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Almond Snacking for 8 wk Increases
Alpha-Diversity of the Gastrointestinal
Microbiome and Decreases Bacteroides fragilis
Abundance Compared with an Isocaloric Snack
in College Freshmen

Jaapna Dhillon,1 Zhaoping Li,2and Rudy M Ortiz1

1School of Natural Sciences, University of California, Merced, CA, USA and 2Center for Human Nutrition, David
Geffen School of Medicine, Department of Medicine, University of California Los Angeles, California, CA USA

ABSTRACT
Background: Changes in gut microbiota are associated with cardiometabolic disorders and are
influenced by diet. Almonds are a rich source of fiber, unsaturated fats, and polyphenols, all
nutrients that can favorably alter the gut microbiome.

Objectives: The aim of this study was to examine the effects of 8 wk of almond snacking on the
gut (fecal) microbiome diversity and abundance compared with an isocaloric snack of graham
crackers in college freshmen.

Methods: A randomized, controlled, parallel-arm, 8-wk intervention in 73 college freshmen (age:
18–19 y; 41 women and 32 men; BMI: 18–41 kg/m2) with no cardiometabolic disorders was
conducted. Participants were randomly allocated to either an almond snack group (56.7 g/d;
364 kcal; n = 38) or graham cracker control group (77.5 g/d; 338 kcal/d; n = 35). Stool samples
were collected at baseline and 8 wk after the intervention to assess primary microbiome
outcomes, that is, gut microbiome diversity and abundance.

Results: Almond snacking resulted in 3% greater quantitative alpha-diversity (Shannon index) and
8% greater qualitative alpha-diversity (Chao1 index) than the cracker group after the intervention
(P < 0.05). Moreover, almond snacking for 8 wk decreased the abundance of the pathogenic
bacterium Bacteroides fragilis by 48% (overall relative abundance, P < 0.05). Permutational
multivariate ANOVA showed significant time effects for the unweighted UniFrac distance and
Bray–Curtis beta-diversity methods (P < 0.05; R2 ≤ 3.1%). The dietary and clinical variables that
best correlated with the underlying bacterial community structure at week 8 of the intervention
included dietary carbohydrate (percentage energy), dietary fiber (g), and fasting total and HDL
cholesterol (model Spearman rho = 0.16; P = 0.01).

Conclusions: Almond snacking for 8 wk improved alpha-diversity compared with cracker snacking.
Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping
college freshmen improved the diversity and composition of the gut microbiome. This trial was
registered at clinicaltrials.gov as NCT03084003. Curr Dev Nutr 2019;3:nzz079.

Introduction

Specific gastrointestinal (gut)microbiomeprofiles are associatedwith obesity and cardiometabolic
disorders (1). For example, an overweight phenotype and glucose intolerance are characterized
by an increase in pathogenic bacteria and a decrease in anti-inflammatory and butyrate-
producing bacteria (1). In addition, low gut microbiome diversity indicated by the number of
operational taxonomic units (OTUs) is associated with greater adiposity (2), insulin resistance
(2), dyslipidemia (increase in triglycerides and decrease in HDL cholesterol) (3), and a
proinflammatory phenotype (2) compared with high gut microbiome diversity. Positive dietary
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modulation of the gutmicrobiome by consuming diets rich in prebiotics
(1), probiotics (1), and plant-based foods (4) can improve biomarkers of
cardiometabolic health (5).

Nuts such as almonds are rich sources of fiber, unsaturated
fats, and polyphenols (6), all nutrients that can favorably alter the
gut microbiome (7–9). Differences in relative abundance of specific
bacterial taxa have been observed with varying doses of almonds and
pistachios (42 g or 84 g) (10), different almond processed forms (42 g)
(11), and walnut (42 g) (12) consumption over short periods (<3 wk).
Furthermore, whole almonds (56 g) and almond skin (10 g) supple-
mentation for 6 wk increased abundance of targeted bacterial species
such as Bifidobacterium spp. and Lactobacillus spp. (13). In addition,
walnut (43 g) consumption for 8 wk increased the abundance of butyric
acid–producing species (14). However, little is known about the effects
of longer-term almond consumption in young adults.

