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Abstract of the Dissertation

Resource Planning Models for Healthcare Organizations

by

Sandeep Rath

Doctor of Philosophy in Management

University of California, Los Angeles, 2016

Professor Kumar Rajaram, Chair

In this dissertation I look at two problems of resource planning at two major

healthcare organizations. The Greater Los Angeles Station of the Veterans Health

Administration and the UCLA Ronald Reagan Medical Center.

The first chapter of this thesis is a brief introduction to the research pre-

sented in subsequent chapters. The second chapter of this thesis considers the

problem of minimizing daily expected resource usage and overtime costs across

multiple parallel resources such as anesthesiologists and operating rooms, which

are used to conduct a variety of surgical procedures at large multi-specialty hos-

pitals. To address this problem, a two-stage mixed-integer stochastic dynamic

programming model with recourse is developed. The first stage allocates these

resources across multiple surgeries with uncertain durations and prescribes the

sequence of surgeries to these resources. The second stage determines actual start

times to surgeries based on realized durations of preceding surgeries and assigns

overtime to resources to ensure all surgeries are completed using the allocation

and sequence determined in the first stage. A data driven robust optimization

method that solves large-scale real-sized versions of this model close to optimal-

ity is developed. This model is validated and implemented as a decision support

system at the UCLA Ronald Reagan Medical Center. This has led to an average

daily cost savings of around 7% or estimated to be $2.2 million on an annual basis.
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In addition, the insights based on this model have significantly influenced decision

making at the operating services department at this hospital.

In the third chapter of this thesis the planning problem for HIV screening,

testing, and care is analyzed. This problem consists of determining the optimal

fraction of patients to be screened in every period as well as the optimum staffing

level at each part of the healthcare system to maximize the total health benefits to

the patients measured by quality-adjusted life-years (QALYs) gained. This prob-

lem is modeled as a nonlinear mixed integer programming program comprising

disease progression (the transition of the patients across health states), system

dynamics (the flow of patients in different health states across various parts of the

healthcare delivery system), and budgetary and capacity constraints. On apply-

ing the model to the Greater Los Angeles (GLA) station in the Veterans Health

Administration system, it was found that a Centers for Disease Control and Pre-

vention recommended routine screening policy in which all patients visiting the

system are screened for HIV irrespective of risk factors may not be feasible be-

cause of budgetary constraints. Consequently, the model was used to develop and

evaluate managerially relevant policies within existent capacity and budgetary

constraints to improve upon the current risk based screening policy of screening

only high risk patients. Our computational analysis showed that the GLA station

can achieve substantial increase (20% to 300%) in the QALYs gained by using

these policies over risk based screening.

The fourth chapter of this thesis concludes with some remarks on future re-

search.
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CHAPTER 1

Introduction

In healthcare organizations there is a growing demand for the use of operations

management to create integrated systems that better utilize resources for improv-

ing outcomes while reducing costs (Green, 2012). The rapid adoption of modern

data storage technologies by healthcare organizations (Bresnick, 2015) has created

opportunities to improve operational effectiveness and derive insight by bringing

together previously disconnected sources of data, namely, clinical, operational,

pharmaceutical and patient behavior data (Groves et al., 2013). The develop-

ment of such integrated solutions will require the use of novel predictive and

prescriptive models. My research is a step in this direction.

In my research I look at resource planning problems at two large healthcare

organizations. The Greater Los Angeles Station of the Veterans Health Adminis-

tration and the UCLA Ronald Reagan Medical Center. I conclude with remarks

on future research directions.

The second chapter of this thesis looks at assignment and scheduling for spe-

cialized resources for surgical suites at UCLA Ronald Reagan Medical Center.

UCLA Ronald Reagan Medical Center (RRMC) is large multi specialty hospi-

tal conducting more than 26,000 elective surgeries annually across 12 specialties.

UCLA RRMC had recently invested in a clinical record system and was keen on

using the data generated to improve operational decision making. After discus-

sions with the Operating Services Department at UCLA RRMC, we formulated a

research project to develop a model-based decision support system which would
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aid the resource planners in their day to day operations.

On a daily basis the planners at UCLA RRMC assign operating rooms, anes-

thesiologists and nursing staff to surgeries. They also provide a schedule for per-

forming the surgeries. The objective is to minimize the daily resource usage and

staffing cost. This assignment and scheduling task is complex due the high degree

of uncertainty in surgical procedures, the simultaneous use of multiple specialized

resources, and the large scale of operations at the UCLA RRMC. To address this

problem, we develop a two-stage stochastic dynamic programming model with

recourse. The first stage allocates these resources across multiple surgeries with

uncertain durations and prescribes the sequence of surgeries to these resources.

The second stage determines actual start times to surgeries based on realized

durations of preceding surgeries and assigns overtime to resources to ensure all

surgeries are completed using the allocation and sequence determined in the first

stage. We develop a data driven robust optimization method that solves large-

scale real-sized versions of this model close to optimality. To improve the quality

of solution, we apply a model calibration procedure based on historical data of

surgery durations and surgical characteristics. We validate and implement this

model as a decision support system at the UCLA Ronald Reagan Medical Cen-

ter. This has led to an estimated average daily cost savings of around 7% or $2.2

million on an annual basis.

In addition, this model provided managerial insights to the operating services

department. We find that small reduction in variance on surgical durations leads

to significant reduction in total resource utilization costs while larger reductions

in variability only leads to marginal levels of cost reduction. This suggests that

rather than investing in costly capital intensive equipment to radically reduce

variability in surgical durations, low-cost incremental efforts such as checklists

and standardized protocols derived from best practices would be more beneficial.

Such measures have also been advocated by surgeons (Gawande, 2010). We also
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find, similar to literature related to value to flexibility in manufacturing (Jordan

and Graves, 1995), making only a few additional rooms multi-specialty reduces

the cost significantly.

The third chapter of this thesis looks at planning for screening, treatment and

care at the Greater Los Angeles Station of the Veterans Health Administration. In

2006 the Centers for Disease Control (CDC) had recommended a policy of routine

screening for HIV, in which all patients arriving at a healthcare system would be

offered an HIV detection test. This was done to aid in the early detection of

HIV. The Greater Los Angeles (GLA) Station of Veterans Health Administration

(VHA) wanted to investigate the feasibility of routine screening under current

budgetary and resource constraints and develop alternate policies if necessary.

In this chapter we developed a large-scale mixed-integer non-linear programming

model incorporating disease progression, patient flow, service level constraints and

budgetary constraints. The routine screening policy was found to be infeasible

under the current budget level. Consequently, we developed alternate policies for

screening and staffing policies using this model in order to maximize the Quality

Adjusted Life Years (QALYs) gained across the GLA station at the current budget

level. Using the model we also derived an estimate of the additional budget

required for implementation of routine screening.

In addition to providing recommended policies for staffing and screening, this

research also showed that though a policy such as routine screening may be cost

effective from a aggregate population perspective, it may be infeasible while im-

plementing in an organization due to budgetary constraints. Our analysis demon-

strated that joint optimization of screening and staffing leads to better coordi-

nation between these two tasks. This leads to a higher proportion of infected

patients getting connected to treatment earlier, resulting in a significant improve-

ment of QALYs. The model insights have significantly influenced decision making

process at this station of the VHA.

3



CHAPTER 2

Integrated Anesthesiologist and Room

Scheduling for Surgeries

2.1 Introduction

Surgical procedures are complex tasks requiring the use of several specialized and

expensive resources. In a hospital, the operating services department is responsible

for managing resources used in surgical procedures. Every day, this department

assigns to each surgery an operating room, an anesthesiologist, a nursing team

and the requisite surgical materials. The department also determines the sequence

in which these surgeries will be performed and the scheduled start times. While

performing these actions, the department ensures that the cost of the operating

room suite is minimized by reducing resource usage and overtime costs.

The operating services departments at large hospitals devote significant

amount of time in making these resource management decisions. The complexity

of these decisions is to due the following four primary reasons. First, operating

room resources are expensive (Macario, 2010) and in short supply (Orkin et al.,

2013) and thus surgeries are performed in highly resource constrained environ-

ments. Second, surgical procedures are often very specialized. Therefore, equip-

ment and facility requirements govern whether a procedure can be performed in

a particular room. Anesthesiologist assignments too are dictated by specialty.

Studies have demonstrated that not only do surgeons often prefer to have an

anesthesiologist of required sub-specialty (Ghaly, 2014), outcome indicators of
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surgical procedures are significantly better when anesthesia is delivered by an

anesthesiologist with experience in that particular sub-specialty (McNicol, 1997).

Pardo (2014) predict that increasingly anesthesiologists will be assigned by their

sub-specialties. Third, the durations of surgical procedures are very difficult to

predict (Kayis et al., 2012). This is because there are many procedures and newer

procedures are constantly being developed (AMA, 2013). Consequently, historical

data on all these procedures is not available. Furthermore, surgeon’s estimates of

durations are often unreliable. Studies have demonstrated systematic underesti-

mation as well as overestimation of procedure times by surgeons while scheduling

surgeries. Some surgeons overestimate the duration when they do not have enough

cases to fill their scheduled block time while others may underestimate the time

when they wish to fill in more cases (Laskin et al., 2013). Finally, the scale of

large hospitals, in terms of the number of operating rooms, procedures conducted,

the number and types of equipment and anesthesiologists used, makes the simul-

taneous scheduling of multiple resources a computationally challenging task.

I was exposed to these complexities in our work at the operating services

department of the UCLA Ronald Reagan Medical Center (RRMC), a large multi-

specialty hospital which consistently ranks amongst the best five hospitals in the

United States (Roxanne Moster, 2014). The management of this department

felt that the daily resource allocation decision played a significant role in overall

department cost and in the service quality delivered to patients. They believed

that these aspects can be significantly improved by developing an analytical model

based approach that considered the key complexities in this environment and

applied historical surgical data to decide resource assignment and scheduling. This

paper describes the development, implementation and evaluation of a model based

decision support system that uses a data driven robust optimization procedure to

determine the daily scheduling of rooms and anesthesiologists for elective surgeries

at UCLA RRMC.
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There is a large body of literature on elective surgery scheduling. Min and Yih

(2010) consider scheduling elective surgeries under uncertainty in surgery dura-

tions and downstream capacity constraints. Gupta (2007) discusses the broader

issues of managing operating room suites in the context of elective surgeries. Re-

views of literature related to operating room scheduling can be found in Blake and

Carter (1996), Cayirli and Veral (2003) and Guerriero and Guido (2011). In their

review Cardoen et al. (2010a) categorize operating room scheduling literature by

patient characteristics, performance criteria, decision level, type of analysis, solu-

tion technique and whether the papers incorporate uncertainty or not. Below, we

primarily focus on research that accounts for uncertainty in surgery duration, as

required in our application.

The literature for scheduling operating rooms under uncertain surgery dura-

tions has primarily been focused on single resource type corresponding to the

operating room. Green and Savin (2008) model a single operating room appoint-

ment scheduling model with no shows using a queuing approach with Poisson

arrivals and deterministic service times. Denton and Gupta (2003) develop a

stochastic optimization model to optimize start times for procedures with ran-

dom durations while Mancilla and Storer (2012) develop heuristics to find near

optimal sequencing of surgeries in a single operating room. Mak et al. (2014a)

solve the appointment scheduling and sequencing in a single operating room fol-

lowing a robust optimization procedure. They find that the widely used heuristic

of ordering the jobs by variance is optimal under mild conditions. Denton et al.

(2010) solve the problem of assignment of surgeries to multiple parallel operating

rooms under fixed costs of operating rooms and variable overtime costs. However,

none of these papers consider multiple resources, the simultaneous sequencing

and start times of surgeries or are tested with data in a large-scale application

context. While a single resource type may be sufficient for specialized surgery

suites, multi-specialty hospitals like the UCLA RRMC require a holistic solution
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of surgery scheduling that simultaneously optimizes on all specialized parallel and

multiple resources.

Literature related to multiple resource types is relatively scarce. Beliën and

Demeulemeester (2008) and Meskens et al. (2013) consider integrated operating

room scheduling with multiple resources under deterministic surgery durations.

Batun et al. (2011) consider scheduling of surgeries given two resource types: op-

erating rooms and surgeons under stochastic surgery durations. However, they do

not consider specializations of rooms and anesthesiologists, and consider a prob-

lem significantly smaller in scale than in our application. For the scale of problem

at UCLA RRMC, sample average approximation based stochastic optimization

procedures as used in Denton and Gupta (2003) and Min and Yih (2010) were

intractable. This is due to the large number of possible integer assignments in the

first stage which increases the number of samples required to achieve convergence

in objective value and solution. These difficulties in employing this method has

been described in a more general context by Kleywegt et al. (2002). Furthermore,

the overall complexity of the large-scale problem in our application precluded

finding even feasible solutions using leading commercially available solvers such

as ddsip (Märkert and Gollmer, 2008) that employ the state-of-the-art proce-

dures for solving stochastic programs such as dual decomposition methods (Carøe

and Schultz, 1999). In order to circumvent these problems A robust optimization

procedure (Bertsimas et al., 2013; Bertsimas and Thiele, 2006) is used. While a

similar approach has been used by Denton et al. (2010) and Mak et al. (2014b),

our work extends theirs by considering multiple resource types. This extension

requires significant modification to existing solution methods.

Our paper makes the following contributions. First, we consider two types

of parallel resources which are of critical importance to specialties: operating

rooms and anesthesiologists and we simultaneously optimize their assignment and

sequencing. Second, we develop an efficient solution method using robust op-
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timization to provide effective solutions to large-scale problems. An important

element when applying robust optimization is the estimation of an uncertainty

set. We develop an estimation procedure to estimate the sets using historical

data. This data driven robust optimization approach was successful in solving the

full scale problem for the entire surgery suite at the RRMC within 10 minutes with

a performance gap within 5% from the lower bound. Third, our methodology sig-

nificantly outperforms the best benchmark procedures in the literature. Fourth,

we develop a model based decision support system which has been validated and

implemented at the UCLA RRMC. This has considerably improved upon current

practice and has resulted in average daily cost savings of around 7% or estimated

to be $2.2 million on an annual basis. Further, the insights from our work has

had a notable impact on decision making at the hospital.

The remainder of the paper is organized as follows. §2.2 provides a detailed

problem description at the UCLA RRMC. §2.3 presents the model formulation,

properties and solution procedure. In §2.4 we describe the procedure for parameter

estimation and model calibration. §2.5 provides the results of the computational

analysis. §2.6 describes the implementation of this model at the UCLA RRMC,

presents the financial benefits, provides managerial insights and describes the

organizational impact of this work.

2.2 Problem Description

Operating services is one of the largest departments at the UCLA RRMC with

around $120 million in annual revenues representing about 10% of this hospital’s

revenues. This department serves around 27,000 patients annually by conducting

around 2700 types of elective and emergency surgical procedures across 12 spe-

cialties. Emergency surgeries are conducted in 3 dedicated operating rooms with a

separate team of anesthesiologists. Since emergency surgeries are separated from
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elective surgeries and account for only about 15% of revenues, the management of

this department asked us to focus solely on elective surgeries. To perform these

surgeries, the operating services department uses 23 Operating Rooms (ORs),

which are further divided across these 12 specialties that require specific equip-

ment. General surgery procedures can be performed in any of these 23 ORs

dedicated for the exclusive use of elective surgeries. The details on the number

of rooms that can perform each specialty is provided in Table 2.1. Surgeries are

scheduled to start in operating rooms only between 7 am and 3 pm. Further,

there are fixed costs for opening an operating room each day. This consists of an

initial cleaning and equipment setup costs along with daily nurse and technician

staffing costs, whose assignments do not depend on specialty. In addition, over-

time costs are incurred for nurses and technicians if the rooms are required to

be open beyond 3 pm. Finally, these operating rooms are scheduled and staffed

simultaneously.
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Table 2.1: Summary of resource by specialty

Surgery Specialty Number of ORs

Available

Number of

Anesthesiolo-

gists Available

Vascular 1 9

Neuro 3 10

Plastics 23 NA

ENT 23 NA

Urology 23 NA

Liver 1 8

Thoracic 2 5

Cardiac 3 14

Trauma 1 NA

Pediatric 2 12

Eye Surgery 23 NA

General 23 NA

During our work here, there were 92 anesthesiologists at the UCLA RRMC di-

vided across these 12 specialties. The number of anesthesiologists by specialty

is also shown in Table 2.1. Anesthesia for surgeries in some specialties can be

administered by any anesthesiologist. Such specialties are denoted by NA in this

table. There are three shifts of equal duration for the anesthesiologists: day (7

a.m till 3 p.m.), late (11 a.m. till 7 p.m), and night (7 p.m till 3 a.m). Each

anesthesiologist is preassigned to exactly one shift and thus, the regular working

hours for each anesthesiologist is eight hours. The assignment of anesthesiologists

to surgeries is according to the specialty and availability. In addition, anesthesi-
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ologists can only be assigned to surgeries that begin during their shift. Overtime

costs for anesthesiologists are incurred if surgeries in progress exceed the duration

of the shift. A certain number of anesthesiologists who are not scheduled to work

on a given day are asked to be on standby or on call, so that they can be called to

work if necessary. However, when anesthesiologists are assigned from call, there

are significant costs for using such an option. Anesthesiologists assigned from call

do not incur overtime costs. The anesthesiologists on call are informed of their

status the previous day and assigned surgeries the following day as required.

It is important to note that in the context of large multi-specialty hospitals

such as the UCLA RRMC, surgeons are not part of the operating services de-

partment. They are usually from the independently administered specialty de-

partments at this hospital and on some occasions can be from other hospitals.

The surgeons bring their patients and use the operating services department as

a service provider. Thus, the operating services department does not have the

option of assigning surgeons to patients. For this reason, we assume that each

surgery-surgeon combination is already set and we consider them together. This

ensures that each surgery has a clear and unchangeable link to the surgeon. This

aspect is also consistent with the literature in this area (Dexter and Traub, 2002;

Marques et al., 2014).

Typically, a request to schedule a surgery is initiated by the surgeon on behalf

of the patient with general admissions at the hospital. This request is assigned a

date based on the earliest availability in the block reservations for the particular

specialty. Once all the elective surgery requests have been received the day before

the surgery, the operating services department decides which operating room to

open, finalizes assignment of these rooms and anesthesiologist to surgeries, de-

termines start times of surgeries and effectively specifies the sequence of all the

surgeries. Add-on surgeries are not considered here as depending on availability,

they are assigned to the operating rooms dedicated to emergency procedures. De-
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fine utilization as the fraction of the available shift time that is used by a particular

resource. Inefficient assignment and scheduling of anesthesiologists and operating

rooms to surgeries leads to low utilization and overtime of these resources. As

seen in Figure 2.1, average daily utilization across the anesthesiologists is close to

0.75, with around 25% of days having an average daily utilization of less than 0.70.

However, despite these lower levels of utilization, the average number anesthesiol-

ogists on call is around 6 per day. Similarly, for operating rooms the average daily

utilization is close to 78% (Figure 2.2) but the average overtime per day is around

18 hours. Taken together average call and overtime costs for anesthesiologists and

rooms at this department are about 33% of revenues. A more effective assignment

and scheduling system could potentially reduce overtime and on call costs.

Figure 2.1: Histogram of average daily utilization of anesthesiologists
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Figure 2.2: Histogram of average daily utilization of operating rooms
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Assignment and scheduling decisions at this hospital are complicated by the

large number of ORs and anesthesiologists, variety in surgical procedures, vari-

ability in anesthesiologist workload, and unpredictability in surgery durations.

More details on these aspects are provided in the Appendix. These complicat-

ing aspects make any long term resource planning inadequate on the day of the

surgery. Thus, the management of the operating services department felt that

the daily expected resource usage and overtime costs across operating rooms and

anesthesiologists could be considerably lowered by developing an optimization

model, which led to our involvement. This model is formulated as a two-stage

mixed-integer stochastic dynamic program with recourse. The first stage of this

model allocates these resources across multiple surgeries with uncertain durations

and prescribes the sequence of surgeries to these resources. Assuming that each

surgery should be scheduled as early as possible, this consequently provides a

scheduled start time for surgeries. The second stage determines the actual start

times to surgeries based on realized durations of preceding surgeries and assigns

overtime to resources to ensure all surgeries are completed using the allocation

and sequence determined in the first stage. The stages of the model are shown

in Figure 2.3. The size and complexity of the problem precluded solution using
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conventional methods. Therefore, we develop a data driven robust optimization

approach that solves large-scale real-sized versions of this model close to optimal-

ity. Next, we describe the model formulation, present its properties and describe

its solution techniques.

Figure 2.3: Model stages and decisions

Stage 1 Stage 2

Decisions

• Assignment of ORs and
anesthesiologists to surgeries

• Determining anesthesiologists on call

• Determining sequence of surgeries for
ORs and anesthesiologists
and consequently providing a
scheduled start time for surgeries

• Determining actual start time of
surgeries based on realized duration
of previous surgeries

• Minimizing overtime
for anesthesiologists and ORs

2.3 Model

We start by presenting a model formulation of the integrated anesthesiologist and

room scheduling problem for surgeries. To provide a precise definition of the

model, let h, i, j ∈ I index the set of surgeries, a ∈ A index the set of anesthe-

siologists, and r ∈ R index the set of operating rooms. We define the following

variables.

xia: 1 if anesthesiologist a is assigned to surgery i, 0 otherwise

ya: 1 if anesthesiologist a is assigned from call, 0 otherwise

zir: 1 if room r is assigned to surgery i, 0 otherwise

vr: 1 if room r is assigned any surgery, 0 otherwise
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uij: 1 if surgery i precedes surgery j, 0 otherwise

αija: 1 if surgery i and j are assigned to anesthesiologist a and i precedes j, 0

otherwise

βijr: 1 if surgery i and j are assigned to room r and i precedes j, 0 otherwise

si: Scheduled start time of surgery i (hrs)

Si: Actual start time of surgery i (hrs)

Overa: Overtime of anesthesiologist a (hrs)

Overr: Overtime of room r (hrs)

In addition, let x = (xia) ∀i ∈ I, a ∈ A, y = (ya) ∀a ∈ A, z = (zir) ∀i ∈ I, r ∈ R,

u = (uij) ∀i, j ∈ I, s = (si) ∀i ∈ I denote the vectors associated with these

variables. Next we define the following parameters:

κAia: 1 if anesthesiologist a can be assigned to surgery i, 0, otherwise

κRir: 1 if surgery i can be done in room r, 0 otherwise

wa: 1 if anesthesiologist a is on call, 0 otherwise

cr: Fixed cost of opening operating room r ($/day)

coa: Overtime cost of anesthesiologist a ($/hr)

cor: Overtime cost of room r ($/hr)

cq: Cost of assigning anesthesiologist from call ($/day)

tstarta : Start time of shift associated with anesthesiologist a (hr)

tenda : End time of shift associated with anesthesiologist a (hr)

T end: End time of the day (hr)
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M , Mseq,Manesth,Mroom: large positive numbers

The durations di of surgery i is uncertain ∀i ∈ I and can be considered as a

random variable. The vector of surgery durations for the day is represented by

d = (di), ∀i ∈ I. We incorporate the uncertainty in surgery durations through a

robust optimization approach where we model di as an uncertain parameter that

takes values in [d̄i−d̂i, d̄i+d̂i], where d̄i is the nominal duration for surgery i and d̂i

is one sided maximum deviation for surgery i. We define the scaled deviations of di

about its nominal value as fi = (di − d̄i)/d̂i. Note that the scaled deviation fi can

take a value in [−1, 1]. Following the approach in Bertsimas and Sim (2004) and

Denton et al. (2010) we subject the scaled deviations to a constraint
∑

i∈I |fi| ≤ τ

so that, the total deviation across all surgeries is less than a known threshold τ .

Here, τ bounds the total maximum deviation of surgery duration from the nominal

value across all surgeries. This threshold is called the budget of uncertainty and

represents the level of pessimism on the number of surgeries deviating from their

nominal value. If τ = 0, it is equivalent to solving the nominal value problem

with di = d̄i, ∀i ∈ I.

The Integrated Anesthesiologist and Room Scheduling Problem (IARSP) con-

sists of two stages. The first stage problem assigns rooms and anesthesiologists to

surgeries, and prescribes a sequence of surgeries to be performed in each room and

by each anesthesiologist. The second stage recourse function determines actual

start times to surgeries based on realized durations of preceding surgeries and

assigns overtimes to resources such that all the surgeries are completed in the as-

signment and sequence prescribed by the first stage problem. Here, the two-stage

approach assumes that all information about actual surgery durations is known

early in the morning, which is of course not the case. However, this simplifica-

tion has no impact on the solution since the only recourse action is to accumulate
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overtime without changing the sequences. Further, this simplification is consistent

with the literature on surgery scheduling employing two-stage stochastic models

with recourse (Denton et al., 2010; Batun et al., 2011; Mancilla and Storer, 2012).

