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Drug capture efficacy using polystyrenesulfonate-coated chemofilter device 

Emilie Decavel-Bueff 

Abstract 

Endovascular chemotherapy is an effective treatment option for cancer, however, the 

therapeutic agents used in this procedure often travel to non-target tissues and cause severe 

toxicity. Side-effects of chemotherapy range from nausea to life-threatening conditions. A 

strategy to reduce exposure of healthy tissues and organs to the toxicity of chemotherapeutic 

agents, such as doxorubicin (DOX), is to remove these drugs from systemic circulation after they 

have passed through the tumor site. With this goal in mind, different types of ChemoFilter 

devices have shown promise in alleviating these detrimental side effects. When placed 

downstream from the targeted tumor during intra-arterial chemotherapy, excess therapeutic 

agents bind to the device, preventing them from entering systemic circulation. In this study, we 

evaluated the doxorubicin-binding efficacy of a 3D printed porous cylindrical ChemoFilter 

device coated with sulfonated pentablock copolymers. Closed-circuit flow models experiments 

integrating 11 devices (uncoated or coated) at two concentrations of DOX (0.01 mg/mL and 0.05 

mg/mL) were conducted. Samples collected from these flow models were used to treat H9c2 cell 

cultures, a rat embryonic cardiac cell line selected due to DOX cardiotoxicity. After a 24-hour 

treatment period, cell viability was calculated using the Trypan blue exclusion method. At 0.01 

mg/mL DOX and 0.05 mg/mL DOX, the 3D printed polystyrenesulfonate-coated absorbers 

effectively filtered and eliminated DOX toxicity, increasing the H9c2 cell viability by 12.97% 

and 23.11%, respectively. These results confirm the ChemoFilter’s ability to successfully absorb 

DOX in vitro, showing promise for its possible future use in clinical trials.  
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Introduction 

Since 1991, overall cancer prognosis and survival have increased due to substantial 

developments made in early diagnosis and treatment strategies, with death rates declining by 

27%1. However, according to the World Health Organization, cancer was still the second leading 

cause of death in 2018, killing roughly 9.6 million individuals globally2. Most notably, the 

number of cases of liver cancer have more than tripled in the last few decades in the US alone1. 

In fact, hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the 

third most common cause of cancer-related mortality worldwide3. This is predominantly 

observed among men, and even more so among those who are less educated4. 

There are many treatment options available for HCC, including radiofrequency ablation, 

surgical resection, radiation therapy, and trans-arterial procedures5. Although liver 

transplantation is the most curative approach for HCC, recurrence rates remain high and less than 

20% of patients qualify for surgery5,6. Due to strict patient eligibility criteria and to the shortage 

of donors, transplantation is not a viable option for many patients7. Instead, the standard of care 

for inoperable intermediate-stage HCC is trans-arterial intervention, including trans-arterial 

chemoembolization (TACE) and intra-arterial chemotherapy (IAC)7. Both are fluoroscopy-

guided, minimally invasive procedures that use a catheter to deliver the chemotherapeutic agents 

directly to the tumor. While this targeted therapy approach does allow for more of the anti-cancer 

drug to reach the tumor, especially in comparison to conventional intra-venous chemotherapy, 

administered dose is still limited by severe side-effects. More than 50% of the injected drug 

travels past the tumor and enters circulation, affecting non-target tissues and causing systemic 

toxicity8.  
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In particular, doxorubicin (DOX), an anthracycline antibiotic widely used in the 

treatment of numerous solid organ cancers and commonly selected for HCC trans-arterial 

procedures, can be detrimental and potentially fatal to the patient9,10. Doxorubicin side effects 

include alopecia, neutropenia, mucositis, pericarditis, cardiomyopathy, left ventricular 

dysfunction, and congestive heart failure11,12. Despite this overwhelming limitation, studies have 

shown that increasing the dose of doxorubicin results in greater tumor suppression8,13. Thus, it is 

vital to find an effective method that would reduce the cardiotoxicity caused by doxorubicin 

while maintaining, or even improving, its clinical use as an anti-cancer drug. 