We have previously demonstrated the effects of almond snacking
on cardiometabolic profiles in college freshmen (15). As an extension
of that study, we evaluated the impact of 8 wk of almond snacking
(57 g/d) on the gut microbiome abundance and diversity compared
with an isocaloric snack of graham crackers in college freshmen. A
secondary analysis examined the association of dietary and clinical
(anthropometric, glucoregulatory, and cardiovascular) variables with
the microbiome community structure. We also highlight issues with
the use of common statistical frameworks in nutrition research that do
not account for compositional constraints while analyzing differential
abundance of microbiome data.

Methods

Participants
Seventy-three (41 women and 32 men) young adults (aged 18–19 y;
BMI: 18–41 kg/m2) participating in a snacking intervention were
recruited (15). The eligibility criteria were as follows: 1) aged 18–21 y; 2)
newly enrolled, first-year college students with no nut allergies; 3)
nonsmokers; and 4) no diagnosed endocrine or cardiometabolic
disorders. Participants were recruited via public advertisements. Partic-
ipants who met eligibility criteria provided written, informed consent
prior to commencement of study visits. All procedures involving
human subjects were approved by the University of California Merced
Institutional Review Board. The study is registered on clinicaltrials.gov
(registration number: NCT03084003).

Study design and protocol
The primary study was an 8-wk randomized, controlled, parallel-
arm intervention examining the effects on glucoregulatory profiles
of almonds compared with cracker snacking (15). The sample size
calculations for the primary study were based on glucose and insulin
profiles at the end of the 8-wk intervention (15). For the present
analysis, outcomes related to the gut microbiome were examined. In
brief, participants were assigned into 1 of 2 study arms. Participants
in the almond group (n = 38) consumed 57 g/d [2 oz; 327 kcal;
14% carbohydrate (8 g fiber), 74% fat, 13% protein] of whole, dry-
roasted almonds. Participants in the cracker group (n = 35) consumed
5 sheets (77.5 g/d) of graham crackers [325 kcal; 74% carbohydrate
(2.5 g fiber), 20% fat, 6% protein] andwere asked to avoid all nuts, seeds,

and nut-containing products. Stool samples were collected in sterilized
collection containers at baseline and 8 wk after the intervention and
stored at −80°C. Anthropometric, biochemical, and dietary data were
collected and analyzed as described previously (15).

DNA extraction and sequencing
DNA from homogenized stool samples was extracted using the
MoBio power soil DNA isolation kit (MoBio Laboratories, Inc).
The quality and quantity of the DNA was confirmed using a
Nanodrop 1000 (Thermo Fisher Scientific). The 16S rRNA gene
V4/V5 variable region PCR primers 530F/926R, GTGCCAGCMGC-
NGCGG/CCGTCAATTYYTTTRAGTTT, with barcode on the for-
ward primer, were used in a 28-cycle PCR using the HotStarTaq Plus
Master Mix Kit (Qiagen) under the following conditions: 94°C for 3
min, followed by 28 cycles of 94°C for 30 s, 53°C for 40 s, and 72°C for 1
min, afterwhich a final elongation step at 72°C for 5minwas performed.
After amplification, PCR products were checked in 2% agarose gel
to determine the success of amplification and the relative intensity of
bands. Sequencing was performed at MR DNA (www.mrdnalab.com)
on a MiSeq (Illumina).

Sequence quality control
The raw sequence data from the Illumina platform were converted
into forward and reverse read files using the FASTQ processor
(www.mrdnalab.com), which were then imported to QIIME 2, an
open-source microbiome analysis platform (16) for further analysis.
The paired-end sequences were demultiplexed, and then denoised,
dereplicated, and merged with the DADA2 quality control package
(17) in QIIME2. The amplicon sequence variants (ASVs: features and
associated representative sequences) resulting from DADA2, are the
final products used in all downstream analyses. ASVs are higher-
resolution artifacts than commonly used operational taxonomic units
(OTUs) (18). A total of 3259 ASVs were detected after demultiplexing
and DADA2 quality control.

