F (v. + ~) c6 (57) 

Expressions similar in form, though algebraically more complex, to Eq. 56 can 
be written for pulse, step, sinusoidal, and periodic-square-pulse illumination. As 
was done for the development of Eq. 56, Eq. 54 is substituted into the relevant 
transport solution (Eq. 37, 41, or 52), and cUI is set equal to zero. 

The results for light~impulse illumination are shown in Fig. 5. The initially 
large current density decays to the value iLIM given by Eq. 57. The light-step 
results of Fig. 6 also show that a steady-state is reached after tlr = 5. In the 
light-step case, the steady-state value of i I hrM corresponds to that of Eq. 56. 

The current-time behavior of a semiconductor-electrolyte interface under sinu­
soidal illumination, after the system has achieved a uniform and sustained periodic 
state, is shown in Fig. 7. For this cue, V- VFB· was set equal to a small value, 
which corresponds to a narrow spa.ct.~charge region (cf. Eq. 54). Consequently, 
most of the light is absorbed in the neutral semiconductor region described by 
Eq. 53, the long-time solution. It can be seen that for large values of Tclr, reflect­
ing a large cycle period to carrier lifetime, a pseudosteady-state condition results; 
for the case of Tr:lr = 100, iliLIM could have been obtained by simply inserting 
the time-dependent light flux, I(t), into Eq. 56. Conversely, for the case of small 
Tel r, illustrated by the solid line in Fir;. 5, only small-amplitude oscillations about 
the steady-state value of iliLIM corresponding to a light flux of (Jo + Io)l2, the 
average value of I(t), are observed. The analysis of Fig. 7 illustrates that the vari­
ation of the light-source cycle period can be used as valuable tool in the analysis 
of PEC systems. 

The effect of varying the degree of reverse bias is portrayed in Fig. 8. In this 
work, we have assumed that the space-charge region is in a state of equilibrium, 
and may be mathematically described by Eq. 11. Consequently, if all of the light 
absorption were to take place within the space-charge region, a pseudosteady-state 
expression would describe the current-time relationship. This predicted behavior 
is shown in Fig. 8. For a large space-charge width w, corresponding to a large 
reverse bias (a large value of a>..DJzof(V- Vps), displayed with the dashed curve 
in Fig. 8) the current response is nearly in phase with the sinusoidal light flux. For 
this case, the light flux could be substituted into Eq. 56 to obtain a similar current 
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response. The solid curve in Fig. 8, corresponding to a narrower space-charge 
region, has a significant phase lag relative to the dashed curve. An experimenter 
can control the thickness of the space-charge region by varying the potential of the 
working electrode and obtain different current responses that can be described by 

. the equations presented in this work. 

Conclusion 

Analytic solutions have been obtained for the minority-carrier concentration 
at a semiconductor surface during pulse (Eq. 37), step (Eq. 41), sinusoidal and 
periodic square-pulse (Eq. 52) illumination of a semiconductor-electrolyte inter­
face. The analytic solutions can serve as useful comparisons for more general 
modeling of the unsteady-state illumination of a semiconductor-electrolyte inter­
face. In addition, the analytic solutions can be used to describe accurately the 
low-level-injection behavior of wide-band-gap semiconductors commonly used in 
photoelectrolysis cells and other photoelectrochemical systems. For these systems, 
since the periodic illumination· of a photoelectrochemical cell results in a peri­
odic photoresponse, the analytic solutions ue useful for the evaluation of system 
physicochemical parameters. The puiodic-illumination technique is analog()us to 
the traditional cyclic chronopotentio.m.etry and chronoamperometry electrochem­
ical techniques. In particular, the cycle period of the varying light source can 
be adjusted to match the time constants of the photoelectrochemical cell pro­
ce~ses, which makes this technique a valuable analytical tool for the investigation 
of semiconductor-electrolyte interfaces. 
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LIST OF SYMBOLS 

light-absorption coefficient, 1/cm 
concentration, mol/cm3 

diffusion coefficient, cm2 /s 
symbol for the electron 
measured electrode potential, V 
F/(RT), 1/V 
Faraday's constant, C /equivalent 
current density, A/ cm2 

incident light flux, mol/(cm2 - s) 
anodic and cathodic rate constants, kg/(cm2 - s) 
diffusion length, em 
symbol for the inverse Laplace transform 
number of electrons in a reaction 
universal gas constant, 8.314 J /mol-K 
Laplace transform variable, 1/ s 
stoichiometric coefficient of species i 
time, s 
absolute temperature, K 
one half the cycle period, s 
standard electrode potential, V 
surface-recombination velocity, cm/s 
electrode potential defined by Eq. 3, V 
flat-band potential, V 
space-charge thickness, em 
distance variable, em 
charge number of species i 
charge number of the major semiconductor-dopant atoms 

Greek characters 

a dimensionless light-absorption coefficient 
fJ symmetry factor 
~ dimensionless distance variable 
6 dimensionless time 
e dimensionless concentration 
,\ dimensionless current density 
AD Debye length, em 
~ electrochemical potential of species i 
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solvent density, kg/ cm3 

dimensionless constant defined in Eq. 34 
dimensionless group defined in Eq. 35 
carrier lifetime, s 
dimensionless incident light flux 
electrical potential, V 

Subscripts 

IR ohmic 
M S metal-semiconductor interface 
S E semiconductor-electrolyte interface 
ref :reference electrode compartment 

