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Distributed energy storage system scheduling considering tariff structure,
energy arbitrage and solar PV penetration

Oytun Babacana,∗, Elizabeth L. Ratnamb, Vahid R. Disfania, Jan Kleissla

aDepartment of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093 USA
bBerkeley Energy & Climate Institute, University of California Berkeley, Berkeley, CA 94720

Abstract

We develop a new convex optimization (CO)-based charge/discharge scheduling algorithm for distributed
energy storage systems (ESSs) co-located with solar photovoltaic (PV) systems. The CO-based scheduling
algorithm minimizes the monthly electricity expenses of a customer who owns an ESS and incorporates both
a time-of-use volumetric tariff and a demand charge tariff. Further, we propose the novel idea of a “supply
charge” tariff that incentivizes ESS customers to store excess solar PV generation that may otherwise result
in reverse power flow in the distribution grid. By means of a case study we observe the CO-based daily
charge/discharge schedules reduce (1) peak net demand (that is, load minus PV generation) of the customer,
(2) power fluctuations in the customer net demand profile, and (3) the reliance of the customer on the grid by
way of promoting energy self-consumption of local solar PV generation. Two alternate methods for behind-
the-meter ESS scheduling are considered as benchmarks for cost minimization, peak net demand reduction,
and mitigation of net demand fluctuations. The algorithm is tested using real 30-minute interval residential
load and solar data of 53 customers over 2-years. Results show that the CO-based scheduling algorithm
provides mean peak net demand reductions between 46% - 64%, reduces mean net demand fluctuations by
25% - 49%, and increases the mean solar PV self-consumption between 24% - 39% when compared to a
customer without an ESS. Introduction of a supply charge reduces the maximum solar PV power supply to
the grid by 19% on average and does not financially impact ESS owners.

Keywords: Energy storage, Solar PV, Time-of-use tariff, Demand charge, Reverse power flow, Peak-load
reduction

1. Introduction

Energy storage systems (ESS) are regarded as an
enabling element of a future low-carbon electric grid
as they allow higher amounts of renewable energy
on the grid (de Sisternes et al., 2016; DiOrio et al.,
2015). This stems, in part, from the operational
flexibility ESS offer grid operators facilitating the
integration of intermittent wind and solar power
(Denholm et al., 2010). Increasing penetration of
solar PV on the electric grid requires a new plan-
ning paradigm for capacity resources, which have
traditionally been procured to meet system peak
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load and reserve requirements. Now, additional
capacity is needed to provide flexible generation
for integrating variable generation as well (Cutter
et al., 2014). The proliferation of distributed ESS
could provide this needed flexibility for a transform-
ing grid.

With the rapid growth in grid-connected solar
PV, electric utilities are facing stagnant electricity
sales, particularly in the residential sector. This
reduction in sales reduces the utility’s ability to re-
cover capital costs, which constitutes the majority
of their expenses (McLaren et al., 2015). At the
same time, the PV system owners still rely on the
grid for voltage and frequency control and for their
night-time demand. They also need the grid to re-
ceive the economic benefit from exporting excess
generation. However, as solar PV penetration in
a distribution system increases, power flow direc-
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tion can reverse, potentially causing power quality,
protection, and reliability issues due to local and
intermittent electricity generation during daytime
(Baran et al., 2012).

Electric utilities might have difficulties address-
ing these problems without raising electricity rates.
Instead, the ESS owners could be incentivized to
support the electric grid through time-of-use tariffs
and/or residential demand charges. Through de-
mand charges the ESS owners have the opportunity
to reduce their electricity bills by managing their
demand and they also gain access to reduced volu-
metric electricity rates. Customer participation in
demand charge tariffs benefits electric utilities since
demand charges, in theory, reduce the need for new
infrastructure investment and overall system costs.
(Hledik, 2014).

There is an extensive literature on ESS
charge/discharge scheduling for residential build-
ings that are coupled with a solar PV system. Sev-
eral of these, e.g. (Luthander et al., 2016; Moshövel
et al., 2015; Ren et al., 2016a), focus on increas-
ing the consumption of solar PV generation locally
and mitigating the peak power flows from and to
the grid. However, they do not consider a demand
charge tariff.

There are also a number of studies that consider
a demand charge in their scheduling formulation.
Geem and Yoon (2017) propose a population-based
heuristic algorithm that reduces peak net demand
of the customer and on-peak electricity purchases.
Zheng et al. (2015) introduce a scheduling algo-
rithm to reduce peak net demand and evaluates
the economical feasibility of different energy storage
technologies. Gitizadeh and Fakharzadegan (2014)
formulate a Mixed Integer Linear Program (MILP)
problem to optimize the capacity of ESS for peak
net demand reduction and energy shifting.