The IARSP can be written as:

(IARSP ) V∗(τ) = min

{∑
r∈R

crvr +
∑
a∈A

cqya + Q(x,y, z,u, s)

}
(2.1)

subject to,

∑
a∈A

xia = 1 ∀i ∈ I (2.2)

∑
r∈R

zir = 1 ∀i ∈ I (2.3)

zir ≤ vr ∀i ∈ I, r ∈ R (2.4)

xia ≤ va + ya ∀i ∈ I, a ∈ A (2.5)

ya ≤ wa ∀a ∈ A (2.6)

si ≥ tstarta −M(1− xia) ∀i ∈ I, a ∈ A (2.7)

xia ≤ κAia ∀i ∈ I, a ∈ A (2.8)

zir ≤ κRir ∀i ∈ I, r ∈ R (2.9)

αija ≤ uij ∀i, j ∈ I, a ∈ A (2.10)

βijr ≤ uij ∀i, j ∈ I, r ∈ R (2.11)

uij + uji ≤ 1 ∀i, j ∈ I (2.12)

αija + αjia ≥ xia + xja − 1 ∀i, j ∈ I, a ∈ A (2.13)

βijr + βjir ≤ zir ∀i, j ∈ I, r ∈ R (2.14)

βijr + βjir ≤ zjr ∀i, j ∈ I, r ∈ R (2.15)
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βijr + βjir ≥ zir + zjr − 1 ∀i, j ∈ I, r ∈ R (2.16)

αija ≥ xia + xja + βijr − 2 ∀i, j ∈ I, r ∈ R, a ∈ A (2.17)

βijr ≥ zir + zjr + αija − 2 ∀i, j ∈ I, r ∈ R, a ∈ A (2.18)

xia, ya, zir, , uij, vr, αija, βijr ∈ {0, 1} ∀i, j ∈ I, r ∈ R, a ∈ A (2.19)

si ≥ 0 ∀i ∈ I (2.20)

Objective function (2.1) consists of three terms. The first term is the fixed cost

for opening operating rooms each day. The second term is the cost of assigning

anesthesiologists from call. The third term Q(x,y, z,u, s), represents the worst

case second stage cost and is described in detail below. Constraints (2.2) and

(2.3) assign each surgery exactly one anesthesiologist and one operating room

respectively. Constraint (2.4) ensures that vr is set to 1 whenever any surgery is

assigned to operating room r. Constraint (2.5) ensures that an anesthesiologist can

be assigned to a surgery only if they are on regular duty or on call. Constraint (2.6)

enforces that an anesthesiologist can be assigned from call only if they are listed

in the call list. Constraint (2.7) ensures that an anesthesiologist can be assigned a

surgery only if the scheduled start time of the surgery is after the shift start time of

the anesthesiologist. Constraints (2.8) and (2.9) ensure that surgeries are assigned

rooms and anesthesiologists by specialty. Constraint (2.10) enforces the condition

that if an anesthesiologist is used to conduct surgery i before surgery j, then

surgery i has to precede surgery j or uij is set to 1. Constraint (2.11) imposes the

similar condition and sets uij to 1 when surgery i precedes surgery j in an operating

room Constraint (2.12) ensures that only one of uij or uji can be 1. Constraint (??)

is required to maintain consistency of schedule between any three surgeries that

follow each other, so that if i precedes j and j precedes h, then i should precede

h. Constraints (??)-(2.13) restrict that only one of αija and αjia is 1 only if both

surgeries i and j are assigned to anesthesiologist a. This also ensures that the

sequencing constraints for anesthesiologists αija is active only for those surgeries
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that are assigned to the same anesthesiologist. Constrains (2.14)-(2.16) are similar

logical constraints corresponding to the sequencing of rooms. Constraints (2.17)

and (2.18) maintain consistency of sequencing variables between operating rooms

and anesthesiologists. Constraint (2.17) enforces that if anesthesiologist a and

operating room r is assigned to surgeries i and j and i precedes j in operating

room r then i has to precede j in assignment to anesthesiologist a. Constraint

(2.18) is a similar constraint that makes sure that if surgery i precedes surgery

j with anesthesiologist a, then i has to precede j in the assignment of operating

room r. Constraints (2.19) and (2.20) represent variable domains.

The worst case second stage cost is given by:

Q(x,y, z,u, s) = max
d∈D(τ)

R(x,y, z,u, s,d) (2.21)

D(τ) =
{

d ∈ R|I| : di = d̄i + fid̂i, i ∈ I, f ∈ F(τ)
}

(2.22)

F(τ) =

{
f ∈ R|I| :

∑
i∈I

|fi| ≤ τ,−1 ≤ fi ≤ 1

}
(2.23)

R(x,y, z,u, s,d) is the total overtime cost across all resources, for a given

assignment, sequence, scheduled surgery start times and surgery durations. This

is maximized over the vector of surgery durations d to determine the worst case

cost, where d is restricted to lie in the uncertainty set D(τ) given by (2.22).

This equation restricts di, the duration of surgery i, to lie within a maximum

deviation of d̂i from the nominal value of the duration d̄i. The total extent of

such deviations is specified by the set F(τ), which is defined by (2.23) and is well

suited to our problem context. In particular, the effective allocation of multiple

parallel resources such as anesthesiologists and rooms which are used repeatedly

across the surgeries in a given day requires a specification of τ , an overall level or

budget of uncertainty across surgical durations. This is enforced by (2.23), which

specifies that the maximum deviation across all surgeries is at most τ . A schedule

based on a large τ would be overly accommodating towards the second stage cost,

while a schedule corresponding to a small τ would not be accommodating enough.
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In §2.4, we present a methodology to determine d̄i, d̂i and τ based on historical

data.

In determining R(x,y, z,u, s,d), it is important to note that the only decision

variables at this stage are the actual start times of the surgeries and the overtime

for the anesthesiologists and rooms. We pick these variables to minimize total

overtime costs while ensuring that all the surgeries scheduled for the day are

completed and there are no conflict in actual start times of surgeries assigned to

the same resource. To compute R(x,y, z,u, s,d) we formulate the linear program:

R(x,y, z,u, s,d) = min

{∑
a∈A

coaOvera +
∑
r∈R

corOverr

}
(2.24)

subject to,

Sj ≥ Si + di −Mseq(1− uij) ∀i, j ∈ I
(2.25)

Si ≥ si ∀i ∈ I
(2.26)

Overa ≥ Si + di − tenda −Manesth(1− xia + ya) ∀i ∈ I, a ∈ A
(2.27)

Overr ≥ Si + di − T end −Mroom(1− zir) ∀i ∈ I, r ∈ R
(2.28)

Si, Overa, Overr ≥ 0 ∀i ∈ I, a ∈ A, r ∈ R
(2.29)

The objective function consists of the sum of overtime across all the resources.

Constraint (2.25) ensures that the start time of the succeeding surgery is only

after the end time of the preceding surgery. Constraint (2.26) ensures that the

actual start time of the surgery can be no earlier than the scheduled start time.

Constraints (2.27) and (2.28) define the overtime for anesthesiologists on regular

duty and operating rooms respectively, which is the time difference between the
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end time of the last surgery in that shift and the regular shift end time for the

resource. Constraint (2.29) restricts start time and overtime variables to be non-

negative variables. The IARSP is a robust optimization model with the recourse

represented by this linear program. We next develop some structural properties

that is useful in constructing solution techniques for this model.

Proposition 1. The IARSP has relatively complete recourse.

All proofs are provided in the appendix. Proposition 1 implies that for every

feasible first stage solution there exists a feasible second stage solution. This

proposition allows us to evaluate second stage costs for every feasible first stage

solution. This is important for the solution method for the IARSP described

in §2.3.1.1. However, evaluating Q(x,y, z,u, s) for any given first stage solution

requires one to solve the problem given in equations (2.21)-(2.29), which is not

easy due to the max-min operator in its objective. The following proposition

simplifies the computation of Q(x,y, z,u, s) and consequently the IARSP.

Proposition 2. If parameter τ is chosen to be a positive integer, then

Q(x,y, z,u, s) can be reformulated as the following mixed integer program.

Q(x,y, z,u, s) = max

{∑
i∈I

(
d̄iπi + ξid̂i

)
+
∑
i∈I

siφi −Mseq

∑
i,j∈Ii 6=j

λij (1− uij)

−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)

−Mroom

∑
i∈I
r∈R

θir (1− zir)−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

subject to,
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∑
i∈I

µia ≤ coa ∀a ∈ A (2.30)

∑
i∈I

θir ≤ cor ∀r ∈ R (2.31)

∑
j∈I
j 6=i

λij −
∑
j∈I
j 6=i

λji +
∑
a∈A

µia +
∑
r∈R

θir − φi ≥ 0 ∀i ∈ I (2.32)

∑
j∈I−{i}

λij +
∑
a∈A

µia +
∑
r∈R

θir = πi ∀i ∈ I (2.33)

∑
i∈I

fi ≤ τ (2.34)

ξi ≤Mffi ∀i ∈ I (2.35)

ξi ≤ πi ∀i ∈ I (2.36)

ξi, πi, λij, θir, µia, φi ≥ 0 ∀i, j ∈ I, a ∈ A, r ∈ R (2.37)

fi ∈ {0, 1} ∀i ∈ I (2.38)

As described in the appendix, the proof of this proposition follows from strong

duality of the second stage recourse problem for a given first stage solution. Note

that as a consequence of Proposition 2 in which τ is set to an integer, fi,∀i ∈ I are

also now binary variables. Thus, in the worst case, surgeries are set to either their

nominal value or maximum positive deviation. In effect, τ can now be interpreted

as the upper bound on the number of surgeries that reach their maximum devia-

tion. Thus, restricting τ to be a positive integer as in this proposition allows for a

more natural interpretation of τ , which was important in the application context.

As discussed in §2.4, this interpretation drives our data driven method in setting

a parametric value for τ from historical data. Propositions 1 and 2 imply that

Q(x,y, z,u, s) can be evaluated for any given first stage feasible solution by solv-

ing a mixed integer program. In particular, let (πl, ξl,λl,µl,θl,φl) be the solution

to Q(x,y, z,u, s) for some given (xl,yl, zl,ul, sl). Then, the following propositions

provide a lower bound and characterize the structure of Q(x,y, z,u, s). They will

be used in the solution method provided in §2.3.1.1.

22



Proposition 3. A lower bound on Q(x,y, z,u, s) is provided

by
∑

i∈I

(
d̄iπ

l
i + ξlid̂i

)
+

∑
i∈I siφ

l
i − Mseq

∑
i,j∈Ii 6=j λ

l
ij (1− uij) −

Manesth

∑
i∈Ia∈A µ

l
ia (1− xia + ya) − Mroom

∑
i∈I
r∈R

θlir (1− zir) −
∑

i∈I
r∈R

θlirT
end −∑

i∈I
a∈A

µliat
end
a .

Proposition 4. Q(x,y, z,u, s) is a piecewise-linear convex function in the first

stage decision variables x,y, z,u, s.

In light of Proposition 4, the IARSP now reduces to a piecewise-linear con-

vex mixed integer program in which Q(x,y, z,u, s), the convex part of the ob-

jective function can be evaluated by using Proposition 2 and solving a mixed

integer program. However, given this non-linearity and the large number of in-

teger variables in our application, the IARSP cannot be solved using powerful

solvers for non-linear programs such as BARON (Sahinidis, 2014) and DICOPT

(Viswanathan and Grossmann, 1990). Consequently, we develop the following

model based heuristic procedure to solve this problem.

2.3.1 Solution Methods

We start by describing the model based heuristic. We then present the process

currently being employed at the hospital (i.e., the practitioner’s heuristic). Finally,

we discuss sample average approximation based techniques that are commonly

used in literature, which we use to benchmark the model based and practitioner’s

heuristics. The performance of these methods will be discussed in §2.5.

2.3.1.1 Model Based Heuristic.

This heuristic is based upon Kelley’s algorithm (Kelley, 1960) as described in

Thiele et al. (2009) to solve robust optimization problems with recourse. Here, we

consider the IARSP and in light of Proposition 4, approximate Q(x,y, z,u, s) by

a piecewise linear equation via successive linear cuts. We then use this approxi-
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mation in constructing the master problem at the kth iteration of the heuristic,

MP (k), defined as:

MP (k)

min
vr,ya,φ

{∑
r∈R

crvr +
∑
a∈A

cqya + ψ

}
(2.39)

subject to,

(2.2)− (2.20)

ψ ≥
∑
i∈I

(
d̄iπ

l
i + ξid̂i

)
+
∑
i∈I

siφ
l
i −Mseq

∑
i,j∈Ii 6=j

λlij (1− uij)

−Manesth

∑
i∈Ia∈A

µlia (1− xia + ya) (2.40)

−Mroom

∑
i∈I
r∈R

θlir (1− zir)−
∑
i∈I
r∈R

θlirT
end −

∑
i∈I
a∈A

µliat
end
a l = 0, 1, 2..., k − 1

(2.41)

ψ ≥ 0 (2.42)

Observe that in this problem, we approximate the value of Q(x,y, z,u, s) by a

variable ψ ≥ 0. To improve this approximation, in each iteration of the heuristic

we use (2.41) to enforce the condition that ψ is greater than or equal to the

lower bound of Q(x,y, z,u, s), as established by Proposition 3. This results in

constraints (2.41) in which ψ approximates Q(x,y, z,u, s) by a piecewise linear

equation via successive linear cuts. An integral part of the heuristic is determining

a good solution to the MP (k) at each iteration of the computation, as the quality

of this first stage solution will affect the convergence time for this heuristic. The

following proposition is useful in developing a good quality first stage solution.

Proposition 5. If two surgeries i, j are assigned the same operating room and the

same anesthesiologist and d̄i ≤ d̄j, d̂i ≤ d̂j, then u∗ij = 1, where u∗ij is the optimal

value of uij in the optimal solution of IARSP.

This proposition implies that surgeries with smaller nominal values and smaller

maximum deviations are performed before other surgeries when they share anes-
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thesiologists and operating rooms. This is intuitive as scheduling the longer and

more uncertain surgery upfront would have disruptive effect on the subsequent

surgeries that share resource with this surgery. This would lead to a higher over-

time cost. Therefore, to preclude this in any optimal solution, u∗ij = 1. This

proposition will be used in the model based heuristic formalized by the following

algorithm.

Model Based Heuristic

Step 1. Initialize U ← ∞, L ← 0, k ← 0, l ← 0. Set ε > 0 to be sufficiently

small.

Step 2. Solve the MP(k) and let the solution be x̃kia, ỹ
k
a , z̃

k
ir, ũ

k
ij, s̃

k
i , ṽ

k
r , α̃

k
ija, β̃

k
ijr, ψ̃

k

. If i, j ∈ I satisfy the conditions of Proposition 5, then set ũkij ← 1, ũkji ← 0.

Set L←∑
r∈R crṽ

k
r +

∑
a∈A cqỹ

k
a + ψ̃k.

Step 3. Compute Q(x̃k, ỹk, z̃k, ũk, s̃k) for given x̃kia, ṽ
k
r , z̃

k
ir, ũ

k
ij, s̃

k
i , obtained in

Step 2 by solving the mixed integer programming formulation given in

Proposition 2. Let the optimal solution be ξki , π
k
i , λ

k
ij, θ

k
ir, µ

k
ia, φ

k
i . U ←

min
{
U,
∑

r∈R crṽ
k
r +

∑
a∈A cqỹ

k
a + Q(x̃k, ỹk, z̃k, ũk, s̃k)

}
.

Step 4. If U − L < ε go to Step 6, else go to Step 5.

Step 5. k ← k + 1. Add constraint

ψ ≥
∑
i∈I

(
d̄iπ

k
i + ξid̂i

)
+
∑
i∈I

siφ
k
i −Mseq

∑
i,j∈Ii 6=j

λkij (1− uij)

−Manesth

∑
i∈Ia∈A µ

k
ia (1− xia + ya)

−Mroom

∑
i∈I
r∈R

θkir (1− zir)−
∑

i∈I
r∈R

θkirT
end

−∑ i∈I
a∈A

µkiat
end
a

to the MP(k). Go to Step 2.

Step 6. x̃kia, ỹ
k
a , z̃

k
ir, ũ

k
ij, ṽ

k
r , s̃

k
i , α̃

k
ija, β̃

k
ijr is the heuristic solution to IARSP.

The above algorithm is well suited for the IARSP as from Proposition 4, its

objective is piecewise-linear convex and cutting plane methods such as those used

in Step 5 of this algorithm are finitely convergent for piecewise linear functions
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(Ruszczyński, 2006). Also, in this algorithm, in early iterations, the solution in

Step 2 is obtained by employing the user callbacks feature of the solver used to

solve MP (k). Here, instead of solving this problem to optimality in the initial

iterations, we request the solver to return a feasible solution, which is then used to

apply cuts in Step 4 and approximate the convex function Q(x,y, z,u, s) at each

corresponding feasible solution. We do so because MP(k) is a problem with many

integer variables and solving it to optimality can be computationally expensive

with poor returns at early iterations when Q(x,y, z,u, s) has not been approxi-

mated well enough by constraints (2.41). A potential drawback with this approach

is that the initial feasible solutions obtained might be poor and many cuts might

be required before the stopping criteria is reached. However, Proposition 5 is used

in Step 2 to improve the quality of the feasible solution and ensure faster conver-

gence. Results on the computational performance and the time required for this

heuristic is provided in Section §2.5.

2.3.1.2 Practitioner Heuristic.

This heuristic is based on the current planning process used at the operating

service department of the UCLA RRMC. Such types of heuristics have been re-

ported in the literature (Dexter and Traub, 2002; Cardoen et al., 2010b). The

practitioner’s heuristic consists of the following steps.

Step 1: Assign surgeries to operating rooms in sequential fashion in order of

start times requested by the surgeons, by surgery specialty and duration

estimates from surgeons, until the last surgery in the room can start before

the end of the shift for the operating room.

Step 2: Assign one anesthesiologist to each room such that the anesthesiologist

can perform most of the surgeries in the room.

Step 3: A few anesthesiologists are assigned to surgeries across rooms in order
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to ensure all surgeries have been assigned an anesthesiologist by specialty.

Step 4: If above plan cannot be implemented by anesthesiologists on regular

duty, assign anesthesiologists from call.

2.3.1.3 Benchmark Heuristic.

Here we use Sample Average Approximation (SAA) based methods similar to

those provided in Denton et al. (2007) to benchmark the model based heuristic.

In SAA, instead of using the worst case formulation we solve with expected second

stage costs. The expectation is based on scenarios drawn from an estimated

distribution of surgeries. The resultant two-stage stochastic optimization problem

is solved by the L-Shaped method (Birge and Louveaux, 1988). We describe the

model formulation of the SAA version and provide details on the estimation of the

distribution in the appendix. However, since the sample average based method

was unable to solve large-scale problems such as those found in the application, we

use this method on smaller problems constructed from real data. We provide the

results of the comparison between SAA based method and the robust optimization

based method in §2.5.

2.4 Parameter Estimation and Model Calibration

In this section we use historical data of surgery durations to choose the uncertainty

sets D(τ) and F(τ). The performance of robust optimization depends closely on

the definition of these uncertainty sets. If the optimal values of di, ∀i ∈ I in

the inner maximization problem (maxd∈D(τ) R(x,y, z,u, s,d)) are significantly

larger than the corresponding d̄i, the resulting first stage problem will be overly

pessimistic towards the realization of surgery durations and lead to higher first

stage costs. Conversely, if the optimal values of di, ∀i ∈ I are too close to the
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corresponding d̄i, the uncertainty sets would not cover many cases of future re-

alizations in which the surgery durations deviate significantly from the nominal

value and this would lead to higher second stage costs. Thus, we need to look at

the combined first and second stage costs while designing the uncertainty sets. De-

signing the uncertainty sets involves setting the following parameters: the nominal

surgery duration d̄i, ∀i ∈ I, the maximum deviation d̂i, ∀i ∈ I, and the robust

optimization parameter τ .

There have been several approaches suggested for designing uncertainty sets.

Ben-Tal et al. (2009) provide the theoretical background for deciding good uncer-

tainty sets. Denton et al. (2010) use the 10th and 90th percentile width of historical

surgery durations as the width [d̄i − d̂i, d̄i + d̂i] in an operating room assignment

application. Subsequently, they perform sensitivity analysis and calibrate their

model to an equivalent SAA based solution to decide the robust optimization

parameter τ . Bertsimas et al. (2013) propose using statistical hypothesis tests

to construct uncertainty sets. Denton et al. (2010) and Bertsimas et al. (2013)

model the uncertainty sets based on historically observed values of a single uncer-

tain parameter. In our application with a wide variety of surgery specialties with

considerable variability in surgery durations across specialties, a percentile width

not conditional on surgery characteristics would be unnecessarily wide, leading

to an overly pessimistic uncertainty set. Therefore, we incorporate these charac-

teristics and propose a joint estimation and calibration procedure to design the

uncertainty set. Our procedure provides tight uncertainty sets that take into

account observable surgery characteristics while making no assumptions on the

probability distribution of surgery durations. We further calibrate the uncertainty

set by evaluating the performance of the robust solution to empirical realizations.

There were two data sets available to us. The first data set ∆E ={
d̃(m), b̃(m)

}M
m=1

consists of M = 25700 samples of d̃(m) corresponding to the

historical realization of durations of surgery m and b̃(m) which represents the ob-
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served characteristics of surgery m. Table 2.2 provides details on the surgery char-

acteristics included in b̃(m), ∀m and the variable names used for the subsequent

regression. The second data set ∆C was partitioned into disjunctive training and

testing sets, ∆C−Train =
{

d̃(n), b̃(n)
}N1

n=1
and ∆C−Testing =

{
d̃(n), b̃(n)

}N2

n=1
. For

these data sets, N1 = 120 days and N2 = 60 days. Both these data sets consist of

d̃(n) representing the vector of realized durations and b̃(n) denoting the vector of

surgery characteristics of all surgeries performed on day n.

Table 2.2: Surgery data Description

Surgery characteristics Description Variable Name

Realized surgery

duration

In hours ACTUALHRS

Surgeon’s esti-

mate of surgery

duration

In hours BOOKEDHRS

Patient Class Inpatient, Outpatient or

Same Day Admit

PATCLASS

Continued on next page
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Table 2.2 – continued from previous page

Surgery characteristics Description Variable Name

Booked Current

Procedural Ter-

minology (CPT)

code

Medical code maintained

by American Medical As-

sociation defines the ser-

vices to be performed dur-

ing surgery. A surgery may

have multiple CPT codes.

The surgeon provides a list

of services that maybe per-

formed as a part of the

surgery. The realized CPT

codes may and often do vary

from the booked CPT code.

Surgeries in our data set

covered 2700 unique CPT

codes.

CPT

ASA Score A system for assessing

fitness of patients before

surgery, higher number

signifies a less fit pa-

tient. Takes integer values

between 1 and 6.

ASA

Patient age In years AGE

Surgery Service Cardiac Surgery, Neuro

Surgery, etc., full list as in

Table 2.11

SERVICE

Continued on next page
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Table 2.2 – continued from previous page

Surgery characteristics Description Variable Name

Surgeon’s name Names of 493 surgeons

unique surgeons (providers)

who have performed surg-

eries in the period over

which data was available

PROV

Number of CPT

codes

Number of CPT codes asso-

ciated with procedure

NUMCPT

We use ∆E and ∆C−Train to estimate D(τ) and F(τ). Most of the research in

estimating uncertainty sets is for single stage problems when feasibility is not

guaranteed. Since we have two stages and second stage feasibility is guaranteed

by Proposition 1, we develop the following procedure that comprises an estimation

and a calibration step.

Step 1: Estimation

First, for a given parameter ρ ∈ (0, 1), we define conditional quantile functions

gL(b; ρ) and gU(b; ρ) such that:

P
[
d̃ ≤ gL(b̃; ρ)

]
=

1− ρ
2

, and P
[
d̃ ≥ gU(b̃; ρ)

]
=

1− ρ
2

Thus, given observed surgery characteristics b̃ the future realization d̃ will lie in

the set
[
gL(b̃; ρ), gU(b̃; ρ)

]
with probability ρ. The true quantile functions are not

known to us, so we obtain estimates of the quantile functions ĝL(b̃; ρ) & ĝU(b̃; ρ)

through a conditional quantile regression method (Koenker, 2005) applied on the

data set ∆E. The use of conditional quantile regression for estimating uncertainty
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sets has been recently proposed by Tulabandhula and Rudin (2014). Quantile

regression estimates the quantiles of the response variable (i.e., the surgery du-

rations), given certain values of the predictor variables. Quantile regression has

several advantages over the commonly used ordinary least squares (OLS) regres-

sion. First, this approach suits our application better since our objective is to find

upper and lower bounds on surgery durations such that future realization would

lie within this bound with a given probability. Conditional quantiles provide these

bounds without making any assumption on the probability distribution of surgery

durations. Second, quantile regression is more robust to outliers and third, it

does not assume the dispersion of the response variable to be independent of the

predictor variables.

We perform quantile regression using the quantreg package available in R

(Koenker, 2013). The response variable is the realized surgery duration. The

possible set of predictors are the surgeon’s estimate of surgery duration, the fit-

ness level of the patient prior to the surgery measured by the American Society

of Anesthesiologist (ASA) score1, the age of the patient, whether the patient is

an inpatient or outpatient, the specialty of the surgery, the surgeons name, the

services provided indicated by the type of the Current Procedure Terminology

(CPT)2 codes used and the number of CPT codes used by the surgeons. For the

CPT codes and surgeon’s names we cluster the variables via a k-means cluster-

ing similar to He et al. (2012). This clustering was done in order to account for

the large number of factors in these variables and to avoid over-specification of

the model. The details of the clustering procedure followed is provided in the

Appendix.

The selection of variables was done comparing the Akaike Information Crie-

1https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-
system

2http://www.ama-assn.org/ama/pub/physician-resources/solutions-managing-your-
practice/coding-billing-insurance/cpt.page
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tria (AIC) and the Mean Square Prediction Error (MSPE). The results of these

tests are provided in the Appendix. We also checked for collinearity using Vari-

ance Inflation Factors (VIF) following the criteria discussed in (Hair et al., 2006,

pp. 191-193). Highly collinear variables (i.e. with VIF ≥ 10) were removed.

For example, we found that the specialty of surgery had a VIF of 40.1 as it was

collinear with CPT codes, as these codes were specific to a specialty. On perform-

ing these tests we found that the ASA score, the surgeon’s estimate of duration,

patient class (Inpatient, Outpatient or Same Day Admit), clustered variables cor-

responding to surgeons and CPT codes were significant. The ASA score is a

strong indicator of increasing complexity of the surgical procedure since it is an

indicator of the level of fitness of the patient before coming into the surgery. A

patient with an ASA score of 1, implying the patient is a healthy person would

be expected to demonstrate fewer complications during surgery while a patient

with an ASA score of 3 (with severe systemic disease) would be expected to have

more complications during surgery. We found that the coefficient of ASA score

was -0.023 at the 0.1 quantile and 0.122 at the 0.9 quantile. Thus, every increase

in ASA score contributes to approximately 7.3 minutes (≈ 0.122 hrs) of addi-

tional surgery time at the 0.9 quantile level, while the effect of increment in ASA

score is negligible for very short surgeries. This is intuitive as the negative effects

of patient fitness would be significant for longer surgeries and would not be as

impactful for shorter surgeries. As expected, the surgeon’s estimate of surgery

duration would be strongly correlated with the actual duration and would explain

variance not captured by other variables, since there are several factors that the

surgeon is aware of that are not captured by other available data. However, as

explained previously there is some error in surgeon’s estimates as well. We found

that surgeon’s estimate was on an average 12 minutes higher than actual surgery

durations. Also, the coefficient of surgeons’ estimates in the quantile regression

model was smaller for shorter surgeries than for longer surgeries. This is because
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surgeons tend to be more accurate in their estimates for longer surgeries than for

shorter surgeries. One possible explanation is that it was observed that surgeons

tend to round to the nearest quarter of an hour while providing their estimates.

