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Phylogenetics
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Abstract
Motivation: Phylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify the 
content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone tree, making it crucial that 
placement methods scale to very large trees. Moreover, a new paradigm has been recently proposed to place sequences on the species tree 
using single-gene data. The goal is to better characterize the samples and to enable combined analyses of marker-gene (e.g., 16S rRNA gene 
amplicon) and genome-wide data. The recent method DEPP enables performing such analyses using metric learning. However, metric learning 
is hampered by a need to compute and save a quadratically growing matrix of pairwise distances during training. Thus, the training phase of 
DEPP does not scale to more than roughly 10 000 backbone species, a problem that we faced when trying to use our recently released 
Greengenes2 (GG2) reference tree containing 331 270 species.
Results: This paper explores divide-and-conquer for training ensembles of DEPP models, culminating in a method called C-DEPP. While 
divide-and-conquer has been extensively used in phylogenetics, applying divide-and-conquer to data-hungry machine-learning methods needs 
nuance. C-DEPP uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP enables placing 20 million 
16S fragments on the GG2 reference tree in 41 h of computation.
Availability and implementation: The dataset and C-DEPP software are freely available at https://github.com/yueyujiang/dataset_cdepp/.

1 Introduction
Phylogenetic placement of a query sequence on a backbone 
tree is increasingly used (Matsen et al. 2010, Mirarab et al. 
2012, Zheng et al. 2018, Barbera et al. 2019, Linard et al. 
2019, Mai and Mirarab 2022, Balaban et al. 2020, Turakhia 
et al. 2021, Wedell et al. 2023). Placement can identify taxo
nomic groups making up a biological sample, a problem that 
is consequential in many downstream applications. Placement 
is used extensively in microbiome analyses (Janssen et al. 2018) 
and tracking epidemics (Turakhia et al. 2021). What placement 
offers, in lieu of the de novo reconstruction, is scalability: since 
placement processes queries independently, it scales linearly 
with the number of queries and enables analyzing millions of 
queries. This focus on scalability, however, should not come at 
the expense of accuracy.

A main lesson learned in analyses using existing tools, one 
that should not be surprising, is that the accuracy of the 
placements and downstream analyses both depend on the 
density of the backbone tree (e.g., Nasko et al. 2018, 
McDonald et al. 2023). For example, Balaban et al. (2020, 
2022) documented that subsampling a larger tree to create 
smaller backbone trees reduced accuracy for all methods 
tested. Most methods have reduced accuracy when the closest 
matches in the reference database differ substantially from 

the query. This observation has spurred the development of 
many reference sets (some using genome-wide data) that in
clude tens to hundreds of thousands of taxa (e.g., Quast et al. 
2012, Shi et al. 2019, Parks et al. 2018, Zhu et al. 2019, 
Asnicar et al. 2020, McDonald et al. 2023). These large data
bases include a fraction of available prokaryotic genomes and 
a tiny fraction of an estimated 1012 microbial species (Locey 
and Lennon 2016).

While placement methods are naturally scalable with more 
queries, they do not always scale to large backbone trees. 
This lack of scalability has motivated the development of 
booster methods such as pplacer-XR (Wedell et al. 2021) and 
SCAMMP (Wedell et al. 2023) that scale existing methods. 
These methods rely on a divide-and-conquer strategy that 
breaks the backbone into smaller subsets. Some of these 
methods, such as APPLES-II (Balaban et al. 2022) and 
SCAMMP, have been successfully run with reference trees 
with tens of thousands of leaves with reasonable run
ning times.

Traditional placement methods use some model of se
quence evolution to place a query on a tree that is assumed to 
have generated the sequences. A new paradigm some of us re
cently proposed (Jiang et al. 2022a) is to use the species tree 
as the backbone while sequence data come from a single or a 
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handful of genes. While this so-called discordant placement is 
conceptually less appealing than the traditional approach, it 
is useful in practice. The goal of sample identification is to 
find species identities, not genes; discordant placement makes 
that conflict explicit. Also, by allowing updates of a species 
tree using single genes, it provides a path for combining two 
types of data historically analyzed separately: genome-wide 
(shotgun) metagenomic data and 16S amplicon-based data. If 
we can place 16S data on the species tree, we can jointly ana
lyze 16S and genome-wide data. Jiang et al. (2022a) demon
strated that this goal is achievable with decent accuracy. In 
particular, they proposed a metric learning framework for 
phylogenetic placement using deep neural networks (NN). 
The proposed method, DEPP, trains a model based on a 
backbone tree and a multiple sequence alignment (MSA); it 
uses the model to place new queries, which need to be aligned 
to the backbone MSA. The trained model is an embedder 
that maps sequences onto the Rd space using an NN such 
that Euclidean distances in the embedding space match the 
patristic distances on the backbone tree (see Jiang et al. 
2022b for an extension to hyperbolic spaces).

