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Abstract !

A model of case-based reasoning is
presented that relies on a procedural
representation for cases. In an
implementation of this model, cases are
represented as knowledge sources in a
blackboard architecture. Case knowledge
sources define local neighborhoods of
similarity and are triggered if a problem
case falls within a neighborhood. This form
of “local indexing” is a viable alternative
where global similarity metrics are
unavailable. Other features of this approach
include the potential for fine-grained
scheduling of case retrieval, a uniform
representation for cases and other knowledge
sources in hybrid systems that incorporate
case-based reasoning and other reasoning
methods, and a straightforward way to
represent the actions generated by cases.
This model of case-based reasoning has been
implemented in a prototype system
(“Broadway”) that selects from a case base
automobiles that meet a car buyer's
requirements most closely and explains its
selections.

Introduction

This paper addresses two fundamental
problems of case-based reasoning (CBR):
case representation and case similarity. Its
central point is that a procedural, locally-
indexed representation for cases provides
several benefits. We use the term “locally
indexed” to refer to a case retrieval technique

IThis research was supported in part by the
National Science Foundation, contract IRI-890841,
the Air Force Office of Sponsored Research under
contract 90-0359, the Office of Naval Research
under a University Research Initiative Grant,
contract N00014-87-K-0238, and a grant from GTE
Laboratories, Waltham, MA.
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that uses similarity metrics that are
applicable only within a neighborhood of a
case in the space of cases. Local indexing is
distinguished from a global indexing
method that relies on a single function to
assess similarity throughout the case base.
Metrics that are locally defined can be
viewed as an attempt to approximate
piecewise an ideal — but often difficult to
construct — function that measures the
similarity of a problem situation to any case,
where each piece of the local metric is
applicable only in a suitable area of the case.

The intuition behind local indexing is that
each case is in the best position to map the
topography of the case space in a
neighborhood of itself. What then counts as
similar depends on where the case is located
in case space. Informally, the general
perspective of this research is to impose
problem-solving responsibility on the cases
themselves by including in the case
representation knowledge that is usually
external to cases, including similarity
metrics. In addition, this case-centric
perspective regards cases as active entities,
rather than as responsive to external
procedures.

Seminal work in CBR has exploited the
notion that how one assesses the similarity of
a stored case depends on the problem
situation, e.g., [Ashley, 1990], [Bareiss, 1989],
[Kolodner, 1983], [Sycara, 1987]. The model

we describe tries to exploit the
complementary idea that cases of a
particular sort possess features —

independent of a problem situation — that
will help determine how similarity will be
assessed for cases of that variety.
Informally, regardless of whether you're
looking to buy a Cadillac or a Miata, if on the
used car lot you encounter a pickup truck with
huge tires whose body is six feet off the
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ground, your assessment will be governed by
whether you want a vehicle with a six-foot
high cab. Following this intuition, we try to
build into each case several ways of
assessing similarity that are useful for a
case of that variety.

Briefly, the model of retrieval presented
here regards a case as a procedural entity
that is activated when a problem situation
falls within a local neighborhood of the case.
We claim that the following benefits flow
from this approach:
¢ A procedural case representation yields a
consistent knowledge representation for
hybrid architectures that combine CBR with
other reasoning methods.
¢ Local indexing is a useful alternative in
situations where no available similarity
metric can be applied uniformly across
cases.
¢ Fine-grained scheduling for case retrieval
is facilitated and permits focused control of
problem-solving.

* Multiple perspectives on a case can be
easily represented through local similarity
functions.

Implementation

Our implementation of the model uses a
blackboard architecture in which knowledge
sources respond to changes on a global
blackboard. The Broadway prototype uses
GBB v.2.0, a toolkit for developing high-
performance blackboard applications
[Blackboard Technology Group, 1991]. The
GBB Agenda Shell enables a user to define
knowledge sources that may be triggered,
checked for the fulfillment of their respective
preconditions, and, if fulfilled, instantiated
in knowledge source activation records with
some execution rating. Knowledge source
activations are then placed on an agenda of
activations pending execution,

A correspondence between cases and
blackboard knowledge sources can be
exploited. A [case/knowledge source] is
[similar/activated] when its [index/
precondition function] is [triggered/
satisfied], and therefore the [case’s suggested
action/ knowledge source function] should be
executed. The current implementation fuses
these corresponding aspects: cases are
represented as knowledge sources. The
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precondition of a case knowledge source is a
similarity predicate. If a problem situation
satisfies this locally defined similarity
predicate, the case knowledge source is
activated. This incorporation of case
similarity into knowledge source
precondition functions yields one immediate
by-product. The greater the similarity of a
problem situation to a case, the higher the
execution rating returned by the precondition
of the knowledge source corresponding to the
case, and the earlier the case’'s action is
executed. The most similar cases execute
their constituent actions first.

The Domain

The Broadway prototype addresses the
almost century-old quandary “Which car
should I buy?”. For many people this
question appears to invite anecdotal case-
based reasoning. As in many common-
sense areas, no strong domain theory is
available to resolve the competing
constraints involved in automobile
purchase. However, this domain does not
present the complexity of such classical
blackboard applications as speech
understanding [Erman et al., 1980] or sonar
signal interpretation [Nii et al., 1982]). For
our purposes the automobile domain is an
interim vehicle for investigating the utility
of procedural case representation and
associated ideas of similarity, indexing and
control.

