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Clinical and genetic associations of deep
learning-derived cardiac magnetic
resonance-based left ventricular mass

Shaan Khurshid 1,2,3, Julieta Lazarte 1,2,4, James P. Pirruccello1,2,5,
Lu-Chen Weng 1,2, Seung Hoan Choi 1,2, Amelia W. Hall6, Xin Wang1,2,
Samuel F. Friedman 7, Victor Nauffal8, Kiran J. Biddinger1,2,
Krishna G. Aragam1,2,5, Puneet Batra 7, Jennifer E. Ho 2,9,
Anthony A. Philippakis 7, Patrick T. Ellinor 1,2,3 & Steven A. Lubitz 1,2,3

Left ventricular mass is a risk marker for cardiovascular events, and may
indicate an underlying cardiomyopathy. Cardiac magnetic resonance is the
gold-standard for left ventricular mass estimation, but is challenging to obtain
at scale. Here, we use deep learning to enable genome-wide association study
of cardiac magnetic resonance-derived left ventricular mass indexed to body
surface area within 43,230 UK Biobank participants. We identify 12 genome-
wide associations (1 known at TTN and 11 novel for left ventricular mass),
implicating genes previously associated with cardiac contractility and cardi-
omyopathy. Cardiac magnetic resonance-derived indexed left ventricular
mass is associated with incident dilated and hypertrophic cardiomyopathies,
and implantable cardioverter-defibrillator implant. An indexed left ventricular
mass polygenic risk score ≥90th percentile is also associated with incident
implantable cardioverter-defibrillator implant in separate UK Biobank (hazard
ratio 1.22, 95%CI 1.05-1.44) andMassGeneral Brigham (hazard ratio 1.75, 95%CI
1.12-2.74) samples. Here, we perform a genome-wide association study of
cardiac magnetic resonance-derived indexed left ventricular mass to identify
11 novel variants and demonstrate that cardiac magnetic resonance-derived
and genetically predicted indexed left ventricular mass are associated with
incident cardiomyopathy.

Left ventricular hypertrophy (LVH) is defined as pathologically
increased left ventricularmass (LVM)1 and is associated with increased
risk of cardiovascular events including heart failure (HF)1–3, stroke1,
atrial fibrillation (AF)4, and sudden cardiac death5. Increased LVM is

also a hallmark of certain primary cardiomyopathies such as hyper-
trophic cardiomyopathy (HCM) and some dilated cardiomyopathies
(DCM). Although LVM can be estimated using 12 lead electro-
cardiograms or echocardiography, cardiacmagnetic resonance (CMR)
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offers more accurate and reproducible quantification, and has there-
fore emerged as the gold standard for diagnosing LVH6.

Imaging-based estimation of LVM typically requires LV segmen-
tation, which is usually performed manually and requires substantial
time and expertise. As a result, genetic analyses of imaging-based LVM
have been limited by modest sample sizes. Genome-wide association
studies (GWAS) of echocardiography-based LVM identified a single
susceptibility locus downstream of SPCS37–9. More recently, a genome-
wide association study within 19,000 individuals10 identified sig-
nificant variants in the gene TTN associated with CMR-based LVM.

Here, we apply a validated deep learning approach to automate
estimation of LVM using CMR images (Machine Learning for Health –

Segmentation [ML4Hseg]), to maximize power to detect genetic asso-
ciations underlying CMR-derived LVM11. Specifically, we implement
ML4Hseg to estimate LVMusing CMRs fromnearly 50,000 participants
in the UK Biobank. Given body size is a major determinant of LV size
andmass12, we analyze LVMI (i.e., LVM indexedbybody surface area) in
our primary analyses, and assess unindexed LVM in secondary ana-
lyses. Our GWAS of LVMI identifies 12 independent variants meeting
genome-wide significance, including 11 novel associations. Using
expression quantitative trait loci (eQTLs), transcriptome-wide asso-
ciation testing (TWAS), and tissue-specific expression levels, we pro-
pose several candidate genes, many of which have been previously
associated with cardiac contractility and cardiomyopathy. We addi-
tionally develop a polygenic risk score (PRS) for LVMI, and demon-
strate that both phenotypic and genetic LVMI are associated with
incident cardiovascular diseases including cardiomyopathy.

Results
Genome-wide association study of CMR-derived LVM
We conducted a multi-ancestry GWAS including 43,230 individuals
(91% European ancestry) (Fig. 1, Supplementary Table 1). The analysis
included 9.9million common variants imputed at an INFO score ≥0.30
and having minor allele frequency (MAF) ≥1%. The genomic control
factor was 1.15 with a linkage disequilibrium score regression intercept
of 1.00, consistent with polygenicity of the LVMI trait as opposed to
inflation (Supplementary Fig. 1). Observed scale h2 for LVMI was 0.26
(standard error [SE] 0.02).

The GWAS initially revealed 12 candidate SNPs associated with
CMR-derived LVMI at genome-wide significance (Table 1 and Fig. 2).
Conditional analyses identified an additional variant on chromo-
some 2, and that the two variants on chromosome 17 located 914 kb
apart (r2 = 0.37) were not independent, ultimately resulting in 12
lead SNPs for LVMI. The SNP most strongly associated with LVMI
(rs2255167, p = 1.4 × 10−26) was located at the TTN locus on chro-
mosome 2 and has been previously associated with LVM. TTN is
highly expressed in LV tissue (Supplementary Table 2)10. The
remaining loci (n = 11) were novel, with many located at or prox-
imate to genes implicated in arrhythmias, cardiomyopathy and
cardiomyocyte function, including FLNC, MYOZ1, MAPT, WNT,
CLCN6, MYBPC3 and SYNPO2L. Regional association plots for each
genome-wide significant SNP are shown in Supplementary Fig. 2.
Results for 18 additional variants having suggestive but not
genome-wide significant associations are shown in Supplementary
Table 3. A secondary GWAS of unindexed LVM revealed 12 genome-
wide significant SNPs, of which 6 overlapped with the primary LVMI
GWAS, and a 7th was a strong proxy (r2 = 0.87). Loci unique to
analyses of unindexed LVM appeared primarily enriched for genes
associated with body size (e.g., FTO, HMGA2, GDF5), although FTO
has also been implicated in HF13 and CDKN1A has been associated
with DCM in a recent multi-trait analysis14 (Supplementary Table 4
and Supplementary Fig. 3).