While DEPP was successfully run on backbone trees with 
around 10 000 species, it has a fundamental scalability issue. 
DEPP requires calculating an Oðn2Þ distance matrix for train
ing on a backbone tree with n leaves. When n� 104, saving 
the matrix (not to mention calculating it) is impossible on 
most machines. The alternative, to compute distances for 
each small batch during training, is too time-consuming and 
makes the training process too slow. Thus, DEPP is limited to 
training with roughly 10 000 species, making it unable to 
take advantage of the modern ultra-large reference sets.

This limitation is not just theoretical. In a recent effort, 
McDonald et al. (2023) built a new version of the widely 
used Greengenes (DeSantis et al. 2006) reference dataset 
(GG2) complete with a tree with 331 270 tips, including both 
genomes and 16S sequences. Because this tree is partially a 
species tree, placing 16S rRNA amplicon sequences on the 
tree is best done using DEPP. However, DEPP cannot train 
on such a large dataset. To use GG2, we needed to develop 
techniques that enable DEPP to scale to much larger back
bone trees. These methods use divide-and-conquer to make 
the training time and memory grow quasi-linearly with the 
size of the backbone. However, as we show, much care is 
needed to retain the accuracy of the original method, mainly 
because of the trade-off between generalizability and preci
sion during model training. This paper outlines various ways 
of scaling DEPP, culminating in a method called clustered- 
DEPP (C-DEPP), an earlier version of which is used in GG2. 
Besides motivating the C-DEPP design, our results shed light 
on more fundamental questions about applying phylogenetic- 
aware divide-and-conquer in the machine-learning context.

2 Methods
2.1 Preliminaries
Phylogenetic placement seeks to determine the optimal posi
tion of a query species on a backbone tree T consisting of n 
species accompanied by corresponding sequences. Note that 
the backbone tree is often inferred using longer sequences 
than what is used during placement (e.g., see Darling et al. 
2014, Mah�e et al. 2017, Upham et al. 2019). We also study 
the related tree-update problem: Given the backbone tree and 
the corresponding sequences, extend the tree to include the 

new species. Unlike placement, tree update produces a fully 
resolved tree that elucidates the relationships between 
queries. Jiang et al. (2022a) introduced the concept of discor
dance phylogenetic placement where the backbone tree is not 
solely or exclusively inferred from the sequences used for 
placement. For downstream applications, placing on the spe
cies tree is the ultimate goal, even when data from a single 
gene is available. In this paper, we focus on discordance 
placement and update and require that the backbone and 
query sequences are aligned.

We build on the metric learning method DEPP. Unlike tradi
tional methods, which rely on predefined evolutionary models, 
it learns to embed sequences in Euclidean or Hyperbolic spaces 
such that the pairwise distances of the embeddings approximate 
the tree distances (Jiang et al. 2022b). In the training phase, 
DEPP uses stochastic gradient descent to set the parameters of 
the model to minimize the cost function: 

arg max
Φ

X

i;j

1
dij
ðjjΦðsiÞ−ΦðsjÞjj2 −

ffiffiffiffiffi

dij

q

Þ
2 (1) 

where dij are the backbone tree distances and ΦðsiÞ are the 
output embeddings generated by the DEPP model. The model 
is an NN that consists of a single convolutional layer fol
lowed by a residual block, which comprises two convolu
tional layers with the input being added to the output. A final 
fully connected layer is appended to generate the embeddings. 
Once the model is trained on the backbone tree and MSA, we 
use it to place queries. For each aligned query sequence, we 
first use the model to embed the query. Then, we compute a 
distance vector between the query embedding and the back
bone embeddings and use this distance vector as the input to 
the distance-based phylogenetic placement method APPLES- 
2 (Balaban et al. 2022), which finds the optimal placement.

Our goal is to extend DEPP to allow training with n� 104. 
Before introducing our empirically motivated method, we detail 
the datasets used throughout the paper for evaluation.

2.2 Training/testing datasets
We will focus on two datasets for benchmarking.

2.2.1 Biological Web-of-Life dataset
The Web-of-Life (WoL) dataset, built by Zhu et al. (2019), 
contains 10 575 species and 381 marker genes. An ASTRAL 
(Mirarab et al. 2014) tree constructed using the 381 marker 
genes is available with the branch length calculated using sites 
sampled from the marker genes. Here, we use the 10 genes 
examined by Jiang et al. (2022b) as well as the marker 16S 
gene. Fragmentary sequences were removed for each gene by 
the original study. Because the dataset is at the limit of what 
DEPP can analyze, using this dataset, we can compare the ef
fect of various scaling strategies to the baseline method 
trained on the entire dataset. To allow fair comparisons, we 
use the same set of queries used by Jiang et al. (2022b) for 
phylogenetic placement and tree update. For placement, 5% 
of the species of each gene are randomly selected as the 
queries and removed from the backbone. For query sequen
ces, we use the same alignment to the backbone sequences as 
the one used to infer the reference tree; thus, our experiments 
do not directly test misalignment as a cause of placement er
ror. For the tree update, we have two replicates. In each one, 
100 random clades in the species tree ranging in size from 5 
to 10 species were selected and pruned from the tree, with the 
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remaining species serving as the reference. In total, across 11 
genes, we have 5038 queries for placement and 12 248 
queries for tree update.