This leads to an error which is more pronounced for shorter surgeries than for

longer surgeries. We also found that clusters of surgeons are significant because

as described in the Appendix these in effect represented the experience level of

surgeons. Finally, as anticipated, the type of surgery itself with its associated

CPT code affected surgical durations. However, the number of CPT codes was

not significant as they could be associated with relatively simpler sub-procedures

common to all surgeries. Similarly, the age of the patient was not significant as it

was captured in the surgeons estimate of duration.

Once we have obtained the estimated conditional quantile functions, for each

surgery i ∈ I we set, d̄i + d̂i = ĝU(b̃i; ρ), d̄i − d̂i = ĝL(b̃i; ρ). This gives,

d̄i =
ĝU(b̃i; ρ) + ĝL(b̃i; ρ)

2
and d̂i =

ĝU(b̃i; ρ)− ĝL(b̃i; ρ)

2

Define τ ′ ∈ [0, 1] so that τ = bτ ′|I|c. Here, τ ′ represents the fraction of total

surgeries in a given day |I| which have reach their maximum duration. We then

substitute the above equations in (2.22) and (2.23) for observed surgery char-

acteristics vector bi and given parameters ρ ∈ [0, 1] and τ ′ ∈ (0, 1). Then the

uncertainty sets are given by:

D(τ) = D(ρ, τ ′) =

{
d ∈ R|I| : di =

ĝU(b̃i; ρ) + ĝL(b̃i; ρ)

2

+ fi
ĝU(b̃i; ρ)− ĝL(b̃i; ρ)

2
, i ∈ I, f ∈ F(τ ′)

}
(2.43)

F(τ) = F(τ ′) =

{
f ∈ R|I| :

∑
i∈I

|fi| ≤ bτ ′|I|c,−1 ≤ fi ≤ 1

}
(2.44)
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Step 2: Calibration

If we had full information on the surgery durations (i.e., if they were observable ex

ante), and a deterministic solution could be executed, the resulting cost obtained

when there is full information would be a lower bound to any heuristic solution.

In stochastic programming this is referred to as the wait-and-see solution. The

full information cost on day n is given as:

WFI(n) = min

{∑
r∈R

crvr +
∑
a∈A

cqya +
∑
a∈A

coaOvera +
∑
r∈R

corOverr

}
(2.45)

subject to,

(2.2)− (2.20)

(2.25)− (2.29)

We solve WFI(n) for each day in ∆C−Train with d = d̃(n).

The first stage variables for day n obtained by solving IARSP for day n using

the model based heuristic are (x∗(n),y∗(n), z∗(n),u∗(n), s∗(n)). The cost of the model

based heuristic under a realized duration vector d̃(n) is defined as:

W(x∗(n),y∗(n), z∗(n),u∗(n), s∗(n); ρ, τ ′, d̃(n)) =
∑
r∈R

crvr +
∑
a∈A

cqya

+ R
(
x∗(n),y∗(n), z∗(n),u∗(n), s∗(n), d̃(n)

)
This represents the cost that would be realized at the end of day n if the model

based heuristic was implemented with uncertainty set D(ρ, τ ′). The average per-

formance of the model based heuristic across N samples relative to the full infor-

mation case is defined as:

W̄(ρ, τ ′) =
1

N1

N1∑
n=1

[
W(x∗(n),y∗(n), z∗(n),u∗(n), s∗(n); ρ, τ ′, d̃(n))−WFI(n)

]
WFI(n)

(2.46)

We calculate W̄(ρ, τ ′) for several values of ρ ∈ (0, 1) and τ ′ ∈ [0, 1] and choose

the pair that minimizes W̄(ρ, τ). This is summarized in Table 2.3.

35



Table 2.3: W̄(ρ, τ ′) across ρ and τ ′

ρ
τ

0.1 0.2 0.3 0.4

0.8 1.52 1.43 1.48 1.57

0.85 1.43 1.35 1.45 1.59

0.9 1.41 1.27 1.44 1.59

0.95 1.38 1.24 1.4 1.55

0.98 1.38 1.29 1.42 1.57

From Table 2.3 we can see ρ = 0.95 and τ ′ = 0.2 is optimal. This implies that at

a 95% confidence level, we can set 20% of all surgeries to its maximum durations

on any given day when we define the uncertainty sets D(τ) and F(τ) and solve

the IARSP. At this value the model based heuristic solution was 24% more than

the full information solution.

We used these values of ρ and τ ′ to evaluate the performance of model based

heuristic relative to full information case as defined in (2.46) for the testing data

set ∆C−Testing. Here, we found that the model based heuristic was 28% more

than the full information solution. Thus, the out of sample performance, using

∆C−Testing was close to the in sample performance using ∆C−Train. This provides

validation to use these values of ρ and τ ′ in the computational analysis described

next.

2.5 Computational Analysis

In this section, we conduct a computational analysis to evaluate our approach.

To perform this analysis, we used data provided by the UCLA RRMC on all

surgeries conducted in their operating room suite over a 14 month period. This

analysis was essential to provide confidence in our method. Our computational
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analysis is divided into two sections. In §2.5.1 we evaluate the performance of the

heuristic procedures described in §2.3.1. In §2.5.2 we compare the performance

of the model based heuristic with the actual resource assignment and scheduling

decisions made at this hospital and estimate the cost savings.

2.5.1 Performance Evaluation

The size and scope of the scheduling activities during this time period demon-

strated considerable variation as shown in Table 2.4. To ensure that our compu-

tational analysis captured this range of variation, we constructed five problems

of varying sizes as shown in Table 2.5. For each of these five sets of problem

instances we considered different values for cq, cor and coa. The actual value of

cq, coa and cor at UCLA RRMC were $1000 per day, $150 per hour, and $450 per

hour respectively. In addition to these actual values we considered values where

we scaled one of these costs by a factor of 2 or 1/2 while keeping the other two

at the current value. This led to 7 possible combinations of costs for each of the

five problem instances and a total of 7 × 5 = 35 possible problems. We tried to

solve the IARSP for these data sets using leading commercial solver for stochastic

programs such as ddsip (Märkert and Gollmer, 2008). However, other than the

smaller problem instances A and B, these solvers could not even generate feasible

solutions after more than 24 hours of computation, and the runs were aborted.

This provides validation for developing the model based heuristic to solve the

IARSP.
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Table 2.4: Data sets for performance analysis

Number of surg-

eries conducted

per day

Number of anes-

thesiologists

working per day

umber of ORs

functioning per

day

Minimum 30 28 4

Maximum 62 38 23

Average 42 32 22

95 percentile 53 36 23

Table 2.5: Problems used for performance analysis

Instance No. of surgeries,

|I|
No. of rooms,

|R|
No. of anesthe-

siologists, |A|
A 10 3 5

B 15 5 8

C 25 7 10

D 40 10 25

E 65 23 40

The heuristic procedures were coded in Python programming language (van

Rossum, 2001). The computational analysis were run on a workstation with 3.8

GHz AMD A10 processor, 8 GB of RAM, and Linux Mint as the operating system.

For the MIP subroutine calls we used Gurobi 5.63 (Gurobi Optimization, 2015)

called from Python via the Gurobi Python Interface. In all the computations

using the model based heuristic, we set the gap ε = 5%. Thus, all the solutions of

the model based heuristic were within a 5% gap from the lower bound and were

solved within 10 minutes.
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Tables 2.6 and 2.7 summarize the results obtained for the computational anal-

ysis. In Table 2.6 the performance of the model based heuristic and the practi-

tioner’s heuristic procedure is compared with the cost of the SAA based solution

for small-scale problems. This table shows that these procedures are all very close

to the SAA method and this does not change with changes in the cost parame-

ters. In Table 2.7 we consider the more realistic medium and large-scale problems.

Since SAA is unable to solve these problems, we provide the performance of the

model based heuristic with respect to the practitioner’s heuristic. From Table

2.7, we note that for these problems the model based heuristic provides signifi-

cant cost reductions over the practitioner’s heuristic. In particular, the percentage

cost reduction for these problems ranged from 2.26% to 7.56% averaging around

4.95%.
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Table 2.6: Performance Evaluation of Heuristic Procedures for small scale prob-

lems

Instance cq coa cor % change in cost of

Model Based Heuris-

tic from SAA solution

% change in cost

of Practitioner’s

heuristic solution

from SAA solution

A 1000 150 450 0 2.97

1000 150 900 0 4.61

1000 150 225 0 1.15

1000 300 450 0 2.34

1000 75 450 0 0.75

2000 150 450 0 2.97

500 150 450 0 2.97

B 1000 150 450 -1.15 3.64

1000 150 900 -1.74 5.67

1000 150 225 0 1.35

1000 300 450 -0.74 2.76

1000 75 450 0 0.73

2000 150 450 -1.15 3.64

500 150 450 -1.15 3.64

We can also observe from Table 2.7 that the gains of the model based heuris-

tic over the practitioner’s heuristic improves as the size of the problem increases.

This is because for smaller sized problems there are limited options and it is more

likely the practitioner’s heuristic achieves a solution that is close to optimal. Fur-
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Table 2.7: Performance Evaluation of Heuristic Procedures for medium and large-

scale problems

Instance cq coa cor % change in cost of Model Based

Heuristic from Practitioner’s heuristic

solution

C 1000 150 450 -4.55

1000 150 900 -6.45

1000 150 225 -2.56

1000 300 450 -3.46

1000 75 450 -2.26

2000 150 450 -5.55

500 150 450 -4.57

D 1000 150 450 -6.64

1000 150 900 -4.45

1000 150 225 -3.37

1000 300 450 -5.52

1000 75 450 -2.65

2000 150 450 -7.55

500 150 450 -4.75

E 1000 150 450 -7.03

1000 150 900 -5.74

1000 150 225 -4.47

1000 300 450 -6.69

1000 75 450 -3.45

2000 150 450 -7.56

500 150 450 -4.75
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ther, since in small sized problems |I| is low, the number of surgeries that reach

its worst case duration (i.e. τ = τ ′|I|) is also low. In these circumstances, the

solution of the model based heuristic and the practitioners heuristic are similar

and close to the nominal value solution, where surgical durations are set to its

nominal duration estimates. However, as the problem size increases, the number

of surgeries reaching its worst case duration increases. Under these circumstances,

the practitioner’s heuristic is outperformed by the model based heuristic, as the

optimization inherent to the model based heuristic is more effective in utilizing

resources that can be shared across multiple specialties and procedures. Finally,

note that increasing the on call costs leads to the practitioner’s heuristic doing

much worse as this heuristic opts for increasing the number of on call anesthesi-

ologists rather than trading off on call costs against overtime costs.

2.5.2 Model Validation

The objective of model validation was to demonstrate that the model based heuris-

tic provides tangible cost savings over current practice. This was an essential step

in convincing the management of the Operating Services department to imple-

ment our method. We performed model validation in two stages. In the first

stage the cost savings were computed using historical data. In the second stage,

we conducted live validation, where we compared in real time our decisions with

those made at this hospital. Note that while conducting these validations, the

heuristic had precisely the same information the planners at the UCLA RRMC

had at the point of planning.

In the historical validation, we took 80 sample days, such that we covered

the range of problem sizes encountered. These 80 samples were divided into 5

sets as described in Table 2.8. We next calculated the average costs obtained by

the model based heuristic and the costs resulting from the actual assignment and

sequencing that was done by the RRMC planners. This reduction in costs across
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the five problems are also reported in Table 2.8 and this shows that the benefits

of using the model based heuristic was significant and was increasing in problem

size.

Table 2.8: Results from historical validation

Surgeries per

day

% of days % reduction of cost of

Model Based Heuristic from

cost of actual plan

Cost sav-

ings ($)

<10 28 0

10-30 4 2.4

30-40 18 3.3

40-50 41 7.2

50-65 9 8.9

Table 2.9: Results from live validation

Surgeries

per day

% of days % reduction of

cost of Model

Based Heuristic

from cost of ac-

tual plan

Cost savings ($)

<10 30 0

10-30 0 0

30-40 11 2.1

40-50 48 6.4

50-65 11 9.1
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The real-time live validation was conducted over a 4 week period. The number

of surgeries per day over this period was similar to the range of problem sizes

observed historically as is shown in Table 2.8. The results for the live validation is

given in Table 2.9. This table shows that our heuristic reduced costs from current

practice on average from 6.4% to 9.1% on 16 out of the 28 days corresponding

to weekdays which were not holidays. This implied an estimated annual cost

savings between $2 million and $2.86 million. It is also important to note that the

practitioners heuristic and the model based heuristic provided the same solution

in the weekends where the number of surgeries conducted are low and both these

methods provided solutions corresponding to the nominal value solution.

The model based heuristic outperforms the current practice in both historical

and live validation for the following reasons. First, the nominal values obtained

via quantile regression procedure provided a better predictors for the realized

surgical duration than the surgeon’s estimates. Second, on average, around 50%

of the surgeries exceeded the nominal value. This required an increase in real-

ized workload from the nominal workload. We found that this increase can be

effectively achieved by setting τ ′ = 20%. This led to the model based heuristic

operating with fewer operating rooms and fewer anesthesiologists than actually

used at the hospital, since these resource assignments were based on trading off

the fixed costs for these resources with the chance of incurring overtime. Third,

on average in 60% of the surgeries, the surgeon’s estimate of surgery duration ex-

ceeded the realized duration. The planners chose additional resources and avoided

overtime based on these quoted times. Thus, the associated plans tended to incur

more resource usage costs than overtime costs in comparison to the model based

heuristic. However, since this decision to use more resources was made without ex-

plicit consideration of overtime costs and errors in the duration estimate provided

by the surgeons, this often led to greater total costs. In sum, the model based

heuristic outperforms current practice due to better prediction and a more effec-
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tive scheduling policy. The proportion of the gains due to each of these aspects

are analyzed and summarized in the Appendix.

Generally, in a stochastic decision problem, it is not valid to judge the quality

of a decision based on an outcome, as due to randomness a good outcome does

not necessarily imply a good decision. However, in this work, since the evaluation

and validation of the model based heuristic have been extensive, we were confident

that they would perform well in the real application. In the final analysis, the

real measure of performance of this heuristic is the quality of the decision based

on its solution, a question we consider next in the application.

2.6 Application

2.6.1 Implementation

We have implemented the model based heuristic as a decision support system at

the operating services department of the UCLA Ronald Reagan Medical Center.

Details of this system is provided in the Appendix. The results before and af-

ter the implementation across key operational metrics and costs are summarized

in Table 2.10. This table shows after implementation, the average number of

anesthesiologists on call decreased by 6.7% and average overtime hours for the

anesthesiologists on regular duty reduced by 3.7%. This contributed to an in-

crease of average daily utilization across the anesthesiologists by 3.5%. Similarly,

the average number of operations rooms used decreased by 8.6% and the aver-

age overtime hours at the operating rooms was reduced by 2.7%. This led to

an increased average daily utilization across the operating rooms by 3.8%. The

improvements in these operational metrics reduced average daily operating room

costs by 8.6%, average daily overtime costs by 2.7% and average daily call costs by

8.5%. This translates to an overall average daily cost saving of 7% or estimated

to be $2.2 million on an annual basis.
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Table 2.10: Summary of Results Before and After Implementation of Decision

Support System

Attributes Before After % Change

Average number of anesthesiolo-

gists on call per day

6.0 5.6 6.7

Average overtime per day for

anesthesiologists (hours)

18.2 17.5 3.7

Average daily utilization of anes-

thesiologists (%)

75 77.6 3.5

Average number of operating

rooms used per day

20.4 18.6 8.6

Average overtime per day for op-

erating rooms (hours)

18.5 18 2.7

Average utilization of operating

rooms per day (%)

78 81 3.8

Average daily operating room

costs ($)

57,350 52,417 8.6

Average daily overtime costs ($) 2,2375 2,1754 2.8

Average daily call costs ($) 7,145 6,527 8.5

Average total daily costs ($) 86,870 80,729 7.1

The model based heuristic improved upon decision making at operating services

due to two main reasons. First, it was more effective at utilizing the flexibility

of resources. Most anesthesiologists and operating rooms can perform more than

one specialty, typically a primary and a secondary specialty. The model identified

these operating room/anesthesiologist combinations and allocated surgeries across
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these different specialties to them. This led to better usage of resources than

the previous approach in which surgeries from a single specialty were assigned

to an operating room and anesthesiologist as much as possible. A surgery of

a different specialty was assigned to an operating room only when there were

high volume of surgeries in a particular day and this was often done without

explicit consideration of the allotted anesthesiologists’ specialty. Thus, this often

required a separate anesthesiologist to perform these surgeries, who were often

assigned from call and this was more costly. Second, the model based heuristic

explicitly considered uncertainty in surgical durations while determining the daily

schedule of an operating room. By using the estimation module, it determined

which surgeries could be longer and more uncertain and which surgeries could be

shorter and more certain. It then combined long uncertain surgeries with short

certain surgeries to effectively utilize gaps in the schedule in each operating room.

This in turn reduced the number of operating rooms each day with the resulting

cost reduction being more than any potential increases in overtime costs, thus

reducing total costs. In contrast, the previous approach used surgeons’ predictions

of surgery durations. To compensate for the errors in these predictions, planners

often underutilized operating rooms by leaving sufficient gaps between surgeries

as they did not want to create delays from scheduled start times of succeeding

surgeries and incur overtime costs. However, this often led to a larger number of

operating rooms being used each day and consequently higher total costs.

Finally, we considered the impact of the schedules generated by our approach

on the surgeons. While surgeons were not part of the operating services depart-

ment, they are a critical element in the system. First, we computed the average

idle time between surgeries and found that it reduced by 8 minutes after our work.

The surgeons did not find this reduction significant enough to be disruptive, and in

fact some of them preferred this as it made their schedule more efficient. Second,

we calculated the average number of surgeons per OR per day. Prior to our work,
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on an average there were 1.54 surgeons per OR per day. After implementing the

decision support system, there were 1.57 surgeons per OR per day. This marginal

increase suggests that most of the benefits of our approach come from making

the correct assignment of operating rooms and anesthesiologist to surgeries and

not from increasing the number of surgeons per OR per day. Both these aspects

were important to verify that the surgeons were not inconvenienced by the model

based approach.

2.6.2 Managerial Insights

We used the model based heuristic to generate several managerial insights. First,

we considered the impact of reducing variability in surgical durations. In prac-

tice, this could be achieved by better procedures such as check lists, improved

information technology, following the correct sequence in tasks and standardized

operating protocols derived from best practices. These measures have been ad-

vocated by surgeons (Bates and Gawande, 2003; Haynes et al., 2009; Gawande,

2010). In addition, variance can be reduced by improving the prediction of sur-

gical durations. This would require dividing the surgical process in to a series of

steps (such as time to incision, skin to skin and closure to exit) and predicting

each segment individually as different patient characteristics affect each segment

differently (Hosseini et al., 2014). The accuracy of this prediction can be im-

proved by collecting more data on patient characteristics and surgeon experience

(Kougias et al., 2012). To consider the impact of variance reduction, we started

with the current level of variability in surgical durations and systematically re-

duced the variance of the distribution of surgical durations across all surgeries

by a fixed value. We used these modified distributions to simulate realizations of

surgical durations. We then used these data sets to solve the IARSP using the

model based heuristic and calculated the resulting costs. These results are sum-

marized by Figure 2.4. This figure shows that the benefits of further reduction in
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variability decreases and that there is significant diminishing returns on reduction

of variability. This suggests that rather than invest in capital-intensive medical

equipment to achieve radical reductions in variability in surgical durations, the

major cost benefits can be gained by focusing on incremental reduction in vari-

ability that can be potentially achieved by better procedures and more detailed

data collection for improved predictive analytics.

Figure 2.4: Effect of reducing variability of surgical durations on costs
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Figure 2.5: Effect of extending shift timings of ORs on costs
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Second, we consider the impact of allowing surgeries to start in operating rooms

after 3 pm but before the end of the late shift of the anesthesiologists at 7 pm.

This would require additional fixed technician and nurse staffing costs. Such

extensions can be considered if surgical demand on any day is significantly larger

than average daily surgical demand. To perform this analysis, we considered

four levels of demand corresponding to increases from daily average demand in

surgeries that could occur during the days of any given week. For these scenarios,

we incrementally increased the number of operating rooms available after 3 pm

by one unit. We then calculated the resulting change in costs from the case when

we do not start surgeries after 3 pm but only use the day shift with additional

rooms to accommodate such increases in demand. These results summarized in

Figure 2.5 suggest that it is beneficial to allow such extensions and the number

of operating rooms used depends on the level of demand. This analysis helps

management understand how best to react to different levels of daily surgical

demand and also estimate the corresponding changes in costs.

Finally, we examined the benefit of increasing cross functionality of the op-

erating rooms. To do so, we considered the various specialties and calculated

the potential reduction in costs if the number of operating rooms available for

each specialty described in Table 1 is increased. In practice, such increases can

be achieved by investing in special equipment to convert general surgery operat-

ing rooms to have the cross functionality to accommodate a particular specialty.

These results described in Figure 2.6 show that as we increase the number of

operating rooms that could be used for a particular specialty, this can lead to

a significant reduction in costs and these benefits are often more pronounced in

certain specialties. This analysis forms a basis to identify such specialties and

determine the priority in which these operating rooms should be made cross func-

tional to enable these additional rooms for the specialties. Further, an additional

advantage of making operating rooms cross functional were that a higher number
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of daily surgeries could be more effectively accommodated without conducting new

surgeries after 3 pm. In particular, we found this approach led to at least an addi-

tional 5% reduction from the lowest costs attainable for all the demand scenarios

considered in Figure 2.5. This provides further justification for management to

make the operating rooms more cross functional.

Figure 2.6: Effect of increasing number of specialty rooms on costs
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2.6.3 Qualitative Impact

The organizational impact of our work has been significant. Prior to our work,

simple rules were used to make important decisions on allocation of anesthesiol-

ogists and rooms to surgeries and determining surgery start times. These rules

developed based on experience and anecdotal evidence worked well during holi-

days and weekends when the number of surgeries conducted were low. However,

as shown in Section 5 and observed during the implementation, our model sig-

nificantly outperformed current practice during other days where the number of

surgeries performed was high and this resulted in considerable cost savings. Thus,
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our work demonstrated the value of model based approach and operations re-

search methods in dealing with complexity. This has encouraged the management

to investigate other problems in this department using a structured and rigorous

approach by employing operations research-based methodologies.

The managerial insights generated from our model have also contributed to

the organizational impact. While the effect of variance reduction on improved

clinical outcomes has been extensively documented (Neuhauser et al., 2011), our

analysis showed that this could also reduce costs. This provided management

with the further impetus to implement six sigma programs (Cima et al., 2011) to

reduce variability at this department. In addition, our analysis provides manage-

ment with clear guidance on when to start new surgeries after the day shift and

in how many rooms. This provides them with a practical approach to mitigate

the impact of varying levels of daily surgical demand on costs and is currently

under consideration for implementation in the short term. Finally, we showed the

benefits of making some operational rooms cross functional and how to prioritize

implementation among the specialties. Furthermore, we demonstrate that this

could potentially be a very effective way to accommodate changes in daily sur-

gical demand. While the management at the operating services department was

intrigued by this analysis, they felt that there could be significant investments re-

quired and this could also lead to disruptions in the schedule while some operating

rooms were being reconfigured. Therefore, they are considering this initiative as

part of the next broader hospital renovation project.

2.6.4 Limitations

This work has the following limitations. First, the estimation of uncertainty sets

can be improved with additional data on the duration of each step in a surgery.

However, this data was not available in our application. Second, we do not ex-

plicitly consider requests from surgeons for particular start times on a given day
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and for specific anesthesiologists. While these aspects can be easily incorporated

in our model, the management felt that accommodating these requests explicitly

can make the overall schedule inefficient and could create additional costs. There-

fore, they preferred to make changes to the output in the decision support system

only in the most exceptional circumstances. Third, we assume that the overtime

payment sufficiently compensates staff for extended shifts. However, in practice,

such extensions are unpredictable and staff may not prefer such type of overtime.

Thus, there is an implicit inconvenience cost associated with the overtime cost

that is not considered in our work. Similarly, we do not consider the inconve-

nience costs associated with an anesthesiologist being in call, but not being asked

to come in to work. While these aspects can be included in our model by suitably

appending the overtime and call costs with the appropriate inconvenience costs,

quantifying these costs would be challenging. In this regard, recent research in

structural estimation (Olivares et al., 2008) could potentially be used to calculate

these inconvenience costs and further enhance the outputs of the model. Finally,

some anesthesiologists can be used across multiple specialties and this feature was

incorporated in our model. However, we do not consider their preferences across

specialties as such data was unavailable to us. Future work could focus on all

these aspects to improve the model and its ability to attend to the interests of the

surgical teams.

In conclusion, the methodology described in this paper has had a major eco-

nomic and organizational impact at the operating service department at the UCLA

RRMC. This organization expects to maintain the described gains and to increase

them continuously several years into the future.

53



2.7 Appendix

Proof of Proposition 1

By definition, the IARSP is said to have relatively complete recourse if there

exists a feasible second stage solution for any first stage feasible solution (Thiele

et al., 2009). Thus, we need to show that there exist feasible Si, Overa, Overr∀i ∈
I, a ∈ A, r ∈ R satisfying (2.25) through (2.29) ∀d ∈ D(τ) ∀(x,y, z,u, s) ∈ K1,

where K1 is the feasibility set of the first stage problem.