Taxonomic analysis
The ASVs were assigned taxonomy in QIIME2 using a naive Bayes
classifier, which was trained on the 530–926 region of the Greengenes
13_8 database reference sequences clustered at 99% sequence similarity
(19). The differential abundance of the ASVs at the different taxonomic
levels, namely, phylum, class, family, order, genus, and species, was
analyzed using the analysis of composition of microbiomes (ANCOM)
statistical framework in R (version 3.5.2) (20). The ANCOM frame-
work uses standard statistical tests to compare Aitchison log-ratios
of observed abundances of a taxon relative to a predefined taxon
with adjustment for multiple testing (here the Benjamini–Hochberg
procedure) (20). For example, testing the effect of snack group on a
specific feature, when a total of 5 features are observed, would involve
computation of 4 log-ratios for that feature, and the snack effect P
value for each ratio would need to be adjusted for multiple testing of
4 ratios. The overall statistical significance of the snack effect would
then be determined by the number of subhypotheses (per ratio) rejected
compared with a cutoff value (set at 0.6). We included the following
statistical tests within the flexible ANCOM framework: 1) linear mixed
model analysis with time and group as fixed factors, and participant
as a random effect; and 2) nonparametric analysis of time and group
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effects using the nparLDpackage in R (21). Because both the parametric
and nonparametric tests gave similar results, we have reported only the
parametric results. The ANCOM framework was also modified to test
for effects of BMI category and sex, as well as pairwise comparisons for
significant interaction effects with adjustment formultiple comparisons
using the Bonferroni procedure. Only taxa prevalent in at least 25% of
the samples were included in the analysis to avoid confounding results
due to low-frequency taxa (20).

Alpha- and beta-diversity analysis
Alpha-diversity measures were assessed on the raw abundances and
abundances of sequences rarefied to an even sequence depth of 8268
sequences per sample in QIIME2 (Supplemental Figure 1). The
following alpha-diversity measures were assessed: 1) Chao1 index,
a measure of species richness that is particularly useful for low-
abundance datasets (22); 2) observed OTUs, a measure of the number
of distinct features; 3) Shannon index, a measure of richness and
evenness (23); and 4) Simpson evenness measure, a measure of how
well represented a species is (24). The alpha-diversity measures were
analyzed in R using linear mixed-model analysis with time and snack as
fixed factors and participant as a random effect. Analyses were adjusted
for baseline when baseline values had a significant effect on the model.

Phylogenetic beta-diversity measures such as weighted UniFrac
(quantitative, i.e., weighs branches of phylogenetic tree based on
abundance) and unweighted UniFrac (qualitative, i.e., fraction of
unique branches in phylogenetic tree) (25), and nonphylogenetic Bray–
Curtis dissimilarity, which quantifies differences between samples based
on abundance per count (26), were assessed on the raw, rarefied, and
cumulative-sum–scaled (CSS) datasets. The ordinations of the matrices
obtained from the raw, rarefied, and CSS datasets were compared using
Procrustes analysis in R (27). The effects of time and time × snack on
the distance/dissimilarity matrices were analyzed by the permutational
multivariate ANOVA (PERMANOVA) (28,29) framework in the vegan
package of R (27).

Taxa and environmental associations with community
structure
The structural redundancy in community composition was quantified
through the BVSTEP (30) analysis in the sinkr package of R (31). The
input dataset for the taxa variables consisted of the ASV abundances (at
the class level). The best set of environmental (i.e., clinical and dietary)
variables associated with the community structure (i.e., ASVs abun-
dance) was deduced by computing the maximum (rank) correlation of
all environmental variables with Bray–Curtis dissimilarities using the
BIOENV (32) analysis in the vegan package of R (27). The significance
for the BVSTEP andBIOENVprocedures was assessed using theMantel
test (27). The input dataset for the environmental variables comprised:
snack group (week 8 only), sex; body mass; BMI; fat mass percentage;
waist circumference; systolic and diastolic blood pressures; fasting total,
HDL, and LDL cholesterol; fasting triglycerides; fasting insulin; fasting
glucose; total energy intake; dietary carbohydrate percentage; dietary fat
percentage; dietary protein percentage; dietary fiber; total saturated fat;
MUFAs; PUFAs; oleic acid; linoleic acid; and α-tocopherol.

The best subsets of taxa and environmental variables at baseline and
8 wk after the intervention were plotted as vectors along nonmetric,
multidimensional scaling (NMDS) plots, and the significance of the

individual variables on the 2-dimensional ordinations was assessed
using vegan function envfit (27). It is important to note that the results
of envfit do not supersede the results of the BVSTEP and BIOENV
analyses, but instead describe the individual contribution of the best
model variables to the 2-dimensional ordinations.

Results

Participant characteristics and findings from parent study
The participants’ demographic, clinical, and dietary characteristics have
been described in detail previously (15). The parent study exploring the
glucoregulatory and cardiometabolic outcomes demonstrated a smaller
decline in HDL cholesterol but similar reductions in fasting glucose
and LDL cholesterol, and greater postprandial insulin sensitivity during
the oral-glucose-tolerance test following almond consumption for 8 wk
compared with cracker consumption (15).

