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Swift	detection	and	remembering	of	salient	and	emotional	stimuli	is	critical	for	survival	

and	adaptive	fitness.	Optimal	emotional	processing	is	central	to	mental	health,	abnormalities	of	

which	 are	 frequently	 present	 across	 all	 forms	 of	 neuropsychiatric	 illness	 including	 major	

depression,	post-traumatic	stress	disorder,	and	suicide.	Despite	the	extent	of	the	problem,	our	

fundamental	 understanding	 of	 the	 neural	 circuitry	 underlying	 emotional	 processing	 remains	

limited,	which	has	hindered	therapeutic	advances	in	neuropsychiatric	diseases.		

Here,	 we	 employed	 intracranial	 electrodes	 in	 drug-resistant	 epilepsy	 patients	

undergoing	 pre-surgical	 evaluation	 to	 directly	 record	 neural	 signals	 from	 the	 amygdala,	 the	

hippocampus	 and	 the	 orbitofrontal	 cortex,	 a	 neuroanatomical	 circuit	 core	 to	 emotional	

processing.	 First,	 we	 examined	 oscillatory	 activity	 within	 the	 medial	 temporal	 lobe	 during	

processing	of	fearful	faces	compared	to	neutral	landscapes.	We	found	early	engagement	of	the	

amygdala	 and	 unidirectional	 influence	 from	 the	 amygdala	 to	 the	 hippocampus	 during	

processing	of	fearful	faces.	 In	addition,	we	showed	that	such	modulation	is	mediated	through	

cross	 frequency	 coupling	 between	 theta/alpha	 (4-10Hz)	 oscillations	 and	 high	 gamma	 activity	
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(70-200	Hz).	Next,	we	investigated	the	oscillatory	mechanisms	of	emotional	memory	and	asked	

how	 emotion	 influences	 the	 discrimination	 of	 similar	 mnemonic	 experiences	 (e.g.	 pattern	

separation).	 We	 observed	 frequency-specific	 interactions	 between	 the	 amygdala	 and	 the	

hippocampus,	with	 theta	 (3-7Hz)	 synchrony	 facilitating	 correct	mnemonic	 discrimination	 and	

alpha	 (8-13Hz)	 synchrony	 promoting	 incorrect	 recognition.	 Finally,	 we	 examined	 how	 past	

context	 modulates	 our	 future	 perception	 of	 facial	 expression.	 Using	 Bayesian	 decoding	

techniques,	 we	 showed	 that	 the	 high	 gamma	 activity	 is	 precisely	 aligned	 with	 the	 phase	 of	

theta	oscillations,	in	which	the	probability	densities	of	the	reconstructed	time	showed	that	the	

descending	theta	phase	encodes	past	context	and	ascending	theta	phase	represents	future	face	

perception.	 In	 sum,	 intracranial	 recordings	 have	 provided	 critical	 insights	 on	 how	oscillations	

coordinate	 circuit	 dynamics	 in	 the	 frontotemporal	 network	 to	 rapidly	 and	 flexibly	 organize	

emotional	information	in	humans.	
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CHAPTER	1:	Introduction	and	Significance	

	

1.1 Emotion	Perception	and	Emotional	Modulation	

1.1.1 Facial	Emotion	Processing	

The	recognition	of	emotional	 information	 from	facial	expression	plays	a	critical	 role	 in	

human	 communication.	 It	 has	 been	 the	 research	 focus	 over	 several	 decades	 to	 a	 range	 of	

disciplines,	 including	 psychology,	 psychiatry	 and	 affective	 neuroscience1.	 Perception	 of	 facial	

emotion	 can	 be	 a	 simple	 procedure	 of	 feature	 detection2	 or	 a	 complex	 configuration-based	

procedure,	 which	 requires	 comprehensive	 analyses	 of	 multiple	 information	 including	 face’s	

gender,	 identity,	emotional	expression	or	other	social	relevant	clues3.	For	 instance,	happiness	

can	 be	 easily	 inferred	 by	 single	 facial	 feature,	 the	 smile.	 On	 the	 other	 hand,	 discrimination	

among	 different	 types	 of	 happiness	 (e.g.	 Surprisingly	 happy	 versus	 Smug	 happy)	 requires	

further	interpretation	of	rich	information	from	the	face	or	even	the	surrounding	context.	It	has	

been	proposed	 that	 the	emotional	processing	of	 faces	 involve	 two	principal	neuroanatomical	

divisions:	 1)	 occipital	 and	 temporal	 visual	 neocortex,	 and	 2)	 subcortical	 pathway	 (including	

amygdala	 and	 hippocampus)	 that	 bypass	 visual	 cortex1.	 Due	 to	 the	 limitation	 of	 electrode	

placement,	 the	 studies	 listed	 in	 this	 thesis	 are	 focused	on	 interactions	within	 the	 subcortical	

pathway.		

Notably,	 out	of	 all	 the	emotion,	 facial	 expressions	of	 fear	 are	processed	 specially	 and	

disproportionately	rely	on	the	amygdala4.	In	a	rare	case,	the	patient	SM	with	bilateral	amygdala	

damage,	 she	 can	 normally	 judge	 age,	 gender	 and	 familiar	 identity	 from	 faces	 and	 has	 little	

difficulty	 recognizing	 most	 facial	 expressions,	 but	 has	 severe	 impairment	 of	 fearful	 face	
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perception	 specifically5.	 Evidence	 from	 neuroimaging	 studies	 has	 also	 shown	 that	 for	 fear	

stimuli	(e.g.	a	fearful	face),	fast	neural	responses	from	amygdala	engage	in	the	early	processing	

of	salient	 information,	which	can	occur	even	prior	to	awareness6	and	 irrespective	to	subjects’	

attentional	focus7-9.	Moreover,	for	efficient	emotional	learning	and	environmental	adaptation,	

the	 amygdala	 could	 also	 trigger	 associated	 emotional	 knowledge	 via	 its	 projections	 to	 the	

hippocampal	 formation1.	 Evidence	 from	 rodent	 studies	 have	 demonstrated	 a	 close	 interplay	

between	 amygdala	 and	 hippocampus	 under	 fear	 conditioning	 tasks	 and	 indicate	 a	 strong	

modulation	 from	 the	 amygdala	 to	 hippocampal	 encoding	 plasticity10-12.	 Such	 directional	

influence	 has	 only	 been	 indirectly	 inferred	 in	 humans	 from	 behavior13	 and	 neuroimaging	

studies14.	Here	we	look	for	direct	electrophysiological	evidence	to	support	such	notion	and	aim	

to	 reveal	 the	 oscillatory	 dynamics	 between	 the	 amygdala-hippocampal	 circuit	 during	 the	

processing	of	fearful	faces.	

	
1.1.2	 Emotional	Modulation	of	Memory	

Emotion	 conveys	 memory	 benefits	 and	 selectively	 preserves	 them	 from	 forgetting,	

which	 allows	 the	 guidance	 for	 future	 adaptation.	A	 typical	 example	 is	 flashbulb	memories	 (a	

lifetime	detainment	of	detailed	and	vivid	memory	of	 important	historical	or	autobiographical	

events),	 which	 is	 initially	 suggested	 to	 have	 a	 better	 recollection	 for	 emotional	 events	

compared	 to	 the	neutral	ones.	However,	 recent	 studies	have	pointed	out	 that	 this	enhanced	

vividness	of	emotional	events	may	be	subjective	and	are	not	completely	accurate	since	emotion	

doesn’t	enhance	memory	equally	 from	all	 the	aspects	nor	for	all	 types	of	emotional	events15.	

Specifically,	 the	 emotional	modulation	 of	memory	 is	 asymmetric,	with	 the	 central	 emotional	
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content	 (i.e.	 gist)	 is	 enhanced	 while	 the	 memory	 for	 peripheral	 content	 (i.e.	 details)	 is	

impaired15,16.	This	is	consistent	with	Mather	and	Sutherland’s	Arousal-Biased	Competition	(ABC)	

model,	 in	which	memory	of	specific	stimuli	can	be	either	enhanced	or	 impaired	based	on	the	

competition	in	favor	of	high	arousal	priority.	An	example	of	such	emotional	memory	trade-off	is	

the	“weapon	focus”	effect,	where	eye-witnesses	often	recall	the	weapon	used	in	a	crime	with	

great	detail	but	 fail	 to	encode	(or	perhaps	more	quickly	 forget)	peripheral	details	such	as	the	

perpetrator’s	clothing17.	

Neuroscientists	tested	such	phenomenon	by	examining	the	effect	of	emotional	arousal	

on	mnemonic	discrimination	ability18,	which	relies	on	the	hippocampal	pattern	separation	(i.e.	

the	 process	 by	 which	 similar	 episodic	 memories	 are	 stored	 by	 non-overlapping	 neural	

representations19,20).	 An	 impaired	discrimination	 ability	 for	 emotional	 stimuli	 has	 been	 found	

compared	 to	 the	 neutral	 ones21,	 indicating	 a	 biased	 emotional	 influence	 on	 mnemonic	

discrimination.	Moreover,	neuroimaging	studies	have	revealed	a	co-activation	pattern	between	

the	amygdala	and	hippocampus,	with	amygdala	activity	associated	only	with	emotional	valence	

regardless	 discrimination	 accuracy	while	 hippocampal	 activity	 co-varied	with	 both	 emotional	

valence	and	discrimination	outcomes22.	These	findings	suggest	that	the	emotional	modulation	

of	mnemonic	 discrimination	might	 be	 the	 results	 of	 the	 influence	 of	 the	 amygdala	 onto	 the	

hippocampus.	However,	the	understanding	of	the	underlying	neural	mechanism	is	hindered	by	

the	 limited	 ability	 of	 non-invasive	 methods	 (e.g.	 surface	 electroencephalography	 (EEG),	

magnetoencephalography	 (MEG)	 and	 magnetic	 resonance	 imaging	 (MRI))	 to	 directly	 record	

from	the	human	brain.	Here	we	employ	safe	and	large-scale	intracranial	electrodes	in	humans	

to	 capture	dynamic	neural	 interactions	 from	 these	 regions	at	an	unparalleled	 spatiotemporal	
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resolution	 to	 further	 extend	 the	 knowledge	 of	 such	 phenomenon	 to	 circuit-level	

understandings.	

	

1.1.3 Context	in	Emotion	Perception	

Context	 influences	 our	 emotional	 perception.	 This	 is	 originally	 discovered	 by	 Soviet	

filmmaker	Lev	Kuleshov	near	a	century	ago.	He	found	that	audiences’	emotional	perception	of	

an	actor’s	face	could	be	manipulated	by	different	emotional	scenes	it	paired	with.	In	his	original	

experiment,	the	actor	Ivan	Mozzhukhin’s	face	is	juxtaposed	with	either	a	scene	of	funeral	or	a	

scene	 of	 a	 child	 playing,	which	 results	 in	 audience	 interpretation	 of	Mozzhukhin’s	 emotional	

disposition	as	subtly	melancholic	or	happy,	respectively23.		

While	“Kuleshov	Effect”	serves	as	an	important	editing	technique,	it	also	brings	interests	

from	psychiatrists	and	neuroscientists	to	study	the	contextual	modulation	of	how	we	perceive	

and	 predict	 the	 social	world24.	 From	 an	 evolutionary	 perspective,	 context	 improves	 adaptive	

fitness	by	constraining	search	within	memory	systems	to	optimize	imminent	threat	forecast25.	

However,	 this	effect	 can	also	become	maladaptive	when	 inappropriately	associating	a	 fearful	

context	 with	 safety	 or	 neutral	 cues.	 Its	 persistence	 can	 lead	 to	 impaired	 fear	 extinction26,27.	

Animal	 electrophysiology28-30	 and	 human	 neuroimaging	 studies31,32	 have	 shown	 that	 the	

amygdala-hippocampus-orbitofrontal	circuit	is	required	for	contextual	control	of	fear	behavior.	

The	abnormalities	of	this	tripartite	network	can	lead	to	impaired	fear	extinction	that	underlies	

diverse	 mental	 illness	 including	 post-traumatic	 stress	 disorder,	 anxiety,	 and	 depression33.	

Despite	 its	 importance,	 little	 is	 known	 regarding	 the	 circuit	 dynamics	 underlying	 contextual	

modulation	 of	 facial	 expressions	 in	 humans34.	 Here	 we	 aim	 to	 fill	 the	 gap	 in	 knowledge	 by	



5	
	

examining	 the	 spatiotemporal	 information	 flow	 of	 amygdala-hippocampus-orbitofrontal	

network	during	the	context-face	integration.			

	

1.2 Emotion	Circuit:	Amygdala-Hippocampus-Orbitofrontal	Cortex	

1.2.1 Anatomy	Overview	of	Tripartite	Network	

Amygdala	anatomical	review	

Amygdala	(means	‘almond’	in	Greek)	is	the	almond-shaped	structure	located	deep	and	

medially	within	the	temporal	lobes	of	the	human	brain.	The	amygdala	contains	about	13	nuclei	

that	 have	 widespread	 connections	 with	 many	 areas	 of	 the	 brain	 and	 can	 interact	 with	

information	 from	 every	 sensory	 modality.	 Based	 on	 the	 functional	 connectivity	 and	 the	

distribution	of	neurotransmitters35,	nuclei	within	the	amygdala	can	be	distinguished	into	three	

major	 groups:	 1)	 basolateral	 nuclei	 (lateral,	 basal,	 and	 accessory	 basal	 nucleus),	 which	 is	

typically	 referred	as	 the	BLA,	2)	 cortical-like	nuclei	 (nucleus	of	 the	 lateral	olfactory	 tract,	bed	

nucleus	 of	 the	 accessory	 olfactory	 tract,	 anterior	 and	 posterior	 cortical	 nuclei,	 and	

periamygdaloid	cortex),	and	3)	centromedial	nuclei	(central,	medial,	and	the	bed	nucleus	of	the	

stria	terminalis)36.		

Hippocampus	anatomical	review	

Hippocampus	(means	“seahorse”	in	Greek)	 is	the	seahorse-shaped	structure	located	in	

the	temporal	lobe	of	each	cerebral	cortex,	medial	to	the	inferior	horn	of	the	lateral	ventricle.	It	

contains	 two	main	 interlocking	 parts:	 the	 hippocampus	 proper	 and	 dentate	 gyrus	 (DG).	 The	

hippocampus	proper	consists	of	 four	subfields	CA1,	CA2,	CA3	and	CA4,	which	 is	the	 initials	of	

Cornu	Ammonis,	an	earlier	name	of	hippocampus37.	These	four	hippocampal	subfields	curl	into	
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a	tight	U	shape	and	are	distinguished	as	the	narrow	area	with	a	single	layer	of	densely	packed	

pyramidal	 neurons.	 The	 hippocampus	 proper	 starts	 with	 CA1	 subfield,	 which	 has	 the	 major	

output	pathway	 to	 the	 layer	 III	 of	 entorhinal	 cortex	 (EC)	 via	 the	monosynaptic	pathway.	CA2	

and	 CA3	 are	 often	 combined	 together,	 since	 CA2	 is	 a	 small	 area	 and	 the	 pyramidal	 cells	

between	 two	 regions	 are	 highly	 alike.	 CA3	 also	 connected	 to	 EC	 but	 through	 the	 trisynaptic	

pathway	 (from	 layer	 II	 of	 EC	 to	DG	 and	 then	 to	 CA3	 via	 the	 perforant	 path	 and	mossy	 fiber	

path)38,39.	 Besides	 that,	 CA3	 subfield	 can	 also	 receive	 input	 from	 itself	 via	 the	 recurrent	

collateral	network	and	can	project	to	CA1	via	the	Schaffer	collateral	path39.	CA4	contains	mossy	

cells	that	receive	inputs	from	granule	cells	in	the	DC	and	sometimes	is	considered	as	part	of	the	

DG37.	 Due	 to	 the	 relatively	 large	 size	 of	 electrodes,	 we	 couldn’t	 sparse	 signals	 from	 all	

hippocampal	subfields	and	instead	simplify	the	division	as	CA1	and	DG/CA3	(including	CA2,	CA3,	

CA4,	and	DG).		

In	 addition,	 it	 has	 been	 noted	 that	 the	 anterior	 (or	 ventral)	 and	 posterior	 (or	 dorsal)	

portions	of	 the	hippocampus	have	different	connectivity	with	cortical	and	subcortical	areas37.	

Disparate	 functions	 have	 been	 proposed	 for	 these	 two	 subregions,	with	 anterior	 (or	 ventral)	

hippocampus	 mediating	 anxiety-related	 behaviors	 and	 posterior	 (or	 dorsal)	 hippocampus	

facilitating	 spatial	 navigation40,41.	 Since	 our	 tasks	 contain	 highly	 arousal	 stimuli	 and	our	main	

interests	are	 targeted	at	 the	emotional	perception	and	emotional	modulation,	 the	analysis	 in	

Chapter	2-4	are	mainly	focused	on	the	anterior	hippocampus.		

Orbitofrontal	cortex	anatomical	review	
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Orbitofrontal	cortex	(OFC)	 is	a	part	of	the	prefrontal	cortex	that	consists	of	Brodmann	

area	10,	11	and	47	 in	humans42.	The	name	comes	 from	 its	position,	which	 is	 right	above	 the	

orbits	where	 the	eyes	are	 located.	 It	has	been	considered	anatomically	 synonymous	with	 the	

ventromedial	prefrontal	cortex43.		

Anatomical	connections	among	three	regions		

Amygdala	 and	 hippocampus	 are	 reciprocally	 connected.	 The	 BLA	 projects	 to	 the	

hippocampus	via:	1)	 indirect	connections	through	the	EC,	2)	 indirect	connections	through	the	

hypothalamus	and	medial	septum,	and	3)	direct	connections	to	CA3,	CA2,	CA1,	subiculum,	and	

parasubiculum44.	On	the	other	hand,	the	hippocampus	projects	back	onto	the	amygdala,	mostly	

via	 hippocampal	 CA1	 to	 BLA44,45.	 The	OFC	 also	 has	 reciprocal	 connections	with	 amygdala46,47	

and	hippocampus48.	Specifically,	OFC	is	strongly	connected	with	the	hippocampus,	via	the	direct	

pathway	 from	 ventral	 CA1	 to	 medial	 OFC49.	 The	 caudal	 sector	 of	 lateral	 OFC	 is	 strongly	

connected	 with	 the	 amygdala50,	 mostly	 with	 basal	 and	 lateral	 amygdaloid	 nuclei47.	 Notably,	

projections	from	the	dorsal	hippocampus	to	the	medial	OFC	has	not	been	known	yet51.		

	

1.2.2 Functional	Cooperation	among	Three	Regions	

An	 extensive	 body	 of	 work52	 has	 suggested	 the	 amygdala-hippocampus-orbitofrontal	

cortex	as	the	core	neural	circuit	of	affective	processing,	with	divergent	functions	for	each	region.	

The	 amygdala	 is	 critical	 for	 prioritizing	 salient	 information	 such	 as	 emotion53,	 valence54,	 and	

motivation55.	The	hippocampus	is	thought	to	be	important	for	contextual	modulation	of	fear56	

and	emotional	memory57.	The	orbitofrontal	 cortex	 is	 important	 for	 representing	 the	affective	

value	 of	 goals	 to	 predict	 outcomes58,59	 and	 is	 critical	 for	 the	 formation	 of	 fear	 memory	 to	
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establish	 punishment	 prediction60.	 Indeed,	 orbitofrontal	 lesions	 in	 nonhuman	primates	 cause	

enhanced	anxiety,	 fear	 response	and	negative	bias	 in	decision-making60,61.	While	each	 region	

has	 dissociable	 functions,	 recent	 work	 in	 reinforcement-learning	 models	 also	 suggests	 that	

overlapping	functional	roles	of	these	three	regions	exist62.	Both	the	orbitofrontal	cortex	and	the	

hippocampus	form	cognitive	maps	with	different	emphases.	Hippocampus	is	particularly	biased	

to	form	associations	by	linking	information	into	sequences	and	it	has	been	proposed	that	these	

associations	provide	a	predictive	map63.	Orbitofrontal	cortex	provides	a	more	global	cognitive	

map	of	the	task	state	or	structure	by	drawing	relations	between	internal	and	external	states	to	

infer	 rules	 and	 outcomes62.	 In	 addition,	 overlapping	 functions	 have	 also	 been	 found	 in	 the	

orbitofrontal	 cortex	 and	 the	 amygdala,	 in	 which	 they	 both	 encode	 the	 value,	 reward,	 and	

decision64-66.	These	findings	suggest	that	emotional	processing	is	not	limited	to	a	single	region	

but	 instead,	 interactions	 among	 this	 core	 ‘emotional’	 circuit,	 anchored	by	direct	 and	 indirect	

anatomical	connections,	are	critical	for	appropriate	behavior	response.	Then	the	key	question	is	

how	do	amygdala,	hippocampus,	and	orbitofrontal	cortex	cooperate	with	each	other	to	process	

emotion?	 Based	 on	 the	 evidence	 from	 rodent	 studies,	 a	 computational	model	 for	 emotional	

processing	 has	 been	 proposed,	 in	 which	 the	 hippocampus	 and	 the	 orbitofrontal	 cortex	

cooperate	 to	 form	 cognitive	maps	 that	 track	 the	 causal	 relationships	 among	 stimuli,	 actions,	

and	 outcomes62;	 the	 amygdala	 imbues	 salience	 and	 emotion	 to	 dynamically	 interact	 with	

hippocampus-orbitofrontal	 cognitive	 maps.	 Therefore,	 in	 Chapter	 2-4,	 we	 aim	 to	 testify	 this	

hypothesis,	look	for	electrophysiological	evidence	and	build	up	a	unifying	model	in	humans.	

	

1.3 Brain	Oscillations	and	Network	Dynamics	
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1.3.1 Intracranial	Electroencephalography		

The	dawning	of	the	science	of	electrophysiology	

“In	 an	 era	 when	 electricity	 itself	 was	 a	 young	 science,	 and	 physiology	 scarcely	

distinguishable	 from	 the	anatomy,	 electrical	 activity	 of	 the	nervous	 system	was	

hardly	recognized.”		

As	Mary	Brazier	wrote	in	her	book	“The	History	of	the	Brain:	The	first	half	century”.	The	tuning	

point	comes	in	1791	when	Galvani	published	his	famous	Commentary	and	discovered	intrinsic	

electricity	 from	nerves.	 It	 took	another	 fifty	 years	 for	 the	 scientists	 to	 realize	 these	electrical	

activities	from	the	nervous	system	could	be	used	as	a	sign	of	its	function.	At	that	time,	intense	

interests	are	focused	on	mapping	the	motor	cortex	by	stimulating	different	parts	of	the	brain	

with	 electrodes	 and	 observing	 the	 resulting	 motions	 from	 that.	 However,	 Richard	 Caton,	 a	

Liverpool	 neurosurgeon,	 used	 the	 electrodes	 to	 receive	 the	 electrical	 signals	 from	 the	 brain	

instead	 of	 sending	 electrical	 signals	 to	 it.	 In	 the	 first	 section	 of	 his	 work,	 presented	 in	 the	

proceedings	of	the	meeting	of	the	British	Medical	Association	on	24th	August	1875,	he	wrote:	

“Feeble	 currents	 of	 varying	 direction	 pass	 through	 the	 multiplier	 when	 the	

electrodes	are	placed	on	two	points	of	the	external	surface,	or	one	electrode	on	

the	 grey	matter,	 and	 one	 on	 the	 surface	 of	 the	 skull…The	 current	 is	 usually	 in	

constant	 fluctuation;	 the	 oscillation	 of	 the	 index	 being	 generally	 small,	 about	

twenty	to	fifty	degrees	of	the	scale.”	

This	has	been	remarked	as	the	original	discovery	of	the	electroencephalogram	(EEG).	But	this	

amazing	work	was	not	well	recognized	until	the	great	German	psychiatrist	Hans	Berger	took	the	
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concept	 further:	 developed	 the	 non-invasive	 EEG	 recorded	 from	 the	 scalp	 and	 associated	

robust	signal	changes	with	the	opening	and	closure	of	eyes.		

Invention	of	Intracranial	Electroencephalography	(iEEG)	

In	 the	 early	 1950s,	 Wilder	 Penfield	 and	 Herbert	 Jasper,	 the	 neurosurgeons	 at	 the	

Montreal	 Neurological	 Institute	 extended	 the	 non-invasive	 EEG	 approach	 to	 intracranial	

recordings	by	placing	electrodes	directly	inside	the	brain67.	This	is	originally	designed	to	identify	

the	cortical	regions	that	generate	epileptic	seizures.	Now	it	has	been	widely	used	as	a	powerful	

technique	for	studying	neural	dynamics	of	human	brain	and	linking	these	electrical	features	to	

cognition	 and	 disease68.	 It	 provides	 a	 direct	measurement	 of	 population-level	 neural	 activity	

with	 high	 temporal	 and	 spatial	 precision69.	 Compared	 to	 the	 non-invasive	 EEG,	 in	 which	

electrical	 signals	 are	 spatially	 smeared	 when	 passing	 through	 the	 skull,	 iEEG	 can	 provide	

functional	and	anatomical	configurations	of	a	distinct	neural	circuit	–	the	dynamics	within	and	

among	 different	 brain	 regions	 that	 produce	 various	 temporal/spatial/spectral	 EEG	 features	

associated	with	specific	cognitive	processes.		

	

1.3.2 Neuronal	Oscillations:	Local	and	Global	Modes	

Clocks	 tick,	 bridges	 vibrate	 and	 neural	 networks	 oscillate70.	 Oscillatory	 activities	 in	

human	were	first	discovered	by	Hans	Berger	using	scalp	EEG	recordings	and	described	as	an	8	

to	12Hz	rhythm.	Afterward,	different	forms	of	neural	oscillations	were	observed	and	studied	at	

multiple	 spatiotemporal	 scales	of	 the	brain	 across	multiple	 species68.	As	 the	most	prominent	

feature	of	EEG,	neural	oscillations	were	driven	by	the	synchronization	of	neural	activities	and	

varied	 in	amplitude,	timing,	and	frequency.	Although	the	origin	of	such	periodic	brain	rhythm	
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remains	unclear71,	countless	studies	over	many	decades	have	suggested	oscillatory	activity	as	a	

mechanism	for	cerebral	integration72,73	and	as	a	critical	“middle	ground”,	linking	single-neuron	

activity	to	perceptual,	cognitive,	motor	and	emotional	processes70,74.	Such	integration	can	exist	

across	 a	 number	 of	 anatomical	 and	 functional	 domains	 with	 different	 frequency	 rhythms	

associated	 with	 each	 region75.	 The	 period	 of	 oscillations	 is	 determined	 by	 the	 physical	

architecture	of	the	neural	network	around	the	implanted	electrode.	Due	to	the	fact	that	most	

neurons	 are	 locally	 connected76	 and	 their	 communication	 speeds	 are	 limited	 by	 the	 axon	

conduction	 and	 synaptic	 delay77,	 high-frequency	 oscillations	 are	 usually	 confined	 to	 a	 small	

neuronal	 space,	 whereas	 large	 networks	 can	 be	 recruited	 via	 slow	 oscillations78,79.	With	 the	

cooperation	 of	 diverse	 neuronal	 oscillations,	 different	 brain	 operations	 can	 be	 carried	 out	

simultaneously	at	multiple	temporal	and	spatial	scales80.	Based	on	the	frequency	range,	neural	

oscillations	 could	 be	 divided	 into	 two	 subdivisions:	 Local	 modes	 (i.e.	 high-frequency	

oscillations)	and	Global	modes	(i.e.	low-frequency	oscillations).		

Local	 modes:	 includes	 gamma	 (>30	 Hz)	 activity,	 which	 is	 high	 in	 frequency,	 low	 in	

amplitude,	and	distributed	over	a	limited	topographic	area.	Gamma	oscillations	are	short-lived	

and	typically	emerge	from	coordinated	interactions	of	excitation	and	inhibition81.	Simultaneous	

recordings	 of	 single	 unit	 activities	 and	 local	 field	 potentials	 have	 demonstrated	 strong	

correlations	between	the	power	of	gamma	oscillations	and	spiking	activity82-84,	especially	within	

the	high-gamma	 frequency	 range	 (~60-200Hz)85.	 Such	 correlation	 is	 largely	 attributable	 to	an	

increased	firing	rate	and	more	synchronous	firing	pattern,	suggesting	that	high	gamma	activity	

serves	as	the	correlate	of	local	population	spiking.		
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Global	modes:	 include	delta	(1-3	Hz),	theta	(4-7Hz),	alpha	(8-12Hz)	and	beta	(13-30Hz)	

oscillations,	which	are	lower	in	frequency,	higher	in	amplitude	and	span	across	relatively	large	

brain	 regions75.	 These	 slow	 oscillations	 can	 effectively	 drive	 postsynaptic	 cortical	 neurons	 by	

synchronous	 presynaptic	 spikes74	 to	 provide	 a	 temporal	 window	 for	 interactions	 between	

widely	 distributed	 neural	 assemblies77.	 Moreover,	 oscillations	 at	 different	 frequency	 ranges	

seem	 to	 play	 distinct	 functional	 roles.	 In	 general,	 delta	 oscillations	 depend	 on	 activities	 of	

motivational	 systems	 and	 participate	 in	 salience	 detection;	 theta	 oscillations	 are	 involved	 in	

memory	 and	 emotional	 regulation;	 alpha	 and	 beta	 oscillations	 are	 implicated	 to	 perform	 an	

inhibitory	 control75.	 Specifically,	 recent	 findings	 have	 suggested	 that	 these	 four	 oscillatory	

systems	 reciprocally	 interact,	 with	 relative	 prevalence	 of	 alpha/beta	 oscillations	 inhibiting	

behavioral	patterns	peculiar	to	the	delta	and	theta	activity86.		

	

1.3.3 Functional	and	Effective	Connectivity	

Oscillation-based	 synchrony	 is	 the	 most	 energy-efficient	 physical	 mechanism	 for	

temporal	 coordination87,88.	 The	coupling	between	neuronal	oscillations	has	been	proposed	 to	

support	 inter-regional	 communications89.	Here,	we	summarize	 three	different	mechanisms	of	

coupling,	coordinated	by	local	and	global	modes	of	neuronal	oscillations.		

Interactions	between	local	modes	

In	addition	to	a	proxy	indicator	of	local	computation90,91,	gamma	oscillations	have	been	

shown	 to	 support	 inter-regional	 communication	 via	 selective	 and	 flexible	 coupling	 between	

different	 cortical	 areas92-96.	 Previous	 studies	 have	 demonstrated	 a	 potential	 link	 between	

changes	 in	 gamma	 synchrony	 or	 gamma	 coherence	 across	 different	 brain	 regions	 and	 the	
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diverse	 cognitive	 processes	 in	 humans97-99.	 However,	 the	 ambiguities	 of	 which	 variables	 are	

synchronized	 in	 gamma	 coherence	measurements	 remain	 unsolved.	 For	 example,	 the	 cross-

regional	 spike-spike	 coupling	 at	 gamma	 time-scales	 can	 be	 the	 results	 of	 feedforward	

entrainment	 of	 interneurons	 or	 the	 synchronization	 of	 principal	 cells100-102.	 Clarifications	 of	

gamma	synchronization	across	distant	areas	remain	a	persistent	challenge,	and	strong	evidence	

is	 still	 needed	 to	 further	 identify	 the	 physiological	 significance	 of	 gamma	 rhythm	 in	 inter-

regional	 communication	 and	 neural	 information	 transfer103.	 Therefore,	 in	 Chapter	 2-4,	 we	

quantify	 the	 network	 interactions	 as	 global-global	 modes	 coupling	 and	 local-global	 modes	

coupling.		

Interactions	between	global	modes	

Slow	 frequency	oscillations	 rhythmically	open	 the	 temporal	window,	during	which	 the	

coordinated	 groups	 can	 effectively	 communicate	 with	 each	 other.	 Specifically,	 when	 both	

sending	and	receiving	neural	assemblies	oscillate	(i.e.	become	excitable	in	a	predictable	cycle)	

and	 phase-locked	 to	 each	 other,	 communication	 will	 be	 achieved	 through	 coherence89.	

