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Abstract

Background: Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased 

risk of heart failure and a 2-fold risk of premature death. The use of electrocardiogram (ECG) 

signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We 

developed a novel deep learning-based approach that can use ECG images for the screening of LV 

systolic dysfunction.
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Methods: Using 12-lead ECGs plotted in multiple different formats, and corresponding 

echocardiographic data recorded within 15 days from the Yale-New Haven Hospital (YNHH) 

during 2015–2021, we developed a convolutional neural network algorithm to detect LV ejection 

fraction < 40%. The model was validated within clinical settings at YNHH as well as externally on 

ECG images from Cedars Sinai Medical Center in Los Angeles, CA, Lake Regional Hospital 

(LRH) in Osage Beach, MO, Memorial Hermann Southeast Hospital in Houston, TX, and 

Methodist Cardiology Clinic of San Antonia, TX. In addition, it was validated in the prospective 

Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Gradient-weighted class activation 

mapping was used to localize class-discriminating signals in ECG images.

Results: Overall, 385,601 ECGs with paired echocardiograms were used for model development. 

The model demonstrated high discrimination power across various ECG image formats and 

calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.91, 

area under precision-recall curve [AUPRC] 0.55), and external sets of ECG images from Cedars 

Sinai (AUROC 0.90, AUPRC 0.53), outpatient YNHH clinics (AUROC 0.94, AUPRC 0.77), 

LRH (AUROC 0.90, AUPRC 0.88), Memorial Hermann Southeast Hospital (AUROC 0.91, 

AUPRC 0.88), Methodist Cardiology Clinic (AUROC 0.90, AUPRC 0.74), and ELSA-Brasil 

cohort (AUROC 0.95, AUPRC 0.45). An ECG suggestive of LV systolic dysfunction portended 

over 27-fold higher odds of LV systolic dysfunction on TTE (OR 27.5, 95% CI, 22.3–33.9 in 

the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads 

(V2-V3), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen 

in individuals with LV ejection fraction ≥ 40% at the time of initial assessment was associated 

with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (HR 3.9, 

95% CI 3.3–4.7, median follow-up 3.2 years).

Conclusions: We developed and externally validated a deep learning model that identifies LV 

systolic dysfunction from ECG images. This approach represents an automated and accessible 

screening strategy for LV systolic dysfunction, particularly in low-resource settings.

Keywords

Artificial Intelligence; Electrocardiogram; Left Ventricular Systolic Dysfunction; Heart Failure; 
machine learning; health technology

INTRODUCTION

Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased risk 

of subsequent heart failure and nearly 2-fold risk of premature death.1 While early 

diagnosis can effectively lower this risk,2–4 individuals are often diagnosed after developing 

symptomatic disease due to lack of effective screening strategies.5–7 The diagnosis 

traditionally relies on echocardiography, a specialized imaging modality that is resource 

intensive to deploy at scale.8,9 Algorithms using raw signals from electrocardiography 

(ECG) have been developed as a strategy to detect LV systolic dysfunction.10–12 However, 

clinicians, particularly in remote settings, do not have access to ECG signals. The lack of 

interoperability in signal storage formats from ECG devices further limits the broad uptake 

of such signal-based models.13 The use of ECG images is an opportunity to implement 

interoperable screening strategies for LV systolic dysfunction.
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We previously developed a deep learning approach of format-independent inference from 

real-world ECG images.14 The approach can interpretably diagnose cardiac conduction and 

rhythm disorders using any layout of real-world 12-lead ECG images and can be accessed 

on web- or application-based platforms. Extension of this artificial intelligence (AI)-driven 

approach to ECG images to screen for LV systolic dysfunction could rapidly broaden access 

to a low-cost, easily accessible, and scalable diagnostic approach to underdiagnosed and 

undertreated at-risk populations. This approach adapts deep learning for end-users without 

disruption of data pipelines or clinical workflow. Moreover, the ability to add localization 

of predictive cues in the ECG images relevant to the LV can improve the uptake of these 

models in clinical practice.15

In this study, we present a model for accurate identification of LV ejection fraction 

(LVEF) less than 40%, a threshold with therapeutic implications, based on ECG 

images. We developed, tested, and externally validated this approach using paired ECG-

echocardiographic data from large academic hospitals, rural hospital systems, and a 

prospective cohort study.

METHODS

The Yale Institutional Review Board reviewed the study, which approved the study protocol 

and waived the need for informed consent as the study represents a secondary analysis 

of existing data. The data cannot be shared publicly though an online version of the 

model is publicly available for research use at https://www.cards-lab.org/ecgvision-lv. This 

web application represents a prototype of the eventual application of the model, with 

instructions for required image standards and a version that demonstrates an automated 

image standardization pipeline.