ANCOM results of selected taxa prevalent in at least 25% of
the samples
Firmicutes (64%), Bacteroidetes (29%), and Actinobacteria (4%) were
the most dominant bacterial phyla in this study population at baseline.
The ANCOM results depict an overall significant time effect (P < 0.05)
indicating an increase over 8 wk for order RF39 (phylum Tenericutes)
and decrease for family S24.7 (phylum Bacteroidetes), and genera
Alistipes, Butyricimonas, and Odoribacter (all in phylum Bacteroidetes),
and an increase for genus Lachnospira (phylum Firmicutes) (Table 1).
In addition, Bacteroides fragilis decreased significantly (P< 0.05) in the
almond group over the 8-wk intervention (time× snack effect,P< 0.05;
Table 1). The relative abundance percentages of all selected taxa at the
different taxonomic levels are shown in Supplemental Table 1.

Almond group had greater alpha-diversity at week 8
compared with the cracker group
Chao1 index, observed OTUs, and Shannon indexmeasures for the raw
and rarefied abundances significantly increased (time effect, P < 0.05),
whereas the Simpson evenness measure for raw abundances signifi-
cantly decreased (time effect, P < 0.05) over the 8-wk intervention
(Figure 1, Supplemental Table 2). The almond group had significantly
greater baseline-adjusted Chao1 index and Shannon index (P < 0.05)
for raw and rarefied abundances and observed OTUs (P < 0.05)
measures for rarefied abundances at week 8 (Figure 1, Supplemental
Table 2). The rarefaction curves for Chao1 index, observed OTUs,
and Shannon index (Supplemental Figures 2–5) confirm the greater
diversity, at different sequencing depths, in the almond group compared
with the cracker group at week 8 of the intervention.

Procrustes analysis indicated that the raw and rarefied
datasets were highly correlated
The principal coordinates analysis (PCoA) plots of the weighted and
unweighted UniFrac measures of the raw data at baseline and week
8 of the intervention are depicted in Figure 2. Procrustes analysis
found that the raw compared with rarefied ordinations of weighted
and unweightedUniFracmeasures and Bray–Curtis dissimilarities were
highly correlated (Procrustes correlation coefficient >0.94; P < 0.01;
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TABLE 1 ANCOM results of selected taxa prevalent in at least 25% of the samples obtained from college freshmen in the
almond and cracker groups at baseline and 8 wk after the intervention

Relative abundance (%)1

Baseline Week 8 W-taxa2

Taxa
Almond
(n = 38)

Cracker
(n = 35)

Almond
(n = 38)

Cracker
(n = 35) Time Snack

Time ×
snack

p__Tenericutes.c__Mollicutes.o__RF39 0.35 ± 1.35 0.49 ± 2.35 0.54 ± 1.35 0.87 ± 2.92 10∗ 0 0
p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__

S24.7
0.06 ± 0.2 0.11 ± 0.35 0.08 ± 0.25 0.04 ± 0.08 26∗ 0 0

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__
Rikenellaceae.g__Alistipes

4.33 ± 5.22 2.63 ± 3.4 2.41 ± 3.09 2.07 ± 3.19 36∗ 0 0

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__
Odoribacteraceae.g__Butyricimonas

0.08 ± 0.19 0.12 ± 0.48 0.06 ± 0.16 0.03 ± 0.1 37∗ 0 0

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__
Odoribacteraceae.g__Odoribacter

0.25 ± 0.36 0.2 ± 0.34 0.09 ± 0.14 0.11 ± 0.19 39∗ 0 0

p__Firmicutes.c__Clostridia.o__Clostridiales.f__
Lachnospiraceae.g__Lachnospira

0.08 ± 0.12 0.1 ± 0.18 0.16 ± 0.17 0.1 ± 0.19 45∗ 0 0

p__Proteobacteria.c__Betaproteobacteria.o__
Burkholderiales.f__Alcaligenaceae.g__Sutterella

0.19 ± 0.37 0.08 ± 0.15 0.71 ± 1.61 0.13 ± 0.33 4 38∗ 0

p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__
Bacteroidaceae.g__Bacteroides.s__fragilis

0.66 ± 1.22∗∗ 0.66 ± 1.6 0.34 ± 0.76 0.76 ± 1.61 3 0 68∗

1Values presented are means ± SDs of relative abundance percentages of participants in the almond and cracker groups at baseline and week 8 of the intervention.
∗∗Significantly different from week 8. ANCOM, analysis of composition of microbiomes; c, class; f, family; g, genus; o, order; p, phylum; s, species.

