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AMERICAN THORACIC SOCIETY
DOCUMENTS

An Official American Thoracic Society/European Respiratory Society
Statement: Update on LimbMuscleDysfunction in ChronicObstructive
Pulmonary Disease
François Maltais, Marc Decramer, Richard Casaburi, Esther Barreiro, Yan Burelle, Richard Debigaré,
P. N. Richard Dekhuijzen, Frits Franssen, Ghislaine Gayan-Ramirez, Joaquim Gea, Harry R. Gosker, Rik Gosselink,
Maurice Hayot, Sabah N. A. Hussain, Wim Janssens, Micheal I. Polkey, Josep Roca, Didier Saey, Annemie
M. W. J. Schols, Martijn A. Spruit, Michael Steiner, Tanja Taivassalo, Thierry Troosters, Ioannis Vogiatzis, and
Peter D. Wagner; on behalf of the ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD

THIS OFFICIAL STATEMENT OF THE AMERICAN THORACIC SOCIETY (ATS) AND THE EUROPEAN RESPIRATORY SOCIETY (ERS) WAS APPROVED BY THE ATS BOARD OF

DIRECTORS, NOVEMBER 2013, AND BY THE ERS EXECUTIVE COMMITTEE, SEPTEMBER 2013

Background: Limb muscle dysfunction is prevalent in chronic
obstructive pulmonary disease (COPD) and it has important clinical
implications, such as reduced exercise tolerance, quality of life,
and even survival. Since the previous American Thoracic Society/
European Respiratory Society (ATS/ERS) statement on limb
muscle dysfunction, important progress has been made on the
characterization of this problem and on our understanding of its
pathophysiology and clinical implications.

Purpose: The purpose of this document is to update the 1999
ATS/ERS statement on limb muscle dysfunction in COPD.

Methods: An interdisciplinary committee of experts from the ATS
and ERS Pulmonary Rehabilitation and Clinical Problems assemblies
determined that the scope of this document should be limited to
limb muscles. Committee members conducted focused reviews of the
literature on several topics.A librarian alsoperformeda literature search.
AnATSmethodologist provided advice to the committee, ensuring that
the methodological approach was consistent with ATS standards.

Results:We identified important advances in our understanding
of the extent and nature of the structural alterations in limb muscles
in patients with COPD. Since the last update, landmark studies
were published on the mechanisms of development of limb muscle
dysfunction in COPD and on the treatment of this condition. We
now have a better understanding of the clinical implications of limb
muscle dysfunction. Although exercise training is the most potent
intervention to address this condition, other therapies, such as
neuromuscular electrical stimulation, are emerging. Assessment of
limb muscle function can identify patients who are at increased risk
of poor clinical outcomes, such as exercise intolerance and premature
mortality.

Conclusions: Limb muscle dysfunction is a key systemic
consequence of COPD.However, there are still important gaps in our
knowledge about the mechanisms of development of this problem.
Strategies for early detection and specific treatments for this
condition are also needed.

Overview

Limb muscle dysfunction is an important
systemic consequence of chronic obstructive
pulmonary disease (COPD) because of its
impact on physical activity, exercise
tolerance, quality of life, and even survival in
this disease. Although some mechanisms
underlying the development of limb muscle

dysfunction have been identified (e.g.,
deconditioning), much needs to be learned
about the impact of other potential
contributors to this clinical manifestation in
COPD. Limb muscle dysfunction can be
prevented and improved, in part, with
exercise training, but it is clear that novel
therapies are needed to better address this
problem.

The purpose of this document is to update
the 1999 American Thoracic Society/European
Respiratory Society (ATS/ERS) statement
on limb muscle dysfunction. We intend to
provide researchers and clinicians with the
recent advances in this field, with emphasis
on the following areas: (1) structural and
metabolic alterations found in limb muscles,
(2) consequences and clinical evaluation of
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limb muscle dysfunction, (3) mechanisms
of development of this comorbidity, and
(4) treatment approaches of limb muscle
dysfunction in COPD. Future research
directions are also discussed. To be consistent
with the 1999 statement, this document focuses
specifically on limb muscles, recognizing that
the issues related to respiratory muscles
should be treated separately.

Major conclusions of the statement
include:

d Limb muscle dysfunction is prevalent in
COPD. Muscle atrophy and weakness carry
important consequences, such as difficulties
in engaging in physical activity, exercise
intolerance, poor quality of life, and
premature mortality. Metabolic alterations
in relation to lower limb muscle structural
changes within the lower limb muscle are
also involved in exercise limitation.

d Lower limb muscle function is further
compromised during episodes of COPD
exacerbations. Patients experiencing
exacerbations may be targeted for
rehabilitative interventions aiming at
preserving limb muscle function.

d Assessment of limb muscle function
should be encouraged.

d Knowledge of the biochemical regulation
of muscle mass will likely lead to the
development of specific therapy for
muscle atrophy in COPD.

d Although physical inactivity is involved
in the development of limb muscle
dysfunction development in COPD,
other mechanisms, such as inflammation,
oxidative stress, nutritional imbalance,
and hypoxemia, likely play a role.

d The most potent currently available
treatment option for limb muscle
dysfunction in COPD is exercise
training, a key component of integrated
management of COPD.

d Neuromuscular electrical stimulation
is emerging as a useful training modality
in patients severely impaired by COPD
and during exacerbations.

We hope that this statement will raise
further awareness toward this important
problem in COPD and that research in this
area will result in the development of
specific therapies and in better care for
patients with COPD.

Introduction

Limb muscle dysfunction is a major
systemic consequence of COPD. Strong
scientific and clinical evidence support
a role of limb muscle in exercise intolerance
in this disease. Furthermore, limb muscle
dysfunction may be associated with
increased mortality, poor quality of life,
and increased health care use. Although
some mechanisms underlying the
development of limb muscle dysfunction
have been identified (e.g., deconditioning),
much needs to be learned about the
impact of other potential contributors
to limb muscle dysfunction in COPD
(e.g., inflammation, malnutrition,
oxidative stress, hypoxemia). Limb muscle
dysfunction can be improved in part with
exercise training, but it is obvious that
novel therapies will have to be developed
to better address this problem.

In 1999, Drs. Richard Casaburi and
Rik Gosselink led a group of scientists to
produce a Statement of the ATS and
ERS on limb muscle dysfunction in COPD
(1). This document was most useful in
establishing the state-of-the art knowledge
on this topic and in increasing the
awareness of the scientific and medical
community about its importance. However,
this document was produced at a time
when our understanding of limb muscle
dysfunction was in its infancy. Since then,
the amount of science related to limb
muscle dysfunction in COPD has exploded,
thanks to the effort of several research
groups throughout the world. Members
of the Pulmonary Rehabilitation and
Clinical Problems assemblies of the ATS
and ERS believe that it is timely to update
this Statement to incorporate the large
amount of knowledge that has been gained
in the intervening years.

The primary objective of this document
is to update the current scientific and clinical
knowledge on this topic and to provide
guidance on future research directions. As
such, our document will be useful not
only to scientists involved in the area but
also to clinicians, for whom we wish to
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raise the level of awareness regarding the
clinical relevance of limbmuscle dysfunction
in patients with COPD. It can be legitimately
believed that a more thorough understanding
and treatment of limb muscle dysfunction
in COPD will improve the outcome of
patients with COPD.

Methodology
The present document is intended to belong
to the Clinical Statement category. The
chair and the co-chair initially identified
a group of 25 scientists on the basis of
their specific expertise and with a variety
of academic backgrounds (clinicians,
physiologists, basic scientists, nutritionists,
exercise specialists). We met on three
occasions fromDecember 2011 to September
2012. Each member was responsible for the
review of the literature and for writing
the first draft of his/her attributed section(s).
Each specific section was circulated and
discussed among all members of the
committee to produce a preliminary version
of the document. A librarian was consulted
to perform a search of the literature
using PubMed, Embase, and CINAHL
according to the following strategy: “Pulmonary
disease, Chronic Obstuctive”[Majr] or
“Pulmonary emphysema”[Majr:NoExp]
and (((((“Muscle, Limb”[Mesh]) or “Muscle
Strength”[Mesh:NoExp]) or “Muscle
Tonus”[Mesh]) or “Muscle Fatigue”[Mesh]) or
“Muscle Weakness”[Mesh]) or “Muscular
Atrophy”[Mesh] and “Oxidative Stress”[Mesh]
and (muscle or muscles or muscular)
and “Myositis”[Mesh:NoExp] OR
(“Inflammation”[Mesh] and (muscle or
muscles or muscular)). We also received
advice from a methodologist to ensure
that the methodological process was
consistent with the approved methodology
of the ATS documents development and
implementation committee. A working draft
of the document was circulated among
members in the spring of 2012 and, based on
their comments, it was extensively revised
by the co-chairs and submitted again for
agreement on the scientific content. The
document was then fully edited by one
committee member (R.C.). All members of
the committee agreed with the content of
the final document, which was intended
for online publication only. This online
document provides a thorough review of
limb muscle dysfunction in COPD,
whereas the published document
summarizes the most critical aspects of the
entire document.

Scope and Definition
This document focuses on limb muscles,
as the committee members believed that
respiratory muscles are a separate topic.
The term limb muscle was preferred over
peripheral muscles, which is less specific
and may have a different interpretation
to various individuals. Limb muscle
dysfunction is used to reflect the
morphological and functional changes
that are seen in limb muscles in patients
with COPD, with no implications as to
the underlying mechanisms. The most
commonly studied limb muscle is the
quadriceps, because of its role in ambulation
and because it is easily accessible. Other limb
muscles from the upper extremity or the
distal lower limb have also received
some attention. They will be specifically
mentioned when appropriate. The reader
should also be aware that most studies
on limb muscle function in patients with
COPD have involved patients with severe
to very severe COPD (Global Initiative
for Obstructive Lung Disease [GOLD]
spirometry classes 3–4). Muscle atrophy
indicates a small muscle mass in
comparison with healthy standards. This
situation is different from cachexia, which
implies an ongoing and dynamic loss of
muscle mass (2). Very few longitudinal
studies exist on the evolution of muscle
mass in COPD (3, 4) and, in most cases,
patients with low muscle mass instead
of “true” cachectic patients were studied.
Whether or not patients in these studies
were actively losing muscle mass is
uncertain.

Normal Muscle Structure
and Function

Normal Motor Structure
Limb muscles are composed of functional
units (motor units) consisting of
a motoneuron and the muscle fibers it
innervates. The motor unit is the final
functional element that produces force.
Based on contractile speed, motor units
are classified as either slow-twitch (S) or
fast-twitch (F) (5). The fast-twitch motor
units are further subdivided into fast-twitch
fatigue-resistant (FR), fast-twitch fatigue-
intermediate (Fint), and fast-twitch
fatigable (FF) (6–8). Data on motor unit
organization and characteristics in human
muscles are scarce. Enoka was the first to
report data on motor unit properties of

human muscles (9). He estimated that the
extensor hallucis brevis muscle contains
approximately 56 motor units and at least
two types of motor units. In comparison,
the human medial gastrocnemius contains
about 550 motor units (10) and three
types of motor units (S, FR, FF) (11),
similar to cat gastrocnemius.

Within a muscle, each motor unit is
composed of muscle fibers of a given type
with the classification of S, FR, FInt, and
FF motor unit types corresponding well
with the muscle fiber classification based
either on myofibrillar ATPase staining
(I, IIa, IIx, and IIb) or on myosin heavy
chain (MHC) immunoreactivity
(MHCslow, MHC2A, MHC2X, and
MHC2B). This has been shown for the
human medial gastrocnemius, where the
physiological characteristics of the motor
unit types were in agreement with the
histological typing of their constituent
muscle fibers (11). Because human muscle
fibers formerly identified as type IIb fibers
by histochemistry express the IIx MHC
isoform rather than the IIb isoform,
we will refer to type IIx fibers for the
remainder of the document (12).

In limb muscles, graded contractions
are achieved by either changes in the firing
rate of the individual motor units or by
recruitment of additional motor units
within the same muscle. In addition,
recruitment order follows the size principle,
with S units being recruited first followed
by FR, FInt, and FF units (13). This size
principle has been confirmed in humans
during voluntary isometric contractions for
several muscles, including the first dorsal
interosseus (14, 15), the masseter and
temporalis (16), and the tibialis anterior
(17). Finally, motor units of lower limb
muscles in humans are also recruited in
a task-dependent manner (18). In the
standing position, the soleus motor units
are continuously active (19), whereas the
medial gastrocnemius has an irregular
pattern of activation that is mainly due
to recruitment of motor units (20).

Motor unit characteristics can be
altered by several processes, such as aging
and reduced physical activity and training.
In humans, aging is associated with
a loss of motoneurons, especially the larger
ones with higher recruitment thresholds
(21). This results in a decreased number
of muscle fibers (21), with many of them
losing their innervation, beginning to
atrophy, and ceasing to function together
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(22). In fact, significantly reduced cross-
sectional areas of both type I and II fibers
are seen in the elderly compared with
younger adults (23), although type II fibers
appear to be preferentially affected by
age-related atrophying process (24, 25).
Some fibers are reinnervated by neighboring
motoneurons (26), but the capacity for
motoneuron sprouting is limited with age
(27). The size principle of motor unit
recruitment seems to be preserved in
older adults (28). Reduced physical activity
leads to a decline in median frequency of
vastus lateralis muscle stimulation that is
in line with the concurrent reduction of
muscle fiber conduction velocity (29).
Interestingly, short-term (14 d) bed rest
reduces the muscle fiber conduction
velocity of individual motor units from the
vastus lateralis, vastus medialis, and tibialis
anterior muscles without a significant
effect on muscle force (30). On the other
hand, 6 to 8 weeks of hand or limb
immobilization is associated with
a decrease in the motoneuron firing rate
of the adductor pollicis and first dorsal
interosseous muscles (31–33). This
effect is already present after 1 week of
immobilization (34), and its magnitude is
much greater after 3 weeks of immobilization
(33). The size order recruitment of the motor
unit is maintained during immobilization
(32). Finally, exercise training also alters
motor unit characteristics. Thus, integrated
and root mean square surface EMG
values increase significantly with strength
training, particularly during the first 3 to
4 weeks, and motor unit firing frequency
is enhanced after high-resistance strength
training (35). With resistance training,
motor unit recruitment threshold
decreases and motor unit discharge
rates increase (36).

Determinants of Muscle Strength
Because limb muscles have the capacity
to generate force, they are essential to the
ability to move the body during daily
activities, exercise, and sports. Basically,
the amount of force developed is determined
by velocity of shortening and the type of
contraction as well as by number, size,
rate, and type of motor units activated.

The force–velocity and the length–tension
curves illustrate the importance of the velocity
of the contraction and the length of
sarcomeres in determining muscle strength.
There is an optimal length of each fiber
for which there is optimal overlap of actin

and myosin filaments, thus maximizing
cross-bridge interaction (37). When a
sarcomere is fully stretched or shortened,
little force can be developed because there is
little cross-bridge interaction. Muscle force
generation also depends on the velocity
of muscle contraction. During concentric
(shortening) contractions, maximal force
development decreases progressively with
the velocity. In contrast, during eccentric
(lengthening) contractions, maximal force
development increases progressively with the
velocity (38).

The force generated by a motor unit
depends on three interrelated factors: (1)
the innervation ratio of the unit (i.e., the
number of muscle fibers innervated by
a motoneuron), (2) total functional cross-
sectional area of all muscle fibers within the
unit, and (3) specific force of the muscle
fibers (i.e., the force per cross-sectional
area).

The number and type of motor
units recruited as well as the rate and
synchronization of firing grade the intensity
of a muscle contraction (39). The number
of motor units varies according the muscle.
For example, in the large muscles of the
lower limb, motor units range in size
from approximately 500 to 1,000 fibers.
This gives the muscles their capacity for
very forceful and rapid contractions.
Importantly, all the muscle fibers of
a motor unit are of the same fiber type,
determining the mechanical and fatigue
properties of the muscles (6). In most
muscles, the Fint and FF motor units
generate greater force per unit of area
compared with S and FR units (40). The
importance of the neural activation to
muscle strength is elegantly demonstrated
during deconditioning. During bed rest
experiments, only 50% of the reduction
of muscle strength is explained by
reduction in muscle mass, the other part
being due to impaired neural activation, as
demonstrated by EMG (41). Alternatively,
during the first weeks of muscle training
most of the progression in strength is
explained by enhanced muscle activation.

The force generated by single limb
muscle fibers is determined primarily by
the level of activation, the intracellular Ca21

concentration (iCa21), and the force per
cross-sectional area of muscle (specific
force). As the frequency of neural activation
increases, the force generated by muscle
fibers increases in a sigmoidal fashion. In
motor unit studies, it has been shown

that the force/frequency relationship of
S motor units is shifted leftward compared
with FF motor units (42). Thus, at a given
frequency of submaximal neural
activation, S motor units generate a greater
percentage of their maximal force. This
difference in the force/frequency
relationship of motor units could relate to
the amount of Ca21 released from the
sarcoplasmic reticulum at a given
frequency of activation, to differences in
excitation–contraction coupling (43–46),
to differences in sarcoplasmic reticulum
Ca21 reuptake (47), or to differences in
the Ca21 sensitivity of myofibrillar
proteins (48–52).

A number of studies have examined
the force/Ca21 relationship in single
permeabilized limb muscle fibers, where
iCa21 can be clamped at different levels.
Generally, muscle fibers expressing the
MHCslow isoform have greater Ca21

sensitivity than do fibers expressing fast
MHC isoforms, so that slow fibers generate
a greater fraction of their maximal force
for a given iCa21. Accordingly, the force/
Ca21 relationship of slow muscle fibers is
shifted leftward compared with fast fibers
(50–54).

Although other variables, such as
pennation, neuromuscular recruitment
contraction velocity, and angular position
may also account for differences in strength
over that of size alone (55), muscle cross-
sectional area has a strong relationship
with muscle strength (56–58). Maximum
specific force in single limb muscle fibers is
dependent on the number of cross bridges
per half sarcomere, the average force per
cross bridge, and the fraction of cross
bridges in the force-generating state.
Despite some controversies (59), fiber type
differences in specific force have been
reported in human limb muscles (60–62),
and it was suggested that the lower force
produced by slow fibers may be due to
less force per cross bridge compared with
fast fibers (63). In addition, differences
in mitochondrial volume densities
may contribute to fiber type differences
in specific force (54). The higher
mitochondrial volume densities of fibers
expressing the MHCslow and MHC2A
isoforms would presumably be at the
expense of a correspondingly lower
myofibrillar volume density, lower MHC
content, and, hence, fewer cross bridges
in parallel for a given fiber cross-sectional
area.
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In cross-sectional studies, muscle mass
has been found to correlate with sex, age,
and training status. Compared with women,
men have more muscle mass both in
absolute values and as percentage of the total
body weight (64, 65). Although absolute
muscle strength is therefore larger in
men, relative muscle strength (force per
cm2) is not different between men and
women (57).

Generally beginning at age 30 years
(64), the rate of decline in muscular
strength appears greater in the lower body
than the upper body (66). Both strength
and speed of contraction were found to
decline with age (64). Aging affects muscle
function, and, after the age of 50 years,
muscle mass (65), fiber area (mainly type II
[24, 25]), and the number of muscle fibers
decrease (21, 67). The proportion of
type I fiber increases with age (25).
Additionally, there is a slowing of motor
unit firing rates, a decrease in the pennation
angle of the muscle fibers, and reduced
tendon stiffness (68).

In the elderly, higher levels of
customary physical activity have been found
to be associated with significantly higher
muscle strength (69), but it is still unclear
whether men and women derive similar
benefits (70, 71).