Data Source for Model Development

We used 12-lead ECG signal waveform data from the Yale New Haven Hospital 

(YNHH) collected between 2015 and 2021. These ECGs were recorded as standard 

12-lead recordings sampled at a frequency of 500 Hz for 10 seconds. These were 

recorded on multiple different machines and a majority were collected using Philips 

PageWriter machines and GE MAC machines. Among patients with an ECG, those with 

a corresponding transthoracic echocardiogram (TTE) within 15 days of obtaining the ECG 

were identified from the YNHH electronic health records. LVEF values were extracted based 

on a cardiologist’s read of the nearest TTE to each ECG. To augment the evaluation of 

models built on an image dataset generated from this YNHH signal waveform, six sets of 

ECG image datasets were used for external validation.

Data Preprocessing

All ECGs were analyzed to determine whether they had 10 seconds of continuous recordings 

across all 12 leads. The 10-second samples were preprocessed with a one-second median 

filter, subtracted from the original waveform to remove baseline drift in each lead, 

representing processing steps pursued by ECG machines before generating printed output 

from collected waveform data.
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ECG signals were transformed into ECG images using the Python library ecg-plot,16 and 

stored at 100 DPI. Images were generated with a calibration of 10 mm/mV, which is 

standard for printed ECGs in most real-world settings. In sensitivity analyses, we evaluated 

model performance on images calibrated at 5 and 20 mm/mV. All images, including those 

in train, validation, and test sets, were converted to greyscale, followed by down-sampling 

to 300×300 pixels regardless of their original resolution using Python Image Library (PIL 

v9.2.0). To ensure that the model was adaptable to real-world images, which may vary 

in formats and the layout of leads, we created a dataset with different plotting schemes 

for each signal waveform recording (Figure 1). This strategy has been used to train a 

format-independent image-based model for detecting conduction and rhythm disorders as 

well as the hidden label of gender.14 The model in this study learned ECG lead-specific 

information based on the label regardless of the location of the lead.

Four formats of images were included in the training image dataset (Figure 1). The first 

format was based on the standard printed ECG format in the United States, with four 

2.5-second columns printed sequentially on the page. Each column contained 2.5-second 

intervals from three leads. The full 10-second recording of the lead I signal was included 

as the rhythm strip. The second format, a two-rhythm format, added lead II as an additional 

rhythm strip to the standard format. The third layout was the alternate format which 

consisted of two columns, the first with six simultaneous 5-second recordings from the 

limb leads, and the second with six simultaneous 5-second recordings from the precordial 

leads, without a corresponding rhythm lead. The fourth format was a shuffled format, which 

had precordial leads in the first two columns and limb leads in the third and fourth. All 

images were rotated a random amount between −10 and 10 degrees before being input into 

the model to mimic variations seen in uploaded ECGs and to aid in prevention of overfitting.

The process of converting ECG signals to images was independent of model development, 

ensuring that the model did not learn any aspects of the processing that generated images 

from the signals. All ECGs were converted to images in all different formats without 

conditioning on clinical labels. The validation required uploaded images to be upright, 

cropped to the waveform region, with no brightness and contrast consideration as long as the 

waveform is distinguishable from the background and lead labels are discernible.

Experimental Design

Each included ECG had a corresponding LVEF value from its nearest TTE within 15 days 

of recording. Low LVEF was defined as LVEF < 40%, the cutoff used as an indication for 

most guideline-directed pharmacotherapy for heart failure.4 Patients with at least one ECG 

within 15 days of its nearest TTE were randomly split into training, validation, and held-out 

test patient level sets (85%, 5%, 10%, Figure S1). This sampling was stratified by whether 

a patient had ever had LVEF < 40% to ensure cases of preserved and reduced LVEF were 

split proportionally among the sets. In the training cohort, all ECGs within 15 days of a 

TTE were included for all patients to maximize the data available. In validation and testing 

cohorts, only one ECG was included per patient to ensure independence of observations in 

the assessment of performance metrics. This ECG was randomly chosen amongst all ECGs 

within 15 days of a TTE. Additionally, to ensure that model learning was not affected by the 

Sangha et al. Page 5

Circulation. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relatively lower frequency of LVEF < 40%, higher weights were given to these cases at the 

training stage based on the effective number of samples class sampling scheme.17

Model Training

We built a convolutional neural network model based on the EfficientNet-B3 architecture,18 

which previously demonstrated an ability to learn and identify both rhythm and conduction 

disorders, as well as the hidden label of gender in real-world ECG images.14 The 

EfficientNet-B3 model requires images to be sampled at 300 × 300 square pixels, includes 

384 layers, and has over 10 million trainable parameters (Figure S2). We utilized transfer 

learning by initializing model weights as the pretrained EfficientNet-B3 weights used to 

predict the six physician-defined clinical labels and gender from Sangha et al.14 We first 

only unfroze the last four layers and trained the model with a learning rate of 0.01 for 2 

epochs, and then unfroze all layers and trained with a learning rate of 5 × 10−6 for 6 epochs. 