2W-taxa represent the number of significant log-ratios for that taxon at the time, snack, and time × snack levels. ∗Denotes overall significance at a 60% cutoff, that is,
at least 60% of the log-ratios were significant (i.e., P < 0.05) after adjusting for multiple testing of log-ratios using the Benjamini–Hochberg procedure. Analysis was a
linear mixed model analysis within the ANCOM framework.

Supplemental Table 3) indicating that the raw and rarefied matrices
are similar.

PERMANOVA analysis indicated differences in
beta-diversity over time for the raw and rarefied datasets
PERMANOVA analyses showed significant, albeit small, time effects
for the unweighted UniFrac distance and Bray–Curtis dissimilarity
matrices of the raw and rarefied datasets (P < 0.05; R2 ≤3.1%;
Supplemental Table 4), which are not visible in the 2-dimensional
PCoA plots (Figure 2). There were no significant effects of snack and
time × snack on any distance/dissimilarity matrices. The best subset of
taxa contributing to the community structure at baseline and week 8 is
explored in the section below.

The structural redundancy in the community structure was
characterized by 40–55% of the identified microbial classes
The best correlated subset of taxa variables included 10 of the 24
identified microbial classes at baseline (model Pearson correlation
coefficient = 0.96; P = 0.001; Figure 3A) and 13 of 24 classes at week 8
(model Pearson correlation coefficient= 0.96; P= 0.001, Figure 3B). Of
notable interest are the absence of Fusobacteria andAlphaproteobacteria
from the week 8 model, and the presence of Coriobacteria and
Mollicutes in the week 8 model. The 2-dimensional NMDS ordination
at baseline was (individually) significantly associated with the Bac-
teroidia (phylum Bacteroidetes), Bacilli, Clostridia, and Erysipelotrichi
(phylum Firmicutes), RF3 (phylum Tenericutes), and Verrucomicrobiae
(phylum Verrucomicrobia) classes (P < 0.05 envfit test; Figure 3A,
Supplemental Table 5). The 2-dimensional NMDS ordination at week
8 of the intervention was (individually) significantly associated with the
Bacteroidia (phylumBacteroidetes),Erysipelotrichi (phylum Firmicutes),
Coriobacteria and Actinobacteria (phylum Actinobacteria), Mollicutes

(phylum Tenericutes), Verrucomicrobiae (phylum Verrucomicrobia),
andDeltaproteobacteria (phylumProteobacteria) classes (P< 0.05 envfit
test; Figure 3B, Supplemental Table 5).
Dietary and clinical variables contributed to a small amount
of variation in the community structure
The best correlated subset of environmental variables at baseline (model
Spearman rho = 0.17; P = 0.014) and week 8 (model Spearman
rho = 0.16; P = 0.01) is depicted in Figure 3C,D. The subset of envi-
ronmental variables with the highest correlation with the community
structure comprised dietary carbohydrate (%), fasting glucose, and
fasting insulin at baseline (Figure 3C, Supplemental Table 5) and dietary
carbohydrate (%), dietary fiber, and fasting total and HDL cholesterol
at week 8 (Figure 3D, Supplemental Table 5). Moreover, fasting HDL
cholesterol demonstrated a statistically significant association with
the 2-dimensional NMDS ordination at week 8 of the intervention
(R2 = 10%; P < 0.05 envfit test; Supplemental Table 5).

Discussion

Almond snacking (57 g/d) for 8 wk resulted in 3% greater quantitative
alpha-diversity (Shannon index) and 8% greater qualitative alpha-
diversity (Chao1 index) compared with isocaloric cracker snacking
at the end of the 8-wk intervention. In addition, almond snacking
decreased overall B. fragilis relative abundance by 48%. The snacking
intervention increased alpha-diversity over time, but the unique
nutrient profile of almonds had a greater impact on alpha-diversity
than graham crackers. Increased bacterial richness is associated
with favorable health outcomes (2). In this same cohort of study
participants, glucose tolerance and postprandial insulin sensitivity were
improved with almond snacking (15), suggesting that improved gut
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Almonds and the GI microbiome 5