InGWAS restricted to individuals of European ancestry, 14 locimet
genome-wide significance, of which 12 were either a lead variant or a
strong proxy (r2 > 0.8) for a lead variant in the primary GWAS (Sup-
plementary Table 5 and Supplementary Figs. 4 and 5). The two loci
unique to the European ancestry analysis were rs143973349, an
insertion-deletion variant locatednear FLNC, a genehighly expressed in
LV tissue and previously associated with familial hypertrophic,
restrictive, and arrhythmogenic cardiomyopathies, and rs142032045,
located in a gene-rich region closest toDOC2A andnear several variants
previously associated with body size15–18. The variant near FLNC had a
suggestive association with LVMI in the primary multi-ancestry GWAS,
while the variant near DOC2A did not (p = 3.2 × 10−7 and p = 1.1 × 10−5,
respectively). The only variant meeting genome-wide significance in
the primary mixed-ancestry GWAS that was not a lead variant in the

Fig. 1 | Overview of study design and flow.We obtained CMR-derived LVM index
in 44,375 individuals undergoing CMR imaging. We performed a genome-wide
association study of CMR-derived LVMI and assessed for associations between
CMR-derived LVMI and cardiovascular outcomes. Using GWAS results, we

developed a polygenic risk score for LVMI, and applied it to 443,326 separate UK
Biobank participants with genetic data (left), and 29,354 individuals from the
independent Mass General Brigham Biobank (right), to assess for associations
between genetically determined LVMI and cardiovascular outcomes.
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European-only GWAS did have a suggestive association (rs6598541
near IGF1R p = 7.7 × 10−8).

Results of secondary GWAS analyses, including rank-based
inverse normal transformed LVMI, LVMI indexed using the 2.7th
power of height, LVMI indexed using lean body mass, LVMI with
exclusions for prevalent myocardial infarction and heart failure, and
unindexed LVM adjusted for height and weight, are shown in Supple-
mentary Tables 6-10. Results obtained using alternative indexing
methods were broadly consistent with the primary analysis in terms of
variants identified and effect directions. A summary of association
results for the lead variants identified in the primary GWAS tested
across varying indexing methods is shown in Supplementary Table 11.

Bioinformatics and in silico functional analyses to determine
candidate genes
In total, of the 12 independent lead SNPs, eight (or their proxies at r2 ≥
0.8) were significant eQTLs in LV and/or AA tissue samples (Fig. 3). The
locus including variant rs143973349 unique to the European ancestry

analysis also included eQTLs for LV and AA tissue. For a significant
proportion of candidate genes, expression was identified in both LV
and AA tissue samples. We then performed TWAS and identified 6
genes across 5 loci where predicted expression was associated with
LVMI. Each of the genes implicated by TWAS was also an eQTL for
either LV or AA (Fig. 3). Using Hi-C analysis, we observed several
potentially relevant chromatin interactions, including between lead
variant rs56252725 on chromosome 16 and gene MYH11, which
encodes an isoform of the myosin heavy chain which is highly
expressed in LV tissue andhasbeen associatedwith electrocardiogram
amplitude, and between lead variant rs143973349 (European-only
analysis) and gene CCDC136, which encodes a membrane protein and
in which variants have been previously associated with dilated and
hypertrophic cardiomyopathies. Detailed results of eQTL, TWAS, and
Hi-C analyses are shown in Supplementary Table 2.

Probable candidate genes at each locus of interest are summar-
ized in Fig. 3. In several cases, the closest gene was additionally sup-
ported by either eQTL or TWAS prioritization, including SYNPO2L near

Table 1 | Variants associated with CMR-derived left ventricular mass index in the mixed-ancestry GWAS

rsID Chr Position (hg38) Closest gene(s) Function Risk/alt allele RAF Beta SE P value*

rs143800963 1 11835418 CLCN6 Intronic C/A 0.95 0.95 0.16 4.2 × 10−9

rs2255167† 2 178693555 TTN Intronic T/A 0.81 0.97 0.09 3.2 × 10−26

rs10497529‡ 2 178975161 CCDC141 Missense G/A 0.96 1.28 0.20 2.2 × 10−9

- 5 133066736 HSPA4 Indel CTT/C 0.72 0.50 0.08 1.6 × 10−9

rs9388498 6 126552277 CENPW - G/T 0.81 −0.55 0.10 4.1 × 10−9

rs34163229 10 73647154 SYNPO2L Missense G/T 0.86 −0.60 0.10 1.0 × 10−8

rs3729989 11 47348490 MYBPC3 Missense T/C 0.87 −0.61 0.11 1.8 × 10−8

rs28552516 12 121592356 KDM2B Intronic C/T 0.85 −0.58 0.10 1.5 × 10−8

rs6598541 15 98727906 IGF1R Intronic A/G 0.36 −0.42 0.08 4.6 × 10−8

rs56252725 16 14995819 PDXDC1 Intronic G/A 0.75 0.54 0.09 3.7 × 10−9

rs6503451 17 45870981 MAPT Intronic T/C 0.67 −0.52 0.08 1.1 × 10−10

rs199501§ 17 46785247 WNT3 Intronic A/G 0.24 0.55 0.09 1.1 × 109

rs62621197 19 8605262 ADAMTS10 Missense C/T 0.96 1.11 0.20 2.9 × 10−8

Chr chromosome, RAF risk allele frequency, OR odds ratio.
*Denotes two-sided p value corresponding to BOLT-LMM χ2 statistic.
†Locus previously reported for LVM10.
‡Variant identified in conditional analysis conditioned on lead SNPs (beta, standard error, and p value are adjusted).
§Association no longer observed in analysis conditioned on rs6503451.