However,	global	phase-locking	is	often	observed	in	abnormal	brain	states	(e.g.	during	seizures),	

which	is	incompatible	with	normal	cognitive	functions.	Thus,	to	achieve	cognitive	flexibility,	the	

preclusion	of	communication	system	is	important,	in	which	selective	inter-regional	synchrony	is	

controlled	by	the	frequency	of	the	coherent	oscillations	and	the	relative	phase	between	them.	

Failures	 to	match	 in	 these	 two	variables	will	 lead	 to	 the	 fact	 that	 inputs	 from	sending	neural	

assemblies	 repeatedly	 miss	 the	 excitable	 window	 of	 the	 receiving	 group	 and	 restrict	 the	

communication	only	to	the	regions	with	reliable	phase	relationship.	
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Interactions	between	local	and	global	modes	

If	 the	global	mode	oscillations	 serve	 the	purpose	of	 integration	across	diverse	cortical	

areas,	they	are	expected	to	interact	with	the	local	mode	oscillations,	which	implement	specific	

cognitive	operations	at	the	local	cortical	level75.	In	addition,	the	power	density	of	EEG	or	local	

field	 potential	 is	 inversely	 proportional	 to	 frequency	 (f)	 in	 the	mammalian	 cortex104.	 This	 1/f	

power	 relationship	 also	 implies	 that	 perturbations	 occurring	 at	 slow	 frequencies	 can	 cause	 a	

cascade	 of	 energy	 dissipation	 at	 higher	 frequencies105.	 In	 other	 words,	 widespread	 slow	

oscillations	 modulate	 faster	 local	 events79,106,107.	 Consistent	 with	 this	 theoretical	 hypothesis,	

previous	 studies	 have	 shown	 that	 transient	 coupling	 between	 low-	 and	 high-frequency	 brain	

rhythms	coordinates	activity	 in	distributed	cortical	areas,	providing	a	mechanism	for	effective	

communication	 during	 cognitive	 processing	 in	 humans108.	 Moreover,	 such	 hierarchical	

modulation	 structure	 might	 suggest	 a	 directional/effective	 influence.	 For	 example,	 it	 might	

reflect	the	modulation	of	fast	activations	in	local	circuitry	by	large-scale	networks	operating	in	

lower	frequencies	(top-down	integration),	or	a	bottom-up	mechanism	for	propagation	of	local	

activation	to	other	cortical	regions109,110.	
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CHAPTER	2:	Amygdala-Hippocampal	Dynamics	Support	Salient	Information	Processing	

	

2.1	 Introduction	

Swift	detection	of	social,	emotional,	or	threatening	stimuli	is	critical	for	adaptive	fitness	

in	humans.	When	we	interact	with	each	other,	emotionally	salient	stimuli,	such	as	fearful	facial	

expressions,	provide	ecologically	relevant	signals	that	focus	our	attention	towards	perceptually	

relevant	 information.	 Thus,	 recognizing	 motivationally	 salient	 information	 constitutes	 an	

important	 social	 and	 biologically	 meaningful	 incentive	 and	 plays	 a	 key	 role	 in	 guiding	 our	

interpersonal	 behavior111.	 Successful	 detection	 of	 and	 response	 to	 motivationally	 important	

stimuli	have	been	shown	to	rely	on	activities	within	two	brain	structures	–	 the	amygdala	and	

hippocampus.	 In	particular,	 the	amygdala	 is	critical	 for	prioritizing	salient	 information	such	as	

emotion53	 ,	 valence54	 and	 motivation55.	 The	 hippocampus	 is	 thought	 to	 be	 important	 for	

contextual	modulation	of	fear56,	emotion	judgment112,	and	emotional	memory57	-	all	operations	

that	 are	 critical	 for	 remembering	motivationally	 salient	 stimuli.	 Further,	 rodent	 studies	 have	

shown	 that	 manipulating	 amygdala	 function	 alters	 the	 hippocampal	 processing	 of	 salient	

information10-12.	 However,	 there	 is	 no	 direct	 electrophysiological	 evidence	 for	 amygdala-

hippocampal	connectivity	in	humans	and	thus	their	directional	relationship	is	unknown.		

We	 addressed	 this	 question	 by	 presenting	 dynamic	 salient	 (fearful	 faces)	 and	 neutral	

(landscapes)	 stimuli	 to	 patients	with	medication	 resistant	 epilepsy	 and	 recorded	 direct	 brain	

signals	 from	 intracranial	 depth	 electrodes	 in	 both	 the	 amygdala	 and	 hippocampus.	 We	

examined	 the	 local	 activities	 for	 both	 regions	 by	 tracking	 the	 stimulus	 induced	 high	 gamma	

activities	 (70-150Hz)	and	 indexed	amygdala-hippocampal	 functional	connectivity	as	 the	phase	
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locking	 values	 between	 inter-regional	 theta/alpha	 (theta	 =	 4-7Hz,	 alpha	 =	 8-12Hz)	 oscillatory	

synchrony,	 which	 is	 ubiquitous	 in	 the	 human	 hippocampus113	 and	 amygdala114.	 Further,	 we	

investigated	 the	 directional	 influence	 of	 these	 responses	 using	 Granger	 Causality	 and	 Phase	

Slope	Index	analysis.	Consistent	with	the	model	that	rapid	detection	or	prioritization	of	salient	

information	 in	the	amygdala115	 influence	subsequent	hippocampal	mnemonics	processing10-12,	

we	 hypothesized	 that	 during	 salient	 information	 processing:	 1)	 high	 gamma	 activities	 in	 the	

amygdala	would	occur	earlier	 than	 in	 the	hippocampus;	2)	 stronger	 low	frequency	oscillatory	

synchrony	would	facilitate	inter-regional	communications	when	compared	to	neutral	conditions;	

3)	amygdala	would	exert	directional	influence	on	the	hippocampus	rather	than	the	reverse.		

	

2.2	 	Materials	and	Methods	

Participants.	Data	were	obtained	from	nine	patients	(four	female,	five	male,	age	24–58,	

see	APPENDIX	A)	who	had	stereotactically	 implanted	 intracranial	depth	electrodes	 (Integra	or	

Ad-Tech,	5	mm	 inter-electrode	 spacing)	placed	at	 the	University	of	California,	 Irvine,	Medical	

Center	to	localize	the	seizure	onset	zone	for	possible	surgical	resection.	The	institutional	review	

boards	of	University	of	California	at	Berkeley	and	at	Irvine	approved	the	research,	and	written	

informed	 consent	 was	 obtained	 from	 each	 subject	 before	 testing.	 Electrode	 placement	 was	

exclusively	 guided	 by	 clinical	 needs,	 and	 the	 patient	 selection	was	 solely	 based	 on	magnetic	

resonance	 imaging	 (MRI)	 confirmed	 depth	 electrode	 placement	 in	 the	 amygdala	 and	

hippocampus.	 Recordings	 were	 conducted	 from	 four	 patients	 (subjects	 1–4)	 with	 depth	

electrodes	localized	ipsilateral	and	five	patients	(subjects	5–9)	contralateral	to	or	outside	of	the	

seizure	onset	zone.	There	were	no	seizures	recorded	in	any	of	the	epochs,	and	any	epochs	with	
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interictal	epileptiform	activity	were	 removed	 from	the	analysis.	Comparable	 results	 (e.g.	high	

gamma,	phase	locking	values	and	phase	amplitude	coupling)	were	observed	in	all	nine	subjects,	

and	there	were	no	differences	in	the	magnitude	of	effects	between	recordings	from	electrodes	

ipsilateral	and	contralateral	to	the	seizure	focus.		

Behavioral	task.	Participants	watched	silent	movie	clips	on	a	laptop	computer	placed	on	

the	service	tray	at	a	comfortable	distance	in	front	of	them.	We	employed	dynamic	fearful	faces	

as	a	form	of	aversive	stimuli,	rather	than	static	facial	expressions,	to	provide	participants	with	

temporal	cues	that	mimic	real-life	social	exchanges116.		The	total	length	of	the	task	was	about	7	

minutes,	 consisting	 of	 alternating	 9	 blocks	 of	 landscapes	 and	 8	 blocks	 of	 fearful	 faces	

(approximately	24	seconds/block,	see	Figure	1.1a).	During	the	experiment,	participants	viewed	

70	 landscapes	 and	 71	 fearful	 face	 clips	 (clip	 duration:	 2.8	 ±	 1.3	 s;	mean	 ±	 s.d.).	Within	 each	

block,	movie	clips	were	shown	continuously	without	breaks.	

Electrode	localization.	MRI	scans.	Electrodes	were	localized	in	each	participant	using	co-

registered	pre-implantation	and	post-implantation	structural	T1-weighted	MRI	scans.	The	pre-

implantation	 scans	 were	 all	 1	mm	 isotropic.	 The	 post-implantation	 scans	 were	 either	 1	mm	

isotropic	 (subjects	 1,	 5,	 6,	 8	 and	 9)	 or	 0.75	 x	 0.75	 x	 7	 mm	 (subjects	 2–4	 and	 7).	 For	 each	

participant,	the	post-implantation	scan	was	registered	to	the	pre-implantation	scan	using	a	six-

parameter	rigid	body	transformation	(three	rotations	and	three	translations	in	x–z	directions),	

implemented	in	Advanced	Normalization	Tools (ANTs	http://stnava.github.io/ANTs/)117.		

Anatomical	 masking.	 For	 determining	 exact	 electrode	 locations,	 we	 used a	 high-

resolution	anatomical	template	(0.55	mm)	developed	in	our	laboratory	with	manual	tracings	of	
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hippocampal	subfields	and	amygdala	nuclei.	This	template	has	been	used	in	past	studies21,118,119.	

Regions	of	 interest	 (ROIs)	 in	 the	medial	 temporal	 lobe	 included	 the	DG/CA3,	CA1,	 subiculum,	

entorhinal	 cortex,	 perirhinal	 cortex,	 parahippocampal	 cortex,	 BLA,	 central	 nucleus	 of	 the	

amygdala	 (CeA),	 and	 the	 cortical	 nuclei	 of	 the	 amygdala	 (CORT)120,121.	 Segmentations	 for	

hippocampal	subfields	followed	our	previously	published	protocols122.	Briefly,	the	segmentation	

included	DG/CA3,	CA1	and	subiculum,	and	procedures	followed	closely	the	atlas	of	Duvernoy120,	

in	 which	 the	 subfields	 are	 defined	 along	 the	 anterior-posterior	 axis	 of	 the	 hippocampus.	

Amygdala	segmentation	procedures	were	based	on Entis	et	al.123,	but	were	modified	to	define	

three	regions:	BLA,	CeA	and	CORT.	To	label	these	sub-regions	of	the	amygdala,	three	key	points	

were	identified:	(1)	the	medial	tip	of	the	alveus	(up	to	the	optic	tract);	(2)	the	most	lateral	point	

of	 the	 entorhinal	 sulcus;	 and	 (3)	 bottom	of	 the	 circular	 sulcus.	 These	 three	 points	 are	 easily	

observable	and	provide	a	reliable	landmarking	system	for	segmenting	the	amygdala	sub-regions.	

After	 identifying	 these	 points,	 lines	 were	 drawn	 to	 connect	 the	 three	 points	 to	 each	 other,	

creating	 four	 quadrants	 (basomedial	 and	 basolateral	were	 combined	 to	 form	 the	 basolateral	

complex).		

Labeling	 individual	 participant	 scans.	 The	 labeled	 high-resolution	 anatomical	 template	

(resampled	 to	 1	 mm	 isotropic)	 was	 aligned	 to	 each	 individual’s	 pre-implantation	 scan	 using	

ANTs	 Symmetric	Normalization124,	 such	 that	 the	 labels	 could	be	applied	 to	each	participant’s	

MRI.	 This	 allowed	 for	 visualization	 and	 accurate	 identification	 of	 electrode	 locations	 using	

anatomical	 labels	 in	 each	 participant’s	 space.	 Each	 electrode	 location	 was	 determined	 by	

selecting	 the	 center	 of	 the	 electrode	 artifact	 and	 identifying	 the	 region	 of	 interest	 that	



19	
	

encompassed	 the	 center.	 Cases	 where	 electrodes	 were	 on	 the	 border	 between	 ROI’s	 or	

between	grey	matter	and	white	matter,	were	noted	as	such.		

Data	collection	and	preprocessing.	 Intracranial	EEG	data	were	acquired	using	a	Nihon	

Kohden	recording	system	(256	channel	amplifier,	model	JE120A),	analog-filtered	above	0.01	Hz	

and	digitally	sampled	at	5000	Hz.	All	 the	data	were	analyzed	 in	MATLAB	combined	with	open	

source	toolboxes	and	customized	scripts.	After	the	acquisition,	neuronal	recordings	were	band-

pass	filtered	from	0.1	Hz	to	350	Hz	using	a	zero	phase	delay	finite	impulse	response	filter	with	

Hamming	window	and	 then	down-sampled	 to	2000	Hz	 for	 subsequent	analyses.	A	 regression	

method125	 was	 used	 to	 filter	 60	 Hz	 noise	 and	 its	 harmonics.	 All	 hippocampal	 and	 amygdala	

electrodes	were	re-referenced	to	the	nearest	electrode	located	in	white	matter.	A	neurologist	

with	subspecialty	training	in	epilepsy	manually	inspected	all	EEG	signals	to	identify	and	remove	

segments	with	interictal	epileptiform	discharges	as	well	as	excessive	noise,	including	broadband	

electromagnetic	 noise	 from	 hospital	 equipment.	 To	 avoid	 potentially	 biasing	 the	 results,	 the	

neurologist	was	blinded	to	the	electrode	location	and	stimulus	conditions	associated	with	EEG	

signals.		These	preprocessing	steps	were	performed	prior	to	the	further	analysis	listed	below.	

Electro-oculogram	and	perisaccadic	high	gamma	activity.	To	investigate	the	possibility	

of	 eye-movement-related	 contamination	 of	 our	 results,	 one	 subject	 (S9)	was	 recorded	 along	

with	a	free	head	fixation	eye	tracker	(SensoMotoric	Instruments,	Inc.	RED	250	mobile)	and	EOG	

recordings.	The	eye	tracker,	connected	to	the	laptop	with	Universal	Serial	Bus	(USB),	was	placed	

at	 the	 inner	edge	of	 the	presentation	 laptop.	Before	 the	 task,	 the	eye	 tracker	was	calibrated	

using	the	iView	RED-m	software.	Timing	between	the	eye	tracker	recording	and	the	video	clips	



20	
	

was	synchronized	through	an	E-Prime	script.	After	averaging	 the	velocity	of	 the	eyes	 in	 the	X	

and	Y	dimensions	from	the	eye	tracker	data	across	clips,	two-sample	t-tests	were	performed	for	

each	 data	 point	 to	 test	 for	 significant	 differences	 in	 patterns	 of	 eye	 movements	 between	

conditions	that	could	affect	the	results.	In	addition	to	the	eye	movement	analysis,	we	estimated	

the	 time	 course	 of	 high	 gamma	 activity	 (HG)	 in	 the	 vertical	 and	 horizontal	 EOG.	 Again,	 two-

sample	t-tests	were	performed	for	each	data	point	to	test	for	significant	differences	between	

conditions.	As	a	third	test	to	investigate	the	contribution	of	ocular	activity	to	our	findings,	we	

used	ICA	(Bell-Sejnowski	 ICA	algorithm)126,	 implemented	in	the	EEGLAB	toolbox	for	Matlab	on	

the	 EOG	 combined	 with	 white	 matter	 re-	 referenced	 amygdala	 and	 hippocampal	 activity	 to	

compute	 the	 weights	 of	 contributions	 from	 each	 channel	 of	 data	 to	 each	 independent	

component.	Any	components	composed	of	mostly	EOG	activity	were	removed	from	the	data	by	

zeroing	those	components	and	re-projecting	the	remaining	components	into	the	channel	space.	

All	analyses	were	then	re-run	with	this	‘corrected’	data.		

Saccades	 were	 detected	 through	 a	 velocity-based	 algorithm112.	 The	 velocity	 of	 eye	

movement	 was	 estimated	 as	 the	 first	 derivative	 of	 the	 Euclidean	 distance	 between	 eye	

positions	at	successive	sample	points.	A	threshold	was	set	at	the	99th	percentile	of	velocities	

and	 saccades	 were	 marked	 at	 the	 time	 points	 of	 the	 peak	 velocities	 that	 surpassed	 this	

threshold,	with	a	minimum	spacing	of	200	milliseconds	between	saccade	events.	High	gamma	

(70–180	Hz)	activity	in	hippocampal	and	amygdala	contacts	was	then	epoched	based	on	these	

events.	 After	 baseline	 correction	 (-200	ms	 to	 0	ms),	 two-sample	 t-tests	 were	 performed	 for	

each	data	point	to	determine	significant	differences	between	conditions.	To	further	investigate	

the	possibility	that	PAC	analyses	could	have	been	influenced	by	EOG	activity,	we	calculated	the	
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PAC	using	the	gamma-range	component	of	the	EOG	signal	and	low-frequency	phase	from	the	

hippocampus	and	amygdala	(the	same	analysis	as	described	in	the	Methods	‘Phase-amplitude	

coupling’	 section).	 We	 observed	 no	 significant	 PAC	 pattern	 between	 the	 amygdala	 or	

hippocampus	and	the	EOG	HG	signal,	which	indicates	that	there	was	no	appreciable	influence	

from	potential	eye	movement	artifacts	on	the	PAC	analysis.		

Power	 spectral	 density	 (PSD)	 and	 subject-specific	 low-frequency	 band.	  PSD	 was	

estimated	 using	 Welch’s	 method	 (pwelch.m	 in	 Signal	 Processing	 Toolbox	 from	 MATLAB)	

wherein	the	PSD	was	estimated	for	each	subject	separately	using	1	s	time	windows	with	a	50%	

overlap.	The	slope	of	the	power	spectrum	was	estimated	using	the	linear	regression	approach	

in	a	semi-log	space,	where	 the	power	P	at	each	discrete	 frequency	 f	was	estimated	 from	the	

frequency	itself	using	the	following	formula:		

𝑃" 	= 𝑓′𝛽 + 𝜀	

where	𝑓′	is	a	 two-column	matrix	composed	of	 the	discrete	 frequency	bands	of	 interest	and	a	

column	of	ones;	𝛽	is	the	regression	coefficient	(the	slope	of	the	model),	and	𝜀	is	the	error	term.	

In	intracranial	power	spectra,	𝛽	is	typically	negative,	which	is	important	given	that	task-related	

increases	in	neural	activity	result	in	a	broadband	upward	shift	within	the	high	gamma	range127.	

To	 characterize	 spectral	 dependence	 between	 the	 amygdala	 and	 hippocampus	 in	 a	 narrow	

band,	we	selected	the	subject-specific	low-frequency	band	based	on	the	PSD	plots.	Specifically,	

the	value	of	exponent	𝑥	in	the	power-law	relation	𝑃	~	 ,
"-
	was	obtained	by	fitting	a	straight	line	

to	the	experimentally	measured	PSD.	Then	the	distances	between	the	PSD	and	the	fitting	curve	
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were	calculated	at	each	frequency	point.	The	subject-specific	band	was	defined	as	the	farthest	

points	from	the	fitting	curve	within	the	low-frequency	range	with	a	bandwidth	of	4	Hz.		

Frequency	 decomposition.	 Data	 from	 amygdala	 and	 hippocampus	 were	 first	 filtered	

into	subjects’	 specific	 low	frequency	bands	 (see	Figure	1.1c	Amygdala:	𝑥./01	=	6.0	±	0.49	Hz;	

hippocampus:	𝑥23441 =	6.5	±	0.16	Hz;	mean	±	s.e.m.)	and	high	gamma	(𝑥5,	70-180	Hz)	using	a	

two-way,	zero-phase	lag,	least-squares	finite	impulse	response	filter	to	prevent	phase	distortion	

(eegfilt.m	function	in	EEGLAB	toolbox128).	The	length	of	the	filter	in	points	was	determined	by	

the	 specific	 frequency,	 cycle	 number	 (usually	 4-5	 cycles)	 and	 sampling	 rate.	 The	 center	

frequency	of	each	frequency	bin	was	spaced	apart	by	0.1	of	the	lower	frequency	band	and	the	

bandwidth	varied	by	multiplying	the	fractional	bandwidth	index	0.3	with	the	center	frequency.	

For	example,	for	the	frequency	bin	centered	at	10	Hz,	the	next	center	frequency	was	10*0.1+10	

=	11	Hz	 and	 the	bandwidth	was	10*0.3*2	=	6	Hz.	 Since	we	 chose	adaptive	 rather	 than	 fixed	

bandwidths,	 the	bandwidths	within	 low	 frequency	 range	were	sufficiently	narrow	to	define	a	

meaningful	phase	while	the	bandwidths	within	higher	frequency	range	were	broad	enough	to	

fit	the	sidebands	caused	by	the	assumed	modulating	lower	frequency	band129.	We	then	applied	

the	 Hilbert	 transform	 (hilbert.m	 function	 in	 Signal	 Processing	 Toolbox	 from	 MATLAB)	 to	

estimate	the	amplitude	(𝑎7[𝑛])	and	phase	(𝜃7[𝑛])	for	both	bands,	which	yields	a	complex	time	

series:	

𝑆7 𝑛 = 𝑎7 𝑛 𝑒3>- ? 	

where	aA[n]	represents	 the	 instantaneous	 analytic	 amplitude	 and	ϕA[n]	is	 the	 instantaneous	

phase.		
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Event-related	potentials.	The	ERPs	were	calculated	 individually	 for	both	the	amygdala	

and	 hippocampus	 separately.	 The	 LFP	 signals	 were	 first	 low-pass	 filtered	 at	 30	 Hz	 using	 the	

same	filter	parameters	as	described	in	Methods	(‘Frequency	decomposition’	section).	Then	the	

filtered	signals	were	segmented	into	epochs,	and	the	ERPs	were	calculated	by	averaging	across	

these	epochs	within	each	condition.	After	baseline	correction	by	subtracting	the	mean	baseline	

(-500	ms	to	0	ms)	value	from	all	data	points,	two-sample	t-tests	were	performed	for	each	data	

point	to	determine	significant	differences	between	conditions.		

High	gamma	activity.	To	investigate	the	time	course	of	high	gamma	activity	within	the	

amygdala	and	hippocampus,	we	extracted	 the	banded	signal	and	averaged	 the	 results	within	

each	region.	Specifically,	the	time	series	of	high	gamma	amplitude	were	divided	into	2-second	

epochs,	 including	0.5	 seconds	of	 averaged	baseline	period	 (Figure	1.1a	Black	 screen)	 and	1.5	

seconds	from	the	start	of	each	movie	clip.	The	amplitude	data	at	each	time	point	was	first	z-

score	normalized	to	the	entire	trial	time-series.	Then	the	computed	z-scores	were	then	baseline	

corrected	 by	 subtracting	 an	 average	 of	 pre-stimulus	 baseline	 data	 points	 (the	 0.5s	 baseline	

period).	 This	 allows	 us	 to	 eliminate	 the	 positive	 skew	 typically	 observed	 for	 high	 gamma	

amplitude	values130.	We	then	statistically	compared	the	event-related	high	gamma	amplitude	

changes	 between	 the	 neutral	 and	 the	 aversive	 conditions	 using	 a	 cluster-based	 permutation	

test,	computing	statistics	at	the	cluster	 level	and	correcting	for	multiple	comparisons131.	First,	

all	the	trials	from	the	two	experimental	conditions	were	randomly	shuffled,	and	the	means	of	

each	condition	were	subtracted	1000	times	to	create	a	null	distribution	of	differences	between	

conditions.	T-scores	were	then	computed	for	each	null	difference	time	series	by	comparing	it	to	

the	 entire	 distribution	 of	 null	 difference	 time	 series	 at	 every	 time	 point.	 Then,	 all	 t-scores	
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corresponding	 to	 uncorrected	 p	 values	 of	 0.05	 or	 less	 were	 formed	 into	 clusters	 with	 any	

neighboring	such	t-scores.	The	sum	of	the	t-scores	in	each	cluster	is	the	“mass”	of	that	cluster	

and	the	most	extreme	cluster	mass	in	each	of	the	1000	sets	of	tests	were	recorded	and	used	to	

estimate	the	distribution	of	 the	null	hypothesis.	Finally,	clusters	were	obtained	 from	the	true	

data,	and	the	percentage	of	null	cluster	masses	greater	than	each	true	data	cluster	mass	was	

taken	as	the	corrected	p	value	for	that	cluster.	Onsets	and	offsets	of	the	significant	high	gamma	

activity	for	each	condition	were	computed	by	taking	the	first	and	last	time	sample	that	passed	a	

threshold	 of	 p	 <	 0.05.	 Time-to-peak	 was	 defined	 for	 aversive	 and	 neutral	 conditions	 as	 the	

latency	 of	 the	 maximum	 amplitude	 in	 the	 high	 gamma	 range	 across	 all	 trials	 within	 each	

condition	during	the	range	of	time	where	a	significant	difference	between	the	two	conditions	

was	found.	

Phase	locking	value	(PLV).	To	quantify	the	inter-electrode	low	frequency	phase	coupling,	

phase	 differences	 were	 calculated	 for	 each	 electrode	 pair	 (𝑖, 𝑗)	 using	 the	 phase	 time	 series	

𝜙7 𝑛 	obtained	from	equation	1.1.	The	frequency	range	covers	the	low	frequency	peaks	from	

both	 amygdala	 and	 hippocampus	 (identified	 in	 the	 power	 spectrum	density	 plot	 from	 Figure	

1.1c)	 with	 a	 bandwidth	 of	 4	 Hz.	 The	 phase	 difference	 between	 these	 two	 temporal	 courses	

𝜙13H 𝑛 	indexes	 the	 coherence	 between	 each	 electrode	 pair	 and	 is	 expressed	 as	 the	 Phase	

Locking	Value	index	(Equation	1.2).	PLVs	range	between	0	and	1,	with	values	approaching	1	if	

the	phase	differences	between	the	electrodes	vary	little	across	time.	

𝑃𝐿𝑉 =
1
𝑁 | 𝑒>NO,P ? |

Q

?R,

					(1.2)	



25	
	

The	 filtered	 data	 were	 segmented	 into	 one-second	 windows	 and	 then	 separated	

according	 to	 task	 condition	 before	 computing	 a	 PLV	 for	 each	 electrode	 pair	 and	 condition.	

Relative	increases	(or	decreases)	in	PLV	in	response	to	fearful	faces	vs.	landscape	scenes	were	

assessed	 by	 subtracting	 the	 two	 PLVs	 for	 each	 electrode	 pair.	 To	 test	 the	 significance	 of	

differences	between	two	conditions	and,	at	the	same	time,	maximally	eliminate	the	 influence	

of	 ERPs,	 we	 did	 a	 two-step	 approach	 as	 described	 below.	 We	 first	 permuted	 trials	 and	

computed	 the	99th	percentile	 threshold	within	each	 condition.	Only	 the	electrode	pairs	with	

PLVs	 passing	 above	 the	 threshold	 for	 both	 conditions	 were	 selected	 for	 calculating	 the	 PLV	

difference.	 Then	 the	 statistical	 significance	 for	 each	 electrode	 pair	 was	 estimated	 using	 a	

cluster-based	permutation	test,	in	which	a	null	distribution	was	created	by	randomly	assigning	

trials	 (i.e.,	 one-second	windows)	 into	 two	 conditions,	 computing	 the	 relative	 PLV	 differences	

between	 conditions,	 and	 repeating	 this	 procedure	1000	 times.	 The	observed	data	were	 then	

compared	to	this	null	distribution	to	estimate	a	p	value.	The	results	were	depicted	as	hive	plots	

to	visualize	the	magnitude	of	the	PLV	and	the	associated	p	values	among	pairs	of	electrodes132.	

To	 test	 the	 regional	 specificity	 of	 this	 phase	 coupling	 effect,	 an	 ANOVA	 analysis	 with	

pairwise	 comparisons	 was	 conducted	 to	 test	 differences	 between	 hippocampal	 sub-regions	

using	the	R	statistic	toolbox.	First,	the	Shapiro-Wilk	test	(function	Shapiro.test)	was	conducted	

to	test	whether	the	data	were	approximately	normally	distributed.	Second,	the	homogeneity	of	

variances	was	tested	using	Bartlett’s	test	(function	Bartlett.test).	Then	the	pairwise	comparison	

was	computed	using	the	function	pairwise.t.test.	In	addition,	to	further	address	the	continuous	

consistency	of	the	phase	relationship	between	the	amygdala	and	hippocampus,	the	PLV	spectra	

were	 created	 as	 a	 function	 of	 frequency	 (1	 to	 30	Hz)	 for	 all	 BLA	 and	 hippocampal	 electrode	
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pairs	 averaged	 across	 all	 subjects	 for	 each	 condition	 and	 the	 difference	 was	 calculated	 by	

subtracting	 neutral	 from	 aversive	 condition	 and	 z-score	 normalized.	 A	 5th	 order	 spline	

interpolation	was	implemented	(spapi.m	in	Curve	fitting	toolbox	from	MATLAB)	to	smooth	the	

curve	of	PLV	difference	spectra.		

Phase	 amplitude	 coupling	 (PAC).	 Based	 on	 the	 previous	 phase	 coupling	 analysis,	 we	

analyzed	 the	 phase	 amplitude	 coupling	 between	 the	 amygdala-hippocampal	 electrode	 pairs	

that	exhibited	the	most	significant	PLV	in	each	patient.	To	extract	the	directionality	information	

from	 these	 electrode	 pairs,	 the	 relationship	 between	 lower-frequency	 (1-30	Hz;	 delta,	 theta,	

alpha,	 beta)	 phase	 from	electrode	𝑖	and	higher	 frequency	 (30-250	Hz;	 including	high	 gamma)	

amplitude	 from	 electrode	𝑗	was	 examined	 individually	 for	 each	 condition	 by	 calculating	 the	

circular	 linear	correlation	between	the	 instantaneous	phase	of	 low	frequency	oscillations	and	

the	instantaneous	phase	of	high	frequency	activities133.	

𝜌>X =
𝑟Z[\ + 𝑟][\ − 2𝑟Z[𝑟][𝑟Z]

1 − 𝑟Z]\
															(1.3)	

Where	 𝑟Z[ = 𝑐(𝑐𝑜𝑠𝜙13 𝑛 , 𝑎5H[𝑛]) ,	 𝑟][ = 𝑐(𝑠𝑖𝑛𝜙13[𝑛], 𝑎5H[𝑛]) 	and	 𝑟Z] =

𝑐(𝑠𝑖𝑛𝜙13[𝑛], 𝑐𝑜𝑠𝜙1H[𝑛])	with	𝑐(𝑥, 𝑦)	equal	 to	 the	 Pearson	 correlation	 between	𝑥	and	𝑦,	𝜙 𝑛 	

equals	 to	 the	 instantaneous	 phase	 from	 modulating	 signal,	 and	 𝑎[𝑛] 	equals	 to	 the	

instantaneous	 analytic	 amplitude	 from	modulated	 signal.	 To	 compare	 the	 significance	 of	 the	

difference	 between	 correlation	 coefficients	𝜌, 	and	𝜌\ ,	 we	 applied	 Fisher’s	 z-transform	 to	

normalize	 correlation	 coefficients	 such	 that		𝑧e =
,
\
log ,ie

,je
,	and	 calculated	 the	 difference	

∆𝜌l = 𝑧 𝜌, − 𝑧	 𝜌\ 134.	 The	 permutation	 test	 described	 for	 the	 previous	 analyses	 was	 also	



27	
	

used	 here	 to	 create	 a	 null	 distribution	 of	 PAC	 differences	 between	 two	 conditions	 for	 each	

electrode	pair.	Then	the	z-PAC	was	defined	as	the	z-score	of	the	real	difference	in	PAC	between	

the	two	conditions	based	on	the	distribution	of	phase-amplitude	coupling	values	obtained	from	

these	null	distributions	with	the	positive	value	indicates	PAC	increase	in	the	aversive	condition	

vs.	neutral	condition.		