 A promising solution to reduce systemic toxicity is to incorporate a ChemoFilter device 

downstream of the tumor treatment site that would remove the excess drug before it enters 

general circulation (Figure 1). This could be implemented during an IAC procedure, as shown in 

Figure 2. An introducer sheath and 

guidewire would be used to 

temporarily place the filtration 

device in the hepatic veins draining 

the liver. After doxorubicin is 

infused into the hepatic artery, the 

drug would travel to the tumor, exit the liver, and be absorbed by the ChemoFilter before 

entering systemic circulation. Past studies have explored various binding methods that 

effectively filter doxorubicin and cisplatin from the bloodstream, such as sulfonated ion-

exchange resins, DNA, and magnets14–16.  

Figure 1. Concept for drug capture in blood vessel using two 3D 
printed polystyrenesulfonate-coated absorbers in parallel17. 
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For the purpose of this study, we assessed a 3D 

printed polystyrenesulfonate-coated absorber designed 

by Dr. Hee Jeung Oh. At physiological pH, 

doxorubicin’s amino functional group becomes 

protonated, giving the molecule an overall positive 

charge and a high affinity for anionic sulfonate groups 

(Figure 3). Electrostatic interactions between the 

positively charged nitrogen and negatively charged 

oxygen form an ionic bond and the sulfonate-coated 

absorber is able to bind to doxorubicin in blood. The 

device’s drug capturing efficiency has been 

demonstrated in vivo using swine models, with    

up to 64 ± 6% of doxorubicin successfully removed from circulation17.  

 
 

 

In our study, we evaluated in vitro the doxorubicin drug-binding efficacy of this 3D 

printed porous cylindrical filtration device coated with sulfonated pentablock copolymers. Our 

investigation aimed to confirm the filter’s ability to absorb doxorubicin, and therefore reduce 

systemic toxicity, as well as supplement data still currently being collected in in vivo studies. 

* 

Figure 3. Chemical structures of doxorubicin in its uncharged (A) and protonated (B) form, and 
the negatively charged sulfonate that coats the 3D printed absorber (C). When doxorubicin is in 
vivo (pH 7.4), the nitrogen marked by an asterisk (A) becomes positively charged (B) and binds to 
the anionic oxygen in the sulfonate group (C). 
 

Figure 2. Placement of filtration device 
(absorber) downstream of liver tumor site 
during an intra-arterial chemotherapy 
procedure17.  
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Due to the prevalence and importance of doxorubicin-induced cardiotoxicity, the H9c2 rat 

cardiac cell line was selected for our cultures. This cell line was originally derived from 

embryonic BDIX rat heart tissue by Kimes and Brandt in 1976, and is a well-established model 

of myocardium that has been historically used to evaluate the cardiotoxicity caused by anticancer 

drugs, including doxorubicin18–20.  
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Materials and Methods 

Although our present study of doxorubicin toxicity in cell cultures focuses on H9c2 cells, 

the immortal HeLa cell line was first used to become familiar with and to optimize cell culture 

protocols for the H9c2 cell line. Then, to assess the ChemoFilter’s ability to bind to doxorubicin 

and the residual toxicity to cardiac cells in vitro, samples taken from closed-circuit flow models 

with either uncoated or coated absorbers at different DOX concentrations were used to treat 

H9c2 cell cultures in toxicity experiments. After a 24-hour treatment period, percent cell 

viability was calculated to evaluate the filter’s drug-binding efficacy and DOX cardiotoxicity. 

Materials and Chemicals 

The porous cylinders of the absorbers were printed at Carbon, Inc (Redwood City, CA, 

USA). Dulbecco’s Modified Eagle’s Medium (DMEM), H9c2 cell line, 12-well cell culture 

plates, Steriflip vacuum filter, and bright line hemocytometer were purchased from Sigma-

Aldrich (St.Louis, MO, USA). Penicillin Streptomycin (10,000 units/mL), sterile Phosphate 

Buffered Saline (PBS) pH 7.4 (1X), and 0.05% Trypsin-EDTA 1X were procured from Gibco 

Life Technologies Corporation (Grand Island, NY, USA). Dimethyl Sulfoxide (DMSO) and 6-

well cell culture plates were purchased from Fisher Scientific (Hampton, NH, USA). Fetal 

Bovine Serum (FBS) was obtained from HyClone Laboratories (South Logan, UT, USA), DNase 

I from STEMCELL Technologies (Vancouver, BC, CA), 0.4% Trypan blue Solution with 0.85% 

NaCl from Lonza (Walkersville, MD, USA), CytoOne T-75 tissue culture flasks from USA 

Scientific (Ocala, FL, USA), and doxorubicin hydrochloride (2 mg/mL) from United States 

Pharmacopeia (New York, NY, USA). Serological pipets, micropipette tips, and conical tubes 

(50 mL and 15 mL) were obtained from Corning (Corning, NY, USA). NIS-Elements Advanced 

Research software was used to take images on the Nikon Eclipse TE2000-E inverted phase 
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contrast microscope, and the AmLite software was used to capture images on the Nikon Eclipse 

TS100 with the AMScope MU Series camera attachment. Images were processed and adjusted 

on ImageJ 2. 