Fig. 2 | Manhattan plot of mixed-ancestry GWAS for CMR-derived LVM index.
Depicted across increasing chromosome (x-axis) are the association results of the
primary mixed-ancestry GWAS of left ventricular mass index. The y-axis plots the
negative log10 of the two-sided p value corresponding to BOLT-LMM χ2 statistic.

Variantsmeeting the standardmultiplicity correction for genome-wide significance
(p < 5 × 10−8, depicted by hashed horizontal line), are labeled by the closest gene to
the lead variant.
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rs56252725, IGF1R near rs6598541, PDXDC1 near rs56252725, MAPT
near rs6598541, and WNT3 near rs199501. In selected instances,
downstream analyses prioritized alternative genes, including NPPA
near rs143800963 and ORAI1 near rs28552516, with both genes having
substantial expression in LV tissue. Selectedgenes prioritizedbasedon
strong biologicplausibility or previous associationswith LVM included
TTN near rs255167, MYBPC3 near rs3729989, and FLNC near
rs143973349 (EUR only subset). TTN, MYBPC3, and FLNC are also sub-
stantially expressed in LV tissue (Supplementary Table 2).

Comparison to prior associations with LV measurements and
cardiovascular traits
We assessed whether the significant loci we identified have been pre-
viously associated with LV measurements10, 19 and cardiovascular traits.
Including the European-only analysis, a total of 4 loci have been pre-
viously associated with LV measurements. Variant rs2255167 is located
on a region of TTN previously associated with LVmass, LV end diastolic
volume, LV end-systolic volume, and LV ejection fraction. Variants
rs6503451 near MAPT and rs199501 near WNT3 are located at regions
previously associatedwith LVend-systolic volume. In theEuropean-only
analysis, variant rs143973349 near FLNC is at a locus previously asso-
ciated with LV end-systolic volume and LV ejection fraction. Several
additional loci have been implicated in other cardiovascular diseases
such as heart failure (e.g., rs34163229 near SYNPO2L), cardiomyopathy
(e.g., rs2255167 near TTN, rs3729989 near MYBPC3, rs143973349 near
FLNC), and atrial fibrillation (e.g., rs6598541 near IGF1R), while others
have been associated with cardiovascular risk factors such as blood
pressure or diabetes. Several variants are located at regions previously

associated with electrocardiographic traits such as PR interval (e.g.,
rs56252725 near PDXDC1), QRS duration (rs6598541 near IGF1R), and
QRS amplitude (rs6503451 near MAPT). Variants rs28552516 near
KDM2B, rs62621197 near ADAMTS10, and rs142032045 near DOC2A in
the European-only analysis have not been previously associated with
either LV or other cardiovascular traits. A summary of lead variants and
their prior associations is shown in Supplementary Table 12.

Associations between LVMI and cardiomyopathy
We assessed for associations between CMR-derived LVMI and incident
cardiovascular disease. At a median follow-up of 2.7 years (Q1:1.9,
Q3:4.1), greater LVMI was consistently associated with greater risk of
multiple conditions, including AF,MI, HF, DCM,HCM, and ICD implant
(Supplementary Table 13). CMR-derived LVH was strongly associated
with incident DCM (HR 10.9, 95% CI 4.67–20.2), HCM (HR 9.26, 95% CI
3.20–26.8), and ICD implant (HR 8.42, 95% CI 3.82–18.6). Cumulative
risk of events stratified by presence versus absence of CMR-derived
LVH is depicted in Fig. 4.

We next evaluated associations between LVMI genetic risk and
incident outcomes. In a set of UK Biobank participants separate from
the GWAS sample (n = 443,326), a greater LVMI PRS was associated
with higher risk of multiple incident conditions including AF, HF,
ventricular arrhythmias, DCM, and ICD implant (Table 2). In the inde-
pendent MGB sample (n = 29,354), the LVMI PRS was again associated
with incident ICD implant, along with suggestive associations with
HCM and DCM (Table 2). In models of incident ICD risk, the relative
hazard of ICD was consistently greatest at the highest levels of CMR-
derived LVMI as well as LVMI PRS, with similar effect sizes in both the

Fig. 3 | Candidate gene summary.Depicted is a summary of study results.We used
a deep learning algorithm to perform a GWAS of CMR-derived LVMI in 43,230
individuals, finding 12 independent loci associated with LVMI. Using proximity to
lead variants, expression quantitative trait locus (eQTL) analysis, transcriptome-
wide association studies (TWAS), Hi-C analysis, LV tissue-specific expression

levels, and prior evidence, we identified candidate genes across the 12 loci. Can-
didate genes were enriched for genes involved in stress response and neuro-
hormonal regulation, cardiac structure and cardiomyopathy, and cell signaling/
function (gray box).
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UK Biobank and MGB (Fig. 5). Disease association results were gen-
erally similar in analyses restricted to individuals of European ancestry
(Supplementary Table 14), and when utilizing a PRS derived from
GWAS performed after exclusion of individuals with prevalent myo-
cardial infarction and heart failure (Supplementary Table 15).