FIGURE 1 Alpha-diversity indices (calculated from raw abundances). (A) Chao1 index, (B) observed OTUs, (C) Shannon index, and (D)
Simpson evenness measure of college freshmen in the almond and cracker groups at baseline and week 8 of the intervention. Values are
individual data points representing each participant at baseline and week 8. Means ± SDs of the 2 snack groups at baseline and week 8
are also plotted. Analyses were conducted using 1) linear mixed model with snack (almond or cracker) as between-subject factor, time
(baseline or week 8) as within-subject factor, and participant as random factor; and 2) analysis of covariance with baseline value as
covariate and snack as between-subject factor. ∗Snack effect (adjusting for baseline value), P < 0.05. Almond: n = 38, cracker: n = 35.
OTU, operational taxonomic unit.

microbiome and carbohydrate metabolism could be associated. The
fiber, monounsaturated fat, and polyphenol content of almonds are
likely responsible for the greater alpha-diversity. The beneficial effects
of dietary fiber on modulating the gut microbiome diversity are well
characterized (33). Monounsaturated fats (compared with saturated
fats) are associated with promoting a positive gut microbiome profile
as well (34). Polyphenols in almond skins are partially bioavailable
(35), and the unabsorbed polyphenols aremetabolized by specific colon
microbiota into absorbable metabolites (8). Sustained consumption of
polyphenol-rich diets can stimulate the growth of beneficial bacteria (8),
thereby promoting greater diversity as well.

Other nut studies have either not assessed (13) or have not detected
any significant differences in alpha-diversity (10–12, 14). Three of

those studies were short-term (<3 wk) (10–12), suggesting that the
intervention duration was not sufficient to induce significant changes
in species richness as seen in other short-term dietary interventions
(36, 37). Conversely, an 8-wk walnut intervention did not alter
alpha-diversity; however, phylogenetic beta-diversity (between-sample
diversity) was different by 5% between the walnut and control diets
(14). In the present study, the 8-wk intervention can only explain, at
most, 3% of the variance in beta-diversity with no differential effect
of snack group. However, the beta-diversity was positively correlated
with alpha-diversity (P < 0.01, data not shown) suggesting that beta-
diversity increased over time as well. Increased microbiome diversity
could promote greater stability of the microbiome in the long term,
thereby contributing to functional resilience against extreme stress and
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6 Dhillon et al.

FIGURE 2 Principal coordinates analysis plots of beta-diversity measures (calculated from raw abundances). (A) Weighted UniFrac, and
(B) unweighted UniFrac of college freshmen in the almond and cracker groups at baseline and week 8 of the intervention. Almond: n = 38,
cracker: n = 35. BL, baseline; PC, principal component; W8, week 8.

perturbations as purported by the classical ecological resilience theory
(38, 39).

Another important finding of the present study was the decrease
in B. fragilis with almond consumption. B. fragilis is an anaerobic
pathogen that is most frequently isolated from clinical specimens
and is considered the most virulent Bacteroides species because of
its: 1) adhesion properties that facilitate adherence to host tissues, 2)
lipopolysaccharide capsule that protects it from the host’s immune
system, and 3) histolytic enzyme activity (40). Although enterotoxins
produced by specific B. fragilis strains can cause gastrointestinal
inflammation (41), other reports indicate that colonization of germ-
freemicewith polysaccharide-producingB. fragilis can contribute to the
maturation of the immune system (42).We did not assess inflammatory
profiles or immune systemmarkers in this study; however, Sugizaki and
Naves (6) propose that the dietary fiber and polyphenol component
of nuts can promote a homeostatic intestinal state via host–microbe
interactions.

Over 90% of the variation in the bacterial community structure
pre- and post-intervention was explained by ∼40–50% of taxa at
the class level. The taxa characterizing the structural redundancy
were mostly similar at both time points of the intervention with the
notable contributions of classesMollicutes (phylum Tenericutes), which
was predominantly composed of the order RF39, and Coriobacteriia
(phylum Actinobacteria), which was mostly composed of the family
Coriobacteriaceae at week 8 of the intervention. The relation between
bacteria in the order RF39 and the host’s metabolism is not defined.
However, twin studies demonstrated that an increased abundance
of RF39 was associated positively with a lean phenotype (43) and
negatively with metabolic syndrome (44). The Coriobacteriaceae in the
gut could contribute to the modulation of bile acid, steroid, and dietary
polyphenol metabolism (45).