We used an Adam optimizer, gradient clipping, and a minibatch size of 64 throughout 

training. The optimizer and learning rates were chosen after hyperparameter optimization. 

For both stages of training the model, we stopped training when validation loss did not 

improve in 3 consecutive epochs.

We trained and validated our model on a generated image dataset that had equal numbers 

of standard, two-rhythm, alternate, and standard shuffled images (Figure 1). In sensitivity 

analyses, the model was validated on three novel ECG layouts constructed from the held-out 

set to assess its performance on ECG formats not encountered in the training process. These 

novel ECG outlines included three-rhythm (with leads I, II, and V1 as the rhythm strip), 

no rhythm, and rhythm on top formats (with lead I as the rhythm strip located above the 

12-lead, Figure S3). Additional sensitivity analyses were performed using ECG images 

calibrated at 5, 10, and 20 mm/mV (Figure S4). A custom class-balanced loss function 

(weighted binary cross-entropy) based on the effective number of samples was used given 

the lower frequency of the LVEF < 40% label relative to those with an LVEF ≥ 40%. 

Furthermore, model performance was evaluated in a 5-fold cross validation analysis using 

the original derivation (train and validation) set. A patient-level split stratified by LVEF 

<40% vs ≥ 40% was pursued in this analysis and model performance was assessed on the 

held-out test set.

External Validation

We pursued a series of validation studies. These represented both clinical and population-

based cohort studies. Clinical validation represented non-synthetic image datasets from 

clinical settings spanning (1) consecutive patients undergoing outpatient echocardiography 

at the Cedars Sinai Medical Center in Los Angeles, CA, and (2) stratified convenience 

samples of LV systolic dysfunction and non-LV systolic dysfunction ECGs from four 

different settings (a) outpatient clinics of YNHH, (b) inpatient admissions at Lake Regional 

Hospital (LRH) in Osage Beach, MO, (c) inpatient admissions at Memorial Hermann 

Southeast Hospital in Houston, TX, (d) outpatient visits and inpatient admissions at 

Methodist Cardiology Clinic in San Antonio, TX. In addition, we validated our approach 

in the prospective cohort from Brazil, the Brazilian Longitudinal Study of Adult Health 

(ELSA-Brasil),19 with protocolized ECG and echocardiogram in study participants.
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Inclusion and exclusion criteria for external validation sets were similar to the internal 

YNHH dataset. Patients were limited to those having a 12-lead ECG within 15 days of a 

TTE with reported LVEF. For patients with more than one TTE in this interval, the LVEF 

from the nearest TTE was used for analysis.

At Cedars Sinai, all index ECG images from consecutive patients undergoing outpatient 

visits during January through March 2019, representing 879 individuals, including 99 with 

LVEF < 40%, were included. These analyses were performed in a fully federated and 

blinded fashion without access to the ECGs by the algorithm’s developers.

For the other clinical validation sites, a stratified convenience sample enriched for low LVEF 

was drawn. This was done to evaluate the broad use in a clinical setting by practicing 

clinicians without access to a research dataset. Our preliminary assessment of LV systolic 

dysfunction prevalence in outpatient and inpatient settings were 10% and 20%, respectively. 

We sought to achieve twice this prevalence in our external validation data in these sites 

to ensure our performance was not driven by patients with preserved LVEF and that the 

model could detect those with LV systolic dysfunction. Specifically, a 1:4 ratio of ECGs 

corresponding to LVEF < 40% and ≥ 40% was sought at three of the four sites (YNHH, 

Memorial Hermann Southeast Hospital, and Methodist Cardiology Clinic). At the fourth 

site, LRH, a 1:2 ratio was requested to better measure the model’s discriminative ability in 

an inpatient-only setting.

In addition to the clinical validation studies, where concurrent ECG and echocardiogram are 

always clinically indicated, imposing a selection of the population, we evaluated our model 

in the ELSA-Brasil study, a community-based prospective cohort in Brazil that obtained 

ECG and echocardiography from participants on the enrollment visit between 2008–2010. 

This set included data from 2,577 individuals, including 30 from individuals with LVEF < 

40%.

Before validation, patient identifiers, ECG measurements, and reported diagnoses were 

removed from all ECG images. The differences in ECG layouts and the procedures for 

validation are described in further detail in the Online Supplement. Deidentified samples of 

ECG images are presented in Figure S5 (Cedars Sinai Medical Center), Figure S6 (YNHH 

and LRH), Figure S7 (Memorial Hermann Southeast Hospital), and Figure S8 (Methodist 

Cardiology Clinic), and images are available from the authors upon request.