2.2.2 Simulated data
Balaban et al. (2023) generated a dataset comprising a species 
tree with 64 000 species and 100 genes undergoing extensive 
horizontal gene transfer (HGT) and some incomplete lineage 
sorting using Simphy (Mallo et al. 2016). Sequences were 
evolved with no insertion or deletion, omitting the need for 
aligning either references or queries. The rate of HGT is set such 
that the average discordance between gene trees and species is 
0.38 (nRF). The branch lengths of the species tree were esti
mated under the GTR model using sequences from the 100 
genes, with each gene providing 100 randomly selected sites. 
Here, we used only the first five genes for the placement experi
ments. The lengths of gene sequences vary between 375 and 
616 bp. For identical sequences, a random species was retained 
and all others were removed. This step resulted in the removal 
of 505 to 1935 sequences among the five genes. Then, 5% of 
the species were randomly removed from the species tree as 
queries, resulting in 15 694 queries across all the genes.

2.3 Scaling DEPP using divide-and-conquer
Our proposed method C-DEPP uses a divide-and-conquer strat
egy to scale DEPP training. To summarize (Fig. 1), C-DEPP 
trains a separate model for each of several overlapping subtrees; 
for each query, C-DEPP uses a two-level classifier to select one 
or more subtrees, computes distances using those subtrees, and 
uses these distances as input to APPLES-II, leaving the other dis
tances as missing. For this strategy to be accurate, many 

algorithmic tricks are needed. To motivate our final approach, 
we propose successively more advanced strategies and discuss 
the shortcomings of each. Since it is unclear how to evaluate 
these strategies theoretically, we resort to empirical evaluation 
(using the two datasets mentioned earlier) to show that each ad
ditional strategy contributes to better accuracy. The WoL data
set allows us to compare to normal DEPP while the simulated 
dataset allows examining the effects of having a very large train
ing set and ground truth.

2.3.1 Subsampling and random partitioning
The most obvious option for scaling is to simply train the 
model on a subset of species available in the tree. Such sub
sampling would still allow placement on the full tree as the 
model can embed the unused backbones as well. However, 
the accuracy of deep learning models is known to depend on 
the size of training sets. Moreover, taxon sampling is crucial 
to phylogenetic accuracy (Zwickl and Hillis 2002) and phylo
genetic placement (Balaban et al. 2022). Thus, we expect sub
sampling to reduce the accuracy. On the biological WoL 
dataset, reducing sampling by tenfold increases the average 
error by around 50% (Fig. 2).

An alternative is to partition the data and train a separate 
encoder on each subset. The resulting ensemble model allows 
calculating distances to each backbone using the associated 
model. Implementing this ensemble model using a random par
titioning of data is far better than subsampling (compare 
Subsample and RandomPart in Fig. 2) and comes close to the 
accuracy of the original model built on the full dataset. 
Nevertheless, it is less accurate and leads to the question: Does a 
more biologically motivated partitioning help accuracy?

Figure 1. Pipeline of C-DEPP for phylogenetic placement and tree update. The tree is divided into multiple first-level groups and a separate NN is trained 
on each subset. Note that representatives from one group are added to the other ones during training (not shown here). Each first-level subset is further 
divided into smaller subsets. A classifier is trained to classify a query to one of these smaller subsets probabilistically. At the query time, probabilities 
from small subsets are summarized (max) to first-level subsets, and the corresponding models are used to calculate distances. APPLES-II is used to 
place on the backbone, using only distances from chosen models. Updates happen similarly, but using FastME to update subsets and using ASTRAL (as 
a supertree method) to combine the subset trees and the original backbone
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2.3.2 Tree-based partitioning
Instead of random partitioning, we can use the reference tree 
to create subtrees that are more evolutionary homogeneous. 
Such an approach creates a mixture of local experts, a 
well-established concept in machine learning (Jacobs et al. 
1991), and used previously for phylogenetic placement 
(Mirarab et al. 2012). While many tree decomposition meth
ods are available (e.g., Liu et al. 2011), we base our approach 
on the following criterion: divide the tree into subsets with 
<m leaves while minimizing the number of clusters. The op
timal solution can be found in time linear in the size of the 
tree n, as implemented by the TreeCluster (Balaban et al. 
2019) method. Thus, the tree is divided into subtrees 
T ¼ ft1 . . . tcg, each with at most m species. We fix m (1500 
by default) as n changes; thus, running time and memory 
both scale linearly with n.

Surprisingly, phylogenetic partitioning has a higher error 
than random partitioning (compare RandomPart and 
TreePart in Fig. 2). This reduced accuracy, which contrasts 

the rich history of divide-and-conquer phylogenetic methods, 
is likely related to specifics of deep learning: each model is 
trained on a subtree without the ability to learn from the full 
range of possibilities in the sequence space. Thus, the se
quence embedder trained on the less diverse data is perhaps 
more precise but less generalizable (i.e., is overfit).