Phase-amplitude	 coupling	 with	 time	 lag.	 As	 the	 communication	 between	 the	

modulating	 and	modulated	 signal	 builds,	 the	 carrier	 oscillation	 is	 likely	 to appear	 first	 in	 the	

modulating	 signal.	 In	 other	 words,	 immediately	 preceding	 the	 synchronization	 between	 two	

signals,	the	‘driver’	signals	should	be	predictive	of	the	‘receiver’	signal.	To	probe	the	direction	of	

functional	 coupling	 and	 to	 further	 explore	 how	 the	 neuronal	 dynamics	 in	 low-frequency	 and	

gamma	bands	interact,	we	examined	the	PAC	magnitude	as	a	function	of	the	time	lag	between	

modulating	 and	 modulated	 signals.	 A	 diagram	 of	 the	 data	 processing	 steps	 is	 shown	 in	

Supplementary	 Fig.	 12.	 The	 cross-regional	 PAC	 was	 calculated	 using	 the	 same	 algorithm	 as	

outlined	in	the	PAC	analysis	section	but	with	different	time	lags	(in	10	ms	intervals	for	the	total	

duration	range	of	±200	ms)	by	shifting	one	signal	relative	to	the	other	one.		

Power	spectral	density	(PSD)	of	the	high	gamma	envelope.	The	goal	of	this	step	was	to	

identify	rhythmic	fluctuations	present	in	the	higher-frequency	power	time	series.	We	tested	the	

assumption	 that	 if	 the	power	 time	 series	within	 the	higher-frequency	band	are	 synchronized	

with	 a	 lower-frequency	 oscillation,	 the	 power	 time	 series	will	 not	 be	 constant	 over	 time	but	

instead	 will	 fluctuate	 at	 the	 specific	 lower	 oscillation	 frequency135.	 For	 example,	 if	 a	 signal	

banded	 at	 80	Hz	 is	 synchronized	with	 a	 6	Hz	 oscillation,	 the	 power	 time	 series	 of	 the	 80	Hz	
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might	itself	oscillate	at	6	Hz.	To	test	this	hypothesis,	we	first	selected	the	subject-specific	high-

frequency	 band	 centered	 at	 the	 frequency	with	 the	 strongest	 PAC	 and	 bandwidth	 of	 40	 Hz.	

Then,	the	PSDs	of	the	selected	high-frequency	bands	were	calculated	using	the	same	methods	

as	 described	 in	 Methods	 (‘Power	 spectral	 density	 and	 subject-specific	 low-frequency	 band’	

section).		

Theta-trough	 locked	 averaging	 of	 time–frequency	 plot.	 A	 theta-trough	 locked	 time–

frequency	 averaging	 plot	 for	 a	 single	 subject	 was	 created	 to	 demonstrate	 the	 oscillatory	

features	of	the	underlying	signal5.	To	create	the	tracing	in	the	lower	panels	of	Supplementary	

Fig.	 9	 (see	 APPENDIX	 A),	 the	 raw	 signal	 from	 the	 amygdala/hippocampus	 was	 first	 filtered	

within	subject-specific	low-frequency	band	(5.8–9.8	Hz	for	this	subject)	using	the	same	FIR	filter	

parameters	as	described	in	the	Methods	(‘Frequency	decomposition’	section).	By	applying	the	

Hilbert	 transform,	 the	 phase	 at	 each	 time	 point	was	 extracted	 from	 the	 filtered	 data	within	

(−𝜋, 𝜋],	where	𝜋	radians	corresponded	to	a	theta	trough	and	0	radians	corresponded	to	a	theta	

peak	 (cosine	 phase).	 Then,	 the	 signal	 was	 segmented	 into	 1	 s	 epochs	 centered	 at	 the	 theta	

troughs,	which	were	identified	as	the	local	minima	of	the	phase	less	than	(−𝜋 + 0.01)	and	the	

theta-trough	locked	ERP	were	generated	by	averaging	across	all	epochs.	For	Supplementary	Fig.	

9	upper	panel	(see	APPENDIX	A),	a	set	of	normalized	instantaneous	power	time	series	from	the	

hippocampus/amygdala	was	constructed,	with	center	frequencies	ranging	from	1	to	250	Hz.	To	

facilitate	comparisons	between	different	frequency	bands,	the	band-pass	filtered	signals	within	

the	 specific	 frequency	 range	 were	 first	 normalized	 by	 subtracting	 the	 temporal	 mean	 and	

dividing	by	the	temporal	s.d.	The	normalized	instantaneous	power	time	series	were	generated	

by	applying	the	Hilbert	transform	and	taking	the	square	of	the	extracted	amplitude	time	series.	
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These	power	series	were	then	segmented	into	the	epochs	centered	on	the	corresponding	theta	

trough	 (Supplementary	 Fig.	 9	 lower	 panel,	 see	APPENDIX	A),	 P	 values	 for	 each	 time	 point	 in	

each	frequency	band	were	calculated	using	the	non-parametric	permutation	test	described	 in	

Methods	(‘High	gamma	activity’	section).		

Phase	 slope	 Index	 (PSI).	 As	 an	 index	 of	 dominant	 unidirectional	 interaction136,	 PSI	

indicates	 the	 direction	 of	 coupling	 between	 two	 systems.	 Given	 a	 pre-specified	 bandwidth	

parameter,	 it	 reflects	 the	 change	 of	 phase	 difference	 between	 neighboring	 frequency	 bins,	

weighted	with	 the	magnitude	 of	 the	 coherence.	 Based	 on	 the	 assumption	 that	 independent	

sources	do	not	contribute	to	the	imaginary	part	of	the	cross-spectrum,	the	PSI	is	defined	as:	

Ψp,q = 𝐼𝑚 𝐶3.H∗ 𝑓 𝐶3,H 𝑓 + 𝛿𝑓
"∈x

, 𝐹 = (𝑣 −
𝛽
2 , 𝑣 +

𝛽
2)									(1.4)	

where	𝐶3,H 𝑓 = 	 |O,P(")
|O,O(")|P.P(")

	is	 the	 complex	 coherence,	𝑆3,H 𝑓 = 	 ,
Q

𝑧3(𝑓, 𝑛)𝑧H∗(𝑓, 𝑛)?RQ
?R, 	is	

the	 cross	 spectrum	 between	 two	 time	 series,	𝑣	is	 the	 center	 frequency	 of	 the	 targeted	

frequency	range,	and	𝐼𝑚	denotes	the	imaginary	part.	We	use	𝛽	as	the	bandwidth	for	which	the	

phase	 slope	 is	 calculated	 and	 choose	 it	 to	 be	 8	 times	 of	 the	 frequency	 resolution	𝛿𝑓	137.	 For	

example,	when	calculating	directionality	for	a	phase	modulation	centered	at	8	Hz	rhythm	with	a	

1	Hz	 frequency	 resolution,	a	phase	 slope	estimated	between	4	and	12	Hz	 is	 reasonable	 (𝛽 =

4	𝐻𝑧).	 To	 understand	 interaction	 and	 directionality	 between	 the	 signals	 involved	 in	 cross	

frequency	coupling,	we	segmented	the	phase	of	modulating	signal	and	the	power	envelope	of	

modulated	signal	into	N	epochs	and	used	them	as	inputs	to	calculate	the	PSI	for	both	aversive	

and	neutral	conditions.	As	the	interactions	between	modulating	and	modulated	signals	require	



30	
	

certain	amount	of	time,	and	if	the	speed	at	which	these	waves	travel	is	similar,	the	sign	of	the	

PSI	 informs	about	which	signal	 is	temporally	 leading	the	other	one.	 In	other	words,	when	the	

phase	differences	between	the	‘sender’	and	‘recipient’	signal	 increase	with	the	corresponding	

frequencies,	a	positive	slope	of	the	phase	spectrum	is	expected.	By	performing	the	PSI	analysis	

with	 a	 sliding	window	 of	 100	ms,	 spaced	 at	 25ms	 (75%	 overlap),	we	were	 able	 to	 track	 the	

switching	of	the	directionality	between	two	signals	at	each	time	point.	To	assess	the	statistical	

significance	of	PSI,	we	applied	the	analogous	non-parametric	approach	as	described	above	by	

randomly	 shuffling	 the	 trials	within	a	 condition.	Then	 the	PSI	null	distribution	was	created	at	

each	time	point,	and	the	99.5th	percentile	threshold	was	defined	for	each	condition	separately.	

Granger	 causality.	 To	 further	 investigate	 interactions	 between	 brain	 regions,	 we	

computed	spectral	Granger	causality	using	the	Multivariate	Granger	Causality	 (MGVC)	Matlab	

Toolbox138.	Granger	causality	represents	how	much	introducing	past	measurements	from	a	first	

time	 series	 can	decrease	 the	 variance	of	 the	prediction	error	 for	 a	 second	 time	 series	 at	 the	

current	time	point.	Spectral	Granger	causality	extends	this	analysis	to	the	frequency	domain139.	

The	 time-domain	data	was	 first	 low-pass	 filtered	at	85	Hz	and	 then	down-sampled	 to	250	Hz	

before	fitting	to	an	autoregressive	model	and	computing	spectral	Granger	causality.	The	model	

order	m	was	determined	by	 the	Akaike	 information140,	which	 is	a	 tradeoff	between	sufficient	

spectral	 resolution	and	over-parameterization.	Model	orders	were	estimated	for	each	patient	

and	varied	from	7	to	13.	The	Granger	index	was	computed	using	the	first	1500ms	from	each	clip	

as	 trial	 realizations.	 To	 further	 address	whether	 this	 directionality	was	 task	 specific,	 the	 null	

hypothesis	 distributions	 of	 spectral	 Granger	 causality	 for	 each	 condition	 were	 created	 by	

randomly	 swapping	 clip	 segments	 between	 channels.	 The	 spectral	 Granger	 causality	 was	
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considered	 significant	 if	 they	 exceeded	 the	 99%	 confidence	 interval	 of	 this	 null	 hypothesis	

distribution.	 To	 further	 test	 whether	 the	 Granger	 causality	 is	 significantly	 different	 between	

conditions,	 the	 null	 difference	 time	 series	 were	 computed	 by	 subtracting	 the	 Granger	 time	

series	from	the	aversive	condition	and	the	ones	from	neutral	condition,	which	were	calculated	

by	randomly	 flipping	the	segments	between	conditions.	Then	for	each	 frequency	point,	 there	

were	two	Granger	values	as	the	upper	or	lower	range	of	the	99%	confidence	interval,	where	98%	

of	the	null	Granger	difference	time	series	were	either	less	or	greater	than	these	values.	It	shows	

a	greater	Granger	for	aversive	condition	compared	to	the	neutral	one	if	the	real	difference	line	

is	above	the	upper	confidence	interval	while	the	neutral	condition	has	a	stronger	Granger	if	the	

real	difference	line	is	below	the	lower	confidence	interval.	

	

2.3	 	Results	

2.3.1	 Experiment	design	and	electrode	localization	

We	 recorded	 oscillatory	 activity	 in	 local	 field	 potentials	 (LFPs)	 from	 nine	 human	

participants	 with	 intracranial	 depth	 electrodes	 implanted	 into	 the	 amygdala	 and	 the	

hippocampus.	 Electro-oculogram	 (EOG)	 electrodes	 and	 an	 eye	 tracker	 were	 used	 for	 one	

subject	to	evaluate	the	potential	influence	of	saccadic	muscle	movements	on	neural	signals.	We	

examined	neuronal	responses	while	individuals	watched	aversive	movie	clips	containing	blocks	

of	 dynamic	 fearful	 faces	 and	 neutral	 movie	 clips	 of	 landscapes	 (Figure	 2.1a).	 We	 employed	

dynamic	 fearful	 faces	 as	 a	 form	 of	 aversive	 stimuli,	 rather	 than	 static	 facial	 expressions,	 to	

provide	participants	with	temporal	cues	that	mimic	real-life	social	exchanges141.	The	localization	

of	 depth	 electrodes	 was	 determined	 based	 on	 co-registered	 pre-	 and	 post-implantation	
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magnetic	resonance	imaging	(MRI),	as	well	as	registration	to	a	high-resolution	anatomical	atlas,	

labeled	 with	 medial	 temporal	 lobe	 regions	 of	 interest.	 Localization	 of	 each	 electrode	 was	

performed	 in	a	semi-automated	manner,	guided	by	the	anatomical	atlas	and	visually	checked	

by	 an	 experienced	 rater	 (S.L.L.).	 In	 all	 subjects,	 there	 were	 two	 to	 three	 depth	 electrodes	

located	 in	 the	 BLA	 and	 one	 to	 three	 electrodes	 located	 in	 the	 hippocampus	 (dentate	 gyrus	

(DG)/CA3	or	CA1,	Figure	1.1b	and	Supplementary	Fig.	1,	see	APPENDIX	A).	A	three-dimensional	

rendering	of	the	amygdala	and	hippocampus	showed	that	for	all	subjects,	the	electrodes	were	

located	in	the	basal	aspects	of	the	amygdala	and	the	anterior	hippocampus	(Figure	1.1c).		

	

2.3.2	 Local	power	and	event-related	potentials		

Neuronal	networks	typically	demonstrate	activity	in	several	oscillatory	bands	that	cover	

both	 low-	 and	 high-frequency	 spectra	 with	 distinct	 roles	 in	 neuronal	 communication21.	

Whereas	high	gamma	band	activity	is	a	spatially	precise	measure	of	local	neuronal	population	

spiking16,	 temporal	 synchronization	 of	 low-frequency	 phase	 is	 thought	 to	 mediate	 inter-

regional	communication142.	Therefore,	we	first	determined	the	spectral	specificity	of	 low-	and	

high-frequency	 oscillations	 in	 LFP.	 The	power	 spectral	 density	 (PSD)	 plots	 revealed	 that	 each	

subject	 had	 a	 specific	 frequency	 peak	 in	 the	 theta/alpha	 and	 high	 gamma	 frequency	 ranges	

(Figure	 2.1d).	 These	 peaks	 are	 thought	 to	 reflect	 coherent	 oscillatory	 processes143.	We	 then	

band	 passed	 the	 raw	 LFP	 signal	 to	 extract	 separate	 frequency	 components.	 These	 analyses	

showed	that	the	low	frequency	of	the	amygdala	and	high	gamma	band	power	envelope	of	the	

hippocampus	tended	to	co-occur	 in	time	during	the	aversive	condition	(Supplementary	Fig.	2,	

see	 APPENDIX	 A).	 Additional	 analyses	 demonstrated	 that	 event-related	 potentials	 (ERP;	
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Supplementary	Fig.	3,	 see	APPENDIX	A)	and	ocular	muscle	activity	 (Supplementary	Figs	4	and	

5a,b,	see	APPENDIX	A)	did	not	contaminate	the	neural	signals	used	in	subsequent	analyses.		

	

2.3.3	 	Amygdala	and	Hippocampus	High	Gamma	Activities	

We	 explored	 the	 temporal	 profile	 of	 the	 oscillatory	 response	 to	 fearful	 faces	 vs.	

landscapes.	Electrodes	localized	in	the	amygdala	(BLA)	and	hippocampus	(DG/CA3	+	CA1)	with	

high	resolution	MRIs	as	shown	in	Figure	2.1c	were	included	in	the	analysis.	We	then	focused	on	

the	 temporally	 resolved	 changes	 in	 high	 gamma	 amplitude	 and	 examined	 the	 coordinated	

timing	 of	 amygdala	 and	 hippocampus	 neuronal	 responses	 during	 the	 processing	 of	 aversive	

compared	to	neutral	stimuli	(Figure	2.1d).	The	onset	time	was	defined	as	the	earliest	time	point	

at	which	 two	conditions	 showed	a	 significant	difference	 in	high	gamma	amplitudes;	 the	peak	

time	was	 defined	 as	 the	 temporal	 latency	 of	 the	maximum	magnitude	of	 differences	 in	 high	

gamma	 amplitudes	 for	 each	 condition.	 The	 average	 high	 gamma	 amplitude	 across	 trials	was	

higher	 for	 the	aversive	 relative	 to	 the	neutral	 condition	after	123	±	18	ms	 (mean	±	 standard	

error	 of	 the	mean,	 s.e.m.)	 in	 the	 amygdala	 and	 after	 241	 ±	 22	ms	 in	 the	hippocampus	post-

stimulation	onset	(onset	time,	t-test,	p	<	0.05).	Similarly,	high	gamma	amplitude	peaked	earlier	

in	the	amygdala	compared	to	the	hippocampus	(amygdala:	493	±	31	ms	vs.	hippocampus:	641	±	

42	ms;	peak	time,	t-test,	p	<	0.05).	These	findings	indicate	that	the	amygdala	and	hippocampus	

are	both	engaged	in	the	early	stages	of	salience	processing,	with	amygdala	activation	preceding	

hippocampal	activation.	
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2.3.4	 	Amygdala-Hippocampal	Low	Frequency	Phase	Coupling	

Given	the	distinct	high	gamma	temporal	profiles	of	the	amygdala	and	hippocampus,	we	

then	 investigated	whether	 these	 two	 regions	 interact	 through	 low	 frequency	phase	 coupling.	

The	inter-regional	coordination	was	examined	with	phase	locking	values	as	a	metric	of	effective	

connectivity	between	electrodes	 targeting	 the	amygdala	 (red)	and	hippocampus	 (blue,	Figure	

2.2).	The	three	most	medial	electrodes	targeting	the	amygdala	and	four	most	medial	electrodes	

targeting	 the	 hippocampus	 were	 included	 in	 the	 phase	 coupling	 analysis.	 Note	 that	 this	

selection	 criterion	was	 agnostic	 with	 regard	 to	 the	 experimental	 conditions	 (i.e.	 aversive	 vs.	

neutral)	and	the	magnitude	of	phase	coupling.	Due	to	individual	differences	in	the	frequency	of	

the	 event-related	 low	 frequency	 band144,	 we	 first	 selected	 a	 specific	 band	 for	 each	 subject	

centered	on	 the	 low	 frequency	peak	 in	 the	power	 spectrum	density	plot	 (Amygdala	=	6.02	±	

0.49	Hz;	hippocampus=	6.51	±	0.16	Hz,	mean	±	s.e.m.,	Figure	2.1d)	with	a	bandwidth	of	4	Hz.	

Figure	 2.1	 Task,	 electrode	 locations,	 power	 spectral	 density,	 and	 high	 gamma	 activity.	 (a)	 Participants	
watched	silent	movie	clips	consisting	of	alternating	blocks	of	neutral	(landscapes)	and	aversive	stimuli	(fearful	
faces).	 (b)	Example	MRI	and	 template	 for	a	 single	 subject.	1-3:	Electrodes	were	 localized	 in	each	participant	
using	 co-registered	 pre-implantation	 and	 post-implantation	 structural	 T1-weighted	 MRI	 scans.	 4-6:	 A	 high-
resolution	template	of	the	hippocampal	 subfields	and	amygdala	nuclei	was	aligned	to	each	participant’s	pre-
implantation	 scan	 to	 visualize	 electrode	 locations	 in	 subject-specific	 anatomical	 space.	 Regions	 of	 interest	
(ROIs)	 in	 the	 medial	 temporal	 lobe	 included	 the	 dentate	 gyrus	 (DG)/CA3,	 CA1,	 subiculum	 (Sub),	 perirhinal	
cortex	 (PrC),	 lateral	 and	 medial	 entorhinal	 cortex	 (LEC,	 MEC),	 parahippocampal	 cortex	 (PhC),	 basolateral	
amygdala	 (BLA),	 central	nucleus	of	the	amygdala	 (CeA),	and	the	 cortical	nuclei	of	the	amygdala	 (CORT).	Each	
electrode	 location	 was	 determined	 by	 selecting	 the	 center	 of	 the	 electrode	 (indicated	 by	 cross-hairs)	 and	
determining	which	ROI	best	encompassed	the	center	of	the	electrode.	(c)	Electrode	localization	of	all	subjects,	
rendered	onto	a	three-dimensional	amygdala	and	hippocampus	model	based	on	the	high-resolution	template.	
Red	 dots	 indicate	 electrodes	 in	 the	 amygdala;	 blue	 dots	 denote	 electrodes	 in	 the	 hippocampus.	 (d)	 Power	
spectral	density	 (PSD)	 in	 log	 scale	 for	amygdala	 (upper	panel)	 and	hippocampus	 (lower	panel).	Peaks	within	
theta	 (4-7	 Hz)/alpha	 (8-12	 Hz)	 and	 high	 gamma	 range	 (70-180	 Hz)	 were	 consistently	 observed	 through	 all	
subjects.	The	black	arrow	denotes	the	power	increase	in	the	high	gamma	range,	which	is	also	shown	for	each	
individual	 subject	 on	 a	 linear	 scale	 (30-250	 Hz)	 in	 the	 small	 plots.	 (e)	 High	 gamma	 amplitude	 (70-180	 Hz),	
averaged	across	participants	(±	s.e.m.	shown	as	shading	around	the	mean	trace)	and	locked	to	stimulus	onset,	
is	 shown	 for	 electrodes	 located	 in	 the	 amygdala	 and	 hippocampus	 (DG/CA3	 +	 CA1).	 Dotted	 lines	 represent	
significant	differences	between	fearful	face	and	landscape	conditions	(permutation	test,	see	methods).	
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We	characterized	the	timing	relationships	of	the	low	frequency	phase	among	all	electrode	pairs	

for	each	subject	and	calculated	the	phase	 locking	value	within	and	between	the	aversive	and	

neutral	 conditions.	Within	 each	 condition,	 amygdala-hippocampal	 phase	 locking	 values	were	

significantly	 increased	 compared	 to	 the	 null	 distribution	 (all	 p	 <	 0.05,	 permutation	 test,	

Supplementary	 Fig.	 6,	 see	 APPENDIX	 A).	We	 next	 tested	 differences	 of	 phase	 locking	 values	

across	conditions	and	found	enhanced	phase	locking	values	between	the	low	frequency	phase	

of	BLA	and	 the	 low	 frequency	phases	of	DG/CA3	as	well	 as	CA1	hippocampal	 subfields	while	

viewing	aversive	compared	to	neutral	movie	clips	(all	p	<	0.05,	permutation	test,	Figure	2.2).		

To	 validate	 the	 role	 of	 low	 frequency	 phase	 coupling	 in	 coordinating	 amygdala-

hippocampal	network	communication	during	processing	of	motivationally	salient	 information,	

we	examined	the	phase	locking	value	spectra	of	the	most	significant	phase	coupled	electrode	

pairs	 (denoted	 by	 an	 asterisk	 in	 Figure	 2.2).	 Across	 all	 subjects,	 the	 phase	 locking	 value	

increased	when	viewing	aversive	fearful	faces	compared	to	neutral	stimuli	(main	effect:	F	(1,67)	

=	8.88,	p	=	0.004)	and	peaked	in	the	low	frequency	band	for	BLA-CA1	and	BLA-CA3	compared	to	

BLA-	 parahippocampal	 and	 BLA-subiculum	 electrode	 pairs	 (Supplementary	 Fig.	 7a,	 see	

APPENDIX	 A).	 Further,	 the	magnitude	 of	 low	 frequency	 PLV	 varied	 among	 hippocampal	 sub-

regions	 (F	 (3,67)	=	2.88,	p	=	0.042)	with	 the	highest	PLV	observed	 for	 the	BLA-CA1	electrode	

pairs.	The	phase	coupling	between	BLA	and	CA1/CA3	were	significantly	greater	than	the	other	

hippocampal	 sub-regions	 (t-test,	 p<0.05;	 Supplementary	 Fig.	 7b,	 see	 APPENDIX	 A).	 These	

findings	indicate	that	the	amygdala	and	CA1/CA3	regions	of	the	hippocampus	exhibit	strong	low	

frequency	synchrony	during	processing	of	aversive	stimuli.		
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2.3.5	 Amygdala-Hippocampal	Phase-Amplitude	Coupling	

On	 the	 basis	 of	 the	 strong	 low-frequency	 phase	 coupling	 between	 the	 amygdala	 and	

hippocampus	across	all	subjects,	we	then	examined	the	directional	influence	of	these	responses	

with	phase-amplitude	coupling	 (PAC)	across	 the	 two	structures.	To	accomplish	 this,	we	again	

restricted	 our	 analysis	 to	 the	 most	 significant	 low-frequency	 phase	 coupling	 electrode	 pairs	

from	 the	PLV	analysis.	Given	 that	 the	electrodes	with	 significant	 local	PAC	are	more	 likely	 to	

engage	in	inter-regional	coherence145,146,	we	first	found	that	PAC	within	both	the	amygdala	and	

the	hippocampus	was	 increased	when	viewing	aversive	stimuli	compared	with	neutral	stimuli	

(Supplementary	Fig.	8,	see	APPENDIX	A).	We	then	examined	the	directional	PAC	between	the	

amygdala	 and	 hippocampus	 in	 the	 aversive	 condition	 compared	 with	 the	 neutral	 condition	

(Figure	3.3a).	We	 found	 that	 the	HG	amplitude	 in	 the	hippocampus	was	phase	 locked	 to	 the	

amygdala	 low-	 frequency	 rhythms	 (all	 P	 <	 0.01,	 permutation	 test,	 Figure	 3.3a).	 The	 stronger	

Figure	 2.2.	 Differences	 in	 amygdala-hippocampal	 low	 frequency	 phase	 coupling.	 	 Low	 frequency	 phase	
coupling	 differences	 (aversive	 -	 landscapes)	 for	 pairs	 of	 electrodes	 targeting	 the	 amygdala	 (red	 dots)	 and	
hippocampal	 subfields	 (blue	 dots),	 depicted	 with	 hive	 plots.	 Differences	 in	 the	 phase	 locking	 values	 (PLV)	
between	 aversive	 and	 neutral	 conditions	 are	 presented	 in	 color,	 with	 warmer	 colors	 indicating	 a	 greater	
magnitude	of	the	contrast.	Significance	levels	derived	from	permutation	testing	are	indicated	by	the	thickness	
of	 lines	 connecting	each	electrode	pair.	Asterisk	represent	electrode	pairs	with	the	most	significant	PLV	that	
were	used	for	directional	coupling	analyses	in	Figure	2.3	and	2.4.	
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coupling	between	the	amygdala	low-frequency	phase	and	the	hippocampus	HG	power	was	also	

observed	in	the	theta	trough-locked	averaging	of	time–frequency	plot	in	the	aversive	condition	

(P	 <	 0.05,	 Supplementary	 Fig.	 9a,	 see	APPENDIX	A),	while	 this	modulation	was	nearly	 absent	

when	 examining	 the	 reverse	 direction	 (for	 example,	 HG	 amplitude	 in	 the	 amygdala	 phase	

locked	to	the	phase	of	hippocampal	low-frequency	activity	(Figure	3.3a	and	Supplementary	Fig.	

9b,	see	APPENDIX	A).		

We	also	examined	whether	the	PAC	varied	as	a	function	of	the	time	lag	between	low-

frequency	and	HG	signals.	We	posited	that	an	amygdala	 to	hippocampus	directionality	would	

result	 in	 a	 conduction	delay142,	which	would	 translate	 to	 a	 relative	phase	 shift	 between	 low-

frequency	and	HG	oscillations	(Supplementary	Fig.	12,	see	APPENDIX	A).	Specifically,	an	earlier	

phase	of	 amygdala	 low-frequency	oscillations	entraining	hippocampal	HG	would	 result	 in	 the	

strongest	 PAC.	We	 found	 that	 in	 the	 aversive	 condition,	 PAC	 between	 low	 frequency	 of	 the	

amygdala	 and	 HG	 of	 the	 hippocampus	 peaked	 around	 zero	 time	 lag	 (-13.15±2.92	ms	 versus	

hippocampus	 to	 amygdala	 directionality	 13.52±22.83	 ms),	 with	 7	 out	 of	 9	 subjects	

demonstrating	that	the	amygdala	low-frequency	was	leading	the	hippocampal	HG	(Figure	3.3b,	

denoted	by	“+”	near	the	red	line,	Pearson’s	𝜒\-test	=	6.73,	P	=	0.035).	In	contrast,	PAC	between	

amygdala	 HG	 and	 hippocampus	 low-frequency	 was	 lower	 and	 failed	 to	 demonstrate	 a	

consistent	peak	at	any	time	lag.		

Since	 spectrally	 broad	 transients	 such	 as	 evoked	 activity	 can	 produce	 spurious	 PAC	

results147,	 we	 examined	 the	 spectral	 specificity	 of	 the	 modulated	 HG	 activity	 from	 the	 PAC	

results.	To	identify	the	rhythmic	low-frequency	fluctuation	of	the	higher-	frequency	power	time	
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series,	we	determined	the	center	frequency	of	the	HG	signal	from	the	PAC	and	filtered	the	raw	

signal	within	 the	HG	band	 to	 extract	 the	 analytic	 amplitude	 of	 the	 signal	 (that	 is,	 envelope),	

which	was	then	subjected	to	the	PSD	analysis.	All	subjects	showed	individual	narrow-band	low-

frequency	 (4–12Hz)	peaks	 in	the	gamma	envelope,	 thus	supporting	oscillatory	properties	of	a	

separate	 low-frequency	 modulating	 signal	 in	 the	 HG	 band	 (Supplementary	 Fig.	 10,	 see	

APPENDIX).	To	examine	the	potential	 influence	of	eye	movements	on	the	PAC	results,	we	ran	

an	independent	component	analysis	(ICA)	on	the	EOG	combined	with	white	matter	referenced	

amygdala	and	hippocampal	activity	in	one	participant	(subject	9)126.	Components	composed	of	

EOG	 activity	 (three	 components,	 based	 on	 mixing	 weights,	 Supplementary	 Fig.	 4f,	 see	

APPENDIX	A)	were	 removed	 from	the	raw	 intracranial	data	and	all	analyses	were	 re-run	with	

this	 ‘cleaned’	 data.	 The	 observed	 PAC	 effect	 remained	 significant	 after	 ICA	 correction	

(Supplementary	Fig.	11,	see	APPENDIX	A).	Further,	there	was	no	significant	PAC	between	EOG	

channels	and	the	amygdala	as	well	as	the	hippocampus	(Supplementary	Fig.	5c,d,	see	APPENDIX	

A).	These	findings	indicate	that	eye	movement	contamination	did	not	contribute	to	the	original	

results.		
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Figure	2.3.	 Amygdala-hippocampus	 directional	 phase	 amplitude	coupling	 (PAC)	 and	 phase	 lag	 analysis.	 (a)	
PAC	 comodulogram	 for	differences	between	 the	aversive	 and	 the	neutral	 conditions	 is	 shown,	with	warmer	
colors	denoting	higher	z-scores.	The	high	gamma	amplitude	in	the	hippocampus	was	phase-locked	to	the	phase	
of	 amygdala	 low	 frequency	 (theta	 and	 alpha)	 rhythms	 (all	 p	 <	 0.01,	 permutation	 test).	 In	 contrast,	 the	
reciprocal	directional	PAC	modulation	 (e.g.	high	gamma	amplitude	 in	the	amygdala	phase-locked	to	phase	of	
hippocampal	 low	 frequency	 activity)	 was	 nearly	 absent.	 (b)	 Phase	 lag	 analysis.	 The	 PAC	 modulation	 index	
between	 low	 frequency	 phase	 and	 high	 gamma	 amplitude	 was	 estimated	 across	 time	 lags	 for	 the	 aversive	
condition.	 The	 red	 line	 represents	 the	 z-PAC	 between	 subject-specific	 amygdala	 low	 frequency	 phase	 and	
hippocampal	high	gamma	amplitude	(70-180	Hz).	The	blue	 line	denotes	the	z-PAC	between	hippocampus	 low	
frequency	phase	and	amygdala	high	gamma	amplitude.	Cross	(+)	denotes	subjects	who	showed	amygdala	low	
frequency	activity	leading	hippocampal	gamma.	
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2.3.6	 Granger	Causality	and	Phase	Slope	Index	

To	 further	examine	the	directionality	of	 the	amygdala-hippocampal	circuit,	we	utilized	

two	complementary	measures	that	rely	on	frequency	and	phase	respectively:	spectral	Granger	

causality	and	phase	slope	index136,137.	The	Granger	causality	measure	quantifies	the	strength	of	

directional	influences	between	local	potentials	in	the	frequency	domain	by	testing	whether	the	

local	potential	from	one	structure	(e.g.	hippocampus)	can	be	better	predicted	by	incorporating	

information	 from	 the	 signal	 from	 the	 other	 structure	 (e.g.	 amygdala)	 and	 vice	 versa.	 Phase	

slope	index	quantifies	phase	difference	as	a	function	of	frequency,	with	a	positive	phase	slope	

indicating	that	the	signal	from	the	first	structure	is	leading	the	signal	from	the	second	structure.	