Normal Mitochondrial Function
Maintenance of mitochondrial integrity is
crucial to the preservation of cellular
homeostasis. Mitochondria play a central
role in ATP production through oxidative
phosphorylation, particularly in energy-
demanding tissues, including limb muscle.
They actively participate in cellular Ca21

dynamics through their capacity to take up
and release Ca21 (72–74). They generate
metabolic outputs, which can modulate
multiple signaling cascades, and nuclear
gene expression programs through genetic
and epigenetic (relevant modifications to
the genome not involving changes in the
nucleotide sequence) mechanisms (75).
They constitute one of the main sources
of reactive oxygen species (ROS), which
can participate in cell signaling or cell
dysfunction/death under physiological and
pathological conditions, respectively (see
section on oxidative damage for further
discussion of this cascade) (76, 77). Finally,
in response to stress-induced signaling
events converging on the mitochondria,
or to intrinsic dysfunctions within
mitochondria caused by acute or chronic

pathological conditions, these organelles
can trigger apoptotic and necrotic cell death
through permeabilization of their double-
membrane system (78, 79). This event
can occur through opening of the
permeability transition pore (PTP) and/or
formation of channels by proapoptotic
members of the B-cell lymphoma 2 family
of proteins (78, 80).

In healthy limb muscle, the
volume–density and the functions of
mitochondria can change according to fiber
type and in response to physiological
cues such as exercise or inactivity (81, 82).
In addition, defective organelles are the
primary cause of numerous mitochondrial
genetic disorders (83) and may also play
a role in the pathogenesis of chronic
conditions affecting multiple physiological
systems (84).

Determinants of Muscle Endurance
Endurance can be defined as the ability
to sustain a specific physical task. The
determinants of endurance performance
depend on whether a whole body or local
muscle task is considered. In healthy
humans, oxygen delivery and extraction
rather than ventilatory function limit
maximal whole-body exercise performance.
For submaximal performance (where
exercise is performed below critical
power and a steady state exists where
V
:
O2 is constant and meets the energy

requirements of the task), the constraints
to continuing work will depend on
substrate availability, thermoregulation,
and motivation (85–87). At the muscle
level, this means that the energy
requirements of muscle contraction can
be met from oxidative sources without
significant lactate accumulation or adenine
nucleotide loss.

Fatigue, in a physiological sense, is
defined as a failure of force generation
after loaded muscle contractions that is
reversible by rest (88). Undertaking a task to
the point of failure may be associated with
fatigue, or even cause fatigue, but the
reverse is not true; physical performance
may continue in the presence of low-
frequency fatigue (88). Two types of fatigue
are generally recognized: central and
peripheral. Central fatigue occurs when task
failure is manifest but additional force can
be generated by nerve stimulation; this
implies a contractile reserve of the muscle.
In peripheral muscle fatigue, there are at
least two different mechanisms by which

repeated contractions may cause
impairment: the “transmission mechanism”
involving the neuromuscular junction,
muscle membrane, and/or endoplasmic
reticulum and the “contractile mechanism”
involving the muscle filaments (89–93).
Although high-frequency fatigue is
a recognized physiological entity, its clinical
significance remains uncertain and is not
considered further here (94). In normal
humans there is a complex interplay
between peripheral and central fatigue, so
that the presence of peripheral fatigue leads
to central inhibition in limb muscles (95),
preventing the development of further
peripheral fatigue.

Muscle endurance performance
involves a complex interplay between the
availability and extraction of oxygen and
the incorporation of substrate into
mitochondria. Adequate muscle oxygen
supply is determined by cardiac output,
local muscle perfusion, and blood oxygen
content. In turn, muscle capillarity,
mitochondrial density, and muscle enzyme
concentration influence oxygen extraction.

The energy for muscle contraction is
released by the dephosphorylation of ATP
by adenylate kinase. Intramuscular ATP
stores are sufficient to sustain contraction
for only a few seconds and, if work is to
continue, ATP stores must be replenished
from other sources. ATP can be formed by
the breakdown of phosphocreatine (PCr)
to creatine and phosphate. Although this
system provides energy for high-intensity
exercise and during the early stages of
contraction, it is rapidly exhausted.
Glycolysis leads to the formation of pyruvate
and oxidative phosphorylation, allowing the
products of carbohydrate, protein, or fat
metabolism to enter the mitochondria,
where they are metabolized to water and
carbon dioxide and thereby provide most
of the ATP required for sustained muscle
contractions. Once formed, pyruvate is
metabolized to lactate by glycolysis or enters
the mitochondria to form acetyl coenzyme
A and fuel oxidative phosphorylation.
At higher exercise intensities, pyruvate
accumulation exceeds its uptake by the
mitochondria, and it must be broken down
to form lactate. It has long been assumed
that lactate formation is the result of
inadequate mitochondrial oxygen
concentrations. However, although oxygen
delivery is a requirement for oxidative
energy production, significant lactate can be
produced despite the presence of adequate
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oxygen supplies, and factors other than
oxygen are crucial to the integration of
oxidative and glycolytic metabolism (96).
Lactate accumulation is likely to be
determined by the balance of pyruvate
production and oxidation in the
mitochondria. In this respect, the role of
the pyruvate dehydrogenase complex
(PDC) appears to be pivotal (97). This
enzyme is situated on the mitochondrial
membrane and regulates the irreversible
entry of pyruvate into mitochondria, where
the Krebs cycle operates. PDC can be
activated pharmacologically by infusing
dichloroacetate (98), and this has been
shown to attenuate lactate accumulation
and increase maximal work rates in
healthy subjects (99). The expansion of
intermediates of the Krebs cycle (known
as anapleurosis) is another potential
stimulator of oxidative phosphorylation.
However, artificial expansion of the Krebs
cycle intermediate pool by the infusion of
glutamine does not result in an increase in
mitochondrial oxidative phosphorylation.
These findings suggest that pyruvate
availability through the activity of PDC is
the principal regulator of mitochondrial
oxidative metabolism rather than
anapleurosis (100).

Regulation of Muscle Mass
Homeostasis in muscle tissue is ensured
by a tight and complex balance between
protein synthesis and degradation
(Figure 1). The regenerative capacity of
muscle tissue is also involved in this
equation (101–103). At the molecular level,
cachexia is characterized by an increased
muscle proteolysis with the activation of
the ubiquitin proteasome (UbP) pathway
(104). In this pathway, proteins are initially
marked for degradation by ubiquitination
and are subsequently recognized and
processed by the proteasome, the catalytic
core of the pathway. An increase in
messenger ribonucleic acid (mRNA)
encoding for key enzymes and proteins of
this pathway is a hallmark of cachexia in
several animal models (104–108). A major
advance in the understanding of the
regulation of muscle proteolysis was the
identification of two muscle-specific E3
ligases, muscle ring finger protein 1
(MuRF1) and atrogin-1, which are directly
involved in several atrophying conditions
(109, 110). These E3 ligases act as the
substrate recognition component of the
ubiquitination system, therefore preventing

nonspecific protein degradation by the
proteasome complex. Of note, the UbP
pathway is unable to degrade native and intact
contractile structures (111). Preliminary
steps aimed at disrupting the myofibrillar
assembly are necessary before contractile
protein degradation can be initiated.
Calcium-dependent pathways (m- and
u-calpains) (112), autophagy/lysosomal
pathways (113), and cysteine proteases
(caspase-3) (114) have all been demonstrated
to be able to disrupt myofiber organization,
thus providing substrates for the UbP system.
Among them, the autophagy/lysosomal
pathway is receiving a great deal of
attention, because it may be the most
important proteolytic pathway in some
experimental models of muscle atrophy
(115), although this issue is still disputed
(116). Autophagy, which involves the
formation of vesicles (autophagosomes)
that transport their content for degradation
by lysosomes, is also constitutively active
in human limb muscle (117). There
is insufficient information to make
conclusions regarding the relative
contribution of the UbP pathway and of
autophagy to the muscle atrophying
process in humans and more specifically
in COPD.

The activation of the muscle-specific E3
ligases is under the control of various
pathways: (1) the forkhead box O (FOXO)
class of transcription factors enhances the
nuclear transcription of MuRF1 and
atrogin-1 unless they are phosphorylated
and inactivated by AKT (118). Conversely,
depressed AKT activity and reduced
FOXOs phosphorylation will allow FOXOs
nuclear translocation and the induction of
MuRF1 and atrogin-1. The role of the
FOXOs in the protein degradation process
is reinforced by the involvement of FOXO-
3 in the regulation of autophagy (113, 117);
(2) proinflammatory cytokines can activate
the nuclear factor-kB (NF-kB), which, in
turn, can activate MuRF1 (116, 119); (3) the
mitogen-activated protein kinase (MAPK)
pathway has been implicated in the
activation of the UbP pathway and in the
initiation of the cachectic process in rodent
and cell models of muscle atrophy (115,
120). Among the various members of the
MAPK family, p38 MAPK is of interest
because it stimulates the expression of
muscle-specific E3 ligases, whereas its
inhibition prevents muscle atrophy (115).
JNK MAPK has also been implicated in the
atrophying process in some experimental

models of hind limb suspension (121) and
sepsis-induced diaphragmatic dysfunction
(122), although its role is less convincing in
comparison to p38 (120). Myostatin,
a negative regulator of muscle mass, is able
to halt muscle growth by direct inhibition
of the kinase activity of AKT (123, 124) or
by inhibiting satellite cell replication and
differentiation by blocking the activity of
myogenic differentiation factor D (MyoD)
(125), a key protein involved in regulating
muscle differentiation. Myostatin is also
able to enhance the proteasomal-dependent
degradation of contractile protein by
increasing the transcriptional activity of
FOXO-1 (126).

Activation of the atrophic cascade is
opposed by the hypertrophic response.
In this regard, the importance of the
insulin-like growth factor 1 (IGF-1)
pathway to promote muscle growth has
been appreciated for some years (127).
The protein synthesis response to IGF-1
is mediated through AKT. After being
phosphorylated itself, AKT phosphorylates
several proteins whose activation
(mammalian target of rapamycin [mTOR]
[128] and 70-kD ribosomal S6 protein
[p70S6] kinase) or inhibition (glycogen
synthase kinase-3b [GSK3b]) will enhance
protein synthesis (116, 118, 128). IGF-1
may also suppress protein degradation
by down-regulating atrogin-1 and by
promoting FOXOs phosphorylation and
entrapment in the cytoplasm, where it
cannot enhance the nuclear transcription
of E3-ligases (118).

Limb Muscles in Clinically
Stable COPD

Several structural changes of the limb
muscles have been reported in patients
with COPD. They are described in this
section and summarized in Figure 2. Most
of these structural changes have been
reported in the quadriceps, although some
abnormalities have also been found in
distal lower limb muscles. The upper limb
muscles are relatively preserved from
these structural changes.

Muscle Atrophy in COPD
Although the World Health Organization
states that a body mass index (BMI) less
than 18.5 kg/m2 defines underweight,
a cut-off value of 21 kg/m2 is often used
in COPD, as it corresponded to less than
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90% ideal body weight in the Metropolitan
Life Insurance Tables (129, 130). Using
the World Health Organization criteria,
the prevalence of underweight in COPD
was found to increase with disease severity,
especially in women, up to 30% in patients
with GOLD class 4 disease (131). A key
message is that the BMI classification does
not consider body composition, such as fat
mass (FM), fat-free mass (FFM), and bone
mass or bone mineral density. Moreover,
changes or shifts in body composition—
which are frequently associated with
COPD—remain unrevealed by BMI alone,
and additional methods are required, as
discussed elsewhere in this statement (see

Assessment of Muscle Mass). This makes
it important to consider the assessment
of body composition in chronic diseases
such as COPD. Along those lines, several
criteria have been proposed to define low
muscle mass (see Assessment of Muscle
Mass). For example, an FFM index (FFMI)
less than 16 kg/m2 for men and less than
15 kg/m2 for women (132), or an FFMI less
than the 10th (131) or 25th (133) percentile
of the general population, have all been
used. Irrespective of the criteria, muscle
atrophy is common in COPD, with
a prevalence rate of 4 to 35% (131, 134,
135). Using the 10th percentile criterion,
the prevalence of low FFMI in COPD

increases with disease severity, especially
in women, amounting to 50% in patients
with GOLD 4 COPD (131). Moreover,
a low FFMI has been reported in 26% of
patients with COPD with a normal BMI,
underscoring the importance of assessing
body composition to precisely quantify
muscle atrophy (131). Even in the COPD
population with a normal BMI, a low FFMI
is a strong predictor of mortality, as
strong as in the underweight COPD
population (132). Another important
notion is that the lower limb muscles are
particularly vulnerable to the atrophying
process in COPD (3, 136, 137). The
observation that the magnitude of loss of

Figure 1. Regulation of muscle mass. The maintenance of muscle mass is the result of a tight equilibrium between hypertrophic and atrophic signaling
pathways. A major advance in the understanding of the regulation of muscle proteolysis was the identification of two muscle-specific E3 ligases, atrogin-1
and Muscle Ring Finger protein 1 (MuRF1), that are directly involved in several atrophic conditions. These E3 ligases act as the substrate recognition
component of the ubiquitination system, therefore preventing nonspecific protein degradation by the proteasome complex. Of note, the ubiquitin-
proteosome (UbP) is unable to degrade native and intact contractile structures. Preliminary steps aimed at disrupting the myofibrillar assembly are
necessary before contractile protein degradation can be initiated. Among them, the autophagy/lysosomal pathway is receiving a great deal of attention,
because it may be the most important proteolytic pathway in some experimental models of muscle atrophy. The activation of the muscle-specific E3
ligases is under the control of various pathways: (1) the Forkhead box O (FOXO) class of transcription factors enhances the nuclear transcription of MuRF1
and atrogin-1 unless they are phosphorylated and inactivated by AKT. Conversely, depressed AKT activity and reduced FOXOs phosphorylation will
allow FOXOs nuclear translocation and the induction of MuRF1 and atrogin-1; (2) proinflammatory cytokines can activate the nuclear factor (NF)-kB, which
in turn can also induce atrophy through the activation of MuRF1; (3) the mitogen-activated protein kinases (MAPK) pathway can be triggered by reactive
oxygen species (ROS) and has been implicated in the activation of the UbP pathway and in the initiation of the cachectic process in rodent and cell
models of muscle atrophy. Among the various members of the MAPK family, p38 MAPK has received considerable attention because it stimulates
the expression of atrogin-1, whereas its inhibition prevents muscle atrophy. JNK MAPK has also been implicated in the atrophying process in some
experimental models, although its role is less convincing compared with p38. Myostatin, a negative regulator of muscle mass, is able to halt muscle growth
by direct inhibition of the kinase activity of AKT or, through the SMAD signaling pathway, by inhibiting satellite cell replication and differentiation by blocking
the activity of myogenic differentiation factor-D (MyoD). Myostatin is also able to enhance the proteasomal-dependent degradation of contractile
protein by increasing the transcriptional activity of FOXO-1. Activation of the atrophic cascade is opposed by the hypertrophic response. In this regard, the
importance of the insulin-like growth factor-1 (IGF-1) pathway to promote muscle growth has been appreciated for some years. The protein synthesis
response to IGF-1 is mediated through AKT. On phosphorylation, AKT phosphorylates several proteins whose activation (mammalian target of rapamycin
[mTOR] and 70-kD ribosomal S6 protein [p70S6] kinase) or inhibition (glycogen synthase kinase-3b [GSK3b]) will enhance protein synthesis. IGF-1
may also suppress protein degradation by down-regulating atrogin-1 again via the PI3K/AKT pathway as well as FOXOs phosphorylation and entrapment
in the cytoplasm.
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thigh muscle mass is relatively greater
than that of whole body weight indicates
a preferential loss of muscle tissue over
other body tissues in patients with COPD
(138).

The prevalence of overweight and
even obesity is increasing in COPD. In a U.
S. cohort, the prevalence of obesity was
54% in mild COPD versus 22% in the
general population (139). In a Dutch
population, the prevalence of obesity
amounted to 24% in mild COPD versus
11% in the general population (140).
The prevalence of overweight is higher
in chronic bronchitis (blue bloater)
patients, whereas underweight is
typically associated with emphysema
(pink puffer) (141). The distribution of
fat accumulation is also important to
consider. The accumulation of abdominal
fat, a highly active tissue involved in the

production of several proinflammatory
mediators, is a strong risk factor for
cardiovascular and metabolic diseases
(142–146). COPD has been associated
with increased risk of abdominal
obesity (147, 148). Although a high
BMI has been paradoxically associated
with improved survival in advanced
COPD (131, 149, 150), overweight and
obesity, particularly in their visceral
forms, may not be beneficial in milder
forms of COPD, as they may mask muscle
wasting and be associated with
cardiovascular and metabolic
complications (151, 152).

The prevalence of osteoporosis and
osteopenia is also increased in COPD,
amounting to 9 to 69% and 27 to 67%,
respectively (153–155). Disease severity and
systemic corticosteroids are associated with
the risk of osteoporosis (156). Because the

prevalence of osteoporosis is associated
with a low FFM (157), it can be speculated
that loss of bone and muscle mass share
common mechanisms (158–160).

To our knowledge, only one
longitudinal study has assessed the changes
in body composition in COPD (4). During
the 7-year follow-up, FFM declined faster
than the FM, indicating the progressive
occurrence of sarcopenia in this
population. However, these changes were
comparable between patients with COPD
and healthy subjects (4). This study
also showed that baseline BMI and FFM
were similarly low in patients with COPD
and smokers with normal lung function
as compared with lifetime nonsmokers,
suggesting that a common insult,
occurring earlier in life and related to
smoking, may contribute to muscle
atrophy.

Figure 2. Morphological and structural alterations reported in limb muscles in patients with chronic obstructive pulmonary disease (COPD). CS = citrate
synthase; HADH = 3-hydroxyacyl CoA dehydrogenase.
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Structural Alterations of Limb Muscle
in COPD

Muscle fiber shift and atrophy. A shift in
fiber type distribution of the quadriceps,
from type I fibers in favor of type IIx fibers,
is a typical feature of advanced COPD
(137, 161–165). This finding is inconsistent
with normal aging, which is not associated
with a shift toward type II fibers (67,
166). The proportion of type I fibers
correlates inversely with disease severity
and proportionally with BMI (161, 164),
a finding further supported by the absence
of modification in the different fiber types
in milder COPD (167). The shift in fiber
type distribution reported in the quadriceps
and tibialis anterior (101) muscles is not
observed in upper extremity muscles
such as the deltoid (168), indicating that
muscle structural abnormalities are not
homogeneously distributed among different
muscle groups. All fiber types of the
quadriceps are affected by the atrophying
process (163), although some authors argue
that the type IIx fibers are more specifically
affected (169–171).

Changes in capillarization. Capillary
density (i.e., the number of capillaries
per mm2 of muscle fibers) and the number
of capillaries per muscle fiber are reduced
in limb muscles of patients with COPD
(163, 164). This is not a universal finding
(172), perhaps due to the fact that, in some
studies, patients were involved in exercise
training, which could improve muscle
capillarization (163, 173). The capillary to
muscle fiber cross-sectional area is similar
in subjects with COPD and healthy subjects
(174). This may indicate that the oxygen
diffusion distance is maintained in
COPD (174).

Mitochondrial Function of Limb
Muscle in COPD and Bioenergetics
Mitochondrial function is altered in
COPD muscle, although it remains difficult
to discern whether these abnormalities
are indicative of a myopathic process
specific to COPD or whether they reflect
muscle inactivity in this population.
Locomotor muscle oxidative capacity is
reduced in COPD (44, 45, 175–179,
185–191). This has been demonstrated
by direct measures of mitochondrial
density by electron microscopy (175);
by spectrophotometric determination
of mitochondrial enzyme activities

including citrate synthase (CS), succinate
dehydrogenase (SDH), 3-hydroxyacyl-
coenzyme A dehydrogenase (HAD), and
cytochrome oxidase (COX) (176–178);
and by measurements of respiration in
permeabilized muscle fibers (179). In line
with these observations, the mRNA and/or
protein expression of key mitochondrial
transcriptional factors and coactivators,
including peroxisome proliferator-activated
receptor g coactivator-1 (PGC1), peroxisome
proliferator-activated receptors (PPAR),
and mitochondrial transcription factor
A (Tfam), are/is also reduced (180),
suggesting a lower drive for mitochondrial
biogenesis in COPD muscle. Overall, the
reduction in muscle oxidative capacity in
COPD is consistent with the type I to
type IIx fiber shift typically reported in this
population (161, 163).