Let S̄i = maxa∈A t
start
a +

∑
j∈I−{i}

(
d̄j + d̂j

)
define an upper bound on Si, the

start time of surgery i. This follows as S̄i would be the start time of surgery

i if all surgeries start after the start time of the last shift (maxa∈A t
start
a ), i is

the last surgery to be performed in the day after all the other surgeries have

been performed and every other surgery j lasts for its maximum allowed duration(
d̄j + d̂j

)
. Thus, Si is bounded from above. We define Mseq = maxi∈I S̄i +

maxi∈I

(
d̄j + d̂j

)
.

Let (x,y, z,u, s) ∈ K1 be some first stage feasible solution. We next show that

Si = maxh∈I {sh} +
∑

h∈I,h 6=i uhidh ∀i ∈ I is a feasible solution to (2.25). First

observe that by our definition of Mseq, this constraint is deactivated when uij = 0.

To check the feasibility when uij = 1 note from (2.12) that uji = 0. Substituting

the values of Si and Si in (2.25), we get:

max
h∈I
{sh}+

∑
h∈I
h6=j

uhjdh ≥ max
h∈I
{sh}+

∑
h∈I
h6=i

uhidh + di −Mseq (1− uij) ∀i, j ∈ I

(2.47)

Separating the term uijdi from the summation on the LHS and the term ujidj
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from the summation on the RHS leads to:

max
h∈I
{sh}+

∑
h∈I
h6=i,j

uhjdh + uijdi ≥ max
h∈I
{sh}+

∑
h∈I
h6=i,j

uhidh + di + ujidj

−Mseq (1− uij) ∀i, j ∈ I
(2.48)

Next, setting uij = 1, uji = 0 and simplifying the above expression we get,∑
h∈I
h6=i,j

dh (uhj − uhi) ≥ 0 (2.49)

From (??) uhj ≥ uhi + uij − 1. As uij = 1, this implies, uhj − uhi ≥ 0. There-

fore, Si = maxh∈I {sh} +
∑

h∈I,h 6=i uhidh ∀i ∈ I is a feasible solution to (2.25)

∀(x,y, z,u, s) ∈ K1. Note that (2.26) is satisfied since Si ≥ si. Since there ex-

ists a feasible Si ∀i ∈ I in the recourse problem, then there will always exist

Overa ≥ 0 ∀a ∈ A and Overr ≥ 0 ∀r ∈ R for any given x, z satisfying (2.27)

through (2.29). Thus, the IARSP has relatively complete recourse. This result

can be extended to the case where the integrality condition on (x,y, z,u, s) is

relaxed. The proof of this extension is provided in 2.7.
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Proof of Proposition 2

For a given first stage solution (x,y, z,u, s) and an arbitrary d ∈ D(τ), the dual

of the recourse function RD(x,y, z,u, s,d) is given by:

RD(x,y, z,u, s,d) = max

{∑
i∈I

di

 ∑
j∈I−{i}

λij +
∑
a∈A

µia +
∑
r∈R

θir


+
∑
i∈I

siφi −Mseq

∑
i,j∈Ii 6=j

λij (1− uij)

−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θir (1− zir)

−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

subject to,

∑
i∈I

µia ≤ coa ∀a ∈ A (2.50)

∑
i∈I

θir ≤ cor ∀r ∈ R (2.51)

∑
j∈I
j 6=i

λij −
∑
j∈I
j 6=i

λji +
∑
a∈A

µia +
∑
r∈R

θir − φi ≥ 0 ∀i ∈ I (2.52)

λij, µia, θir, φi ≥ 0 ∀i, j ∈ I, a ∈ A, r ∈ R (2.53)

Here, λij, µia, θir, φi ∀i, j ∈ I, a ∈ A, r ∈ R are dual variables corresponding to

constraints (2.25)-(2.29) respectively. Q(x,y, z,u, s) can now be written as
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Q(x,y, z,u, s) = max

{∑
i∈I

(
d̄i + fid̂i

) ∑
j∈I−{i}

λij +
∑
a∈A

µia +
∑
r∈R

θir



+
∑
i∈I

siφi −Mseq

∑
i,j∈Ii 6=j

λij (1− uij)

−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θir (1− zir)

−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

subject to,

(2.50)− (2.53)∑
i∈I

|fi| ≤ τ (2.54)

−1 ≤ fi ≤ 1 ∀i ∈ I (2.55)

Simplifying the objective function,

Q(x,y, z,u, s) = max

{∑
i∈I

(
d̄iπi + fiπid̂i

)
+
∑
i∈I

siφi

−Mseq

∑
i,j∈Ii6=j

λij (1− uij)−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)

−Mroom

∑
i∈I
r∈R

θir (1− zir)−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

subject to, (2.50)− (2.55)

πi =
∑

j∈I−{i}

λij +
∑
a∈A

µia +
∑
r∈R

θir ∀i ∈ I (2.56)

πi ≥ 0 ∀i ∈ I (2.57)
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Q(x,y, z,u, s) is a bilinear optimization problem because of the presence of

bilinear terms fiπi in the objective function. Further, at optimality f ∗i ≥ 0 ∀i ∈ I.

This is true as πi ≥ 0 and the feasibility set of fi is independent of πi. If τ is

a positive integer, constraints (2.54) and (2.55) constrain the feasibility set of fi

∀i ∈ I to be the set {0, 1}. This implies that:

fiπi =


πi, if fi = 1

0, if fi = 0

∀i ∈ I

We introduce an additional variable ξi = fiπi and rewrite Q(x,y, z,u, s) as fol-

lows:

Q(x,y, z,u, s) = max

{∑
i∈I

(
d̄iπi + ξid̂i

)
−Mseq

∑
i,j∈Ii 6=j

λij (1− uij) +
∑
i∈I

siφi

−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θir (1− zir)

−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

subject to, (2.51)− (2.57)

ξi ≤Mffi ∀i ∈ I (2.58)

ξi ≤ πi ∀i ∈ I (2.59)

ξi ≥ 0 ∀i ∈ I (2.60)

Where, Mf is a sufficiently large positive number. Thus, Q(x,y, z,u, s) can

be written as a mixed-integer program.

Proof of Proposition 3

This proof is adapted from Thiele et al. (2009). For conciseness of nota-

tion we represent the set defined by (2.50)-(2.53) as Λ(x,y, z,u, s). Also, let

λ = (λij)∀i, j ∈ I, µ = µia∀i ∈ I, a ∈ A, θ = θir∀i ∈ I, r ∈ R, φ = φi∀i ∈ I.
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From the proof of Proposition 2 and strong duality, we get:

R(x,y, z,u, s,d) = max
(λ,µ,θ,φ)
∈

Λ(x,y,z,u,s)

{∑
i∈I

di

 ∑
j∈I−{i}

λij +
∑
a∈A

µia +
∑
r∈R

θir


+
∑
i∈I

siφi −Mseq

∑
i,j∈Ii 6=j

λij (1− uij)

−Manesth

∑
i∈I
a∈A

µia (1− xia + ya)

−Mroom

∑
i∈I
r∈R

θir (1− zir)−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µiat
end
a

}

(2.61)

Let dl ∈ arg maxd∈D(τ) R(xl,yl, zl,ul, sl,d). From equation (2.21),

Q(x,y, z,u, s) = maxd∈D(τ) R(x,y, z,u, s,d). Then for an arbitrary

(x,y, z,u, s),

Q(x,y, z,u, s) ≥R(x,y, z,u, s,dl) (2.62)

Furthermore, let (λl,µl,θl,φl) be an optimal solution of (2.61) with

(x,y, z,u, s,d) = (xl,yl, zl,ul, sl,dl). From (2.61) we get:

R(x,y, z,u, s,dl) ≥
∑
i∈I

dli

 ∑
j∈I−{i}

λlij +
∑
a∈A

µlia +
∑
r∈R

θlir

+
∑
i∈I

siφ
l
i

−Mseq

∑
i,j∈Ii 6=j

λlij (1− uij)

−Manesth

∑
i∈I
a∈A

µlia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θlir (1− zir)

−
∑
i∈I
r∈R

θlirT
end −

∑
i∈I
a∈A

µliat
end
a (2.63)
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From, equation (2.62) and (2.63) we get,

Q(x,y, z,u, s, s) ≥
∑
i∈I

dli

 ∑
j∈I−{i}

λlij +
∑
a∈A

µlia +
∑
r∈R

θlir

+
∑
i∈I

siφ
l
i

−Mseq

∑
i,j∈Ii 6=j

λlij (1− uij)

−Manesth

∑
i∈I
a∈A

µlia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θlir (1− zir)

−
∑
i∈I
r∈R

θlirT
end −

∑
i∈I
a∈A

µliat
end
a (2.64)

From (2.56) and (2.64) we get:

Q(x,y, z,u, s, s) ≥
∑
i∈I

(
d̄iπ

l
i + ξlid̂i

)
+
∑
i∈I

siφ
l
i −Mseq

∑
i,j∈Ii 6=j

λlij (1− uij)

−Manesth

∑
i∈I
a∈A

µlia (1− xia + ya)−Mroom

∑
i∈I
r∈R

θlir (1− zir)

−
∑
i∈I
r∈R

θirT
end −

∑
i∈I
a∈A

µliat
end
a (2.65)

Therefore, the right hand side of (2.65) is a lower bound on Q(x,y, z,u, s).

Proof of Proposition 4

The value function of a linear program z(b) = min
{
cTx|Ax ≥ b

}
is a piecewise

linear convex function over the domain for which the linear program is feasible

(Martin, 1999)[Corollary 2.49, pp. 75].

From the proof of the extension of Proposition 1 given in 2.7, for any

d ∈ D(τ), if KLP
1 is the feasibility set of the first stage problem with the

integrality condition on (x,y, z,u, s) relaxed and (x,y, z,u, s) ∈ KLP
1 ,

mathbfR(x,y, z,u, s,d) is a feasible linear program over its domain as

(x,y, z,u, s) appear in the right hand side of its constraints. Thus, from above,

R(x,y, z,u, s, s) is a piecewise linear convex function in (x,y, z,u, s, s) for any
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given d ∈
mathcalD(τ). From equation (2.21), Q(x,y, z,u, s, s) =

maxd∈D(τ)R(x,y, z,u, s, s). Therefore, Q(x,y, z,u, s, s) is also piecewise-linear

and convex in (x,y, z,u, s, s).

Proof of Proposition 5

This proposition is proved by using an interchange argument. We compare two

solutions. The first solution called Solution 1 is when uij = 1, uji = 0 with

recourse variables Sk, Overa and Overr. The second solution called Solution 2 is

when uij = 0, uji = 1 with recourse variables S ′k, Over
′
a, Over

′
r. Let there be p

surgeries between i and j. The first stage variables in the two solutions do not

differ for any surgery preceding and following surgeries i, j, k ∀k ∈ {1, 2, . . . , p}.
In the recourse of Solution 1, the following would be true,

Sk ≥ Si + d̄i + d̂ifi k ∈ {1, 2, ..., p} (2.66)

Similarly, in the recourse of Solution 2, the following would be true,

S ′k ≥ S ′j + d̄j + d̂jfj k ∈ {1, 2, ..., p} (2.67)

Note that S ′j = Si. If that were not true and S ′j < Si, this would imply that

there exists a δ > 0 such that S ′j = Si − δ is a feasible solution to Solution 2.

Also since surgeries i, j are done by the same anesthesiologists and in the same

rooms, and the first stage variables of all the preceding surgeries are not changed

in the two solutions, then in Solution 1, Si − δ is a feasible start time to surgery

i, which would imply Sk ≥ Si − δ + d̄i + d̂ifi. Then the surgeries k ∈ {1, 2, . . . , p}
may start earlier by δ and all surgeries following these surgeries may be brought

forward. This would imply that the recourse cost can be further decreased, which

would be a contradiction to Solution 1 in which Si is already the solution of the

minimization of the recourse problem. We can use similar logic to prove that

Si < S ′j would also lead to a contradiction to Solution 2. Thus, S ′j = Si.
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As d̄j ≥ d̄i, d̂j ≥ d̂i and S ′j = Si this implies that S ′k ≥ Sk for k ∈ {1, 2, ..., p}.
This also implies that S ′h ≥ Sh ∀h ∈ I such that ukh = 1 since from (28),

S ′h ≥ S ′k+ d̄k+ d̂kfk−Mseq(1−ukh) ≥ Sk+ d̄k+ d̂kfk−Mseq(1−ukh) = Sh ∀k, h ∈ I

Hence, from (2.27) and (2.28), Over′r ≥ Overr and Over′a ≥ Overa. Thus, for

any surgery duration, the objective function with the longer surgery first would

have higher overtime.

The Assignment and Scheduling Decision Making Environment

Assignment and scheduling decisions at operating services department in the

UCLA RRMC is complicated by the large number of Operating Rooms (ORs)

and anesthesiologists, variety in surgical procedures, variability in anesthesiolo-

gist workload and unpredictability in surgical durations. This section provides

more details on these aspects. Table 2.11 shows the average number of proce-

dures performed per day and the range in the number of surgeries across the

various specialties. Figure 2.7 shows the uncertainty in the total anesthesiologist

workload per day. The two most apparent sources of this variability are in the

number of surgeries and the mix of specialties. However, Figure 2.8 shows that

even if we control for these factors, there is still considerable variability in total

workload per day. This variability arises because of differences across procedures

within a specialty and because different patients react differently even to the same

procedure (Schaefer et al., 2005). As a direct consequence, the required number of

resources (i.e., rooms with anesthesiologists) at any instant as shown in Figure 2.9

and surgical durations are unpredictable. Specifically, the coefficient of variation

of surgery duration across these 2700 types procedures varies from 0.75% to 125%.
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Sample Average Approximation Solution for the Integrated Anesthesi-

ologist and Room Scheduling Problem

In this section we provide the formulation and a short description of sample aver-

age approximation procedure based solution to solve the integrated anesthesiolo-

gist and room scheduling problem.

The variable and parameter description is as described in §2.3 in the paper.

The difference between the sample average approximation formulation and the

robust optimization formulation is that the surgery duration di ∀i ∈ I, instead

of belonging to an uncertainty set are now modeled as random variables and are

denoted by di(ω) under scenario ω ∈ Ω. For |I| surgeries the random vector

d(ω) =
{
d1(ω), d2(ω), . . . , d|I|(ω)

}
is the vector of surgery durations under sce-

nario ω ∈ Ω. The support of d is R|I|+ . Following the evidence found in clinical

literature (Strum et al., 2000) and standard assumptions in surgery scheduling

literature (Batun et al., 2011; Denton et al., 2010) we assumed that these di are

independent and have log-normal distribution. The standard formulation of the

resulting two-stage stochastic program with recourse is:

min

{∑
r∈R

crvr +
∑
a∈A

cqya + E [R(x,y, z,u, s,d(ω))]

}
(2.68)

subject to,

(2.2)− (2.20)

and,

R(x,y, z,u, s,d(ω)) = min

{∑
a∈A

coaOvera(ω) +
∑
r∈R

corOverr(ω)

}
(2.69)

subject to,
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Sj(ω) ≥ Si(ω) + di(ω)−Mseq(1− uij) ∀i, j ∈ I (2.70)

Si(ω) ≥ si ∀i ∈ I (2.71)

Overa(ω) ≥ Si(ω) + di(ω)− tenda

−Manesth(1− xia + ya) ∀i ∈ I, a ∈ A (2.72)

Overr(ω) ≥ Si(ω) + di(ω)− T end −Mroom(1− zir) ∀i ∈ I, r ∈ R
(2.73)

Si(ω), Overa(ω), Overr(ω) ≥ 0;∀i ∈ I, a ∈ A, r ∈ R (2.74)

Assuming a log-normal distribution we estimate the conditional mean and stan-

dard deviation for each cluster of CPT codes. From this estimated distribution

we draw Ns = 1000 samples and formulate the sample average approximation of

the two-stage stochastic program as:

min

{∑
r∈R

cr +
∑
a∈A

cqya +
1

Ns

Ns∑
n=1

R(x,y, z,u, s,dn)

}
(2.75)

subject to,
(2.2)− (2.20)

and,

R(x,y, z,u, s,dn) = min

{∑
a∈A

coaOver
n
a +

∑
r∈R

corOver
n
r

}
(2.76)

subject to,

Snj ≥ Sni + dni −Mseq(1− uij) ∀i, j ∈ I (2.77)

Sni ≥ si ∀i ∈ I (2.78)

Overna ≥ Sni + dni − tenda −Manesth(1− xia + ya) ∀i ∈ I, a ∈ A
(2.79)

Overnr ≥ Sni + dni − T end −Mroom(1− zir) ∀i ∈ I, r ∈ R (2.80)

Sni , Over
n
a , Over

n
r ≥ 0 ∀i ∈ I, a ∈ A, r ∈ R (2.81)

64



We solve the above program by the integer L-shaped decomposition framework

(Birge and Louveaux, 2011). The results of the solution procedure are provided

in Table 2.7 of the main paper.

Quantile Regression Procedure for Estimating Uncertainty Set D(τ)

We develop a quantile regression model for predicting gL( ˜b; ρ) and gU( ˜b; ρ) which

are used in (2.43) to estimate the uncertainty set D(τ). As the objective of this

model was to predict quantiles, we prefer a parsimonious model with predictive

power rather than an over-specified model. For evaluation of the predictive power

of this model we use an out of sample Mean Square Prediction Error (MSPE) with

respect to the conditional median. To avoid over-specification of the model, we use

an Akaike Information Criterion (AIC). The dataset ∆E had 25700 observations.

∆E was divided into two disjoint datasets ∆E−Train (19300 observations) and

∆E−Test (6400 observations). The quantile regression was built on ∆E−Train and

the out-of-sample MSPE was performed on ∆E−Test. The regression model was

built using the following steps:

Step 1: Dimension Reduction. Due to the large number of CPT codes

and surgeons compared to the number of observations, we performed clustering to

reduce the number of factor variables corresponding to CPT codes and surgeons.

For surgeries with multiple CPT codes, we concatenated the CPT codes to create

a composite code. For example, if a procedure consisted of CPT codes A, B

and C, we created the composite code A-B-C. After this procedure the total

number of unique surgery types grew from 2706 to 4061 as there are now more

unique procedures with each combination being a different code. Subsequently,

we performed a k-means clustering on the median values of observed surgery

duration for each unique procedure code. This clustering procedure is similar to

that performed in He et al. (2012). We plot the number of clusters against the %

variance explained and choose the elbow point for selecting the total number of

65



clusters. We perform similar clustering procedure for the surgeons. From Figure

2.10 and 2.11 we choose 6 clusters for both CPT codes and surgeons. This choice

of clusters explained 95% of the variance in median surgical durations. We use

these clustered variables in the subsequent quantile regression and name them

CPTCLUST for the CPT clusters and PROVCLUST for the surgeons.

Step 2: Quantile Regression From the dataset ∆E, there are 8 possi-

ble explanatory variables that could be included for modeling surgical durations.

However, using the CPT cluster variable (CPTCLUST ) and surgery service vari-

able (SERVICE ) at the same time led to an ill-defined model matrix. This was

due to the collinearity between these two variables as measured by the Variance

Inflation Factor (VIF) as described in Hair et al. (2006). The VIF for SERVICE

was 40.19. We removed this variable and found that none of the other variables

demonstrated a V IF > 10, thus meeting the criteria for not exhibiting significant

collinearity (Table 2.12).

Subsequently, we performed quantile regression incorporating the above 7 vari-

ables. We then sequentially remove variables in increasing order of significance

and compare the out-of-sample MSPE and the AIC for the resulting models.

The results are shown in Table 2.13. Incorporating surgeon information (i.e.

PROV CLUST ), CPT information (i.e., CPTCLUST ), age and ASA score im-

proves the prediction and leads to a lower AIC value. Therefore, these variables

were incorporated in the model. The number of CPT codes (NUMCPT) was

excluded from the final model specification as adding it did not lead to any im-

provement in MSPE or AIC. The final specification of the quantile regression

model was thus,

ACTUALHRS = BOOKEDHRS + ASA+ AGE + PATCLASS

+ CPTCLUST + PROV CLUST (2.82)

Next, in Table 2.14 we provide the coefficients of the above quantile regression
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model at several quantile values (10th, 30th, 60th and 90th quantile). This table

demonstrates an advantage of using quantile regression instead of OLS regression.

In particular, it allows for the effect of variable to be different at different quantiles.

The coefficient of BOOKEDHRS, representing the surgeons’ estimate of surgery

duration, increases with increasing quantiles of surgery duration. This implies

that more weight is provided to surgeons estimate for longer surgeries. This could

imply that surgeons provide a more accurate estimate for longer surgeries than for

shorter surgeries. One reason for this could be that surgeons often round up or

down to the nearest quarter of an hour while providing estimates. This rounding

off would lead to more significant differences for shorter surgeries than for longer

surgeries. Another variable that demonstrates changing coefficients with quantiles

is ASA. The coefficient of the ASA code increases with increasing quantiles. This

could imply that for longer surgeries each increase in ASA score contributes more

to the surgery duration than for shorter surgeries. This is also intuitive as the

fitness of the patient before surgery would be more significant for longer and more

complex procedures.

The Decision Support System at the UCLA RRMC

The decision support system for integrated anesthesiologist and operating room

scheduling at the UCLA RRMC was built using the Python programming lan-

guage and a schematic of this system is shown in Figure 2.12. This system consists

of an uncertainty set estimation module and an optimization module. The surgery

characteristics were provided using the CareConnect database at the hospital and

inputted to the uncertainty set estimation module. The output from this module

was sent along with anesthesiologist availability and the surgery resource specialty

information provided by the Qgenda database to the optimization module. This

solved the IARSP using the model based heuristic and generated an optimized

schedule for the following day specifying the assignment decisions of anesthesi-
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ologists and operating room to surgeries along with their scheduled start times.

The output of this module was provided to the planner who made adjustments as

needed to accommodate special requests by surgeons to change start times or for

rooms with additional specialized equipment or for specific anesthesiologists.

There were several challenges in implementing this system. First, the Care-

Connect database and the Qgenda database had to be accessed daily and their

output had to be reformatted to be compatible with the uncertainty set estimation

and the optimization modules. This necessitated the development of a specialized

automated interface which required regular maintenance. Second, the planners

were initially skeptical about the ability of our system to consider all specialties

and constraints. Further, they were unsure if the prediction of surgical durations

was better than estimates made by the surgeons and if the model had adequately

captured uncertainty in surgical durations. They felt that if these aspects were

not effectively incorporated, this could lead to schedule disruptions, unsatisfied

patients and extensive overtime costs. To ensure that the planners were confident

with this system, we ran the model in parallel with their approach as described

in §2.5.2 of the paper, so that they could understand the solution of the model

and compare this with their own rules. They were reassured that the model solu-

tion corresponded to their solution when the number of daily surgeries was small.

However, they also appreciated how the model solution outperformed their rules

when the number of daily surgeries was high and the resulting scheduling com-

plexity was larger. In this scenario, the model was more effective in utilizing the

flexibility of the multiple parallel resources and considering uncertainty in surgi-

cal durations. A third challenge in implementing the system was that surgical

characteristics had to be updated and new procedures added to the system. Since

these required specialized clinical input, a formalized procedure had to be insti-

tuted where the feedback of the surgeons and anesthesiologists had to be solicited

and manually updated in the CareConnect database. This was time consuming
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and had to be done in monthly basis. However, this was essential to ensure the

continued efficacy of our system.

Evaluation of the Prediction and Scheduling Benefits of the Model

Based Heuristic

In this section, we analyze what proportion of the gains were due to a better

prediction method for surgical durations and how much was due to the scheduling

policy. To conduct this analysis, we used the estimates of surgical durations made

by the surgeons and ran our model for the live and historical validation. Note

that the resulting gains would now be entirely from the scheduling policy. We

then subtracted these gains from the original benefits which considered prediction

and scheduling to calculate the gains of the prediction method. This analysis

showed that on average 41% of the benefits were due to better prediction and 59%

was due a better scheduling policy. These results demonstrate that due to the

complexity of the problem, the most benefits can be got by combining prediction

and optimization, an aspect for which robust optimization is particularly well

suited.

Proof of Extension of Proposition 1

Let IARSPLP be the form of the IARSP with the integrality conditions on

(x,y, z,u, s) relaxed. Let the feasibility set of IARSPLP be denoted by KLP
1 .

To prove that ISRSPLP has relatively complete recourse we show by mathemat-

ical induction that there exist feasible Si ≥ 0, Overa ≥ 0, Overr ≥ 0 ∀i ∈ I, a ∈
A, r ∈ R ∀(x,y, z,u, s) ∈ KLP

1 and ∀d ∈ D(τ). The proof of Proposition 1 implies

that it is now sufficient to prove the existence of a feasible Si∀i ∈ I that satisfies

(2.25). We consider a base case and an induction step, to show this result.

Base case: Let there be two surgeries I = {1, 2} and also let there be some
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(x, z,u, s) ∈ K1 and d ∈ D(τ). Further, let Mseq =
∑

i∈{1,2}(d̄i + d̂i). Then the

following is a feasible solution to (2.25) through (2.29),

S1 = s1 + s2 + d2 +Mseq(1− u12) (2.83)

S2 = s1 + s2 +Mseq (2.84)

Proof: Since u12 ≤ 1, (2.26) is satisfied. For these two surgeries, (2.25) can be

written as,

S2 ≥ S1 + d1 −Mseq(1− u12) (2.85)

S1 ≥ S2 + d2 −Mseq(1− u21) (2.86)

Substituting the value of S1 and S2 from (2.83) and (2.84) in (2.85),

s1 + s2 +Mseq ≥ s1 + s2 + d1 + d2 +Mseq(1− u12)−Mseq(1− u12) (2.87)

The above simplifies to Mseq ≥ di + d2, which is true by our choice of Mseq. Next,

substituting the values of S1 and S2 in (2.86),

s1 + s2 + d2 +Mseq(1− u12) ≥ s1 + s2 +Mseq + d2 −Mseq(1− u21) (2.88)

This simplifies to Mseq ≥ Mseq(u12 + u21) which is true since u12 + u21 ≤ 1

from (2.12). Therefore, the values of S1 and S2 satisfy (2.25) and IARSPLP has

relatively complete recourse for I = {1, 2}.