In	 low	 frequency	bands,	we	 found	 significant	Granger	 causal	 influence	 from	 the	amygdala	 to	

hippocampus	but	not	in	the	reciprocal	direction	(all	p	<	0.01,	permutation	test,	Figure	4.4a,	also	

Supplementary	Fig.	13a,	see	APPENDIX	A)	only	for	the	aversive	condition.	Significant	differences	

between	 the	 aversive	 compared	 to	 the	 neutral	 condition	 were	 evident	 in	 8	 of	 9	 subjects	

(Supplementary	 Fig.	 14,	 see	 APPENDIX	 A).	 The	 phase	 slope	 index	 analysis	 showed	 positive	

phase	slopes	from	the	amygdala	to	the	hippocampus	for	the	aversive	compared	to	the	neutral	

condition	that	remained	significant	between	0.58	and	1.16	seconds	after	stimulus	onset	(Figure	

4.4b,	also	Supplementary	Fig.	13b,	see	APPENDIX	A).	 In	the	reverse	direction,	the	phase	slope	

index	did	not	show	a	positive	value	and	there	were	no	differences	between	the	two	conditions.	

These	 findings	 provide	 converging	 evidence	 of	 the	 amygdala	 to	 hippocampus	 directionality	

during	processing	of	motivationally	salient	information.	
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2.4	 Discussion	

Figure	 2.4.	 Granger	 causality	 analyses	 and	 phase	 slope	 index.	 (a)	 Granger	 causality	analyses	demonstrated	
consistently	 stronger	 influence	 for	 the	 amygdala-to-hippocampus	 direction	 (top	 row)	 than	 for	 the	
hippocampus-to-amygdala	direction	(bottom	row)	when	contrasting	the	aversive	to	the	neutral	condition.	The	
red	 and	 blue	 solid	 lines	 represent	 the	 real	 data	 from	 aversive	 and	 neutral	 conditions	 ±	 s.e.m.,	 respectively.	
Dotted	lines	denote	99%	confidence	intervals	for	the	null	distribution.	(b)	Phase	slope	index	(PSI)	between	the	
aversive	and	the	neutral	conditions	calculated	point-by-point	across	time	using	the	low	frequency	signal	from	
the	modulating	channel	(colored	in	red)	and	high	gamma	signal	from	the	modulated	channel	(colored	in	blue).	
Dotted	lines	above	the	graph	denote	significant	differences	between	the	two	signals	(all	p	<	0.01,	permutation	
test),	showing	that	low	frequency	activity	from	amygdala	precedes	hippocampus	gamma	for	the	majority	of	the	
stimuli	duration.	
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Here,	we	demonstrated	 that	 processing	of	motivationally	 salient	 stimuli	 depended	on	

coordinated	neural	oscillations	between	the	amygdala	and	hippocampus,	two	critical	nodes	in	

the	emotion	processing	circuit.	Prior	works	have	suggested	that	 the	amygdala	rapidly	detects	

salient	stimuli,	whereas	the	hippocampus	engages	in	contextual	and	mnemonic	processing57,148;	

however,	 the	 nature	 of	 their	 interaction	 and	 timing	 remains	 unclear.	 The	 current	 findings	

showed	that	the	interaction	between	the	two	structures	was	mediated	by	low	frequency	phase	

coherence	and	that	this	relationship	was	directional,	with	amygdala	low	frequency	oscillations	

entraining	 hippocampal	 high	 gamma.	 Our	 results	 are	 robust	 across	 individual	 subjects	 and	

provide	 a	 mechanism	 by	 which	 the	 amygdala	 influences	 hippocampal	 activity	 during	

recognition	 and	 emotional	memory	 of	 salient	 information.	We	were	 able	 to	 disentangle	 the	

temporal	 dynamics	 of	 the	 interaction	 between	 the	 amygdala	 and	 hippocampus	 during	

processing	of	aversive	stimuli	by	demonstrating	an	earlier	post-stimulus	onset	of	high	gamma	

activity	in	the	amygdala	(as	early	as	120	ms	post-stimulus)	relative	to	the	hippocampus	(around	

240	ms	post-stimulus).	Overall,	 these	 findings	 showed	 that	 salient	 stimuli	 are	processed	with	

distinct	 temporal	 windows	 in	 the	 amygdala	 and	 hippocampus.	 The	 early	 amygdala	 activity	

observed	 in	 this	 study	 may	 reflect	 the	 fast	 automatic	 detection	 of	 motivational	 salience	 of	

information,	 while	 the	 later	 hippocampal	 onset	 may	 indicate	 formation	 or	 reactivation	 of	

emotional	memory57,148.	

Previous	 research	 in	 affective	 processing	 using	 intracranial	 EEG	 recordings	 in	 humans	

has	focused	on	either	the	amygdala	or	hippocampus,	but	the	oscillatory	mechanism	mediating	

communication	 across	 the	 two	 structures	 has	 remained	 unclear.	 Using	 retrograde	 tracing	

techniques	in	monkeys’	hippocampal	formation,	Amaral	and	Cowan	demonstrated	that	labeled	
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neurons	were	 found	predominately	 in	 the	 anterior	 amygdaloid	 area,	 basolateral	 nucleus	 and	

periamygdaloid	cortex149.	The	perirhinal	and	parahippocampal	cortices	have	connections	with	

the	basolateral	and	accessory	nuclei150.	Although	the	primate	tracing	study	could	not	provide	

anatomical	specificity	at	the	level	of	hippocampal	subfields,	rodent	studies	have	shown	that	the	

ventral	CA1	region	and,	to	a	lesser	extent,	CA3	receive	the	most	robust	amygdala	inputs151.	Our	

findings	are	consistent	with	these	known	anatomical	connections.		

We	further	demonstrated	that	amygdala-hippocampal	interactions	were	predominantly	

mediated	through	low	frequency	coherence.	Specifically,	the	phase	locking	value	between	the	

amygdala	and	hippocampus	was	enhanced	when	participants	viewed	fearful	faces	compared	to	

landscapes.	Given	 the	 long	 temporal	window	afforded	by	 low	 frequency	 rhythms,	 the	phase-

phase	 coupling	 between	 different	 brain	 regions	 has	 been	 extensively	 studied	 in	 animal	

emotional	 research	 to	 understand	 the	 regulation	 of	 inter-regional	 communication.	 In	 rodent	

models,	 the	 degree	 of	 fearful	 memory	 retrieval152,153	 and	 its	 long-term	 consolidation154	 are	

directly	 related	 to	 the	 degree	 of	 theta	 synchrony	 across	 the	 amygdala	 and	 hippocampus,	

implicating	synchronous	low	frequency	oscillations	as	the	neural	correlate	of	fearful	memory	in	

the	medial	temporal	network.	Our	study	utilizing	human	intracranial	EEG	recording	and	precise	

medial	temporal	lobe	subfield	segmentation	provides	high-resolution	temporo-spatial	evidence	

for	 a	 similar	 oscillatory	 amygdala-hippocampal	 network	 in	 human	 salience	 processing	 and	

converges	with	the	extant	animal	literature.	

The	 directional	 influence	 of	 the	 amygdala	 onto	 hippocampus	 in	 anxiety	 and	 fearful	

emotional	responses	is	increasingly	recognized	in	animal	models.	Optogenetic	manipulation	of	
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this	 circuit	 has	 demonstrated	 that	 selective	 activation	 of	 BLA	 terminals	 within	 the	 ventral	

hippocampus	 increases	 anxiety-related	 behavior	 and	 reduces	 social	 interactions10.	 During	

contextual	 fear	 learning,	 enhancement	 of	 GABA	 neurotransmission	 in	 the	 BLA	 promotes	

hippocampal	 dendritic	 spine	 remodeling	 and	 fear	 retention,	while	 blockade	 of	 GABA	 sites	 in	

BLA	 ameliorates	 these	 structural	 and	 behavioral	 effects12.	 In	 response	 to	 predatory	 threats,	

hippocampal	place	cells	show	unstable	firing	patterns	and	increased	theta	power,	an	effect	that	

was	prevented	by	lesioning	of	the	amygdala11.	Thus,	the	modulatory	effects	of	the	amygdala	on	

the	 hippocampus	 for	 processing	 of	 fearful	 stimuli	 are	 supported	 by	 animal	 studies	

demonstrating	downstream	alterations	in	neurotransmission,	structure,	and	electrophysiology.	

Our	results	provide	confirmation	of	this	directional	modulation	in	humans	and	provide	evidence	

that	 this	modulation	 is	 controlled	by	neural	oscillations.	 Specifically,	 amygdala	 low	 frequency	

activity	modulates	hippocampal	high	gamma	via	amygdala-hippocampal	theta/alpha	synchrony	

during	 detection	 of	 motivationally	 salient	 information,	 providing	 a	 mechanism	 for	 the	

computation	 of	 local	 and	 long-range	 communication.	 These	 findings	 have	 implications	 for	

understanding	 deficits	 in	 the	 processing	 of	 salient	 environmental	 events	 in	 neuropsychiatric	

disorders	with	altered	oscillatory	control155.	

There	are	 several	 limitations	 in	 the	 current	 study.	 First,	 the	 two	 stimulus	 sets	 (fearful	

faces	and	landscapes)	are	inherently	different	in	their	properties.	Thus,	although	we	performed	

several	analyses	to	show	that	evoked	broadband	activity	did	not	influence	the	obtained	results,	

potential	 contributions	 of	 evoked	 response	 could	 not	 be	 completely	 excluded.	 Second,	 the	

stimuli	 lacked	neutral	 faces	to	contrast	fearful	 faces	and	thus	the	differences	between	fearful	

faces	and	landscapes	could	be	attributed	to	fearful	content,	emotion,	facial	expression,	faces,	
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or	 other	 aversive	 stimuli.	 While	 our	 stimuli	 do	 not	 specifically	 address	 processing	 of	 fearful	

faces,	 contrasting	 fearful	 face	 movie	 clips	 with	 landscapes	 allows	 us	 to	 probe	 oscillatory	

mechanisms	 underlying	 processing	 of	 motivationally	 salient	 information.	 In	 accord	 with	 the	

recent	 literature	 highlighting	 a	 broader	 function	 of	 the	 amygdala,	 including	 processing	 of	

valence,	emotion,	and	value,	we	believe	that	our	findings	would	generalize	to	other	stimuli	with	

social	or	survival	significance156.	
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CHAPTER	3:	Oscillatory	Dynamics	Facilitate	Emotional	Memory	Discrimination	

	

3.1	 Introduction	

Emotion	is	a	powerful	modulator	of	episodic	memory.	Emotional	events	are	thought	to	

generate	arousal	that	facilitates	remembering157.	However,	studies	in	humans	have	shown	that	

the	 impact	 of	 emotion	 on	 memory	 is	 not	 always	 positive15,17,158.	 We	 often	 remember	 the	

emotional	gist	of	the	event	but	forget	the	details16,21.	This	asymmetric	influence	of	emotion	on	

gist	versus	detail	memory	can	impair	the	discrimination	of	similar	emotional	experiences22.	For	

instance,	crime	testimonies	tend	to	focus	on	the	weapon	(e.g.	the	gun),	while	witnesses	have	

impaired	memory	for	the	crime	scene17.		Although	a	number	of	theories	have	been	proposed	to	

explain	 how	 emotional	 memories	 are	 processed	 in	 the	 human	 amygdala-hippocampal	

circuit148,159-161,	 the	 underlying	 neural	 mechanisms	 remain	 elusive.	 Prevailing	 models	 of	

emotional	memory	propose	a	division	of	labor	in	which	the	hippocampus	plays	a	critical	role	in	

coding	 for	 overlapping	 events	 and	 minimizing	 interference19,20,	 while	 the	 amygdala	 imparts	

emotional	valence	regardless	of	memory	performance162,163.	Given	that	these	two	regions	are	

strongly	connected	via	direct	and	indirect	anatomical	connections44,45,	it	is	likely	that	these	two	

regions	 interact	 to	 modulate	 emotional	 memory.	 However,	 the	 mechanisms	 by	 which	 this	

interchange	might	occur	to	facilitate	memory	storage	remain	a	mystery.	In	particular,	the	role	

of	different	brain	oscillations	in	mediating	this	relationship	is	unknown.		

A	 potential	 oscillatory	 mechanism	 to	 synergize	 the	 role	 of	 the	 amygdala	 and	 the	

hippocampus	 for	 emotional	memory	 is	 frequency	multiplexing	 of	 neural	 signals.	 It	 has	 been	

proposed	 that	 to	 rapidly	organize	 information	 flow	 in	 real-time,	 computations	across	parallel	
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brain	 systems	 are	 carried	 out	 in	 distinct	 frequency	 bands	 to	 separate	 neural	 signals	 into	

different	 temporal	 channels.	 There	 is,	 however,	 little	 empiric	 evidence	 to	 support	 this	

oscillatory	 mechanism	 for	 emotional	 memory	 discrimination.	 Rodent	 and	 human	

electrophysiology	 studies	 have	 demonstrated	 that	 increased	 theta	 (4-7Hz)	 phase	 synchrony	

between	 the	 amygdala	 and	 hippocampus	 promotes	 cross	 regional	 communications	 during	

aversive	memory	retrieval	and	emotional	processing152,153,164.	On	the	other	hand,	scalp	EEG	and	

functional	 MRI	 studies	 have	 shown	 that	 alpha	 (8-12Hz)	 phase	 desynchrony	 and	 synchrony	

select	or	“gate”	information	in	and	out	of	the	working	memory	system	to	influence	behavior165.	

How	theta	and	alpha	oscillations	dynamically	interact	within	the	amygdala-hippocampal	circuit	

to	 determine	 success	 or	 failure	 of	 emotional	 memory	 remains	 unknown.	 Here,	 we	 test	 the	

hypothesis	that	the	amygdala	not	only	provides	emotional	valence	but	its	cooperation	with	the	

hippocampus	 is	 essential	 for	mnemonic	 discrimination	 of	 emotional	 events.	 As	 predicted	 by	

theoretical	models	of	oscillatory	multiplexing,	successful	mnemonic	discrimination	requires	the	

synergistic	 engagement	 of	 theta	 phase	 synchrony	 and	 alpha	 phase	 desynchrony	 in	 the	

amygdala-hippocampal	circuit.	

To	 address	 these	 unanswered	 questions,	 we	 recorded	 intracranial	 stereo-

electroencephalography	(SEEG)	simultaneously	from	the	amygdala	and	the	hippocampus	while	

seven	 pre-surgical	 epilepsy	 patients	 performed	 an	 emotional	 memory	 recognition	 task21	 in	

which	 participants	 were	 asked	 to	 differentiate	 similar	 emotional	 scenes	 (Figure	 3.1a).	 We	

observed	that	neural	 response	 in	both	the	amygdala	and	the	hippocampus	are	modulated	by	

the	emotional	valence	and	the	memory	performance,	which	contraindicates	the	long-standing	

model	 that	 the	 amygdala	 simply	 transmits	 emotional	 valence	 to	 modulate	 hippocampal	
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memory.	Our	findings	establish	the	oscillatory	mechanisms	by	which	the	amygdala	cooperates	

with	 the	 hippocampus	 to	 utilize	 two	 distinct	 frequency	 bands	 to	 facilitate	 intra-	 and	 inter-

regional	 interactions,	 in	which	 theta	 (3-7Hz)	 synchrony	 predict	 successful	 emotional	memory	

discrimination	 and	 alpha	 (8-13Hz)	 synchrony	 predict	 incorrect	 memory.	 Bidirectional	

interactions	 between	 the	 amygdala	 and	 the	 hippocampus	 support	 emotional	 memory	

discrimination	by	temporally	coordinating	inter-regional	theta	phase	and	high	gamma	power.	In	

contrast,	 unidirectional	 entrainment	 of	 alpha	 oscillations	 in	 the	 amygdala	 with	 high	 gamma	

power	in	the	hippocampus	at	random	phases	leads	to	inaccurate	memory	recognition.	Overall,	

these	 results	 demonstrate	 that	 discrimination	 of	 emotional	 memory	 engages	 reciprocal	

interactions	within	 the	amygdala-hippocampal	circuit	by	 sending	success	or	 failure	 signals	via	

frequency	specific	oscillatory	synchrony.	

3.2	 Materials	and	Methods	

Participants.	 Data	 were	 obtained	 from	 7	 patients	 (4	 Female,	 3	 Male,	 Age	 21-58,	

Supplementary	Table	1,	see	APPENDIX	B)	undergoing	intracranial	monitoring	at	the	University	

of	 California,	 Irvine,	Medical	 Center	 to	 localize	 epileptic	 foci	 for	 potential	 surgical	 resection.	

Intracranial	 depth	 electrodes	 (Integra	 or	 Ad-Tech,	 5-mm	 inter-electrode	 spacing)	 were	

stereotactically	 implanted	 and	 the	 electrode	 placement	 was	 exclusively	 guided	 by	 clinical	

needs.	 Before	 testing,	 all	 subjects	 gave	 informed	 written	 consent	 in	 accordance	 with	 the	

Institutional	Review	Board	of	the	University	of	California,	Irvine.	Patient	selection	was	based	on	

the	following	inclusion	criteria:	1)	having	electrodes	at	both	the	amygdala	and	the	hippocampus	

contralateral	 to	 the	 epileptogenic	 region;	 2)	 having	 good	 task	 performance	 (accuracy	 rate	

above	0.7,	Supplementary	Table	1,	see	APPENDIX	B).		
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Electrode	localization.	Electrodes	were	localized	in	each	subject	using	co-registered	pre-

implantation	and	post-implantation	structural	T1-weighted	MRI	scans	except	S5,	who	has	only	

post-implantation	 CT	 scans	 for	 electrode	 localization.	 First,	 we	 registered	 post-implantation	

scans	 to	 the	 pre-implantation	 scans	 using	 a	 six-parameter	 rigid	 body	 transformation	 (three	

rotations	and	three	translations	in	x-z	directions),	which	implanted	in	Advanced	Normalization	

Tools	 (ANTs	 http://	 stnava.github.io/ANTs).	 Then	 a	 high-resolution	 anatomical	 template	

(0.55mm)	with	labels	of	medial	temporal	lobe	subfields122	was	applied	to	guide	our	localization	

for	each	electrode.	The	 labeled	template	was	resampled	(1mm	isotropic)	and	aligned	to	each	

subject’s	 pre-implantation	 scans	 using	 ANTs	 Symmetric	 Normalization117.	 Based	 on	 the	

anatomical	 labels	 within	 each	 subject’s	 space,	 the	 electrode	 location	 was	 determined	 by	

identifying	 the	 region	of	 interest	 that	encompassed	 the	center	of	 the	electrode	artifacts.	The	

electrode	 localization	 results	 and	also	 the	 selection	of	 re-referencing	electrodes	within	white	

matter	were	furthered	reviewed	by	our	neurologist	(J.J.L.).			

Experimental	design	and	behavioral	analysis.	Participants	were	exposed	to	a	series	of	

images	presented	at	the	center	of	a	laptop	screen	with	the	black	background.	The	stimulus	set	

was	comprised	of	novel	scenes	freely	available	online.	All	the	images	were	rated	for	emotional	

valence	and	similarity	(scale	from	1	to	8,	with	1	indicating	repetitions	and	8	represents	identical	

representations)	 in	 orthogonal	 experiments	 with	 separate	 samples.	 The	 detail	 information	

about	 the	 supplementary	 rating	 studies	 in	 the	 separate	 sample	 can	be	 found	 in	 the	previous	

paper	 from	 our	 group21.	 During	 the	 encoding	 phase,	 148	 images	 were	 presented	 in	

pseudorandom	 order	 and	 subjects	 were	 instructed	 to	 rate	 the	 emotional	 valence	 for	 each	

stimulus	 (‘negative’,	 ‘neutral’	 or	 ‘positive’).	 After	 a	 short	 delay	 (~1	 minute),	 subjects	 were	
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exposed	to	290	 images	mixed	with	target	 (repeated	 images,	n	=	54),	 lure	(similar	 images,	n	=	

97)	and	foil	 items	(new	images,	n	=	139).	The	lure	items	were	roughly	even	distributed	across	

emotion	(NegLure	=	33;	NeuLure	=	32;	PosLure	=	32)	and	similarity	level	(NegSIM	=	6.29	±	0.11;	

NeuSIM	=	6.14	±	0.12;	PosSIM	=	6.41	±	0.08).	During	 the	 test	period,	 subjects	were	asked	 to	

identify	whether	each	 image	has	been	shown	 in	the	encoding	phase	or	not.	Subjects	need	to	

make	 the	 response	 via	 key	 press	 within	 the	 2	 seconds	 time	 window	 and	 the	 trials	 where	

subjects	failed	to	make	a	decision	within	the	time	period	were	excluded	from	the	analysis.	First,	

we	evaluated	subject’s	task	performance	by	computing	the	accuracy	rate,	the	fraction	between	

the	 number	 of	 accurate	 trails	 over	 the	 total	 trial	 number	 within	 the	 test	 phase.	 Then	 we	

quantified	 their	 discrimination	 abilities	 by	 calculating	 the	 LDI,	 which	 was	 represented	 the	

difference	 of	 trial	 numbers	 between	 correct	 recognized	 lures	 and	 false	 rejected	 targets:	

𝑝 ′𝑁𝑒𝑤� 𝐿𝑢𝑟𝑒 − 𝑝(′𝑁𝑒𝑤�|𝑇𝑎𝑟𝑔𝑒𝑡).		

Data	acquisition	and	preprocessing.	Stimuli	were	presented	using	PsychoPy2	 (Version	

1.82.01)	 software166	 on	 an	 Apple	 MacBook	 Pro,	 which	 was	 placed	 on	 the	 service	 tray	 at	 a	

comfortable	distance	in	front	of	participants.	An	external	Apple	keyboard	was	used	to	capture	

subjects’	 responses.	 Intracranial	 EEG	 data	 were	 acquired	 using	 a	 Nihon	 Kohden	 recording	

system	 (256	 channel	 amplifier,	 model	 JE120A),	 which	 are	 analog-filtered	 above	 0.01Hz	 and	

digitally	 sampled	 at	 5000Hz.	 After	 data	 acquisition,	 the	 preprocessing	 of	 raw	 data	 was	

conducted	 using	 customized	MATLAB	 scripts.	 First,	 neural	 recordings	were	 down	 sampled	 at	

2000Hz	and	band-pass	 filtered	between	1	 to	250Hz	using	 the	zero	phase	delay	 finite	 impulse	

response	(FIR)	filter	with	Hamming	window.	Then	power	spectral	density	(PSD)	was	estimated	

using	 Welch’s	 method	 (pwelch.m	 in	 Signal	 Processing	 Toolbox	 from	 MATLAB).	 Line	 noises	
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(usually	60Hz	and	 its	harmonics)	 inspected	 from	PSD	plots	were	 removed	via	 the	multi-taper	

regression	method167.	Based	on	 the	 localization	 results,	 all	 channels	 in	 the	amygdala	and	 the	

hippocampus	were	 re-referenced	 to	 the	nearest	white	matter	 electrodes	on	 the	 same	depth	

electrode	probe.	Then	epileptiform	discharges	were	manually	inspected	(visualized	and	marked	

using	 databrowser.m	 in	 FieldTrip168)	 under	 the	 supervision	 of	 a	 neurologist	 (J.J.L.),	 who	was	

blinded	 to	 electrode	 locations	 and	 trial	 information	 (e.g.	 stimuli	 onsets	 and	 subject’s	

performance).	Notably,	 there	were	no	 seizures	 recorded	 in	 any	 subject	while	performing	 the	

task,	and	only	the	electrodes	contralateral	to	the	seizure	onset	zone	were	included	for	analyses.		

Event-related	potentials.	We	then	segmented	the	preprocessed	intracranial	recordings	

into	event-related	epochs,	including	a	500ms	pretrial	baseline	and	a	2000ms	time	window	after	

trial	onset.	The	segmented	data	were	zero-padded	to	minimize	filter-induced	edge	effects	and	

were	 low-pass	 filtered	 at	 30Hz	 using	 a	 finite	 impulse	 response	 filter	 (eegfilt.m	 function	 in	

EEGLAB	 toolbox128).	 Task-induced	 ERPs	 were	 calculated	 within	 each	 condition	 (incorrect	 vs	

correct	 discrimination)	 by	 averaging	 across	 filtered	 epochs	 and	 absolute	 baseline	 correcting	

over	the	temporal	mean	of	the	pre-trial	period.	A	two-sample	t-test	was	performed	to	identify	

for	each	data	point	to	determine	the	significant	difference	between	conditions.	To	remove	the	

potential	contribution	of	signal	components	phase-locked	to	the	trial	onset	 (e.g.	ERPs)169,	 the	

cross-trial	mean	of	raw	LFPs	were	subtracted	from	each	channel	before	further	analysis170.	

Frequency	decomposition	and	task-induced	power.	Time-frequency	representations	of	

power	 were	 computed	 for	 each	 event-related	 epoch,	 with	 FIR	 filtering	 between	 1	 to	 250Hz	

through	28	logarithmically	spaced	frequencies.	The	adaptive	bandwidths	ensured	precise	phase	
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estimations	within	narrow	bands	of	low	frequency	oscillations	while	a	broader	range	of	higher-

frequency	 eliminated	 sideband	 effects	 and	 prevented	 spurious	 PAC129.	We	 then	 applied	 the	

Hilbert	 transform	 (hilbert.m	 function	 in	 Signal	 Processing	 Toolbox	 from	MATLAB)	 to	 extract	

analytic	amplitude	and	phase	for	all	filtered	traces.	The	task-induced	power	was	calculated	by	

squaring	 the	 analytic	 amplitude	 envelope	 and	was	 normalized	 to	 the	 pre-trial	 baseline	 using	

relative	 change	 in	decibel	 conversion	 (dB).	Results	 represented	 in	 Figure	3.2b	were	averaged	

across	all	the	electrodes	within	amygdala	and	hippocampus	individually	for	different	conditions	

(correct	versus	incorrect	discrimination;	negative	versus	neutral	valence)	and	normalized	to	the	

averaged	baseline	across	all	trials.		

Inter-regional	 phase	 synchrony.	 The	 strength	 of	 inter-regional	 neural	 synchrony	 was	

quantified	by	the	PLV171,	which	calculates	the	phase	𝜃	differences	between	two	channels	(𝑎, 𝑏)	

averaged	across	trials	for	a	given	time	point	𝑡	and	frequency	𝑓:	

𝑃𝐿𝑉 𝑡, 𝑓 = 	
1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠 exp 𝑖 𝜃�,[ 𝑡, 𝑓 − 𝜃?,� 𝑡, 𝑓 						
				?RQ��3[�]

?R,

	

It	measures	 the	 degree	 of	 each	 electrode	 pair	maintains	 the	 consistent	 phase	 relationship	 –

independent	of	 their	 absolute	phases	 and	amplitudes170	 -	 among	 repeated	 trials,	with	 values	

approaching	1	referring	to	little	variations	across	trials	or	strong	phase	synchrony	between	two	

channels.	We	performed	the	PLV	analysis	for	each	electrode	pair,	including	one	electrode	from	

the	 amygdala	 and	 one	 from	 the	 hippocampus,	 within	 the	 processing	 period	 (2-second	 time	

window	after	stimuli	onset).	Then	we	grouped	individual	𝑃𝐿𝑉	(𝑡, 𝑓)	spectrogram	into	different	

conditions	 (correct	 versus	 incorrect;	 negative	 versus	 neutral).	 To	 ensure	 that	 the	 observed	

inter-regional	 synchrony	 was	 not	 induced	 by	 the	 within	 region	 power	 differences,	 we	
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performed	 a	 stratification	method168,172	 to	 trims	 trials	with	 extreme	 power	 values.	 Thus,	 the	

PLV	 spectrograms	were	 calculated	using	 power-balanced	 trials	 across	 relevant	 conditions.	 To	

further	 eliminate	 the	 influence	 of	 ERPs	 and	 power	 differences,	 we	 tested	 the	 statistical	

significance	 for	 PLV	 using	 a	 cluster-based	 permutation	 test,	 in	 which	 a	 null	 distribution	 was	

created	by	randomly	assigning	trials	into	different	conditions,	computing	the	corresponding	PLV	

spectrograms	and	repeating	the	same	procedure	for	1000	times.	The	results	shown	 in	Fig.	3a	

were	 depicted	 in	𝑃	values	 (𝑃 = 0.01,	 observed	 data	 precedes	 99%	 surrogate	 data),	 with	

warmer	 colors	 denoting	 stronger	 significance	 levels.	 For	 better	 visualization,	 the	 PLV	

spectrogram	plots	were	smoothed	using	a	cubic	spline	interpolation	method	(spline.m	function	

in	MATLAB).	

Frequency-specific	explained	variance	in	PLV.	We	quantified	task	related	information	as	

the	percentage	variance	 in	PLV	at	different	 frequencies	bands	across	 trials	explained	by	each	

factor.	 Specifically,	we	performed	an	 analysis	 of	 variance	 (ANOVA)	 to	 calculate	 the	 variances	

explained	by	 the	 following	 task	 factors	 individually:	 subject’s	 choice	 (‘old’	 versus	 ‘new’),	 task	

outcome	 (‘correct’	 versus	 ‘incorrect’),	 emotional	 valence	 (‘negative’	 versus	 ‘neutral’),	 arousal	

rating	and	similarity	rating	of	stimuli.	Since	our	investigated	task	factors	were	not	orthogonal,	

for	example,	 subject’s	 choice	and	 task	outcomes	were	highly	 correlated	 (𝑅Z��3Z�	�	���Z�/�]\ 	=

	0.46, 𝑃 = 10j,\,	Spearman	rank	correlation).	Therefore,	we	computed	an	unbalanced	ANOVA,	

in	which	PLV	variance	explained	by	each	factor	will	be	dissociable	to	other	factors.	We	estimate	

the	amount	of	PLV	explained	variance	𝜔\	by	each	factor	𝑠	at	specific	frequency	𝑓	173:		

𝜔(],")\ 	=
𝑆𝑆������?	����4]	(],")	–	𝑑𝑓(]) 	∗ 𝑀𝑆𝐸(],")

𝑆𝑆���[�	(],") + 𝑀𝑆𝐸(],")
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𝑆𝑆������?	����4]	(],")		is	 the	 sum	 of	 squares	 between	𝑀	groups,	𝑆𝑆���[� 	is	 the	 sum	 of	 squares	

total	 across	𝑁	trials,	𝑑𝑓	 = 𝑀 − 1	is	 the	 degree	 of	 freedom,	 and	𝑀𝑆𝐸	is	 the	 mean	 squared	

error.	 To	 test	 the	 significance	 level	 of	 explained	 variance	𝜔\ 	and	 correct	 for	 multiple	

comparisons	across	frequencies,	we	used	a	cluster-based	permutation	test,	which	is	similar	as	

the	one	mentioned	 in	 the	method	section	 ‘Inter-regional	synchrony’.	For	each	electrode	pair,	

frequency	and	 factors	were	randomly	permuted	across	 trials,	which	yield	a	distribution	of	𝜔\	

spectra	 under	 the	 null	 hypothesis	 of	 equal	 information	 explained	 by	 PLV.	 	 The	 significance	

threshold	(gray	dashed	line	in	Figure	3.3c)	was	defined	as	the	99th	percentile	of	the	permuted	

𝜔\	spectra.	