When compared with healthy
control subjects, mitochondrial density
and mitochondrial function are reduced in
the lower limb muscle of patients with
COPD (175, 176, 179, 181–183). In
addition to this, the presence of specific
mitochondrial impairments in COPD may
affect energy conversion efficiency and
selected respiratory chain complexes.
However, this finding currently remains
controversial. Regarding coupling
efficiency, studies reported lower
respiratory control ratios in isolated
mitochondria from COPD muscle (176,
181), which could reflect reduced coupling
of oxidation to phosphorylation. However,
it is important to consider that greater
fragility of mitochondria within diseased
muscle can result in reduced respiratory
control ratios caused by isolation-induced
damage to organelles, as it does for other
indices of mitochondrial function (179).
Furthermore, a reduction of uncoupling
protein 3 (UCP3) expression has been
reported in patients with COPD (181,
184, 185), possibly representing a specific
adaptation to modulate the efficiency of
oxidative phosphorylation (184). Finally,
two studies reported an increase in COX
activity in the quadriceps in patients with
COPD compared with healthy control
subjects (176, 186). In both studies, up-
regulation of COX activity was inversely
correlated to PaO2

, leading to the suggestion
that hypoxia could specifically modulate
this enzyme (176, 186). These data are,
however, at odds with results from other
studies showing a reduction in COX
activity (178), mitochondrial content (175),

and biogenic signaling (180) in COPD.
Nevertheless, considering the complexity
of COX regulation, it is possible that yet
unidentified post-translational mechanisms
underlie the reported enhanced COX
activity. Overall, more work is required to
establish the presence of specific alterations
of mitochondrial energy metabolism in
COPD muscle.

Thus far, only two studies have
assessed mitochondrial ROS release in
COPD muscle. Picard and colleagues
(179) reported the net release of hydrogen
peroxide (H2O2) per mitochondrion to
be higher in permeabilized fibers of
patients with COPD compared with
control subjects. This was observed
during baseline respiration and under
active phosphorylation, indicating that
mitochondria from COPD muscle display
properties that potentiate H2O2 production.
Similar data have been reported in
isolated mitochondria (176). Currently,
the mechanisms underlying this difference
are unknown but could involve enhanced
production of H2O2 and/or lower
endogenous H2O2 scavenging capacities
in mitochondria (176, 179). Although
enhanced H2O2 release could reflect
pathological alterations of mitochondrial
ROS handling (176), it may also represent
a signature of the fiber type switch present
in COPD muscle (179). This is based on
findings that healthy muscle mitochondria
within type II fibers release significantly
greater amounts of H2O2 than their
counterparts in type I fibers (187, 188).

Evidence of increased apoptosis is
reported in wasted COPD muscle (189),
but the role of mitochondria as a triggering
factor remains debated. A recent study
by Puente-Maestu and colleagues (182)
reported greater susceptibility to typical
triggers of PTP opening, including Ca21

and H2O2, in isolated mitochondria from
COPD muscle. In contrast, Picard and
colleagues (179) reported greater resistance
to Ca21-induced opening of the PTP in
permeabilized fibers from patients with
COPD compared with healthy control
subjects and attributed this to the
greater predominance of type II fibers,
which are intrinsically more resistant to
Ca21-induced PTP opening (187). Factors
underlying the discrepancy between the two
studies could be related to the assessment
technique whereby permeabilized muscle
fibers allow characterization of the entire
population of mitochondria in a more
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preserved cytoarchitectural environment
compared with isolated mitochondria.
Another difference is the fact that, in the
studies by Puente-Maestu and colleagues
(176, 182), patients with COPD and
control subjects had lung cancer.
Additional investigations are warranted.

Abnormal limb muscle bioenergetics.
Aerobic capacity is decreased and glycolytic
activity preserved in lower limb muscles
of patients with COPD (178, 190–196).
Consistent with altered oxidative profile,
the limb muscle metabolic profile exhibits,
at rest, low concentrations of high-energy
phosphates such as ATP and creatine
phosphate as well as lower aerobic
enzyme activity compared with age-
matched healthy control subjects (197,
198). In addition, intermediate markers
of glycolysis, namely glucose-6-phosphate,
glucose-1-phosphate, and fructose-6-
phosphate as well as phosphofructokinase,
and lactate dehydrogenase activities
are elevated in resting COPD muscles
(198, 199).

The limb muscle transcriptomics (200)
(the RNA that are transcripted in the
muscle), proteomics (201) (the proteins
that are expressed in the muscle), and
metabolomics (202) (metabolic profile in
the muscle) are altered in patients with
COPD compared with age-matched healthy
sedentary subjects. These abnormalities
are more evident in patients with muscle
atrophy. Moreover, a recent systems
biology approach to the problem (200)
suggested that patients with COPD
show a failure to coordinately activate
relevant limb muscle pathways, such as
bioenergetics, inflammation, and tissue
remodeling, that may lead to the abnormal
structural changes seen in these patients.
In this study, a significant association was
observed between a number of histone
modifiers and peak oxygen uptake,
lending to the hypothesis that cell hypoxia,
facilitated by sedentarity, might play
a role in muscle dysfunction through
epigenetic mechanisms (200).

Low mechanical efficiency and high
resting energy expenditure. Increased
limb muscle O2 requirements at a given
submaximal work rate has been reported
(172, 192). The change in fiber type
profile in COPD muscle may explain low
mechanical efficiency in these patients
(203). This finding is supported by a study
demonstrating higher ATP consumption

for a given mechanical work rate in patients
with COPD (204). Measurements of resting
and total whole-body energy expenditure
also support higher energy requirements
of patients with COPD (205, 206). Enhanced
muscle protein turnover could also contribute
to this phenomenon (207, 208).

Oxidative Damage in COPD
In resting and contracting limb muscle
fibers, superoxide anion and nitric oxide
(NO) are the primary free radicals generated.
Superoxide anion gives rise to hydrogen
peroxide, hydroxyl radicals, and other
oxidants that form the ROS cascade. NO
targets sulfhydryl groups in various proteins
through the process of S-nitrosylation but
can also react with superoxide anion to form
highly reactive nitrogen species (RNS),
such as peroxynitrite and nitrogen dioxide.
In resting muscles, ROS and RNS are
generated at low levels, and they promote
physiological functions including regulation
of contractile process, glucose uptake, and
blood flow. During strong contractions
or under pathophysiological conditions
(209), ROS and RNS are synthesized at
higher rates, which may overcome tissue
antioxidant capacity, thereby leading to the
development of oxidative stress. Oxidative
damage may alter the structure and
function of membrane lipids, proteins,
and DNA, eventually leading to cell injury
and death.

In limb muscles, ROS are mainly
produced by the mitochondrial respiratory
chain, especially during contractile activity.
ROS can also be derived from enzymes
such as nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (210),
xanthine oxidase, and from chemical
reactions with transition metals (211–213).
NO is continuously produced by nitric
oxide synthases (NOS) in limb muscle
fibers, and its generation is enhanced
during contraction. Three isoforms of
NOS have been identified so far: constitutive
endothelial (eNOS) and neuronal (nNOS),
which are calcium dependent, and inducible
(iNOS), which is calcium independent
(214). Several RNS are formed inside
limb muscle fibers, including the highly
reactive peroxynitrite, which triggers post-
translational modifications of proteins,
including nitration of tyrosine residues
leading to the formation of nitrotyrosine
(215). Peroxynitrite also exerts direct
oxidative effects on various proteins or
other structures within the muscle fibers.

Contractile proteins, key metabolic
enzymes, sarcoplasmic reticulum, and
calcium sensitivity are potential cellular
targets of ROS and RNS within the muscle
fibers. The generation of free radicals
in COPD muscles under resting and
contracting conditions has been
demonstrated by the identification of
oxidation of proteins, lipids, and DNA in
systemic compartments (216, 217).

Oxidative stress is emerging as
a major contributor to muscle dysfunction
in patients with COPD, especially in those
with severe disease. Under resting and
exercise conditions, patients with COPD
exhibit higher levels of lipid peroxidation,
oxidized glutathione, and protein oxidation
and nitration in the blood and limb muscles
(167, 171, 177, 201, 217–232). Interestingly,
chronic exposure to cigarette smoke
increases several limb muscle oxidative
stress markers in healthy smokers (233)
and animals (233, 234). In the latter
models, oxidation of muscle proteins
anteceded the pathological features induced
by cigarette smoke in the lungs of the
animals (233).

The development of oxidative stress has
strong functional implications for the
contractile performance of limb muscles.
For instance, Koechlin and colleagues
(227) reported that systemic oxidative
stress levels were directly related to
quadriceps endurance time in patients
with severe COPD. These authors also
demonstrated that hypoxemic patients
exhibited greater levels of oxidative stress
in limb muscles, both at rest and after
exercise, while showing a poorer quadriceps
performance (229). Quadriceps muscle
force is inversely related to the levels of
protein oxidation being generated within
the muscle (201, 223, 233). Importantly,
exercise capacity is inversely related to
protein oxidation levels within the
quadriceps of patients with severe
COPD (201).

One possible mechanism through
which excessive ROS generation may
adversely influence muscle contractile
performance is by inducing post-
translational modifications that may
inhibit key muscle enzymes and proteins
while enhancing their degradation. In this
regard, contractile proteins such as MHC
(171, 230) and enzymes such as creatine
kinase undergo severe oxidation within
the limb muscles of patients with COPD
(171, 222, 230, 233, 235). Oxidation of these
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proteins induces a significant decrease in
the content of contractile MHC as well as a
reduction in the activity of creatine kinase
(171, 222, 230, 233). The functional
implication of these changes in MHC and
creatine kinase regarding poor contractile
performance of limb muscles in patients
with COPD remains unclear. Another issue
that remains under investigation is whether
oxidative stress triggers proteolysis, which
may partly account for muscle atrophy
seen in COPD. In one study, however,
oxidative stress did not correlate with
muscle protein loss in the limb muscles
of these patients (171).

The development of oxidative stress in
limb muscles of patients with COPD may
be the result of enhanced inflammatory
cell infiltration and cytokine production.
Nevertheless, there is no strong relationship
between muscle oxidative stress and local
inflammation in patients with COPD
(171, 223, 233, 236). In fact, although
local and systemic levels of inflammatory
mediators are relatively low in patients
with COPD regardless of their body
composition, evidence of strong oxidative
stress is consistently found in limb muscles
and in the blood of these patients (171, 217,
223, 232, 233, 236). This specific issue is
covered in more detail in a section below
(MECHANISMS OF LIMB MUSCLE DYSFUNCTION

IN COPD).

Limb Muscle Function in COPD
Limb muscle function is altered in patients
with COPD as evidenced by muscle
weakness and reduced endurance. Lower
limb muscle strength has been widely
assessed in patients with COPD, and most
of the data have been obtained in the
quadriceps muscle. This muscle is readily
accessible, and it represents a typical
example of a primary locomotor muscle
that is underused in patients with COPD.
Quadriceps strength is usually assessed by
volitional tests while measuring maximal
isometric voluntary contraction (MVC),
and studies consistently show that this
measure is reduced by 20 to 30% in patients
with COPD (3, 138, 224, 237–248). This
has been confirmed by nonvolitional
assessment tests based on evoked twitch
tension in response to magnetic stimulation
of the femoral nerve (246, 247, 249, 250). In
one study, the annual decline in quadriceps
strength was accelerated in patients with
COPD, averaging 4.3% per year (3), in
comparison with about 1 to 2% per year

in the healthy aging population. However,
another study reported a similar rate of
decline in quadriceps strength in COPD
versus the healthy aging population (4).
The potential for a differential decline in
limb muscle strength between COPD and
the healthy elderly requires further
investigation.

One of the major characteristics
of muscle dysfunction in COPD is its
interindividual heterogeneity, a fact
leading to the concept of a limb muscle
dysfunction phenotype in COPD.
Seymour and colleagues (248) reported
muscle weakness in 20% of patients with
mild to moderate COPD, a population in
which muscle weakness would not be
expected as a major issue. By contrast,
more than 50% of patients with severe
COPD in whom muscle weakness was
expected did not show reduced
quadriceps strength. These data show that
unexpected phenotypes regarding muscle
weakness may exist in patients with
COPD.

In one study, no alteration in
contractile apparatus was found in COPD,
as reflected by preserved in vitro contractile
properties of vastus lateralis muscle
bundles (239). In addition, when
quadriceps strength is normalized by thigh
muscle cross-sectional area or by muscle
mass, no significant difference between
patients with COPD and healthy control
subjects was seen (3, 138, 224, 244).
Therefore, the reduced quadriceps strength
is mostly a reflection of the loss in muscle
mass (136, 188, 242, 388, 389). However,
in some patients, the loss in strength may
be disproportional to the reduction in
muscle mass (239, 248). This may occur
in patients frequently exposed to systemic
corticosteroids (138, 251). This finding
may only apply to chronically treated
patients, as no further decrease in
quadriceps strength was reported in
short-term corticosteroid-treated patients
with COPD compared with untreated
patients (252).

Muscle weakness is not homogeneously
distributed among muscle groups. Although
muscle weakness can be found in the
upper extremities, the strength of these
muscles is better preserved than that of
lower limb muscles (136, 138, 168, 220, 237,
238, 244, 249, 253). In addition, the force of
the distal upper limb muscles was better
preserved than that of the proximal upper
limb muscles.

Muscle endurance and fatigue. Muscle
endurance in patients with COPD has
been mainly assessed in lower limb muscles.
Volitional (227, 229, 242, 243, 254–257)
and nonvolitional (258) assessments of
muscle endurance have shown that
quadriceps endurance is decreased in
COPD. The magnitude of this decrease
is, however, highly variable (range,
32–77%), probably because of differences
in test procedures. The reduction in
quadriceps endurance seems to be of
similar magnitude in men and women
with COPD (255, 257) and in patients
with and without depleted FFM (244).
Impaired quadriceps endurance is also
present in patients with mild to moderate
COPD and is only poorly associated with
the degree of physical activity (243, 256,
259, 260). Endurance is more severely
reduced in the presence of hypoxemia
(229). The endurance of the elbow flexor
muscle (261), the biceps (244), and the
triceps and posterior deltoid (237) is
preserved in patients with COPD,
whereas that of the adductor pollicis
muscle is slightly reduced in the presence
of chronic hypoxemia (262), providing
additional information about the
heterogeneity of the muscle
abnormalities in COPD.

Many patients with COPD stop
exercise primarily because of leg fatigue
complaints before they become
ventilatory limited (263). The perception
of fatigue has to be differentiated with
objective measurements of fatigue. Most
of the studies examining muscle fatigue
after exercise in COPD have used
a nonvolitional technique: twitch
measurement after magnetic stimulation
(240, 250, 264–268). Additionally, the
EMG median frequency represents
a valuable indirect marker to predict
contractile fatigue (269). Objective
contractile leg fatigue, as evidenced by
a temporary reduction in quadriceps
strength occurring after exercise, has
been reported in 48 to 58% of patients
with COPD (240, 250, 265, 266).
However, the incidence increases to 58
to 81% when potentiated twitch instead
of nonpotentiated twitch measurement
was used to assess muscle fatigue (265).
The occurrence of muscle fatigue is
not an abnormal phenomenon in itself,
but the key observation is that, for the
same absolute oxygen uptake and the
same duration of cycle exercise, the
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degree of contractile fatigue elicited by
exercise is greater in patients with
COPD than in healthy individuals (240).
In addition, an inverse relationship
between the degree of contractile muscle
fatigue and dynamic hyperinflation after
exercise has been reported in COPD,
indicating that those patients with
greater hyperinflation tend to be more
limited by ventilatory constraint than by
leg fatigue (264). Interestingly,
quadriceps fatigue is infrequent after
exhaustive walking in patients with
COPD, suggesting that the mechanisms
of limitation in COPD are exercise
specific (250, 270). Nevertheless, the
gastrocnemius and the tibialis anterior
may also be susceptible to fatigue during
walking (271, 272).

Limb Muscle Function and
Exacerbation of COPD
Acute COPD exacerbations are common
in the course of the disease and are
associated with systemic events, including
effects on limb muscle function.
Quadriceps strength often decreases
during hospitalization for a COPD
exacerbation (241, 273, 274).
The reduction in quadriceps force during
hospitalization is significantly correlated
to a smaller improvement in walking time
1 month after discharge (273).
Importantly, quadriceps force only
partially recovered 3 months after
discharge from the hospital (241). Upper
limb muscle function is also affected, as
documented by a reduced handgrip force
in patients hospitalized for a COPD
exacerbation (241). Reduced handgrip
force is also associated with an increased
risk of hospital readmission due to acute
exacerbation (275). The maintenance of
muscle mass is compromised during an
exacerbation, with multiple atrophying
pathways being up-regulated (274, 276)
while markers of the mitochondrial
respiration pathway are down-regulated
(276). The cause of muscle dysfunction
during exacerbations is probably
multifactorial, involving inflammation,
nutritional imbalance, physical inactivity,
and the use of systemic corticosteroids.
Enhanced systemic inflammation may
potentially contribute to deterioration of
muscle function. Supporting this
contention is the inverse correlation
between IL-8 systemic levels and isometric
quadriceps strength during exacerbations

(241), whereas the presence of
inflammatory markers within the muscle
is not evident (274). During exacerbation,
dyspnea and fatigue compromise
dietary intake (277). In addition, resting
energy expenditure is acutely increased
during the first days of hospitalization
(278). The resulting negative energy
balance may contribute to physical
inactivity in patients experiencing an
exacerbation who may choose to preserve
their energy. Indeed, patients with COPD
are very inactive during hospitalization
for an acute exacerbation and remain
inactive even 1 month after discharge
(273, 279). Patients with frequent
exacerbations recover their physical
activity level to a lesser extent than
patients without frequent exacerbations
(273). Patients not improving their
walking distance within 1 month after
exacerbation are at higher risk for
hospital readmission (273). The use of
systemic corticosteroids could also be
involved in the worsening in muscle
function in the course of a COPD
exacerbation (251).

Consequences of Limb
Muscle Dysfunction in COPD

Limb muscle dysfunction contributes to
COPD morbidity. One major impact of
COPD is the incapacity to perform daily
activities, and muscle dysfunction may
contribute to this problem. Arguably, the
most troublesome consequence of muscle
dysfunction is its negative effect on life
expectancy (Figure 3), although a causal
relationship has not been proven.
Parameters such as reduced midthigh
muscle cross-sectional area (280, 281)
and lower quadriceps strength (282, 391)
predict mortality in COPD,
independently of lung function
impairment: (1) a midthigh muscle cross-
sectional area less than 70 cm2 as assessed
by computed tomography scanning is
associated with a fourfold increase in
mortality after adjusting for age, sex and
FEV1 (280); (2) an FFMI less than 16 kg/
m2 in men and less than 15 kg/m2 in
women is associated with a 1.9-fold
increase in mortality after adjusting for
age, sex, and FEV1 (132); and (3)
a quadriceps strength (kg) to BMI (kg/
m2) ratio less than 120% is associated
with increased mortality; each 10%

increment of this ratio is associated with
a 9% reduction in mortality (282). This
highlights the importance for clinicians
to monitor body composition and muscle
strength when evaluating a patient with
COPD.

Implications for Exercise Intolerance
Exercise intolerance is a major consequence
of COPD, and it cannot be explained solely
on the basis of limitations in ventilation
and gas exchange. For instance, the degree
of impairment in lung function is a poor
predictor of exercise capacity (283).
Quadriceps strength correlates with poor
exercise tolerance in this disease (284).
The strength of the quadriceps is a strong
predictor of exercise capacity in patients
with chronic pulmonary diseases: a twofold
increase in muscle strength is associated
with a 1.4- to 1.6-fold increase in work
capacity (285) (Figure 3). This may be
related to the influence of muscle strength
on the perception of leg effort during
exercise (285), the main limiting symptom
in 40 to 45% of patients with COPD
(263). Perhaps the most striking clinical
observation pointing to a peripheral
component of exercise limitation in
COPD is that exercise capacity remains
abnormally low in most lung transplant
recipients despite normalization of lung
function (286). In patients with COPD,
exercise termination usually occurs before
a true plateau in V

:
O2 is reached. In

many patients, psychological factors such
as anxiety, fear of dyspnea, and poor
motivation may contribute to exercise
intolerance. As a result, the physiologic
contributions of individual factors to
reduced peak V

:
o2 is difficult to assess.