2.3.3 Adding representatives (overlapping clusters)
To address the lack of generalizability, we design an ap
proach that still uses the tree but creates overlapping training 
subsets: Each training subset includes all of the sequences in 
one of the phylogenetic partitions created previously plus a 
selection of sequences from other subsets. More precisely, we 
create another set of subtrees T̂ ¼ f̂t1 . . . t̂cg by adding k aux
iliary species to each subtree in T. We set k¼ 1

3 m logðcÞ by de
fault to obtain sub-quadratic running time. Since we fix m 
when n grows, the size of the t̂ i subtrees grows with 
OðlogðnÞÞ and the total running time and memory grow with 
Oðn log 2ðnÞÞ. The auxiliary species added to ti are those with 
the minimum distances to any species in ti. We chose to add 
close species because APPLES2 uses only small distances 
when placing a query. By adding the auxiliary species close to 
a subset, we aim to help the placement of queries close to the 
boundary between clusters, which may have their closest rela
tive outside the boundary. Since the subtrees are overlapping, 
the distance of a query to a reference species can be calculated 
using multiple models; when this happens, we take the me
dian distance.

This overlapping partitioning approach performs far better 
than tree-based partitioning alone (compare TreePartþRep 
to TreePart in Fig. 2). A reasonable explanation is that with 
auxiliary data added, while each model in the ensemble is still 
a local expert for a subtree, it is also aware of the larger con
text (e.g., sequences outside the subtree). Thus, its embed
dings are better than other models for sequences belonging to 
that subset but it also is not ignorant of the rest of the space. 
Such hybrid approaches have been used previously in ma
chine learning (Peralta et al. 2019, Liao et al. 2019).

2.3.4 Selecting the best model(s): classifiers
When analyzing a query, instead of simply using all distances 
computed from all the models, would it be better to pick the 
best “expert” model and use only its distances? Note that 
APPLES-II allows missing distances, enabling us to place on the 
full tree using distances computed from a single model. Similar 
to methods such as SCAMPP and pplacer-XR (Wedell et al. 
2021, 2023), we can use an initial placement using APPLESþJC 
to pick a subset and use only the model trained on that subset 
for placement. Empirically, this approach works no better or 
worse than giving APPLES-II the distances from all the models 
(compare TreePartþRepþAPPLES and TreePartþRep in  
Fig. 2). But can we do better than using an initial placement?

Deciding which cluster to use can itself be posed as a classi
fication problem where the input is a sequence, and the out
put is a probability vector indicating the likelihood of the 
input sequence belonging to each subtree. Using an architec
ture very similar to DEPP, we designed such a classifier. The 
only difference compared to DEPP is that the number of em
bedding dimensions equals the number of partitions and the 
final output goes through a softmax layer that ensures the L1 

norm of the output is 1 (i.e., can be interpreted as the proba
bility of the partition). The loss function is the cross-entropy 

Figure 2. Comparing strategies for scaling DEPP, tested on (a) WoL 
dataset, averaged over the 11 marker genes and (b) an example gene of 
the simulated dataset with n¼ 64 000 leaves. We show the mean and 
standard error of the placement error. The full dataset can only be used 
for training on the WoL dataset. We compare it with strategies of 
subsampling the dataset to 2500 (a) and 3500 (b) sequences (similar to 
partition sizes used in the remaining methods), partitioning the dataset 
randomly into 3 (a) and 17 (b) subsets, and C-DEPP. For C-DEPP, features 
are added sequentially; TreePart: tree-based clustering; Rep: augment 
clusters with representatives from other groups; Class: use a classifier to 
select one (-top) or multiple (-mult) clusters; Class(2L): two-level 
classification scheme. TreePartþRepþClass(2L)-mult is the final version 
used elsewhere
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between the output probabilities and the ground truth (i.e., 
indicator function of the correct partition).

Using this classifier and simply picking the most likely clus
ter improves accuracy in the real dataset but dramatically 
reduces the accuracy in the simulated high-HGT dataset 
(TreePartþRepþClass-Top versus TreePartþRep in Fig. 2). 
We next resort to using multiple models when they all have a 
substantial likelihood. More precisely, we sort the models 
based on their likelihood and take each of the top four mod
els if it has a likelihood at least 1/200 times the likelihood of 
the previously taken model (the threshold was picked arbi
trarily and not optimized). This strategy substantially 
improves results (TreePartþRepþClass-Multi in Fig. 2) but 
still remains slightly worse than using all the models on the 
simulated dataset. We believe the reason is that the classifier 
needs to assign a sequence to very large groups, a task that 
may be difficult in the face of HGT among distantly related 
species. Recall that the backbone tree (used in partitioning) is 
the species tree and may not reflect the relationships among 
genes, making classification to large subtrees less accurate, in
cluding cases with high confidence for the wrong class. Using 
smaller classes could solve this issue but would be detrimental 
to training accurate embedded models.