Directional	 phase	 amplitude	 coupling.	 The	 PAC	 was	 computed	 for	 each	 amygdala-

hippocampus	electrode	pair	within	the	processing	period	(the	2-second	time	window	after	the	

stimuli	onset)	and	was	calculated	as	the	phase	coherence	between	the	low	frequency	and	low	

frequency	 filtered	 HFA95,171.	 The	 directionality	 within	 each	 electrode	 pair	 was	 quantified	 as	

Phase	 Slope	 Index	 (PSI)136,	 which	 estimates	 the	 slope	 of	 the	 phase	 differences	 between	 the	

modulating	 (sender)	and	modulated	 (receiver)	 signals	as	a	 function	of	 frequency.	By	applying	

the	 PSI	 to	 the	 phase	 of	 low	 frequency	(𝑓)	oscillations	 and	 the	 amplitude	 envelope	 of	 high	

frequency	(𝑣)	activities,	the	directional	index	can	be	defined	as137:		

𝜓(𝑓) 	= 𝐼𝑚( 𝐶∗(𝑣, 𝑓)𝐶(𝑣, (𝑓 + 𝛿𝑓))

"i�\

"j�\

)	

where	𝐶(𝑣, 𝑓)	is	 the	 complex	 coherency	 as	 the	 normalized	 cross-spectra	 between	 two	 time	

series	 and	𝐼𝑚	denotes	 the	 imaginary	 part.	 Since	 the	 transmission	 between	 modulating	 and	
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modulated	 signal	 has	 a	 fixed	 time	delay,	 the	phase	 spectrum	between	 these	 two	 signals	will	

change	 systematically	 as	 a	 function	 of	 frequency174,175.	 In	 other	 words,	 when	 the	 phase	

differences	increase	with	the	corresponding	frequencies,	a	positive	slope	of	phase	spectrum	is	

expected,	 suggesting	 that	 low	 frequency	 phases	 lead	 the	 high	 frequency	 amplitude.	 On	 the	

other	hand,	a	negative	PSI	refers	to	the	opposite	directionality.	The	statistical	analysis	of	cross	

frequency	PSI	is	similar	as	described	in	the	method	section	‘Inter-regional	phase	synchrony’,	by	

randomly	 shuffling	 the	 trials	 for	 1000	 times.	 The	 PSI	 null	 distribution	 was	 calculated	 using	

shuffled	 low	 frequency	 phase	 and	 high	 frequency	 amplitude.	 The	 99th	 percentile	 of	 the	

surrogate	 data	 was	 defined	 as	 the	 significant	 threshold.	 For	 better	 visualization,	 the	 PSI	

spectrogram	plots	were	smoothed	using	a	cubic	spline	interpolation	method	(spline.m	function	

in	MATLAB).	

Granger	Causality	analysis.	To	further	confirm	the	directionality	between	the	amygdala	

and	the	hippocampus,	we	computed	spectral	Granger	causality,	which	quantifies	the	prediction	

error	 of	 the	 signal	 in	 the	 frequency	 domain	 by	 introducing	 another	 time	 series139,176.	 Before	

fitting	to	the	multivariate	autoregressive	model	to	compute	the	spectral	Granger	causality,	the	

time	series	data	from	each	amygdala-hippocampal	electrode	pair	were	low-pass	filtered	at	85	

Hz,	 down-sampled	 to	 250	Hz	 and	normalized	within	 each	 trial	 (e.g.	 subtracting	 the	 temporal	

mean	and	cross-trial	mean).	Then,	we	defined	the	model	order	using	the	Multivariate	Granger	

Causality	 (MGVG)	Toolbox	based	on	 the	Akaike	 information	 criterion140.	 The	model	order	 for	

each	 subject	 varied	 from	 8	 to	 15.	 The	 Granger	 Causality	 index	 was	 computed	 within	 the	

processing	period	(2-second	time	window	after	stimuli	onset)	for	both	directions	(amygdala	to	

hippocampus,	hippocampus	to	amygdala).	The	significance	analysis	for	Granger	Causality	is	the	
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same	method	as	described	in	the	section	‘Inter-regional	phase	synchrony’	by	randomly	shuffling	

the	trials	for	1000	times.	Then	the	Granger	Causality	null	distribution	was	created	and	the	99th	

percentile	of	the	surrogate	data	was	defined	as	the	significant	threshold.		

Pattern	classification	analysis.	To	test	whether	the	occurring	phase	of	HFA	can	decode	

different	 directional	 information	 (amygdala	 to	 hippocampus,	 hippocampus	 to	 amygdala),	 we	

performed	 a	 pattern	 classification	 analysis.	 The	 input	 of	 the	 classifier	was	 the	HFA	occurring	

phase	at	the	 individual	maximum	modulating	frequency	(correct:	 theta	band;	 incorrect:	alpha	

band).	The	output	of	the	classifier	was	the	prediction	of	task	outcomes	for	each	high	frequency	

event.	 Similar	 to	 the	 previous	 studies177,178,	 we	 chose	 a	 linear	 classifier	 and	 convert	 phase	

values	as	a	vector	quantity	in	the	complex	plane,	with	cosine	and	sine	of	the	phase	referring	to	

the	real	and	imaginary	part	respectively.	The	classifier	was	calculated	by	determining	the	sums	

for	correct	and	incorrect	trials	and	taking	the	difference	between	them.	Then,	we	projected	the	

phase	from	new	trial	onto	the	classifier	by	taking	the	dot	product	in	each	direction:		

𝑞 = 𝑐𝑜𝑠
,

¡
𝜃 𝑡 𝜑��[�,3?Z����Z� 𝑡 − 𝜑��[�,Z����Z� 𝑡 𝑑𝑡	

+	 𝑠𝑖𝑛𝜃 𝑡 𝜑3/[�,3?Z����Z� 𝑡 	− 𝜑3/[�,Z����Z� 𝑡 𝑑𝑡
,

¡
	

We	 quantified	 the	 differences	 for	 the	 projections	 distributions	 between	 correct	𝑞£¤ 	and	

incorrect	𝑞¥£ 	conditions	using	the	discriminability	index	𝑑:	

𝑑	 = 	
𝑞£¤ 	−	𝑞¥£
1
2 (𝜎£¤

\ 	+	𝜎¥£\ )
	

A	high	value	of	𝑑	indicated	greater	classification	ability	between	two	conditions.	We	tested	the	

significance	based	on	the	similar	cluster-based	permutation	test	and	created	a	distribution	of	
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pseudo	 discriminability	 indexes	 by	 randomizing	 the	 category	 labels	 (correct	 versus	 incorrect	

discrimination)	 associated	 with	 high	 frequency	 activities	 for	 100	 times.	 Observed	

discriminability	 index	 above	 the	 95th	 percentile	 of	 the	 surrogate	 data	 was	 considered	 as	

significant.		

	

3.3	 Results	

3.3.1	 Emotion	Interferes	with	Mnemonic	Discrimination		

We	 recorded	 local	 field	 potentials	 (LFPs)	 from	 seven	 pre-surgical	 epilepsy	 patients	 (3	

males,	 4	 females,	 (see	 individual	 subject’s	 information	 in	 supplementary	 table	 1)	with	 depth	

electrodes	 implanted	 in	 the	 amygdala	 (n	 =	 15	 electrodes)	 and	 the	 hippocampus	 (n	 =	 19	

electrodes).	 We	 examined	 neural	 responses	 while	 individuals	 performed	 memory	 recalls	 in	

which	they	reject	similar	but	not	identical	scenes	(lure	items)	or	novel	items	(foils,	Figure	3.1a).	

The	localization	of	depth	electrodes	in	the	amygdala	and	hippocampus	was	determined	based	

on	 co-registered	 pre-	 and	 post-implantation	 magnetic	 resonance	 imaging	 (MRI)/	 computed	

tomography	 (CT),	 as	 well	 as	 registration	 to	 a	 high-resolution	 anatomical	 atlas,	 labeled	 with	

medial	 temporal	 lobe	 (MTL)	 sub-regions	 of	 interests	 (Figure	 3.1b;	 Supplementary	 Fig.	 1,	 see	

APPENDIX	B).		

All	subjects	were	proficient	at	the	task	(average	percent	correct	=	80%,	range	=	74%	to	

86%,	 Supplementary	 Table	 1,	 see	 APPENDIX	 B).	 To	 quantify	 subjects’	 ability	 to	 discriminate	

similar	stimuli,	we	calculated	the	lure	discrimination	index	(LDI)21	for	each	subject,	operated	as	

𝑝 ′𝑁𝑒𝑤� 𝐿𝑢𝑟𝑒) 	− 𝑝	(′𝑁𝑒𝑤�|𝑇𝑎𝑟𝑔𝑒𝑡),),	 which	 corrected	 for	 the	 general	 tendency	 to	 reject	

items179	(e.g.	call	an	item	‘New’).	We	found	that	subjects	achieve	a	better	discrimination	score	
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for	neutral	stimuli	compared	to	emotional	ones	(one-way	ANOVA,	F	(2,	32)	=	6.24,	P	=	0.0051),	

with	diminished	LDI	for	both	negative	and	positive	lures	(post-hoc	analysis:	F	(1,	32)	=	10.45,	P	=	

0.0028,	critical	Schefee	=	6.32,	Figure	3.1c).	These	results	confirmed	that	patients’	behavioral	

performance	 was	 similar	 to	 healthy	 subjects	 found	 in	 previous	 fMRI	 studies22,	 with	 a	

comparable	 impairment	 level	of	mnemonic	discrimination	 induced	by	emotional	 contents.	To	

study	 the	hippocampus’	ability	of	 separating	overlapping	events,	we	 focused	our	analyses	on	

the	 lure	 items	 during	 the	 retrieval	 phase	 while	 subjects	 were	 processing	 the	 stimuli	 (Figure	

3.1a).	 Given	 that	 the	 behavioral	 effect	 of	 emotional	 modulation	 was	 maximally	 contrasted	

between	 the	negative	 and	neutral	 valence	 trials	 (Figure	 3.1c),	we	 compared	 the	 trials	within	

these	two	types	of	emotional	valence.	
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Figure	3.1	Experiment	design,	electrode	locations	and	behavior	results.	(a)	Mnemonic	discrimination	task	with	
emotional	stimuli.	Each	trial	consists	of	three	parts,	including	a	500-ms	maintenance	fixation	period,	followed	
by	a	2000ms	 image	display	 (processing	period)	and	a	self-paced	response	window	up	to	2000ms.	During	the	
encoding	 phase	 (upper),	 participants	 were	 cued	 to	 rate	 the	 emotional	 valence	 of	 each	 stimulus	 (Negative,	
Neutral,	 Positive).	 During	 the	 retrieval	 phase	 (lower),	 participants	 were	 cued	 to	 identify	 the	 same	 stimuli	
presented	 in	the	encoding	phase	as	“old”	or	to	reject	similar	but	not	 identical	scenes	(lure	 items)	and	novel	
items	 as	 “new”	 (b)	 Electrode	 localization	 across	 7	 subjects,	 rendered	 onto	 a	 three-dimensional	 glass	 brain	
(gray)	based	on	the	high-resolution	template,	highlighting	the	amygdala	(red),	anterior	hippocampus	(blue)	and	
posterior	 hippocampus	 (green).	 (c)	 Across	 all	 subjects,	 Lure	 Discrimination	 Index	 was	 significantly	 lower	 in	
negative	and	positive	conditions	compared	to	the	neutral	one.	(*	=	P<0.05;	**	=	P<0.01).	
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3.3.2	 Frequency	Specific	Oscillations	Predict	Task	Performance	

We	compared	neural	 responses	of	 correct	 (correctly	 rejected	 lure	 items	as	 ‘new’)	and	

incorrect	 (incorrectly	 recognized	 lure	 items	 as	 ‘old’)	 discrimination	 trials.	 Examination	 of	 the	

amygdala	 and	 hippocampal	 raw	 LFP	 traces	 demonstrated	 slower	 low	 frequency	 oscillations	

during	a	correct	compared	to	an	incorrect	discrimination	trial	(Figure	3.2a).	We	then	examined	

conditional	 differences	 over	 the	 frequency	 and	 time	 by	 measuring	 the	 task-induced	 power	

changes	 in	 the	 amygdala	 and	 the	 hippocampus.	 Sustained	 low	 frequency	 oscillations	 and	

transient	high	gamma	band	activities	were	observed	 in	both	regions	after	the	stimulus	onset,	

with	enhanced	 theta	band	power	associated	with	correct	 trials	 (3-7	Hz,	Figure	3.2b,	 top	 row,	

dashed	rectangles)	and	 increased	alpha	power	 linked	 to	 incorrect	 trials	 (8-13	Hz,	Figure	3.2b,	

bottom	row,	solid	rectangles).	In	addition,	the	hippocampus	demonstrated	a	frequency-specific	

double	 dissociation,	 with	 diminished	 alpha	 and	 increased	 theta	 band	 power	 during	 correct	

discrimination	 and	 diminished	 theta	 and	 increased	 alpha	 band	 power	 during	 incorrect	

discriminations	(Figure	3.2b).	These	frequency-specific	band	dissociations	predicted	behavior	at	

the	 group	 level,	 emphasizing	 increased	 theta	 power	 and	 decreased	 alpha	 power	 in	 the	

hippocampus	when	 comparing	 correct	 versus	 incorrect	 trials	 (Figure	 3.2c,	 shaded	 regions,	 t-

test,	P	<	0.01).	Moreover,	negative	emotional	valence	amplified	these	frequency	band	specific	

power	changes,	augmenting	theta	(3-7Hz)	power	for	correct	negative	valence	trials	and	alpha	

(8-13Hz)	power	for	incorrect	negative	valence	trials.	In	particular,	as	shown	in	the	single	subject	

example	 (Figure	3.2b)	and	 the	group	 level	analyses	 (Figure	3.2d),	negative	emotional	 valence	

enhanced	 power	 differences	 between	 correct	 and	 incorrect	 mnemonic	 discriminations.	 In	

particular,	greater	 theta	power	was	 seen	 for	 correct	 trials	 compared	 to	 incorrect	 trials	 in	 the	
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hippocampus	 (Figure	3.2d,	 shaded	 region,	 t-test,	P	<	0.01).	 In	 contrast,	 stronger	alpha	power	

was	noted	for	the	incorrect	trials	compared	to	correct	trials	in	the	amygdala	and	hippocampus	

(Figure	3.2d,	shaded	regions,	t-test,	P	<	0.01).	

These	 frequency-specific	 dynamics	were	 only	 evident	 in	 lure	 items	 and	 not	 in	 targets	

and	foils	(Supplementary	Fig.	2,	see	APPENDIX	B),	suggesting	that	these	spectral	features	were	

specific	 to	mnemonic	 discrimination	 rather	 than	 a	 general	 error	 signal180-182.	Moreover,	 such	

spectral	 features	were	only	observed	within	anterior	hippocampal	electrodes;	 the	conditional	

power	differences	between	correct	and	incorrect	discrimination	and	the	influence	of	emotional	

valence	 were	 absent	 in	 the	 posterior	 hippocampal	 electrodes	 (Supplementary	 Fig.	 3,	 see	

APPENDIX	 B).	 These	 results	 demonstrate	 that	 the	 human	 hippocampus	 is	 a	 functionally	

heterogeneous	structure	along	its	longitudinal	axis	with	specialization	for	emotional	memories	

in	the	anterior	compared	to	the	posterior	hippocampus.	To	ensure	that	event-related	potentials	

(ERPs)	did	not	confound	these	spectral	changes183,	we	averaged	LFPs	 for	each	electrode	over	

the	image-processing	period	within	each	condition	and	normalized	to	the	pre-trial	baseline.	No	

significant	conditional	difference	of	ERPs	has	been	shown	in	any	electrode	(t-test,	P	>	0.05).	In	

sum,	 these	 results	 showed	 that	 the	 amygdala	 and	 the	 hippocampus	 both	 participate	 in	

mnemonic	discrimination	of	 emotional	 events,	with	 theta	 and	alpha	bands	 served	as	distinct	

spectral	 fingerprints	 for	 successful	 versus	 unsuccessful	 memory.	 It	 also	 highlighted	 that	

emotional	 valence	 modulated	 mnemonic	 discrimination	 by	 enhancing	 power	 differences	 at	

these	two	distinct	frequency	bands	in	the	amygdala	and	anterior	hippocampus.		
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3.3.3	 Frequency	Specific	Synchrony	Encodes	Task	Information	

Given	 the	 task-related	 low	 frequency	 oscillations	 observed	 in	 the	 amygdala	 and	 the	

hippocampus	 and	 their	 important	 roles	 supporting	 inter-regional	 communications114,	 we	

investigated	 low-frequency	 phase	 synchrony	 between	 these	 two	 brain	 structures.	 The	 cross-

regional	coordination	was	quantified	with	phase	 locking	values	 (PLVs)	as	a	metric	of	effective	

Figure	 3.2.	 Task-evoked	 spectrotemporal	 power.	 (a)	 Example	 of	 local	 field	 potentials	 (LFPs)	 from	 a	 pair	 of	
electrodes	 in	 the	 amygdala	 (red)	 and	 the	 hippocampus	 (blue)	 from	one	 subject	 with	 a	 correct	 (CR)	 and	 an	
incorrect	 (IC)	 trial.	 Gray	 lines	 represent	 raw	 LFPs	 and	 red/blue	 lines	 denote	 LFPs	 filtered	 within	 3-12Hz.	 (b)	
Example	 of	 task-induced	 power	 from	 Subject	 4	 within	 the	 amygdala	 and	 the	 hippocampus	 normalized	 to	
common	 pre-trial	 baseline	 (500-ms	 fixation	 period)	 and	 grouped	 based	 on	 task	 outcomes	 (correct	
discrimination:	upper	row;	incorrect	discrimination:	 lower	row)	and	emotional	valences	(neutral:	left	column;	
negative:	right	column).	Warmer	color	denotes	task-induced	power	increase	from	the	baseline	while	the	colder	
color	refers	to	power	decrease	from	the	baseline.	Dashed	black	lines	indicate	the	stimuli	onsets.	Theta	power	
change	 is	 highlighted	 using	 dashed	 rectangles	 while	 the	 alpha	 power	 change	 is	 emphasized	 using	 solid	
rectangles.	(c)	Averaged	power	of	electrodes	within	amygdala	and	hippocampus	across	all	subjects	for	correct	
(green)	 and	 incorrect	 (yellow)	 discrimination.	 Positive/negative	 values	 indicate	 increased/decreased	 power	
from	 the	 baseline,	 respectively.	 (d)	 Averaged	 conditional	 power	 difference	 (correct	 -	 incorrect)	 across	 all	
subjects	within	the	amygdala	and	the	hippocampus	for	different	emotional	valences	 (neutral:	blue;	negative:	
red).	The	shaded	rectangles	indicate	the	frequency	bands	demonstrating	significant	power	differences	between	
neutral	and	negative	conditions	(t-test,	P<0.01).	(shaded	color	area	=	±s.e.m.)	
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connectivity	 between	 LFPs	 from	 each	 amygdala-hippocampal	 electrode	 pairs.	 We	 then	

averaged	 the	 PLV	 metrics	 across	 all	 the	 subjects	 and	 unfolded	 its	 spectral	 and	 temporal	

information	with	time-frequency	plots.	Since	power	differences	can	induce	spurious	PLV184,	all	

the	 phase	 synchrony	 analyses	were	 performed	within	 power-balanced	 trials	 to	minimize	 the	

power	 effects	 (n	 =	 735	 trials)	 and	 survived	 statistical	 testing	 (permutation	 test,	 P	 <0.01,	 see	

method).	We	found	that	 frequency-specific	spectral	 features	were	observed	 in	 the	amygdala-

hippocampal	 inter-regional	 phase	 synchrony,	 with	 significant	 theta	 (~2-7	 Hz)	 synchrony	

predicting	 correct	 discrimination	 and	 alpha	 (~8-16Hz)	 synchrony	 associated	 with	 incorrect	

discrimination	(Figure	3.3a,	permutation	test,	P<	0.01).	 In	addition,	within	each	condition,	the	

amygdala-hippocampal	 theta/alpha	 synchrony	 increased	 with	 emotional	 valence	 (negative	 >	

neutral,	 t-test,	 P<0.01).	 Similar	 results	 remain	 consistent	 at	 the	 individual	 level,	 with	 6/7	

subjects	demonstrating	frequency	switches	of	the	peak	amygdala-hippocampal	synchrony	from	

the	 theta	 toward	 the	 alpha	 band,	 paralleling	 the	 shift	 from	 correct	 to	 incorrect	 behavioral	

outcomes	 (Figure	 3.3b,	 Ki-squared	 analysis	 =	 18.24,	 P	 =	 0.0057).	 Moreover,	 the	 strength	 of	

conditional	 PLV	 differences	 (correct	 discrimination	 –	 incorrect	 discrimination)	 served	 as	 a	

function	 of	 emotional	 valences,	with	 increased	 PLV	 differences	 in	 theta	 and	 alpha	 bands	 for	

negative	compared	to	neutral	trials.	These	findings	show	that	the	frequency-specific	oscillations	

found	 separately	 in	 the	 amygdala	 and	 the	 hippocampus	 also	 parsimoniously	 code	 for	 inter-

regional	interactions;	enhancement	of	theta	synchrony	and	the	suppression	of	alpha	synchrony	

in	 the	 amygdala-hippocampal	 circuit	 promote	 correct	 emotion-related	 mnemonic	

discrimination.		
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To	 confirm	 that	 different	 frequency	 bands	 carry	 distinct	 and	 dissociable	 task	

information,	 we	 quantified	 how	 synchrony	 between	 the	 amygdala	 and	 the	 hippocampus	

encoded	different	factors,	including	subject’s	choice	(‘old’	versus	‘new’),	task	outcome	(correct	

versus	 incorrect),	 emotional	 valence	 (‘negative’	 versus	 ‘neutral’),	 arousal	 rating	and	 similarity	

rating	of	stimuli.	 Information	was	quantified	as	 inter-trial	correlations	between	the	amygdala-

hippocampal	synchrony	(i.e.,	PLV)	at	different	frequency	bands	explained	by	each	factor173.	All	

five	 types	 of	 information	were	measured	 independently	 and	 showed	 amygdala-hippocampal	

inter-regional	 synchrony	 carried	 task-related	 computations	 (Figure	 3.3c).	 However,	 only	 task	

outcome,	task	choice	and	emotional	valence	revealed	frequency-specific	information	with	theta	

band	carrying	 information	for	task	outcome	(%EV	=	5.22,	P	=	0.00412,	Rayleigh	test)	and	task	

choice	(%EV=	2.87,	p=	0.0204),	while	alpha	band	encoded	for	emotional	valence	(%EV	=	5.18,	P	

=	 0.00324,	 Rayleigh	 test).	 Encoding	 of	 arousal	 and	 similarity	 information	 did	 not	 show	

frequency	 band	 specificity.	 In	 sum,	 these	 results	 not	 only	 supported	 frequency-specific	

amygdala-hippocampal	 interactions	 during	 mnemonic	 discrimination,	 but	 also	 revealed	 their	

functional	roles,	with	mnemonic	discrimination	facilitated	by	theta	synchrony	(task	choice	and	

outcome)	and	emotional	valence	communicated	via	alpha	synchrony.		
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3.3.4	 Directional	Amygdala-Hippocampal	Interactions	and	Phase-Dependent	Encoding		

On	the	basis	of	the	strong	low	frequency	phase	synchrony	in	the	amygdala-hippocampal	

network,	 we	 then	 examined	 the	 directional	 influence	 between	 these	 two	 regions.	 Phase	

amplitude	 coupling	 (PAC)	 has	 been	 recognized	 as	 an	 important	 mechanism	 to	 flexibly	

Figure	 3.3	 Amygdala-hippocampus	 theta/alpha	 synchrony	 carries	 the	 information	 of	 task	 outcomes	 and	
emotional	 valences,	 respectively.	 (a)	 Amygdala-hippocampus	 synchrony	 (PLV)	 was	 averaged	 across	 all	
subjects,	 with	 stronger	 theta-band	 synchrony	 (dashed	 rectangles)	 for	 correct	 (upper)	 discriminations	 and	
greater	 alpha-band	 synchrony	 (solid	 rectangles)	 for	 incorrect	 (lower)	 discriminations.	 As	 shown	 in	 the	 right	
column,	 increased	 theta	 (correct)	 and	 alpha	 (incorrect)	 synchrony	 has	 been	 observed	 in	 negative	 trials	
compared	 to	 the	 neutral	 ones.	 Black	 dashed	 lines	 indicate	 stimuli	 onsets;	 warmer	 colors	 indicate	 greater	
significance	of	real	phase	synchrony	compared	to	the	surrogate	data	using	permutation	test	(see	method).	(b)	
Peak	 frequency	of	amygdala-hippocampus	 synchrony	 for	each	 subject	was	 coded	 in	different	 colors,	 shifting	
from	theta	to	alpha	band	when	comparing	between	correct	(CR)	and	incorrect	(IC)	discriminations	(left	panel).	
Conditional	 difference	 in	 amygdala-hippocampus	 synchrony	 (dPLV,	 correct	 -	 incorrect)	 was	 co-varied	 with	
emotional	 valences,	with	decreased	 theta	 synchrony	and	 increased	alpha	 synchrony	 for	negative	 (Neg)	 trials	
compared	 to	 neutral	 (Neu)	 ones.	 (c)	 Average	 percentage	 of	 variance	 in	 amygdala-hippocampus	 synchrony	
accounted	 for	different	 factors,	 including	 task	outcomes	 (correct	or	 incorrect),	 emotional	 valences	of	 stimuli	
(negative	 or	 neutral),	 subjects’	 choices	 (yes	 or	 no),	 arousal	 and	 similarity	 ratings	 of	 stimuli.	 The	 horizontal	
dotted	lines	indicate	significant	thresholds	(P	<	0.01).		
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coordinate	 inter-regional	 communications,	 with	 global	 phase	 synchrony	 dynamically	

modulating	local	activities	simultaneously	in	time	and	space110.	To	determine	the	inter-regional	

influence	between	the	amygdala	and	the	hippocampus,	we	performed	cross-region	PAC	in	both	

directions	 (amygdala	 to	 hippocampus,	 hippocampus	 to	 amygdala)	 using	 the	 electrode	 pairs	

exhibiting	the	most	significant	 low-frequency	phase	synchrony164.	The	 inter-regional	 influence	

was	 quantified	 as	 the	 coherence	 between	 low	 frequency	 phases	 from	 one	 region	 (e.g.	 the	

modulating	signal)	and	the	amplitude	of	high	frequency	activities	(HFA)	from	the	other	(e.g.	the	

modulated	signal).	Frequency-specific	fingerprints	again	emerged	in	inter-regional	interactions	

between	the	amygdala	and	the	hippocampus,	with	the	bi-directional	PAC	modulated	by	theta	

phase	for	correct	discrimination	trials	and	the	unidirectional	influence	from	the	amygdala	to	the	

hippocampus	 regulated	 by	 alpha	 phase	 for	 incorrect	 trials	 (Figure	 3.4a).	 Considering	 the	

ongoing	debate	regarding	whether	the	low-frequency	phase	drives	the	amplitude	of	the	high-

frequency	 component	 or	 vice	 versa137,	we	 quantified	 the	 phase-slope	 index	 (PSI)136	 between	

low	 frequency	 phases	 and	 high	 frequency	 amplitudes	 as	 an	 extended	 directionality	

measurement.	The	PSI	metric	tracks	the	circular	dependencies	of	the	phase	lag	between	signal	

pair	A	and	B	across	several	adjacent	frequency	bins,	with	positive	PSI	indicating	A->B,	negative	

PSI	inferring	the	reverse	and	zero	PSI	suggesting	no	lead/lag	relationship.	We	found	that	theta	

phases	 from	 the	 amygdala/hippocampus	 drive	 the	HFA	 from	 the	 hippocampus/amygdala	 for	

the	 correct	 discriminations	 ( 𝑃𝑆𝐼[/0�§[�[	��	�344�Z[/4�] = 0.385, 𝑃 = 0.004;	

𝑃𝑆𝐼	�344�Z[/4�]	��	[/0�§[�[ = 0.402, 𝑃 = 0.004,	 permutation	 test,	 see	 method).	 In	 contrast,	

for	 the	 incorrect	 trials,	 only	 the	 amygdala	 alpha	 phases	 lead	 the	 hippocampal	 HFA	

( 𝑃𝑆𝐼[/0�§[�[	��	�344�Z[/4�] = 0.438, 𝑃 = 0.0031; 𝑃𝑆𝐼	�344�Z[/4�]	��	[/0�§[�[ = 	−0.017, 𝑃 =
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0.0621	,	permutation	test,	see	method).	Due	to	the	fact	that	non-sinusoidal	wave	morphologies	

(e.g.	 sawtooth-like	 waves)	 can	 result	 in	 spurious	 PAC	 and	 PSI185,	 we	 further	 confirmed	 our	

directional	findings	using	spectral	Granger	Causality	(GC)	analysis,	which	measured	the	degree	

to	 which	 the	 LFPs	 from	 one	 structure	 can	 be	 better	 predicted	 by	 incorporating	 information	

from	the	other	in	the	frequency	domain.	Consistent	with	the	PAC	analysis,	we	found	significant	

bi-directional	 influence	 for	 correct	 trials	 while	 incorrect	 trials	 demonstrated	 a	 unidirectional	

influence	 from	 the	 amygdala	 to	 the	 hippocampus	 (shown	 in	 Figure	 3.4b).	 In	 addition,	 the	

significant	Granger	Causality	(P<0.001,	permutation	test,	see	methods)	switched	from	theta	to	

alpha	band	when	comparing	between	correct	and	incorrect	trials.		