The contribution of limb muscle
abnormalities to exercise limitation in
COPD has been challenged by Richardson
and colleagues (203). These authors showed
that the aerobic capacity of the lower
limb muscles was not reached during
cycling exercise (when a large muscle
mass was involved), because of the early
occurrence of central limitation to exercise.
The implication of this is that the aerobic
capacity of the exercising muscles of the
lower limbs, even if reduced, is not
overwhelmed during whole-body exercise
in patients with COPD.

Patients with COPD stop exercising
because of exertional discomfort and
not necessarily because of physiologic
constraints. Although dyspnea is
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undoubtedly the primary limiting symptom
in many patients, a significant portion
stops exercise because of leg fatigue (263).
This could be related to the fact that limb
muscle alterations, such as poor oxidative
capacity, atrophy, and weakness, increase
susceptibility to contractile fatigue. The
impact of leg fatigue on the exercise
response to acute bronchodilatation was
evaluated to test the hypothesis that the
improvement in airflow obstruction would
not translate into better exercise capacity
in patients with higher susceptibility to leg
fatigue (266). In this study, bronchodilation
provided by the administration of
ipratropium bromide did not enhance
exercise tolerance in patients who
developed contractile fatigue after cycling
exercise as it did in those who did not
develop contractile leg fatigue (266). This
study highlights how contractile fatigue of
the quadriceps may influence the exercise

response to bronchodilation in COPD,
a concept that has been confirmed in
subsequent studies (287).

Lower capacity for muscle aerobic
metabolism may influence exercise
tolerance. Increased lactic acidosis for
a given exercise work rate, which is
a common finding in COPD (177, 190,
288, 289), increases ventilatory needs by
increasing nonaerobic carbon dioxide
production (288). This imposes an
additional burden on the respiratory
muscles, which are already facing increased
impedance to breathing. In addition, the
resulting acidemia may act as a breathing
stimulus through the carotid bodies.
Premature muscle acidosis, a contributory
factor to muscle fatigue and early exercise
termination in healthy subjects, may be
an important mechanism contributing to
exercise intolerance in COPD (290). This
may be exacerbated by a tendency to

retain carbon dioxide (respiratory acidosis)
during exercise (288). Perturbation in
muscle energy metabolism is another
potential contributor to exercise intolerance
in COPD. Direct measurements of muscle
metabolites in biopsy samples taken
immediately after a standardized bout of
constant work rate exercise (at 80%
peak work rate) showed a significant
accumulation of muscle lactate, degradation
of muscle PCr, and loss of muscle ATP in
COPD. The magnitude of these metabolite
modifications was similar to that seen in
healthy control subjects, but they occurred
at substantially lower absolute exercise
work rates (196, 291). This observation
was replicated when plasma ammonia
concentration was measured as a surrogate
for adenine nucleotide loss (292).
Moreover, when mitochondrial energy
delivery was increased by pharmacological
activation of PDC, both blood lactate

Figure 3. Relationships between muscle mass and strength and clinical outcomes in patients with chronic obstructive pulmonary disease (COPD).
A midthigh muscle cross-sectional area (MTCSA) , 70 cm2 (A) (280), a low fat-free mass index (FFMI) defined as an FFMI , 16 kg/m2 in men
and , 15 kg/m2 in women (B) (132), and a reduced quadriceps strength defined as a quadriceps strength (kg) to body mass index (BMI, kg/m2)
ratio , 120% (C) (282) are predictors of mortality in COPD after adjusting for traditional mortality risk factor such as age and FEV1. The strength of the
quadriceps is a significant contributor to exercise capacity in COPD (D) (285). All panels adapted by permission from the indicated references.
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and ammonia accumulation were reduced
during maximal exercise in a cohort of
patients with COPD (293). Maximal
exercise work rates were increased after this
intervention, suggesting that mitochondrial
ATP delivery is relevant to whole-body
exercise performance in COPD.

The degree of limb muscle fatigue
reached during exercise appears to be highly
regulated in healthy subjects (95, 294)
and in COPD (196, 295). This is viewed
as a protective mechanism (95) whereby
feedback signals originating from the
fatigued muscles inhibit motor cortical
output via the stimulation of group III
and IV muscle afferents, thus preventing
subsequent locomotor recruitment and the
development of dangerous and potentially
irreversible fatigue (294, 296). This concept
is in line with the notion that the central
nervous system integrates information
originating from the limb muscles to
determine the duration of exercise and
the degree of muscle fatigue (294, 297).
Preinduction of muscle fatigue by
neuromuscular electrical stimulation
contributed to limitation of exercise
tolerance in patients with COPD (298).
Spinal anesthesia, presumably blocking
group III/IV sensory afferent signals from
the lower limb muscles, was shown to
improve exercise duration to constant
work rate exercise in patients with COPD
(295). Spinal anesthesia was associated with
less leg fatigue perception and allowed
patients to reach a more profound degree
of fatigue and greater central motor output
to the exercising muscles. The reduced
ventilatory response with spinal anesthesia
was also important in explaining the
enhanced exercise duration with this
intervention. Based on studies showing
early reliance on glycolytic metabolism
and increased lactate production in
exercising patients with COPD as
compared with healthy subjects (196, 290),
it is conceivable that the afferent signal
originating from the contracting muscle
may even be greater in patients with COPD
than in healthy individuals and that this
mechanism might have a larger effect in
the former individuals. Thus, limb muscle
dysfunction could, by enhancing the level
of sensory afferent signalization, directly
contribute to exercise intolerance.

The impact of lower limb muscle
dysfunction on exercise tolerance in COPD
has been mostly assessed using the cycling
exercise modality. Gagnon and colleagues

(272) reported recently that, after walking
exercise standardized to induce similar
energy expenditure, dorsi and plantar
flexors were much more prone to the
development of fatigue in patients with
COPD than in healthy control subjects.
These data are in line with another study
in which the electrical activity of five
different lower limb muscles behaved
in a similar fashion in patients with
COPD and in healthy control subjects
despite a markedly lower walking distance
during a 6-minute walk (271). Together,
these studies highlight the potential
contribution of the distal limb muscle
fatigue in daily physical activities in
patients with COPD. The occurrence
of muscle fatigue may also modulate
the response to exercise training
programs, as illustrated by the
observation that patients with COPD
developing quadriceps fatigue during
exercise training have larger training
effects compared with those who did not
fatigue during the same session (299).

Other likely consequences of muscle
atrophy and poor limb muscle function in
COPD include reduction in quality of life
(300) and greater use of health care
resources (301).

Etiology of Limb Muscle
Dysfunction in COPD

The physiopathological interaction between
chronic lung disease and alterations in limb
muscle tissue is still poorly understood
and constitutes an important research area.
Several factors have been hypothesized to
initiate and/or promote changes reported
in limb muscles of patients with COPD
(Table 1). Multiple factors are likely to
interact in a given individual, and the
relative contribution of each individual
factor is likely to vary from one patient
to another. The different factors that are
reviewed in this section all have the ability
to activate various cascades that could
initiate or enhance, alone or most probably
in combination, changes in fiber type
phenotypic expression, contractile
proteolysis, metabolic alterations, and
regenerative defects in limb muscles of
patients with COPD.

Disuse versus Myopathy
One important question is whether limb
muscle dysfunction in COPD simply reflects

years of physical inactivity or whether some
factors specifically related to COPD could
be invoked. Limb muscle dysfunction in
COPD has been attributed in part to
reduced physical activity (“detraining” or
“deconditioning”) that characterizes this
disease (302). Muscle disuse in general
can lead to many of the features seen in
limb muscles of patients with COPD:
muscle weakness, overall muscle atrophy,
decreased cross-sectional area of muscle
fibers, loss of type I fibers, reduced
oxidative enzyme activity, reduced
capillary-to-fiber ratio, early lactate release,
reduced rate of phosphocreatine resynthesis
after exercise, and altered redox status
(303–307). In healthy adults, these muscle
alterations are usually reversible after
a period of training.

Whether limb muscle dysfunction
and cellular alterations in COPD are further
compounded by a myopathy (that is,
intrinsic alterations in limb muscle over
and above the changes due to inactivity,
and which are not fully reversible by exercise
training) has been the subject of debate and
controversy in last decade and is still not
resolved (307–311). This may be in part
because of failure to identify and separately
study and discuss findings in different
phenotypic (and in the future genotypic)
subgroups of COPD. The obvious example
is in COPD cachexia. Nobody would
dispute that muscle mass loss taking
a patient to below the 95% confidence limit
of normal is a pathological process. But
for patients with normal muscle mass, the
question remains.

This question is not a semantic one,
as identification of the mechanisms of
muscle dysfunction in COPD will
potentially result in rational and efficient
therapeutics. If dysfunction is only due to
deconditioning and inactivity, appropriate
exercise training would be the logical way
to improve patients and should be sufficient.
If, however, myopathy occurs in COPD,
other therapeutic approaches might be
necessary to target the identified pathways.
However, it can be argued that the inability
to reach a sufficiently intense training
stimulus for an adequate period of time
during whole-body exercise in patients
with COPD prevents proper testing of the
hypothesis that exercise can restore
structure and function to normal.

Although we cannot close the debate,
we can expose some of the main positions.
Against the hypothesis of a disease-specific
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myopathy are the following: (1) many
functional and cellular findings in COPD
are identical to those of disuse; (2) limb
muscle is trainable, because training has
been shown to improve muscle strength
and endurance, oxidative enzyme activities,
fiber cross-sectional area, and muscle
capillarization, at least in some patients
(307, 310); (3) in a small study, high-
intensity aerobic interval training was
shown to restore work performance and
oxidative capacity of the quadriceps to

a level similar to that found in sedentary
individuals (312); and (4) the fact that
full recovery of muscle function is unusual
does not necessarily indicate a myopathy,
because the duration of the training
program may be too short to normalize
alterations that have developed over
several decades (313, 314), or early
ventilatory limitation may compromise
the ability to tolerate sufficient muscle
stimulus to improve global or cellular
function (311).

On the other hand, several observations
are in favor of the existence of a myopathy in
patients with COPD: (1) muscle function
(strength or endurance) is not (or is poorly)
related to the degree of physical activity
in COPD, as assessed by questionnaires
or actual measurements (302), suggesting
that mechanisms other than inactivity
may exist; (2) when patients with COPD
are compared with healthy subjects with
consistent and comparable low physical
activity, differences in muscle function and/
or structure remain (259, 308); (3) although
exercise training improves some muscle
features in COPD, muscle typology
does not improve, (i.e., increase in type I
fiber proportion [163, 315, 316]) to the
same extent in COPD in comparison to
what is seen in healthy subjects (317–319);
(4) quadriceps weakness occurs in
patients with COPD across all severity
stages (310).

In summary, a consensus exists for
a significant role of muscle disuse to explain
limbmuscle dysfunction in COPD, although
it is not the only mechanism. The debate
remains open on the concept of a separate
myopathy in this disease. In this debate,
one limit is the lack of clear and consensual
definition of what is a COPD-related
myopathy. Similar debates are also taking
place in other chronic diseases, such as
chronic heart failure and diabetes
(320, 321).

Mechanisms of Limb Muscle
Dysfunction in COPD

Inflammation. The close relationship
between the systemic inflammatory
response in several acute and chronic
conditions and the development of muscle
atrophy is acknowledged in the literature
(for review, see [116, 322]). Production
of key cytokines can generate an array
of cellular responses, including the
induction of the UbP system through the
transcriptional activities of NF-kB and
FOXOs (119), apoptosis (323), and
macroautophagy (324), which have all
been linked to the development of muscle
atrophy. In agreement with other
atrophying models in which inflammatory
response is reported, increased expression
of Atrogin-1, MuRF-1, and neural
precursor cell expressed developmentally
down-regulated protein 4 (Nedd4), all
E3-ligases, are observed in the quadriceps
of patients with COPD (102, 325).

Table 1: Etiologies of Limb Muscle Atrophy, Weakness, and Susceptibility to Fatigue

Mechanisms Involved

Factors leading to muscle atrophy and
weakness

Disuse Associated with weakness, atrophy,
changes in fiber type distribution,
and metabolic alterations
(303–306, 310)

Inflammation Triggering of the muscle proteolysis
cascade (102, 116, 322, 325)

Oxidative stress Triggering of the muscle proteolysis
cascade (336, 339, 340)

Associated with reduced muscle
endurance (222, 227, 229)

Protein carbonylation possibly
involved in exercise intolerance
and weakness (201)

Hypoxemia Decreased muscle protein synthesis
Activation of muscle degradation
through hypoxia-inducible factor/
von Hippel–Lindau signaling
cascade (347–350)

Hypercapnia Intracellular acidosis/alterations in
contractile protein synthesis/
degradation (105, 362)

Low levels of anabolic hormones and growth
factors

Associated with reduced muscle
protein synthesis (371, 372)

Impaired energy balance Associated with reduced muscle
protein synthesis (381, 383)

Corticosteroids Reduced muscle protein synthesis
and enhanced proteolysis through
increased myostatin levels and
reduced insulin-like growth
factor-1 levels (385)

Vitamin D deficiency Associated with muscle weakness,
type II atrophy impaired calcium
metabolism (392, 400, 405)

Factors leading to muscle susceptibility to fatigue

Central fatigue—afferent feedback from limb
muscles

Reduced motor output to the
contracting muscles (295)

Reduced O2 delivery (impaired cardiac output,
blood flow competition between the
respiratory and limb muscle, reduced
capillarity)

Changes in muscle metabolism in
favor of glycolysis; accumulation
of muscle metabolites associated
with muscle fatigue

Muscle metabolic alteration (reduced oxidative
enzyme activity, reduced mitochondrial
function)

Preferential use of glycolysis and
accumulation of muscle
metabolites associated with
muscle fatigue (179, 180, 190,
199, 443)
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Increased Nedd4 expression compromises
satellite cell proliferation and muscle
regeneration by favoring ubiquitination
and degradation of Notch (326), an
important transcription factor involved in
the regulation of these processes (327).
Conflictual or negative results regarding
apoptosis and macroautophagy in the
muscles of COPD demand further studies
to explore the role of these mechanisms
(102, 189, 236). Although increased
inflammatory response is seen during
exacerbated COPD (328, 329), similar
observation is controversial in stable
patients (201, 232, 330–332). One relevant
negative observation is the lack of evidence
of muscle inflammation in this human
model of muscle atrophy (332, 333).
A critical appraisal of the literature reveals
only scant and unconvincing data
supporting the presence of quadriceps
inflammation in COPD (331, 334, 335),
even in the presence of muscle atrophy
(223, 333) or during periods of acute
exacerbation when inflammatory bursts
should be expected (276). As such, a clear
role of muscle inflammation as a key
event in the development of limb muscle
dysfunction in COPD has yet to be
confirmed.

Oxidative stress. In several chronic
atrophying conditions, including COPD,
unbalanced oxidative stress could alter
integrity of muscle proteins, enhancing
their degradation (336). In COPD, systemic
(226) and local (219, 220) oxidative stress
have been reported. Acute bouts of exercise
(224, 226) as well as acute exacerbation
(329, 337) increase the level of oxidative
stress. Direct oxidative stress exposure
(338) or indirect production of ROS
through inflammatory response (339,
340) induces proteolysis and increases
expression of UbP components. Although
precise mechanisms are still unknown,
induction of NF-kB (339) and FOXOs
transcriptional activities (341) or p38
kinase activity (120, 342) by oxidative
stress is believed to play a role in the
proteolytic signaling.

Hypoxia. Under hypoxic conditions,
muscle mass in animals (343) and humans
(344) decreases. Moreover, under low
oxygen content, cultured myoblasts have
defective myogenic processes (slower
proliferation and differentiation) (345).
Patients with COPD having a low arterial
O2 level (330) or a reduction in O2 delivery
(346) tend to have a lower body mass

than those with a normal arterial O2 level
or a sufficient O2 delivery. During episodes
of low O2 availability, a coordinated
response for cell survival is accomplished
by hypoxia-inducible factor-1 (HIF; for
review, see [347]). In COPD, hypoxia is
a likely factor driving changes in limb
muscle tissue (200). As a correlate,
increased expression of von Hippel–Lindau
(VHL) protein, an E3 ligase involved in
the proteolytic degradation of HIF-1a
subunit, has been reported in muscle
samples of patients with severe COPD
(mean PaO2

of 69 mm Hg) compared
with healthy subjects (348). Under such
circumstances, the altered HIF signalization
may further compromise muscle mass. In
addition, regulated in development and
DNA damage responses-1 (REDD1) gene
activation was recently reported in muscle
samples from hypoxemic patients with
COPD (349). In response to several cellular
stresses, REDD1 inactivates the kinase
activity of mTOR, a key player in the
transduction of the AKT signal during
protein synthesis. At the tissue level,
increased proteolysis through activation
of the UbP system and halted synthesis
have been demonstrated in cultured
myotubes (350).

In patients with COPD, chronically
altered oxygen transport (351, 352) and
impaired oxygen use (176, 181–183, 353)
facilitate limb muscle oxidative stress
(201, 217, 226, 227, 229, 354) leading to
nitroso-redox imbalance (355–357) and
explaining post-transcriptional alterations
(inhibition of S-nitrosylation) contributing
to limb muscle dysfunction (201).
Hypoxemia may also potentiate the
inflammatory response (358), providing
an additional mechanism linking hypoxia
to specific cellular responses predisposing
to muscle atrophy. Hypoxemia may also
compromise muscle oxidative capacity
and capillarization (359) and predispose to
muscle fatigue (360, 361).

Hypercapnia. Increase in cellular CO2

content is present in chronic hypercapnic
patients and will develop or worsen
during COPD exacerbation. Consequently,
tissue pH decreases (197), and acidosis
can alter contractile protein synthesis
and degradation (362). In muscle tissue,
acidosis increases the expression of genes
encoding proteins of the UbP pathway
(105) and impairs the AKT signaling (363),
thereby reducing protein synthesis and

further promoting activity of the UbP
pathway (118, 364).

Low levels of anabolic hormones and
growth factors. Low testosterone levels
have been observed in patients with
COPD (365–369). Chronic hypoxia and
corticosteroid therapy may all contribute
to this observation. Indeed, current
endocrine society guidelines suggest active
case finding in populations at high risk
of symptomatic hypogonadism, including
those with COPD (370). Cross-sectional
studies have demonstrated inconsistent
association of indices of limb muscle
function with serum testosterone levels in
COPD. Laghi and colleagues observed
a higher prevalence of hypogonadism in
men with COPD but no association with
limb or respiratory muscle performance
or whole-body exercise capacity (368). In
contrast, Van Vliet and colleagues observed
that quadriceps strength, but not whole-
body exercise tolerance, was related to low
circulating testosterone levels (365).

Growth factors have an essential role in
muscle tissue homeostasis. Although growth
hormone (GH)/IGF-1 axis (reviewed in
[371]) or testosterone (372) increase muscle
content, myostatin is a strong negative
regulator of muscle growth (373).
Myostatin is a transforming growth factor-
b family member that acts as a negative
regulator of limb muscle growth. Its global
role in whole-body homeostasis has
recently been reviewed (374). The primary
means by which myostatin negatively
regulates muscle growth is by suppressing
myoblast proliferation through the
inhibition of cell cycle progression (375).
Increased expression of myostatin mRNA
transcripts (102, 376) and protein
expression (377) in the quadriceps and
elevated serum myostatin (378) were
reported in patients with COPD. Myostatin
mRNA transcript level are also correlated
with muscle strength in patients with
COPD (376). In turn, resistance training
during an acute exacerbation may reduce
quadriceps myostatin mRNA expression
in patients with COPD (379). Based on
the increased expression of Nedd4
(102) and on the repressive activity of
myostatin on satellite cell proliferation
and differentiation (373), it is tempting
to speculate that muscle repair is likely
altered in COPD.