Flow Model Experiments 

In order to simulate intra-arterial delivery of chemotherapy agents and their capture by a 

specialized ChemoFilter device, an in vitro closed-circuit flow model was developed by Patel 

and colleagues (Figure 4)21. This model used polyvinyl chloride tubing with a diameter similar to 

that of the human hepatic vein (1.2 cm) and a peristaltic pump to maintain a constant flow rate to 

match human hepatic blood flow (750 mL/min). Two different concentrations of doxorubicin 

were tested: 0.01 mg/mL and 0.05 mg/mL in 500 mL of 

PBS, which was heated to 37°C. These dosages are 

within the range of concentrations that have been used in 

clinical TACE procedures22. Flow models at each of the 

described doxorubicin concentrations were performed 

using 11 coated (experimental) or uncoated (control) 

filtration devices inserted within the tubing. For the 

uncoated filters, up to 2 mL samples were taken at time point zero. For the coated devices, 2 mL 

samples were collected after equilibrium had been reached in the system. This occurred at hour 2 

for the 0.01 mg/mL concentration and at hour 6 for the 0.05 mg/mL concentration. These 

samples represent the amount of systemic doxorubicin in circulation following chemotherapy 

treatment. All samples were then filter-sterilized and used to treat H9c2 cell cultures to assess 

toxicity. 

 

Figure 4. In vitro closed-circuit flow 
model21. 
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HeLa Cell Cultures  

The HeLa cell line is derived from human cervical epithelial carcinoma23. The HeLa cells 

were cultured in high glucose (4.5 g/L) DMEM supplemented with antibiotics (100 units/mL 

penicillin and 100 μg/mL streptomycin) and 10% FBS at 37°C in a humidified atmosphere οf 5% 

CO2. Every 2-3 days, cells reached 90% confluence and were treated with 0.05% trypsin/EDTA 

solution in order to detach the cells from the flask surface on which they adhered. The collected 

cells were then centrifuged (200×g for 5-10 min at 22°C). The cell pellets were resuspended in 

10 mL of fresh, complete media and subcultured into 75-cm2 flasks at a ratio of 1:2, with each 

flask containing 5 mL of cell suspension. 

Cells were seeded into 6-well tissue culture plates to explore optimal seeding conditions. 

Both the ideal ratio of cell suspension to media and the total volume of cell suspension per well 

were evaluated. Dilution of cell suspension in complete media consisted of 1:5, 1:2, 1:1, 2:1, and 

5:1 (3 mL total volume), and volumes tested were 3 mL, 2 mL, and 1.5 mL (1:1 dilution only). 

Each test volume was also treated with or without doxorubicin (0.05 mg/mL) for 24 hours 

immediately after plating. Images were acquired every two hours for eight hours, and a final 

image was captured at 24 hours. 

H9c2 (2-1) Cell Cultures  

The H9c2 cell line was grown in 75-cm2 tissue culture flasks in high glucose (4.5 g/L) 

DMEM containing 10% FBS and antibiotics (100 units/mL penicillin and 100 μg/mL 

streptomycin) and incubated in a humidified atmosphere of 5% CO2 at 37°C. Culture medium 

was replaced every 2-3 days, and the cells were subcultured at 70-80% confluence to maintain 

their proliferative, undifferentiated state. Upon reaching confluency, cells were rinsed twice with 

sterile PBS to remove residual medium, and they were then temporarily incubated in 0.05% 
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trypsin/EDTA solution. When 90% of the cells were dissociated, medium was added to inhibit 

trypsin activity. The resulting suspension of cells was centrifuged at 120×g (4°C) for 5 minutes 

and the cell pellet was resuspended in 5 mL of fresh medium. To ensure the correct seeding 

density of 1×104 cells/cm2 during passaging and plating, Trypan blue and a hemocytometer were 

used to calculate cell density. To reduce clumping caused by prolonged treatment with trypsin, 

cells of passage 8 were incubated in DNase I for 15 minutes at room temperature. For passages 

4, 7 through 12, and 15, an aliquot of cells was frozen in a freezing medium made of 10% 

DMSO and 90% FBS. This allowed for re-culturing of cells from earlier passages to repeat 

experiments, if needed. 