Induction step: Let IARSPLP have relatively complete recourse for I =

{1, 2, . . . , k − 1} and for this I, Mseq = M ′ and S ′i ∀i ∈ I be a feasible solution.

Thus,

S ′j ≥ S ′i + di −M ′(1− uij) ∀i, j ∈ {1, 2, . . . , k − 1} (2.89)

We now prove that IARSPLP has relatively complete recourse for I =

{1, 2, . . . , k − 1, k}.

Proof: Let I = {1, 2, . . . , k}, Mseq = 2M ′ and let there be some (x,y, z,u, s) ∈
KLP

1 and d ∈ D(τ).
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We show that there exists feasible Si ∀i ∈ I. To show this, we first provide

a feasible solution for Si ∀i ∈ I − {k}. Then we show that for any such feasible

Si ∀i ∈ I−{k}, there exists a feasible Sk. We define the following feasible solution

for i ∈ I − {k}

Si = S ′i + dk + max
h∈I
{sh}+M ′(1− uik) ∀i ∈ I − {k} (2.90)

All such Si satisfy (2.26). To verify that they satisfy (2.25), we substitute the

values of Si and Mseq in (2.25).

S ′j + dk + max
h∈I
{sh}+M ′(1− ujk) ≥ S ′i + dk + max

h∈I
{sh}+M ′(1− uik)

+ di − 2M ′(1− uij) ∀i, j ∈ {1, 2, . . . , k − 1}

Simplifying, we get,

S ′j ≥ S ′i + di −M ′(1− uij)−M ′(1 + uik − ujk − uij) (2.91)

From (2.89), S ′j ≥ S ′i + di−M ′(1−uij). From (??), 1 +uik−uij −ujk ≥ 0. Thus,

the above is always true. Next we show that for all such Si given by (2.90) there

exists feasible Sk such that,

Sk ≥ Si + di −Mseq(1− uik) ∀i ∈ I − {k} (2.92)

Si ≥ Sk + dk −Mseq(1− uki) ∀i ∈ I − {k} (2.93)

Sk ≥ sk (2.94)

Substituting the values of Si from (2.90) and Mseq = 2M ′ we rewrite the above

inequalities to get,

Sk ≥ S ′i + di + dk + max
h∈I
{sh} −M ′(1− uik) ∀i ∈ I − {k} (2.95)

Sk ≤ S ′i + max
h∈I
{sh}+M ′(3− 2uki − uik) ∀i ∈ I − {k} (2.96)

For there to be a feasible Sk, the RHS of (2.95) must be less than or equal to the
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RHS of (2.96) i.e.,

S ′i + max
h∈I
{sh}+M ′(3− 2uki − uik) ≥ S ′i + dk + max

h∈I
{sh}+ di

−M ′(1− uik) ∀i ∈ I − {k} (2.97)

Simplifying the above we get,

M ′[4− 2(uki + uik)] ≥ dk + di ∀i ∈ I − {k} (2.98)

As M ′ is large enough and uik +uki ≤ 1, the above is true. We also need to check

that the RHS of (2.96) is greater the RHS of (2.94), i.e.,

sk ≤ S ′i + max
h∈I
{sh}+M ′(3− 2uki − uik) ∀i ∈ I − {k} (2.99)

The above equation is always true as uik + uki ≤ 1. Therefore, there exists

feasible Si ∀i ∈ I for I = {1, 2, . . . , k} and by principle of mathematical induction,

IARSPLP has relatively complete recourse.
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Table 2.11: Number of surgeries across specialties

Surgery Spe-

cialty

Average Number of

Surgeries per day

Range of surgeries per

day

Vascular 1.75 0-10

Neuro 5.97 0-18

Plastics 6.01 0-15

ENT 1.53 0-6

Urology 3.23 0-15

Liver 5.15 0-10

Thoracic 1.66 0-12

Cardiac 7.07 1-12

Trauma 1.02 0-7

Pediatric 1.34 0-6

Eye Surgery 1.44 0-5

General 26.34 0-62

Table 2.12: Variance Inflation Factors

Variable VIF

BOOKEDHRS 3.22

ASA 1.23

AGE 1.15

PATCLASS 1.76

CPTCLUST 4.96

PROVCLUST 3.19

NUMCPT 1.04
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Table 2.13: Results of independent variable selection for quantile regression

Dependent variable:
ACTUALHRS

(1) (2) (3)
BOOKEDHRS 0.206∗∗∗ 0.206∗∗∗ 0.204∗∗∗

(0.009) (0.009) (0.009)

ASA 0.044∗∗∗ 0.044∗∗∗ 0.036∗∗∗

(0.009) (0.009) (0.009)

AGE −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0003)

NUMCPT −0.001∗

(0.0003)

CPTCLUST2 −4.966∗∗∗ −4.964∗∗∗ −4.954∗∗∗

(0.145) (0.147) (0.157)

CPTCLUST3 −5.872∗∗∗ −5.869∗∗∗ −5.869∗∗∗

(0.147) (0.149) (0.159)

CPTCLUST4 −6.622∗∗∗ −6.619∗∗∗ −6.616∗∗∗

(0.148) (0.150) (0.160)

CPTCLUST5 −3.726∗∗∗ −3.725∗∗∗ −3.720∗∗∗

(0.147) (0.149) (0.159)

CPTCLUST6 −2.350∗∗∗ −2.353∗∗∗ −2.342∗∗∗

(0.147) (0.150) (0.159)

PROVCLUST2 0.363∗∗∗ 0.367∗∗∗ 0.354∗∗∗

(0.066) (0.067) (0.067)

PROVCLUST3 0.967∗∗∗ 0.970∗∗∗ 0.962∗∗∗

(0.094) (0.096) (0.094)

PROVCLUST4 0.484∗∗∗ 0.483∗∗∗ 0.478∗∗∗

(0.024) (0.025) (0.024)

PROVCLUST5 0.331∗∗∗ 0.330∗∗∗ 0.332∗∗∗

(0.015) (0.016) (0.016)

PROVCLUST6 0.417∗∗∗ 0.416∗∗∗ 0.400∗∗∗

(0.019) (0.020) (0.019)

PATCLASS-INPATIENT 0.077∗∗ 0.074∗∗ 0.078∗∗

(0.032) (0.032) (0.033)

PATCLASS-SAME DAY ADMIT 0.159∗∗∗ 0.159∗∗∗ 0.151∗∗∗

(0.031) (0.031) (0.032)

Constant 7.245∗∗∗ 7.241∗∗∗ 7.218∗∗∗

(0.156) (0.158) (0.168)

Observations 19,335 19,335 19,335
AIC 58529 58528 58549
Out-of-sample MSPE 1.312 1.312 1.313

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.14: Coefficients of quantile regressions at various quantile levels

Dependent variable:
ACTUALHRS

q = 0.1 q = 0.3 q = 0.9
BOOKEDHRS 0.096∗∗∗ 0.151∗∗∗ 0.469∗∗∗

(0.017) (0.009) (0.020)

ASA −0.023∗∗∗ 0.011 0.122∗∗∗

(0.009) (0.009) (0.023)

AGE −0.002∗∗∗ −0.002∗∗∗ −0.0004
(0.0003) (0.0002) (0.001)

CPTCLUST2 −4.337∗∗∗ −5.027∗∗∗ −4.563∗∗∗

(0.684) (0.099) (0.214)

CPTCLUST3 −4.843∗∗∗ −5.919∗∗∗ −5.143∗∗∗

(0.683) (0.101) (0.220)

CPTCLUST4 −5.254∗∗∗ −6.573∗∗∗ −6.219∗∗∗

(0.684) (0.103) (0.225)

CPTCLUST5 −3.420∗∗∗ −3.783∗∗∗ −3.433∗∗∗

(0.693) (0.107) (0.216)

CPTCLUST6 −2.821∗∗∗ −2.495∗∗∗ −2.420∗∗∗

(0.701) (0.115) (0.216)

PROVCLUST2 0.318∗∗∗ 0.297∗∗∗ 0.924∗∗∗

(0.064) (0.079) (0.123)

PROVCLUST3 0.391∗∗∗ 0.742∗∗∗ 1.812∗∗∗

(0.134) (0.096) (0.193)

PROVCLUST4 0.228∗∗∗ 0.414∗∗∗ 0.764∗∗∗

(0.039) (0.025) (0.066)

PROVCLUST5 0.207∗∗∗ 0.295∗∗∗ 0.380∗∗∗

(0.026) (0.018) (0.047)

PROVCLUST6 0.181∗∗∗ 0.352∗∗∗ 0.538∗∗∗

(0.032) (0.021) (0.050)

PATCLASS-INPATIENT 0.185∗∗∗ 0.075 0.176
(0.071) (0.078) (0.142)

PATCLASS-SAME DAY ADMIT 0.589∗∗∗ 0.274∗∗∗ −0.141
(0.075) (0.078) (0.141)

Constant 5.543∗∗∗ 7.130∗∗∗ 7.005∗∗∗

(0.691) (0.136) (0.282)

Observations 19,335 19,335 19,335
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.7: Histogram of average daily anesthesia hours
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Figure 2.8: Histogram of average daily anesthesia hours controlling for number

and mix of surgeries
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Figure 2.9: Number of rooms with assigned anesthesiologists by hour of day

Figure 2.10: Number of CPT code clusters and % explained variance
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Figure 2.11: Number of surgeon clusters and % explained variance
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Figure 2.12: Software schematic of decision support system
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CHAPTER 3

Planning for HIV Screening, Testing and Care

at the Veterans Health Administration

3.1 Introduction

Veterans Health Administration (VHA), one of the components of the Veterans

Administration, is the largest integrated healthcare provider in the United States

of America (USA). The VHA is funded by the federal government and serves

the medical and social support needs of over 8 million active duty and honorably

discharged veterans over their entire lifetime. The VHA provides these services

through 128 stations. For the purpose of this paper, we shall focus on the Greater

Los Angeles (GLA) station, as the unit of analysis because of our close working

relationship with its key decision makers.

The VHA is the largest provider of HIV care in the USA. As of 2011, the

VHA reported over 25,271 HIV infected patients, an increase of 3.7% from 2007.

The VHA is also a leader in quality of care provided to HIV infected patients

with high adherence to the Department of Health and Human Services clinical

guidelines across all regions. An important aspect of HIV care is early diagnosis

and treatment which is known to lower cost and improve patient outcomes (Palella

et al., 2003). In addition, this reduces the incidence of secondary complications

which are very costly to treat if HIV itself is not treated in a timely manner
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(Schackman et al. 2006). Prior studies at the VHA (Nayak et al., 2012) show

that a major factor impeding the early diagnosis and treatment of HIV is the

policy of risk-based screening. Under this policy, patients are tested for HIV only

if they display certain risk factors such as injection drug use, or if they present

symptoms of opportunistic infections. Owens et al. (2007) found that only 36%

of at risk patients had ever been tested for HIV. The main operational barriers

cited for insufficient coverage of screening and late diagnosis of HIV infection were

constraints on provider time and insufficient capacity of trained counselors (Goetz

et al., 2008a).

An alternative policy recommended by the Centers for Disease Control (CDC)

is to implement routine HIV screening, in which a patient visiting the healthcare

facility would be offered an HIV test irrespective of risk factors or symptoms.

Several recent studies in the public health literature have found that such routine

HIV screening is cost-effective 1 compared to risk based testing even in settings

with very low prevalence of HIV (Paltiel et al., 2005). In 2009, the VHA proposed

to implement the routine screening policy across its stations 2. Consequently, the

management at the GLA station wanted to understand if such a policy would

be feasible given their capacity and budgetary constraints, and if necessary, was

willing to consider alternate policies to improve upon their current risk based

screening policy. In response, we developed an optimization model to achieve

these goals at the GLA station. Consistent with the mission of the VHA of

providing high quality care over the lifetime of veterans, the objective of this

model is to maximize the total QALYs of all the patients at this station. To

achieve this objective, this model determines the optimal fraction of patients to

1A policy or intervention is said to be cost effective if the Quality Adjusted Life Years
(QALYs) gained due to that intervention costs less than $109,000 to $297,000 per QALY
gained. (http://www.cdc.gov/hiv/prevention/ongoing/costeffectiveness/). The term QALYs
is commonly used in the health economics and health policy literature to assess the value of a
medical intervention in terms of the number of years at a particular quality level added due to
the intervention (Dolan et al. 2005).

2http://www.va.gov/vhapublications/ViewPublication.asp?pub_ID=2056
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be screened (i.e., offered the test) and also determines the optimum staffing levels

at different parts or locations of the station. This model explicitly captures patient

flow and the associated disease progression through system dynamics constraints.

In addition, it also incorporates budget and capacity constraints.

We first used this model to evaluate the current risk based screening policy

and the proposed routine screening policy at the GLA station. We found that the

cost-effective routine screening policy was not feasible in the current budgetary

environment at this station. Therefore, we developed four other policies within

the framework of our model that improved upon the current risk based screening

policy. An extensive computational analysis provided a benchmark value for each

policy and provided guidance in terms of the fraction of patients to be screened

in every period as well as the number of healthcare workers that need to be

staffed at each part of the system in order to implement a policy. Thus, unlike

conventional cost effective analysis, our approach provided a feasible plan that

can be implemented.

Optimization based models have been used to evaluate prevention and treat-

ment policies for HIV at different decision making levels (Rauner and Brandeau,

2001). Population level studies evaluate the cost effectiveness of policy interven-

tions (Zaric and Brandeau, 2001; Long et al., 2010), while studies at an individ-

ual patient level optimize clinical decision making to maximize patient welfare

(Roberts et al., 2010; Shechter et al., 2008). Healthcare systems face the problem

of integrating cost effective policies with clinical decisions subject to organiza-

tional and budgetary constraints. Blount et al. (1997), Zaric et al. (2000) and

Brandeau et al. (2003) evaluate general formulations of this problem with budget

constraints to decide optimal intervention for prevention of infectious diseases.

Their approximations lead to formulations that can be solved by linear program-

ming and convex optimization techniques. More recently, Kucukyazici et al. (2011)

and Deo et al. (2013) combine clinical models of disease progression for chronic
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diseases with operational models of the health system. However, none of these

papers consider different parts of the healthcare system with capacity constraints

and do not jointly optimize screening and staffing decisions, which are the key

features of the decision problem faced by the VHA.

Our paper makes the following contributions. First, it models a very relevant

but complex problem at the interface of operations management and public health.

It then develops methods for the efficient computation of bounds and managerially

relevant solutions for this problem. Second, to the best of our knowledge, this is

the first planning model which determines the fraction of patients that need to

be screened along with the staffing requirements at screening, testing and care,

while including disease progression and flow of patients in different health states

across various parts of a constrained healthcare system. Third, we explicitly

consider capacity and budget constraints and illustrate their impact on screening

and staff allocation decisions. Fourth, we apply the model to data collected from

the GLA station to analyze various policies. Our computational analysis shows

that GLA station can achieve substantial increase (20% to 300%) in the QALYs

gained by using these policies and our model provides guidance for its effective

implementation. Fifth, the insights from our model have influenced planning

decisions at this station. In addition, two policies have been used at the GLA

station and our analysis provides the basis to extend and enhance these policies.

The remainder of the paper is organized as follows. In Section 2, we describe

the healthcare system, patient health states, disease progression and system dy-

namics. These form the basis of our optimization model, which is formulated in

Section 3. We also discuss structural properties, construct an upper bound and

develop four policies that serve as lower bounds for this model. In Section 4, we

describe various primary and secondary sources of data used in the model. Sec-

tion 5 analyzes several policies for HIV screening, testing and care that can be

evaluated within the framework of our model. Section 6 describes the application
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and qualitative impact of this work.

3.2 Problem Description

The GLA station is one of the largest and the most complex stations in the VHA

consisting of 3 ambulatory care centers, a tertiary care facility and 10 community

based clinics. The GLA serves veterans residing in Los Angeles, Kern, Santa

Barbara, Ventura and San Louis Obispo counties. The GLA station management

recommended that we conduct a station level analysis because it was difficult

to estimate the budget for individual facilities within the station. Further, the

management felt that such an analysis could lead to effective staff reallocation

because there was considerable flexibility in adjusting the staffing levels across

facilities within a station. From a managerial perspective, these aspects were

considered more important than any potential downside due to loss of granularity

in terms of patient flow and staffing.

As discussed before, the primary benefit of routine screening is early diagnosis

of HIV positive patients and their connection to care before they become symp-

tomatic. This benefit arises from the fact that the healthcare cost of asymptomatic

HIV patients (including HIV treatment and other hospitalization) is much lower

and their quality of life is much better than that of symptomatic HIV patients

(Kaplan et al. 2009). In order to capture this effect, we constructed a compart-

mental model of patients with each compartment corresponding to a combination

of the health state of the patients and part of the healthcare system to which they

belong. Below, we describe the healthcare system, patient health states, disease

progression, and system dynamics.
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3.2.1 Healthcare System

Based on our discussions with the station management, we divided the health-

care system at the station into three distinct parts: 1) primary care (facilities

such as outpatient clinics and hospitals where patients are screened or are of-

fered an HIV test and blood samples are collected if they agree to be tested),

2) laboratory (a central location where samples collected during screening are

tested), and 3) infectious disease specialty care (where HIV positive patients

are referred for monitoring or treatment). Primary and specialty care could be

staffed by up to three worker types: physicians, nurses and counselors, while

the laboratory is only staffed by the laboratory technician. Staffing levels are

fixed during the budget horizon of one year to provide certainty and foster a

stable work environment for all their staff. To provide a precise definition of

the healthcare system, let τ ∈ [T ] denote the budget periods, each correspond-

ing to a year and let t ∈ Mτ = {1 + 12(τ − 1), . . . , 12τ} index the set of dis-

crete time periods corresponding to a month within the budget period. Fur-

ther, let k ∈ W = {phys, nurse, couns, lab} index the set of worker types, and

` ∈ L = {P,L, S} index the set of parts or locations where P denotes primary

care facility, L denotes laboratory and S denotes infectious diseases specialty care.

Each location ` is staffed by nk,` healthcare workers of type k, each of whom earns

a wage wk in each period and spends a total of yk,` time units on average with

the patient. Since the healthcare workers Since the healthcare workers have other

tasks associated with other diseases and conditions, we assume that the total time

available with the resource of type k in location ` for the HIV routine screening

program is limited and denoted by Ak,`.
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3.2.2 Patient Health States

Following earlier work in the modeling of disease progression in HIV patients,

Freedberg et al. (1998) (Mauskopf et al., 2005), we use different ranges of CD4

cell count3, and the presence or absence of Opportunistic Infections (OI) to define

a set of health states of HIV infected patients. In addition, we include uninfected

and dead as two additional health states. Table 3.1 below provides the definition

of the resulting 14 health states based on CD4 count range and their associated

states of OI. These states are indexed by i and j in the model.

Table 3.1: CD4 Health States

Health

state

index

(i, j)

CD4 count range

(cells/mm3) without

opportunistic infections

Health

state

index

(i, j)

CD4 count range

(cells/mm3) without

opportunistic infections

0 Uninfected 7 500+

1 500+ 8 350-499

2 350-499 9 200-349

3 200-349 10 100-199

4 100-199 11 50-99

5 50-99 12 0-49

6 0-49 13 Death

3CD4+T helper cells are white blood cells essential to the human immune system and are
usually expressed as number of cells per milliliter. Patients infected with HIV show reduced
number of CD4 cells and a lower number of CD4 indicates a greater progression of the infection.
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In addition, the VHA identifies incoming patients as either high risk or low

risk depending on their observable characteristics such as previous Hepatitis B or

C infection, injection drug use, or homelessness. These risk categories are indexed

by r ∈ R = {1, 2}, where r = 1 signifies patients of higher risk of infection of HIV

and r = 2 signifies those with a lower risk of infection. At the GLA station, 25%

of the patients were classified as high risk, and the remaining 75% were classified

as low risk (Goetz et al., 2013).

3.2.3 Disease Progression

In single patient models, the transition between health states is typically modeled

as a discrete time Markov chain in which the probability of transitioning from

state to state is conditionally independent of the history of earlier transitions.

However, this approach is analytically intractable for a multi-period aggregate or

population-level model like ours, which also considers multiple parts of the health

care system while optimizing screening and staff allocation decisions. Hence, we

approximate the disease progression model by using deterministic transition rates

in which we assume that a fixed fraction of the number of patients move from

one health state to the other in each period[A similar approach is used in mathe-

matical epidemiology to model the spread of infectious diseases in the population

(Anderson et al., 1992).] This deterministic approximation of transition rates is

reasonable here since the unit of our analysis is the GLA station and the pop-

ulation of patients in each state is relatively large. We use θi,jr,ω to denote the

fraction of patients in health state i that move to health state j in one month.

This fraction depends on the patient risk category r , and the treatment sta-

tus ω ∈ Ω = {treat, untreat} , where treat refers to undergoing antiretroviral

treatment and untreat represents not undergoing treatment respectively.

Four processes govern the transition across health states: 1) HIV infection,
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2) HIV infection progression (treated and untreated), 3) Opportunistic infection

(OI), and 4) OI recovery. We used clinical data to estimate the transition rates

associated with each of these processes separately. For certain transitions that

require more than one process simultaneously, we assumed that the rate of one

process does not depend on the other. Details on the calculations of the transition

rates are provided in the Appendix.

3.2.4 System Dynamics

In this section, we describe the system dynamics obtained by combining disease

progression with patient flows to represent how patients move across different

health states as well as various parts of the health care system over time. In

particular, we track the number of patients in each risk category r, each health

state i, at each location `, in each time period t. Figure 3.1 shows the flow of

patients through various parts of the health care system.
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Figure 3.1: Flow of patients through different parts of the health care system in

the Greater Los Angeles

Primary Care – Screening. The process starts with patients who are unaware

of their HIV status, whom we call unscreened patients. Let U i
r,t denote the total

number of unscreened patients in risk category, health state i and at time period

t. All patients with an opportunistic infection (i ∈ Io = {7, 8, . . . , 13}) are imme-

diately offered the HIV test and their acceptance rate is 100%. A fraction α of the

remaining asymptomatic patients who do not have OI (i ∈ Iw = {0, 1, 2, . . . , 6})
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visit a primary care facility in period t for other conditions. Let Sr,t represent

the fraction of patients of risk category r in period t that are screened or offered

the HIV test. A fraction β of these patients accepts the test. The number of

unscreened patients in the next time period U i
r,t+1 is given by,

U i
r,t+1 =

(∑
j∈Iw

θi,jr,untreat(1− αβSr,t)U j
r,t

)
+N i

r,t+1 +R0
r,tθ

0,i
r,untreat ∀r, i, t (3.1)

The first term
(∑

j∈Iw θ
i,j
r,untreat(1− αβSr,t)U j

r,t

)
of this equation is derived by

summing three types of patient flows shown in Figure 3.1. (a) the asymptomatic

patients who do not visit the clinic; (b) those who visit and do not get screened;

and (c) those who visit, get selected for a test, and refuse to be tested. This

sum is appropriately weighted by the rates of transition from state j to state

i as determined by the disease progression model. The second term (N i
r,t+1) is

the number of new patients in health state i and risk category r who enter in

period (t+ 1). The third term (R0
r,tθ

0,i
r,untreat) is the number of uninfected patients

who receive a negative HIV test at the beginning of period t and join the pool of

unscreened population in the next period.

Laboratory–Testing The blood samples collected from patients who accept

the offered test are then sent to the lab where the actual test is conducted and the

results are communicated back to the patient. Here, we allow for a lag between

the collection of the sample and return of the results due to congestion at the lab.

Let W i
r,t+1 represent the number of patients in health state i and risk category r

who are waiting to receive their results at the beginning of the period t+ 1 in the

laboratory. This is given by

W i
r,t+1 =

∑
j∈I

W j
r,tθ

j,i
r,untreat +

∑
j∈Iw

αβSr,tU
j
r,tθ

j,i
r,untreat +

∑
j∈Io

U j
r,tθ

j,i
r,untreat

−
∑
j∈I

Rj
r,tθ

j,i
r,untreat ∀r, i, t (3.2)
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W i
r,t+1 consists of four terms. The first term, (

∑
j∈IW

j
r,tθ

j,i
r,untreat) represents the

number of patients waiting at the beginning of period t who have undergone dis-

ease progression, where I = Io∪Iw. The second term (
∑

j∈Iw αβSr,tU
j
r,tθ

j,i
r,untreat),

represents the number of asymptomatic patients who accept the test offer at the

beginning of period t. The third term, (
∑

j∈Io U
j
r,tθ

j,i
r,untreat) represents the num-

ber of symptomatic patients who directly proceed to testing. The fourth term

(
∑

j∈I R
j
r,tθ

j,i
r,untreat) represents the patients who receive their results and who ei-

ther exit the system because their tests are negative (i.e., j = 0) or who are now

transferred to care (i.e., j 6= 0). As before, multiplication by θj,ir,untreat in each term

represents disease progression in one period.