Impaired energy balance. Impaired
energy balance, due to elevated energy
requirements, reduced dietary intake, or
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both, may lead to limb muscle atrophy
(380, 381). The energy balance may be
compromised in COPD due to the
complex interaction of a number of factors,
including anorexia, elevated whole-body
energy requirements, imbalance between
muscle protein synthesis and breakdown,
enhanced lipolysis, and an increase in
pulmonary and systemic inflammatory
mediators (382). Impairment in energy
balance and protein balance may occur
simultaneously, but these processes can
also be dissociated, as reflected in the
different COPD body composition
phenotypes. Patients with a negative energy
balance and a negative protein balance
will deplete both body fat and protein
stores, as reflected in weight loss, loss of
FM, and muscle wasting. Patients with
a normal energy balance but a negative
protein balance will experience loss of
muscle mass despite normal and stable
weight (383).

Corticosteroids. Although a short
course of systemic corticosteroids may
not alter limb muscle function in COPD
(252), these antiinflammatory agents have
a trophism for the muscles, and their
chronic or repeated use can potentiate
muscle atrophy and weakness in patients
with COPD (251, 384). Morphological
changes have been reported in the
quadriceps in patients with COPD
presenting with a corticosteroids-related
myopathy (384). These include increased
variations in muscle fiber size, increased
amount of connective tissue, increased
number of central and subsarcolemmal
nuclei and diffuse necrotic fibers.
Corticosteroids, particularly in their
fluorinated form, appear to preferentially
affect type IIx fibers; these fibers can
become severely atrophic when exposed to
these medications (384). Mechanisms by
which corticosteroids may impact muscle
function are related to the ability of these
agents to compromise the production of
contractile proteins and down-regulate the
IGF-1 pathway. Corticosteroids may also
enhance proteolysis by increasing
myostatin levels (385).

Vitamin D deficiency. The vitamin D
receptor (VDR) is abundantly expressed in
limb muscles, where it mediates several
gene promoters resulting in differential
gene expression (386). Nongenomic or
more rapid effects of vitamin D through
intracellular VDR have also been
documented in the muscle (387). As

such, the vitamin D pathway may play an
important role in the maintenance of limb
muscle health. Rickets often presents
with severe muscle weakness, and low
vitamin D serum (25-OH vitamin D)
levels are associated with reduced limb
muscle strength and increased risk of falls
(388–390). In elderly individuals, vitamin D
status predicts physical performance and
subsequent functional decline during
long-term follow-up (391). Yet, the
underlying mechanisms by which these
potential effects of vitamin D are mediated
are not fully understood. Adults with severe
vitamin D deficiency show predominantly
type II muscle fiber atrophy (392), with
interfibrillar spaces infiltrated with fat,
fibrocytes, and glycogen granules (393).
Conversely, increases in relative fiber
composition and type II fiber dimensions
have been reported in the elderly after
treatment with vitamin D (394, 395).
1,25(OH)2 vitamin D also influences active
calcium transport into the sarcoplasmatic
reticulum (396), as it regulates Ca-ATPase
by phosphorylation (392). 1,25(OH)2D,
through VDR-mediated gene transcription,
(397) affects calmodulin (398), actin,
and troponin C content (399) and can
also up-regulate the expression of IGF-1
(386).

In the context of COPD, vitamin D
deficiency may contribute to limb muscle
dysfunction (400, 401). Vitamin D
deficiency is highly prevalent in patients
with COPD compared with age-matched
smoking control subjects, with 60 to 70%
of nonsupplemented patients with severe
disease having 25-OHD levels less than
20 ng/ml or 50 nmol/L (248, 402), which
is typically accompanied by a fiber type
shift to type II fibers (161, 169, 190).
Vitamin D deficiency preferentially reduces
the size of type II fibers that are important
in fall prevention (389), a problem
that can be tackled by vitamin D
supplementation (403). However, one
study failed to find a significant relationship
between vitamin D status, muscle MHC
protein expression, and limb muscle
strength in patients with COPD (404). Yet,
in another study, genetic polymorphisms
in the VDR correlated with measures of
strength (405). Together, these studies
indicate that, to a certain extent, alterations
in the vitamin D pathway may be present
in COPD and that this pathway may be
further compromised during disease

progression, thereby affecting the muscle
independently of serum levels.

Renin-angiotensin system. The renin-
angiotensin system may have implications
for the development of limb muscle
dysfunction in COPD (406). This system
is expressed in skeletal muscle and
produces angiotensin II that inhibits the
IGF-1 signalization cascade (407),
stimulates NF-kB and, as a result, the
UbP pathway (408), and interacts positively
with myostatin (409). Polymorphism of
the angiotensin-converting enzyme (ACE)
gene, with the deletion of a pair base
sequence on chromosome 17, is associated
with higher tissue level of ACE activity and
consequently in angiotensin II tissue
levels (410). This has been associated
with a less oxidative muscle phenotype with
lower proportion of type I fibers (411–413).
In contrast, the same polymorphism is
associated with better-preserved muscle
strength in COPD (414) and possibly with
a better strength response after resistance
training in healthy subjects (415). As
a result of these apparently conflicting
effects of ACE muscle activity on the
muscle phenotype, the effect of
interventions on this pathway is difficult
to predict; this question is currently being
addressed (see clinicaltrials.gov:
NCT01014338).

Smoking. Cigarette smoking is unlikely
to be the main mechanism involved in
limb muscle dysfunction in COPD because,
in several studies, patients and control
subjects were matched for smoking history.
However, smoking by itself has some
effects on muscle biology (416–419), and
it is possible that it may predispose
patients to the development of limb
muscle dysfunction. Smoking by itself
may be associated with muscle atrophy
and weakness in otherwise healthy
subjects (4, 236, 248). Smoking is
also associated with a decrease in type I
fiber cross-sectional area, reduced type I
fiber proportion, reduced cytochrome oxidase
activity, increased lactate dehydrogenase
activity, and a higher level of protein oxidation
in the quadriceps (420–422).

Mechanisms of Muscle Susceptibility
to Fatigue in COPD
Impaired quadriceps endurance is not
explained by reduced muscle mass (193),
but reduced muscle aerobic capacity and
oxidative stress have been implicated
(196, 224, 227, 242, 423).
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Neural drive and muscle afferents. In
healthy young subjects, the interaction
between central motor command and limb
muscle afferent feedback plays a key role
in modulating the physiologic response to
exercise by affecting the cardiorespiratory
response (267), development of muscle
fatigue (294), and endurance performance
(424). The interplay between central
motor drive and the muscle feedback
during exercise confines limb muscle
fatigue within a critical threshold (294).
Despite potential relevance in COPD, few
researchers have studied the neural drive
and muscle afferents in this context.
However, the available evidence supports
the idea that increased afferent feedback
from the limb muscles during exercise is
involved in the regulation of muscle
fatigue during exercise in COPD
(295, 298).

Blood flow, oxygen delivery, and
extraction. In recent years, the influence
of increased work of breathing on limb
muscle fatigue during exercise has
been documented in healthy subjects.
During strenuous exercise, peripheral
vasoconstriction associated with the high
demand for respiratory muscle blood flow
appears to compromise limb muscle
perfusion (261, 425, 426) and consequently
enhance muscle fatigue (427). A blood
redistribution phenomenon in favor of the
respiratory muscles may also occur in
COPD (428), and it has been hypothesized
that strategies that reduce respiratory
muscle work may alleviate limb muscle
fatigue by restoring blood flow to the
limb muscles (267, 429). This hypothesis
was supported by a study from Amann
and coworkers, who gave a range of
interventions designed to improve
oxygenation (by supplemental oxygen)
and/or reduce work of breathing
(proportional-assist ventilation or helium
or both) (267). Interestingly, quadriceps
fatigue was reduced partially and to
similar extent with each intervention.
These data were interpreted as showing
that only 30 to 40% of quadriceps fatigue
could be attributed to muscle oxygen
delivery issues.

Enhanced muscle fatigability can also
occur when the left ventricular function is
compromised (267, 430). This may be
relevant in the subset of patients with
COPD (431), including those with cardiac
comorbidities (432) and those with

pulmonary hypertension (433), in whom
altered cardiac output and oxygen delivery
have been reported.

Reduced muscle capillarity could
contribute to limit blood and oxygen
delivery to the muscle and increase
susceptibility to development of muscle
fatigue, as indicated by the positive
relationship between muscle capillarity and
exercise performance (174). Saey and
coworkers confirmed that capillarity was
reduced in patients with COPD who
developed quadriceps fatigue after cycling
exercise (423). Vogiatzis and colleagues
showed that exercise training improved
capillarity in COPD (434). Thus,
augmenting capillarity may offer a route
to reduce fatigability; this issue requires
further exploration.

Mechanisms within the motor unit.
Mechanisms involved in limbmuscle fatigue
include the conduction of the action
potential along the muscle fiber membrane
into the transverse tubule system, the
release of calcium into the myoplasm, the
binding of calcium to troponin, the
interaction between myosin and actin
during cross-bridge cycling, and the active
reuptake of calcium into the sarcoplasmic
reticulum (92). Also, an impaired
excitation–contraction coupling may be
a contributing common factor to fatigue
induced by diverse forms of exercise (90, 91).
Metabolic changes in the muscle, such as
lactate accumulation and phosphocreatine
depletion (435), limitations in muscle energy
supply (436–438), and structural and
metabolic disorganization of contractile
proteins (91, 92), can all be involved in
the development of contractile muscle
fatigue. The accumulation of lactic acid
in muscle has historically been suggested
to be the major cause of muscle fatigue
(439) (see review by Westerblad and
colleagues [92] and by Fitts [440]).
Although lactic acid is dissociated into
lactate and hydrogen ions leading to
a significant decrease in pH, lactate itself
has no effect on muscular contraction,
but the increased concentration of
hydrogen ions, which affects the
excitation–contraction coupling by
decreasing the quantity of calcium
released, may contribute to the
development of contractile fatigue. Other
factors, such as redox status (209) and
muscle inflammation (441, 442),
must also be considered as potential

contributors to muscle fatigue in patients with
COPD.

In COPD, changes in muscle metabolism
favor glycolysis, and phosphorus-31 nuclear
magnetic resonance (31P-NMR) studies
suggest early depletion and prolonged
recovery of phosphocreatine in the
quadriceps after exercise (443). Changes
in muscle enzymatic profile and
capillarization leading to a greater reliance
on glycolytic metabolism during exercise
are also associated with muscle fatigue in
patients with COPD (423). During exercise,
the extent of changes in muscle metabolism
and muscle fatigue after a cycle exercise
performed until exhaustion were similar
in patients with COPD and age-matched
control subjects despite a much lower total
work performed by the COPD group
(196). Moreover, taking into account the
amount of work performed, use of glycogen
and accumulation of lactate and the key
intermediate markers of glycolysis show
significant increases after exercise in
patients with COPD (196). Together with
the known reduction in oxidative enzymes
in COPD (199), these findings suggest
that an impaired muscle oxidative capacity,
with a reduction in phosphorylation
potential and a greater reliance on
glycolysis that may well contribute to the
muscle fatigue in COPD. The greater
reliance on glycolysis can, in part, be
explained by the reduced proportion of
type I fibers (444, 445) and the lower
oxidative enzyme capacities observed in
the quadriceps compared with age-matched
healthy subjects (190, 199) as well as by
the higher phosphofructokinase activity
observed in COPD (199). Moreover, an
additional component of glycolytic reliance
might be related to lactate and glucose
transporters, whose activity was found be
altered in COPD (198). Because these
transporters are crucial for lactate removal
and glucose entry in limb muscle, they
could influence the relative contribution
of the glycolytic pathway to the total energy
expenditure during exercise. With the
reduced capillarity and decreased muscle
mitochondria activities and density,
patients with COPD show electron
transport chain blockade and excessively
increased levels of systemic and local
oxidative stress (201, 446). Couillard and
colleagues demonstrated that exhaustive
quadriceps exercise induces local oxidative
stress in patients with COPD. They also
found a reduction in antioxidant activity
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48 hours post exercise in patients with
COPD compared with healthy control
subjects (224). Although muscle fatigue
was not assessed in this study, muscle
oxidative stress was associated with
reduced quadriceps endurance,
suggesting a relationship between muscle
fatigue and oxidative stress in patients
with COPD. This relationship is further
supported by the finding that antioxidant
therapy may alleviate muscle fatigue in
COPD (227).

Thus, there are several interrelated
mechanisms by which muscle fatigue
can contribute to exercise limitation in
patients with COPD. Some act directly
on the muscle contraction process
and others through their effects on both
the cardiorespiratory and nervous
systems.

Assessment of Limb Muscle
Function in COPD

The existing relationships between limb
muscle mass and strength and important
clinical outcomes in COPD (see previous
section, Consequences of Limb Muscle
Dysfunction in COPD) suggest that
assessing body composition and limb
muscle strength in the clinical
evaluation of COPD can identify patients
who are at increased risk for exercise
intolerance and premature mortality.
One strategy could be to evaluate body
composition and quadriceps strength at
the time of referral to the exercise
laboratory for the assessment of dyspnea
and/or exercise intolerance. Some
exercise laboratories implemented this
practice several years ago (285).
Isometric maximal volitional limb muscle
strength can easily be assessed using
strain gauges (Figure 4). Body
composition can be assessed in clinical
practice using either bioelectrical
impedance (BIA) or dual-energy X-ray
absorptiometry (DEXA).

Assessment of Muscle Mass
Assessing only BMI is clearly insufficient
to quantify the impact of COPD on the
different body compartments in general
and on muscle mass in particular (132).
Several techniques are available to assess
the mass of functioning muscles (281,
447), including both direct and indirect

approaches. The two-compartment
model of body composition divides body
mass into FM and FFM. FFM can be
further divided in an intracellular
compartment, which includes muscle
mass, bone mineral mass, and other
metabolizing tissues, and an extracellular
fluid compartment. FFM is commonly

used as a surrogate for muscle mass in
clinically stable patients with COPD.

BIA is based on the higher conductivity
of an electric current through FFM
than FM (448). The measurement is
noninvasive, is inexpensive, takes only
a few minutes, and requires no active
collaboration. The technique has been

Figure 4. Standard operating procedure for isometric quadriceps strength assessment. During the
maneuver, vigorous encouragement of the patient is needed. Patient is positioned in a standardized
fashion (typically sitting with knees and hips in 908 flexion or, less often, supine [248]). Maximal
voluntary contraction force (reported in kilograms or newtons) can be reliably assessed as the best of
three reproducible maneuvers. Maximal voluntary contraction is recorded as the maximal force that
can be maintained for 1 full second.
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validated using total body water assessed by
deuterium dilution space as a reference
method in patients with COPD (281). It is,
however, important to use equations to
estimate body composition that have been
validated in COPD and to be cautious
with built-in equations provided by the BIA
systems (447, 449).

DEXA enables differentiation of body
composition into three compartments by
the assessment of FM, lean tissue, and bone
mineral content. Although more expensive
than BIA, DEXA is accepted as a safe,
convenient, and noninvasive method with
a low radiation dose (,0.02 mSv). In
patients with COPD, DEXA also appears
to be a suitable alternative method to
deuterium dilution (450) for assessing FFM.
In addition, DEXA enables identification
of bone mineral loss and of trunk and
appendicular muscle mass.

There are significant intermethod
differences for measuring body
composition (447). The current gold
standard is considered by many to be the
deuterium dilution technique, but its use is
restricted to highly specialized hospital or
research centers. Although simple and
cheap, skinfold anthropometry generally
results in overestimation of FFM
compared with other methods (281, 447,
451). Two reasonable compromises are
BIA and DEXA. The amount of FFM
assessed by BIA was shown to be lower
than with DEXA in patients with COPD
(449, 451), especially in men (447, 449).
However, DEXA is not without potential
limitation, because it provides
systematically higher values for FFM
compared with deuterium dilution (450).
Furthermore, DEXA results differ between
the different commercial devices. This
issue is less important for longitudinal
research purposes, as long as the same
method is used throughout the follow-up
of patients. Obviously, the
cut-off thresholds to define normality will
influence the prevalence of FFM depletion.
Several COPD-specific cut-offs were
reported in the last decades and are
presented in Table 2.

In addition to the previously described
techniques assessing whole-body FFM,
several measures of regional limb muscle
mass are available. Although measurement
of thigh circumference is simple and cheap,
it may not accurately reflect local muscle
mass (280). Alternatively, computed
tomography (280), magnetic resonance

imaging (MRI) (452), and ultrasonography
(247) have been used to assess quadriceps
size in COPD. Using MRI-based three-
dimensional shape analysis, regional
shape anomalies of individual muscles
were demonstrated in patients with COPD
(453). The amount of local muscle mass
measured with these techniques has also
been related to relevant outcomes in
COPD, such as muscle strength (247)
and mortality (280). Correlation between
regional and whole-body muscle mass is
poor in COPD, suggesting that direct
lower limb muscle assessment indeed has
additional value (247). These methods are
useful in research, because they may be
more responsive to specific lower limb
interventions (e.g., strengthening exercise)
than the assessment of whole-body muscle
mass.

Finally, muscle biopsy is a valuable
tool to assess morphologic and biochemical
properties of limb muscle (454). The
Bergström needle is the most commonly
used (455, 456), but open surgical
techniques have also been applied (168,
239). Despite useful information obtained
from muscle biopsy, this technique is
invasive and has the potential for
complications, including discomfort and
minor scarring. Bleeding and infection can
also occur, but these are rare events (,1%)
(457). To reduce the discomfort associated
with this procedure, a microbiopsy
technique has been developed (458).
Although the quantity of muscle obtained
through this technique is less than with the
regular Bergström biopsy, it can still
provide sufficient tissue for biochemical
and molecular analyses with a reasonable
degree of agreement with the Bergström
biopsy (458). This technique would seem

particularly suited when several muscle
biopsies are required, for example when
evaluating the time course of response of
a given protein or molecule to a specific
intervention. Finally, the choice of muscle
for biopsy and the representation of only
a tiny fraction of the entire muscle should
be taken into consideration.

Assessment of Limb Muscle Strength
Although strength is not the most sensitive
measure to assess muscle function, it is
an accessible way to investigate to which
extent the limb muscles are affected in
COPD and to prescribe adequate loads for
resistance training. Learning about the
status of the limb muscles provides
clinicians with important information for
understanding the mechanisms of exercise
limitation in a given patient.

Volitional assessment. Several studies
have measured limb muscle strength in
patients with COPD and healthy elderly
control subjects. Quadriceps muscle force
is typically reduced compared with age-
matched control subjects (248). Much less
is known about limb muscle function in
community or primary care settings
(459, 460). Technical aspects of assessing
volitional muscle force are reported in
detail elsewhere (461). Because limb muscle
strength can vary in individual patients
from very low to supranormal, techniques
to assess limb muscle strength need to be
able to deal with a large range of force
development. Some techniques, such as
manual muscle testing, in which limb
muscle strength is qualitatively assessed
from “none at all” to “normal,” may
therefore be less preferred in COPD.
These techniques may be useful in the
critical care setting (462), particularly if

Table 2: Cut-offs for Depletion of Whole-Body Fat-Free Mass and Fat-Free Mass
Index in Patients with Chronic Obstructive Pulmonary Disease

Study Rationale
Men

(kg/m2)
Women
(kg/m2)

Schols et al. (134) FFM corresponding to a weight of ,90% of
ideal body weight according to
Metropolitan Health Insurance Tables (129,
130)

,16 ,15

Vestbo et al. (131) 10th percentile of FFM in Copenhagen City
Heart Study

,17.1 ,14.6

Coin et al. (661) 10th percentile of FFM in the age range
60–69 yr

,17.8 ,14.6

Definition of abbreviations: FFM = fat-free mass.
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sum scores are calculated over several
muscle groups (463). Hand-held
dynamometry, which provides more
quantitative information than the former
measurement, is promising, but even
in frail elderly the limits of agreement
are wide (464), and results depend on
the skills and strength of the tester.
Nevertheless, at a group level, using this
technique, muscle weakness has been
shown in patients with COPD (238).
Muscle strength can also be measured by
assessing the maximum weight that
a patient can move once over the full
range of motion without compensatory
movements (i.e., the one-repetition
measurement [465]). This technique,
although used in clinical trials in COPD to
assess the effect of interventions (466), does
not allow easy comparison of limb muscle
force across different settings, as the result
obtained depends on the technique of the
patient, the machine used (e.g., number of
pulleys), and starting position. Hydraulic
resistances can also be applied to assess
limb muscle strength dynamically in
patients (138, 467). The obtained strength
values will depend on the speed of the
contraction, which may be difficult to
standardize across equipment.