Mendelian-randomization analyses of blood pressure and
diabetes
Toassess for potential causal associations betweenbloodpressure and
CMR-derived LVMI, we performed MR analyses using genetic instru-
ments for SBP and DBP among individuals of European ancestry. We
performed analogous analyses for diabetes. In an inverse-variance
weighted two-sample MR, a 1-SD increase in genetically mediated SBP
was associated with a 0.27 g/m2 increase in CMR-derived LVMI (95% CI
0.23–0.31, p = 1.75 × 10−41), and a 1-SD increase in genetically mediated
DBP was associated with a 0.32 g/m2 increase in CMR-derived LVMI
(95% CI, 0.25–0.39, p = 1.64 × 10−20). A 1-SD increase in genetically
mediated risk of diabetes was associated with a 0.31 g/m2 increase in
CMR-derived LVMI (95% CI, 0.05–0.56, p =0.018). Weighted median
and MR-Egger analyses demonstrated similar results for SBP and DBP,
but associations with diabetes were no longer significant (weighted
median: 0.19 g/m2, 95% CI −0.15 to 0.53, p =0.26; MR-Egger: 0.15 g/m2,
95% CI −0.36 to 0.66, p =0.56). MR-Egger analyses suggested no sub-
stantive directional pleiotropy in the SBP, DBP, and diabetes instru-
ments (intercept 0.01, p-0.38 for SBP; intercept −0.02, p = 0.04 for
DBP; intercept=0.01, p = 0.50 for diabetes). MR results were similar
using unindexed LVM (Supplementary Table 16). MR plots are shown
in Supplementary Fig. 6.

Discussion
In the current study, we utilized a deep learning segmentation algo-
rithm to perform GWAS of CMR-derived LVMI in nearly 50,000

individuals. Leveraging favorable statistical power and a rich imaging-
based phenotype, we identified 12 independent loci associated with
LVMI at genome-wide significance. Of the loci identified, 11 are novel
for LV mass, 9 have not been previously associated with any LV mea-
surement, and 2 have not been associatedwith any cardiovascular trait
or risk factor. A European-only analysis revealed 2 additional loci which
are novel for LV mass. Downstream analyses prioritize several candi-
date genes, including multiple genes previously associated with car-
diac structure and function, as well as cardiomyopathy. Importantly,
CMR-derived and genetically determined LVMI were each associated
with greater risk of incident cardiovascular events, including incident,
DCM, and ICD implant.

Our analyses suggest that common variants in cardiac structural
and functional genes appear to be important determinants of LVM.
CMR-derived LVMIwas strongly associatedwith variation at rs2255167,
located within the gene encoding the large sarcomeric protein titin
and previously associated with LV mass10, as well as LV volumes and
ejection fraction19. MYOZ1, which encodes a sarcomeric protein
involved in calcineurin signaling and was prioritized by both eQTL and
TWAS analysis, has been previously associated with HF13 and AF20. A
mouse knockout of MYOZ1 resulted in increased exercise capacity
through activation of the nuclear factor of activated T-cells21. Another
gene prioritized by both eQTL and TWAS, TNNT3, encodes a troponin
T isoform which is highly expressed in LV tissue. The TNNT3 R63H
variant has been shown to result in increased contractility in mouse
skeletal muscle and is a cause of the human disease Arthrogryposis
(Type 2B2)22, characterized by limb contractures (i.e., excessive mus-
cular contraction). SYNPO2L, an actin-related protein expressed in LV
myocardium, has been previously associated with AF23, HF24, HCM14,
and voltage-duration product (a clinical indicator of LVH)25.

Several of the candidate genes we identified prioritize neuro-
hormonal regulation and response to physiologic stress as potential

Fig. 4 | Kaplan–Meier plots of the association between CMR-derived LVH and
incident cardiovascular disease. Plots depicting the cumulative risk of atrial
fibrillation (top left), heart failure (top right), myocardial infarction (bottom left),
and ventricular arrhythmias (bottom right), stratified by the presence (orange)

versus absence (teal) of CMR-derived LVH. LVH was defined as LVM index
(LVMI) > 72 g/m2 in men and >55 g/m2 in women44. The number at risk within each
stratum over time is depicted below each plot.
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genetic determinants of LVMI. Specifically, lead variant rs143800963 is
located on chromosome 1 within 20 kb of NPPA and NPPB, genes that
encode the natriuretic peptides Nppa and Nppb, respectively, with
both proteins playing important roles in bloodpressure regulation and
salt homeostasis26. Both Nppa and Nppb are constitutively expressed
in ventricular myocardium and upregulated in response to stress27.
NPPB knockout in mice results in augmentation of the cardiac fibrosis
response to pressure overload28. Conversely, cardiomyocyte-specific
deletion of ORAI1, which encodes a regulator of calcium-induced cal-
cium release, results in improved response to pressure overload and
protection against angiotensin II-induced cardiac remodeling in adult
myocardium29. IGFR1, an eQTL for LV tissue in which predicted
expression in LV was associated with LVMI, encodes the insulin-like

growth factor receptor 1, which has been implicated in organ growth
and insulin resistance30.

Several LVMI candidate genes have previous links to cardiomyo-
pathy andHF. The strongest associationwe observedwas at rs2255167,
a variant located in TTN, in which mutations have been previously
associated with familial cardiomyopathy31 and early-onset AF32. One of
the loci detected in the European ancestry analysis (and suggestive in
the primary analysis), FLNC, encodes filamin C, an actin-related protein
associated with familial HCM16, restrictive cardiomyopathy17, arrhyth-
mogenic cardiomyopathy15, and LV contractile function19. A mouse
knock-in of filamin C results in myofibrillar degeneration33. PPP3CB,
which encodes the signaling protein calcineurin, has been implicated
in pathologic cardiac hypertrophy34. Lead variant rs3729989 is located

Fig. 5 | Association between CMR-derived and genetically predicted LVMI and
incident ICD implant. Depicted are plots showing the relative hazard of incident
implantable cardioverter-defibrillator (ICD) implant as a function of increasing
standardized CMR-derived LVM index (left), increasing standardized LVMI PRS in
UK Biobank (middle) and increasing standardized LVMI PRS in Mass General
Brigham (MGB, right). In each plot, the y-axis depicts the relative hazard of incident
ICD compared to the hazard observed for individuals with an average LVMI (left) or
average PRS value (middle and right), derived from Cox proportional hazards

models adjusted for age and sex (left), and adjusted for age, sex, and the first five
principal components of genetic ancestry (middle and right). The relative hazard is
plotted on the logarithmic scale. The functional form of the association was
selected empirically using a penalized spline approach, in which the degrees of
freedom for the penalized spline fit were chosen based on minimization of the
corrected Akaike Information Criterion75. The number of events and individuals
included in each analysis are listed above each plot.