Specialty Care–Monitoring and Treatment Patients who receive positive

test results are connected to infectious diseases specialty care for monitoring and

treatment. Again, we allow for a lag between the receipt of results and being

connected to care. Let I ir,t denote the number of patients of risk category r and

health state i who are initiated into care. Of these, depending on the stage

of their disease progression, IM i
r,t are initiated under monitoring and IDi

r,t are

immediately initiated into treatment. Let Ei
r,t+1 denote the number of patients at

the beginning of the period t + 1 who are waiting to be enrolled in care. This is

given by

Er,t+1 =
∑

j∈I−{0}

Rj
r,tθ

i,j
r,untreat +

∑
j∈I−{0}

Ej
r,tθ

i,j
r,untreat

−
∑

j∈I−{0}

IM j
r,tθ

i,j
r,untreat −

∑
j∈I−{0}

IDj
r,tθ

i,j
r,treat ∀r, i, t (3.3)

The first term (
∑

j∈I−{0}R
j
r,tθ

i,j
r,untreat) is the number of patients who received

positive HIV test results at the beginning of period t. The second term,∑
j∈I−{0}E

j
r,tθ

i,j
r,untreat is the number of patients who were waiting to be en-

rolled into care at the beginning of period t. The third and fourth terms

(
∑

j∈I−{0} IM
j
r,tθ

i,j
r,untreat,

∑
j∈I−{0} ID

j
r,tθ

i,j
r,treat) are the number of people who were
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enrolled at period t into monitoring and treatment, respectively. Patients who are

enrolled into treatment now undergo disease progression under the parameter

θi,jr,treat instead of θi,jr,untreat. The decision to initiate patients under monitoring or

under treatment depends on the health state of the patient and current clinical

guidelines described in §3.4.2. We use a binary indicator parameter zi to cap-

ture the clinical decision whether all patients at health state i are initiated under

treatment (zi = 1) or monitoring (zi = 0). Then the number of patients who are

initiated into treatment and monitoring at time period t is given by the following

equations:

IDi
r,t = I ir,tz

i ∀r, i, t (3.4)

IM i
r,t = I ir,t(1− zi) ∀r, i, t (3.5)

Next, consider M i
r,t+1, the number of patients of risk category r under monitoring

in state i at the beginning of time period t+ 1, this is given by,

M i
r,t+1 =

∑
j∈I−{0}

M j
r,tθ

j,i
r,untreat −

∑
j∈I−{0}

M j
r,tz

jθj,ir,treat

+
∑

j∈I−{0}

IM j
r,tθ

j,i
r,untreat ∀r, i, t (3.6)

The first term in Equation 3.6 represents the number of patients in health state i

who remain under monitoring at the beginning of period t, the second term rep-

resents those who enter treatment from monitoring, and the third term represents

the newly diagnosed patients who enter care under monitoring.

Finally, let Di
r,t+1 represent the number of patients under treatment in state i

at the beginning of period t+ 1. This is given by

Di
r,t+1 =

∑
j∈I−{0}

Dj
r,tθ

j,i
r,treat +

∑
j∈I−{0}

M j
r,tz

jθj,ir,treat

+
∑

j∈I−{0}

IDj
r,tθ

j,i
r,treat ∀r, i, t (3.7)
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The first term in Equation 3.7 represents the number of patients under treatment

in period t in a particular health state, the second term denotes the number of

patients who enter treatment from the pool of monitored patients, and the third

term is the number of newly diagnosed patients who enter treatment. In formu-

lating the system dynamics we have made the following simplifying assumptions.

First, once patients enter the system and are tested, they can exit the system

only if they are uninfected or if they die. Second, all primary care locations fully

comply with the screening policy. Third, the treatment protocol is well defined

and is followed by all physicians at the infectious diseases specialty care. These as-

sumptions were validated by prior internal studies at the GLA station. Given the

health care system, patient health states, disease progression, and system dynam-

ics the overall objective of the GLA station is to maximize the aggregated QALYs

across all patients in the system. This can be done by appropriately choosing the

screening fraction and consequently the number of patients to be screened, tested,

and cared for in every period and by determining the staffing level at each part of

the healthcare system to execute this choice. While doing this, the station faces

organizational constraints relating to capacity and budget availability. We next

develop an optimization model for this decision problem.

3.3 Model

In this section, we start by describing the objective function and the organizational

constraints related to budget and capacity. These together with the previously

described system dynamics form a discrete time planning model. We characterize

key properties of this model and use them to develop an upper bound that can be

employed to evaluate the quality of any given solution. Finally, we develop man-

agerially relevant heuristics or policies to solve this model. Table 3.2 summarizes

all notations that are used in the model, including those that have already been
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introduced in the previous section.

Table 3.2: Notation for Planning for HIV Screening, Testing and Care Problem

Symbol Description

Indices

τ ∈ [T ] = {1, 2, . . . , T} Number of years

t ∈Mτ = {1 + 12(τ − 1), . . . , τ} Number of months

k ∈ W = {phys, nurse, couns, lab} Resource type

` ∈ L = {P,L, S} Location within healthcare system,

P :Primary care facility, L:Laboratory,

S : Infectious diseases sub-specialty

i, j ∈ Iw = {0, 1, . . . , 6} Health states corresponding to patients

without OI

i, j ∈ Io = {7, 1, . . . , 13} Health states corresponding to people

with OI

i, j ∈ Iw ∪ Io = I Health states of all patients

ω ∈ Ω = {treat, untreat} Treatment status

r ∈ {1, 2} Risk category

X ∈ X = {U,W,E,M,D} System state: U : Unscreened, W :

Waiting for results, E: Waiting to be

enrolled into monitoring or treatment,

M: Monitoring, D: Treatment

Parameters related to patient flow

p̂ir Fraction of patients in risk category r

of health state i in the new patient pop-

ulation

Continued on next page
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Table 3.2 – continued from previous page

Symbol Description

α Fraction of asymptomatic patients who

visit healthcare facility

β Fraction of patients who accept screen-

ing

θi,jr,ω Fraction of patients in risk category

r and under treatment status moving

from health state i to health state j in

one month

qi Quality of life score for patients in

health state i

Ni Number of new patients entering the

system in period t

zi A binary parameter indicating whether

patient of health state i is initiated un-

der monitoring (zi = 0) or treatment

(zi = 1)

Parameters related resource utilization

yk,` Time required per patient of healthcare

worker of type k at location l

Ak,` Total time available for HIV screening

program of healthcare worker of type k

at location l

wk Per period wages of healthcare worker

of type k

CSi Cost of screening per patient

Continued on next page
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Table 3.2 – continued from previous page

Symbol Description

Ci
X Cost per patient in system state X

B(τ) Total annual budget available for HIV

related activities in year τ

State variables

U i
r,t Number of unscreened patients of risk

category r in health state i at the be-

ginning of period t

W i
r,t Number of patients of risk category r in

health state i waiting for their results

at the beginning of period t

Ri
r,t Number of patients of risk category r in

health state i who receive their results

in period t

Ei
r,t Number of patients of risk category r

in health state i waiting to be enrolled

at the beginning of period t

M i
r,t Number of patients of risk category r in

health state i who are under monitoring

at the beginning of period t

Di
r,t Number of patients of risk category r in

health state i who are under treatment

at the beginning of period t

IDi
r,t Number of patients of risk category r in

health state i who are initiated under

treatment in period t

Continued on next page
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Table 3.2 – continued from previous page

Symbol Description

IM i
r,t Number of patients of risk category r in

health state i who are initiated under

monitoring in period t

I ir,t Number of patients of risk category r

who are initiated under care (monitor-

ing and treatment) in period t

Decision variables

Sr,t Fraction of asymptomatic patients of

risk category r visiting a primary care

facility in period t who are screened or

offered the HIV test

nk,l Number of healthcare workers of type

k to be staffed at location `

3.3.1 Objective Function

In accordance with the existing literature on economic evaluation of health in-

terventions and programs (Dolan et al., 2005), we choose the objective function

of maximizing the total QALYs gained for the entire patient population over the

problem horizon. Note that using this measure ensures that aggregate survival

as well as quality of life of patients is considered. Although QALYs is not an

operational metric that is used regularly for planning and scheduling decisions

within the VHA, this seemed a reasonable objective because it is consistent with
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the mission of the VHA.

Calculating QALYs involves first associating each health state i with a quality

of life (QOL) utility qi and then multiplying the QOL utility of each health state

with the corresponding number of patients in that state. These are calculated

by using Equations (3.1) through (3.7) developed in §3.2.4. The QOL utility is a

measure of health related utility of patients and ranges between 0 and 1, where

0 corresponds to death and 1 corresponds to perfect health. Finally, the total

QALYs are calculated over the entire period of analysis. Using this approach, the

objective function can be represented by∑
i∈I,r∈R,t∈Mτ ,τ∈[T ]

qi
(
U i
r,t +W i

r,t + Ei
r,t +M i

r,t +Di
r,t

)

3.3.2 Organizational Constraints

We consider two main sources of organizational constraints in our model. The

first is concerned with total annual HIV related budget at the level of a station,

and the second defines service level constraints in various parts of the healthcare

system within the station.

Budget Constraint The budget at the GLA station consists of three compo-

nents: the screening cost, healthcare costs associated with a patient in a particular

system state, and the cost of wages. This is represented by the following set of

inequalities:∑
i∈Iw,r∈R,t∈Mτ

CSiαβSr,tU
i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiUr, ti

+
∑

i∈Io,r∈R,t∈Mτ ,X∈X

Ci
XX

i
r,t +

∑
`∈L,k∈W,t∈Mτ

nk,lwk ≤ B(τ) ∀τ (3.8)

The first two terms in Equation (3.8) correspond to the screening costs. This

is obtained by multiplying the cost of screening per patient in health state i

(CSi) with
∑

i∈Iw αβU
i
r,t, representing the asymptomatic patients who accepted
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the offered HIV test and with
∑

i∈Io U
i
r,t denoting the number of symptomatic

HIV patients who were transferred straight to testing. Both these terms are

aggregated across all risk categories and time periods up to one year. The

third term represents the cost of providing healthcare services to patients in

different system states. This cost is composed of several components that depend

on the system state of the patient. For example, if a patient is in treatment,

the cost components would be pharmacy, testing, inpatient, outpatient, and

overhead costs. Further, the magnitude of this component will also depend on

the health state of the patients. For instance, more critically ill patients with

lower CD4 counts would typically incur higher pharmacy costs. We combine all

such cost components into one parameter, Ci
X representing the cost of having

one patient in health state i at system state X. Here, X ∈ X = {U,W,E,M,D} =

{Unscreened, Waiting for results, Waiting to be enrolled, Monitoring, Treatment}.
The fourth term in the equation above is the labor cost, which is the salary

by resource type k multiplied by the staffing level of that resource type at a

particular location `.

Service Level Constraints In addition to the budget constraint, the GLA

station would also like to ensure timely service of patients and avoid long delays.

We model this requirement using a constraint P {W` ≤ τ`} ≥ α` ∀` ∈ L. Where

W` is the random waiting time at location `. This can be interpreted as the

probability that the waiting time is less than a specified quantity τ` and must

be greater than a certain threshold α`. Here, the tuple (τ`, α`) was specified at

each location based on the organizational goals at the VHA. We use a M/M/1

queuing model to approximate P {W` ≤ τ`} = 1 − exp (−τ` (µ` − λ`)) ∀` ∈ L
(Kleinrock, 1975). Here, λ` denotes the arrival rate at location `, whereas µ`

denotes the service rate at location `. Using the natural logarithm operator, this
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can be reformulated as,

λ` ≤ µ` +
1

τ`
ln (1− α`) ∀` (3.9)

Since the second term on the right-hand side of constraint (3.9) is negative,

this constraint is tighter than the traditional capacity feasibility condition λ` ≤ µ`,

which does not impose any requirements on waiting times. Note that reducing

quantity τ` or increasing threshold α` reduces the effective capacity µ̄` − µ` +

(1/τ`) ln(1 − α`) and further tightens this constraint. To operationalize (3.9) we

need to compute (λ`, µ`) ∀` ∈ L. The capacity of resource k at location ` is given

by nk,`Ak,`/yk,` patients. Therefore, we approximate the service rate at location

` as the minimum or bottleneck capacity across all the resource or worker types

available at that location given by µ` = mink {nk,`Ak,`/yk,`}. Below we use the

system dynamics developed in §3.2.4 to calculate λ` are derive the service level

constraints for each location.

Primary Care: (` = P ). Observe from Figure 3.1 that the number of pa-

tients to be screened in period t is given by t is given by
∑

i∈Iw,r∈R αβSr,tU
i
r,t.

Therefore, λP =
∑

i∈Iw,r∈R αβSr,tU
i
r,t. Therefore, λP =

∑
i∈Iw,r∈R αβSr,tU

i
r,t +∑

i∈Io−{13},r∈R U
i
r,t and µP = mink {nk,PAk,P/yk,P} Substituting these in inequal-

ity (3.9), we get the service level constraint for screening as,∑
i∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R

U i
r,t ≤ min

k
{nk,PAk,P/yk,P}+

1

τP
ln (1− αP ) ∀t

(3.10)

Laboratory : (` ∈ L). Figure 3.1 shows that the number of patients who

receive their results is
∑

i∈I−{13},r∈RR
i
r,t, which is also the input rate, under

the assumption of stability. Therefore, λL =
∑

i∈I−{13},r∈RR
i
r,t and µL =

mink {nk,LAk,L/yk,L}. Substituting these in inequality (3.9), we get the service

level constraint for L as,∑
i∈I−{13},r∈R

Ri
r,t ≤ min

k
{nk,LAk,L/yk,L}+

1

τL
ln (1− αL) ∀t (3.11)
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Specialty Care: (` = S) In each period there are two kinds of patients

who visit the infectious diseases specialty, patients under monitoring and pa-

tients under treatment, given bu, Mr,ti and Di
r,t. Patients of health state

i who are under monitoring and treatment visit the healthcare system dur-

ing a given period with frequency φiM and φiD respectively. Therefore, λS =∑
i∈I−{13},r∈R

(
M i

r,tφ
i
M +Di

r,tφ
i
D

)
and µS = mink {nk,SAk,S/yk,S}. Substituting

these in inequality (3.9), we get the service level constraint at the infectious dis-

eases specialty as,∑
i∈I−{13},r∈R

(
M i

r,tφ
i
M +Di

r,tφ
i
D

)
= min

k
{nk,SAk,S/yk,S}+

1

τS
ln (1− αS) ∀t

(3.12)

3.3.3 Planning Problem

Using the above described objective function, system dynamics, and organiza-

tional constraints, the planning problem faced by the GLA station can be formu-

lated as the following nonlinear mixed integer program, which we describe as the

QALY Maximizing Planning Problem (QMPP).

(QMPP)

∑
i∈I,r∈R,t∈Mτ ,τ∈[T ]

qi
(
U i
r,t +W i

r,t + Ei
r,t +M i

r,t +Di
r,t

)
subject to

(3.1)− (3.12)

0 ≤ Sr,t ≤ 1 ∀r, t (3.13)

U i
r,t,W

i
r,t, R

i
r,t, R

i
r,t, E

i
r,t,M

i
r,t, D

i
r,t,

IDi
r,t, I

i
r,t, IM

i
r,t, IM

i
r,t ∈ R+ ∀r, i, t (3.14)

nk,l ∈ N+ ∀k, ` (3.15)
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Observe that the QMPP contains a knapsack problem defined by constraints

(3.8). Thus, we need to solve instances of an NP-complete problem and it may

not be always possible to solve real sized problems to optimality. We verified this

in our computational experiments in §3.5. Consequently, to solve this problem,

we elected to develop effective heuristics that are both computationally tractable

and managerially intuitive. We also develop relaxations to the problem to obtain

an upper bound on the objective function that is used to evaluate the performance

of the heuristics. If we replace αβSr,tU
i
r,t with V i

r,t in constraints (3.1), (3.2), (3.8),

(3.10) of the QMPP and add the definitional constraint V i
r,t = αβSir,tU

i
r,t ∀r, i, t,

then the QMPP can be transformed into the following integer bilinear program

QMPPB. This will be useful in developing a tight upper bound for the QMPP.

(QMPPB)

∑
i∈I,r∈R,t∈Mτ ,τ∈[T ]

qi
(
U i
r,t +W i

r,t + Ei
r,t +M i

r,t +Di
r,t

)
subject to,

(3.3)− (3.7) and (3.11)− (3.15) and

U i
r,t+1 =

(∑
j∈Iw

θi,jr,untreat(1− αβV i
r,t

)
+N i

r,t+1 +R0
r,tθ

0,i
r,untreat ∀r, i, t (3.16)

W i
r,t+1 =

∑
j∈I

W j
r,tθ

j,i
r,untreat +

∑
j∈Iw

αβV i
r,tθ

j,i
r,untreat +

∑
j∈Io

U j
r,tθ

j,i
r,untreat

−
∑
j∈I

Rj
r,tθ

j,i
r,untreat ∀r, i, t (3.17)

∑
i∈Iw,r∈R,t∈Mτ

CSiαβV i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiUr, ti

+
∑

i∈Io,r∈R,t∈Mτ ,X∈X

+
∑

`∈L,k∈W,t∈Mτ

nk,lwk ≤ B(τ) ∀τ (3.18)

∑
i∈Iw,r∈R

αβV i
r,t +

∑
i∈Io−{13},r∈R

U i
r,t ≤ min

k
{nk,PAk,P/yk,P}

+
1

τP
ln (1− αP ) ∀t (3.19)
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V i
r,t = αβSir,tU

i
r,t ∀r, i, t (3.20)

V i
r,t ∈ R+ ∀r, i, t (3.21)

Observe that in the integer bilinear program QMPPB, all the nonlinearity in the

problem is now captured by bilinear constraints (3.20)

Proposition 6. The objective function of the QMPPB can be written as

K0 +
∑

i∈I,r∈R,t∈Mτ ,τ∈[T ]

πir,tD
i
r,t (3.22)

Where, K0 and πir,t = f
(
θj,ir,treat, θ

j,i
r,untreat, q

i, t
)

are constants.

All proofs are provided in the Appendix. Proposition 6 implies that the QALYs

in the system cannot be maximized by increasing the screening rate alone, as ad-

vocated by both the risk based and routine screening policies, unless that increase

can be translated to patients treated. This is consistent with observations in pop-

ulation level studies (Long et al. 2010). However, the number of patients treated

is often constrained by the budgetary and capacity constraints. Thus, the focus

should be on determining how many patients can be optimally treated and this

in turn should be used to determine the screening rates. This is accomplished

by the QMPPB. Let U i
r,t be a lower bound and Ū i

r,t be an upper bound on U i
r,t.

The computations of these bounds are described in the appendix. The following

proposition helps in reducing the complexity of the search space for heuristics to

solve the QMPPB.

Proposition 7. The screening rate is bounded by the following two inequalities:

∑
r∈R,t∈Mτ

σr,tSr,t ≤ B(τ)−Kτ −
∑

i∈I−{13},r∈R,t∈Mτ

ρiDi
r,t ∀τ

∑
i∈Iw,r∈R,t∈Mτ

αβSr,tŪ
i
r,t ≥

∑
i∈I−{13},r∈R,t∈Mτ

Di
r,t −

∑
r∈R,t∈Mτ

Ū i
r,t (3.23)
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Where, Kτ , ρi, σr,t are given by,

Kτ =
∑

k∈W,t∈Mτ

{∑
i∈Io

(
wkyk
Ak,P

)
U i
r,t −

(
wkyk
Ak,P τP

)
ln (1− αP )

−
(
wkyk
Ak,SτS

)
ln (1− αS)

}
+

∑
i∈I,r∈R,t∈Mτ

Ci
U , U

i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiU i
r,t

(3.24)

ρi = Ci
D +

∑
k∈W

(
wkyk
Ak,P τP

)
φiD ∀i (3.25)

σr,t =
∑
i∈Iw

{∑
k∈W

(
wkyk
Ak,P

)
U i
r,t + CSiU i

r,t

}
∀r, t (3.26)

Further, for a stationary screening policy for which Sr,t = Sr ∀t, Sr ≤

(B(τ)−Kτ ) /
∑

t∈Mτ
σr,t

Note from Proposition 7 that for a given screening rate, the total number of

patients that can be treated is bounded by (1) the residual budget left over for

treatment after the screening, staffing, and the patient state costs and (2) the

number of screened asymptomatic patients who test positive and symptomatic

patients being treated. Further, the total number of patients who actually are

treated will be determined by whichever of these two conditions becomes tight.

Given that typically budgets are scarce and there is a large population of patients,

it is likely that the budget constraint would be tighter. This implies that while

setting screening rates, one has to understand budgets and its implications on

treatment. This is consistent with the public health literature (Martin et al.,

2010).

3.3.4 Relaxations and Upper Bounds

To develop an upper bound on the QMPPB, we replace bilinear constraints (3.20)

by convex over and under estimators of the bilinear terms using the approach
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proposed by McCormick (1976).

Let Ū i
r,t and U i

r,t represent the upper and lower bound on the variable U i
r,t

respectively. Then it follows from (3.20) that,

V i
r,t ≥ αβSir,tU

i
r,t ∀r, i, t (3.27)

V i
r,t ≤ αβSir,tŪ

i
r,t ∀r, i, t (3.28)

Note that, αβSir,tU
i
r,t ≤ αβSir,tU

i
r,t ≤ αβSir,tŪ

i
r,t and 0 ≤ Sr,t ≤ 1 ∀r, i, t. Then

αβSr,tŪ
i
r,t + αβU i

r,t − αβSir,tŪ i
r,t = (Sr,t − 1)αβŪ i

r,t + αβU i
r,t ≤ (Sr,t − 1)αβU i

r,t +

αβSir,t = Sr,tαβS
i
r,t = V i

r,t. Thus,

V i
r,t ≥ αβSr,tŪ

i
r,t + αβU i

r,t − αβŪ i
r,t ∀r, i, t (3.29)

Similarly, αβSr,tU
i
r,t + αβU i

r,t − αβSir,tU i
r,t = (Sr,t − 1)αβU i

r,t + αβU i
r,t ≤ (Sr,t −

1)αβU i
r,t + αβSir,t = Sr,tαβS

i
r,t = V i

r,t. Thus,

V i
r,t ≤ αβSir,tU

i
r,t + αβU i

r,t − αβSir,tU i
r,t ∀r, i, t (3.30)

Observe that constraints (3.27)-(3.30) provide a linear relaxation to bilinear

constraints (3.20). This substitution reduces this problem to a linear mixed integer

program that can now be solved to optimality using commercial solver such as

the GUROBI solver (Gurobi Optimization, 2015). We call this formulation the

RQMPPB and note that the optimal solution to the RQMPPB provides an upper

bound to the QMPPB and consequently the QMPP.

The quality of this upper bound strongly depends on the bounds of U i
r,t. A

recent improvement to the McCormick relaxation is introduced by Wicaksono and

Karimi (2008). We adapt this technique to do an ab initio partitioning on U i
r,t

apply a set of under and over estimators to each partition, and introduce a logical

constraint to limit the partitioned variable to one active partition. To achieve this,

let U i
r,t be separated into m equally spaced partitions as U i

r,t = air,t(1) < · · · <
air,t(m) < air,t(m+1) = Ū i

r,t. The choice of parameter m is based on comparing the
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reduction in the value of the bound with the increased time it takes to compute

the bound when m is incremented by one starting with m = 1 and is described in

the appendix.

Define binary variable ξir,t(m) so that ξir,t(m) = 1 if U i
r,t ∈

[
ar,t(m)i, air,t(m+ 1)

]
and ξir,t(m) = 0 otherwise. This leads to the following constraints:

U i
r,t ≥ air,t(m)ξir,t(m) + U i

r,t[1− ξir,t(m)] ∀r, i, t,m (3.31)

U i
r,t ≤ air,t(m+ 1)ξir,t(m) + Ū i

r,t[1− ξir,t(m)] ∀r, i, t,m (3.32)

M∑
m=1

ξir,t(m) = 1 ∀r, i, t (3.33)

ξir,t(m) ∈ {0, 1} (3.34)

Next, we introduce constraints of the type (3.27)-(3.30) for each partition by

replacing Ū i
r,t with air,t(m + 1) and U i

r,t with air,t(m). Depending on ξir,t(m), the

appropriate set of constraints wold be activated, thus providing tight relaxation

to the bilinear terms. This leads to the following constraints,

V i
r,t ≥ αβSr,ta

i
r,t(m)−K[1− ξir,t(m)] ∀r, i, t,m (3.35)

V i
r,t ≤ αβSr,ta

i
r,t(m+ 1) +K[1− ξir,t(m)] ∀r, i, t,m (3.36)

V i
r,t ≥ αβSr,ta

i
r,t(m+ 1) + αβU i

r,t − αβair,t(m+ 1)−K[1− ξir,t(m)] ∀r, i, t,m
(3.37)

V i
r,t ≤ αβSr,ta

i
r,t(m) + αβU i

r,t − αβair,t(m) +K[1− ξir,t(m)] ∀r, i, t,m (3.38)

The value of parameter K is set sufficiently large to deactivate these constraints

if U i
r,t does not belong to that particular partition. To provide a tighter upper

bound on the QMPPB, we solve the RQMPPB by replacing (3.27)-(3.30) with

(3.35)-(3.38). The performance of this bound is evaluated in §3.5
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3.3.5 Heuristics and Lower Bounds

In this section, we discuss several possible heuristic solution methods to the

QMPPB that correspond to potential implementation policies at the GLA sta-

tion. They can broadly be classified as fixed staffing heuristics and variable staffing

heuristics.

Fixed Staffing Heuristics Here, we do not optimize over the staffing variables

nk,` ∀k, ` and these are set to existing levels corresponding to the risk based

screening policy. In this case, QMPPB reduces to a continuous bilinear program.

We then develop two heuristics depending on how the screening rate varies over

time. In the first heuristic, we add constraint Sr,t = Sr ∀r, t to ensure that the

recommended screening policy is stationary. Although apparently restrictive, it

is easy to implement and thus was appealing. To solve the resulting problem we

iteratively narrow down on the optimal stationary fixed screening using the search

algorithm described in the Appendix. Note that this algorithm is quite simple to

implement because evaluation of the QMPPB given the screening rates is now

a linear program and can be solved very effectively using several commercially

available solvers such as the GUROBI solver. Further, Proposition 7 enables us

to reduce the solution space of this algorithm. We refer to this heuristic as the

Fixed Staffing Stationary Screening (FSSS) heuristic.