Description of Control Flow
The skeletal flow of control for Broadway
is given in general terms in Figure 1.

Input declarative Inpul current
cases to long term problem to Car
Case Space
Create case

uirements Space
knowledge sources
from declarative cases

case knowledge sources;

[ Case retneval performed by
similar cases posted to Relevant Case Spaces ]

xplanalon knowledge sources
create explanations as
relevant cases are retrieved

Figure 1: Flow of control in Broadway.



When the system is initialized,
declarative, frame-based car case
representations are loaded onto a blackboard
space that is Broadway's long term case
memory. Broadway's current case base
consists of 93 cases that represent
automobiles of a particular make and model,
e.g., an Eagle Talon. Domain engineering has
been aided by the 1991 annual automobile issue
of Consumer Reports magazine [Consumer
Reports, 1991). Each declarative case then is
used as the basis for creating several case
knowledge sources that are activated when a
similar problem case is posted to a problem
space. See Figure 2 for a simplified example,

Declarative Case Representation

(make-instance 'eagle-talon-car-case
:trouble-index 1

repair-cost-index 0

:price 12991

)

Procedural Case Representation

trouble-cost-meta-
knowledge-source

of that case to the problem requirements. In
Broadway, the action taken by a case upon
activation is to post the corresponding
declarative case to a relevant case space on
the blackboard. This posting in turn triggers
explanation knowledge sources, which we do
not describe further here except to say that
stereotypical explanation patterns are
applied to explain to the user why these cars
are appropriate recommendations. In
general, the action taken by each case
knowledge source depends on the application,
for example, to suggest a repair to a plan case
(e.g., CHEF [Hammond, 1989]) or to supply
an argument fragment (e.g., HYPO [Ashley,
1990], CABARET [Rissland
and Skalak, 1991)).

Procedural Cases

Procedural representations
are created by several meta-
knowledge-sources, which
encode the knowledge to
create a case knowledge
source for a given
perspective on a case. For

((deﬁne-ks eagle-talon-trouble-cost-ks
:trigger-condition
:precondition-function

rks-function
.

<new-problem-posted-to-problem-space>
(add-1-for-each-true-disjunct:
<problem-trouble-index ¢ [0,2]> or
<problem-repair-cost-index
<problem-price & [0.8%12991,1.2#12991]>)
<add-eagle-talon-to-similar-trouble-cost-space>)

™\ example (Fig. 2), Broadway
applies a meta-knowledge-
source that uses a modified
Manhattan metric to create
a similarity neighborhood
based on several case
features related to the
perspective of economy:

e[-1,1] > or

J

Figure 2: Case knowledge sources are created from case-frame
representations by meta-knowledge-sources. The scale for the
trouble-index and repair-cost-index is -2 (much worse than

average) to 2 (much better than average).

which prescribes an interval of similarity
for each feature and then adds the number of
problem features that fall within those
intervals to yield an execution rating.

These procedural representations of cases
assume the usual CBR tasks of retrieving
similar cases and manipulating them. Next,
the user inputs a problem case, which is a
specification of the features that the user
desires in a car, presented in the same form
as the declarative case frames. Cars that
partially or completely meet the user’s
specifications are then retrieved through the
activation of car case knowledge sources
whose preconditions recognize the similarity
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purchase price, repair
frequency and repair cost.
Each neighborhood is local
partly because the size of the
interval of similarity for
each case feature depends
on its value in that case. To take a simple
example, the interval surrounding the price
of an expensive car is larger than that
around the price of a cheap car. We have also
experimented with metrics that are local in
that they are applicable only to certain types
of cases, e.g., to sports cars. Perspectives are
reflected in metrics and include any means
of evaluating cases that corresponds to a
particular way of assessing similarity
[Ashley, 1989], [Kolodner, 1989] including,
e.g., dimensions [Rissland, Valcarce and
Ashley, 1984], [Ashley, 1990], signatures of
feature values [Samuel, 1967], or the



reasoning or explanation captured in a case
(Barletta and Mark, 1988], [Branting, 1991].
To assess case similarity, Broadway
currently uses two perspectives: a perspective
based on figures for reliability and cost
provided by Consumer Reports and a
perspective based on comparison of the
signatures of features of cases, resulting in
186 case knowledge sources.