Localization of Model Predictive Cues

We used Gradient-weighted Class Activation Mapping (Grad-CAM) to highlight which 

portions of an image were important for predicting LVEF < 40%.20 We calculated the 

gradients on the final stack of filters in our EfficientNet-B3 model for each prediction and 

performed a global average pooling of the gradients in each filter, emphasizing those that 

contributed to a prediction. We then multiplied these filters by their importance weights and 

combined them across filters to generate Grad-CAM heatmaps. We averaged class activation 

maps among 100 positive cases with the most confident model predictions for LVEF < 

40% across ECG formats to determine the most important image areas for the prediction of 

low LVEF. We took an arithmetic mean across the heatmaps for a given image format and 
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overlayed this average heatmap across a representative ECG before conversion of the image 

to grayscale. The Grad-CAM intensities were converted from their original scale (0 – 1) to 

a color range using the jet colormap array in the Python library matplotlib. This colormap 

was then overlaid on the original ECG image with an alpha of 0.3. The activation map, a 

10×10 array was upsampled to the original image size using the bilinear interpolation built 

into TensorFlow v2.8.0. We also evaluated the Grad-CAM for individual ECGs to evaluate 

the consistency of the information on individual examples.

Preprocessing Strategies for Noisy Input Data

Standard input requirements for our image-based model include ECG images limited to 

12-lead tracings with an upright orientation, minimal rotation, solid background, and no 

peripheral annotations. To mitigate the impact of noisy input data on model predictions 

in real-world applications, we built in an automated preprocessing function that includes 

two major steps: (1) Straightening and cropping: In this step, the input ECG image is 

automatically straightened to correct for rotations and then cropped to remove the peripheral 

elements. The output of this preprocessing step is a 12-lead tracing without surrounding 

annotations and patient identifiers. (2) Quality evaluation and standardization: The algorithm 

computes the mean pixel-level brightness and contrast values for input images and evaluates 

them against the brightness and contrast of images used in model development. The 

brightness and contrast are either scaled to the mean values of the development population 

before predictions. For ECGs with extreme deviations of brightness and contrast (50% above 

or below the development set) are flagged to be out-of-range so a better-quality image can 

be acquired and input.

We evaluated the model calibration across the variations of photo brightness and contrast. 

For this analysis, we used the Python Image Library (PIL) to adjust the input image 

qualities. A total of 200 ECGs were randomly selected from the held-out test set in a 

1:4 ratio for LVEF < 40% and ≥ 40%, respectively. Variations of the original image were 

generated with brightness and contrast between 0.5 to 1.5 times the original values and were 

used in this sensitivity analysis.

Statistical Analysis

Categorical variables were presented as frequency and percentages, and continuous variables 

as means and standard deviations or median and interquartile range, as appropriate. Model 

performance was evaluated in the held-out test set and external ECG image datasets. 

We used area under the receiver operator characteristic (AUROC) to measure model 

discrimination. The cut-off for binary prediction of LV systolic dysfunction was set at 0.10 

for all internal and external validations, based on the threshold that achieved a sensitivity 

of over 90% in the internal validation set. We also assessed the area under the precision-

recall curve (AUPRC), sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and diagnostic odds ratio. 95% CIs for AUROC and AUPRC 

were calculated using DeLong’s algorithm and bootstrapping with 1000 variations for each 

estimate, respectively.21,22 Model performance was assessed across demographic subgroups 

and ECG outlines, as described above. We conducted further sensitivity analyses of model 

performance across ECG calibrations. We also evaluated model performance across PR 
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intervals (>200ms vs. ≤200ms) and after excluding ECGs with paced rhythms, conduction 

disorders, atrial fibrillation, and atrial flutter. Moreover, we assessed the association of the 

model’s predicted probability of LV systolic dysfunction across LVEF categories.

Next, we evaluated the future development of LV systolic dysfunction in time-to-event 

models using a Cox proportional hazards model. In this analysis, we took the first temporal 

ECG from the patients in the held-out test set and then modeled the first development 

of LVEF < 40% across the groups of patients who screened positive but did not have 

concurrent LV systolic dysfunction (false positives), and those that screened negative (true 

negative) from this first ECG, with censored at death or end of the study period in June 

2021. Additionally, we computed an adjusted hazard ratio that accounted for differences 

in age, sex, and baseline LVEF at the time of index screening for visualization of survival 

trends. Analytic packages used in model development and statistical analysis are reported 

in Table S1. All model development and statistical analyses were performed using Python 

3.9.5, and the level of significance was set at an alpha of 0.05.