In the second heuristic, we allow the screening rate to vary over time so that

the resulting screening policy is non-stationary. The resulting problem reduces to

a continuous bilinear program which is solved by using the generalized reduced

gradient algorithm (Abadie and Carpentier, 1969). This algorithm has been shown

to be very effective for large sparse dynamic nonlinear optimization problems

(Drud, 1985). We refer to this heuristic as the Fixed Staffing Non-stationary

Screening (FSNS) heuristic. Clearly this heuristic is less restrictive than the FSSS

is and hence can be expected to perform better.
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Variable Staffing Heuristics. Next, we describe two heuristics, where we al-

low the staffing levels to change and again consider either stationary or non-

stationary screening rates. We refer to these as the Variable Staffing Stationary

Screening (VSSS) and the Variable Staffing Non-stationary Screening (VSNS)

heuristic, respectively. The solution procedure for the VSSS heuristic is very

similar to that of the FSSS heuristic, with the key difference being that the evalu-

ation of the QMPPB for a given screening rate in the search algorithm would now

require solving a mixed integer program. Although this potentially can be more

complicated, we found that the GUROBI solved this problem very effectively. The

solution to the VSNS heuristic is complicated as it involves solving a nonlinear

mixed integer program. We employ the combined penalty and outer approxima-

tion method (Vishwanathan and Grossman 1990) to solve this problem. Given

that we can optimize both staffing levels and the screening rates in the variable

staffing heuristics, we expect both of them to outperform the corresponding fixed

staffing heuristics. However, the magnitude of the gap between these heuristics is

not apparent. Similarly, whether the VSSS outperforms the FSNS or vice versa is

not obvious a priori. We investigate these issues in the computational experiments

in §3.5

Finally, observe that the QMPPB is not jointly convex in the decision variables.

Thus, this sequential approach in the FSSS and the VSSS provides a feasible

but not necessarily an optimal solution. Similarly, given the complexity of the

QMPPB, the algorithms used to execute the FSNS and VSNS provide feasible

but not optimal solutions.

3.4 Data Collection and Model Validation

The data required for our model can be divided into two broad categories. The first

category includes operational data concerning costs, budgets, incoming patient
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characteristics, time required for various activities, time available, and service

level parameters. These data are specific to the GLA station and were collected

from a variety of sources including direct observation, administrative databases,

and clinical studies. The second category includes clinical data on visit frequency

under HIV care, the quality of life estimates for HIV patients in different health

states, and treatment decisions. We use published estimates for these parameters

from the existing clinical literature that are more broadly applicable. Below we

describe each of these categories in greater detail. We then use the data to validate

our model both in the context of the literature and the GLA station.

3.4.1 Operational Data

Costs Primary drivers for variable cost in our model are cost of HIV screening

cost (CSi) , system state cost (Ci
X) i per patient, and wages (wk). The screening

cost CSi consists of the material cost of screening. The screening cost per patient

was estimated to be $80. The system state cost per patient Ci
X is composed of

several components. Therefore, its estimation is more involved and discussed in

the Appendix. Because the staffing levels are endogenous to the model, the other

relevant cost component are the wages paid to the healthcare workers of different

types (wk). At the GLA station, these costs are fixed and do not vary based on

the patient load. These are shown in the appendix.

Budget The VHA allocates the budget to the GLA station annually, and this

budget does not carry over to the next year. To provide a more stable and a long

range plan, we conduct our analysis for a period of two years, where the budget

for year is given by B(τ) ∈ {1, 2} Note that our model can be easily extended

for τ > 2 without any changes to the methodology by the appropriate choice of

T , where τ ∈ [T ] = {1, 2, . . . , T} This is described in the appendix. However,

extending the model beyond two years was not realistic in our application context
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because there was significant uncertainty in the costs of screening and treatment,

the population of veterans that would be served at this station, and the incidence

and prevalence rates. To incorporate the uncertainty in these parameters, the

model can be solved every year with a two-year horizon using updated parameters.

Because of various complexities in estimation, the annual GLA station budget

was not broken down to the level for HIV related activities, which is the focus of

our analysis. Therefore, we imputed a budgetary range [B(τ), B̄τ ] using the risk

based screening policy currently followed at VHA (i.e., S1,t = 1 and S2t = 0∀t.
The lower bound of this range corresponds to the smallest annual budget at which

the risk based screening policy is feasible. The upper bound corresponds to the

smallest value of the annual budget at which no further gains in QALYs can be

accrued from the risk based screening policy. This approach is formalized in the

budget imputation algorithm provided in the Appendix. We conduct our analysis

on all the proposed policies within this budgetary range.

Incoming Patient Characteristics Let Nt denote the number of new patients

entering the station in time period t and p̂ir be the fraction of these patients in risk

category r and health state i. The number of new patients in each risk category

and health state in each period who enter the station is thus given by N t
r,t = Ntp̂

i
r.

To estimate Nt we calculated the mean of historical data of total incoming patients

over the past 12 months. The variation around the mean was negligible and we

did not detect any temporal trends (such as increasing or decreasing over time)

for the number of new patients. The parameter p̂ir is the proportion of patients

in each risk and CD4 category. We calculate p̂0
r = (1− prevr) , where prevalence

rate (prevr) is estimated by Paltiel et al. (2005) and shown in the appendix. The

proportion of patients who are infected (prevr) is further divided into different

CD4 counts in a fraction estimated for the VHA by Gandhi et al. (2007), thus

determining p̂ir, ∀i 6= 0. We report this in the appendix. We were provided with
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U1 the total number of patients currently enrolled at the GLA station. Thus,

the number of unscreened patients in each risk category and each health state

would be given by U i
r,1 = p̂irU1. The fraction of patients who visit a healthcare

facility for non-HIV related reasons was estimated by dividing the total number of

unique patients who visited the inpatient or the outpatient facilities for non-HIV

related reasons by the total number of patients registered in the station. Using

this approach, we estimated α = 0.5. The proportion of patients who accept

screening β was assumed to be 50% based on prior studies (Goetz et al., 2008b).

Time Required, Time Available, and Service Level Parameters. To es-

timate yk,l , the time required per patient of healthcare worker of type k at location

l, we used an observational time and motion study conducted in the emergency

department in the VA West Los Angeles Medical Center within the GLA station

(Gidwani et al., 2012). These, data shown in appendix, were validated against

other published estimates (Silva et al., 2007). We note that these times would be

very similar for other care settings in the station such as the primary care clinics,

inpatient department, and outpatient department.

The total time available at each resource at each location per month, Ak,`

for activities associated with the routine HIV screening program was based on

estimates from the GLA station. It took into account that healthcare workers

need to devote time to other clinical and administrative activities as well. These

estimates are shown in the appendix.

Lastly, it was expected that at least 95% of all patients should be processed

at each location within a period of one month. Thus, τ` = 1, α` = 0.95.
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3.4.2 Clinical Data

Visit Frequency Under HIV Care The outpatient visit frequency for VHA

was not directly available. We used published estimates by Schackman et al.

(2006) for the frequency of outpatient visit under monitoring (φiM) under treat-

ment (φiD). This is reported in the appendix.

Quality of Life (QOL) Utilities. The QOL utilities were drawn from Freed-

berg et al. (1998) and Mauskopf et al. (2005). These are summarized in Table

3.3 and more details are provided in the appendix. Here, it was assumed that the

health related quality of life utilities (qi) are directly associated with the under-

lying health state represented by the CD4 count category and OI infection status

rather than on the treatment status per se. This is reasonable because the effect

of treatment is eventually reflected in patients being in better health states and

hence enjoying a higher QOL utility.

Table 3.3: QOL Weights

Health state in-

dex (i)

QOL weight qi Health state in-

dex (i)

QOL weight qi

0 1 5 0.81

1 0.94 6 0.79

2 0.94 7-12 0.60

3 0.94 13 0

4 0.87
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Treatment Decision The treatment policy at the GLA station was to initiate

patients having CD4 cell count below 350 cells/mm3 and patients with oppor-

tunistic infection irrespective of their CD4 count on treatment and retain the rest

on monitoring. From Table 3.1, this implies that zi = 0 for i = {0, 1, 2} and

zi = 1 otherwise.

3.4.3 Model Validation

In this section, we conduct analyses to validate the model in the context of the

literature and the GLA station. To ensure an unbiased comparison with the

literature (Paltiel et al., 2005), we removed all the organizational constraints in

the model so that it reduces to a pure disease progression and treatment model as

considered by these papers. Bishai et al. (2007) calculate total QALYs gained from

treatment over no treatment for HIV positive patients. We used their treatment

regimen in our model and found that the total QALYs gained was comparable to

their work. Paltiel et al. (2005) calculates the amount spent per QALY gained

from going from no treatment to treatment under various screening policies and

found that this varied between $63,000 and $113,000 spent per QALY gained.

We also used our model to calculate the amount spent per QALY gained for the

different policies in Paltiel et al. (2005) and found it to be similar, ranging from

$61,000 to $111,000 spent per QALY gained. This validates that our disease

progression and treatment model is consistent with the literature.

In the context of the GLA station, we considered the entire model and the

current risk based screening policy. We found that the model estimates on the

number of people at each disease state, location, and time period were within 2%

of the actual numbers at the GLA station. We also used the resulting arrival rate

λ` and service rate µ` at location ` ∈ {P,L, S} to estimate W̄` = 1/(µ` − λ`) ,

the average wait times at each location for a given time period under the M/M/1
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queuing model assumption used in deriving the service level constraints (Klein-

rock 1975). We found these estimates were within 5% of the actual average wait

times for the corresponding locations and time period at the GLA station. This

supported the rationale for using the M/M/1 queuing model in developing the

service level constraints. These analyses also validate that our model effectively

captures the operating environment at the GLA station and is a necessary step

to provide confidence in the policy analysis described next.

3.5 Policy Analysis

In this section, we evaluate several policies for screening, testing, and care within

the framework of our model. We start with analyzing the risk based screening

policy that had been the standard of care at the VHA when we started this work.

We then evaluate the impact of the routine screening policy under consideration

and also assess the performance of the heuristics described §3.3.5.

Recollect from §3.4.1 that the annual budget expenditure required for HIV

screening, treatment, and monitoring was not directly available. Therefore, we

used the budget imputation algorithm provided in the appendix to first to impute

the budget range [B(τ), B̄(τ)] for the risk based screening policy in which S1,t = 1

and S2,t = 0 ∀t. Here, we found that B(τ) = $10 ,million and B̄(τ) = $20 million

for τ = 1 and 2. This implies that at least $10 million is needed annually to

implement the risk based screening program and any budget allocation over $20

million will not improve the efficacy of this program further. We also used this

algorithm to find that an annual budget of $35 million was required to implement

the routine screening policy in which Sr,t = 1∀r, t Although this estimate was

instructive, this level of funding may not be available in the foreseeable future.

Therefore, the emphasis was in improving upon the risk based policy but within

the current budgetary range of $10 to $20 million. To perform this analysis
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and simplify the exposition, we conducted all our subsequent analysis at three

budget levels, low, medium, and high corresponding to $14, $16, and $19 million,

respectively. We tried to solve the QMPP for these budget values using leading

commercial solvers for nonlinear mixed integer programs such as BARON and

DICOPT using the NEOS server (Dolan et al., 2002). However, in all cases, these

solvers could not even generate feasible solutions after more than 40 hours of

computation, and the runs were aborted. This provides validation for developing

bounds and heuristics to address this problem.

3.5.1 Performance of Heuristic Policies

We solved the FSSS, FSNS, VSSS, and VSNS using the approaches described in

§3.3.5 and then calculated the QALYs gained from these four heuristic policies.

We used the technique described in §3.3.4 to compute the upper bounds for each

of these budgetary levels. The computations for the risk based screening policy,

the routine screening policy, FSSS, VSSS, and upper bounds were executed with

GUROBI, a general purpose LP/MIP solver using the NEOS server. The com-

putations for the FSNS and the VSNS were implemented with DICOPT using

the NEOS server. All heuristics were solved in a few seconds, whereas each com-

putation of the upper bound took at most three hours. Note that in computing

the upper bounds for the fixed staffing heuristics FSSS and FSNS, we fixed the

staffing levels at the current levels at the GLA station. This ensured that these

heuristics were being fairly compared to an upper bound to the fixed staffing

problem. We measured the performance of the heuristics using a percentage gap

defined as the difference between QALYs gained from the upper bound and those

gained from the heuristic policy expressed as a percentage of the QALYS gained

from the upper bound. In all cases, QALYs gained were calculated with the base

case of no screening. Table 3.4 summarizes the gaps for the four heuristics across

the three budgetary levels.
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The percentage gaps described in Table 3.4 indicate that all the heuristics per-

form very well. In particular, the average gap across these heuristics is 1.95% and

ranges from 0.08% to 5.15%. In general, for the fixed staffing heuristics, the gaps

increase as the budget level increases. This is because the upper bounds increase

at a greater rate than the heuristic solution does. The rate of growth of the heuris-

tic solution is limited as the benefits from choosing the optimal screening rates at

higher budget levels saturate because of fixed staffing in which more patients can-

not be treated because of capacity and service level constraints. Conversely, for

the variable staffing heuristics, the gaps decline as the heuristic solution increases

at a greater rate than the upper bound. This is because variable staffing allows

more effective allocation of staff at the higher budget levels to treatment and al-

lows more screened patients who are diagnosed with HIV to be treated optimally

and this improves the overall performance of the heuristics.

We also conducted sensitivity analysis to understand how parameters such as

time available for HIV screening programs; service level parameters and the costs

of wages, screening, and treatment affect these gaps for the heuristics. To perform

this analysis, we first set the budget level to $16 million and changed each of these

parameters one at a time from their base level by 30% to 30% in increments of

10%. We then calculated the gap for each heuristic and the appropriate change in

the gap from the baseline reported in Table 3.4. Across all heuristics and range

of values of these parameters, we found the average change in gaps was 3.3%, and

this varied from 0.8% to 7.2%. This shows that these heuristics and the upper

bounds are robust across a wide range of parameter values.
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Table 3.4: Percentage gap of heuristics and percentage improvement from current

practice.

Heuristic % gap % improvement

Budget level: Low

FSSS 0 20.18

FSNS 0 20.21

VSSS 4.32 283.90

VSNS 7.05 305.30

Budget level: Medium

FSSS 0.08 23.39

FSNS 0.2 24.13

VSSS 3.25 66.47

VSNS 5.15 69.69

Budget level: High

FSSS 1.27 38.80

FSNS 1.33 40.15

VSSS 0.48 41.53

VSNS 3.9 42.94
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3.6 Improvements from Risk Based Screening

We computed the QALYs accrued at these budget levels for the current risk based

screening policy. We used this to calculate the percentage improvement of the

heuristics from the risk based screening policy expressed as a percent of the risk

based screening policy solution. The results, summarized in Table 3.4, lead to

the following observations. First, irrespective of the budget level, improvements

from risk based screening increased as we go from the FSSS to the FSNS to the

VSSS and finally to the VSNS heuristic. In particular, the most improvement is

obtained from the VSNS because this policy synchronizes the screening decision

with the staffing decision. This is important since it is ineffective to screen as

many patients as possible and not have sufficient funding to treat them as nec-

essary. Rather, it is critical to screen as many patients that can be optimally

treated because the benefits arise only from treatment and not screening. This

was shown in Proposition 1. This implies that one should first calculate how many

people can be optimally treated and then use this to appropriately calculate the

optimal screening rates. This approach is executed by the solution method of the

VSNS. Second, note that the FSNS improves upon the FSSS by at most 3.47%

and this is only 0.14% in the most realistic low budget scenario. This suggests

that if staffing cannot be changed because of organizational reasons, then it is

better to keep a stationary screening policy in the short term since it is easier to

implement. However, if the long term goal is to accrue maximum benefit using the

VSNS, the FSNS would be a good approach to allow the staff to get acclimatized

to using non stationary screening rates prior to implementing the more radical

changes associated with variable staffing. Third, the gains from varying staffing

are more significant than those obtained by varying screening across any budget

level. To see this, observe from Table 3.4 that the gains from going from fixed to

variable staffing (i.e., FSSS to the VSSS or FSNS to the VSNS) are larger than

the gains from stationary to non-stationary screening (i.e., FSSS to the FSNS
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or VSSS to the VSNS). Fourth, the benefit from variable screening is greater if

staffing is allowed to change (i.e., the gains from VSNS-VSSS ¿ FSNS-FSSS). Fi-

nally, the greatest improvements from current practice occur in low budgets or

resource constrained environments. This is because the optimization executing

these policies ensures that screening and staffing rates are chosen in such a way

that these scarce resources are used in the best possible manner.

Finally, we again conducted sensitivity analysis to study how the percentage

improvement of the heuristics from the risk based screening policy change with

model parameters such as time available for HIV screening programs, service

level parameters and the costs of wages, screening, and treatment. To do so, we

first set the budget level to $16 million and changed each of these parameters

one at a time from their base level by 30% to 30% in increments of 10%. In

practice, such changes may be needed because of organizational requirements. As

expected, the QALYs gains from all the heuristics declined as available time for

HIV programs (Ak,`) and the service level parameter related wait time at location

`, τ` decreased. Similarly, the QALYs gained from the heuristics declined as

the service level parameter related to the probability of meeting a wait time at

location `, α` , cost of wages, screening, and treatment increased. However, in all

these cases, the relative gain from the benchmark risk based screening policy is

increasing as the optimization inherent in the heuristics allowed them to better

cope with diminished resources, higher service level requirements, or increased

costs. In addition, the previously described order of improvement from FSSS

to FSNS to VSSS to VSNS was still preserved. This shows that the comparative

performance of the heuristics across a wide range of parameters is quite consistent,

and they are better in coping with changes in these parameters values than the

risk based screening policy.
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3.6.1 Screening Rates and Staffing Allocation

We studied how the screening rates and staffing allocation vary for each of these

policies at different budget levels. We start by discussing the screening rates

across the policies. Here, we found at low budget levels, the screening rates of the

variable staffing heuristics were higher than those of the fixed staffing heuristics.

This is because fixing the staffing levels to those of the risk based screening policy

resulted in a large portion of the budget being committed, thereby leaving little

flexibility to increase screening rates. On the other hand, at higher levels of

budget, the screening rates of the fixed staffing heuristics are now higher than the

variable staffing heuristics. This is because once the staffing levels are fixed, the

only way to utilize the additional budget and improve the solution is to increase

screening rates. In contrast, the variable staffing heuristics balances the screening

rates and staffing levels with the available budget in both these budget scenarios

and thus yields a better solution. We also analyzed how screening rates vary over

time in the non-stationary screening rate policies (i.e., FSNS and VSNS). Observe

from Figure 3.2 that in both the FSNS and VSNS policies, screening rates ramp

up, saturate at a stable level, and ramp down across a budget horizon. The ramp

up occurs because there is a large pool of unscreened patients at the start of the

horizon. Screening these patients at high rates would require numerous staff at

screening and thus less staff would be available at treatment. This would lead to

an undesirable outcome of screening patients without treating them. To prevent

this from happening, both these policies ramp up screening rates to spread the

workload over time with fewer staff at screening so that the remaining staff can be

effectively utilized in treatment. This ramp up continues until the system reaches

the desired balance between screening and staffing; at this point, the screening rate

stabilizes. This screening rate is maintained until the time horizon for the current

budget cycle draws to a close. At this point, the screening rates ramp down and

more resources are focused on the treatment of screened patients to make sure
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that screened patients not treated in this horizon do not congest treatment in the

next horizon. This is important because residual budgets from the current cycle

do not carry over to the next cycle.

Next, consider the staffing allocation between primary care (i.e., where screen-

ing is conducted) and specialty care (i.e., where treatment is conducted) across

policies. This is summarized in Figure 3.3. From this figure it can be seen that

more staff was allocated to primary care compared to specialty care in the fixed

staffing heuristics, whose staffing levels are set to the current risk based screening

policy. This follows as in the risk based screening policy, all high risk patients are

screened without explicitly determining the staffing requirement for treatment.

This leads to lower QALYs in the system because many people are screened but

may not be effectively treated. Conversely, the variable staffing policies allocated

more staff to specialty care than primary care. This ensured that the number of

patients treated and the resulting system-wide QALYs are maximized since, as

shown in Proposition 6, these are accrued from treatment and not from screening.

Finally, we observed that the staffing level in variable staffing heuristics was actu-

ally lower than those in the fixed staffing heuristics. This was a direct consequence

of optimizing the allocation between primary and specialty care in the variable

staffing heuristics based on the number of patients that can be treated. This, in

turn, reduced the staffing level needed at screening to a greater extent than the

increase in staff needed at treatment.

To summarize, the policy analysis conducted in this section has led to many

organizational implications at the GLA station. These are discussed next.
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Figure 3.2: Screening rates over time for the non-stationary screening rate policies.

Figure 3.3: Staffing allocation across policies.
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3.7 Application and Discussion

Several ideas developed in this paper have influenced decision making at the GLA

station. A simplified version of the FSSS and the FSNS has been used to compute

screening rates (Anaya et al., 2012). The rates ranged from 15% to 30% for the

risk categories. These rates were considered to be reasonable and achievable. Fur-

ther, they are consistent with research on HIV screening rates in other healthcare

settings (Martin et al., 2010). The rates from the FSSS and the FSNS can be used

to compute how many patients could be estimated to be present at the primary

care, laboratory, and the infectious disease specialty over time. This information

can then be used in constraint (3.8) to estimate the appropriate costs at differ-

ent parts of the GLA station. This could provide valuable input for planning in

future budgetary cycles. In addition, our methods show how these costs changed

from the risk based screening policy to the FSSS and the FSNS. This provides an

important justification in gaining the necessary funding in these budget cycles to

implement these policies.

The implementation of expanded testing programs such as the FSSS and FSNS

has led to early detection and early transfer to care for an increased number

of patients. This in turn has resulted in better patient outcomes because they

are identified at a stage of disease where the more serious manifestations of the

illness are less common and when the response to therapy is better (Goetz and

Rimland, 2011). The challenges in implementing these policies include educating

the patients about the procedure and benefits of early testing, overcoming the

reluctance of the providers to screen and prescribe these tests to patients they

considered low risk or older and in stable monogamous relationships, training the

staff at primary care to execute screening correctly, ensuring tests are conducted

and information passed to care in a timely manner, and ensuring that patients are

connected to care in an effective manner. Once patients are connected to care,
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it is important that there are sufficient updates of their health state information

to ensure effective planning of staff for incoming patients in future periods. To

ameliorate the impact of these challenges, the GLA station started implementation

at its largest facility and used this learning to roll out to the whole station and

other stations at the VHA (Goetz et al., 2011).

In addition, this work has had several managerial implications. It has shown

that even though a policy such as routine based screening may be cost effective

from a societal point of view, its implementation may not be feasible in an orga-

nization because of budgetary constraints. In particular, we show that at least a

$15 million or 75% increase of annual budgetary outlays would be required to im-

plement this policy from the risk based screening policy. This may not be possible

at the GLA station because of the existing budgetary environment. Therefore,

this provides the motivation to improve upon the risk based screening policy and

we propose the FSSS, FSNS, VSSS, and the VSNS policies. Our analysis of these

policies (summarized in Table 4) showed that optimizing the screening rate with

existing staffing levels could increase the QALYs gained from risk based screening

by 20% to 40%, or to 295 and 1,094 QALYs gained at the low and high budget

levels, respectively. Further, in the low budget scenario, optimization of screening

and staffing levels could increase QALYs gained from 245 for risk based screen-

ing5 to 995 or by over 300%. The approach we propose improves on risk based

screening as it focuses on treatment, determines how many patients can be treated

effectively, and then decides the appropriate screening rate. This is crucial be-

cause treatment determines the QALYs accrued in the system, in contrast to risk

based screening where all high risk patients are screened without consideration of

the staffing implications for treatment. In particular, the staffing implications of

our variable staffing policies at the GLA station are more staff should be allocated

to specialty care, lesser to the primary care, and this allocation in fact lowered

total staff requirements. Although such staffing policies are harder to implement
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from an organizational perspective, we show this could result in significantly more

gains, providing the management with the justification to consider these policies.

Furthermore, we find that greatest benefit under variable staffing can be got by

non-stationary screening. Here, it is beneficial to initially ramp up the screening

rate to even the workload over time at treatment, allow this rate to stabilize,

and finally ramp down toward the end of the budget cycle so that the remaining

budget can be effectively used for treatment of patients. Finally, it is encouraging

to note that the greatest gains can be achieved by these policies from risk based

screening at the most realistic low budget scenario. In addition, the gains are

increasing in order of FSSS to FSNS to VSSS to VSNS and this is independent of

any budget scenario. Therefore our analysis provides direct justification for the

GLA station to next consider the variable staffing policies (i.e., the VSSS and the

VSNS) as the logical extension of the FSSS and the FSNS. Further, our method

provides close to optimal staffing allocation and screening rates to successfully

execute such variable staffing policies.

This work has the following limitations. First, our model does not account for

the societal benefits of early screening by reducing transmission and ultimately

prevalence rates. However, it is not possible to analytically estimate this reduction

because it depends on individual behavior (i.e., whether one would take adequate

precautions after being diagnosed) and if the people affected by this individual are

a part of the VHA system. Therefore, we systematically reduced prevalence rates

to calculate the impact on budgets and QALYs gained. The results summarized

in the appendix show that even small reduction in prevalence rates could signif-

icantly lower budget requirements or increase QALYs gained. Second, we have

assumed only two risk categories in determining screening rates and do not further

stratify based on race and ethnicity because there are no clinical studies that can

then be used to estimate transition rates between several health states. However,

such divisions may increase the efficacy of our methods by early identification
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and treatment of certain patient groups. Third, several model parameters such

as visit frequency, QOL utilities, incidence, and prevalence rates were estimated

using clinical literature based on the general HIV population because they were

not available specifically to the GLA station. To improve the performance of our

methods, these parameters need to be updated as results from more current clini-

cal studies become available or studies specific to the GLA station are conducted.

Finally, our analysis is conducted at the station level for budgetary and staff

allocation reasons. To keep this aggregate analysis tractable, we assumed a com-

partmental model with deterministic transitions between health states. However,

this approach leads to a loss of granularity in terms of patient flows. Specifically,

we do not consider the differences in cost and treatment effectiveness of individual

patients in a particular health state. Further, we do not incorporate prioritization

decisions that may be made within a health state due to presence of other health

conditions of the patients such as heart disease, diabetes, or cancer. To consider

these aspects in a shorter time horizon, one needs to consider a more detailed

scheduling model with stochastic transition between disease states, and this is

beyond the scope of our study.