Although various methodologies exist
to measure muscle strength, isometric
maximal volitional limb muscle strength
assessment is one methodology that
could be implemented in clinical practice
to provide reliable and reproducible
measurements (468, 469). A standard
operating procedure for this measure is
provided in Figure 4. The maximal
voluntary contraction force has historically
been reported in kilograms, because
weights are used to calibrate the apparatus.
Because force should technically be
reported in newtons, some investigators
prefer to do this by multiplying the
measured force in kilograms by the
gravitational pull (9.81 m/s2). MVC force
is typically assessed as the best of three
reproducible maneuvers. During the
maneuvers, patients need to be vigorously
encouraged. Patients are positioned in
a standardized position (typically sitting
with knees and hips in 908 flexion or, less
often, supine [248]). Isometric muscle force
can also be assessed on specifically built
computerized dynamometers (e.g., Cybex
or Biodex). In this case, the peak torque is
assessed at fixed joint angle speeds (470,
471). Higher angular speeds do result in

lower peak torque in subjects with COPD
(472), as in control subjects. The outcome
is normally reported as torque in newton-
meters (Nm), rather than newtons or
kilograms, which are only appropriate for
isometric efforts.

Limb muscle strength is negatively
related to age and positively related to
body weight. Male patients have superior
strength compared with female patients
(248). Because COPD occurs in both sexes
over a wide range of ages, it is best to
report values as percent of the predicted
normal value (238, 248), although we
acknowledge that there are no universal
reference values for this variable.
Alternatively, for muscles working against
gravity (knee extensors, ankle dorsiflexors),
a correction for body weight, which is
the main factor associated to limb muscle
strength, has been used (471).

Nonvolitional strength. One limitation
of volitional techniques to assess limb
muscle strength is their dependence on
cooperation of the patients. The assessment
is also dependent on all central and
peripheral factors linked to contraction
(motor cortex, central command, peripheral
nerve conduction).

Nonvolitional assessment of limb
muscle strength can be used for research
or diagnostic purposes. In this method,
electrical or magnetic stimulation of
a peripheral nerve is conducted by the
application of a single stimulus. This
technique is practiced by only a handful
of research laboratories but has provided
important insight in the involvement of
different muscle groups in COPD. Using
this technique, investigators have shown
that quadriceps twitch force was
proportionally more reduced than the
abductor pollicis (thumb opposition) twitch
force in COPD, suggesting either that
distal muscles are less impaired than
more proximal muscles or the upper-limb
muscles are less impaired than lower-limb
muscles (249).

Electrical stimulation of the peripheral
motor nerve allows the construction of
force–frequency curves in vivo, where
force is reported at different stimulation
frequencies. In a small study, Degens and
colleagues were unable to show differences
between patients with severe COPD and
control subjects matched for FFM (473).
This study also reported a similar
involvement of hand and quadriceps
muscles.

Stimulation of the muscle can be
done in a rested muscle to obtain an
unpotentiated twitch stimulation, or
it may be performed seconds after
a vigorous voluntary contraction to obtain
a potentiated twitch stimulation. Clearly,
the latter demands cooperation of the
patient. None of these can be considered
physiologic maneuvers.

Twitch stimulations are obtained
by supramaximal stimulation of the
conducting nerve. To ensure supramaximality,
the stimulator output is slowly increased
until the obtained twitch force or the EMG
signal accompanying the muscle fiber
discharge does not further increase. More
recent studies tend to use a plateau in
force output to ensure supramaximality
(266, 299, 474, 475). The assessment of
twitch quadriceps force has less day-to-day
variability compared with MVC (474).
Twitch muscle force has been used to
measure limb muscle fatigue (applying
the twitch before and after limb muscle
loading). Methodological aspects, such as
the choice of the coil, influence the outcome
of the measurement (476). Potentiated
and unpotentiated twitch muscle force
can be used as nonvolitional evoked
contractions on stimulation of the femoral
nerve. Unpotentiated twitches are obtained
by stimulating at 1 Hz the rested/relaxed
quadriceps. Potentiated twitches are
obtained a few seconds after muscle
potentiation, using an MVC preceding
the 1-Hz twitch stimulation of the
femoral nerve. Although theoretically the
unpotentiated twitch may be the preferred
stimulation, it is difficult for some patients
to keep the quadriceps completely relaxed
for the 20 minutes required to achieve
depotentiation. Also, the potentiated
twitch may exhibit bigger changes after
exercise or multiple efforts and therefore
may be more reliable and more sensitive
to detect signals of muscle fatigue (475).
Normal expected values are reported in
relatively small sets of healthy control
subjects (247, 477). The twitch force of
the quadriceps is reduced in COPD,
whereas the twitch/MVC ratio is
unchanged (247).

Transcranial magnetic stimulation
has been used in COPD (478, 479). With
this technique, the stimulation is applied on
the motor cortex through the skull of the
patient, allowing the stimulus to travel
through the whole path of neuronal
discharge. Outcomes of this test are
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based on EMG recordings: latency time in
milliseconds and motor evoked potentials in
microvolts assessed by surface EMG (430).

In vitro contractile properties can be
studied in muscle fibers harvested from
patients with COPD and control subjects,
and results suggest that contractile
properties of limb muscle fiber bundles
were relatively preserved in patients with
COPD compared with control subjects
(239). To the best of our knowledge, single-
skinned fiber contractile properties have
only been studied in the diaphragm (480)
and not in the limb muscle.

Assessment of Limb
Muscle Endurance
Endurance of specific limb muscles is
generally not used as outcome in clinical
studies of COPD (481, 482). Nevertheless,
the evaluation of limb muscle endurance
may be more sensitive and useful to study
pharmacological and nonpharmacological
interventions specifically targeting the
limb muscles. So far, no direct comparisons
between different endurance protocols,
no standardization, and no reference values
are available, explaining why a broader
application of assessing limb muscle
endurance has not yet found its way to
clinical practice. One protocol that could
be recommended for implementation
consists of repeated leg extension
maneuvers at a predetermined rate of 12
contractions per minute performed at 10%
MVC with a duty cycle of 0.4. The outcome
of interest with this protocol is time to
task failure, defined as the time at which
leg extension falls below 80% targeted value
for three successive contractions (243).

According to the definition of
endurance, time to task failure should be the
favored outcome of the test. Tests that
directly record endurance time are
conceptually superior to measurements
that measure fatigue by reporting alternative
outcomes, such as drops in muscular
strength or changes in EMG signaling
after a time-fixed contractile maneuver
(483–485). Although muscle fatigue may
strongly correlate with endurance, it should
not be interpreted as a direct assessment
of endurance. Measurement of endurance
requires a muscle or muscle group to
contract against a load, producing a time-
dependent loss of mechanical function.
Over recent decades, a broad variety of
tests have been developed to assess muscle
endurance, which may differ on three

general components: nature of the
contractions (volitional or nonvolitional),
exercise conditions, and intensity (484, 486).

Muscle stimulation can be exogenously
imposed by direct nerve or muscle
electromagnetic stimulation (258, 269, 483),
but most endurance protocols rely on
a volitional contractions. The latter method
is easier and less invasive than the former
but also more difficult to control, as it relies
on patient collaboration. The exercise
condition can be based on isometric
contractions with maintenance of muscle
length (258, 298, 483), on a dynamic
contractions to shorten the muscle against
a fixed load (concentric contractions) (243,
256, 257), or on variable loads but with
constant angular speed (isokinetic) (193,
487). Isometric and concentric contractions
are physiological maneuvers that can be
easily implemented at low cost but with
a drawback of between-test variability and
reduced sensitivity. Isokinetic contractions
are nonphysiological maneuvers that require
more sophisticated and costly devices, in
addition to an appropriate training of the
patient. However, this method has the clear
advantage of being very reliable.

The intensity of the endurance maneuver
may be maximal or submaximal and can
be imposed via a single or a repeated
number of contractions. Although maximal
maneuvers are more representative of the
maximal anaerobic capacity of the muscle,
and they reflect maximal strength, repeated
submaximal contractions are probably the
method of choice for assessing endurance.
It should be stressed that before a series of
submaximal contractions, a similar but
maximal type of contraction is needed in
the same individual to determine patient-
specific optimal loads (243, 256). Submaximal
loads are then imposed at certain pace with
fixed duty cycle and may range from 10 to
80% of the maximal load according to the
protocol used (243, 488). For isokinetic
measurements, repeated maneuvers at higher
angular speeds (90–3008/s) have been used
(193, 486).

Assessment of Muscle Oxygenation
Using Near-Infrared and Magnetic
Resonance Spectroscopy
Near-infrared spectroscopy (NIRS)
constitutes a simple in vivo method to
quantify muscle oxygenation, oxygen
dynamics, and oxidative energy metabolism
at rest and during exercise. NIRS is
advantageous because it is noninvasive,

exhibits low movement artifacts, and
provides good temporal and spatial
resolution (489). The use of NIRS may
be limited in the presence of subcutaneous
fat accumulation, which impairs the
transmission of the signal at the muscle
level. NIRS technology has been applied to
the study of a number of chronic health
conditions, including patients with COPD.
Such studies have investigated the impact
of the pulmonary system limitations on
locomotor muscle fatigue in patients with
COPD (490–492). Collectively, these
studies (491–493) have shown that
respiratory muscle unloading (via oxygen
and/or heliox breathing, bronchodilation,
and proportional-assist ventilation)
improves leg muscle oxygen availability
during exercise in patients with COPD.
Recently, NIRS has been used in
combination with the light-absorbing tracer
indocyanine green dye to quantify regional
blood flow in muscle and connective tissue
during dynamic exercise in patients with
COPD (352). Subsequent studies showed
that respiratory muscle unloading improves
locomotor muscle blood flow and oxygen
delivery during exercise in patients with
different patterns and degrees of dynamic
hyperinflation (429, 494). 31P-NMR
spectroscopy is a noninvasive method to
evaluate high-energy compounds ATP,
PCr, inorganic phosphate (Pi), and
intracellular pH of single muscle groups
during exercise and recovery (495).

Effects of Interventions on
Limb Muscle Function in
COPD

Several interventions have been used in an
attempt to improve muscle function in
patients with COPD. These and their
respective effects on limb muscles are
summarized in Table 3.

Exercise Training
Rehabilitative exercise training improves
limb muscle function and morphology in
patients with COPD (313, 314, 496–498).
As such, quadriceps muscle strength,
endurance, and fatigability all improve
significantly after exercise training (265,
314, 496–499), with smaller, albeit
significant, increases in midthigh muscle
cross-sectional area (466) and FFM (497).
Typically, longer exercise programs
produce greater physiological training
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effects, with a recommended minimum of
8 weeks to achieve a substantial effect (500).
The number of sessions per week also
varies; although outpatient programs
commonly include 2 to 3 days a week,
inpatient programs are usually planned for
5 days a week. The session length per day is
generally 1 to 4 hours (501). The optimal
exercise intensity is unknown. Nevertheless,
high level of intensity of exercise (.60%
maximal work rate) for 20 to 60 minutes
per session is more potent in terms of
inducing a physiological response to
training than less intense exercise (,40%
maximal work rate) (288). However,
many individuals with chronic lung disease
are unable to train at that level, and
substantially lower intensity of exercise is
an alternative (500). One option is interval
exercise training, in which the long
constant-load exercise session is replaced
by several smaller bouts (typically lasting
30 to 180 s) of high-intensity exercise
(80–120% peak capacity) separated either
by periods of rest (lasting 30 to 60 s) or by
lower-intensity exercise bouts (50–80%),
thereby allowing intense loads to be applied
to locomotor muscles with lower sensations
of dyspnea and/or leg discomfort compared
with continuous or constant-load exercise
training (502). Despite these interesting

features of interval training, the outcome is
very similar to constant-load modality
(502). As such, interval training should be
viewed as another available option, among
the several strategies available, to train
patients with COPD, the goal being to find
ways to retain patients in the training
program. Single-leg cycling exercise
training uses the concept of training
a smaller muscle mass at a time, thereby
reducing the demand on the respiratory
system while allowing training of the
targeted muscles at an intensity that would
not otherwise be possible with two-legged
cycling (503, 504). Proof-of-concept of this
training modality has been reported in
a small number of patients suggesting
physiological superiority of single-leg
cycling over two-legged cycling (503,
504). Whether these observations impact
on clinical outcomes, such as quality of
life, or on long-term outcome is
unknown.

Endurance exercise training (either
of interval or constant-load modality)
increases the cross-sectional area of all fiber
types within the quadriceps muscle (163,
165, 505, 506). In addition, endurance
training reduces in the proportion of type
IIx fibers in the quadriceps (434, 505, 506).
Metabolic improvements observed after

training include: (1) increased oxidative
capacity (documented by the increase in
both the capillary-to-fiber ratio and the
activity of oxidative enzymes) (434,
505–507), (2) a reduction in exercise-
induced lactic acid production (288, 507),
and (3) normalization of the decline in the
PCr/Pi ratio during exercise (192). These
morphological and typological adaptations
in limb muscles are not different across
GOLD classes 2 to 4 (165). In addition,
interval training yields muscle adaptations
that are similar to those obtained by
constant-load training (505).

The phenotypical adaptations within
the limb muscles are accompanied by the
up-regulation of key factors governing
muscle hypertrophy and regeneration,
namely the IGF-1 and MyoD (434, 466,
506). Furthermore, endurance training
reduces the expression of myostatin (316,
434). Patients with COPD with normal
lower limb muscle mass exhibit substantial
capacity for muscle adaptation in response
to exercise training, irrespective of the
magnitude and direction of changes in the
expression of local muscle inflammatory
factors (334, 434, 506) or the induction of
exercise-induced oxidative and nitrosative
stress (201, 334). There is also emerging
evidence to suggest that, in patients with
COPD with either normal or low muscle
mass, exercise training seems to reduce
the activity of protein breakdown
pathways, in particular NF-kB–activated
UbP pathway (434). Most exercise
training studies performed have involved
patients with GOLD spirometry classes 3
to 4 COPD; more needs to be learned
about the milder form of the disease
(GOLD 1–2).

The magnitude of response to exercise
training in COPD is highly variable, with
some patients showing little or no benefit
(508). This interindividual variability in the
response to training is not unique to
COPD, because similar observations have
also been made in healthy individuals.
There seems to be a genetic component to
this phenomenon (415, 509). The lack of
response to exercise training may also be
related to the inability to tolerate sufficient
intensity and/or duration of training and/or
to poor compliance to the training
intervention (288, 510). Patients who
develop quadriceps contractile fatigue
during the training sessions show greater
training effects in terms of functional
exercise capacity and health-related quality

Table 3: Effects of Treatments for Limb Muscle Dysfunction in Chronic Obstructive
Pulmonary Disease

Treatment Mass Strength
Exercise
Tolerance Survival

Exercise O (497) O (496, 497) O (662) ?
Oxygen ? ? O (539–541) O
Nutrition alone No (663) No (663) No (663) ?
Nutrition with
exercise training

O (552, 554, 567) O (554, 567) O (552, 554, 567) ?

Nutrition with
exercise training
and anabolic
hormone
supplementation

O (558) O (558) O (558) ?

Testosterone O (466) O (466) No (466, 575) ?
Growth hormones O (596) No (596) No (596) ?
Ghrelin ? ? ? ?
Megestrol No (630) ? No (630) ?
Creatine ? ? No (633–635) ?
Antioxidants ? ? ? ?
Vitamin D alone ? ? ? ?
Vitamin D with
exercise training

? ? ? ?

O: Studies support that the treatment has a favorable effect on the outcome; No: studies support that
the treatment has no favorable effect on the outcome; ?: there are no supporting data for a treatment
effect on the outcome.
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of life (299). This would argue in favor
of the intensity of the training stimulus at
the muscle level being an important
determinant of the outcome of exercise
training.

The available evidence also suggests
that the muscle response to training differs
to some extent between COPD and healthy
control subjects (511). The muscle
angiogenic and molecular response to
training may be blunted in patients with
COPD (512, 513); whether this can be
entirely explained by a lower training
intensity in COPD is uncertain. Patients
with COPD and healthy sedentary
subjects present a distinct gene expression
response after endurance training, from
a quantitative and qualitative perspective.
Fewer genes are significantly changed in
patients with COPD compared with healthy
control subjects (511). In turn, genes
associated with oxidative stress, UbP, and
cyclooxygenase pathways are distinctly
induced only in patients with COPD,
potentially reflecting the specific molecular
response of the muscle to exercise and
suggesting additional mechanisms for
exercise limitation in COPD (511). In some
patients with COPD, the occurrence of
oxidative (231) and nitrosative (196) stress
at the muscle level has been reported
after exercise training; cachectic patients
seem to be more prone to this effect
(514). Some studies have reported an
enhancement in antioxidant activity with
exercise training (515, 516), whereas others
have consistently shown no significant
changes or even a reduction in the
antioxidant potential (reduced glutathione)
of the limb muscles of patients with
severe COPD after exercise training (201,
217, 231, 514, 517, 518), which was not
observed among the healthy control
subjects. However, the clinical relevance of
these observations is unclear (201, 334),
and it should be stressed that exercise
training is a very safe and effective
intervention for the vast majority of
patients with COPD.

Resistance training is accomplished
when muscle contractions are performed
against a specific opposing force generated
by a resistance (519). In a recent systematic
review, increases in muscle strength and
mass after short-term resistance exercises
were demonstrated in patients with COPD
(520). The key features of resistance
exercise protocols used in these trials
included, on average, 12 weeks of

progressive resistance exercise training
consisting of two to three sessions per
week, each session including two to four
sets of 8 to 12 repetitions of each exercise,
at loads ranging and progressing from
z30 to z90% of one repetition maximum.
The improvement in muscle function
translated into better performance of some
daily activities (520). Combination of
resistance training with endurance
training in COPD has revealed a greater
improvement in quadriceps muscle
strength and thigh muscle cross-sectional
area compared with endurance training
alone (497). Although short-term effects
of resistance training on muscle mass
and strength are well known in COPD,
long-term effects remain to be determined
(521).

The effects of resistance training on
intrinsic muscle changes have been scarcely
studied in COPD (481). In patients with
moderately severe COPD and normal
whole-body muscle mass, resistance
exercise training enhances the expression of
muscle IGF-1 and other components of the
muscle IGF system and of myogenic
regulatory factors (316).

Exercise training early after an
exacerbation. Keeping in mind the
deleterious effects of exacerbations on limb
muscles, several interventions to prevent or
counteract muscle impairment have been
considered (522). These interventions,
mainly based on exercise training, have
been used during, immediately after, or late
after the exacerbation (523). A Cochrane
Collaboration metaanalysis revealed that
pulmonary rehabilitation immediately after
an exacerbation significantly improved
exercise capacity in addition to reducing
hospital admissions and mortality
(524). Postexacerbation pulmonary
rehabilitation was also associated with an
improvement of quadriceps strength
(525, 526). Moreover, 1 month after
discharge, the functional status and
muscle force remained better in the
group that underwent training during the
exacerbation (379), suggesting that this
modality may facilitate functional
recovery after an acute exacerbation.

To date, only a few interventions have
taken place during the hospitalization
period. Resistance training initiated
during the second day of hospitalization
counteracted limb muscle dysfunction, as
quadriceps force increased by 10% and
6-minute walking distance improved at

discharge (379). This was associated with
an increase in anabolic markers in the
muscle (379). In that study, trained patients
with COPD exhibited a lower mRNA
expression level of myostatin (an indication
of muscle growth) with a higher myogenin/
MyoD ratio (reflecting the regenerative
capacity of the muscle) in comparison to
nontrained patients. On the other hand, no
between-group differences were detected
for IGF-1, myogenic growth factor, MURF-
1, MAFbx, and NEDD4 mRNA expression
levels. Therefore, the suggested positive
effect of high-intensity resistance training
on muscle regenerative regulatory factors
deserves further exploration.