RESULTS

Study Population

Out of the 2,135,846 ECGs obtained between 2015 to 2021, 440,072 were from patients 

who had TTEs within 15 days of obtaining the ECG. Overall, 433,027 had a complete 

ECG recording, representing 10 seconds of continuous recordings across all 12 leads. These 

ECGs were drawn from 116,210 unique patients and were split into train, validation, and test 

sets at a patient level (Figure S1).

A total of 116,210 individuals with 385,601 ECGs constituted the study population, 

representing those included in the training, validation, and test sets. Individuals in the 

model development population had a median age of 68 years (IQR 56, 78) at the time 

of ECG recording, and 59,282 (51.0%) were women. Overall, 75,928 (65.3%) were non-

Hispanic white, 14,000 (12.0%) non-Hispanic Black, 9,349 (8.0%) Hispanic, and 16,843 

(14.5%) were from other races. A total of 56,895 (14.8%) ECGs had a corresponding 

echocardiogram with an LVEF below 40%, 36,669 (9.5%) had an LVEF greater than or 

equal to 40% but less than 50%, and 292,037 (75.7%) had LVEF 50% or greater (Table S2).

Detection of LV Systolic Dysfunction

The model’s AUROC for detecting LVEF < 40% on the held-out test set composed of 

standard images was 0.91, and its AUPRC was 0.55 (Figure 2). A probability threshold for 

predicting LVEF < 40% was chosen based on a sensitivity of 0.90 or higher in the validation 

subset, with a specificity of 0.77 at this threshold in the internal validation set. With this 

threshold, the model had sensitivity and specificity of 0.89 and 0.77 in the held-out test 

set and PPV and NPV of 0.26 and 0.99, respectively. Overall, an ECG suggestive of LV 

systolic dysfunction portended over 27-fold higher odds (OR 27.5, 95% CI, 22.3 – 33.9) 

of LV systolic dysfunction on TTE (Table 1). The model’s performance was comparable 

across subgroups of age, sex, and race (Table 1 and Figure 2). In a cross-validation analysis, 

model performance remained consistent across 5 splits and was similar to the performance 
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of the original model (Table S3). Moreover, across successive deciles of the model predicted 

probabilities, the proportion of individuals with LV systolic dysfunction increased while the 

mean LVEF decreased (Figure S9).

Model Performance Across ECG Formats and Calibrations

The model performance was comparable across the four original layouts of ECG images in 

the held-out set with an AUROC of 0.91 in detecting concurrent LV systolic dysfunction 

(Table S4). The model had a sensitivity of 0.89, and a positive prediction conferred 26- to 

27-fold higher odds of LV systolic dysfunction on the standard and the three variations of 

the data. In sensitivity analyses, the model demonstrated similar performance in detecting 

LV systolic dysfunction from novel ECG formats that were not encountered before, with 

AUROC between 0.88–0.91 (Table S5).

The model performance was also consistent across ECG calibrations with an AUROC 

between 0.88 and 0.91 on ECG calibrations of 5, 10, and 20 mm/mV and AUROC 0.909 

(0.900 – 0.918) and AUPRC of 0.539 (0.504 – 0.574) with mixed calibrations in the held-out 

test set. The mixed calibration was generated with a random sample of 5 mm/mV and 

20 mm/mV calibrations from the highest and lowest quartiles of voltages, respectively, in 

lead I (together representing 25% of the sample from the test set), along with 10 mm/mV 

(remaining 75% of test set) (Table S6). Further sensitivity analyses demonstrated consistent 

model performance on ECGs (a) without prolonged PR interval (AUROC 0.920 and AUPRC 

0.537, Table S7), (b) without paced rhythms (AUROC 0.908, AUPRC 0.519, Table S8), 

and (c) without atrial fibrillation, atrial flutter, and conduction disorders (AUROC 0.919, 

AUPRC 0.536, Table S9). Model performance was also consistent across subsets on the 

held-out test set based on the timing of the ECG relative to the echocardiogram (Table S10).

LV Systolic Dysfunction in Model-predicted False Positives

Of the 10,666 ECGs in the held-out test set with an associated LVEF ≥ 40% on a proximate 

echocardiogram, the model classified 2,469 (23.1%) as “false positives”, and 8,197 (76.9%) 

as true negatives. In further evaluation of false positives, 562 (22.8% of false positives) 

had evidence of mild LV systolic dysfunction with LVEF between 40–50% on concurrent 

echocardiography.