In conclusion, we developed a model to address the screening and staffing de-

cisions for HIV screening, testing, and care at the GLA station of the VHA. We

applied this model to evaluate the risk based screening policy that was being used

and also showed that the cost effective routine screening policy recommended by

the CDC may not be feasible in this organizational context because of budgetary

constraints. Therefore, we developed alternative fixed staffing policies within the

framework of our model that are feasible and determined the relative improvement

from using these policies from the risk based screening policy. We also developed

managerial insights to better understand these policies and provided justification

to the station administration to further extend and enhance their use by consid-

ering the variable staffing policies. This paper opens up several opportunities for
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future work. First, further work could improve the heuristic policies and the up-

per bound to reduce the sub-optimality gap. Second, this framework can also be

used to evaluate HIV screening, testing, and care in other healthcare systems that

have periodic patient follow up and in which residual budgets do not carry over

to future periods (Petersen et al., 2007). In these settings, our existing model-

ing framework may have to be changed to include alternative objective functions,

system dynamics, and organizational constraints. This could require development

of different solution methods and bounds. Finally, a similar modeling framework

can be used to assess the feasibility of other cost effective interventions (such as

in tuberculosis and cardiac care) and if needed, develop alternative policies that

improve current practice and are feasible from an organizational perspective.

3.8 Appendix

Estimation of Bounds on U i
r,t

We describe the calculation of the lower bound U i
r,t and the upper bound Ū i

r,t on

U i
r,t. These parameters are used in Proposition 7 to reduce the search space of the

search algorithms and are also important parameters in the method described in

§3.3.4 used to develop upper bounds on the QMPPB. From Equation (3.1), we

get
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U i
r,t+1 =

(∑
j∈Iw

θj,ir (1− αβSr,t+1)U j
r,t

)
+N i

r,t +R0
r,tθ

0,i
r,untreat

U i
r,t+1 ≥

(∑
j∈Iw

θj,ir (1− αβSr,t+1)U j
r,t

)
+N i

r,t

U i
r,t+1 ≥

(∑
j∈Iw

θj,ir (1− αβ)U j
r,t+1

)
+N i

r,t +R0
r,tθ

0,i
r,untreat since, Sr,t ≤ 1

If we can find U i
r,t ≤ U i

r,t, then,

U i
r,t+1 ≥

(∑
j∈Iw

θj,ir (1− αβ)U j
r,t

)
+N i

r,t

Therefore, we get the recursive formula,

U j
r,t+1 =

(∑
j∈Iw

θj,ir (1− αβ)U j
r,t

)
+N i

r,t

Also, U i
r,1 = U1p̂

i
r,t (both known numbers). Then Ui

r,1 = U i
r,1 and we recursively

build the lower bounds.

Proof of Proposition 6

We first use induction on t to show the following equation holds. Let Ki
r,t and vir,t

be constants, then,

U i
r,t +W i

r,t + Ei
r,t +M i

r,t +Di
r,t = Ki

r,t

+
∑

i∈I,s∈{1,2,...,t}

vir,sD
i
r,s (3.39)

Observe that for t = 1 (3.39) is trivially true, since U i
r,1 is a constant and W i

r,1,

Ei
r,1, M i

r,1, Di
r,1 are all zero. Next assume that, (3.39) is true for some t. We show
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that it holds for t+ 1. From the system dynamics equations (3.1)-(3.7), we get,

U i
r,t+1 +W i

r,t+1

+ Ei
r,t+1 +M i

r,t+1 +Di
r,t+1 =

∑
j∈I

(
U i
r,t +W i

r,t + Ei
r,t +M i

r,t +Di
r,t

)
+

i∑
r,t

Di
r,t

[
θj,ir,treat − θj,ir,untreat

]
+N i

r,t (3.40)

=
∑
j∈I

Ki
r,t +

∑
h∈I,s∈{1,2,...,t}

vir,sD
i
r,t

 θj,ir,untreat +
i∑
r,t

Di
r,t

[
θj,ir,treat − θj,ir,untreat

]
+N i

r,t

= Ki
r,t+1 +

∑
i∈I,s∈{1,2,...,t}

vir,sD
i
r,s

Where, Ki
r,t+1 =

∑
j∈I K

i
r,tθ

j,i
r,untreat + Nr, t+ 1i, vj,ir,t+1 = [θj,ir,treat − θj,ir,untreat] and

vj,ir,t =
∑

h∈I,j∈I,s∈{1,2,...,t} v
h,j
r,s θ

j,i
r,untreat. This shows that if (3.39) holds for t, it also

holds for t + 1. Therefore, by induction (3.39) is true. We next substitute (3.39)

in the objective function of QMPPB to get:∑
j∈I,r∈R,t∈Mτ ,τ∈[T ]

qi

(
Ki
r,t +

∑
j∈I

vj,ir,sD
j
r,s

)
After simplifying,

K0 +
∑

j∈I,r∈R,t∈Mτ ,τ∈[T ]

πir,tD
i
r,t

Where, K0 =
∑

j∈I,r∈R,t∈Mτ ,τ∈[T ] q
iKi

r,t and πir,t =
∑

j∈I,s∈{1,2,...,t} q
ivj,ir,s

Proof of Proposition 7

Consider inequality (3.10) of QMPP:∑
i∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R

U i
r,t ≤ min

k
{nk,PAk,P/yk,P}+

1

τP
ln (1− αP ) ∀t

This can be written as,∑
i∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R

U i
r,t ≤ nk,PAk,P/yk,P +

1

τP
ln (1− αP ) ∀t, k
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Replacing U i
r,t with its lower bound, U i

r,t and rearranging terms, we get,

(
yk,P
Ak,P

) ∑
j∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R

− yk,P
Ak,P τP

ln (1− αP ) ≤ nk,P∀k

multiplying wk and summing across k constraints,

∑
k∈W


(
yk,P
Ak,P

) ∑
j∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R

− yk,P
Ak,P τP

ln (1− αP )


≤
∑
k∈W

wknk,P

Similarly from (3.12) we get,

∑
i∈I−{13},r∈R

(
M i

r,tφ
i
M +Di

r,tφ
i
D

)
= min

k
{nk,SAk,S/yk,S}+

1

τS
ln (1− αS) ∀t

∑
k∈W


(
wkyk,S
Ak,S

) ∑
i∈I−{0}.r∈R

Di
r,tφ

i
D −

wkyk,S
Ak,SτS

ln(1− αS)

 ≤∑
k∈W

wknk,S

Consider inequality (3.8)

∑
i∈Iw,r∈R,t∈Mτ

CSiαβSr,tU
i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiUr, ti

+
∑

i∈Io,r∈R,t∈Mτ ,X∈X

+
∑

`∈L,k∈W,t∈Mτ

nk,lwk ≤ B(τ) ∀τ

Replacing U i
r,t by U i

r,t and dropping non-negative terms,

∑
i∈Iw,r∈R,t∈Mτ

CSiαβSr,tU
i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiUr, ti +
∑

i∈Io,r∈R,t∈Mτ

Ci
UUr, t

i

+
∑

i∈Io,r∈R,t∈Mτ

Ci
DD

i
r,t +

∑
`∈L,k∈W,t∈Mτ

nk,lwk ≤ B(τ) ∀τ
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Substituting from above,

∑
i∈Iw,r∈R,t∈Mτ

CSiαβSr,tU
i
r,t +

∑
i∈Io,r∈R,t∈Mτ

CSiUr, ti +
∑

i∈Io,r∈R,t∈Mτ

Ci
UUr, t

i

+
∑

i∈Io,r∈R,t∈Mτ

Ci
DD

i
r,t

∑
k∈W

{(
yk,P
Ak,P

) ∑
j∈Iw,r∈R

αβSr,tU
i
r,t +

∑
i∈Io−{13},r∈R


− yk,P
Ak,P τP

ln (1− αP )

}
∑
k∈W


(
wkyk,S
Ak,S

) ∑
i∈I−{0}.r∈R

Di
r,tφ

i
D −

wkyk,S
Ak,SτS

ln(1− αS)

 ≤ B(τ)

This simplifies to,

∑
r∈R,t∈Mτ

σr,tSr,t ≤ B(τ)−Kτ −
∑

i∈I−{13},r∈R,t∈Mτ

ρiDi
r,t (3.41)

This is the first inequality in the proposition with the associated definitions of

Kτ , ρ
i, σr,t and σr,t. Note that the total number of patients treated in each risk

category, has to be less than the total number of patients screened and the total

number of unscreened patients who get infected with OI. Thus:

∑
i∈I,t∈Mτ

≤
∑

i∈I,t∈Mτ

αβSr,tŪ
i
r,t +

∑
i∈I,t∈Mτ

Ū i
r,t

The above inequality can be rearranged to get the second inequality in the propo-

sition.

For stationary screening, setting Sr,t = Sr ∀t, we get

Sr ≤
B(τ)−Kτ∑

t∈Mτ
σr,t

Search Algorithm for Stationary Screening
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1: Start: ∆S, i ← 0, j ← 0, Shi ← 0, Slo ← 0, MAX ← 0, N ← 1/∆S,

S̄lo = minτ
B(τ)−Ktau∑

t∈Mτ
σlo,τ

, S̄hi = minτ
B(τ)−Ktau∑

t∈Mτ
σhi,τ

2: while i < N + 1 and Slo < S̄lo do

3: Slo ← Slo + i∆S

4: j ← 0

5: while j < N + 1 and Shi ≤ S̄hi do

6: Shi ← Shi + j∆S

7: Evaluate QMPPB(Shi, Slo)

8: if QMPPB(Shi, Slo) is infeasible then

9: End Do

10: if MAX < QMPPB(Shi, Slo) then

11: MAX ← QMPPB(Shi, Slo)

12: Sopt,hi ← Shi

13: Sopt,lo ← Slo

14: j ← j + 1

15: End Do

16: i← i+ 1

17: End Do
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Budget Imputation Algorithm

Procedure for choosing the number of partitions in the upper bound

calculation

In determining the upper bound for the QMPP we need to choose parameter ,

the number of partitions on U i
r,t. Note that as m increases, the value of the upper

bound decreases (or becomes tighter) but its computation time becomes larger.

Our procedure chooses by comparing this reduction of the bound value with its

increase in computation time. To initialize this procedure, we start with m = 1

and record the value of the upper bound along with the time GUROBI takes to

compute the bound. Next, we increment m by 1 and calculate the % reduction of

the value of the bound and the % increase in computation time from the previous

value of m. We then calculate the efficiency ratio defined as (% reduction in

bound value)(% increase in computation time) and choose m corresponding to

the highest ratio. We applied this procedure to our data for m = 1 to 7 as

GUROBI was unable to solve upper bounds for m > 7. We found the best choice

was at m = 5.

Estimation of system state costs Ci
X

Ci
X is composed of the following:

1. In Patient costs (CI i): The average in-patient costs, (CI i) per patient per

month was collected from VHA data. This cost is incurred on all the patients

at each system state. Thus, the in-patient cost is:

CI i =
(
αU i

r,t +W i
r,t + Ei

r,t +M i
r,t +Di

r,t

)
2. Monitoring costs (CM i): The monthly per-patient monitoring costs CM i, is

incurred on patients under monitoring M i
r,t ,as well as treatment Di

r,t. This
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1: Start: Set Slo,t ← 0, Shi,t ← 1, ∆B ← $0.5mn, count ← 0, B ← 0, obj ← 0,

B← 0, MAXQ← 0, B̄ ← 0, EXIT ← 0

2: while EXIT = 0 do

3: Evaluate QMPPB(Sr,t, B)

4: if QMPPB(Sr,t, B) is feasible then

5: B ← QMPPB(Sr,t, B)

6: EXIT ← 1

7: else

8: count← count+ 1

9: B ← B + ∆B ∗ count

10: End Do

11: EXIT ← 0

12: B ← B

13: while EXIT = 0 do

14: Evaluate QMPPB(Sr,t, B)

15: if MAXQ > QMPPB(Sr,t, B) then

16: B̄ ← QMPPB(Sr,t, B)

17: EXIT ← 0

18: else

19: count← count+ 1

20: B ← B + ∆B ∗ count

21: End Do
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is the cost of one CD4 cell count and one HIV-1 RNA quantitation, per

quarter. Anaya et al. (2012) provide the cost of CD4 cell count and RNA

quantitation. The monitoring cost is:

CM i = (M i
r,t +Di

r,t)

3. Treatment costs (CT i): The treatment cost per patient CT i is the cost of

pharmacy for patients undergoing treatment under HAART. The treatment

cost is :

CT iDi
r,t

Outpatient overhead costs (CohiX,M): The per patient overhead costs,

CohiX,M , was not directly available. Only the per-patient outpatient cost

COi, was available from VA. This cost however, was inclusive of monitor-

ing test costs and labor costs, which have already been accounted in the

monitoring costs described above and in wages. Thus, in order to calculate

outpatient overhead costs, we need to subtract the monitoring costs and the

labor cost is:

CohiX,M = COi − CM i − LiX

Here,LiX is the out-patient labor utilization cost per patient at system state

X. Let yX,k denote the labor time of staff of type k, required per patient

visit at system state X. Further, let wk denote the wage per time of staff

type k and the φiX the frequency of visits. These are them used to calculate

the labor cost incurred per patient per month as

LiX = φiM(
∑
k∈W

yk,Xwk)

Since outpatient overhead cost is incurred on all patients in the system, the

total outpatient overhead cost for year τ would be given by:∑
i∈I−{13},X∈W

[
CokiX1X=UαX

k
r,t + CokiX1X 6=UX

k
r,t

]
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Collecting the costs, we get,

∑
i∈I−{13},r∈R,t∈Mτ

[
(CohiUα + CI iα)U i

r,t + (CohiW + CI i)W i
r,t

+ (CohiE + CI i)Ei
r,t + (CohiM + CM i + CI i)M i

r,t

+ (CohiD + CDi + CI i + CT i)Di
r,t

]

Collecting the terms in order to simplify the notation the total costs can be

written as,

∑
i∈I−{13},r∈R,t∈Mτ ,X∈X

[
Ci
XX

i
r,t

]
Where,

Ci
U = α(CI i + CohiU)

Ci
W = α(CI i + CohiW )

Ci
E = α(CI i + CohiE)

Ci
M = α(CI i + CohiM + CM i)

Ci
D = α(CI i + CohiD + CDi + CT i)

For brevity, we report refer the reader to the electronic companion of Deo et al.4

Further Detailed breakdown are available upon request from the authors.

Computation of Transition Rates

As discussed in the paper, there are four processes which govern the transition

from one health state to another: 1) HIV infection, 2) HIV infection progression

(treated and untreated), 3) Opportunistic infection (OI), and 4) OI recovery.

4Available at http://dx.doi.org/10.1287/opre.2015.1353
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The first process is the HIV infection process which governs the transition from

health state 0 (uninfected) to health state 1 (> 500cells/mm3). The monthly

rate of transition under the HIV Infection process is denoted by θ0,1
r,untreat where

θ0,1
r,untreat = incidr/12, where incidr is the annual incidence rate of risk category

. We used the estimates provided by Paltiel et al. (2005) for the incidence rates

(incidr) This is shown provided in Deo et al.

The HIV progression process governs progression from one infected state to

a higher infected state. The transition rate of this process varies depending

on whether the patient is undergoing Highly Active Anti-Retroviral Treatment

(HAART) or not. This transition rate from infected stage i to infected stage j

for risk category r is given by θijr,treat and θijr,untreat for patients under HAART

and not under treatment respectively. Mauskopf et al. (2005), calculate pi,j6−month

the six month transition probabilities from one health state to another without

treatment. These 6 month transition probabilities are used to calculate monthly

rate as θijr,treat = 1 − (1 − pi,j6−month)/6. Mauskopf et al. (2005) also provide rel-

ative risk of transition (relriski,jTR) between states in different treatment regi-

mens (TRs), namely, First-line, Second-line, Salvage, and Optimized Background

therapies. This relative risk is used to calculate the transition rates under each

treatment regimen. The transition rate under treatment regimen TR is given as

θijr,TR = θijr,untreat(1 − relriskTR). The overall transition rate under treatment is

given by average of the transition rates under different treatment regimens or:

θijr,treat = (θijr,first−line + θijr,second−line + θijr,salvage + θijr,optimized)/4

The third process is the OI process that relates to patients infected with HIV

who are susceptible to such infections. The rate with which they can be infected

with these infections depends on the nature of the opportunistic infection and

the current CD4 state of the patient. This transition rate is given by θi,i+6
r,treat and

θi,i+6
r,untreat where i ∈ Iw. Paltiel et al. (2005) provide the monthly risk of being
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infected with OI by CD4 stratum. For each CD4 category, we sum across the

different OI to calculate the average risk of infection of OI.

Finally, the OI recovery process governs the recovery from such infection. The

transition rates here are given by θi,i+6
r,untreat. Kaplan et al. (2009) provide typical

time required for recovery from each OI. The typical recovery times are converted

to a weighted average recovery time using the relative risk of incurring that OI.

This weighted average monthly recovery time is converted to the fraction or rate

of patients recovering every month by 1 − e1.06 = 0.654. Thus, the transition

rate from any OI infected state to OI uninfected state of the same CD4 bracket

θi,i+6
r,untreat, is 0.654.

For transitions that require two processes to occur simultaneously such as

transition between health states and transition to an OI status, we assume inde-

pendence. Thus, the rates of the two processes occurring simultaneously are the

product of the rates of the individual processes.

The transition rates are provided in the online companion of Deo et al.

Estimation of Quality of Life Utilities

The Quality of Life (QOL) utilities are drawn from two sources,Mauskopf et al.

(2005) and Freedberg et al. (1998). Specifically, Mauskopf et al. (2005) pro-

vides 5 CD4 ranges, ≥ 500cells/µL, 350 − 499cells/µL, 200 − 349cells/µL,

100 − 199cells/µL and 0 − 100cells/µL and death. We further divide the range

0− 100cells/µL into two, 50− 99cells/µL and 0− 49cells/µL because the treat-

ment and system costs for these two CD4 ranges were different (Schackman et

al., 2006). These health states are numbered 1 through 6 and death. The QOL

utilities for health states 1-4 was from Table 2 in Mauskopf et al. (2005). The

QOL utilities for health states 5 and 6 were from Table 3.3 in Freedberg et al.

(1998) By definition, the no infection state 0 has a QOL utility 1 and the death
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state 13 has a QOL utility 0.

Based on discussions with the physicians at the GLA station, we also incorpo-

rated health states with opportunistic infections by adding health states 7 through

12. As shown in Table 1, each of these states correspond to the same CD4 counts

as in states 1 through 6 respectively, but have opportunistic infections. For exam-

ple health state 7 (i.e., CD4 500 cells/L) corresponds to the CD4 count of health

state 1, health state 8 with health state 2, and so on. The QOL utility for health

states 7-12 were calculated in Freedberg et al. (1998) Here, we considered the

health related quality adjustment scores for the opportunistic infections by listed

pathogen types (such as Pneumocystis Carini, through other AIDS diagnoses).

Ideally, one would have had to introduce additional sub health states for each

opportunistic infection within a CD4 count range. However, the physicians felt

that it would be impractical to do since patients typically had more than one op-

portunistic infection, it was often not easy to diagnose the pathogens and decide

which one was most dominant. Further, the range of the scores across these op-

portunistic infections was relatively narrow (i.e., 0.56 to 0.65). Therefore, it was

considered reasonable to calculate the quality utility for health states 7 through

12 by averaging the quality scores across these opportunistic infections.
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CHAPTER 4

Future Research

In this dissertation I consider two resource planning problems. The two prob-

lems differ in context and methodology. However, they touch upon some of the

characteristics making healthcare resource planning a complex issue, in particular,

• Large scale of operations at major hospitals

• Interplay between clinical decision making and operational decision making

• Uncertainty in resource utilization

• Expensive, specialized resources

In both the VHA GLA and UCLA Ronald Reagan Medical Center, the critical

resources were the human resources; physicians, nurses, counselors, technicians

and anesthesiologists. In fact almost 50% of expenditure of aggregate healthcare

expenditure are salaries (Glied et al., 2015).

Particular care must taken when creating resource scheduling and planning

systems involving human resources. Scheduling and planning systems must be

designed not to tightly control workers but to inform planners for decision mak-

ing. Recent research has shown that algorithm driven solutions are more accept-

able when the scheduling systems incorporate the needs of the workers as well

(Bernstein et al., 2014; Dietvorst et al., 2015).
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One way to incorporate employee satisfaction is to model inconvenience costs

of plans. However, these costs are not explicitly known. We look at the monthly

planning for anesthesiologists at the UCLA Ronald Reagan Medical Center as

a problem where the planning requires such inconvenience costs as input. As

future research we propose to use structural estimation approaches to infer these

inconvenience costs from historical decisions of the planners.

The Anesthesiologist Planning Problem

Introduction Planning for anesthesiologists at UCLA Ronald Reagan Medical

Center is performed centrally for its 23 Operating Rooms, 8 interventional proce-

dure rooms, 6 catheterization labs and 3 medical procedure units. Wide variety

of procedures are conducted in a day and each procedure length is unpredictable,

therefore the demand for anesthesia service on any given day has considerable

variability. Additionally, due to the research and teaching responsibilities and

vacation schedules of anesthesiologists, the availability of any particular anesthe-

siologists is known only a few weeks in advance. Due to these factors, the staff

planning for anesthesiologists is conducted under uncertainty in the availability of

anesthesiologists and the demand for anesthesia services. To enable management

to react to a changing environment, staff planning is done in a several stages con-

sisting of annual, monthly and daily decisions. particular methodology for staff

planning followed at the monthly decision making is called the Q-Call system.

The Q-Call system is a way for staff planners to react to uncertainty in demand.

Anesthesiologists available on a Q-Call consideration list for a particular day can

be brought in to work on that day by informing them the day before. These

anesthesiologists are paid an additional $1000 per day over their regular salary.

The anesthesiologists on the Q-Call consideration list thus act as a reactive ca-

pacity who can be brought in at an additional cost once the number of elective

procedures to be performed the next day is known. Similar systems are used for
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anesthesiologists and nursing staff at most major hospitals.

The decision time-line of the planning is as follows:

1. On a longer term planning basis the decision to hire additional anesthesi-

ologists of particular specialties is made. This decision is made based on a

forecast of the annual demand and the strategic focus of the hospital towards

particular specialties.

2. On the 20th of each month, the availability of anesthesiologists for the next

month is known based on their teaching and vacation schedule. Based on

this information the daily plan for anesthesiologists for the next month is

prepared. This plan consists of creating two lists of anesthesiologists for

each day of the next month: those to be available on regular duty and those

on the Q-Call consideration list.

3. The day before the surgery the total number of elective procedures to be

performed is known. Based on this information a certain number of anes-

thesiologist from the Q-Call consideration list are informed that they would

be working the next day .On the day of the surgery, the actual demand for

anesthesia services is realized based on the actual duration of procedures

and any emergency cases. Thus, at the end of the day the total overtime

hours or idle hours are realized.

Motivation For the monthly tactical planning, the staff planners minimize the

sum of expected Q-Call, overtime and idle time costs. This decision is complex

due to two reasons, first, the high degree of uncertainty in demand for anesthesia

services and second, some cost components are not explicitly known. The costs of

overtime and the cost of calling an anesthesiologist are known. However, the cost

of idle time and the cost of keeping an anesthesiologist on the consideration list

but not calling them are not explicitly known. While the hospital does not make
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direct payments for these, they are an important component of decision making

as high idle time and not utilizing anesthesiologist from the Q-Call consideration

list impacts employee morale and leads to dissatisfied employees and thus would

have longer term implications. Interviews with planners revealed that while they

did not have a numerical value for these costs, they implicitly take these into

account while making their monthly plan. The management thus balances these

costs while creating the monthly plan. An optimization model that does not

incorporate both explicit and implicit costs would be incomplete.

Problem Statement To use historical data in a structural estimation frame-

work to infer the implicit costs of Q-call and idle time. To draw managerial

insights from these inferred costs and to use these inferred costs to develop an

optimization model for the monthly staff planning. The structural estimation of

these implicit costs also has the potential to aid decision making in the hiring of

anesthesiologists.
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Andrzej P Ruszczyński. Nonlinear Optimization, volume 13. Princeton university

press, 2006.

N. V. Sahinidis. BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear

Programs, User’s Manual, 2014.

153



Andrew J Schaefer, Matthew D Bailey, Steven M Shechter, and Mark S Roberts.

Modeling medical treatment using markov decision processes. In Operations

research and health care, pages 593–612. Springer, 2005.

Steven M Shechter, Matthew D Bailey, Andrew J Schaefer, and Mark S Roberts.

The optimal time to initiate hiv therapy under ordered health states. Oper.

Res., 56(1):20–33, 2008.

Abigail Silva, Nancy R Glick, Sheryl B Lyss, Angela B Hutchinson, Thomas L

Gift, Lisa N Pealer, Dawn Broussard, and Steven Whitman. Implementing

an hiv and sexually transmitted disease screening program in an emergency

department. Annals of emergency medicine, 49(5):564–572, 2007.

David P Strum, Jerrold H May, and Luis G Vargas. Modeling the uncertainty

of surgical procedure timescomparison of log-normal and normal models. The

Journal of the American Society of Anesthesiologists, 92(4):1160–1167, 2000.

Aurélie Thiele, Tara Terry, and Marina Epelman. Robust linear optimization with

recourse. Rapport Technique, pages 4–37, 2009.

Theja Tulabandhula and Cynthia Rudin. Robust optimization using machine

learning for uncertainty sets. arXiv preprint arXiv:1407.1097, 2014.

F.L. van Rossum, G Drake. Python reference manual, pythonlabs, virginia, USA,

http://www.python.org, 2001.

Jagadisan Viswanathan and Ignacio E Grossmann. A combined penalty func-

tion and outer-approximation method for minlp optimization. Computers &

Chemical Engineering, 14(7):769–782, 1990.

Danan Suryo Wicaksono and IA Karimi. Piecewise milp under-and overestimators

for global optimization of bilinear programs. AIChE Journal, 54(4):991–1008,

2008.

154



Gregory S Zaric and Margaret L Brandeau. Resource allocation for epidemic

control over short time horizons. Mathematical Biosciences, 171(1):33–58, 2001.

Gregory S Zaric, Margaret L Brandeau, and Paul G Barnett. Methadone main-

tenance and hiv prevention: a cost-effectiveness analysis. Management Sci., 46

(8):1013–1031, 2000.

155