Other favorable changes in the gutmicrobiome profile over the 8-wk
intervention involved a decrease in Alistipes (phylum Bacteroidetes),
which is indicative of a shift away from an animal-based diet,

and increase in Lachnospira (phylum Firmicutes), which are pectin
degraders (46). Additionally, a decrease in the butyric acid producers,
Odoribacter and Butyricimonas (Bacteroidetes genera), was observed
over 8 wk. Although a decrease in butyric acid–producing potential is
typically associated with cardiometabolic disorders (47), an increase in
butyric acid producers of the orderBacteroidaleswas reported inmurine
models of colitis (48, 49). As noted before, in times of physiological
stress such as inflammation, there can be an increased reliance of
colonocytes on butyric acid for energy, hence promoting the growth of
butyric acid producers (48). Thus, it can be postulated that a decrease
in stress can reduce the reliance on butyric acid producers. In addition,
the abundance of uncultured Bacteroidetes family S24-7 decreased over
8 wk, but this has not been well studied in humans. However, murine
studies report conflicting effects of diets on S24-7 in obese and diabetes
models (50–52).

Dietary components such as carbohydrate and fiber, and car-
diometabolic markers such as total and HDL cholesterol, explained
<3% of the variation in the bacterial community composition at week
8 of the intervention in this cohort. The association of carbohydrate
and fiber intake with the underlying community structure is not
surprising because these are the principal energy sources for bacteria
(53). Additionally, we have demonstrated that incorporating a morning
snack into the diet of these predominantly breakfast-skipping college
freshmen improved fasting glucose, and total and LDL cholesterol,
with a protective effect of almond consumption on HDL cholesterol
(15). Hence, changes in cholesterol profiles could partly be related to
the gut microbiome composition. In some studies, intrinsic factors
outweighed dietary intervention and drove community structure (54),
whereas in others, dietary factors that were significantly associated
with interindividual variation of gut microbiome outnumbered other
intrinsic factors (55). The present study population was homogeneous
in terms of age (18–19 y), predominantly belonged to ethnic/racial
minority groups, and was at low to moderate cardiometabolic risk
(15). Hence, intra- and inter-individual factors such as genetics and
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FIGURE 3 Nonmetric multidimensional scaling (NMDS) plot of the Bray–Curtis dissimilarities of college freshmen with best set of (A) taxa
variables at baseline, (B) taxa variables at week 8, (C) environmental variables at baseline, and (D) environmental variables at week 8.
NMDS baseline stress = 0.176, NMDS week 8 stress = 0.198. ∗P < 0.05 from envfit. The black line shows the direction of the (increasing)
gradient, and the length of the line is proportional to the correlation between the variable and the NMDS score. Line lengths should not
be compared across plots. Almond: n = 38; cracker: n = 35.

environment (43) could have a greater influence on the gut microbiome
composition.

Developing statistical models for analyzing differential abundance
of taxa is an active area of research. Compositional data such as
relative abundances exist in the simplex rather than Euclidean space,
that is, relative abundances across all taxa sum to 1 within a given
sample. Because standard statistical tests such as t test, ANOVA,
linear regression, and others do not account for the simplex nature
of compositional data, they should not be directly used for analyzing
relative abundance data. The ANCOM method is a highly sensitive
statistical framework that usesAitchison log-ratios to test for differences
in the mean abundances of log-transformed taxa, which can be used
to draw inferences regarding relative abundance differences in the
ecosystem (20) (represented by the gut here). The ANCOM method
controls the false discovery rate, while maintaining high power (20, 56),
and can incorporate standard statistical tests within the framework.

Strengths of the study included: 1) excellent participant compliance
(15), 2) the use of high-resolution ASVs, and 3) the incorporation of
the sensitive and powerful ANCOM method for analyzing differential
abundance. Limitations included: 1) the lack of a “no snack” group

to capture changes in the gut microbial profile in response to the
students’ regular diet, and 2) the use of 16S rRNA profiling instead of
shotgun sequencing. However, the 16S taxonomic resolution concerns
are partly mitigated by sequencing ASVs (57) of the V4 and V5 variable
regions.

In conclusion, almond snacking for 8 wk led to greater alpha-
diversity than the isocaloric cracker group in college freshmen. In ad-
dition, almond snacking decreased the relative abundance of B. fragilis,
a commonly isolated pathogenic bacterium. In general, incorporating
a morning snack in the dietary regimen of predominantly breakfast-
skipping college freshmen improved the diversity and composition of
the gut microbiome.
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