In this group of individuals, 4,046 patients had at least one follow-up TTE, including 1,125 

(27.8%) false positives and 2,921 (72.2%) true negatives on the initial index screen. There 

were 2,665 and 6,083 echocardiograms in the false positive and true negative populations 

during the follow-up, with the longest follow-up of 6.1 years. Overall, 264 (23.5%) patients 

with model-predicted positive screen and 199 (6.8%) with negative screen developed new 

LVEF < 40% over the median follow-up of 3.2 years (IQR 1.8–4.4 years, Figure 3). This 

represented a 3.9-fold higher risk of incident low LVEF based on having a positive screening 

result (HR 3.9, 95% CI 3.3–4.7). After adjustment for age, sex, and LVEF at the time of 

screening, patients with positive screen had a 2.3-fold higher risk of incident low LVEF 

(Adjusted HR 2.3, 95% CI 1.9–2.8).
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Localization of Predictive Cues for LV Systolic Dysfunction

Class activation heatmaps of the 100 positive cases with the most confident model 

predictions for reduced LVEF prediction across four ECG layouts are presented in Figure 

4. For all four formats of images, the region corresponding to leads V2 and V3 were the 

most important areas for prediction of reduced LVEF. Figure S10 represents the distribution 

of mean Grad-CAM signal intensities in the regions corresponding to leads V2 and V3 and 

the other regions of standard format ECGs in this sample. For the majority of cases, the 

Grad-CAM signal intensities in the V2-V3 area were higher than the other regions of the 

ECG. Representative images of Grad-CAM analysis in sampled individuals with positive 

and negative screens in the held-out test set, and non-synthetic ECG images in validation 

sites are presented in Figures S11 and S12, respectively.

External Validation

The validation performance of the model was consistent and robust across each of the 

6 validation datasets (Figure 5). The first validation set at Cedars Sinai Medical Center 

included 879 ECGs from consecutive patients who underwent outpatient echocardiography, 

including 99 (11%) individuals with LVEF < 40%. The model demonstrated an AUROC 

of 0.90 and an AUPRC of 0.53 in this set. Second, a total of 147 ECG images drawn 

from YNHH outpatient clinics were used for validation and included 27 images (18%) from 

patients with LVEF < 40%. The model had an AUROC of 0.94 and AUPRC of 0.77 in 

validation on these images. The third image dataset included ECG images from inpatient 

visits to the LRH. It included 100 ECG images, with 43 images (43%) from patients with 

LVEF < 40%, with a model AUROC of 0.90 and AUPRC of 0.88. The fourth dataset 

from Memorial Hermann Southeast Hospital included 50 ECG images, 11 (22%) from 

patients with LVEF < 40%, with a model AUROC and AUPRC of 0.91 and 0.88 on these 

images, respectively. The fifth validation set contained 50 ECG images from the Methodist 

Cardiology Clinic, which included 11 (20%) ECGs from patients with LVEF < 40%, with 

model AUROC of 0.90 and AUPRC of 0.74.

The sixth set included 2,577 ECGs from prospectively enrolled individuals in the ELSA-

Brasil study, including 30 with LVEF < 40%. The model demonstrated an AUROC 0.95 and 

AUPRC 0.45 on this set. In a mixed sample of ECG-echocardiography data from all external 

validation sites, the model demonstrated an AUROC and AUPRC of 0.96 (0.950 – 0.969) 

and 0.63 (0.563 – 0.694), respectively, in detecting LV systolic dysfunction, respectively. 

The model performance on these 6 validation sets is outlined in Table 2 and Tables S11, S12, 

and S13.

Quality Assurance in Real World Applications

We assessed our preprocessing pipeline in segmentation and quality standardization of 

real-world ECG images. Figure S13 represents examples of ECGs in electronic PDF 

format before and after preprocessing and demonstrates the automated removal of ECG 

annotations and patient identifiers from the image. Figures S14 and S15 demonstrate 

quality standardization of photographs of ECGs obtained by a smartphone with extreme 

variations of photo brightness, shadows, skew angles, and noise artifacts. Furthermore, we 

systematically evaluated our model calibration across the variations of photo brightness and 
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contrast in a sample of 200 ECGs randomly selected from the held-out test set in a 1:4 ratio 

for LVEF < 40% and ≥ 40%, respectively. We observed minimal changes in model-predicted 

probabilities despite 50% alterations in image brightness and contrast on preprocessed 

images (Figure S16). This effect remained consistent across ECGs from individuals with low 

(Figure S17) and normal (Figure S18) LVEF. Table S14 presents the confusion matrices for 

model predictions at varying levels of input image brightness and contrast, with or without 

preprocessing.

DISCUSSION

We developed and externally validated an automated deep learning algorithm that accurately 

identifies LV systolic dysfunction solely from ECG images. The algorithm has high 

discrimination and sensitivity, representing characteristics ideal for a screening strategy. 