Neuromuscular Stimulation
Transcutaneous neuromuscular electrical
stimulation (NMES) involves the
application of an electrical current through
electrodes placed on the skin over the
targeted muscles, thereby depolarizing
motor neurons and, in turn, inducing
muscle contractions (527). NMES is
a promising training modality to improve
lower limb muscle function that can be
particularly useful for severely disabled
patients with COPD in whom the tolerance
to whole-body training is compromised
(528). Indeed, NEMS may even be
applicable for home use (529) and in
unstable patients (530). Nonetheless, larger
well-designed trials are needed to improve
our understanding of NMES and to clarify
how it can be optimally used. The effects of
NMES on intrinsic muscular changes have
not been extensively explored. Dal Corso
and colleagues reported an increase in type
II fiber cross-sectional area with a decrease
in type I fiber cross-sectional area of the
quadriceps after a 6-week home-based
NMES program in moderately impaired
patients with COPD (531). In another
study, the application of a 6-week NMES
program in patients with COPD recovering
from an acute exacerbation decreased
muscle oxidative stress and improved MHC
content and the proportion of type I muscle
fibers in the quadriceps (530). In patients
with advanced COPD, NMES improved
midthigh and calf muscle cross-sectional
area. This was associated with a more
favorable muscle anabolic to catabolic
balance (532). In this study, the
improvement in walking distance after
NMES training was associated with gains
in muscle strength, reduced ventilation
during walking, and the ability to
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tolerate higher NMES stimulation
intensity (532).

An interesting feature of NMES is its
small impact on ventilation, heart rate, and
dyspnea so that it can be applied during
periods of exacerbation, during admission to
the intensive care unit for acute COPD
exacerbation (530), and in bed-bound
patients. In these settings, NMES may
improve muscle function and decrease the
number of days needed to transfer from
bed to chair (462).

Oxygen Therapy
Long-term oxygen therapy (LTOT)
enhances survival in hypoxemic patients
with COPD (533–535). Presumably, this is
due to effects of oxygen at the tissue level,
although the mechanisms by which LTOT
enhances survival were not determined in
these early studies. Since then, it would be
considered unethical to conduct a clinical
trial in which hypoxemic patients with
COPD would not be provided with LTOT;
for this reason, the possibilities for
investigating the effects of LTOT at the
limb muscle level are very limited.
Furthermore, the investigation of the effects
of LTOT on the muscle is confounded by
several methodological considerations. For
example, the therapeutic goal of LTOT is
the correction of arterial hypoxemia, but, in
the context of muscle function, the goal
might be to prevent cell hypoxia (536). The
characteristics of oxygen transport from the
atmosphere to the mitochondria (351) are
well known, but regional competition for
blood flow between respiratory and limb
muscles during exercise (352) and
resistance of oxygen transport at the
peripheral level may be of major
importance in patients with COPD (351).
Those phenomena may result in cell
hypoxia without apparent arterial
hypoxemia. Moreover, difficulties in
assessing cell hypoxia in the clinical arena
seem to have stalled progress in this area
despite the fact that LTOT, muscle training,
and active lifestyle should be key relevant
interventions with potentially synergistic
effects.

Despite the physiological rationale
supporting the deleterious effects of chronic
cell hypoxia on limb muscle function and
a beneficial effect of oxygen administration,
little is known about the effects of oxygen
therapy on limb muscle function in patients
with COPD. There is little doubt that oxygen
therapy administered acutely improves

muscle energy metabolism during exercise
(360, 361). Consistent with these acute
improvements, two muscle biopsy studies
highlighted that correction of hypoxemia
during an episode of acute respiratory
failure or chronically with LTOT was
associated with improved quadriceps
bioenergetics status in hypoxemic patients
with COPD (537, 538). A recent study by
Amann and colleagues (267) clearly shows
that increasing oxygen transport by
different types of interventions reduces
muscle susceptibility to fatigue by
approximately 30 to 40%. Acute oxygen
supplementation also improves whole-body
exercise performance by reducing
ventilation, dynamic hyperinflation, and
the perception of dyspnea (539–542).
Oxygen supplementation during the
training sessions may thus help patients
to reach higher training intensities (543)
and possibly enhance limb muscle
adaptation. However, this hypothesis has
yet to be directly tested. In addition,
reports on the effectiveness of oxygen
supplementation as an adjunct to
exercise training have been equivocal (544);
for this reason, oxygen supplementation
cannot be widely recommended in this
setting.

Nutritional Supplementation
Muscle atrophy is often associated with
muscle weakness and exercise limitation
(545, 546), and it worsens the prognosis of
many chronic diseases, including COPD
(131, 547), and impairs health-related
quality of life (548, 549). Moreover,
underweight smokers appear to be more
susceptible to develop COPD (550). As
body weight gain is associated with an
improvement in the prognosis of patients
with COPD (149), efforts should be
developed to establish appropriate
treatments for the underweight patients.
A caveat of this intervention is that
restoration of energy and protein balance
by nutritional intervention will
predominantly result in gain of FM, with
little effect on limb muscle mass and
function (551, 552).

Depending on the body composition
abnormality, intervention strategies will be
oriented toward restoring energy and
protein balance (weight loss), restoring
protein balance (hidden muscle atrophy),
or decreasing energy balance while
maintaining protein balance (obesity and
visceral fat expansion). Furthermore,

specific nutrients may be considered as
ergogenic aids to enhance efficacy of
pulmonary rehabilitation.

One of the first nutritional intervention
studies in COPD showed that high-caloric
oral liquid dietary supplementation
during 3 months was able to restore energy
balance and increase body weight by
more than 4 kg in underweight patients
with COPD (553). The study also
illustrated that discontinuation of the
intervention for the next 3 months led to
a rapid and parallel decline in weight,
midarm muscle circumference, and
limb muscle function. In weight-losing
patients with COPD, even dietary
counseling and food fortification resulted
in significant body weight gain (2 kg)
and FM with maintenance of FFM during
the 6-month intervention and 6-month
follow-up period (551). In this study,
the absence of an anabolic stimulus
in association with the nutritional intervention
may have prevented a gain in FFM and limb
muscle strength. During the same period,
the control group lost weight and FFM.

Nutritional interventions have been
coupled with exercise training in
malnourished patients aiming to provide an
adequate anabolic stimulus and a positive
effect on FFM. The effects of 7 weeks of
nutritional supplementation on top of
a rehabilitation program were investigated
in a randomized controlled trial (552). The
treatment group showed weight gain that
predominantly consisted of FM. Absence of
an enhancing effect of nutrition on FFM
could be related to the low anabolic
stimulus of the exercise program that
consisted of walking and low-impact
conditioning exercise. A similar nutritional
intervention strategy when combined with
a more intensive exercise program (5 d/wk,
strength and endurance exercise) did show
positive effects on FFM and limb muscle
function after 8 weeks (554).

To judge efficacy of nutritional
intervention on muscle protein synthesis
and muscle mass, it is important to have
information of the quantity and quality of
protein in the diet. It appears that
supplementation of dietary protein (.1.5 g/
kg/d) is able to increase muscle mass (555).
Baldi and colleagues (556) randomized
patients with COPD experiencing an
ongoing weight loss to a 12-week
rehabilitation program alone or in
conjunction with a nutritional intervention
consisting of an amino acid mixture
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with high branched chain amino acid
concentrations (total protein intake. 1.5 g/kg).
Body weight and FFM significantly
increased in the exercise and amino acid
supplementation group but not in the
control group. In an acute experiment in
normal body weight patients with COPD
and mild muscle atrophy, Engelen and
colleagues (557) showed that branched
chain amino acid supplementation with soy
protein enhanced whole-body protein
synthesis and altered interorgan protein
metabolism in favor of the limb muscles.
The effect was more pronounced in COPD
than in a healthy age-matched control
group.

Pison and colleagues (558) investigated
the efficacy of a multimodal intervention
approach including nutrition, anabolic
steroids, and exercise versus education only
in patients with chronic respiratory failure.
The combined approach was indeed
successful in improving body weight, FFM,
exercise tolerance, and even survival in
patients compliant with the protocol. One
limitation with this study is that it is not
possible to tease out the respective benefit
that could be attributed to each individual
component of the intervention.

In general, the response to nutritional
supplementation is highly variable. This
may be related to patient characteristics,
type of intervention, or adherence to the
treatment. Steiner and colleagues (552)
reported a better response to nutritional
rehabilitation in less-wasted patients.
Creutzberg and colleagues (559) attempted
to identify determinants of poor response
to nutritional rehabilitation in a controlled
clinical setting. Poor responders were
characterized by higher levels of systemic
inflammatory markers and relative
expansion of FM despite a similar degree
of weight loss as the responders.

N-3 polyunsaturated fatty acids
(PUFA) may improve muscle maintenance
by modulating systemic inflammation.
Three months of nutritional supplementation
enriched with PUFA as adjunct to exercise
training decreased systemic inflammatory
markers, including C-reactive protein, tumor
necrosis factor-a, and IL-8 in elderly patients
with COPD (560). This was confirmed by the
same group in a recent study investigating
the effects of nutritional supplementation
enriched with PUFA and vitamins A, C, and
E incorporated into a 12-week home-based
pulmonary rehabilitation program; the
intervention also yielded improved exercise

performance (561). However, the effect of
a mixture of n-3/n-6 PUFA as a supplement
to pulmonary rehabilitation on systemic
inflammation could not be subsequently
confirmed (562). This negative finding was
possibly related to the duration of the
intervention. In the same study (562),
a significantly enhanced exercise capacity
was also shown in the treated group. This
effect might be related to positive effects of
PUFA on muscle oxidative metabolism,
because PUFA are natural ligands of the
PPARs, which are important regulators of
oxidative metabolism (180). Other studies on
nutritional modulation of muscle oxidative
metabolism showed inconclusive results, as
recently reviewed (563). Decreased muscle
glutamate concentration in COPD is
consistently reported and is associated with
decreased muscle glutathione concentration
and early lactic acidosis (225). Continuous
oral glutamate ingestion for 80 minutes,
however, did not lead to an acute effect on
limb muscle substrate metabolism and
muscle performance in patients with COPD
as well as in healthy age-matched control
subjects (564). In line, with this negative
finding, glutamine supplementation did
not enhance V

:
O2 peak, V

:
O2 at lactate

threshold, or speed pulmonary oxygen
uptake kinetics in COPD (565).

Patients with COPD are vulnerable to
denutrition during an acute exacerbation of
the disease. Adequate nutritional support,
especially in patients with already impaired
energy balance, is also important. As
such, nutritional interventions during
hospitalization with protein intake
exceeding 1.5 g/kg body weight was shown
to result in protein and total energy intake
improvement without a drop in normal
dietary intake, although this did not result
in any improvement in muscle strength
(278, 566).

Most studies so far have focused on
wasted patients with advanced COPD. In
this population, therapeutic efficacy and
feasibility are hampered by the severity of
respiratory impairment, persistent low-
grade systemic inflammation, and limb
muscle pathology, including active
muscle protein degradation and intrinsic
abnormalities in muscle oxidative
metabolism. Because muscle atrophy is not
limited to advanced disease, one could argue
that early intervention may be indicated to
improve or maintain physical functioning.
Furthermore it is important to maintain
long-term beneficial effects also from a cost-

effectiveness point of view. A prescheduled
post hoc analysis of muscle-wasted patients
with moderate COPD participating in
a clinical trial showed that 4 months of
intervention consisting of exercise and
standardized nutritional supplements
followed by a 20-month maintenance
program including nutritional counseling
and supplements on indication resulted in
significant long-term effects on FFM, limb
muscle function, and 6-minute walking
distance compared with usual care trial
(567). Cost analysis furthermore revealed
significantly lower hospital admission costs
in the intervention group. One limitation
of this study is that the nutritional
intervention was embedded within
a rehabilitation program, making it difficult
to pinpoint the role of nutrition in the
observed improvement.

In conclusion, some improvement in
FFM and in muscle strength can be achieved
with nutritional intervention, particularly
when coupled with an anabolic stimulus.
However, nutritional interventions are not
widely used, because the magnitude of the
beneficial effects in enhancing exercise
performance on top of exercise training is of
uncertain clinical importance. Nevertheless,
some patients, particularly those who are
actively losing body weight and in whom
nutritional intake is deficient, should be
targeted for this intervention.

Testosterone and Other
Anabolic Steroids
Testosterone and its analogs are potent
anabolic agents acting to increase muscle
protein synthesis and reduce muscle protein
breakdown, yielding muscle mass increases.
These drugs have lipolytic effects, so that FM
is decreased. Testosterone levels decline
with age (around 1–2% per year), and
a significant number of older men have
levels below the lower limit of normal for
young men. There is debate among
endocrinologists about whether this is
representative of normal ageing or an
indication of a pathologic state. Current
endocrine society guidance suggests
testosterone supplementation for older men
with symptomatic hypogonadism (370).
Reduced muscle mass and function is
a common feature of hypogonadism in
addition to loss of libido, erectile
dysfunction, loss of energy and vitality,
and reduced bone mineral density and
muscle mass.

AMERICAN THORACIC SOCIETY DOCUMENTS

e40 American Journal of Respiratory and Critical Care Medicine Volume 189 Number 9 | May 1 2014



Testosterone is not effective when
administered orally. It can be given by
intramuscular injection or absorbed
transcutaneously via a patch or in a gel.
Some testosterone analogs can be
administered orally (e.g., oxandrolone).
Testosterone has a number of toxicities that
limit its use. Prominent among them are
stimulation of the prostate in men, with the
attendant risk of accelerating the growth of
prostate cancer foci. In women, testosterone
in high doses yields virilization. A new class
of molecules, dubbed selective androgen
receptor modulators, has the potential to
yield muscle hypertrophy while avoiding
prostate stimulation and virilization (568,
569); these molecules are now being tested
in clinical trials.

Testosterone yields muscle fiber
hypertrophy, an adaptation similar to that
seen with a resistance training program.
Muscle mass and strength increases are to be
expected. Most studies in healthy younger
and older subjects have detected increases in
muscle strength but not muscle endurance.
Healthy eugonadal men respond to
supraphysiologic doses of testosterone with
increased muscle mass and strength but
decreased FM (372). The dose–response
relationship for increase in muscle mass
and strength and decrease in FM in both
healthy young men (570) and older men
(571) is linear. In women, randomized trials
have been reported in which testosterone
administration in lower doses than
generally given to men has induced
increases in both muscle mass (481) and
strength (572).

Only a few investigators have studied
testosterone supplementation in COPD.
Casaburi and colleagues conducted a trial of
testosterone supplementation or placebo
with or without resistance training in 47
men with COPD who had low circulating
testosterone levels at recruitment (466).
A weekly injection of 100 mg of
testosterone enanthate for 10 weeks
increased testosterone levels to the middle
of the range seen in healthy young men.
Improvements were seen in leg muscle
strength (assessed as one repetition
maximum testing of leg extension) and
mass (assessed by DEXA scanning) with
testosterone alone that were similar to
those receiving resistance training alone.
Gains in muscle strength and mass in
supplemented patients who undertook
resistance training were even greater,
suggesting a synergistic effect. Svartberg

and colleagues compared testosterone
supplementation with placebo in 29 men
with COPD who were not selected or
screened for biochemical hypogonadism
at recruitment and did not present
with low muscle mass (573).
Testosterone was administered
intramuscularly every 4 weeks for 26
weeks. There were increases in FFM and
concomitant reductions in FM in
the active treatment group.

The effects of testosterone analog
supplementation in COPD have been
investigated in few studies. Schols and
colleagues administered a relatively low dose
of nandrolone every 2 weeks for 8 weeks to
men and women with COPD (574); small
increases in lean body mass and respiratory
muscle strength were observed. Six months
of stanozolol administration to 10 men with
COPD resulted in increased body weight
and lean body mass but no endurance
exercise changes (575). Forty-nine male and
female patients with COPD completed
a 4-month observational study of
oxandrolone; body weight increased, but
6-minute walking distance did not (576). In
a randomized placebo-controlled
multicenter trial of oxandrolone involving
142 underweight men and women with
COPD, an increase in lean mass was
discerned, but FM was decreased; 6-minute
walking distance was unchanged (577).
Creutzberg and colleagues administered
nandrolone to 33 men with COPD for
8 weeks; lean body mass increased, but
changes in muscle strength and endurance
did not differ significantly from those
in a matched control group (578).
Interestingly, patients on maintenance low
dose of systemic corticosteroids benefited
from the intervention by showing
improvements in respiratory muscle
strength and exercise capacity (578).
Sharma and colleagues randomized 16 men
and women with COPD to receive biweekly
injections of nandrolone or placebo for
16 weeks (579). No differences between
groups in body composition, muscle
function, or quality-of-life measures were
discerned.

There are limited mechanistic data on
the effect of testosterone on limb muscle
function in COPD. Muscle fiber cross-
sectional area and IGF signaling were
assessed in the intervention study of Lewis
and colleagues (316) and Casaburi and
colleagues (466). In patients receiving
testosterone during resistance training,

a global increase in MHC, IGF, and
myogenin mRNA expression was
observed, suggesting the intervention had
a significant anabolic effect at a muscle
level. Also, endothelial and neuronal
NOS protein levels increased in subjects
receiving testosterone supplementation,
which might be expected to improve
muscle vasodilatory capabilities
(466, 580).

In conclusion, testosterone is a powerful
anabolic agent that has a potential therapeutic
role in the management of older patients
with chronic diseases such as COPD, wherein
muscle atrophy is a prevalent and clinically
significant problem. Benefits are likely to
be maximized if combined with resistance
training. The role of therapy in patients with
preserved serum testosterone levels is
uncertain. Low-dose supplementation may
also be tolerable in women, although the
optimal dose that improves functionality
without inducing virilization may be hard
to define. Apparently, testosterone
supplementation is more effective than its
analogs. Despite this, testosterone
supplementation cannot be currently
recommended as routine treatment of
muscle atrophy in COPD because of the
possibility of adverse effects. Another
point is that the available studies are only
short term, and the clinical impact of this
supplementation on important clinical
outcomes such as exercise tolerance,
quality of life, and survival is unknown.
Novel selective androgen receptor
modulators are undergoing clinical
trials and may provide additional
benefits.

Growth Hormone and
Its Secretagogues
GH is a 191–amino acid peptide hormone
secreted mainly by the anterior pituitary
gland. Despite the continuous hormone
release, most of the GH production is
secreted in a pulsatile manner (581). GH
synthesis and release is directly controlled
by GH-releasing hormone (GHRH; also
known as GH-releasing factor, GRF) and
peripheral feedback signals (582). Exercise
itself is a peripheral stimulus for GH
production.

GH is an anabolic agent that stimulates
growth through an increased production of
IGF-1. This factor enhances protein
synthesis and lipolysis, promoting the
preferential use of lipids rather than
carbohydrates for energy generation (583).
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It also inhibits protein oxidation and
degradation, stimulates calcium retention
and bone mineralization, promotes
myoblast differentiation and muscle
growth, and improves the immune
response (583). Overall, the effect of the
GH–IGF-1 axis is to increase the baseline
metabolic rate, and it will affect body
composition by improving lean body mass
(584). GH has also cardiovascular effects,
inducing an increase in heart rate and
improving endothelial function in patients
with arteriosclerosis. Although the plasma
levels of this hormone can be increased
in patients with COPD (585–587), the
function of the GH axis may be impaired in
this disease (588). Moreover, some
conditions and treatments frequently
associated with COPD, such as aging,
reduction in physical activity, and the use
of systemic steroids may also be
associated with reduced levels of GH in
plasma (589–591). Although exogenous
GH does not seem to improve limb
muscle strength in athletes, an increase in
maximal respiratory pressures was shown
(584, 592). However, its effects on
exercise capacity are not clear, because
different studies have reported similar
work rate and oxygen uptake but higher
levels of lactate after GH administration
(584). This is in line with studies showing
an improvement in anaerobic
performance after GH administration
(593).