2.3.5 2-Level classifier
We propose a two-level classification scheme. For the second 
level, each subtree in T (e.g., ti) is further split into smaller sub
trees (T0i ¼ ft

i
1 . . . ti

ci
g) with a maximum of m0 leaves, where m0

is set to 30 by default. Second-level (smaller) subsets are used 
for classification while the larger first-level subsets are used for 
creating embedders. Thus, the classifier is trained to select 
among the second-level subtrees [i T0i . This classifier is built 
identically to what we described earlier for one-level classifiers. 
To determine the first-level subtree of a query (i.e., the large 
class), first, the classifier is used to calculate the likelihood pi

j of 
the query belonging to each second-level subtree j of first-level 
subtree i. Next, we define the score of the first-level subtree ti to 
be sti ¼maxj pi

j and use these scores to assign the query to the 
first-level subtree(s) with the highest score(s). We keep assigning 
the query to up to four subtrees with the highest scores as long 
as the subset has a score that is at least 1=200 of the score of the 
previous subtree. Note that the second-level classifiers are only 
used to select the first-level classes. Once the query is assigned 
to the first-level subtree(s), it is placed using distances calculated 
using the corresponding first-level embedder models. The role 
of the second-level classifiers is to better reveal classification un
certainty, which can be underestimated when we train classifiers 
directly on large classes.

The 2-level classification strategy retains the same accuracy 
as the 1-level for the real dataset and substantially improves 
the accuracy for the simulated dataset (Fig. 2). This version 
of the tool including all these features is the final version we 
will use throughout the rest of the paper as C-DEPP.

2.4 Experimental details
To evaluate the performance of C-DEPP, we compare it to 
leading alternatives for both placement and update tasks.

For placement, we measure the number of edges between 
the placement and the correct placement on the tree. For the 
simulated dataset, we use the true species tree as the back
bone, and thus, the correct placement is well-defined. On the 
real dataset, we take the position of the species in the original 

ASTRAL tree inferred from all 381 marker genes (before re
moving the queries) as the optimal position. We compare 
DEPP (only tested on the smaller WoL dataset) and C-DEPP 
to the following methods.

EPA-ng (Barbera et al. 2019) performs maximum-likelihood 
phylogenetic placement. We use RAxML-ng (Kozlov et al. 
2019) to infer the parameters of the substitution models 
and the backbone tree under the GTRþΓ model. 

EPA-ng-SCAMPP (Wedell et al. 2023) is a method that ena
bles EPA-ng to work on ultra-large trees by first finding a 
subtree and placing on that subtree using EPA-ng. We ap
ply the default backbone tree size of 2000. Similar to EPA- 
ng, we use RAxML-ng to prepare the backbone parameters 
under the GTRþΓ model. The placement with the highest 
support is selected for each query. 

APPLES2þJC: We use APPLES-2 (Balaban et al. 2022) 
which uses Jukes–Cantor (JC) model to estimate distances. 
We use RAxML-ng under JC models to recalculate the 
branch length of the input backbone tree for this tool. 

RAPPAS (Linard et al. 2019) is a k-mer based method. We 
employ RAxML-ng to reestimate the branch length of 
the species tree and build the database. The branch 
lengths are computed from the corresponding single- 
gene MSA under GTRþΓ model. 

For tree updates, we measure both the Robinson and 
Foulds (1981) (RF) and quartet distance between the true/ref
erence tree and the inferred updated tree. We compare 
these methods.

RAxML (Stamatakis 2014) maximum-likelihood inference is 
used to update an existing tree; we use the backbone tree 
as a constraint to fix its topology. When multiple genes are 
available, we concatenate the sequences from all the genes. 

JCþFastME. We first calculate the distances between all 
pairs of the sequences under the JC model and use the 
distance matrix as the input to the distance-based 
FastME (Lefort et al. 2015). When using more than one 
gene, we first calculate the distance matrix for each gene 
and then take the median of the distances for each pair 
across all genes to summarize the distance matrices. 
Distances among pairs of backbone species are fixed to 
patristic distances in the backbone tree to encourage 
FastME to keep the backbone relationships fixed. 

DEPPþFastME is run using a pipeline similar to 
JCþFastME, using DEPP models to estimate the distan
ces between sequences rather than the JC model. 

C-DEPPþFastME first trains the models from the back
bone and then performs three steps (Fig. 1). First, we as
sign each query to the first-level subtree with the highest 
score si; when multiple genes are available, we simply av
erage the scores across genes. We calculate the distance 
matrices for all query and backbone species in each sub
tree using all genes. As in the previous methods, we take 
the median across genes and fix distances among back
bone species to their patristic distance on the backbone 
tree. Whether we have single or multiple genes, we ob
tain a single distance matrix at the end for each subtree. 
We then re-infer each subtree using FastME given this 
distance matrix. To combine all the subtrees into a full 
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tree, we give updated subtrees as well as the backbone 
tree as input to ASTER software (Zhang and Mirarab 
2022) without weighting. Note that, here, we use 
ASTER as a supertree method and not as a summary 
method combining gene trees. 