Toxicity Study Protocol  

H9c2 cells were seeded (~35,000 cells/mL) into 6-well plates with a total cell suspension 

volume of 2 mL per well, or into 12-well plates with a total cell suspension volume of 800 μL 

per well. For each toxicity experiment, cells were divided into nine treatment groups (n=3): a 

Negative Control (PBS only) and four different conditions for each initial concentration of 

doxorubicin (0.01 mg/mL and 0.05 mg/mL): 

1. Coated Filter — samples taken from the flow model integrating coated absorbers 

2. Uncoated Filter — samples taken from the flow model integrating uncoated absorbers 

3. 0.45 µM or 2.24 µM — stock solution of doxorubicin (2 mg/mL) diluted in PBS at the 

concentrations indicated above prior to treating cell cultures 

4. 18.31 µM or 89.75 µM — stock solution of doxorubicin used to acquire final 

concentration (0.01 mg/mL or 0.05 mg/mL) within each well after treatment 

All cell culture plates were incubated in a humidified atmosphere of 5% CO2 at 37°C for 24 

hours to facilitate adhesion. After attachment, 50 μL (for the 6-well plates) or 20 μL (for the 12-
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well plates) of the appropriate treatment was introduced to each well and left for an additional 

24-hour period. These incubation and treatment periods of 24 hours are commonly used in 

cytotoxicity studies in this cell line24–28. 

Every 2-6 hours during the treatment period, cells were observed through a Nikon Eclipse 

TE2000-E inverted phase contrast microscope to evaluate their morphological changes over 

time, obtain preliminary cell counts, and capture images. To ensure that the same center location 

of each well was consistently used for cell counting, reference marks were drawn on a paper 

placed under the cell culture plates. Additional images were taken 24 and 48 hours after 

incubation on the Nikon Eclipse TS100 using the MU Series camera attachment. Trypan blue 

was used to obtain accurate counts of live and dead cells at the end of the 24-hour treatment 

period.  

Cell Counting  

H9c2 cell viability was determined using the Trypan blue exclusion method. This dye 

penetrates dead cells through damaged membranes and stains them blue, while live cells remain 

Figure 5. One of the nine squares within the 3×3 grid of the hemocytometer after 24-hour treatment with (A) 
89.75 µM of doxorubicin and with (B) PBS (Negative Control). White arrows point to live cells while red arrows 
point to dead cells. Exclusion lines are in red. 

B. A. 
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colorless (Figure 5). Unadhered dead cells in the medium were included in the cell count. After 

the removal of the medium into a 15 mL centrifuge tube, adherent viable cells were rinsed twice 

with PBS before trypsinization. The cell pellet was then resuspended in 2 mL (for 6 well-plates) 

or 200 μL (for 12 well-plates) of complete medium, and a 50 μL aliquot was removed and 

diluted with 50 μL of 0.4% Trypan blue solution. 10 μL of that solution was pipetted to the 

hemocytometer and the 3×3 grid was visualized under a Nikon Eclipse TS100 with a 10x 

objective. The number of live and dead cells within all nine squares was counted and those 

touching the right or bottom boundaries were excluded. The following calculations were 

performed:  

 

Statistical Analysis  

Results from 2 independent experiments with triplicates are presented as mean ± standard 

error of the mean (SEM). Statistical analysis was performed using RStudio. Data was analyzed 

using one-way analysis of variance (ANOVA) followed by Tukey post hoc test. Statistical 

differences were considered significant when p < 0.05.  
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Results 

HeLa Cell Cytotoxicity 

For all volumes of cell 

suspension, HeLa cells never 

adhered at any time points and all 

cells were dead and floating in the 

solution when treated with 0.05 

mg/mL of doxorubicin (Figure 6). 