To	 link	 these	 spatial	 and	 spectral	 influences	 to	 temporal	 neural	 encodings,	 we	 asked	

whether	 a	 specific	 phase	 of	 the	 low	 frequency	 oscillation	 is	 co-modulated	 with	 HFA	 in	 a	

behaviorally	relevant	manner,	analogous	to	spike	and	phase	coupling,	 in	which	 local	neuronal	

spiking	is	biased	according	to	the	oscillatory	phase	of	the	LPF81.	Since	the	oscillatory	modulation	

of	 firing	 rates	 acts	 as	 a	 carrier	 of	 information,	 the	 achievable	 signal-to-noise	 ratio	 strongly	

depends	 on	 the	 strength	 of	 modulation177,186,187.Therefore,	 we	 band-filtered	 the	 modulating	

signals	within	the	frequencies	demonstrating	the	strongest	modulation	effect	 (extracted	from	

Figure	3.4a;	 theta	band	 for	correct	 trials,	alpha	band	 for	 incorrect	 trials)	and	examined	when	

HFA	 from	 modulated	 signals	 occurred	 relative	 to	 the	 phases	 of	 the	 modulating	 signal.	 We	

showed	phase-dependent	encoding	mechanism	in	single	trial	examples	(shown	in	Figure	3.4c)	

and	further	confirmed	by	group	analysis	across	all	subjects	(shown	in	Figure	3.4d).	Specifically,	

HFA	 from	modulated	 signals	 occurred	 at	 the	 trough	 of	 theta	 oscillations	 in	 the	 correct	 trials	

while	randomly	distributed	across	different	phases	of	alpha	oscillations	for	the	incorrect	trials.	
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Notably,	during	correct	retrieval,	HFA	from	both	the	amygdala	and	the	hippocampus	occurred	

near	 the	 trough	 of	 theta	 oscillations.	 However	 the	 phase	 clusters,	 which	 encode	 different	

directional	 information,	were	 significantly	 separated	 (pattern	classification	methods,	P	<	10-8,	

binomial	 test,	 see	 method),	 falling	 at	 the	 preceding	 and	 descending	 side	 respectively.	 Such	

phase-dependent	encoding	provides	an	oscillatory	mechanism	to	increase	the	coding	capacity	

of	amygdala-hippocampal	circuit	with	different	phases	reflecting	distinct	 information	 from	bi-

directional	 communications177.	On	 the	other	hand,	mnemonic	discrimination	signals	might	be	

buried	by	the	task-irrelative	 information	via	randomly	occurred	HFA	at	non-specific	phases	of	

alpha	 oscillations,	 which	 eliminated	 efficient	 inter-regional	 interactions.	 In	 summary,	 the	

amygdala	 and	 the	 hippocampus	 used	 frequency-	 and	 phase-specific	 oscillatory	 multiplexing	

mechanism	 to	 optimize	 directional	 information	 transfer,	 highlighting	 that	 bi-directional	

interactions	with	HFA	occurred	 at	 the	 trough	phase	of	 theta	oscillations	predicted	 successful	

mnemonic	discrimination	of	emotional	stimuli.		
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Figure	 3.4.	 Amygdala-hippocampus	 directional	 influences	 and	 phase	 encodings	 support	 the	 mnemonic	
discrimination.	(a)	Averaged	inter-regional	phase	amplitude	coupling	(PAC)	across	all	subjects	within	amygdala-
hippocampal	network	for	both	correct	 (upper	 row)	and	 incorrect	 (lower	row)	discriminations.	Warmer	 colors	
denote	 higher	 P	 values	 (permutation	 test,	 see	 method).	 (b)	 Spectral	 Granger	 Causality	 analysis	 within	 the	
amygdala-hippocampal	network.	The	solid	lines	(red:	correct;	blue:	incorrect)	represent	the	observed	Granger	
Causality	 indices	 while	 the	 dotted	 gray	 lines	 indicate	 99.9%	 confidence	 intervals	 for	 the	 null	 distribution	
(shaded	area	=	±s.e.m.).	(c)	Four	example	trials	from	Subject	6	demonstrating	that	high	gamma	activities	occur	
at	different	phases	of	low	frequency	oscillations	for	different	conditions	(correct:	upper	panel;	incorrect:	lower	
panel).	 The	 LFP	 traces	were	 color-coded	 by	 the	 phase	 of	 peak	modulating	 frequency	 from	 either	 amygdala	
(upper	row)	or	hippocampus	(lower	row).	The	doted	gray	lines	indicate	the	time	when	high	frequency	activities	
from	modulated	signal	 (upper	row:	hippocampus;	lower	row:	amygdala)	occurred.	(d)	Circular	distributions	of	
phases	at	which	the	high	frequency	activities	occur	across	all	seven	subjects.	For	correct	discriminations	(left),	
high	frequency	activities	occurred	around	the	theta	trough,	at	either	preceding	(hippocampus	to	amygdala)	or	
descending	(amygdala	to	hippocampus)	 side	for	different	directions.	For	 incorrect	discriminations	 (right),	 the	
occurring	 phase	 of	 high	 frequency	 activities	 were	 uniformly	 distributed	 at	 all	 alpha	 phases.	 (AMY	 to	 HPC:	
amygdala	to	hippocampus;	HPC	to	AMY:	hippocampus	to	amygdala)	
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3.4	 Discussion	

In	 this	 study,	we	 reconciled	 the	 seemingly	 disparate	modulatory	 roles	 of	 emotion	 on	

memory	by	revealing	distinct	amygdala-hippocampal	computations	that	occur	for	remembered	

versus	forgotten	events.	We	found	that	the	amygdala	and	the	hippocampus	both	participate	in	

mnemonic	 discrimination	 of	 emotional	 events,	 utilizing	 oscillatory	multiplexing	 of	 frequency,	

directionality,	and	phase	information	to	partition	communication	channels	for	successful	versus	

unsuccessful	 memory.	 In	 the	 frequency	 domain,	 enhanced	 theta	 frequency	 band	 power	

promotes	correct	discrimination	in	the	hippocampus,	whereas	increased	alpha	frequency	band	

power	is	linked	to	incorrect	recognition	in	both	the	amygdala	and	the	hippocampus.	The	theta	

and	alpha	frequency	band	directional	interaction	occurred	dynamically	between	the	amygdala	

and	hippocampus	to	flexibly	modulate	behavior	outcomes;	successful	mnemonic	discrimination	

promotes	bi-directional	PAC,	while	unilateral	amygdala	to	hippocampus	interactions	predicted	

incorrect	 recognition.	 Finally,	 theta	 phase	 separates	 neural	 signals	 by	 precisely	 biasing	 the	

timing	 of	 HFA,	 a	 correlate	 of	 neuronal	 population	 firing	 rate,	 to	 the	 trough	 of	 the	 theta	

oscillation	for	the	correct	trials.	Our	results	emphasize	that	to	maximize	cooperation	between	

the	amygdala	and	the	hippocampus,	multiple	oscillatory	codes	are	required	to	 index	emotion	

and	memory	in	this	circuit.	

The	cooperation	between	the	amygdala	and	the	hippocampus	is	essential	for	mnemonic	

discrimination	 of	 emotional	 events.	 Conventional	 views	 of	 the	 amygdala	 posit	 that	 it	 simply	

signals	 the	 salience	of	 the	 stimuli	 by	 prioritizing	 attention	 to	 influence	hippocampal	memory	

processing6,162.	 Apart	 from	 the	 emotional	modulatory	 effect,	 we	 also	 observed	 a	 conditional	

difference	 of	 alpha	 power	 within	 the	 amygdala,	 reflecting	 subjects’	 behavior	 outcomes	
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(increased	alpha	power	for	incorrect	versus	correct	discrimination,	Figure	3.2c).	These	findings	

indicate	that	the	human	amygdala	might	actively	discriminate	overlapping	mnemonic	episodes	

while	 participating	 in	 emotional	 processing,	 which	 is	 in	 keeping	 with	 long-term	 potential	

models	of	emotional	memory	in	the	rodent	amygdala188.	In	the	hippocampus,	regional-specific	

spectral	 signatures	of	mnemonic	discrimination	 are	only	 evident	 in	 the	 anterior,	 and	not	 the	

posterior	hippocampus	(Supplementary	Fig.	3,	see	APPENDIX	B),	which	reinforces	the	functional	

diversification	along	the	hippocampal	longitudinal	axis41,189-193.	

Theta	 and	 alpha	 oscillations	 in	 the	MTL	 are	 thought	 to	 play	 critical	 roles	 to	 support	

successful	 memory	 encoding194,195	 and	 retrieval152,153.	 Beyond	 the	 task-induced	 power	

variations	 in	 theta	and	alpha	bands,	our	 results	highlight	a	 frequency-division	multiplexing,	 in	

which	 distinct	 spectral	 bands	 predict	 task	 outcomes	 and	 their	 strength	 modulate	 emotional	

valence	(see	Figure	3.2c,	3.2d	and	Figure	3.3a,	3.3b).	Although	the	functional	roles	of	theta	and	

alpha	 oscillations	 remain	 unclear,	 a	 growing	 number	 of	 researches	 have	 emphasized	 their	

distinct	 contributions	 to	 memory	 processing.	 Theta	 oscillatory	 activities196	 are	 thought	 to	

modulate	 hippocampal	 synaptic	 plasticity197,198	 and	 flexibly	 organize	 complex	 mnemonic	

information199	 to	 increase	memory	 capacities200,201.	 In	 contrast,	 alpha	 oscillations	 have	 been	

postulated	 to	 guide	 inhibitory	 top-down	 control202-206,	 which	 selectively	 filters	 task-relevant	

information	to	 improve	memory	efficiency207-209.	As	shown	in	Figure	3.3c,	distinct	 information	

was	 segregated	 into	 these	 two	 frequencies,	with	 the	mnemonic	 performance	 and	 emotional	

valences	carried	out	by	theta	and	alpha	bands,	respectively.	These	findings	are	consistent	with	

the	 notion	 that	 theta	 oscillations	 route	 emotional	 memory	 to	 promote	 successful	
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discrimination	 and	 alpha	 oscillations	 are	 suppressed	 to	 block	 task-irrelative	 emotional	

information.		

Oscillations	 also	 coordinate	 the	 information	 transfer	 that	 integrates	 across	

spatiotemporal	scales.	As	shown	 in	Figure	3.4a	and	3.4b,	bidirectional	amygdala-hippocampal	

interactions	 not	 only	 align	 with	 the	 reciprocal	 anatomical	 connections	 between	 these	 two	

structures41	but	also	suggest	that	an	equilibrium	of	cooperation	instead	of	a	hierarchical	system	

in	the	MTL.	An	infringement	of	this	balance	that	favors	amygdala	to	hippocampal	directionality	

may	 lead	 to	 asymmetric	 information	 flow	 and	 impaired	 mnemonic	 discrimination.	 Building	

upon	 this	 flexible	 communication	 system	 that	 multiplexes	 with	 oscillatory	 frequency	 and	

directional	 specificity,	 our	 results	 also	 demonstrate	 phase-specific	 segregation	 between	

emotional	processing	and	mnemonic	discrimination.	The	PAC	has	been	proposed	to	serve	as	an	

internal	 clock	 to	 bias	HFA,	 an	 index	of	 local	 neuronal	 spiking210,211.	 Specifically,	 theta-gamma	

PAC	within	 the	MTL	 has	 been	 shown	 to	 integrate	 complex	 information90,212-216	 by	 organizing	

HFA	 at	 specific	 theta	 phases217,218.	 Our	 results	 support	 this	 time-division	 multiplexing,	 with	

mnemonic	 information	 and	 emotional	 context	 encoded	 by	 HFA	 at	 distinct	 theta	 phases	 for	

accurate	memory	representations.	In	contrast,	random	occurrences	of	HFA	relative	to	the	alpha	

phase	might	induce	‘neural	noises’	to	interfere	with	mnemonic	discrimination219,220.		

Overall,	our	results	suggest	that	successful	emotional	memory	is	not	a	unitary	process,	

but	 instead	 is	 fractionated	 into	 optimal	 frequency-,	 directionality-	 and	 phase-specific	

information	 to	 support	 amygdala-hippocampal	 communication.	 On	 the	 other	 hand,	

unidirectional	 influence	from	the	amygdala	to	hippocampus	might	evoke	 irrelevant	emotional	



74	
	

information,	leading	to	memory	interferences.	In	sum,	our	study	provides	electrophysiological	

mechanisms	 for	 emotional	 memory	 and	 learning,	 for	 which	 impairments	 form	 core	 clinical	

features	 of	 diverse	 neurological	 disorders	 such	 as	 Alzheimer’s	 disease,	 autism,	 major	

depression,	and	epilepsy.	Understanding	the	neural	mechanisms	of	emotional	memory	 in	 the	

amygdala-hippocampal	 system	 will	 provide	 a	 critical	 framework	 to	 develop	 circuit	 specific	

intervention	in	people	with	disordered	memory221.		
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CHAPTER	4:		Amygdala-Hippocampus-Orbitofrontal	Dynamics	Support	Contextual	Modulation	

of	Facial	Perception	

	

4.1	 Introduction	

Context	influences	our	perception	of	facial	expression.	Although	structural	features	of	a	

face	 itself	carry	affective	 information,	 its	emotional	meaning	can	be	further	constructed	from	

the	 augmented	 contexts.	 For	 example,	 a	 face	 with	 wide	 eyes	 and	 open	 mouth	 can	 be	

interpreted	as	‘fear’	when	pointed	with	a	gun,	or	recognized	as	‘surprise’	when	presented	with	

a	birthday	cake.	This	“emotional	carryover”	effect	can	be	adaptive	to	resolve	the	ambiguity	by	

integrating	contextual	cues	with	facial	expressions24,222	and	enhance	emotional	memory223.	On	

the	 other	 hand,	 dysfunction	 in	 contextualizing	 information	 can	 cause	 inappropriate	 social	

reactions34,224	and	lead	to	impaired	fear	extinction26,225.		

It	 has	 been	 proposed	 that	 subcortical-limbic	 structures	 engage	 in	 prioritizing	 salient	

information	 for	basic	 face	 recognition226,227	while	 the	neocortical	 regions	 facilitate	 contextual	

processing,	 which	 involves	 emotional	 elaboration	 and	 cognitive	 appraisal226,228.	 Moreover,	

animal	 electrophysiology	 and	 human	 neuroimaging	 studies	 have	 shown	 that	 the	 amygdala-

hippocampal-orbitofrontal	 circuit	 is	 involved	 in	 contextual	 modulation	 of	 facial	 expression	

perception1,229,230	 and	 contextual	 control	 of	 fear	 behavior29-31,231,232.	 However,	 the	 underlying	

mechanistic	 dynamics	 remain	 unknown.	 Specifically,	 how	 various	 dimensional	 contexts	 and	

facial	expressions	are	encoded?	How	are	they	integrated	into	a	single	neuronal	representation?	

And	how	such	mixed	information	influence	our	emotional	perception?	These	questions	are	of	

special	 relevance	 as	 it	 may	 reveal	 a	 currently	 under-appreciated	 mechanism	 (i.e.	 context-
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dependent	 emotional	 perception)	 that	 is	 impaired	 in	 diverse	 neuropsychiatric	 disorders,	

including	post	traumatic	stress	disorders,	schizophrenia,	and	depression26,224,233.	Understanding	

the	oscillatory	signatures	of	this	tripartite	network	would	provide	a	circuit-level	perspective	for	

therapeutic	interventions34,234.	

Here,	we	addressed	these	questions	by	using	intracranial	electroencephalography	(iEEG)	

and	 directly	 recorded	 neural	 signals	 at	 the	 amygdala-hippocampal-orbitofrontal	 circuit	 at	

unparalleled	 temporal	 resolution69.	 Since	 the	 contextual	modulation	 is	exceedingly	 influential	

to	 ambiguous	 or	 expressionless	 faces	 (i.e.	 neutral	 faces)228,	 we	 tested	 such	 affective	 bias	 by	

presenting	 neutral	 faces	 with	 preceding	 emotional	 scenes24,235,236	 and	 asking	 the	 subjects	 to	

rate	the	emotional	valence	of	each	face.	We	hypothesized	that	emotional	contexts	modulated	

facial	 perceptions	 in	 both	 positive	 and	 negative	 directions,	 which	 was	 facilitated	 by	 medial	

temporal	 lobe	and	orbitofrontal	 interactions.	Specifically,	we	hypothesized	that	contexts	were	

processed	 within	 the	 medial	 temporal	 lobe,	 with	 stronger	 amygdala	 to	 hippocampal	

directionality	 signaling	 the	 emotional	 significance164.	 We	 also	 hypothesized	 that	 active	

orbitofrontal-hippocampal	communications	maintained	 the	contextual	 information	during	 the	

delay	period	between	the	context	and	face	presentation,	which	is	predicted	by	the	evidence	of	

the	 increased	 prefrontal-hippocampal	 synchrony	 during	 the	 delayed	 contextual	 memory	

retrieval49.	 Further,	 based	 on	 the	 model	 of	 orbitofrontal	 to	 amygdala	 top-down	 regulation	

during	 the	 emotional	 evaluation237,238,	 we	 hypothesized	 that	 orbitofrontal	 slow	 oscillations	

modulated	 the	 high	 frequency	 activities	 from	 the	 amygdala	 via	 phase	 amplitude	 coupling,	

which	promoted	synaptic	plasticity239	for	context-face	integration.		
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To	test	these	hypotheses,	we	first	tracked	the	context	information	represented	at	each	

region	 across	 different	 task	 stages	 by	 calculating	 the	 correlations	 between	 the	 valence	 of	

contexts	 and	 the	 cross-trial	 variations	 of	 high	 frequency	 activities	 (70-250Hz),	 a	 correlate	 of	

local	neuronal	spiking210,211.	We	then	quantified	the	functional	connectivity	as	the	inter-regional	

low-frequency	 phase	 synchrony	 and	 assessed	 the	 directional	 information	 flow	 using	 spectral	

Granger	 causality.	 Further,	we	measured	 the	cross–regional	modulation	 from	the	global	 slow	

oscillations	onto	 local	high	frequency	activities	using	phase	amplitude	coupling	and	evaluated	

its	trial-by-trial	predictive	reliability	of	affective	perception	using	the	Bayesian	model.			

	

4.2	 Materials	and	Methods		

Participants.	 Subjects	 were	 9	 patients	 (6	 Male,	 3	 Female,	 Supplementary	 Table,	 see	

APPENDIX	C)	who	had	stereotactically	 implanted	 intracranial	depth	electrodes	 (Integra	or	Ad-

Tech,	 5-mm	 inter-electrode	 spacing)	 placed	 at	 the	 University	 of	 California,	 Irvine	 Medical	

Center.	The	electrode	placements	were	exclusively	guided	by	the	clinical	needs	of	localizing	the	

seizure	onset	 zone	 for	possible	 surgical	 resection.	 Informed	consent	was	obtained	 from	each	

subject	prior	to	testing	and	the	research	protocol	was	approved	by	the	IRB	of	the	University	of	

California,	 Irvine.	 Electrode	 placement	 was	 exclusively	 guided	 by	 clinical	 needs.	 Subject	

selection	 was	 based	 on	 the	 following	 inclusion	 criteria:	 1)	 subjects	 with	 normal	 IQ	 were	

included	for	the	behavioral	data	analysis;	2)	subjects,	who	have	normal	IQ	and	have	electrodes	

implanted	 in	 either	 amygdala,	 hippocampus	 and	 orbitofrontal	 cortex	 contralateral	 to	 the	

epileptogenic	region	were	included	for	the	high	gamma	activity	analysis;	2)	subjects,	who	have	
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normal	IQ	and	have	electrodes	implanted	in	at	least	two	out	of	three	regions	were	included	for	

the	inter-regional	analysis	(e.g.	inter-regional	phase	synchrony,	Granger	causality).	

Electrode	 Localization.	 The	 electrode	 localization	 was	 performed	 using	 pre-	 and	 post-

implantation	structural	T1-weighted	1mm	isotropic	MRI	scans	as	well	as	post-implantation	CT	

scans.	For	each	participant,	the	post-implantation	MRI	and	CT	scans	were	registered	to	the	pre-

implantation	scan	using	a	6-parameter	rigid	body	transformation	implemented	with	Advanced	

Normalization	 Tools	 –	 ANTs.	 Electrodes	 were	 localized	 within	 MTL	 and	 orbitofrontal	 cortex	

using	 a	 high-resolution	 (.55	mm)	 in-house	 anatomical	 template	 with	manual	 tracings	 of	 the	

amygdala	and	hippocampal	subfields.	The	labeled	template	was	aligned	to	each	subject’s	pre-

implantation	 scan	 using	 ANTs	 Symmetric	 Normalization,	 so	 that	 the	 labels	 could	 be	 used	 to	

guide	localization.	Each	electrode	location	was	determined	by	examining	the	co-registered	pre-	

and	post-implantation	MRIs,	and	identifying	the	ROI	label	that	corresponded	the	center	of	the	

electrode	artifact	in	the	CT.		

Contextual	modulation	 task	 and	behavioral	 analysis.	Neutral	 faces	of	35	 identities	 from	

NimStim	Face	Stimulation	Set240	were	selected.	Faces	were	displayed	after	the	presentation	of	a	

context	 image	 from	 the	 International	 Affective	 Picture	 System	 (IAPS)241	 with	 500ms	 delay	

period.	Each	face	was	paired	with	three	context	 images	 (1	Positive,	1	Negative,	1	Neutral).	 In	

each	 trial,	 subjects	were	 instructed	 to	 rate	 the	emotional	 valence	of	 the	 facial	 expression	by	

marking	 at	 the	 appropriate	 position	 of	 the	 valence	 scale	 bar.	 Subjects’	 ratings	 and	 response	

time	were	recorded	for	further	analyses.	As	the	tendency	of	emotional	perception	varies	from	
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subjects	to	subjects,	we	normalized	the	ratings	within	each	subject	before	conducting	the	group	

analysis.		

Data	acquisition	and	preprocessing.	Stimuli	were	presented	on	a	laptop	computer	screen	

(15’’	MacBook	Pro)	set	using	PyschoPy2	(Version	1.82.01)166	at	a	comfortable	distance	from	the	

patient.	An	external	Apple	keyboard	was	used	to	capture	subjects’	responses.	Intracranial	EEG	

data	 were	 recorded	 using	 a	 Nihon	 Khoden	 recording	 system	 (256	 channel	 amplifier,	 model	

JE120A),	analog-filtered	above	0.01	Hz	and	digitally	sampled	at	5000	Hz.	After	data	acquisition,	

neural	 recordings	were	down	sampled	at	2000Hz	and	band-pass	 filtered	between	1	 to	250Hz	

using	 the	 zero	phase	delay	 finite	 impulse	 response	 (FIR)	 filter	with	Hamming	window.	Power	

spectra	 were	 examined	 using	Welch’s	 method	 (pwelch,m	 in	 Signal	 Processing	 Toolbox	 from	

MATLAB)	to	identify	line	noise.	A	multi-taper	regression	method167	was	applied	to	remove	the	

line	 noises	 inspected	 from	 the	 power	 spectra	 (usually	 60Hz	 and	 its	 harmonics).	 All	 channels	

were	re-referenced	to	a	nearest	white	matter	electrode242	located	on	the	same	depth	electrode	

probe	based	on	the	electrode	localization	results.	A	neurologist	(J.L.)	with	subspecialty	training	

in	epilepsy	visually	inspected	continuous	recordings	from	each	session	to	identify	all	data	with	

interictal	 epileptiform	 discharges.	 Data	 were	 also	 inspected	 for	 excessive	 noise,	 including	

broadband	 electromagnetic	 noise	 from	 hospital	 equipment.	To	 avoid	 potentially	 biasing	 the	

results,	 the	 neurologist	 was	 blinded	 to	 trial	 information	 (e.g.	 stimulus	 onset	 and	 behavioral	

performance)	as	well	 as	 to	electrode	 location.	The	preprocessed	 intracranial	 recordings	were	

segmented	into	event-related	epochs,	including	a	500ms	pretrial	baseline.	With	the	self-paced	

rating	 period,	 the	 trial	 length	 varies,	 with	 the	 least	 common	 length	 of	 3500ms	 after	 stimuli	
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onset.	Only	data	from	recordings	contralateral	 to	the	seizure	source	or	outside	of	the	seizure	

onset	zone	were	used	in	subsequent	analyses.		

Frequency	 decomposition.	 The	 segmented	 data	 were	 zero-padded	 to	 minimize	 filter-

induced	 edge	 effects	 and	 decomposed	 between	 1	 to	 250Hz	 with	 28	 logarithmically	 spaced	

frequencies	 with	 FIR	 filtering.	 The	 adaptive	 bandwidths	 ensured	 precise	 phase	 estimations	

within	narrow	bands	of	low	frequency	oscillations	while	the	broader	range	of	higher-frequency	

eliminated	 sideband	 effects	 and	 prevented	 spurious	 PAC129.	 We	 then	 applied	 the	 Hilbert	

transform	 (hilbert.m	 function	 in	 Signal	 Processing	 Toolbox	 from	MATLAB)	 to	 extract	 analytic	

amplitude	and	phase	for	all	filtered	traces.	The	task-induced	power	was	calculated	by	squaring	

the	 analytic	 amplitude	 envelope	 and	 was	 normalized	 to	 the	 pre-trial	 baseline	 using	 relative	

change	in	decibel	conversion	(dB).		

High	Gamma	Activity	and	Explained	Variance.	High	gamma	amplitude	was	extracted	from	

frequency-decomposed	 data	 and	 was	 baseline-corrected	 to	 remove	 any	 pre-stimulus	

differences.	We	used	the	resulting	R2	(variance	in	the	neural	data	that	can	be	explained	by	the	

behavioral	or	computational	 regressors	of	 interest,	%	explained	variance,	%EV)	as	a	metric	of	

the	quality	of	the	fit.	This	approach	is	insensitive	with	respect	to	time	of	task-related	activation	

and	to	the	direction	of	encoding	(i.e.	HFA	increases	or	decreases).	False	positive	rate	(null),	the	

horizontal	lines	indicated	in	the	figures,	was	determined	by	estimating	responses	to	a	randomly	

generated	 regressor.	 We	 measured	 the	 time	 course	 of	 individual	 electrode	 encoding	 time	

courses	by	tracking	the	%EV	association	over	time.		
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Low	 frequency	 Phase	 Synchrony.	 The	 strength	 of	 inter-regional	 neural	 synchrony	 was	

quantified	 by	 the	 PLV171	 with	 the	 same	 approach	 mentioned	 in	 CHAPTER	 3.	 The	 statistical	

significance	 of	 PLV	was	 tested	 using	 cluster-based	 permutation	 test	 (ft_freqstatistics.m	 from	

open	source	toolbox	Fieldtrip168).	The	results	shown	in	Figure	4.3b	were	depicted	with	𝑃	values	

(𝑃 = 0.01),	with	warmer	colors	denoting	stronger	significance	levels.		

Granger	Causality.	Before	fitting	to	the	multivariate	autoregressive	model	to	compute	the	

spectral	Granger	causality,	the	time	series	data	were	low-pass	filtered	at	85	Hz,	down-sampled	

to	250	Hz	and	normalized	within	each	trial	(e.g.	subtracting	the	temporal	mean	and	cross-trial	

mean).	 Then,	 we	 defined	 the	model	 order	 using	 the	Multivariate	 Granger	 Causality	 (MGVG)	

Toolbox	based	on	the	Akaike	information	criterion140.	The	model	order	for	each	subject	varied	

from	 6	 to	 12.	 The	 Granger	 Causality	 index	 was	 computed	 within	 the	 processing	 period	 (2-

second	 time	 window	 after	 stimuli	 onset)	 for	 both	 directions	 (amygdala	 to	 hippocampus,	

hippocampus	to	amygdala).	The	significance	analysis	for	Granger	Causality	is	the	same	method	

as	 described	 in	 the	 section	 ‘Inter-regional	 phase	 synchrony’	 by	 randomly	 shuffling	 the	 trials	

1000	times.	Then	the	Granger	Causality	null	distribution	was	created	and	the	99th	percentile	of	

the	surrogate	data	was	defined	as	the	significant	threshold.		

Bayesian	Decoding.	A	Bayesian	classifier243	with	uniform	prior	probability	distribution	was	

employed	to	estimate	subjects’	ratings	of	neutral	faces.	We	assumed	the	power	spectrum	to	be	

normally	distributed	 in	each	of	 the	high	gamma	frequency	bands	of	 the	LFP.	To	estimate	 the	

subjects’	emotional	perception	(positive	to	neutral	to	negative),	we	defined	the	rating	scalar	to	

denote	 different	 states.	 The	 vector	𝐸	 = 	 (𝐸,, …𝐸Q)	represents	 the	 neural	 activity	 of	 the	
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ensemble	of	all	recording	sites.	Each	𝐸3 	represents	the	LFP	log	power	in	one	of	the	decomposed	

frequency	 bands.	 Based	 on	 the	 Bayes’	 theory,	 the	 posterior	 probability	 of	 time	 from	 a	 trial	

onset	(time)	and	contextual	emotion	(cont)	given	the	vector	of	high	gamma	activity	vector	𝑬:		

𝑃(𝑡𝑖𝑚𝑒, 𝑐𝑜𝑛𝑡|𝐸) 	= 	
𝑃(𝐸|𝑡𝑖𝑚𝑒, 𝑐𝑜𝑛𝑡) ∙ 𝑃(𝑡𝑖𝑚𝑒, 𝑐𝑜𝑛𝑡)

𝑃(𝐸) 	

The	prior	probability	was	estimated	under	the	assumption	of	normal	distribution244.		

	

4.3	 Results	

4.3.1	 Emotional	Context	Modulates	Facial	Perception	

We	 designed	 an	 emotional	 rating	 task	 to	 examine	 how	 contextual	 information	

influences	 individuals’	 facial	 perception	 (Figure	 4.1a).	 Nine	 pre-surgical	 epilepsy	 patients	

(Supplementary	Table	1,	see	APPENDIX	C)	were	recruited	in	the	task.	Each	trial	started	with	a	

context	 image	 (1	 second)	 from	 the	 International	 Affective	 Picture	 System241.	 After	 a	 delay	

period	of	500ms,	a	face	with	a	neutral	expression	(35	identities	in	total)	from	the	NimStim	Face	

Stimulus	Set240	was	presented	for	one	second.	It	was	followed	by	a	self-paced	decision-making	

period,	 in	 which	 the	 subjects	 were	 instructed	 to	 rate	 the	 emotional	 valence	 of	 the	 face	 by	

marking	at	 the	 corresponding	 spot	on	 the	valence	 scale	bar.	 This	 continuous	 rating	 scale	not	

only	 solved	 the	 problem	 of	 information	 loss	 compared	 to	 the	 category	 labeling,	 but	 also	

allowed	 for	 applying	 advanced	 statistical	 analyses.	 Each	 face	was	 paired	with	 three	 different	

context	 images	 (1	 positive,	 1	 neutral	 and	 1	 negative).	 Due	 to	 the	 individual	 difference	 of	

emotional	processing	tendencies,	we	normalized	the	valence	ratings	within	each	subject	before	

the	group	analysis.	We	found	that	the	valence	rating	for	the	face	was	positively	correlated	with	
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the	 valence	 of	 its	 preceded	 context	 image	 (Figure	 4.1b),	 suggesting	 an	 emotional	 ‘carryover’	

effect	from	the	context	image	onto	the	face.	Notably,	such	emotional	bias	of	facial	perception	

was	 not	 varied	 with	 the	 arousal	 differences	 (Supplementary	 Fig.	 1,	 see	 APPENDIX	 C).	 To	

eliminate	the	emotional	contribution	from	facial	expressions,	for	each	face,	we	quantified	the	

modulation	 strength	 as	 the	 rating	 difference	 between	 the	 trials	 with	 emotional	

(negative/positive)	 contexts	 and	 the	 ones	 with	 neutral	 contexts	 (i.e.	 |Rpostivie	 –	 Rneutral|	 and	

|Rnegative	 -	 Rneutral|).	 Stronger	 modulation	 effect	 was	 observed	 from	 the	 negative	 contexts	

compared	to	the	positive	ones	(Figure	4.1c,	t-test,	P	=	3.452e-4;	Negative	modulation	strength:	

0.281	±	0.054,	Positive	modulation	strength:	0.183	±	0.042,	mean	±	s.t.d.).	Moreover,	subjects’	

response	time	was	negatively	correlated	with	the	modulation	strength	(Figure	4.1d),	with	faster	

decisions	 made	 on	 the	 trials	 with	 strong	 modulation	 strength.	 Building	 on	 these	 behavioral	

observations,	 we	 next	 sought	 to	 investigate	 the	 neuronal	 features	 within	 the	 amygdala-

hippocampal-orbitofrontal	circuit	to	explain	such	emotional	bias.		
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4.3.2	 High	Gamma	Activities	Track	Contextual	Valence	

Neural	 signals	were	 simultaneously	 recorded	 from	 the	 amygdala	 (AMY),	 hippocampus	

(HPC)	and	orbitofrontal	cortex	(OFC)	(Figure	4.2a,	NAMY	=	22,	NHPC	=	20,	NOFC=21	electrodes).	We	

first	 assessed	 spectrotemporal	 features	 for	 the	 individual	 subject	 by	 plotting	 the	 time-

frequency	representation	(TFR)	at	each	region	after	baseline	correction	(Supplementary	Fig.	2,	

Figure	4.1	Contextual	modulation	task	and	behavior	results.	(a)	Single	trial	setup.	Each	trial	consisted	of	five	
parts:	 a	 500-ms	maintenance	 fixation	 period	 (Baseline),	 a	 1000-ms	 context	 image	 presentation	 (Context),	 a	
500ms	 delay	 with	 blank	 screen	 (Delay),	 followed	 by	 a	 1000-ms	 face	 display	 (Face)	 and	 self-paced	 affective	
rating	of	the	face	(Rate).	Each	face	from	35	identities	was	paired	with	three	contexts	of	different	valence	(one	
positive,	one	neutral,	one	negative).	The	subjects	were	instructed	to	rate	the	valence	of	each	face	by	moving	
the	blue	triangle	to	the	appropriate	position	on	the	color-coded	scale	bar,	with	warm	colors	denoting	positive	
valence	and	 cold	 colors	 referring	negative	valence.	 (b)	 Subjects’	 valence	 ratings	of	 the	 faces	were	positively	
correlated	with	the	valence	of	the	context	images.	(c)	After	normalizing	to	the	neutral	contexts,	the	modulation	
strength	 of	 the	 trials	 with	 negative	 contexts	 was	 significantly	 higher	 the	 ones	 with	 positive	 contexts.	 (d)	
Subjects’	 response	 time	was	negatively	 correlated	with	 the	modulation	 strength.	 Blue	dots	denote	 the	 trials	
with	positive	contexts	while	the	red	dots	represent	the	trials	with	negative	contexts.	
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see	APPENDIX	C).	Analysis	of	task-induced	power	 identified	widespread	sustained	theta/alpha	

(4-12Hz)	oscillations	and	variable	transient	high	gamma	activities	(HGA,	70-250Hz)	 in	all	 three	

regions	after	the	stimulus	onset.	To	exam	the	neural	representation	of	context	at	each	region,	

we	first	obtained	mean	HGA	time	course	for	each	trial	by	averaging	high	gamma	powers	across	

the	 whole	 spectrum	 (70-250Hz).	 Then	 the	 context	 information	 was	 quantified	 as	 the	 HGA	

variations	 across	 trials	 explained	 by	 context	 valence	 (i.e.	 the	 normalized	 emotional	 valence	

ranging	 from	 0	 to	 1)	 using	 analysis	 of	 variance	 (ANOVA).	 Averaging	 across	 all	 the	 subjects	

revealed	a	significant	encoding	of	contextual	valence	 in	all	 three	areas	 (permutation	test,	P	<	

0.05,	 see	 Methods),	 but	 with	 a	 regional	 specific	 profile	 (Figure	 4.2b).	 Information	 in	 the	

amygdala	peaked	directly	after	the	onset	of	the	context	(312	±	14	ms,	mean	±	s.e.m.)	and	face	

presentation	(1966	±	21	ms,	mean	±	s.e.m.),	and	stayed	flat	 for	 the	other	stages.	 In	contrast,	

context	 information	 in	 the	 hippocampus	 reached	 its	 peak	 slightly	 after	 the	 amygdala	 (488	 ±	

17ms,	mean	±	s.e.m.;	t-test,	P	=	0.014)	during	the	context	representation,	and	sustained	until	

the	end	of	the	delay	period.	The	orbitofrontal	cortex,	instead,	demonstrated	a	bimodal	dynamic.	