All methods require an MSA for references, and all meth
ods except for RAPPAS require aligning queries to references. 
On the WoL dataset, we use the existing reference MSA, and 
sites with over 95% gaps are removed. Queries are not re- 
aligned after removal from the reference. For simulated data, 
sequences contain no indels and thus are already aligned. 
Therefore, our study does not directly test the impacts of 
alignment error, which may disadvantage RAPPAS, the only 
method that does not require an alignment of queries.

3 Results
3.1 Simulated data
We start by evaluating C-DEPP on simulated data. Note that 
on this dataset, DEPP would require more than 250 GB of 
memory for training, and hence, we could not run it. Among 
other methods, EPA-ng-SCAMPP has the best placement ac
curacy closely followed by C-DEPP (Fig. 3). Specifically, 
EPA-ng-SCAMPP has an average error of 2.78 edges over all 
five genes (with an average of 59 576 backbone leaves) com
pared to 2.89 edges for C-DEPP. Both of the two methods 
are substantially more accurate than APPLESþJC with an av
erage error of 3.73 edges. When evaluating the entire distri
bution of the error, the trend is generally consistent but a 

long tail of high errors is observed for all methods (Fig. S1). 
EPA-ng-SCAMPP finds placements at most three edges away 
from the correct placement 91.7% of the time, which is 2.4% 
higher than C-DEPP and 11% higher than APPLESþJC.

While slightly more accurate, EPA-ng-SCAMPP has much 
higher computational demands in terms of both running time 
and memory. Both C-DEPP and APPLESþJC are much faster 
than SCAMPP-EPA-ng (Fig. 3). Specifically, C-DEPP is 50 
times faster than EPA-ng-SCAMPP, with a slightly higher er
ror of 0.1 edges. Interestingly, C-DEPP is also faster than the 
less accurate method APPLESþJC. In terms of memory con
sumption, APPLESþJC is the most efficient requiring less 
than 0.5 GB, followed by C-DEPP which requires less than 
1.5 GB; EPA-ng-SCAMPP required 8 GB on this dataset.

Compared to the k-mer-based method RAPPAS, C-DEPP 
demonstrates significantly higher accuracy. C-DEPP exhibits 
an average error of 3.8 edges, whereas RAPPAS yields an av
erage error of 17.9 (Fig. S3). Furthermore, RAPPAS displays 
a greater number of outliers. Specifically, out of 3110 queries, 
RAPPAS produces 1241 placements with errors exceeding 
30, whereas C-DEPP only has 204 such instances. The low 
accuracy of RAPPAS may be due to its strict molecular clock 
assumptions and sensitivity to high branch length heterogene
ity (which our tree shows). In terms of the efficiency of place
ment, C-DEPP outperforms RAPPAS by a considerable 
margin. In the testing stage, C-DEPP completes its analysis in 
8 min, while RAPPAS requires 108 min. Additionally, place
ment using C-DEPP is substantially more memory-efficient, 
utilizing only 1.9 GB compared to RAPPAS’s 7.9 GB. In this 
comparison, only the first gene was considered due to 
RAPPAS’s inability to construct the database for the other 
four genes given 250 G of memory and a wall time limit 
of 48 h.

3.2 Biological data
3.2.1 Placement
Averaged over all 11 genes, the performance of EPA-ng and 
DEPP is comparable with 2.0 edges of error on average (Fig. 
4). Compared to DEPP, C-DEPP has only a slightly higher av
erage error (2.2 edges). DEPP and C-DEPP are close in accu
racy for most genes, but DEPP has a noticeable advantage for 
four genes; for these genes, accuracy was similar across most 
queries, except for a handful of outlier queries with high lev
els of missing data (gaps in the sequences) and high place
ment errors (Fig. S2). All three methods are significantly 
more accurate than APPLESþJC (3.1 edges of error).

While maintaining the high accuracy of DEPP almost in
tact, C-DEPP significantly reduces training time. For in
stance, training the DEPP model on 16S data from the WoL 

Figure 3. Results on HGT-Sim (64K) comparing average placement errors 
(y-axis) with running time (a) and peak memory (b). Larger dots are 
averages over all five genes. The x-axis is in the log-scale

Figure 4. Placement error, showing mean and standard error of error, 
across 11 genes of the WoL dataset with � 104 species, where DEPP 
can be run
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dataset using a Tesla V100-SXM2-32GB card takes 210 min. 
In contrast, the C-DEPP model requires only one-third of 
that time to train on the same data. In terms of testing, while 
C-DEPP has a longer running time than DEPP, it is more 
memory-efficient. For example, when placing 1000 16S 
sequences onto the backbone tree with 7400 leaves, C-DEPP 
has a peak memory usage of 0.67G (126 s running time), 
while DEPP requires a peak memory usage of 1.5G (26 s), re
ducing memory consumption by more than half compared to 
DEPP’s. On much larger datasets, the memory requirements 
of DEPP (which grow quadratically) would become 
prohibitive.