Table 2 | Associations between LVMI PRS and incident disease

Hazard ratio for covariate (95% CI)*

N events/N total† Follow-up, yrs (Q1,Q3) PRS (per 1 SD) PRS (90th percentile) PRS (95th percentile)

UK Biobank

Atrial fibrillation 25050/435917 11.8 (11.0,12.6) 1.01 (1.00–1.03) 1.03 (0.98–1.07) 1.04 (0.98–1.10)

Myocardial infarction 13405/432044 11.8 (11.0,12.6) 1.03 (1.01–1.05) 1.05 (0.99–1.11) 1.10 (1.02–1.18)

Heart failure 13540/440590 11.9 (11.0,12.6) 1.04 (1.02–1.05) 1.06 (1.00–1.12) 1.08 (1.00–1.16)

Ventricular arrhythmias 4882/442295 11.9 (11.1,12.6) 1.06 (1.03–1.09) 1.13 (1.04–1.24) 1.17 (1.04–1.32)

Dilated cardiomyopathy‡ 1023/443013 11.9 (11.1,12.6) 1.10 (1.04–1.17) 1.15 (0.95–1.40) 1.29 (1.00–1.66)

Hypertrophic cardiomyopathy‡ 420/443150 11.9 (11.1,12.6) 1.08 (0.98–1.09) 0.95 (0.68–1.33) 1.23 (0.82–1.86)

Implantable defibrillator 1444/443216 11.9 (11.1,12.6) 1.07 (1.02–1.13) 1.22 (1.05–1.44) 1.22 (0.98–1.51)

Mass General Brigham

Atrial fibrillation 1332/25316 2.9 (2.0,4.1) 1.01 (0.95–1.06) 1.02 (0.85–1.22) 1.03 (0.80–1.31)

Myocardial infarction 695/25592 2.9 (2.0,4.1) 0.99 (0.92–1.06) 0.97 (0.74–1.25) 0.71 (0.47–1.07)

Heart failure 1074/25063 2.9 (2.0,4.1) 0.97 (0.91–1.03) 1.18 (0.97–1.42) 1.00 (0.76–1.33)

Ventricular arrhythmias 944/26990 3.0 (2.0,4.2) 0.99 (0.93–1.05) 1.00 (0.81–1.24) 1.03 (0.76–1.38)

Dilated cardiomyopathy 492/28821 3.0 (2.1,4.2) 1.06 (0.97–1.16) 1.27 (0.97–1.67) 1.06 (0.70–1.59)

Hypertrophic cardiomyopathy 183/28731 3.0 (2.1,4.2) 1.14 (0.98–1.32) 1.04 (0.64–1.69) 0.82 (0.38–1.75)

Implantable defibrillator 152/28454 3.0 (2.1,4.2) 1.05 (0.89–1.24) 1.75 (1.12–2.74) 1.69 (0.91–3.12)

CI confidence interval, PRS polygenic risk score, Q1 quartile 1, Q3 quartile 3, SD standard deviation.
*Hazard ratios obtained using Cox proportional hazards models adjusted for age, sex, and principal components 1–5.
†N includes all individuals without the prevalent condition at baseline.
‡Includes n = 20 eventswith high confidence loss-of-function, deleteriousmissense, known pathogenic or likely pathogenic variant for HCM, and n = 50 events with high confidence loss-of-function,
deleterious missense, known pathogenic or likely pathogenic rare variant for DCM (see text and Supplementary Table 18).
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near MYBPC3, a gene encoding the cardiac myosin-binding protein.
Mutations inMYBPC3 are a known cause of DCM and HCM35, 36. FTO, an
obesity gene previously associated with HF13, was associated with
unindexed LV mass, but not LVMI. Interestingly, we identified several
loci which are novel for LVM but have prior associations with elec-
trocardiographic traits37,38. Future work is warranted to assesswhether
such associations may reflect electrical manifestations of LV mass or
the presence of a cardiomyopathy.

Importantly, we observed that both phenotypic and genetically
predicted LVMI were associated with increased risks of incident cardi-
ovascular events. Increased LVMI and LVH are consistently associated
with HF2. Here, we observed associations not only with HF, but also
incident DCM, HCM, and insertion of an ICD (a surrogate for cardio-
myopathy or ventricular arrhythmias). Consistent with the notion that
LVMI may be an endophenotype for certain cardiomyopathies, we
observed that genetically predicted LVMI (using a 465-variant PRS) was
associated with greater risk of incident ICD implant in a separate set of
UK Biobank participants as well as an external sample from the MGB
healthcare system. Of note, we did not exclude individuals with DCMor
HCM from our incident disease analyses since we hypothesized that
polygenic risk may nevertheless contribute to the development of
clinical outcomes39. In the context of lowevent rates, however, the LVMI
PRS was associated with incident DCM only in the UK Biobank, and
associations with incident HCM were not significant in either sample.
Consistent with expectations40, 41, using Mendelian-randomization ana-
lyses, we observed associations between genetically predicted blood
pressure and diabetes risk with greater LVM. Overall, our findings pro-
vide evidence that the genetic variation underlying increased LVMmay
be clinically relevant, and highlight the need for future research to
evaluate the potential utility of a polygenic predictor of LVM to improve
identification of individuals at risk of incident cardiomyopathy.