It is robust to variations in the layouts of ECG waveforms and detects the location 

of ECG leads across multiple formats with consistent accuracy, making it suitable for 

implementation in a variety of settings. Moreover, the algorithm was developed and tested in 

a diverse population with high performance in subgroups of age, sex, and race, and across 

geographically dispersed academic and community health systems. It performed well in 

6 external validation sites, spanning both clinical settings as well as a prospective cohort 

study where protocolized echocardiograms were performed concurrently with ECGs. An 

evaluation of the class-discriminating signals localized it to the anteroseptal and anterior 

leads regardless of the ECG layout, topologically corresponding to the left ventricle. Finally, 

among individuals who did not have a concurrently recorded low LVEF, a positive ECG 

screen was associated with a 3.9-fold increased risk of developing LV systolic dysfunction in 

the future compared with those with negative screen, which was significant after adjustment 

for age, sex, and baseline LVEF. Therefore, an ECG image-based approach can represent 

a screening as well as predictive strategy for LV systolic dysfunction, particularly in low-

resource settings.

Deep learning-based analysis of ECG images to screen for heart failure represents a novel 

application of AI that has the potential to improve clinical care. Convolutional neural 

networks have previously been designed to detect low LVEF from ECG signals.10,11 

Although reliance of signal-based models on voltage data is not computationally limited, 

their use in both retrospective and prospective settings requires access to a signal 

repository where the ECG data architecture varies by ECG device vendors. Moreover, 

data are often not stored beyond generating printed ECG images, particularly in remote 

settings.23 Furthermore, widespread adoption of signal-based models is limited by the 

implementation barriers requiring health system-wide investments to incorporate them into 

clinical workflow, something that may not be available or cost-effective in low-resource 

settings and, to date, is not widely available in higher resource setting such as the US. 

The algorithm reported in this study overcomes these limitations by making detection of 

LV systolic dysfunction from ECGs interoperable across acquisition formats and directly 

available to clinicians who only have access to ECG images. Since scanned ECG images are 

the most common format of storage and use of electrocardiograms, untrained operators can 

implement large scale screening through chart review or automated applications to image 

repositories – a lower resource task than optimizing tools for different machines.
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The use of ECG images in our model overcomes the implementation challenges arising from 

black box algorithms. The origin of risk-discriminative signals in precordial leads of ECG 

images suggests a left ventricular origin of the predictive signals. Moreover, the consistent 

observation of these predictive signals in the anteroseptal and anterior leads, regardless of 

the lead location on printed images, also serves as a control for the model predictions. 

Despite localizing the class-discriminative signals in the image to the left ventricle, heatmap 

analysis may not necessarily capture all the model predictive features, such as the duration 

of ECG segments, intervals, or ECG waveform morphologies that might have been used in 

model predictions. However, visual representations consistent with clinical knowledge could 

explain parts of the model prediction process and address the hesitancy in the uptake of these 

tools in clinical practice.24

An important finding was the significantly increased risk of incident LV systolic dysfunction 

among patients with model-predicted positive screen but LVEF ≥ 40% on concurrent 

echocardiography. These findings demonstrate an electrocardiographic signature that may 

precede the development of echocardiographic evidence of LV systolic dysfunction. This 

was previously reported in signal-based models,10 further suggests that the detection of 

LV systolic dysfunction on ECG images represents a similar underlying pathophysiological 

process. Moreover, we observed a linear relationship between the severity of LV systolic 

dysfunction and the model-predicted probabilities of low LVEF, supporting the biological 

plausibility of model predictions from paired ECG and echocardiography data. These 

observations suggest a potential role for AI-based ECG models in risk stratification for 

future development of cardiovascular disease.25

Our study has certain limitations that merit consideration. First, we developed this model 

among patients with both ECGs and echocardiograms. Therefore, the training population 

selected likely had a clinical indication for echocardiography, differing from the broader 

real-world use of the algorithm for screening tests for LV systolic dysfunction among 

those without any clinical disease. Our model’s ability to consistently distinguish LV 

systolic dysfunction across demographic subgroups and validation populations suggests 

robustness and generalizability of the effects though prospective assessments in the intended 

screening setting are warranted. Notably, the model demonstrated a higher specificity and 

lower sensitivity on the ELSA-Brasil cohort composed of younger and generally healthier 

individuals with a lower prevalence of LV systolic dysfunction compared to the other 

validation sets. Depending on the intended result of the screening approach and resource 

constraints with downstream testing, prediction thresholds for LV systolic dysfunction may 

need to be recalibrated when deployed in such settings. Second, our model development uses 

retrospective ECG and echocardiogram data. Thus, all limitations inherent to secondary 

analyses apply. While the model has been externally validated in numerous settings, 

including the ELSA-Brasil cohort where protocolized echocardiograms were performed 

without clinical indication, prospective assessments in the intended screening setting are 