The	context	information	tonically	elevated	from	the	beginning	of	the	delay	period	and	reached	

its	 first	 peak	 right	 after	 the	 face	 presentation	 and	 earlier	 than	 the	 amygdala’s	 second	 peak	

(1574	±	11	ms,	mean	±	s.e.m;	t-test,	P	=	4.213e-3).	Then	it	was	followed	by	a	dip	and	later	rise	of	

sustained	 context	 information	 at	 the	 rate	period.	Notably,	 persistent	HGA	 from	orbitofrontal	

cortex	tracked	the	rate	period	and	time	locked	to	subjects’	response	onsets	(Supplementary	Fig.	

3,	 see	APPENDIX	C).	These	 findings	not	only	confirmed	the	active	engagement	of	 these	three	

regions	but	also	revealed	a	dynamic	encoding	of	context	 information	at	different	 task	stages,	

highlighting	a	temporal	propagation	from	the	amygdala,	hippocampus	to	orbitofrontal	cortex.		
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4.3.3	 Oscillatory	Synchrony	Mediates	Cortical	Limbic	Interactions	

Given	 the	 distinct	 HGA	 temporal	 profiles	 of	 the	 amygdala,	 hippocampus	 and	

orbitofrontal	cortex,	we	then	investigated	whether	these	three	regions	interacted	through	low-

frequency	phase	coupling.	The	inter-regional	functional	connectivity	was	examined	with	phase	

locking	values	 (PLV),	measuring	 the	 consistent	phase	difference	between	 two	channels.	 Then	

we	averaged	 the	PLV	metrics	 across	 all	 the	electrode	pairs	within	 each	 group	 (NAMY-HPC	 =	 51,	

NHPC-OFC	=	36,	NAMY-OFC	=	39).	Sustained	phase	synchrony	was	observed	among	all	three	regions	

and	was	 distributed	 across	 different	 stages	 of	 the	 trial	 (Figure	 4.3a	 and	 Figure	 4.3b;	 cluster-

based	permutation	test,	P	<	0.01;	see	Methods).	As	shown	in	Figure	4.3c,	significant	amygdala-

hippocampal	phase	synchrony	rose	after	the	stimuli	onset	(273ms	±	13ms,	mean	±	s.e.m.)	and	

Figure	4.2	High	gamma	activities	track	context	valence.	(a)	Electrode	localizations	across	9	subjects,	rendered	
onto	a	three-dimensional	glass	brain	(gray)	based	on	the	high-resolution	template,	with	amygdala	electrodes	in	
red,	hippocampal	electrode	in	blue	and	orbitofrontal	electrodes	in	green.	(b)	Averaged	percentage	of	explained	
variance	time	courses	for	 linear	regression	of	high	gamma	activities	onto	contextual	valence	at	all	three	sites.	
The	color-shaded	area	denotes	the	standard	error	mean	(s.e.m);	the	horizontal	dotted	lines	(gray)	indicate	the	
significance	level;	the	vertical	dotted	 lines	(black)	 indicate	the	onset	of	different	stages	(Context,	Delay,	Face,	
Rate).		
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ended	at	 the	beginning	of	 the	delay	period	 (1139ms	±	22ms,	mean	±	s.e.m.).	 In	contrast,	 the	

hippocampal-orbitofrontal	phase	synchrony	dominated	the	delay	period	(starting	at	987	±	14ms,	

mean	 ±	 s.e.m.),	 dipped	 in	 the	middle	 of	 face	 presentation	 (2100ms	±	 11ms)	 and	 rose	 again	

during	the	decision-making	period	(3117	±	22ms).	The	amygdala-orbitofrontal	phase	synchrony,	

instead,	has	a	 sustained	pattern	 started	around	 the	 face	presentation	 (1512	±	18ms,	mean	±	

s.e.m.)	 and	 remained	 significant	 until	 the	 middle	 of	 the	 rate	 period	 (3196	 ±	 15ms,	 mean	 ±	

s.e.m.).	Further,	oscillations	at	different	frequencies	coordinated	these	inter-regional	dialogues	

(Figure	4.3b	and	Figure	4.3d;	AMY-HPC	and	OFC-HPC:	P	<	0.01;	AMY-HPC	and	OFC-AMY:	P	<0.01;	

OFC-HPC	and	OFC-AMY:	P	>	0.05),	with	theta	synchrony	(4-7Hz)	for	the	amygdala-hippocampal	

communications	 and	 alpha	 synchrony	 (7-10Hz)	 for	 the	 cortical-limbic	 (i.e.	 hippocampal-

orbitofrontal	 and	 amygdala-orbitofrontal)	 interactions.	 These	 findings	 demonstrated	 a	 close	

interplay	among	three	regions	during	contextual	emotion	processing	and	suggested	a	temporal-	

and	 frequency-division	 oscillatory	 multiplexing	 supporting	 the	 subcortical	 to	 cortical	

information	transfer.	



88	
	

	

4.3.4	 Directional	Influence	Promotes	Contextual	Modulation	

Figure	4.3	 Inter-regional	phase	 locking	value	 (PLV).	(a)	Averaged	PLV	across	all	 the	electrode	pairs	 for	each	
combination	 (AMY-HPC,	 HPC-OFC,	 AMY-HPC).	 Warm/cold	 color	 denotes	 the	 increased/decreased	 PLV	
increased	from	the	baseline.	The	black	dashed	 lines	 represent	the	onset	of	each	task	stages	 (Context,	Delay,	
Face,	Rate).	(b)	Significant	PLV	cluster	 (P<0.01)	survived	after	non-parametric	permutation	test	 (see	Material	
and	Method).	Warmer	colors	represent	smaller	p	values.	(c)	PLV	time	courses	averaged	within	the	significant	
frequency	 cluster	 detected	 in	 (b).	 The	 dashed	 color	 lines	 denote	 the	 significant	 increase	 from	 the	 baseline.	
(Orange:	AMY-HPC;	Green:	HPC-OFC;	Blue:	AMY-OFC)	(d)	Peak	frequency	of	PLV	for	each	subject	was	coded	in	
different	colors	and	grouped	into	three	combinations	(AMY-HPC,	HPC-OFC,	AMY-HPC).	The	horizontal	gray	lines	
denote	the	averaged	frequency	across	all	the	subjects.		
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Based	 on	 the	 strong	 low	 frequency	 synchrony	 in	 the	 amygdala-hippocampal-

orbitofrontal	 circuit,	we	 then	examined	how	 the	direction	of	putative	 causal	 influence	varied	

among	different	regions	across	time.	We	conducted	spectral	Granger	causality	indices	for	each	

electrode	pair	up	to	30Hz	at	five	different	task	stages	(baseline,	context,	delay,	face	and	rate).	

The	directional	influence	(P	<	0.01)	was	considered	significant	when	the	Granger	causality	index	

exceeding	the	99th	percentile	of	the	null	distribution,	which	was	generated	for	each	electrode	

pair	by	shuffling	trial	for	100	times.	We	then	projected	the	significant	maximum	Granger	indices	

for	 each	 electrode	 pair	 into	 a	 three-dimensional	 space	 and	 accessed	 the	 cross-subjects’	

directional	 pattern.	 As	 shown	 in	 Figure	 4.4a,	 each	 node	 represented	 one	 electrode	 and	was	

color-coded	 for	 three	 different	 regions	 (Red:	 amygdala;	 Blue:	 hippocampus;	 Green:	

orbitofrontal	 cortex).	 The	 arrows	 connected	 the	 electrode	 pairs	 with	 significant	 causal	

relationships,	with	the	line	thickness	representing	the	strength	of	Granger	causality	 index	and	

the	 line	color	denoting	the	origin	of	the	 influence	(e.g.,	a	red	 line	between	the	amygdala	and	

hippocampus	node	 refers	 to	a	directional	 influence	 from	 the	amygdala	 to	 the	hippocampus).	

The	node	size	increased	with	the	number	of	causal	links	it	connected	with	and	the	large	node	

was	considered	as	the	information	hub	or	a	higher-level	region	of	the	hierarchical	network.	We	

observed	a	dynamic	directional	pattern	evolving	across	time	(Figure	4.4a).	The	trial	started	with	

bi-directional	 interactions	 between	 the	 amygdala	 and	 hippocampus	 during	 the	 context	

presentation	and	then	shifted	to	a	unidirectional	influence	from	HPC	to	OFC	at	the	delay	period.	

When	the	face	was	presented,	bidirectional	communications	occurred	between	the	AMY-OFC	

nodes	and	was	followed	by	an	OFC	dominated	unidirectional	influence	on	medial	temporal	lobe	

(i.e.,	including	both	the	amygdala	and	hippocampus)	at	the	valence-rating	period.	These	results	
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highlighted	 an	 information	 flow	 flexibly	 traveling	 between	 the	 medial	 temporal	 lobe	 and	

orbitofrontal	 cortex,	 and	 suggested	 distinct	 functional	 roles	 for	 each	 region	 at	 different	 task	

stages.		

We	 then	 investigated	 how	 such	 cross-regional	 directional	 influence	 shaped	 local	

neuronal	 representations.	 Phase	 amplitude	 coupling	 (PAC),	 has	 been	 proposed	 to	 serve	 as	 a	

rhythmic	clocking	mechanisms,	in	which	high	gamma	activities	are	nested	at	specific	phases	of	

low	frequency	oscillations210,211.	For	the	electrode	pairs	(e.g.	A-B)	demonstrating	the	significant	

Granger	indices,	we	calculated	the	inter-regional	PAC	for	both	directions	(A->	B:	low	frequency	

phase	from	A	modulated	high	gamma	activities	from	B;	B->A:	vise	versa)	and	applied	a	sliding	

window	 to	 unfold	 its	 temporal	 dynamics245.	 The	 strength	 of	 coupling	 was	 quantified	 as	 the	

Euclidean	norm	of	the	complex	signal,	consisting	of	the	low	frequency	phase	from	one	region	

and	 the	 high	 gamma	 amplitude	 from	 the	 other	 (see	Methods).	We	 then	 averaged	 each	 PAC	

time	course	across	trials	and	across	subjects.	Consistent	with	the	results	from	Granger	causality	

analysis,	similar	patterns	of	directional	influence	was	observed	and	was	further	extended	with	

exceptional	 temporal	 dynamics	 (Figure	 4.4b).	 Unidirectional	 influence	 from	 the	 amygdala	 to	

hippocampus	 (TAMYtoHPC	=	 247	 ±	 12	ms)	 led	 the	 context	 processing	 and	 was	 followed	 by	 the	

coupling	of	 reciprocal	direction	 (	THPCtoAMY	=	695	±	11	ms).	Moving	to	the	delay	period,	all	 the	

cross-regional	modulation	went	flat	except	for	a	unidirectional	influence	from	the	hippocampus	

to	the	orbitofrontal	cortex	(THPCtoOFC	=	1059	±	17	ms).	This	HPC	->	OFC	PAC	sustained	until	the	

face	 presented	 and	 was	 taken	 over	 by	 bidirectional	 couplings	 between	 the	 amygdala	 and	

orbitofrontal	cortex	(TAMYtoOFC	=	1603	±	8	ms;	TOFCoAMY	=	1722	±	13	ms).		During	the	rate	period,	
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both	 amygdala	 and	 hippocampal	 HGA	 were	 entrained	 by	 orbitofrontal	 low	 frequency	

oscillations.	

Further,	 to	 exam	 potential	 behavioral	 influence	 induced	 by	 these	 inter-regional	

couplings,	 we	 investigated	 the	 correlations	 between	 the	 inter-regional	 PACs	 and	 contextual	

modulation	 strength.	 We	 stacked	 all	 the	 PAC	 time	 courses	 for	 six	 directional	 combinations	

(AMY	to	HPC,	HPC	to	AMY,	HPC	to	OFC,	OFC	to	HPC,	AMY	to	OFC	and	OFC	to	AMY)	and	sorted	

the	 trials	with	 increased	modulation	 strength.	As	 shown	 in	Figure	4.4c,	PACHPCtoOFC	during	 the	

delay	period	and	PACOFCtoAMY	at	the	face	display	were	positive	correlated	with	the	modulation	

strength,	 with	 enhanced	 cross-regional	 phase	 amplitude	 coupling	 for	 strong	 contextual	

modulated	trials	(Supplementary	Fig.	4,	see	APPENDIX	C).	Notably,	PACAMYtoHPC	and	PACHPCtoAMY	

during	the	context	presentation	were	positively	correlated	with	the	contextual	valence	instead	

of	 the	 modulation	 strength.	 These	 findings	 revealed	 a	 sequential	 engagement	 among	 three	

regions,	 with	 contextual	 valence	 first	 extracted	 through	 bidirectional	 amygdala-hippocampal	

interactions	 and	 later	 processed	 via	 PACHPCtoOFC	 and	 PACOFCtoAMY	 to	 influence	 subjects’	 facial	

perception.		
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4.3.5	 Selective	Phase	Predicts	Contextual	Modulation	Strength	

To	further	investigate	the	functional	roles	of	PACHPCtoOFC	and	PACOFCtoAMY,	and	how	they	

modulated	 subjects’	 behavioral	 outcome,	 we	 investigated	 the	 occurring	 phase	 sequence	 of	

HGA	in	the	trials	using	a	Bayesian	decoding	technique244,246,247.	The	probability	densities	of	time	

information	were	 reconstructed	 from	 the	HGA	 time	 traces	 from	 the	orbitofrontal	 cortex	 and	

amygdala	using	 a	 5-ms	 time	 step	 in	 each	 trial.	 As	 shown	 in	 Figure	4.5a,	 the	OFC	HGA	at	 the	

delay	 period	 decoded	 the	 future	 state	 of	 face	 presentation	while	 the	 AMY	 HGA	 at	 the	 face	

Figure	4.4	Cross-region	directional	communications.	(a)	Significant	directional	influence	from	all	the	electrode	
pairs	projected	onto	a	three	dimensional	space	at	different	task	stages.	The	dot	represented	each	electrode	
and	 was	 color-coded	 for	 different	 brain	 regions	 (Red:	 amygdala;	 Blue:	 hippocampus;	 Green:	 orbitofrontal	
cortex).	The	connected	line	between	each	electrode	pair	denotes	the	directional	interaction,	with	the	thickness	
of	the	line	represents	the	significance	(i.e.	p-value)	and	the	color	indicates	the	origin	site	of	the	directional	flow.	
The	size	of	the	dot	increased	with	the	number	of	connected	lines.	(b)	Averaged	time-resolved	phase	amplitude	
coupling	 (tPAC)	 across	 all	 the	 trials.	 The	 color	 indicates	 the	modulating	 sites	 and	 the	 shaded	 area	 denotes	
standard	 error	 mean	 (s.e.m.).	 (c)	 Single	 trial	 of	 tPAC	 stacked	 and	 sorted	 with	 the	 increasing	 modulation	
strength.	Warmer	 colors	denote	 stronger	phase	amplitude	coupling.	The	vertical	dashed	 lines	 represent	 the	
onset	of	each	task	stage	(Context,	Delay,	Face,	Rate).		
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presentation	predicted	the	rating.	Moreover,	the	switch	between	the	current	and	future	states	

was	 roughly	 fitted	 to	 theta/alpha	 cycles.	 Therefore,	 we	 aligned	 the	 reconstructed	 time	

information	with	concurrent	phases	from	the	modulating	signal	(HPC	theta	for	OFC	HGA;	OFC	

theta	 for	AMY	HGA).	The	probability	densities	of	 the	 reconstructed	 time	at	each	 theta	phase	

(Figure	4.5b	and	Figure	4.5c)	demonstrated	a	phase	specific	information	decoding	mechanism.	

On	 descending	 phases	 of	 HPC/OFC	 theta	 (0-180o),	 the	 decoded	 probability	 densities	 of	 time	

reflected	the	current	period	while	the	future	state	was	decoded	at	the	ascending	phases	of	HPC	

theta	 (180o	 ~	 360o).	 Further,	 we	 examined	 whether	 the	 observed	 phase	 division	 included	

information	 reflecting	 the	 received	 context	 valence	 and	 the	 planned	 face	 rating.	We	 equally	

divided	all	 the	trials	 into	two	groups	based	on	their	modulation	strengths	 (strong	modulation	

trials	vs.	weak	modulation	trials).	The	probability	densities	of	 time	and	valence	 (including	 the	

valence	of	context	and	face),	i.e.,	P	(time,	valence|HGA),	were	estimated	from	OFC	HGA	at	the	

delay	period	and	the	AMY	HGA	during	the	face	presentation	for	both	groups.	Context	valence	

was	represented	by	the	OFC	HGA	on	the	ascending	phase	of	HPC	theta	during	the	delay	period	

and	was	transferred	to	the	AMY	HGA	during	the	face	presentation,	with	descending	phase	of	

OFC	theta	reflecting	the	context	valence	while	the	ascending	phase	predicting	the	future	rating	

of	 the	 face.	On	 the	other	hand,	 the	decoded	and	predicted	 information	were	 absent	 for	 the	

weak	 modulation	 trails,	 implying	 that	 the	 contextual	 valence	 was	 either	 unsuccessfully	

transferred	or	inappropriately	integrated	with	the	face.	These	results	indicated	that	PACHPCtoOFC	

and	PACOFCtoAMY	carried	the	context	information	at	the	delay	and	face	presentation	period,	with	

current	 state	 information	 and	 the	 planned	 future	 actions	 compressed	within	 theta	 cycles	 at	

specific	phases.		
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4.4	 Discussion	

Figure	 4.5	 Bayesian	 decoding.	 (a)	 Probability	 density	 of	 time	 information	 computed	 from	 simultaneously	
recorded	OFC	HGA	 (top)	and	AMY	HGA	(bottom).	Bayesian	decoding	was	performed	at	every	5-ms	time	 step	
with	a	20-ms	time	window.	Warmer	colors	denote	higher	probability.	Dashed	black	lines	indicate	the	onsets	of	
different	task	stages	in	the	real	time	scale.	Dashed	white	 lines	represent	the	onsets	of	different	task	stages	in	
the	reconstructed	time	scale.	The	green	and	red	square	boxes	 indicate	the	time	frame	with	future	prediction.	
(b)	Left	panel:	probability	density	of	time	information	as	a	function	of	HPC	theta	phase,	estimated	in	the	delay	
period	(1000~1500ms).	Right	panel:	decoded	probabilities	of	context	valence	(brown)	and	face	rating	(gray)	in	
strong	and	weak	modulated	trials	with	ascending	phase	(upper)	and	descending	phase	(lower)	of	HPC	theta.	(c)	
Left	panel:	probability	density	of	time	information	as	a	function	of	OFC	theta	phase,	estimated	during	the	face	
presentation	 (1500~2500ms).	 Right	 panel:	 decoded	 probabilities	 of	 context	 valence	 (brown)	 and	 face	 rating	
(gray)	in	strong	and	weak	modulated	trials	with	descending	phase	(upper)	and	ascending	phase	(lower)	of	OFC	
theta.	
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It	 is	widely	acknowledged	 that	contextual	 information	can	modulate	how	we	perceive	

facial	expressions.	Although	prior	work	has	demonstrated	robust	behavioral	outcomes24,228,248	

and	their	associated	brain	regions226,228,	 less	 is	known	about	how	these	regions	coordinate	to	

induce	 affective	 biases.	 Here,	 to	 further	 exam	 the	 neural	 signatures	 underlying	 contextual	

modulation	 on	 facial	 perception,	 we	 recorded	 direct	 neural	 signals	 from	 the	 OFC-AMY-HPC	

circuit,	 a	 well-established	 contextual	 processing	 network,	 while	 subjects	 performed	 valence	

ratings	of	neutral	faces	with	preceding	emotional	contexts.	In	sum,	our	results	provide	the	first	

demonstration	 of	 spatial	 and	 temporal	 neural	 dynamics	 of	 how	 context	 influences	 the	

judgment	of	facial	expressions.	Specifically,	we	have	revealed	a	sequential	processing	system,	in	

which	1)	the	context	 image	was	first	processed	within	the	medial	temporal	 lobe,	 leading	with	

the	earlier	engagement	of	AMY	and	stronger	influence	from	AMY	to	HPC	to	signal	the	affective	

significance;	2)	then	the	contextual	valence	was	carried	over	from	the	medial	temporal	lobe	to	

OFC	during	the	delay	period,	with	enhanced	unidirectional	information	flow	from	HPC	to	OFC;	3)	

Finally,	 the	 contextual	 valence	was	 integrated	with	 the	 face	 via	 precisely	 coordinated	 timing	

between	the	OFC	theta	oscillations	and	AMY	HGA,	which	predicted	successful	context-induced	

emotional	bias	on	the	face.	Together,	instead	of	a	segregated	circuit,	our	findings	emphasized	a	

cascade	 of	 amygdala-hippocampal-orbitofrontal	 interplay,	 which	 fostered	 the	 interactions	

between	affective	context	and	facial	expressions,	leading	to	a	further	constructed	percept.		

In	the	presented	work,	we	observed	affective	modulation	from	preceding	 images	with	

both	 the	 negative	 and	 positive	 valence.	 However,	 negative	 contexts	 induced	 a	 greater	

emotional	bias	of	facial	expressions	(Figure	4.1c,	t-test,	P	=	3.452e-4),	which	 is	consistent	with	

the	 asymmetric	 emotional	 influence	 observed	 in	 previous	 studies,	 including	 the	 memory	
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consolidation15,	decision	making249	and	social	discrimination250.	Moreover,	stronger	contextual	

modulation	effect	was	correlated	with	faster	rating	(Figure	4.1d),	exhibiting	a	shorter	averaged	

response	time	for	negative	contexts	compared	to	the	positive	ones	 (RTnegative	=	921	±	21	ms	 ,	

RTpositive	=1.436	 ±	 18,	 t-test,	 P	 =	 0.0174).	 A	 similar	 trend	 has	 been	 observed	 in	 the	 learning	

behavior,	 with	 the	 punishment	 avoidance	 more	 effective	 in	 enhancing	 learning	 speed	 than	

rewards.	 These	 findings	 might	 be	 supported	 by	 an	 evolutionary	 account,	 in	 which	 negative	

emotions	 carry	 more	 direct	 and	 immediate	 adaptive	 benefits	 for	 survival251	 and	 self-

development252.		

The	medial	prefrontal	cortex	(mPFC)	and	hippocampus	(HPC)	are	strongly	connected	by	

direct	 and	 indirect	 pathways49.	 Among	 these,	 the	monosynaptic	 projection	 from	 the	 ventral	

HPC	 to	 the	 mPFC,	 including	 OFC51,253,254	 provides	 the	 most	 immediate	 access	 to	 the	 global	

context	 information	 rather	 than	 detailed	 memories255-258.	 Strong	 HPC-mPFC	 coherence	 was	

observed	 in	 the	 context-guided	 reward	 tasks259-262	 and	exhibited	an	enhanced	pattern	during	

the	 memory-demanding	 delay259.	 Moreover,	 it	 has	 been	 proposed	 that	 bidirectional	

communication	between	 the	HPC	and	mPFC	 carries	different	 functional	 roles.	 In	 the	working	

memory	tasks,	directional	influence	from	HPC	to	mPFC	was	involved	during	the	memory	delay	

or	 when	 cued	 by	 a	 context259,263,	 whereas	 retrieving	 the	 previous	 memory	 or	 planning	 the	

choice	 response	 engaged	mPFC-to-HPC	 communication210,264.	 Our	 results	 are	 consistent	with	

these	 findings.	 In	 the	 present	 study,	we	 observed	 increased	HPC-OFC	 theta/alpha	 synchrony	

covering	 the	 delay	 period	 and	 towards	 the	 end	 of	 decision-making	 (Figure	 4.3a	 and	 4.3c).	

Moreover,	these	two	stages	exhibited	opposite	directional	interactions,	with	HPC->OFC	for	the	

delay	 period	 and	 OFC->	 HPC	 for	 the	 face	 rating.	 Notably,	 during	 the	 delay	 period,	 HPC	



97	
	

modulated	 OFC	 activities	 through	 theta-gamma	 phase	 amplitude	 coupling,	 with	 the	 context	

valence	encoded	by	OFC	HGA	on	the	ascending	phase	of	HPC	theta	(Figure	4.5b).	These	results	

indicated	a	 shift	 of	 information	 carrier265,	 in	which	OFC	 took	over	 the	processed	 information	

from	 the	 medial	 temporal	 lobe	 to	 “offloaded”	 encoding	 spaces	 for	 upcoming	 events49and	

maintained	the	context	information	for	further	analysis	(i.e.	integration	with	the	face).	On	the	

other	 hand,	 the	 reciprocal	 influence	 from	 OFC	 to	 HPC	 during	 the	 rating	 period	 supported	

retrospective	information	retrieval	and	prospective	decision-making266.		

Then	 the	 question	 is	 how	 processed	 contextual	 information	 integrates	 with	 face	 and	

therefore	influences	subsequence	emotional	ratings.	Subcortical	amygdala	pathways	have	been	

proposed	 to	enable	 rapid	 face	processing267	 and	were	 regulated	by	a	 top-down	control	 from	

the	 orbitofrontal	 cortex	 during	 emotional	 evaluation237.	 Our	 results	 are	 consistent	 with	 the	

current	 model,	 with	 directional	 influence	 from	 OFC	 to	 AMY	 sustained	 over	 the	 face	

presentation	and	rating	period	(Figure	4.4b).	Moreover,	precise	temporal	modulations	from	the	

orbitofrontal	 theta	 to	 amygdala	 high	 gamma	 activities	 have	 been	 observed	 during	 the	 face	

presentation,	 with	 processed	 context	 valence	 and	 future	 facial	 ratings	 represented	 at	 the	

descending	 and	 ascending	 phase	 of	 OFC	 theta	 (Figure	 4.5c).	 Such	 phase	 specific	 encoding	

mechanism	 suggested	 an	 automatic	 emotional	 face-context	 integration268	 supported	by	OFC-

>AMY	phase	amplitude	coupling,	which	predicted	subsequence	emotional	ratings	of	the	faces.	

Notably,	 a	 reciprocal	 interaction	 from	 AMY	 to	 OFC	 has	 also	 presented	 during	 the	 face	

presentation.	 This	 might	 be	 served	 as	 a	 feedback	 system269-271,	 with	 integrated	 information	

conveyed	to	OFC	for	cognitive	reappraisal272	and	the	control	of	future	action273,274.	
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Overall,	our	results	suggest	that	the	interpretation	of	facial	expressions	does	not	solely	

rely	on	the	structural	 features	of	 the	face.	 Instead,	we	observed	dynamic	cooperation	among	

the	AMY-HPC-OFC	network	to	support	contextual	modulation	on	facial	expression	perception.	

Specifically,	contextual	 information	was	processed	within	the	medial	temporal	 lobe,	projected	

to	 the	 orbitofrontal	 cortex	 via	 HPC	 to	 OFC	 route	 and	 was	 further	 integrated	 with	 the	 face	

through	 AMY-OFC	 feedforward	 and	 feedback	 interactions.	 These	 electrophysiological	

signatures	 extend	 our	 understanding	 of	 context	 on	 emotional	 processing,	 which	 is	 often	

impaired	in	patients	with	neuropsychiatric	disorders26,233,275.	The	future	work	can	be	focused	on	

translating	this	mechanistic	framework	to	circuit	specific	intervention	approaches.		
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CHAPTER	5:	Conclusion	and	Future	Directions	

5.1	 Overview	of	Findings	

Our	 findings	 suggest	 that	 emotional	 processing	 is	 not	 limited	 to	 a	 single	 region	 but	

instead	 relies	 on	 close	 interactions	 among	 the	 amygdala-hippocampus-orbitofrontal	 circuit.	

Specifically,	a	unifying	model	for	emotional	processing	is	implied,	in	which	the	amygdala	gates	

contextual	 information	 based	 on	 salience	 priority	 and	 binds	 emotional	 factors	 with	

hippocampal	 cognitive	 map	 to	 form	 an	 integrated	 representation	 (i.e.	 a	 emotion-weighted	

portrayal	of	external	and	internal	states);	such	abstract	contextual	cues	are	conveyed	from	the	

medial	 temporal	 lobe	 to	 the	 orbitofrontal	 cortex,	 mainly	 through	 hippocampal-orbitofrontal	

pathway;	the	orbitofrontal	cortex	exerts	top-down	control	over	the	amygdala	and	hippocampus	

for	flexible	goal-directed	decision	making.	

In	the	daily	 life,	swift	response	to	the	contextual	environment	 is	required,	 indicating	a	

network	coordinated	parallel	processing	 instead	of	 the	serial	processing	 from	a	single	 region.	

Then	how	do	multiple	streams	of	emotional	information	(e.g.	context,	face,	and	memory)	share	

the	 same	 neural	 circuitry?	 In	 our	 study,	 we	 found	 that	 oscillatory	 multiplexing	 (i.e.	 distinct	

bands	carrying	different	 information	 in	parallel)	might	serve	as	a	potential	mechanism	to	 link	

the	amygdala,	the	hippocampus	and	the	orbitofrontal	cortex	together	in	emotional	processing.	

It	 rapidly	organizes	 information	 flow	 in	 real-time,	 computations	 across	parallel	 brain	 systems	

and	separates	neural	signals	into	different	communication	channels	through	distinct	frequency,	

directionality,	and	phase	information186.	Oscillatory	Multiplexing	of	Frequency:	We	examined	

the	oscillatory	activities	within	each	region	and	quantify	the	inter-regional	communications	as	

phase	 locking	values,	 the	measurement	of	 the	consistency	of	 the	phase	relationship	between	
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two	 signals	 89,276.	 We	 found	 that	 oscillatory	 synchrony	 among	 three	 regions	 uses	 different	

frequency	bands	to	index	distinct	computations.	Such	dissociation	of	frequency	bands	has	also	

been	 found	 in	 other	 human	 intracranial	 studies,	 in	 which	 increased	 prefrontal-

parahippocampal	 network	 connectivity	 in	 delta/theta	 band	 (1-4	 Hz)	 predicted	 successful	

spatial	 context	 retrieval	 and	 enhanced	 theta/alpha	 coherence	 (7-10	 Hz)	 predicted	 correct	

temporal	 context	 retrieval277.	 Oscillatory	 Multiplexing	 of	 Phase:	 These	 distinct	 spectral	

fingerprints	do	not	occur	 in	 isolation	but	are	functionally	coupled	through	phase	amplitude	

coupling	(PAC)	and	support	neural	tuning	of	high	gamma	activity	linked	to	different	cognitive	

function278,279.	We	found	that	PAC	serves	as	a	rhythmic	clocking	mechanism	to	bias	high	gamma	

activity.	 Specifically,	 theta/alpha-high	 gamma	 PAC	 integrates	 task	 complex	 information	 by	

organizing	HGA	at	specific	theta/alpha	phases.	This	is	consistent	with	previous	findings	in	both	

rodents	and	human	electrophysiological	studies,	 in	which	low-frequency	oscillations	modulate	

the	 probability	 of	 single	 unit	 and	 high	 gamma	 activities,	 with	 the	 occurrence	 phase	 217,218	

indexing	 distinct	 information90,212-216.	 Oscillatory	 Multiplexing	 of	 Directionality:	 We	 have	

employed	 a	 number	 of	 directional	 connectivity	 metrics	 to	 examine	 dynamics	 of	 brain	

oscillations	including	inter-regional	PAC,	phase	slope	index	(PSI)	and	spectral	Granger	causality.	