Our study has limitations. First, our analysis was a mixed-ancestry
GWAS, but the sample is predominantly of European descent. There-
fore, our results may not generalize to individuals of other ancestries.
Second, we used a previously published deep learning model
(ML4Hseg) to facilitate well-powered GWAS of CMR-derived LVM.
ML4Hseg was trained using an imperfect segmentation method as
ground truth11, 42, which may have led to lower agreement with true
LVM as compared to some alternative approaches (e.g., 95% limits of
agreement −27g to 27 g with ML4Hseg versus −18 to 18 g by Bai et al.
using a proprietary deep learning model43 and −5 to 8 g by Peterson
et al. in a small set of hand-labeled measurements44). Nevertheless,
estimates fromML4Hseg correlate strongly (r =0.86)with hand-labeled
CMR-derived LVM in theUKBiobank11, andMRanalyses recapitulated a
known causal relationship between elevated blood pressure and
increased indexed LVM40. Third, our ability to assess for associations
between CMR-derived LVMI and incident outcomes was limited by
event rates and follow-up currently available after imaging. Fourth,
generalizability may be affected by bias introduced by methods of
enrollment, as UK Biobank participants are enriched for health and
socioeconomic status compared to the general population45. Fifth, we
analyzed LVM indexed to body surface area since this measure is in
common clinical use, even though alternative methods of body mass
correction exist. We therefore performed multiple analyses using
alternative indexing methods (e.g., 2.7th power of height).

In summary, we performed GWAS of deep-learned CMR-derived
LVM including nearly 50,000 individuals. We discovered 12 indepen-
dent loci meeting genome-wide significance, including 11 that are
novel. Using complementary downstream analyses, we identified
multiple candidate genes, many of which are involved in cardiac
structure and function, and several that have been previously impli-
cated in cardiomyopathy. Both CMR-derived and genetically deter-
mined LVMwere associated with incident ICD implant in independent
datasets. Our findings add to our understanding of common genetic
variation underlying LVM and demonstrate the potential to use deep

learning to define rich phenotypes at scale to empower clinically
relevant biological discovery.

Methods
Study populations
The discovery sample comprised the UK Biobank, a population-based
prospective cohort of 502,629 participants recruited between
2006–2010 in the United Kingdom to investigate the genetic and
lifestyle determinants of disease. The design of the cohort has been
described previously46, 47. Briefly, approximately 9.2million individuals
aged 40-69 years living within 25miles of the 22 assessment centers in
England,Wales, and Scotlandwere invited, and 5.4%participated in the
baseline assessment. Extensive questionnaire data, physical measures,
and biological data were collected at recruitment, with ongoing data
collection in large subsets of the cohort, including repeated assess-
ments and multimodal imaging. At the time of the current analysis,
over 450,000 individuals have genome-wide genotyping data avail-
able. All participants are followed up for health outcomes through
linkage to national health-related datasets.

We utilized the MGB Biobank to replicate a LVMI PRS that we
derived in the UK Biobank. The MGB Biobank is a biorepository com-
prising patients from a multi-institutional healthcare network span-
ning seven hospitals in the New England region of the United States.
MGB Biobank participants are followed for health outcomes through
linkage to electronic health record (EHR) data.

UK Biobank and MGB Biobank participants provided written
informed consent. The UK Biobank was approved by the UK Biobank
Research Ethics Committee (reference number 11/NW/0382) and the
MGB Biobank by the MGB Institutional Review Board. Use of UK Bio-
bank (application #17488) and MGB Biobank data were approved by
the local MGB Institutional Review Board.

Cardiac magnetic resonance acquisition
For all analyses, we included individuals who underwent CMR during a
UK Biobank imaging assessment and whose bulk CMR data were
available for download as of 04-01-2020 (Fig. 1). The full CMRprotocol
of the UK Biobank has been described in detail previously48. Briefly, all
CMR examinations were performed in the United Kingdom on a clin-
ical wide-bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform
VD13A, Siemens Healthineers, Erlangen, Germany). All acquisitions
used balanced steady-state free precession with typical parameters.

Left ventricular mass estimation
WeobtainedCMR-derived LVM fromall individualswith availableCMR
imaging using ML4Hseg

11. ML4Hseg is a convolutional neural network
which identifies pixels corresponding to LV myocardium, which are
then summed to estimate LV area and multiplied by slice thickness to
estimate LV myocardial volume. LV myocardial volume is then multi-
plied by myocardial density (1.05 g/cm3) to yield LVM. LVM estimates
were calibrated to the sex-specific sample means using manually
labeled LVMmeasurements whichwere availablewithin a subset of the
UK Biobank sample (n = 4910), where sex was classified using self-
reported data. LVM estimates obtained using the described method
have been shown to have very good correlation (Pearson r 0.86) and
agreement (mean absolute error 10 g) againstmanually labeled LVM in
the UK Biobank11. LVM estimates were indexed for body surface area
using the DuBois formula to yield LVMI49. A total of 59 (0.1%) indivi-
duals with outlying estimated LVM values (defined as falling outside 5
interquartile ranges from the median, or any value ≤0 g/m2 following
calibration) were removed prior to analyses (Fig. 1). The distribution of
CMR-derived LVM is shown in Supplementary Fig. 7.