Superscripts 

b, s bulk semiconductor 
eq equilibrium 
init initial 
o, Pt reference state in the platinum phase 
o, s reference state in the semiconductor phase 
sur I surface 
fJ reference state in the aqueous phase 
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Appendix 

Inversion of Equation 40 

The only inversion needed to obtain Eq. 40 from Eq. 39 that is not tabulated 
is presented below. Using the convolution theorem (ref. 37, p.63), we can write 
the following: 

- .c-1 [ v'STI l 
s(s + 1- a 2

) 
(58) 

- f' .c-1 (1
) I .c-1 [ v'STI l dO 

lo ; ,_; ( s + 1 - a 2) ; 

The translation property allows for the evaluation of the product of the inversions 
within the integral: 

(59) 

The· first integral is erf( v'i). The second integral can be evaluated by the integra~ 
tion by parts technique. The final answer is 

(60) 

Inversion of Equation 45 

To invert Eq. 45, partial fraction expansion is used: 

In the expanded form, the inversion of .C!l can be evaluated to yield 

tt-l a [(1- a
2) • ( n) ( n) (a2 -1)1] J..u = ( 2) 2 2 sm "'fiu -cos "'fiu + e . 

1 - a + "Yi "Yi 
(62) 

The remaining term that requires inversion in Eq. 45 is 

(63) 
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Using the convolution theorem, .Ci/1 can be expressed as 

t.rlr = J.' e-• [(s ~')]I; e-• [(•' ~ -ylJ] I,_; dO. {64) 

The inversion of the first factor in Eq. 64 was completed in the development of 
Eq. 59. The inversion of the second bracketed term in Eq. 64 is ~i sin ["Yi ( (J - 0) J , 
which can be expanded in order to express .CiA as 

.CiA= - 1 
[81cosb,O)- 82sinb,O)]- ~ [83cos('y,O)- 84sin('y,O)]. (65) 

'Yi . 'Yi 

where: 

81 1' - e-i - (66) - 0 sin('y.o) v:;id(J 
7r0 

82 - J.' eos('Y;ii) ;;;dO (67) 
0 7r0 

83 - fa' sin( 'Y;0)e<a2 -l)Serf( a./i)dO (68) 

s. - fo' cosb•O)e<all-l)ierf(a./i)dO (69) 

The functions 83 and 84 can be in;egrated .by making use of the integration by pam 
technique. The task is somewhat arduous, and we will only outline the treatment 
of 83 • The function 84 can be dealt with in an analogous fashion. 

To integrate 83 by parts, define 

u - sin('y.o)erf( a./i), then 

du - [ -y;eos ('Y;ii)er£( a.;i) + sin('Y,ii) ~e•'i] d8. 

Also define 

dv - e<all-l)sdo, then 

e(a2 -l)i 
v = a.2- 1. 

Eh can be then be written as 83 = uv- J vdul~, or 

e(a2 -l)S _ r; a.2 
a.2 _ 

1 
sinb•O)erf(ay 0) - a.2 _ 

1 
Eh-

2
"11 j cos( 'YiO)erf( a./i)eCall-l)s dol' . 

a. -1 0 

22 

(70) 

(11) 

(72) 

(73) 

(74) 



The last term in Eq. 74 can be integrated by parts again. For this integration, 
sin("YiB) in Eq. 70 is replaced with cos("YiB), and Eq. 72 is used again for the 
definition of v. Performing the integration, Eq. 74 becomes 

83 = 
e(a2-1)i - r; a 

2 sin( "Ys6)erf( ay 6) - 2 8 1 -
a -1 a -1 

(75) 

[ 

( 
2 )- ]' T e a -18 - - T a 

2 • 2 cos("Yi6)erf( av'o) + 2 • Eh - 2 8 2 • 
a -1 a -1 a -1 a -1 

0 

Equation 75 can be solved algebraically for 83 • The resulting expressions for 83 

and the function 84 are: 

83 = (76) 

and 

The functions 83 and 84 can be placed into Eq. 65 to yield l[r}. l!l and l[r} 
(Eqs. 61 and 65, respectively) can then be combined with Eq. 45 to obtain ~~ l,=o· 

A straightforward integration of 8 1 and 82 does not appear possible. The 
integrands of these functions, however, can be expressed in a power series, which 
can be integrated to yield the expressions given in Eqs. 48 and 49. For long times, 
the integral expressions for 8 1 and 8 2, Eqs. 66 and 67, reach limiting values listed 
in Eqs. 50 and 51 (42). 
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Figure Captions 

Fig. 1. Schematic illustration of a semiconductor-electrolyte interface. 

Fig. 2. Impulse light-flux function. 

Fig. 3. Step light-flux function. 

Fig. 4. Sinusoidal and periodic-square-pulse light-flux functions. 

Fig. 5. Current-density response to an impulse light-flux function. For this 

plot, a)..DVzof(V- Vps) ~ 0.010. 

Fig. 6. Current-density response to a light-step function. For this plot, 

a>..D.Jzof(V- Vps) = 0.010. 

Fig. 7. Current-density response to a sinusoidal light source. The ratio of the 
light-source cycle period to the minority-carrier lifetime is listed. For this plot, 
a)..Dyzof(V- Vps) = 1.00 x 10-5• 

Fig. 8. Current-density response to a sinusoidal light source. The dimension­

less potential a)..DVZo/(V- Vps) U! given. (Tc/r-:- 0.010) 
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