Density of adherent cells increased 

with increasing volume when cells 

were not treated with doxorubicin 

for 24 hours, with cell density below 

optimal in 1.5 mL and cells almost 

at 100% confluency in 3 mL of cell 

suspension. Similar cell structures 

and clumping patterns were Figure 6. Plating of HeLa cells at different volumes (3 mL, 2 mL, 
and 1.5 mL) and treated with (+) or without (-) 0.05 mg/mL DOX. 
Images taken at time points 0, 8, and 24 hr after the start of 
treatment. 

Figure 7. Plating of HeLa cells at 2 mL and treated with (+) or without (-) 0.05 mg/mL DOX. Images taken at 
time points 0, 2, 4, 6, 8, and 24 hours and at the same location within the wells. 
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identified in the images taken over time, confirming that the same area in the center of the wells 

was captured (Figure 7).  

H9c2 Cell Viability at 0.01 mg/mL DOX 

After incubating for 24 hours, H9c2 cells were adhered to the surface of the wells (Figure 

8). All adhered cells at this time point were flat and spindle-shaped, with a few rounded, brighter 

cells that were only partially adhered. Such cells were fully attached to the surface within three 

Figure 8. Doxorubicin-induced morphological alterations in H9c2 cells with 20x objective under the Nikon 
Eclipse TE2000-E inverted microscope. Initial DOX concentration for the flow model samples (Coated Filter 
and Uncoated Filter) was 0.01 mg/mL DOX. Images taken at the same location within the wells right before 
treatment (24 hr), and 6, 18, and 24 hours after treatment. Arrows of similar colors point to identical structures 
observed over time.  
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hours. As time progressed, cell density increased in most treatment conditions, except for 18.31 

µM DOX. This trend was more pronounced in the Negative Control, the Coated Filter, and the 

Uncoated Filter conditions. With higher densities, cells began to organize themselves into more 

orderly arrays, which was most 

evident in the Coated Filter at 

48 hr. Reduction in cell size 

and number was clearer when 

treated with 18.31 µM DOX. 

Within the cells, deterioration 

started at the periphery and 

progressed inwards. Compared 

to the Negative Control, the 

nuclear size in 18.31 µM DOX 

increased slightly. 

Additionally, more partially 

adhered cells were visible in 

18.31 µM DOX at time 48 hr 

than at any other time point or 

for any other treatment 

condition. Such cells are more 

likely to be detaching than 

adhering.  

Figure 9. Effects of doxorubicin-induced cytotoxicity in H9c2 cell density. 
Images were taken pre-treatment (24 hours after plating) and post-treatment 
(48 hours after plating) under the Nikon Eclipse TS100 microscope with 
10x objective. Flow model DOX concentration for Coated Filter was 0.01 
mg/mL. 
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Similar low cell densities, with cells randomly orienting themselves with respect to each 

other, were achieved for each condition before 0.01 mg/mL DOX treatments were introduced to 

the wells (Figure 9). After the 24-hour treatment period, the density of live cells in the Negative 

Control and Coated Filter conditions was comparable. While there were more unadhered dead 

cells at 0.45 µM DOX compared to the Coated Filter, the most obvious difference between those 

two conditions was a clear reduction in adhered live cells. These differences were even more 

pronounced in 18.31 µM DOX, which exhibited an abundance of floating cells and very few 

cells adhered to the well surface. 

For the treatment concentration of 0.01 mg/mL, H9c2 cell survival was significantly 

reduced when treated with 18.31 µM DOX, 0.45 µM DOX, and Uncoated Filter for 24 hours 

(Figure 10). Compared to Negative Control, cell viability decreased by 34.23% in 18.31 µM 

DOX and 12.53% in the Uncoated Filter. No statistical significance was found between 0.45 µM 

Figure 10. H9c2 cell cytotoxicity under the four conditions at 0.01 mg/mL of doxorubicin after 24 hours 
of treatment. Data presented as the mean percentage of cell viability relative to the Negative Control (*p 
< 0.05, **p < 0.0005, ***p < 0.0001 vs. Negative Control; +++p < 0.0001 vs. 18.31 µM DOX; &p < 0.05 vs. 
0.45 µM DOX; $$$p < 0.0001 vs. Uncoated Filter).  
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DOX and Uncoated Filter, or between the Negative Control and Coated Filter. However, cell 

viability did significantly increase by 12.97% from the Uncoated to Coated Filter. 