Genome-wide association study
To identify common genetic variation associated with CMR-derived
LVM, we performed a GWAS of indexed LVM using BOLT-LMM v2.3.450,
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which accounts for ancestral heterogeneity, cryptic population struc-
ture, and sample relatedness by fitting a linear mixed model with a
Bayesian mixture prior as a random effect19, 51, 52. Previous evidence
supports the use of LMM approaches to perform GWAS of admixed
populations, which may provide favorable statistical power51, 53, 54, and
similar approaches have been taken previously19, 51, 52. The GWAS was
performed among 43,230 individuals having undergone CMR imaging,
after exclusion of individuals without genetic data meeting standard
quality control metrics (e.g., no evidence of sex chromosome aneu-
ploidy, outliers in heterozygosity and missing rates). Imputed variants
were retained if the imputation informationmetricwas≥0.3. All variants
with minor allele frequency <1% were excluded from the final analyses.
Ourmodel was adjusted for age at CMRacquisition, sex, array platform,
and first five principal components of genetic ancestry, where sex was
classified on the basis of genetic sex. Associations were considered
statistically significant at the standard genome-wide significance level
(p = 5 × 10−8). Lead single nucleotide polymorphisms (SNPs) were
grouped into independent loci based on distance (±500kb), with con-
ditional analyses performed to assess for independent signals within
windows. Variants having suggestive (i.e., p < 1 × 10−6) but not genome-
wide significant associations were similarly tabulated. Genetic inflation
was assessed by calculating the genomic control factor λ, inspecting
quantile-quantile plots, and calculating the linkage disequilibrium score
(LDSC) regression intercept using LDSC v1.0.155. Observed scale herit-
ability (h2) was estimated using the slope of LDSC regression. We
assessed for independent signalswithin genome-wide significant loci by
a) performingGWASwhile conditioningon the imputed allele dosageof
each lead SNP found in the primaryGWAS (excluding insertion-deletion
variants), and b) performing GWAS while conditioning on the top var-
iant on chromosome 17 alone (rs6503451), to assess whether the addi-
tional variant located 914 kb apart on chromosome 17 (rs199502,
r2 = 0.37), was independent. The primary GWAS was performed among
individuals of all genetic ancestries.

We performed several secondary GWAS analyses. First, we per-
formed analogous GWAS restricted to individuals of European genetic
ancestry (n = 39,187). Second, we performed GWAS of unindexed LV
mass (with and without adjustment for height and weight), as well as
LVmass alternatively indexed using the 2.7th power of height56. Third,
we performed a GWAS of LVMI after rank-based inverse normal
transformation. Fourth, we performed GWAS of LVMI excluding indi-
viduals with prevalent myocardial infarction and heart failure.

Bioinformatics and in silico functional analyses
We assessed whether genes within 500 kb of lead SNPs were related to
cardiac gene expression using GTEx57 version 8 cis-eQTL tissue data
(dbGaP Study Accession phs000424.v8.p2). To maximize power to
detect potential candidate genes, we considered eQTLs for both atrial
appendage (AA) and LV tissue data19, 58. We included lead variants as
well as strong proxy variants (r2 ≥ 0.8). We also quantified tissue-
specific expression levels from bulk RNA sequencing data fromGTEx57

version 8 (dbGaP Study Accession phs000424.v8.p2). We evaluated
the effects of predicted gene expression levels on LVMI by performing
a transcriptome-wide association study (TWAS) using S-PrediXcan59.
GTEx genotypes and normalized expression data in AA and LV tissues
provided in the software were used as training sets to develop the
prediction models. Prediction models between each gene-tissue pair
were developed using elastic net regression. In total, we tested 6636
and 6008 associations in AA and LV, respectively. The significance
threshold for S-PrediXcan was therefore set at p = 0.05/(6636 + 6008),
or 3.95 × 10−6. We assessed for potential long-range chromatin inter-
actions using Hi-C analysis in adult heart tissues obtained from the
Myocardial Applied Genomics Network (MAGNet, www.med.upenn.
edu/magnet) at the University of Pennsylvania60.

We prioritized candidate genes on the basis of closest proximity
to the lead variant, eQTLs, TWAS, tissue-specific expression levels,Hi-C

analysis, and biologic plausibility based on previously reported data.
All prioritized genes were supported by at least two lines of evidence.

Comparison to prior associations with LV measurements and
cardiovascular traits
To assess whether the variants we identified in association with LVMI
have been previously associated with other LV measurements, we
compared our loci to those reported to have genome-wide associa-
tions with other LV measurements in prior analyses by Pirruccello
et al.19 and Aung et al.10. We performed an analogous search for asso-
ciations with any cardiovascular disease or risk factor using the
NationalHumanGenomeResearch Institute GWASCatalog61. For these
analyses, we tabulated all associations including the same variant, a
variant serving as a strongproxy (r2 ≥0.80), or a variantmapping to the
same candidate gene.

Polygenic risk score development
To develop a PRS as a genetic instrument for CMR-derived LVMI, we
applied a pruning and thresholding approach to our LVMI GWAS
results. After removing insertion-deletion variants and strand ambig-
uous (i.e., A/T and C/G) variants to facilitate replication, we developed
and tested four separate candidate PRS utilizing each combination of
two thresholds used to define index SNPs (p = 1 × 10−6 and p = 1 × 10−4)
and two thresholds used to prune proxy SNPs (r2 = 0.3 and r2 = 0.5). We
then selected the PRS explaining the greatest variance in LVMI within
the derivation set, which ultimately comprised a set of 465 variants
(r2 = 0.3, p = 1 × 10−4, variance of LVMI explained = 0.084; +3.56 g/m2

increase in LVMI per 1-standard deviation [1-SD] increase in
PRS, p <0.01).