We	 observed	 bidirectional	 communications	 among	 these	 three	 brain	 regions,	 which	 are	

supported	 by	 reciprocal	 anatomical	 connections.	Moreover,	 the	 directionality	 of	 information	

flow	changes	at	behavioral	timescales,	facilitating	a	flexible	network	reconfiguration	along	with	

different	 task	 states.	 In	 sum,	 oscillatory	 multiplexing	 of	 frequency,	 phase	 and	 directionality	

supports	amygdala-hippocampus-orbitofrontal	circuit	to	rapidly	and	flexibly	facilitate	emotional	

processing	in	humans.		
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5.2	 Future	Directions	

5.2.1	 Extended	Network	for	Emotional	Regulation		

Other	 brain	 regions	 have	 also	 been	 proposed	 to	 facilitate	 salience	 processing	 and	

emotional	 regulation,	 such	 as	 anterior	 insula,	 dorsal	 anterior	 cingulate	 cortex	 (dACC)	 and	

dorsolateral	 prefrontal	 cortex	 (dlPFC).	 Specifically,	 anterior	 insula	 is	 involved	 in	 salient	

detections	via	direct	sensory	inputs	from	auditory/visual	systems280-284	and	emotional	saliency	

from	subcortical	nodes,	including	the	amygdala,	the	ventral	striatum	and	the	ventral	tegmental	

nuclei285.	Moreover,	it	is	also	sensitive	to	internal	autonomic	processes,	such	as	heart	rate,	skin	

conductance	and	respiration286,287,	which	are	linked	to	interceptive	awareness	of	salient	events.	

dACC	and	the	associated	dorsomedial	prefrontal	cortex	receive	very	little	sensory	inputs288,289.	

Instead,	 dACC	 and	 dorsomedial	 prefrontal	 cortex	 can	 send	 strong	 motor	 output	 via	 direct	

connections	 to	 the	 spinal	 cord	and	 subcortical	 oculomotor	 areas290,	which	plays	 a	prominent	

role	 in	 response	 selection	 to	 salient	 stimuli291,292.	 dlPFC	 has	 strong	 connections	 with	

orbitofrontal	 cortex	 and	 hippocampus	 and	 has	 been	 considered	 as	 a	 critical	 brain	 structure	

involved	in	working	memory69	and	cognitive	flexibility293.	Neuroimaging	studies294	have	shown	

that	exposure	to	severe	stress	reduces	working	memory	related	activities	in	the	dlPFC	and	leads	

to	 impaired	 memory	 performance.	 Moreover,	 damage	 or	 lesion	 to	 the	 dlPFC	 increases	 the	

likelihood	of	depressive	symptoms295,	which	 indicates	the	contribution	of	positive	affect	 from	

dlPFC	 for	 a	 balanced	 emotional	 regulation	 system296.	 Applying	 similar	 analysis	 onto	 these	

regions	could	bring	us	extended	knowledge	of	salient	information	processing	and	provide	more	

intact	understandings	for	emotional	regulation.			
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5.2.2	 Microcircuit	Configuration	and	Single	Unit	Recording	

Based	on	the	knowledge	of	the	group-level	oscillatory	dynamics,	the	next-level	question	

is:	 what	 are	 the	 functional/anatomical	 configurations	 of	 neural	 microcircuit	 underlying	 the	

current	 emotional?	 Specifically,	 how	 do	 different	 classes	 of	 cells	 interact	 to	 produce	 various	

spatial,	 temporal	 and	 spectral	 oscillatory	 features	 linked	 with	 diverse	 emotional	 processes?	

Single-unit	 recordings	 provide	 a	 method	 of	 measuring	 the	 electrophysiological	 responses	 of	

single	 neurons.	 Simultaneous	 recording	 of	 a	 large	 number	 of	 single	 neurons	 and	 local	 field	

potentials	in	multiple	brain	regions	will	allow	us	to	map	activities	from	the	emotional	network,	

bringing	more	 robust	 characterization	of	 the	 interested	effects	 and	 the	diversity	 of	 encoding	

across	neural	populations.		

	

5.2.3	 Stimulation	and	Computational	Psychiatry	

Emotional	 processing	 imbues	 appropriate	 salience	 to	 our	 experiences	 and	 facilitates	

flexible	behavioral	adaptation.	Dysfunction	in	contextualizing	information	increases	the	risk	of	

inappropriate	responses	to	environmental	conditions	and	has	been	implicated	in	a	broad	range	

of	 psychopathologies,	 including	 post-traumatic	 stress	 disorder,	 schizophrenia,	 and	 substance	

abuse	 disorders224.	 The	 public	 health	 and	 economic	 burden	 of	mental	 illness	 exceed	 that	 of	

cancer,	 diabetes,	 and	 respiratory	 ailments	 put	 together	 (World	 Health	 Organization,	 2011),	

accounting	 for	over	30%	morbidities	across	all	medical	conditions.	Neuropsychiatric	disorders	

are	 primarily	 treated	with	 pharmacological	means,	 targeting	 large	 swaths	 of	 brain	 tissue.	 To	

capture	the	underlying	mechanistic	process,	a	circuit-level	perspective	might	provide	a	deeper	

understanding	of	neuropsychiatric	disorders	and	 improved	 interventions	with	greater	efficacy	
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and	 fewer	 side	 effects.	 A	 potential	 clinical	 application	 of	 our	 study	 is	 the	 modulation	 of	

oscillatory	 interactions	 within	 the	 amygdala-hippocampus-orbitofrontal	 circuit.	 Phase	

alignment	 or	 coupling	 between	 these	 three	 regions	 provides	 a	 temporal	 window	 for	

coordinated	 inter-regional	 information	 transfer	 and	 communication.	 Information	 transfer	

errors	may	occur	due	 to	over-coupling	or	under-coupling	between	brain	 structures,	 including	

failures	 in	 terminating	 irrelevant	 communication	 or	 extracting	 meaningful	 signals.	 These	

alterations	 in	 communication	 dynamics	 have	 been	 proposed	 to	 underlie	 neuropsychiatric	

disorders155.	To	‘break’	such	pathological	couplings,	inter-regional	interactions	could	be	altered	

with	 stimulation-based	 therapy	 to	 induce	 temporal	 phase	 synchronization	 (e.g.,	 enhanced	

phase	 alignment	 with	 phase	 resetting)	 or	 desynchronization	 (e.g.,	 reduced	 phase	 alignment	

with	 neural	 noises)	 between	 two	 brain	 structures.	 This	 provides	 a	 theoretical	 framework	 for	

circuit-specific	and	stimulation-based	intervention	approaches,	such	as	deep	brain	stimulation,	

transcranial	 alternating	 current	 stimulation	 (tACS),	 and	 transcranial	 magnetic	 stimulation.	

Furthermore,	greater	specificity	can	also	be	achieved	by	 taking	 individual	oscillatory	variation	

into	 account.	 For	 example,	 using	 tACS	 parameters	 specific	 to	 individuals’	 dominant	 theta	

frequency	improves	short-term	memory	capacity297.	Our	study	also	demonstrated	that	instead	

of	 conforming	 to	 the	 conventional	 definition	 of	 theta	 (4–7	 Hz)/alpha	 (8–12	 Hz)	 frequency	

rhythms,	amygdala–hippocampus-orbitofrontal	dynamics	are	contingent	upon	subject-specific	

low	 frequency	 oscillations.	 Identifying	 such	 individualized	 electrophysiological	 features	 in	

patients	 with	 psychiatric	 disorders	 could	 enable	 stimulation	 parameters	 to	 be	 tailored	 for	

subject-preferred	 neuronal	 firing	 frequencies,	 leading	 to	 personalized	 therapeutic	

interventions.		
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5.3	 Concluding	Remarks	

The	 series	 of	 studies	 described	 in	 this	 dissertation	 extend	 the	 current	 knowledge	 of	

emotional	processing	 in	humans	with	direct	electrophysiological	dynamics.	 It	emphasizes	that	

single	 region	 analysis	 is	 not	 sufficient	 to	 understand	 the	 complex	 nature	 of	 the	 emotional	

processing.	 Instead,	 dynamic	 interactions	 among	 amygdala,	 hippocampus,	 and	 orbitofrontal	

cortex	are	crucial	to	emotion-related	cognitive	functions.	Given	the	essential	role	of	emotional	

processing	in	adaptive	behavior	and	its	derangement	in	neuropsychiatric	disorders,	our	findings	

propose	a	core	emotional	network	and	dictate	its	underlying	oscillatory	mechanisms,	which	is	

critical	to	complete	the	translation	from	‘circuit	neuroscience’	to	‘circuit	neurotherapy’.	
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APPENDIX	A:	Supplementary	Materials	for	Chapter	2	

Supplementary	Table	1:	Patient	information		

Subject	
Implanted	

Side	
Age	 Gender	 MRI	 Surgery	 Side	Analyzed	

1	 Right	 24	 Male	 Right	MTS	 Right	ATL	with	AH	 Right	

2	 Left	 25	 Male	 Normal	
Left	ATL	with	AH	

	
Left	

3	 Bilateral	 51	 Male	 Normal	 Right	ATL	with	AH	 Right	

4	 Left	 49	 Female	 Normal	 Left	ATL	with	AH	 Left	

5	 Bilateral	 33	 Female	 Right	MTS	 Right	ATL	with	AH	 Left*	

6	 Bilateral	 32	 Female	

Right	

periventricular	

heterotopia	

Right	ATL	with	AH	

	
Left*	

7	 Right	 25	 Male	 Normal	

Right	ATL	without	

removing	

Amygdala	and	

Hippocampus	

Right*	

8	 Bilateral	 34	 Male	 Normal	 Right	ATL	with	AH	 Left*	

9	 Bilateral	 48	 Female	 Normal	 Left	ATL	with	AH	 Right*	

ATL	anterior	temporal	lobectomy;	AH	=	amygdalohippocampectomy	

MTS	=	mesial	temporal	sclerosis	

*=	Contralateral	or	outside	of	the	seizure	onset	zone	 	
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Supplementary	 Figure	 1.	 Localization	 of	 depth	 electrodes.	 Pre-implantation	 MRI	 (1	 mm	

isotropic)	 in	 a	 representative	 subject	 (left	 panel),	 post-implantation	 MRI	 aligned	 using	 rigid	

body	 alignment	 to	 the	 pre-implantation	MRI	 (middle	 panel),	 and	 the	 translucent	 overlay	 of	

registered	regions	of	 interests	 (ROIs)	overlaid	on	the	post-to-pre	aligned	MRI	(right	panel)	 for	

the	 basolateral	 amygdala	 (BLA;	 a-c),	 parahippocampal	 cortex	 (Phc;	 d),	 subiculum	 (Sub;	 e),	

dentate	gyrus/CA3	(DG/CA3;	f),	and	CA1	(g).	Cross	hairs	are	centered	on	the	electrode	in	each	

region.	 	
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Supplementary	 Figure	 2.	 Raw	 traces	 of	 a	 single	 trial	 for	 the	 aversive	 and	 the	 neutral	

conditions	in	the	amygdala	and	the	hippocampus.	Traces	from	top	to	bottom	show	unfiltered	

raw,	filtered	theta/alpha	(5-9	Hz),	filtered	low	gamma	(30-70	Hz),	and	filtered	high	gamma	(70-

180	Hz)	 signals,	with	 the	analytic	amplitude	envelope	 traced	 in	bold.	The	 lowest	 row	 in	each	

panel	 shows	 the	 high	 gamma	 banded	 amplitude	 envelope	 from	 one	 region	 that	 is	

superimposed	 with	 the	 low	 frequency	 banded	 signal	 from	 the	 other	 region.	 A	 stronger	
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synchronization	between	amygdala	 theta	and	hippocampus	gamma	 is	evident	 in	 the	aversive	

condition	compared	to	the	neutral	condition.	Red	=	signals	 from	the	amygdala;	blue	=	signals	

from	the	hippocampus.	
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Supplementary	Figure	3.	Movie	clip-based	event	related	potentials	(ERPs)	in	each	subject	for	

(a)	 the	amygdala	 and	 (b)	 the	hippocampus.	Comparisons	of	ERPs	between	 the	aversive	 (red	

traces)	 and	 neutral	 (blue	 traces)	 condition	 (top	 colored	 traces)	 and	 point	 by	 point	 t-tests	

(bottom	 traces).	 Significant	 group	 differences	 in	 ERP	 amplitudes	 with	 uncorrected	 p	 <	 0.05	
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threshold	were	found	for	a	small	number	of	time	points	(amygdala	=	6.5%	and	hippocampus	=	

8.3%).	 No	 data	 points	 survived	 correction	 for	 multiple	 comparisons.	 Shaded	 regions	 denote	

s.e.m.	across	trials.		 	



147	
	

	

	



148	
	

Supplementary	 Figure	 4.	 Eye	 movement	 related	 responses	 and	 independent	 component	

analysis	 for	 Subject	 9.	 Comparisons	 of	 estimated	 high	 gamma	 time	 courses	 from	 the	

electrooculogram	 (EOG)	 activity	 between	 the	 aversive	 (fearful	 face)	 and	 neutral	 (landscape)	

condition	 (top	 colored	 traces)	 and	 point-by-point	 t-tests	 (bottom	 traces)	 for	 (a)	 the	 right	

horizontal	EOG	(RHEOG),	(b)	right	vertical	EOG	(RVEOG)	and	(c)	left	horizontal	EOG	(LVEOG).		A	

small	number	of	data	points	were	found	to	be	significant	at	the	uncorrected	p	<	0.05	threshold	

(RHEOG	=	9.0%,	RVEOG	=	8.4%,	LVEOG	=	4.7%),	and	multiple	comparison	correction	eliminated	

any	 significant	 differences.	 Ocular	 velocity	 in	 (d)	 the	 X	 dimension	 and	 (e)	 the	 Y	 dimension	

recorded	from	the	eye	tracker	averaged	across	clips	and	compared	between	the	two	conditions	

(top	 colored	 traces)	 and	 the	 point-by-point	 t-tests	 (bottom	 traces).	 A	 small	 number	 of	 data	

points	were	 found	 to	 be	 significant	 at	 the	 uncorrected	p	 <	 0.05	 threshold	 (X=	 0.7%	 and	 Y	 =	

3.1%),	 and	 no	 significant	 differences	 were	 present	 after	 multiple	 comparison	 correction.	 (f)	

Independent	 component	 analysis	 (ICA)	 of	 EOG	 combined	 with	 white	 matter	 referenced	

amygdala	 and	 hippocampal	 activity.	 ICA	 weights	 were	 normalized	 by	 taking	 the	 magnitude	

(absolute	value)	of	all	weights	and	 then	dividing	all	weights	across	each	 row	 (component)	by	

the	sum	of	all	weight	magnitudes	in	each	row.	This	effectively	shows	the	relative	contributions	

of	 channels	 to	each	 component.	 EOG	 signals	 contributed	 to	 components	5,	 8,	 and	10,	which	

had	relatively	small	contributions	from	amygdala	and	hippocampal	electrodes.		The	sub-regions	

used	for	the	eye	movement	analyses	were	the	same	as	 in	Fig	2,	subject	9.	HG	=	high	gamma;	

a.u.=arbitrary	units		 	
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Supplementary	 Figure	 5.	 Perisaccadic	 high	 gamma	 activity	 and	 electrooculogram	 (EOG)	

derived	phase	amplitude	coupling	for	subject	9.	Comparisons	of	estimated	high	gamma	time	

courses	from	(a)	the	amygdala	and	(b)	the	hippocampus	between	the	aversive	(fearful	face)	and	

neutral	(landscape)	condition.	A	small	number	of	data	points	were	found	to	be	significant	at	the	

uncorrected	 p	 <	 0.05	 threshold	 (amygdala	 =	 3.4%,	 hippocampus	 =	 4.4%),	 and	 multiple	

comparison	 correction	 eliminated	 any	 significant	 differences.	 No	 significant	 phase	 amplitude	

coupling	pattern	was	observed	between	 the	EOG	activity	and	 signals	 from	 the	amygdala	and	

hippocampus	(c,	d).		 	
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Supplementary	Figure	6.	Amygdala-hippocampal	 theta	phase	 coherence	 for	each	 condition.	

Theta	 phase	 coherence	 between	 pairs	 of	 electrodes	 targeting	 the	 amygdala	 (red	 dots)	 and	

hippocampal	subfields	(blue	dots),	depicted	with	hive	plots	for	the	aversive	(a)	and	neutral	(b)	

conditions.	 The	 magnitude	 of	 the	 phase	 locking	 value	 (PLV)	 between	 electrode	 pairs	 is	

presented	 in	 color,	 with	 warmer	 colors	 indicating	 a	 greater	 magnitude.	 Significance	 levels	

derived	 from	 permutation	 testing	 are	 indicated	 by	 the	 thickness	 of	 lines	 connecting	 each	

electrode	pair.	 	
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Supplementary	Figure	7.	Phase	locking	values	(PLV)	between	basolateral	amygdala	(BLA)	and	

hippocampal	sub-regions.	(a)	Normalized	coherence	spectra	averaged	over	all	electrodes	pairs	

between	 the	BLA	and	 the	hippocampal	 subregions	 (CA1,	CA3,	Phc,	 and	Sub).	 Increased	 theta	

PLV	was	observed	in	BLA-CA1	(red	line)	in	contrast	to	BLA-CA3	(blue	line),	BLA-Phc	(green	line),	

and	 BLA-Sub	 (black	 line)	 electrode	 pairs	when	 viewing	 aversive	 compared	 to	 neutral	 stimuli.	

The	dots	on	top	represent	frequency	ranges	showing	significant	differences	between	BLA-CA1	

and	other	electrode	pairs	(p	<	0.01);	triangles	on	the	top	denote	significant	differences	between	

BLA-CA3	 and	 other	 electrode	 pairs	 (p	 <	 0.01).	 (b)	 PLV	 enhancement	 between	 BLA	 and	

hippocampal	 sub-regions	when	 viewing	 the	 aversive	 vs.	 neutral	 stimuli	 among	 all	 9	 subjects.	

Error	bars	indicate	±	s.e.m.	across	participants,	and	asterisk	denotes	significant	differences	at	p	

<	0.05	with	a	post-hoc	pairwise	t-test	(main	effect	for	hippocampal	sub-regions:	p	=	0.004).	Phc	

=	parahippocampal	gyrus;	Sub	=	subiculum.	 	
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Supplementary	 Figure	 8.	 Amygdala	 and	 hippocampus	 within	 electrode	 phase	 amplitude	

coupling	 (PAC).	 PAC	 comodulogram	 for	 differences	 between	 the	 aversive	 and	 the	 neutral	

condition	is	shown	separately	for	the	amygdala	and	hippocampus,	with	warmer	colors	denoting	

higher	z-scores.	Within	each	structure,	increased	PAC	was	observed	when	viewing	the	aversive	

compared	 to	 the	 neutral	 condition,	 with	 high	 gamma	 amplitude	 phase	 locked	 to	 phase	 of	

theta/alpha	rhythms.	 	
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Supplementary	 Figure	 9.	Example	of	 theta	 trough	 locked	 time	 frequency	 averaging	 for	 one	

subject	in	the	aversive	condition.	(a)	Normalized	time-frequency	average	plot	of	mean	power	

modulation	 from	 the	 hippocampus	 (upper	 panel)	 time-locked	 to	 the	 theta	 trough	 from	 the	

amygdala	 (lower	 panel).	 (b)	 Normalized	 time-frequency	 average	 plot	 of	 mean	 power	

modulation	 from	 the	 amygdala	 (upper	 panel)	 time-locked	 to	 the	 theta	 trough	 from	 the	

hippocampus	(lower	panel).	Outermost	contour	in	the	time	frequency	plot	indicates	statistical	

significance	(p	<	0.01).		 	
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Supplementary	 Figure	 10.	 Power	 spectral	 density	 (PSD)	 plots	 in	 a	 log-log	 (dB)	 scale	 for	

amygdala	 and	 hippocampus	 gamma	 envelope.	PSD	 peaks	 around	 7-8	Hz	 are	 evident	 across	

subjects	in	both	regions.	Each	color	line	represents	a	single	subject.		 	
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Supplementary	 Figure	 11.	 Phase	 amplitude	 coupling	 and	 Granger	 causality	 with	 ICA	

correction	 for	 subject	 9.	 Directional	 phase	 amplitude	 coupling	 (a)	 and	 Granger	 causality	

analysis	 (b)	 before	 and	 after	 independent	 component	 analysis	 (ICA)-based	 removal	 of	 eye	

movement	 artifacts.	 Significant	 amygdala-hippocampal	 directionality	 was	 evident	 before	 and	

after	 ICA-based	artifact	removal,	demonstrating	that	eye	movement	artifact	did	not	 influence	

the	results.		 	
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Supplementary	Figure	12.	Data	processing	schematic	for	calculating	phase	amplitude	coupling	

(PAC)	with	 time	 lag.	The	raw	signal	 from	the	amygdala	was	band-pass	filtered	 into	a	subject-

specific	 theta/alpha	 component	 (5-9	 Hz	 for	 the	 subject	 demonstrated	 here),	 while	 the	 raw	

signal	 from	the	hippocampus	was	band-pass	 filtered	 into	high	 frequency	gamma	(70-180	Hz).	

We	 then	extracted	 the	amplitude	of	band-passed	hippocampus	high	gamma	and	 filtered	 this	

amplitude	 time	 series	 at	 the	 same	 theta/alpha	 band.	 The	 phase	 of	 both	 theta/alpha-filtered	

signal	 and	 the	 theta/alpha-filtered	 high	 gamma	 amplitude	were	 extracted,	 and	 the	 PAC	was	
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calculated	by	computing	the	phase-locking	between	these	two	signals.	By	varying	the	time	shift	

between	two	signals,	the	PAC	can	be	then	presented	as	a	function	of	time	(Figure	2.3b).		 	
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Supplementary	 Figure	 13.	Amygdala-hippocampus	Granger	 causality	 and	phase	 slope	 index	

for	each	 subject.	 (a)	Granger	causality	analyses	demonstrated	consistently	 stronger	 influence	

for	 the	amygdala	 to	hippocampus	direction	 (top	 row)	 than	 for	 the	hippocampus	 to	amygdala	

direction	(bottom	row)	when	contrasting	the	aversive	to	the	neutral	condition	for	each	subject.	

Solid	lines	are	experimental	data	from	the	two	conditions	(red:	aversive	condition;	blue:	neutral	

condition).	The	99.9%	confidence	intervals	are	presented	as	dashed	lines.	(b)	Phase	slope	index	

(PSI)	 between	 the	 aversive	 and	 the	 neutral	 conditions	 calculated	 point-by-point	 across	 time	

using	the	subject	specific	theta	band	signal	 from	the	modulating	channel	 (colored	 in	red)	and	

high	 gamma	 signal	 from	 the	 modulated	 channel	 (colored	 in	 blue)	 for	 each	 subject.	 Shaded	

regions	denote	significant	differences	between	the	two	signals	(all	p	<	0.01,	permutation	test),	

showing	 low	 frequency	 activity	 from	 the	 amygdala	 precedes	 hippocampus	 gamma	 for	 the	

majority	of	the	stimuli	duration.		 	
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Supplementary	 Figure	 14.	 Granger	 causality	 difference	 between	 aversive	 and	 neutral	

condition.	 Granger	 causality	 analyses	 demonstrated	 consistently	 stronger	 influence	 for	 the	

amygdala	to	hippocampus	direction	(red	lines)	than	for	the	hippocampus	to	amygdala	direction	

(blue	lines)	when	contrasting	the	aversive	to	the	neutral	condition	in	all	 individuals	except	for	

subject	1.	The	solid	 lines	represent	the	experimental	data	(the	difference	in	Granger	causality	

between	 the	 two	 conditions).	 The	 99.9%	 confidence	 intervals	 for	 the	 null	 distribution	 are	

presented	as	dash	lines.		
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APPENDIX	B:	Supplementary	Materials	for	Chapter	3	

Supplementary	Table	1.	Subject	information	and	behavioral	performance	

Subject	
number	 Gender	 Age	

Electrode	
Coverage	

Epileptogenic	
region	

Hemisphere	
analyzed	

Accurate	
retrieval	
rate	

RT*	
(mean	+	
s.e.m)	

1	 Male	 21	 Bilateral	 Left	TLE	 Right	 0.754	 2.89	±0.022	

2	 Female	 40	 Bilateral	 Right	SMA	 Right	 0.786	 2.55	±	0.011	

3	 Female	 58	 Bilateral	 Left	TLE	 Right	 0.866	 2.46	±	0.007	

4	 Female	 32	 Bilateral	 Right	TLE	 Left	 0.731	 2.59	±	0.054	

5	 Male	 24	 Bilateral	 Right	TLE	 Left	 0.841	 2.54	±	0.014	

6	 Female	 54	 Bilateral	 Right	TLE	 Left	 0.783	 2.51	±	0.114	

7	 Male	 23	 Bilateral	 Right	TLE	 Left	 0.823	 2.54	±	0.022	

TLE	=	Temporal	lobe	epilepsy	
SMA	=	Supplementary	motor	area	
s.e.m	=	standard	error	mean	
*The	response	time	are	corresponding	to	the	stimuli	onset	
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Supplementary	 Fig	 1.	 Localizations	 of	 electrodes	 within	 the	 amygdala	 (AMY)	 and	

hippocampus	(HPC)	for	all	seven	subjects.	Post-implantation	MRI	(Subject	1-6)	or	CT	(Subject	

7)	 aligned	 using	 rigid	 body	 alignment	 to	 the	 pre-implantation	 MRI	 (lower	 panel	 for	 each	

subject).	 Translucent	 registered	 regions	 of	 interests	 (ROIs)	 were	 overlaid	 on	 the	 post-to-pre	

aligned	MRI	or	CT	 (upper	panel	 for	each	subject),	 including	 the	dentate	gyrus/CA3	 (DG/CA3),	

CA1,	 subiculum	 (Sub),	 paraphippocampal	 cortex	 (PrC),	 lateral	 entorhinal	 cortex	 (LEC),	medial	

entorhinal	cortex	(MEC),	basolateral	amygdala	(BLA),	corticosterone	(CORT)	and	central	nucleus	

of	the	amygdala	(CeA).	Cross	hairs	are	centered	on	the	electrode	within	the	amygdala	and	the	

hippocampus.	
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Supplementary	Fig	2.	Averaged	power	across	all	subjects	within	target	and	foil	trials.	Within	

the	 target	 (a)	 and	 the	 foil	 (b)	 condition,	 frequency-specific	 power	 differences	 were	 nearly	

absent	in	both	the	amygdala	(left)	and	the	hippocampus	(right).	Instead,	power	increases	within	

the	broader	frequency	range	for	incorrect	trials	compared	to	the	correct	ones	has	been	shown	

in	the	amygdala	as	well	as	the	hippocampus.	(yellow	lines:	correct	discriminations;	green	lines:	

incorrect	 discriminations.	 Color	 shaded	 area	 =	 ±	 s.e.m.).	 Gray	 shaded	 rectangles	 refer	 to	

significant	 conditional	 differences	 between	 correct	 and	 incorrect	 discrimination	 (t-test,	 P	 <	

0.01).	 In	 addition,	 within	 the	 target	 (c)	 and	 the	 foil	 (d)	 conditions,	 no	 significant	 power	

differences	 (t-test,	 P	 >	 0.05)	 (correct	 -	 incorrect)	 has	 been	 shown	 in	 the	 hippocampus	when	

comparing	between	negative	and	neutral	trials	while	the	amygdala	demonstrates	the	significant	

conditional	difference	 (correct	–	 incorrect,	 t-test,	P	<	0.01)	at	a	broad	 frequency	 range.	 (blue	

lines:	 neutral	 trials;	 red	 lines:	 negative	 trials.	 Color	 shaded	 area	 =	 ±s.e.m.).	 Gray	 shaded	

rectangles	represent	significant	conditional	differences	between	negative	and	neutral	trials	(t-

test,	P	<	0.01)		
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Supplementary	Fig	3.	Task-evoked	spectrotemporal	power	 in	posterior	hippocampus	during	

emotional	mnemonic	discrimination.	4/7	subjects	have	electrodes	 implanted	in	the	posterior	

hippocampus.	(a)	Task-induced	power	from	4	subjects	with	posterior	hippocampus	electrodes,	

normalized	 to	 the	 common	pre-trial	 baseline	 (500-ms	 fixation	period)	 and	grouped	based	on	

task	 outcomes	 (correct	 discrimination:	 upper	 row;	 incorrect	 discrimination:	 lower	 row)	 and	

emotional	valences	(neutral:	left	column;	negative:	right	column).	Warmer	colors	denote	task-

induced	power	increase	from	the	baseline	while	the	colder	colors	refer	to	power	decrease	from	
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the	baseline.	Dashed	black	 lines	 indicate	 the	stimuli	onsets.	 (b)	Averaged	power	across	 these	

four	 subjects	 for	 correct	 (green)	 and	 incorrect	 (yellow)	 discriminations	 (color	 shaded	 area	 =	

±s.e.m.).	 Positive/negative	 values	 indicate	 power	 increase/decrease	 from	 the	 baseline,	

respectively.	 (c)	 Averaged	 conditional	power	difference	 (correct–	 incorrect)	 across	 these	 four	

subjects	 for	 neutral	 (blue)	 and	 negative	 (red)	 trials	 (color	 shaded	 area	 =	 ±s.e.m.).	

Positive/negative	 values	 indicate	 stronger	 power	 for	 correct/incorrect	 discriminations,	

respectively.	 The	 3d	 rendering	 hippocampus	 plots	 (blue:	 anterior	 hippocampus;	 green:	

posterior	hippocampus)	demonstrate	each	subject’s	posterior	electrode	locations.		 	
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APPENDIX	C:	Supplementary	Materials	for	Chapter	4	
	

	
	

Supplementary	Fig	1.	Task-evoked	spectrotemporal	power	in	the	amygdala,	hippocampus	and	

orbitofrontal	cortex.	Task-induced	power	normalized	to	the	common	pre-trial	baseline	(500-ms	

fixation	period)	and	grouped	based	on	region	of	interests,	including	the	amygdala	(upper	panel),	

the	 hippocampus	 (middle	 panel),	 and	 the	 orbitofrontal	 cortex	 (lower	 panel).	Warmer	 colors	

denote	task-induced	power	 increase	from	the	baseline	while	the	colder	colors	refer	to	power	

decrease	 from	 the	 baseline.	 Dashed	 black	 lines	 indicate	 the	 onsets	 of	 different	 task	 stages	

(context,	delay,	face,	rate).		
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Supplementary	 Fig	2.	Persistent	high	gamma	activities	 from	 the	orbitofrontal	 cortex	during	

the	 rate	period.	The	time	courses	of	high	gamma	power	 from	the	orbitofrontal	cortex	 for	all	

the	 trials	 were	 stacked	 and	 sorted	 relative	 to	 subjects’	 response	 time.	 The	 dashed	 curve	

denotes	subjects’	response	time	(top	to	bottom:	fast	to	slow	response),	the	period	on	the	right	

side	of	the	dashed	curve	indicates	the	start	of	the	following	trial.		
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Supplementary	Fig	3.	Phase	amplitude	coupling	and	emotional	ratings.	The	correlation	matrix	

between	 the	 inter-regional	 phase	 amplitude	 coupling	 value	 and	 the	 contextual	 modulation	

strength	 for	 each	 electrode	 pair	 during	 five	 stages	 of	 the	 task	 (From	 left	 to	 right:	 Baseline,	

Context,	Delay,	Face,	Rate).		
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Supplementary	Fig	4.	Single	trial	stacked	phase	amplitude	coupling	corresponding.	The	time	

courses	of	time-resolved	phase	amplitude	coupling	from	different	electrode	pairs	were	stacked	

trial-by-trial	 and	 sorted	 relative	 to	 the	 emotional	 valence	 of	 context	 images	 (top	 to	 bottom:	

Negative	 to	 Neutral	 to	 Positive).	 The	 dashed	 curve	 indicates	 different	 stages	 of	 the	 task	

(Baseline,	Context,	Delay,	Face,	Rate).		

	