3.2.2 Tree update
When using a single gene to update a tree, RAxML has a 
clear advantage over other methods with lower error mea
sured by quartet distance or RF distance (Fig. 5). However, 
C-DEPP has very similar accuracy to DEPP. When multiple 
genes are used, patterns gradually change. Errors drop rap
idly for DEPP and C-DEPP but not the concatenation-based 
RAxML. For example, when using two genes, the average 
quartet distance of C-DEPP is 0.02 which is around one-third 
of its error with one gene. The quartet error quickly drops 
down to 0.006 with six genes. The pattern is similar (though 
less pronounced) when examining the RF distances. For ex
ample, the RF distances are reduced by half from using a sin
gle gene to using six genes. In contrast, the error reduction is 
less pronounced for RAxML; the quartet error does not re
duce notably in response to increasing the number of genes 
beyond two and can occasionally increase C-DEPP and DEPP 
start to outperform RAxML with six genes or more when 
measuring the quartet distance or with 10 genes when mea
suring the RF distance. The performance of JCþFastME is 
significantly worse than the other methods measured by 
quartet distance and is the worst or among the worst meth
ods measured by RF distance. Finally, note that DEPP and 
C-DEPP have very similar accuracy. When the dataset is 
small enough to allow running both, there is no benefit in 

using C-DEPP on this dataset. However, for larger datasets, 
C-DEPP is the only option possible due to its size.

3.3 Application: C-DEPP used on GG2
Recently, McDonald et al. (2023) inferred a reference tree com
bining �16 000 genomes and 321 210 16S full-length sequences 
to produce the second version of the popular Greengenes data
base. The next goal of that project was to place all 23 113 447 
short V4 16S rRNA Deblur v1.1.0 8 (Amir et al. 2017) ampli
con sequence variants from Qiita (Gonzalez et al. 2018) (re
trieved 14 December 2021) on this tree. Since the backbone tree 
is a mixed species/gene tree, DEPP, which can learn to place on 
any tree, was the appropriate placement method. However, be
cause the backbone tree was more than an order of magnitude 
larger than what DEPP could handle, we had to develop the 
C-DEPP approach studied here (an earlier version akin to 
TreePartþClass-Multi).

As the query sequences are hybrid, encompassing full- 
length 16S, complete V4 region, and a segment of the V4 re
gion, we developed four distinct models tailored to different 
scenarios: one for full-length 16S, another for the V4 region 
of 16S (240 bp), and two more for V4 segments, with lengths 
of 150 and 100 bp. Multiple models are trained for different 
regions as evidence shows that the performance of DEPP 
would degrade if used with highly gappy aligned queries 
(Jiang et al. 2022a). For each query sequence, we first align it 
to the backbone MSA using UPP (Nguyen et al. 2015). We 
aligned full-length 16S queries with the backbone full-length 
16S MSA and aligned all short-read 16S sequences with the 
backbone MSA of the full V4 region. If the queries contain 
regions not present in the reference sequences, those specific 
regions are ideally marked as insertion sites by UPP, which 
are omitted from the alignment before we proceed. For 16S 
reads, we selected the appropriate model (240, 150, or 
100 bp) based on the query alignment. We chose the model 
corresponding to the longest region, as long as the proportion 
of gaps in its alignment was below 0.2. Queries with a gap 
proportion exceeding 0.2 in all three cases were filtered from 
final analyses, removing 10% of the queries.

McDonald et al. (2023) extensively report on the results of 
that analysis showing improved taxonomic classification and 
consistency across data types in using GG2. Here, instead of 
repeating those results, we focus on the impact of C-DEPP 
allowing a backbone tree of size > 3×105. Using the original 
backbone of size 104 leads to placements with much longer 
terminal lengths for the pendant edges (Fig. 6a). The reduced 
terminal branch lengths of C-DEPP confirm the motivation 
for using large backbone trees: they can provide more precise 
phylogenetic placements, which can then enable a better un
derstanding of the microbiome compositions. Incredibly, us
ing this much larger tree did not impact running time. 
Placement using C-DEPP onto the backbone tree with more 
than 330 000 leaves requires roughly the same time as place
ment onto the WoL tree (with 10 575 leaves) using DEPP, 
further demonstrating the scalability of C-DEPP (these 
reported running times include alignment using UPP).