Although effects of GH are not very
clear in athletes, they seem to be more
promising in patients with cachexia. In this
regard, GH has demonstrated clear anabolic
effects in such patients and is currently
approved for use in HIV/AIDS-associated
wasting syndrome as well as in other
conditions, such as chronic renal failure and
some cases of short bowel syndrome. GH
has also been used in patients with COPD
and malnutrition, inducing substantial
weight improvement and lean body mass
gain (594, 595). Nonetheless, results on
respiratory and limb muscle strength and
exercise capacity are still controversial
(587, 594, 596, 597). Therapy with GH
is currently administered through
subcutaneous injections of recombinant
GH (0.05–0.06 mg/kg daily), several
times per week, and side effects
include paresthesias, arthralgias, insulin
resistance–glucose intolerance, sodium
retention, peripheral edema, and arterial
hypertension (598). In addition, it still

remains debatable whether GH
treatment may induce carcinogenic
effects (599). All these considerations,
along with its relatively expensive price,
do not support the use of GH in the
treatment of COPD muscle dysfunction.
The adverse effects of GH therapy
have led to the development of GH
secretagogues that have some potential
advantages.

GRF is a C-terminal peptide of 40 to
44 amino acids (600). Administration of
human GRF might be able to recover GH
secretion pulses (601) and, therefore, the
physiological actions of this pituitary
hormone. However, the clinical usefulness
of human GRF therapy is limited, because
there is a wide intersubject variability in the
GH response, and the peptide is rapidly
degraded in plasma. Therefore, its effect is
limited to roughly 2 hours, even at high
doses (602).

Ghrelin is a 28–amino acid peptide
hormone that can circulate in two distinct
forms: acylated and unacylated molecules.
Although acylation is essential for
binding to its receptor, unacylated ghrelin
is also an active peptide. Ghrelin was
originally isolated from the stomach
(603), but it has also been isolated in
pancreas, brain, pituitary gland, kidneys,
placenta, heart, and lungs (604).
Interestingly, ghrelin receptor is also
expressed in different tissues, including
the lungs (605). The main function of
ghrelin is to induce the release of GH
from the anterior pituitary (603, 604).
Interestingly, ghrelin has a synergistic
relationship with GRF. However, ghrelin
has many other functions, including the
regulation of appetite (potent orexigenic)
(606) and gut motility. It may also play
a role in the immune and cardiovascular
systems. In this regard, ghrelin is a potent
antiinflammatory mediator, reducing
the levels of different proinflammatory
cytokines. Therefore, it is considered
as a promising therapeutic agent for
the treatment of different chronic
inflammatory diseases. As previously
mentioned, ghrelin is also expressed in
the myocardium, inhibiting cell apoptosis
while improving ventricular function
during ischemia-reperfusion injury (607).
Although still controversial, this peptide
also seems to be a vasodilator agent,
through the induction of nitric oxide
production, and a stimulator of
angiogenesis. Finally, ghrelin influences

fat metabolism by reducing lipid
oxidation and increasing adiposity (608).
Pharmacological doses of ghrelin
successfully reverse muscle wasting in
different disorders that are associated
with cachexia (609, 610). However, both
ghrelin and its receptor are also expressed
in different cancers and cancer cell lines.
Therefore, it has been suggested that it
might play a role in the progression of the
disease, and more specifically in cell
proliferation, invasion, and migration
(611).

Plasma levels of endogenous ghrelin
increase both in normal subjects with
weight loss induced by a low caloric intake
(612, 613) and in underweight patients
with COPD (614, 615). This increase is
attributed to a compensatory mechanism.
Nevertheless, exogenous ghrelin has been
used in patients with COPD with
nutritional abnormalities, inducing similar
effects to GH: it increases food intake
and muscle mass (616). It seems to be
more effective than GH in improving
the strength of respiratory and limb
muscles (610). Ghrelin has also exhibited
antiinflammatory effects in patients with
COPD, reducing the number of
neutrophils in the sputum (617). Current
therapeutic doses of ghrelin are established
as 2 mg/kg administered intravenously
twice a day for at least 3 consecutive
weeks.

Tesamorelin is a GRF analog
composed of a 44–amino acid sequence
(618, 619). Its advantage over that of
classical GRF is that it has been
stabilized, and therefore it maintains its
biological activity in plasma (600).
Tesamorelin markedly increases levels of
both GH and IGF-1 (618, 620, 621), thus
resulting in the physiologic effects of
these two anabolic agents. Moreover,
tesamorelin seems to increase both
baseline and pulse GH secretion (622).
Tesamorelin is already in use to treat
lipodystrophy in HIV-infected patients
(619). Moreover, some studies have been
performed in other muscle wasting
disorders, such as COPD (623). In
a multicenter, double-blind, randomized
placebo-controlled study, tesamorelin
improved body composition by
increasing lean mass and improved limb
and respiratory muscle strength
(623–625). Current doses are 2 mg
administered daily via subcutaneous
injection. This ensures an 8-hour period
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of GH release, and side effects appear to
be minor (618). However, the high
price of this therapy is still a limiting
factor for its widespread use (620).
Unfortunately, a recent multicenter large
phase II study using tesamorelin in
patients with COPD was interrupted,
precluding the recommendation of the
use of this drug in clinical settings (626).

Sermorelin is a GRF-like compound
that can be administered subcutaneously.
However, its physiological effects, potential
advantages over that of the other
secretagogues, and possible therapeutic
indications still need more extensive studies
to be precisely determined (602).
Examorelin is another synthetic GRF
analog, of only six amino acids, which
might have some advantages over
previous secretagogues because it can be
released using subcutaneous, oral, or
intranasal administration (627). Another
promising GRF analog is LAB GHRH,
which can also be administered either
orally, by injection, or by inhalation.
However, as with sermorelin, conclusive
studies are lacking for examorelin and
LAB GHRH. Furthermore, they have not
as yet been used in underweight patients
with COPD.

In conclusion, GH, ghrelin, and GRF
analogs are anabolic agents that improve
body weight and muscle mass, being
logical treatments for different chronic
conditions associated with cachexia.
However, their actions on muscle
function are not yet clear. Because larger-
scale trials are still awaited, especially for
new secretagogues, the role of these
peptides in the treatment of COPD needs
to be further clarified. In view of present
data, we can speculate that they should
probably be restricted to patients with
severe muscle atrophy.

Other Anabolic Drugs and
Bioactive Nutrients
Anabolism may be defined as the synthesis
of complex molecules in living organisms
from simpler ones together with the storage
of energy. Using this definition, several
pharmacologic agents have been described
that have anabolic potential. Some, however,
have not been evaluated in COPD at this
time.

Megestrol acetate. Megestrol acetate
(MA) is a progestational appetite
stimulant that also has antiinflammatory
effects (628, 629). A prospective, double-

blind, randomized, multicenter, placebo-
controlled outpatient trial involving
patients with COPD was published in
2002 (630). Body weight increased by 3.2
kg in the MA group and 0.7 kg in the
placebo group, but unfortunately this was
mainly fat. Spirometry and maximum
inspiratory pressure did not change
significantly. Changes in 6-minute
walking distance did not differ
statistically between groups at Weeks 2
and 4 but were greater in the placebo
group at Week 8. Consistent with its
known ability to stimulate ventilation,
PaCO2

decreased in the MA group.
Questionnaires revealed that body image
and appetite improved in the MA but not
the placebo group. Cortisol decreased
substantially, and, in male subjects,
testosterone levels decreased by 85% in
the MA group. Therefore, this study
showed that MA increased body weight
and stimulated pulmonary ventilation in
underweight patients with COPD but did
not improve muscle function. It may be
concluded that megestrol acetate is
anabolic to fat, but not to muscle, likely
because this drug lowers testosterone
levels substantially.

Creatine. Creatine monohydrate is
a nutritional supplement in wide use as
an aid to exercise performance. In
limb muscle, creatine undergoes
phosphorylation to form PCr, a source of
high-energy phosphate that supports
ATP resynthesis during exercise. This
mechanism of action suggests that
creatine supplementation would be
expected to enhance exercise endurance
capacity. A substantial number of studies
have evaluated creatine supplementation
in athletes and healthy elderly subjects.
Two metaanalyses have concluded that,
in general, creatine supplementation
enhances exercise performance
(631, 632).

Three randomized placebo-controlled
studies in patients with moderate to severe
COPD have evaluated the additive benefit of
creatine supplementation in conjunction
with pulmonary rehabilitation. Fuld and
colleagues (633) randomized 38 subjects to
undergo a 2-week “loading period” with
creatine versus placebo followed by
a 10-week pulmonary rehabilitation
program. The creatine group had a greater
increase in FFM (about 1 kg) as well as
evidence of greater improvement in leg
muscle strength and endurance. But whole-

body exercise capacity (incremental and
endurance shuttle walk distance,
incremental and constant work rate cycle
ergometer testing) increase was no greater
than with rehabilitation alone. Faager
and colleagues (634) randomized 23
patients with COPD to oral creatine
supplementation versus placebo in
combination with 8 weeks of exercise
training. Those randomized to creatine
showed no augmentation of improvement
in endurance shuttle walk distance
compared with those receiving placebo.
Deacon and colleagues (635) studied 100
patients with COPD who were randomized
to creatine or placebo during 7 weeks of
exercise training. Quadriceps muscle
biopsies, performed in a subset of
participants, showed creatine uptake in
the group receiving creatine. However, the
two groups showed no difference in
improvement in incremental shuttle walk
distance or knee extensor strength. A recent
metaanalysis (636) concluded that creatine
supplementation when added to pulmonary
rehabilitation does not improve exercise
capacity, muscle strength, or quality of life
in patients with COPD.

L-Carnitine. Carnitine is required for
optimal mitochondrial fatty acid oxidation
and is a critical source of energy (637).
Studies in the sports medicine literature
have tended to demonstrate a performance-
improving effect of L-carnitine, whereas
studies in untrained healthy individuals
have tended not to show this benefit (638).

The effects of adding L-carnitine to
a whole-body and respiratory training
program were determined in patients with
moderate to severe COPD (639). Sixteen
patients with COPD were studied; they
were randomly assigned to oral L-carnitine
or placebo for 6 weeks. Both groups
participated in thrice weekly 30-minute
treadmill and threshold inspiratory muscle
training sessions. Anthropometry detected
no change in body composition in either
group. Peak work rate in the incremental
treadmill test was significantly improved in
both groups, with no significant difference
between groups. However, blood lactate,
blood pressure, and heart rate at identical
exercise levels during the incremental test
were lower in the carnitine group after
training. Inspiratory muscle strength and
6-mintue walk distance were improved
in both groups, but the gains of the
carnitine group were significantly
greater. This small study suggests that
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carnitine may be able to improve exercise
tolerance in patients with COPD in the
context of a pulmonary rehabilitation
program, but larger, longer-term studies
will be required to confirm this.

Myostatin inhibitor. No studies
exploring the effect of myostatin inhibitors
have been performed in patients with
COPD. A safety trial of a neutralizing
antibody to myostatin, MYO-029, in 116
patients with adult muscular dystrophy was
reported in 2008 (640). The drug was well
tolerated; further studies may be
forthcoming.

Antioxidants
Limb muscle fibers possess strong
antioxidant systems that protect the
myocytes from potential deleterious effects
of ROS. For instance, the antioxidants
CuZn-superoxide dismutase (SOD),
catalase, and glutathione peroxidase are
present in the sarcoplasm, whereas Mn-
SOD and glutathione peroxidase are
localized within the mitochondrial matrix.
Other thiol-based antioxidant proteins such
as thioredoxins and peroxiredoxins are also
abundantly expressed inside the myocytes.
Moreover, nonenzymatic antioxidant
systems complement the action of the
antioxidant enzymes, such as the lipid-
soluble compounds vitamin E, carotenes,
and ubiquinol, which are localized to cell
membranes. Ascorbic acid, urate, lipoate,
and glutathione, the most abundant
nonprotein thiols, are water soluble and
widely distributed within the muscle fibers.
The ratio of reduced to oxidized
glutathione is an indicator of the redox
tissue potential. In this regard, thiol
oxidation is a sensitive marker of oxidative
stress that has been clearly implicated in
muscle fatigue (641).

In resting muscles of patients with
COPD, the levels of antioxidant enzymes
are significantly increased (171, 201,
217, 222, 642). Specifically, both
mitochondrial SOD content and total
SOD activity were consistently shown to
be greater in the quadriceps of patients
with severe COPD (171, 201, 217, 222). A
significant rise in Mn-SOD content was
also detected in the quadriceps of healthy
smokers as well as in respiratory and
limb muscles of mice chronically exposed
to cigarette smoke (233). Nonetheless,
tissue antioxidant potential as measured
by reduced glutathione was not different
between patients with COPD and control

subjects in their limb muscles (217, 231,
514). Similar findings were reported in
muscles of guinea pigs chronically
exposed to cigarette smoke, in whom
antioxidant content levels did not differ
from those encountered in the control
animals (233).

The issue of whether patients with
COPD should be treated with antioxidants
to delay the development of limb muscle
fatigue is still debatable. Previous studies in
humans (643, 644) have demonstrated
that nutritional antioxidants (vitamins
C and E and carotenes) do not attenuate
fatigue, despite reducing biochemical
markers of oxidative stress. However,
treatment of animals with actual
antioxidant enzymes such as SOD and
catalase, which selectively scavenge ROS,
was shown to diminish fatigue during
repetitive muscle contractions (645, 646).
Allopurinol, which directly inhibits the
activity of the ROS-producing enzyme
xanthine oxidase, was shown to
significantly decrease systemic lipid
peroxidation and oxidized glutathione,
with no changes in quadriceps endurance,
after strenuous exercise in patients with
severe COPD (226). Furthermore,
inhibitors of cyclooxygenase and
antioxidants may reduce the perception of
muscle fatigue in patients with cancer
cachexia (647). Nonetheless, current
knowledge on whether antioxidant
enzyme promoters and inhibitors of
ROS-producing enzymes may lessen
fatigue and improve muscle performance
is at its infancy, and further research,
probably conducted in animal
experiments at an initial stage, is
warranted.

An alternative approach to the use of
antioxidants has been the administration
of compounds such as N-acetyl cysteine
(NAC), glutathione, and whey-based
cysteine donors that prevent thiol
oxidation. These compounds improve
muscle performance and attenuate
oxidative stress markers in experimental
models of resistive loading and in patients
with COPD (227, 518, 641, 648).
Moreover, inhibition of glutathione
levels worsened muscle fatigue (641),
suggesting that glutathione redox status
is an important determinant of muscle
fatigue. NAC, an acetyl derivative of
the amino acid cysteine, neutralizes ROS
by reducing disulfide bonds. NAC may
also enhance intracellular levels of

glutathione in vivo in several organs,
including the lungs (649). Importantly,
investigations conducted in healthy
subjects have shown that treatment with
NAC delays fatigue and increases
glutathione availability in response to
chronic endurance training (650, 651).
These are relevant findings that may
have implications in the management
of the COPD-associated muscle
dysfunction, especially when targeting
improvement of muscle performance.

In conclusion, increasing antioxidant
potential seems to improve muscle
performance while attenuating fatigue.
These findings have important
implications in the design of endurance
exercise training programs in patients with
COPD. Future research is warranted to
advance current knowledge on the effects
of nutritional and pharmacological agents
tailored to enhancing antioxidant
enzyme activity and/or inhibition of ROS
production in muscles of patients with
COPD.

Vitamin D Supplementation
Several randomized trials and metaanalyses
in elderly subjects systematically
demonstrate that vitamin D
supplementation improves balance and
reduces falls by approximately 20% (403,
652). It is still debated whether these effects
are obtained because of improved
neuromuscular control and better neural
signaling rather than through optimization
of limb muscle strength. Indeed, data on
strength are less consistent, with one
metaanalysis revealing efficacy of
supplementation only when baseline 25-
OHD levels are below 10 ng/ml (653).
However, a large cross-sectional study
shows that muscle strength continues to
increase from 25-OHD levels of 9 ng/ml
to 37 ng/ml (388), which made some
experts suggest that, for obtaining
beneficial effects on the muscle, higher
doses of supplementation are necessary
(654). It should be mentioned that none
of these studies has reported on patients
with COPD.

Surprisingly, few studies have
explored vitamin D supplementation in
the context of training (655). Two
intervention studies evaluated the effect of
a daily dose of vitamin D (400–800 IU)
and calcium (1 g) in combination with
strength or resistance training in an
elderly population (656, 657). They found
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no effect, perhaps because both the
supplementation dosage and the load of
the training program were too low to
generate positive results (654, 655). When
focusing on COPD, vitamin D deficiency
has been linked to more drop-out and worse
outcome after pulmonary rehabilitation
(658). A randomized controlled trial (659) in
50 patients with COPD referred for
rehabilitation showed mild additional
benefits of high-dose vitamin D supplements
(3,000 U/d) on limb muscle strength and
exercise tolerance (659, 660). A larger
prospective randomized controlled study is
currently ongoing (clinicaltrials.gov:
NCT01416701). Additional studies are
needed to evaluate clinical and long-term
benefits in patients or subgroups of patients
with COPD.

Suggestions for Future
Research

Despite the progress made since the first
limb muscle dysfunction statement in
COPD, much remains to be learned about
this important systemic consequence of this
disease. For example, we do not know
whether limb muscle dysfunction in COPD
is the mere reflection of years of disuse or
whether there is a specific form of myopathy
in this condition or in specific COPD
phenotypes. Along these lines, it is unclear
whether the development of muscle
weakness parallels the development of
COPD or whether different causal factors
are influencing the trajectory of decline of
muscle strength and lung function. Body
composition abnormalities in COPD are
rapidly changing in the context of
a worldwide epidemic of obesity. Clinicians
are now faced with many more obese

patients with COPD than lean ones. In this
situation, the diagnosis of muscle atrophy
may becomemore difficult, as clinicians are
likely to be misled by the presence of
a normal or increased BMI, believing that
this implies normal muscle mass. Although
muscle atrophy is less prevalent when
BMI is normal or increased, there is still
a portion of patients in this category
exhibiting muscle atrophy and weakness.
As such, the incorporation of body
composition analysis in the clinical arena
will become even more relevant.

There are some examples/suggestions for
future research that should help advance our
understanding of the development and
treatment of limbmuscle dysfunction inCOPD.

1. The choice of the appropriate
comparator in studies evaluating
muscle function in COPD is critical. If
the question about the presence of
disuse versus myopathy is to be
answered, it will be important to match
patients with COPD and control
subjects with similar degree of physical
activities.

2. Studies should be done to determine
widely accepted normative values for
quadriceps muscle strength.

3. There is a need to know more about the
onset of limb muscle dysfunction in
COPD. As such, the focus on patients
with mild disease would be of interest.
Longitudinal studies looking at the
changes in limb muscle function over
time will be important to understand
when the pathological processes within
the muscles start and how they evolve
over time.

4. The investigation of the basic/molecular
mechanisms of limb muscle dysfunction
is a key issue for the development of

specific and safe strategies to target this
problem.

5. Clinical trials are warranted to evaluate
to which extent treatment of limb
muscle function affects clinical
outcomes (exercise capacity, quality of
life, and survival) in COPD.

6. Large and multicenter studies in
thoroughly phenotyped patients will be
instrumental in understanding specific
risk factors for developing limb muscle
dysfunction and evaluating treatment
for this condition.

7. Whether muscle abnormalities can be
completely normalized with exercise
training is a question that should be
addressed specifically in a clinical trial.

8. In the context of increasing prevalence
of (abdominal) obesity in COPD,
emphasis should be placed on the
possible cross-talk between fat and
muscle. For example, it may be that
limb muscle dysfunction could
influence the prevalence of the
metabolic syndrome.

Conclusions

The limb muscles have been the topic of
several publications since the first ATS/
ERS statement on this topic. Limb
muscle dysfunction is a clinically
relevant systemic manifestation of
COPD because it influences important
clinical outcomes in this disease. This
comorbid condition associated with
COPD can be treated with exercise
training. Future research should allow
a better understanding of the
mechanisms involved in the
development of skeletal muscle
dysfunction with the hope for specific
therapies for this problem. n
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muscle fatigue evaluation in biomechanics. Clin Biomech (Bristol,
Avon) 2009;24:327–340.

486. Rondelli RR, Dal Corso S, Simões A, Malaguti C. Methods for the
assessment of peripheral muscle fatigue and its energy and
metabolic determinants in COPD. J Bras Pneumol 2009;35:
1125–1135.

487. Malaguti C, Nery LE, Dal Corso S, Nápolis L, De Fuccio MB, Castro
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