Outcomes association testing
We assessed for associations between CMR-derived LVMI and incident
AF, myocardial infarction, HF, ventricular arrhythmias, DCM, HCM,
and implantable cardioverter-defibrillator (ICD) within participants
with follow-up clinical data available after the imaging visit. We
assessed for analogous associations using LVH, which was defined as
LVMI > 72 g/m2 in men and >55 g/m2 in women44, and alternatively as
the sex-specific 90th percentile of LVM1. Diseases were defined using
combinations of self-report and inpatient International Classification
of Diseases, 9th and 10th revision codes (Supplementary Data 1). Start of
follow-up was defined at the time of CMR acquisition and spanned
until the earliest of an incident event, death, or last follow-up. The date
of last follow-upwas dependent upon the availability of linked hospital
data, and was therefore defined as March 31, 2021 for participants
enrolled in England (93.6%) and Scotland (6.1%), and February 28, 2018
for participants enrolled in Wales (0.3%).

We performed analogous association testing between the LVMI
PRS and the same set of incident cardiovascular events among indi-
viduals in the UK Biobank that did not undergo CMR (n = 443,326).
Outcome and person-time definitions were similar, although start of
follow-upwas defined as the date of UK Biobank enrollment and blood
sample collection. We also repeated association testing between the
LVMI PRS and incident events in the independent MGB Biobank sam-
ple, using analogousmodels with person-time beginning at the date of
blood sample collection and ending at an event, death, or last
encounter in the electronic health record.

Mendelian-randomization analyses of blood pressure and
diabetes
As a form of validation of our LVM estimation, we sought to identify
evidence of known causal associations between elevated blood pres-
sure and increased LVM40. We therefore conducted two-sample Men-
delian-randomization (MR) within individuals of genetic European
ancestry in the UK Biobank sample. Given strong epidemiologic
associations between diabetes and LVM62, we performed analogous
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MR analyses for diabetes. Genetic instruments for systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were derived from a
recent GWAS63. The same set of SNPs was used for both systolic and
diastolic blood pressure, but weights specific to systolic versus dia-
stolic blood pressure were used for the systolic and diastolic
Mendelian-randomization analysis, respectively63. Utilizing an 865 SNP
instrument for SBP and DBP, we prioritized inverse-variance weighted
(IVW) meta-analyses of the effect of each SNP on CMR-derived LVMI
(and LVM) divided by the effect of the same SNP on SBP and DBP,
respectively. We performed an analogous procedure using a 337 SNP
instrument for diabetes64. Linear regression models were adjusted for
age, sex, genotyping array, and the first ten principal components of
genetic ancestry, to determine the beta coefficients and standard
errors for the association of each SNP with the outcome (CMR-derived
LVMI). These SNP-specific estimates were combined to conduct two-
sample Mendelian randomization using the ‘MendelianRandomiza-
tion’ package in R. Weighted median and MR-Egger analyses were
performed secondarily to address potential invalid instruments and
directional pleiotropy.

Statistical analysis
We tested associations between CMR-derived LVM and incident AF,
myocardial infarction, HF, ventricular arrhythmias, DCM, HCM, and
ICD using Cox proportional hazards regression with adjustment for
sex and age at CMR acquisition. We fit analogous models using LVH
(defined using the thresholds described above) and the LVMI PRS as
the primary exposures. Models including the PRS were additionally
adjusted for thefirstfive principal components of genetic ancestry. For
the PRS outcomes analyses, we did not exclude individuals with
pathogenic or likely pathogenic variants for HCM or DCM for the fol-
lowing reasons: (a) a substantial proportion of individuals with clini-
cally confirmedHCMandDCMhave no causal variant identified14,65, (b)
recent evidence suggests that polygenic background may play an
important role in disease development even among individuals car-
ryingmutations39, and (c) rare variant information is not available in all
individuals in our UKBB or MGB replication samples. To assess the
frequency of pathologic rare variants among individuals with incident
HCM and DCM events, we did tabulate carrier status of high con-
fidence loss of function, deleterious missense, and known pathogenic
or likely pathogenic variants in HCM and DCM genes as cataloged in
ClinVar as of 2/9/2021. We also included high confidence loss-of-
function variants using LOFTEE66, a plug-in of VEP67, and deleterious
missense variants68 using 30 in silico prediction tools presented in
v4.1a of the dbnsfp database69. A full list of variants is shown in Sup-
plementary Table 17.

Validity of the proportionality assumption was assessed using the
Grambsch-Therneau test of correlation70 as well as visual inspection of
smoothed fits to Schoenfeld residuals versus time. Where present,
substantial deviations from proportional hazards (observed only for
age, sex, and certain principal components of ancestry), weremodeled
by including interaction terms with strata of person-time.

Statistical analyses were performed using R v4.0 (packages
‘data.table’ v1.13.6, ‘ggplot2’ v3.3.3,’survival’ v3.2-7,’prodlim’

v2019.11.13, ‘MendelianRandomization’ v0.5.0)71, 72. Except where
otherwise noted, all two-tailed p-values <0.05 were considered
statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank data are publicly available by application (https://www.
ukbiobank.ac.uk/enable-your-research/register). LV mass estimates
used for the current analysis are accessible toUKBiobank researchers as

returned data (return ID #3290). The GWAS summary statistics gener-
ated in this study have been deposited in the Human Genome Research
Institute GWAS Catalog61 under accession codes GCST90244710 for
LVMI (ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90244001-GCST90245000/GCST90244710/) and GCST0244711
for unindexed LVM (ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90244001-GCST90245000/GCST90244711/) and from
the Downloads page of the Cardiovascular Disease Knowledge Portal
(broadcvdi.org). The LVMI PRS developed in this study has been
deposited to the Polygenic Score (PGS) Catalog73 under accession code
PGS003427 (https://www.pgscatalog.org/score/PGS003427/). Mass
General Brigham (MGB) data contain identifiable protected health
information and participants have not consented to data sharing;
therefore, the data cannot be shared publicly or with controlled access.
This research has been conducted using the UK Biobank Resource
under Application #17488.

Code availability
Data processing scripts used to perform the analyses described herein
are available at https://github.com/shaankhurshid/lvmass_gwas74.
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