H9c2 Cell Viability at 0.05 mg/mL DOX 

As observed in the 0.01 mg/mL DOX treatments, almost all cells were fully adhered to 

the surface of the wells after 24 hours of incubation (Figure 11). Most adhered cells were flat and 

spindle-shaped, and only two rounded, partially adhered cells were visible. As time progressed, 

Figure 11. Doxorubicin-induced morphological alterations in H9c2 cells with 20x objective under the Nikon 
Eclipse TE2000-E inverted microscope. Initial DOX concentration for the flow model samples (Coated Filter 
and Uncoated Filter) was 0.05 mg/mL DOX. Images taken at the same location within the wells right before 
treatment (24 hr), and 6, 18, and 24 hours after treatment. Arrows of similar colors point to identical structures 
observed over time.  
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cell density increased in the Negative Control and the Coated Filter, while density decreased in 

the other treatment conditions. Notably, at the end of the treatment period, cells treated with 2.24 

µM DOX and Uncoated Filter had the same number of adherent cells. Similar trends in 

deterioration of cell structure and number observed at 0.01 mg/mL DOX were seen here at 0.05 

mg/mL DOX, with the addition 

of cytoplasmic vacuolization 

that started to develop as early 

as 3 hours after treatment. At 48 

hr 89.75 µM DOX, only one 

adhered, spindle-shaped cell 

was detected and many floating 

cells were out of focus. There 

were more cellular debris in 

89.75 µM DOX, at 21 hr and 48 

hr.  

Again, essentially 

identical cell densities were 

achieved for each condition 

before 0.05 mg/mL DOX 

treatments began (Figure 12). 

After cells were treated for 24 

hours, the density of live cells 

between the Negative Control 

Figure 12. Effects of doxorubicin-induced cytotoxicity in H9c2 cell 
density. Images were taken pre-treatment (24 hours after plating) and post-
treatment (48 hours after plating) under the Nikon Eclipse TS100 
microscope with 10x objective. Flow model DOX concentration for 
Coated Filter was 0.05 mg/mL.  
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and Coated Filter was comparable. In 2.24 µM DOX, post treatment, more unadhered dead cells 

were observed with fewer viable cells adhered to the surface of the well. At 89.75 µM DOX, 

only a handful of adhered cells could be seen under the dense population of floating dead cells.  

H9c2 cell survival was significantly reduced when treated with 89.75 µM DOX, 2.24 µM 

DOX and Uncoated Filter at 0.05 mg/mL for 24 hours (Figure 13). At that concentration, 

compared to the Negative Control, cell viability decreased by 69.95% in 89.75 µM DOX, and by 

24.45% in Uncoated Filter. No statistical significance was found between 2.24 µM DOX and 

Uncoated Filter, or between the Negative Control and Coated Filter. However, cell viability did 

significantly increase by 23.11% from the Uncoated to Coated Filter. 

  

Figure 13. H9c2 cell cytotoxicity under the four conditions at 0.05 mg/mL of doxorubicin after 24 hours of 
treatment. Data presented as the mean percentage of cell viability relative to the Negative Control (***p < 0.0001 
vs. Negative Control; +++p < 0.0001 vs. 89.75 µM DOX; &&&p < 0.0001 vs. 2.24 µM DOX; ###p < 0.0001 vs. 
Uncoated Filter). 
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Discussion and Conclusion 

The aim of this study was to assess the doxorubicin drug-binding efficiency of the 3D 

printed polystyrenesulfonate-coated absorber. This was done by conducting flow model 

experiments integrating the device (uncoated or coated) at the two concentrations of doxorubicin 

(0.01 mg/mL and 0.05 mg/mL). H9c2 cell cultures were treated with the supernatants collected 

from the described flow models, and the resulting cell viability was calculated after 24 hours of 

treatment. The coated device successfully absorbed significantly more doxorubicin than the 

uncoated filters at both concentrations, resulting in H9c2 cell viability similar to the Negative 

Control. These results confirmed the efficacy of the absorber in vitro and will help pave the way 

to implement the devices in clinical human studies. 

HeLa Cell Cytotoxicity 

The HeLa cell line has been used to study the effects of toxic agents, such as nitrogen 

doped carbon quantum dots, nickel nanotubes, and the proteasome inhibitor epoxomicin29-31. Our 

preliminary study conducted on HeLa cells aided in establishing and optimizing an effective 

experimental protocol for the H9c2 cell line. The lack of adherent cells at any time points after 

doxorubicin treatment revealed that an incubation period for the H9c2 cells would be necessary 

(Figure 6). This would give viable cells adequate time to adhere to the surface prior to treatment 

so that the cellular damage caused by the chemotherapeutic agent could be evaluated. 