4 Discussions
To enable the machine-learning placement method DEPP to 
scale to ultra-large datasets, we introduced C-DEPP. C-DEPP 
is not more accurate than DEPP but is far more scalable as 
the backbone size grows. The time and memory of C-DEPP 

Figure 5. Tree update results on the WoL dataset. We show both quartet 
and RF distances, only restricted to query taxa, as the number of genes 
increases. FastME fails to run in some cases with one or two genes 
because specific pairs of sequences occasionally have no overlapping 
nongap sites
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grow quasi-linearly with the backbone size, improving on 
quadratic scaling of DEPP. As more microbial genomes be
come available, sub-quadratic methods become increasingly 
needed. The C-DEPP method has already been used 
(McDonald et al. 2023) and fills an important practical gap. 
Using APPLES-II with JC distances is scalable but not accu
rate enough for placing on species trees while maximum 
likelihood is too slow. C-DEPP is as salable as simple 
distance-based methods but comes close to maximum likeli
hood in terms of accuracy.

In designing C-DEPP, we used divide-and-conquer techni
ques with two key twists. First, we augmented phylogeny- 
based clusters by representatives from other groups. This is 
helpful because sequence embedders need to “see” suffi
ciently diverse examples to learn generalizable models. This 
benefit may be particular to machine learning and is very dif
ferent from the use of overlapping subsets in supertree meth
ods (e.g., Nelesen et al. 2012), which do so to enable the 
merging of subtrees. Second, we found it mildly beneficial to 
restrict distance calculation to models most likely to have 
generated a query only if a two-layer classifier is used. A bio
logical insight underpins this two-layer design. The main 
cause of gene tree discordance on microbial datasets is HGT, 
which can hamper classifying a gene sequence into groups de
fined on the species tree. Using large classes can mask discor
dance and lead to high confidence for the wrong subtree. By 
using smaller subtrees, we enable the classifier to find clades 
in the species tree corresponding to the HGT donor and re
cipient in a specific gene, reducing cases of highly confident 
but incorrect classifications. We test this hypothesis by exam
ining the correlation between error differences and the level 
of HGT. We quantify HGT by computing the average gene 
tree distances of the 10 nearest neighbors in the species tree. 
Results show that among the queries where 2-level classifica
tion is dramatically better, the gene trees are more discordant 
to the species tree (Fig. S4), indicating that those queries are 
more likely to be affected by HGT.

Another factor that impacted accuracy was the query nov
elty quantified using its distance to its closest species in the 
backbone tree. We observed a consistent performance decline 
across all methods as query novelty increases (Fig. S5). On 

simulated data, C-DEPP exhibits comparable performance 
with EPA-ng, even with queries reasonably distant from the 
backbone species (e.g., in the 0.2–0.8 range). According to an 
ANOVA test, there was no statistically significant difference 
between the two methods (P¼ .22) and the novelty level had 
no significant impact on the relative accuracy of the methods 
(P¼ .14). Similarly, the comparison to JC did not depend on 
the novelty level in a significant way (P¼ .87). In the WoL 
dataset, increasing the novelty level had no significant impact 
on the relative accuracy of C-DEPP and EPA-ng (P¼ .75) but 
it did impact the comparison to JC (P¼ .00004). Thus, the ef
fectiveness of C-DEPP in comparison to other methods does 
not diminish with more novel queries.

Both DEPP and C-DEPP can improve in the future in sev
eral ways. For the tree update, alternative pipelines should be 
explored. For example, instead of summarizing across genes 
by computing the median distance, we can compute an 
updated tree per gene and let ASTRAL combine them. We 
also did not force the backbone trees to be fixed. Imposing 
such constraints on ASTRAL may improve the accuracy. 
Another limitation of the current (C-)DEPP methodology is 
that its accuracy can degrade as the portion of gaps in the 
query alignment increases; while Jiang et al. (2022a) pro
posed a model (not used in our experiments) to reconstruct 
gaps, creating models more robust to highly gappy queries 
can enable us to train one model on the full-length MSA and 
place reads aligned to that MSA. Another avenue for im
provement is incorporating support. Recently, Hasan et al. 
(2022) and Rachtman et al. (2022) have shown various ways 
of computing support for distance-based placement using 
APPLES. However, C-DEPP has not incorporated uncertainty 
calculation. Subsampling techniques similar to Jiang et al. 
(2022a) can be incorporated into C-DEPP, but such measures 
of support need to account for classification errors. This can 
be achieved using the probability output from the classifier as 
an indicator of uncertainty.

Our study also leaves some questions unanswered. We did 
not explore the impact of alignment error, nor did we study 
the impact of gaps. Jiang et al. (2022a) have explored both 
for DEPP but the impact on the classification step of C-DEPP 
needs further study. Also, the most accurate method, 
SCAMPP, was slow in our analyses. A new version called 
Batch-SCAMPP (Wyyreferenceedell et al. 2022) promises 
much faster running times. In preliminary tests, we saw some 
improvements in speed but not enough to bridge the gap with 
C-DEPP. Batch-SCAMPP takes between 2.5 and 9 h on the 
64k dataset, depending on the level of HGT in a gene, com
pared to 12 h for normal SCAMPP. In contrast, C-DEPP 
takes around 30 min. Finally, while here we scaled to trees 
with up to 330 000 leaves, larger trees are being constantly 
built. In our future applications of C-DEPP, we plan to use it 
to place queries on trees with millions of leaves.
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