Some Advantages and

Shortcomings of this Representation
Local Neighborhoods and Indexing. Local
similarity neighborhoods provide the
framework to tailor the measurement of
similarity to each case and to the region of the
case space where the case resides. To take an
example from a classical AI program,
imagine a case-based system that plays
checkers and stores board positions in a case
library. [Samuel, 1967] applied polynomial
evaluation functions to evaluate
checkerboard positions, and noted improved
performance when the game was divided into
opening, middle-game, and end-game
phases, with a different set of evaluation
function coefficients used for each phase. As
many as six game phases were used. In a
CBR system that used similarity metrics
based on these evaluation functions, the
appropriate metric would be determined by
the game phase, reflected in the location in
case space of the cases under consideration,

The primary advantage of localized
metrics stems from the practical and
theoretical difficulties of capturing in a
global approach to similarity the nuances of
case similarity across all cases in the case
base. Case-based retrieval mechanisms
generally rely on a system-wide method or
metric to compute case similarity. As a
practical matter, it may be difficult to reflect
in a single metric or global evaluation
function the important differences among all
cases and account for interactions between
related features, but still avoid implicit
comparison of features that are
incommensurate. Also, entirely different
means of assessing similarity may be
required for different types of cases. We
speculate that since local metrics need only
work in a neighborhood of a case, spurious
feature interactions or inappropriate
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comparisons may more likely be avoided.
Since CBR is often useful in poorly
understood, “weak theory” domains, a
globally applicable similarity function may
be hard to come by, as it implicitly would
reflect strong knowledge about the domain
that holds across features, cases, perspectives
and contexts.

A second advantage to local metrics is the
facility with which multiple views of a case
can be captured (see, e.g., [Rissland,
Valcarce and Ashley, 1984], [Ashley, 1989],
(Kolodner, 1989]). Different perspectives are
reflected in distinct similarity metrics that
capture the varying importance to be
accorded features when reasoning from
diverse vantage points.

Additionally, exceptional cases may have
unusual features that are known in advance
and should be considered if relevant to one’s
specifications, but that are hard to incorporate
into a global calculus of similarity. These
exceptional features can be captured in a
similarity metric local to the case.

A minor benefit of local similarity metrics
may be in the observance of the software
engineering principles of modularization
and data encapsulation. Unusual or salient
aspects of a case that are important to
determining similarity can usefully be
encoded in a metric local to the case.
Scheduling Granularity. Case retrieval
may be scheduled at a fine level of
granularity in this model. Case-based
retrieval has sometimes been modeled and
implemented as a monolithic action, “Search
the case base for relevant cases and return
them.” See, e.g., [Rissland, Kolodner and
Waltz, 1989] for a description of the classical
control flow of CBR. A retrieval mechanism
that is both large-grained and
uninterruptible will potentially consume
computing resources that may be applied
more efficiently than to additional search of
a large case base [Veloso and Carbonell,
1991]. For example, the cases initially
retrieved may suggest a modification of the
current case probe [Owens, 1989]. However,
the current implementation of the model in
Broadway does not schedule case knowledge
source preconditions, and so does not exhibit
this benefit. An extension to the blackboard
control shell would be required to realize this
advantage.



Consistent Hybrid Representation. In a
hybrid system cases may be represented
consistently with knowledge sources from
other reasoning paradigms. A uniform
representation supports the use of CBR as a
component in a hybrid architecture where
cases and other sources of expertise respond
uniformly and cooperatively to progress and
failure in problem-solving.

Shortcomings in the Implementation of the
Model. A primary disadvantage of this
implementation is that identifying a
similarity rating with a knowledge source
execution rating reduces a complex
assessment to an information-losing
numeric scale. Previous research on
analogy and on case retrieval has cast doubt
that similarity can be captured so simply,
e.g., [Ashley, 1990], [Carbonell, 19861,
[Falkenhainer et al., 19891, [Gentner, 1983],
[Holyoak and Thagard, 1989]. On the other
hand, on a serial computer, cases must be
individually retrieved in some order, which
implicitly ranks cases ordinally.

Secondly, it is not at all clear that every
case should be proceduralized. Creating
knowledge sources for rarely referenced
cases or perspectives incurs computational
overhead without apparent benefit. This
problem will have to be addressed if case
bases are to be scaled up to realistic levels,
possibly consisting of tens or hundreds of
thousands of cases [Schank, 1991].
Reserving procedural representation only
for prototypical cases may present one way to
deal with knowledge source proliferation.

Related Work

This project benefits from a long history of
thought about the relative benefits of
representing knowledge declaratively or
procedurally, including [Anderson, 1983]
(ACT), [Bobrow and Winograd, 1977] (frame-
driven dialog), [Minsky, 1975] (procedural
attachment), and [Schank and Abelson, 1977]
(scripts). A more dynamic approach to cases
was inspired by PANDEMONIUM
[Selfridge, 1959]. Several systems have also
used a blackboard architecture to combine
CBR with other reasoning methods, but all
have used a declarative representation for
cases (FIRST [Daube and Hayes-Roth, 1988],
PROLEXS [Oskamp et al., 1989] and ABISS
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[Rissland, et al. 1991]).) The memory-based
approach of [Stanfill and Waltz, 1986], which
represents both rules and stored experience
within the MBR paradigm, suggested the
search for a wuniform knowledge
representation for hybrid systems with a CBR
component.
Summary

QOur approach tests the fit of cases and
knowledge sources, reflecting an alternative
model of case-based retrieval. This
procedural, locally-indexed approach is
characterized by similarity metrics that are
local to cases, fine scheduling granularity
for case retrieval, case-generated actions
that are incorporated within cases
themselves, and the uniform representation
of knowledge in hybrid systems.
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