Additionally, allowing the healthy cells to adjust and grow into their normal morphology is a 

more clinically relevant representation of in vivo conditions. Based on the images acquired from 

the HeLa cell line experiments, a dilution factor of 2 and a plating volume of 2 mL achieved the 

optimal seeding density to best visualize individual cells over time (Figure 6). When HeLa cells 

were incubated without doxorubicin, they remained adhered to the well surface and continued to 
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spread by webbing: extending lamellipodia and filopodia with protoplasm filling the space in 

between (Figure 7)32. In sharp contrast, cells treated with the drug were exclusively round in 

shape and free-floating. Similar results were expected for the application on H9c2 cells. Due to 

the prevalence of cardiotoxicity induced by doxorubicin, we used this cell line of rat 

cardiomyoblasts for the remainder of our study. 

H9c2 Cell Cardiotoxicity  

H9c2 cardiomyoblast cells grown in culture dishes can be categorized into three 

subgroups: adherent, sub-adherent, and non-adherent. Typically, if cells have not started to 

adhere to the surface of the dishes within 24 hours of plating, then they were considered dead. 

Examples of these rounded, floating, and brighter cells can be seen in Figures 9 and 12 (Pre-

treatment), which show images taken after the 24-hour incubation period. On the other hand, 

both adhered and partially adhered cells are considered live and can come in a variety of shapes: 

spherical, polygonal, and, more commonly, flat spindle-to stellate33. Most cardiomyoblasts are 

mononucleated and contain one to four nucleoli within their nuclei, a morphology which was 

generally observed within our H9c2 cell cultures18.  

When H9c2 cells were incubated in doxorubicin, major structural changes occurred, 

including nuclear swelling, decrease in cell size, peripheral degeneration, membrane blebbing, 

and cell rounding (Figures 8 and 11). These morphological changes were more evident at higher 

DOX molar concentrations, with cytoplasmic vacuolization appearing at 89.75 µM DOX, 

demonstrating the relationship between DOX dose and cytotoxicity. As cells were exposed to the 

drug over time, flat cells began to detach from the well surface, remaining only partially adhered 

through long cytoplasmic filopodia, until they were completely dissociated33. These observable 

changes are helpful in understanding how the chronic exposure to doxorubicin chemotherapy 
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affects cardiac cells. When looking at our images, it is important to note that the inconsistencies 

in cell density in response to treatment, such as the Uncoated Filter at 0.01 mg/mL DOX, are a 

consequence of the capture of a small area within the entire well using a 20x objective. Images 

taken using the 10x objective are more representative of how the population of cells were 

responding to DOX treatment. Within this larger field of view, we can clearly see that 89.75 µM 

DOX and 2.24 µM DOX were more fatal to H9c2 cells than the corresponding treatments at 0.01 

mg/mL DOX (Figures 9 and 12). Given that there was no significant change in cell viability 

between the lower molar concentrations (0.45 µM and 2.24 µM DOX) and the corresponding 

Uncoated Filter, we are able to interpret the images similarly. For each DOX concentration in the 

flow models, the density of adherent cells in the Coated Filter and Negative Control were 

identical, which is also supported by the non-significant difference in the calculated cell 

viabilities for those treatments (Figures 10 and 13). The stark qualitative and numerical 

differences between Coated Filter and 0.45 µM or 2.24 µM DOX (also interpretable as Uncoated 

Filter) is reflective of the filter’s drug-binding capabilities at both 0.01 mg/mL and 0.05 mg/mL 

DOX. This indicates that at each of the respective DOX concentrations, the 3D printed 

polystyrenesulfonate coated absorber is able to effectively eliminate DOX toxicity, allowing the 

cardiac myoblasts to thrive similarly to the Negative Control. 