necessary. Third, while we incorporated four ECG formats during its development and 

demonstrated that the model had a consistent performance on a range of commonly used 

and novel layouts that were not included in the development, we cannot ascertain whether it 

maintains performance on every novel format. Fourth, while the model development pursues 

preprocessing the ECG signal for plotting images, these represent standard processes 
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performed before ECG images are generated and/or printed by ECG machines. Therefore, 

any other processing of images is not required for real-world application, as demonstrated 

in the application of the model to the external validation sets. Fifth, our model was built 

on a single CNN architecture. We did not compare the performance of our model against 

alternative machine learning models and architectures for the detection of LV systolic 

dysfunction. This was based on our prior study that inferred that EfficientB3 demonstrated 

good performance on ECG image classification tasks, though future studies could evaluate 

other architectures for these applications. Finally, while we include a prototype of a web-

based application with automated standardization and predictions from ECG images, it 

represents only a demonstration of the eventual deployment of the model. However, it will 

require further development and validation before any clinical or large-scale deployment of 

such an application.

CONCLUSIONS

We developed an automated algorithm to detect LV systolic dysfunction from ECG images, 

demonstrating a robust performance across subgroups of patient demographics, ECG 

formats and calibrations, and clinical practice settings. Given the ubiquitous availability 

of ECG images, this approach represents a strategy for automated screening of LV systolic 

dysfunction, especially in resource-limited settings.
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ABBREVIATIONS AND ACRONYMS

LV Left ventricle

ECG Electrocardiography

AI Artificial Intelligence

LVEF Left ventricular ejection fraction

YNHH Yale New Haven Hospital

TTE Transthoracic echocardiography

LRH Lake Regional Hospital

ELSA-Brasil ELSA-Brasil, Estudo Longitudinal de Saúde do Adulto 

(The Brazilian Longitudinal Study of Adult Health)
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Grad-CAM Gradient-weighted Class Activation Mapping

AUROC Area under receiving operating characteristic curve

AUPRC Area under precision-recall curve
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CLINICAL PERSPECTIVE

What is New?

• A convolutional neural network model was developed and externally 

validated that accurately identifies LV systolic dysfunction from ECG images 

across subgroups of age, sex, and race.

• The model shows robust performance across multiple institutions and health 

settings, both applied to ECG image databases as well as directly uploaded 

single ECG images to a web-based application by clinicians.

• The approach provides information for both screening of LV systolic 

dysfunction and its risk based on ECG images alone.

What are the clinical implications?

• Our model represents an automated screening strategy for LV systolic 

dysfunction on a variety of ECG layouts.

• With availability of ECG images in practice, this approach overcomes 

implementation challenges of deploying an interoperable screening tool for 

LV systolic dysfunction in resource-limited settings.

• This model is available in an online format to facilitate real-time screening for 

LV systolic dysfunction by clinicians.
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Figure 1. Study Outline A) Data processing, B) Model training, and C) Model validation.
Abbreviations: ECG, electrocardiogram; EF, ejection fraction; FC, fully connected layers; 

Grad-CAM, gradient-weighted class activation mapping; CT, Connecticut; ELSA-Brasil, 

Estudo Longitudinal de Saúde do Adulto (The Brazilian Longitudinal Study of Adult 

Health); MO, Missouri; TX, Texas. *The transfer learning strategy in developing the 

current model includes transferring model initialization weights from the previous algorithm 

originally trained to detect cardiac rhythm disorders and the hidden label of gender from 

ECG images. The transfer learning was used as initialization weights for the EfficientNet B3 

convolutional neural network being trained to detect LV systolic dysfunction. Other than the 

weights, clinical and gender labels were not input into the current model.
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Figure 2. Model Performance Measures A) Receiver-Operating and B) Precision-Recall Curves 
on images in held-out test set C) Diagnostic Odds Ratios across age, gender, and race subgroups 
on standard format images in the held-out test set.
Abbreviations: AUROC, area under receiver-operating characteristic curve; AUPRC, area 

under precision-recall curve.
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Figure 3. 
Cumulative hazard curves for incident LV systolic dysfunction in model-predicted positive 

and negative screens amongst the members of the held-out test set with LVEF ≥ 40% and at 

least one follow-up measurement.
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAMs) across ECG formats. A) 
Standard format B) Two rhythm leads C) Standard shuffled format D) Alternate format.
The heatmaps represent averages of the 100 positive cases with the most confident model 

predictions for LVEF < 40%.
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Figure 5. Receiver-Operating Curves for external validation sites.
Abbreviations: AUROC, area under receiver-operating characteristic curve; EF, Ejection 

fraction; LRH, Lake Regional Hospital; YNHH, Yale New Haven Hospital
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