Limitations and Future Directions 

In order to assess the cardiac cytotoxicity of doxorubicin, cell viability was calculated by 

utilizing the Trypan blue exclusion method. While live cells have intact cell membranes and 

exclude this dye, dead cells become stained blue due to their ruptured membranes34. Since the 

early 1900s, Trypan blue has been the gold standard for counting the number of live and dead 

cells in a variety of applications35,36. Such uses have included counting white blood cells in urine 
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sediments of dogs in veterinary pathological studies, and measuring the cytotoxicity of dibutyl 

phthalate on macrophages in immunopharmacology experiments37,38. Despite its extensive use in 

laboratory procedures, it has some limitations. Research has shown that Trypan blue is toxic to 

mammalian cells, often causing major and irreversible morphological changes within minutes of 

exposure. Tsaousis and colleagues found that the calculated cell viability of human trabecular 

meshwork cells decreased by 11% after only 5 minutes of exposure, and by 16% after 15 

minutes39. To mitigate this issue, we counted H9c2 cells within 3 to 5 minutes of diluting the cell 

suspension with Trypan blue. Furthermore, while it is effective in staining the cytoplasm of dead 

cells, Trypan blue is not able to distinguish accurately between viable cells and cells that are 

alive, but dying40. A possible solution for this would be to assess cell viability by other means, 

such as the commonly used MTT colorimetric assay34. Instead of relying on the integrity of the 

cell membrane, this assay measures cell proliferation, or the quantity of cells that are actively 

dividing, and therefore is able to quantify the proportion of healthy cells in a population. 

Specifically, this assay measures the mitochondrial metabolic rate of active cells41. In the 

presence of these cells and through the action of dehydrogenase enzymes, the yellow tetrazolium 

salt 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is reduced to purple 

formazan crystals, which can then be dissolved and the optical density measured with a 

spectrophotometer 42. 

The flow model samples used in this study to treat H9c2 cells is another area that could 

be improved, specifically the final concentration of DOX in the cell cultures. The initial design 

of this study was to evaluate the drug-binding capabilities of the ChemoFilter device at two 

specific concentrations of doxorubicin (0.01 mg/mL and 0.05 mg/mL), concentrations selected 

due to their clinical use in chemotherapy, and then to treat the cell cultures with samples 
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acquired from the flow models43. However, since only a small aliquot of these samples (20 µL or 

50 µL) was transferred to the wells (initially containing 800 µL or 2 mL of cell suspension), it 

was concluded that all flow model and samples of DOX stock solution with PBS were diluted by 

a factor of 40. In fact, only two treatments had a final concentration of 0.01 mg/mL or 0.05 

mg/mL of doxorubicin within the wells: 18.31 µM and 89.75 µM DOX, respectively. On the 

other hand, the final molarity of doxorubicin for the samples that were diluted in PBS to acquire 

a concentration of 0.01 mg/mL or 0.05 mg/mL DOX prior to treating cell cultures was 0.45 µM 

and 2.24 µM DOX. Although the more diluted molar concentrations of doxorubicin have been 

used in similar H9c2 cardiotoxicity experiments, future studies could use DMEM as the solution 

in the flow models, instead of PBS44,45. Collected flow model samples could replace the medium 

in the H9c2 cell cultures, in which the final concentration would then reflect the true DOX 

concentration in the flow models.  

A significant benefit of temporarily deploying a highly efficient absorber in patients 

during intra-arterial chemotherapy is the ability to increase the therapeutic dosage in order to 

maximize tumor suppression, resulting in better patient outcome and minimizing severe side 

effects. To that effect, future investigations could explore the upper limits of this absorber’s 

capacity to filter doxorubicin. Determining at what concentration of doxorubicin the ChemoFilter 

would be able to successfully absorb enough of the drug and still result in a high percentage of 

cell viability in H9c2 cell cultures would provide valuable information in the future clinical use 

of these filtration devices.  

In conclusion, the 3D printed porous cylindrical filtration device coated with sulfonated 

pentablock copolymers demonstrated successful binding and absorption of doxorubicin from 

circulation within a closed-circuit flow model. At 0.05 mg/mL and 0.01 mg/mL of DOX, the 
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absorber increased the H9c2 cell viability by 23.11% and 12.97%, respectively. With the results 

acquired in this in vitro study supporting the data currently being collected in vivo, the future 

clinical implications remain quite promising. Implementation of this ChemoFilter device would 

ultimately enhance the effectiveness of a standard intra-arterial chemotherapy procedure by 

significantly reducing systemic toxicity and improving patient prognosis. Application of these 

absorbers could be extended to treat other solid organ tumors in addition to hepatocellular 

carcinoma. Similar devices could also be adapted to selectively absorb other chemotherapeutics, 

such as cisplatin, carboplatin, and epirubicin, or to potentially filter antibiotics and other drugs.   
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