However, these studies fall short of demonstrat-
ing a stand-alone scheduling algorithm for charging
and discharging ESS. More specifically, Zheng et al.
(2015) and Gitizadeh and Fakharzadegan (2014)
use a scheduling algorithm as a representative tool
to investigate another research question, and Geem
and Yoon (2017) do not present a comprehensive
validation study of the algorithm. Moreover, to
date, there is no modeling framework for energy
storage scheduling that incorporates both a time-of-
use tariff and a demand charge tariff while dynam-
ically adjusting a monthly peak demand prediction
for the customer.

In this context, the modeling framework pro-

posed in this paper includes a novel convex opti-
mization (CO)-based scheduling algorithm for dis-
tributed customer-sited ESSs (Section 2) and a
novel supply charge option in electricity rate offer-
ings.

The objective of the algorithm is to provide finan-
cial benefit to the ESS owner while inherently (1)
reducing the peak net demand of the customer, (2)
mitigating power fluctuations in the customer net
demand profile, and (3) increasing local PV genera-
tion consumption for a co-located solar PV system.
The ESS specifications, day-ahead load and solar
forecast and the electric tariff are sufficient to de-
ploy the algorithm on site. By means of a case study
we benchmark the ability of the algorithm to min-
imize cost, reduce peak net demand, and mitigate
net demand fluctuations, and compare it against
two alternate methods proposed in the literature
(Section 3 - 4).

A supply charge provides an incentive to cus-
tomers to either self-consume PV generation, or
to curtail their generation output when it exceeds
their load requirements, thereby reducing the re-
verse power flow in the distribution grid. We dis-
cuss its impact on the grid, on the ESS cycling,
and on the customer bill by comparing it against
a demand charge only case (Section 4). Section 5
concludes the paper.

2. Problem Formulation

2.1. Notation

Herein IRs denotes s-dimensional vectors of real
numbers, where IR1 = IR and 1 ∈ IRs≥0 denotes
the all-1 s column vector of length s. s = 24h/∆t
is the number of time steps in a day-long charg-
ing schedule, where ∆t is the time-interval between
consecutive time-steps k in hours. I denotes the
identity matrix of size s and T = [tij ] denotes the
s-by-s matrix satisfying tij = 1 for i ≥ j and tij = 0
elsewhere. We denote vectors in bold and represent
matrices using uppercase bold characters.

2.2. Customer System Configurations

We model four system configurations shown in
Figure 1 for customer-owned, grid-connected ESS,
which might represent, for example, a residential
household or a commercial business. Configura-
tions a and b consist of an ESS and a customer
load without PV. Configuration a prohibits the cus-
tomer from selling electricity to the grid, whereas

2



configuration b compensates the customer at the
retail rate for delivering energy to the grid, thus
allows energy arbitrage opportunities. Configura-
tions c and d incorporate a customer-owned, grid-
connected solar PV system into the configurations
a and b, respectively. We assume customers with
configuration c curtail solar PV generation when
their energy storage is full and the solar PV system
generation exceeds load, i.e. when net demand is
negative.

configuration a configuration b

configuration dconfiguration c

u(k) l(k)

p(k)

p(k) ≥ 0

g(k)
l(k)

g(k)-c(k)
u(k) l(k)

p(k)

p(k) ≥ 0

u(k) l(k)

p(k)

u(k)

p(k)

M M

MM

Figure 1: Configurations of the customer system under con-
sideration. M represents the electricity meter of the cus-
tomer. The average net demand over a period ∆t is denoted
p(k) with k being the time step index, and is positive when
flowing from the grid to the customer. The average ESS
charge/discharge over ∆t is denoted u(k), and is positive
when discharging. The average load of the system over ∆t
is l(k). The average generated and curtailed power from the
solar PV system over ∆t is g(k) and c(k), respectively.

For each system configuration, the power balance
equation for the net demand p(k) is given by

p(k) = l(k)− g(k) + c(k)− u(k) (1)

for all time step indices k ∈ {1, ..., s}. All units
are in kW. The average load of the system over a
period ∆t is l(k), the average solar PV generation
is g(k), the average curtailed solar PV generation is
c(k), and the average ESS charge/discharge is u(k),
where c(k) is zero for all time steps k ∈ {1, ..., s} in
configurations a, b and d, and p(k) is nonnegative
for all time steps k ∈ {1, ..., s} in configurations a
and c.

The constraint p(k) ≥ 0 depicts the scenario
where there is no financial incentive for energy to

be sold to the grid. That is, in such cases curtailed
solar generation c(k) is equivalent to the excess PV
generation that would have ordinarily been injected
into the grid but this supply would not result in fi-
nancial compensation to the customer.

2.3. Regulation and Accounting

A customer is billed monthly based on kWh elec-
tricity consumption via a time-of-use (TOU) tar-
iff denoted by the length-s vector Λe ∈ Rs. In
addition, a net-metering program is considered in
configurations b and d, in which a customer re-
ceives compensation for exported electricity at a
rate equivalent to the TOU tariff.

We use two additional tariff mechanisms: A de-
mand charge denoted by the scalar Λd, and a sup-
ply charge denoted by the scalar Λs which is a new
concept to regulate reverse power flows. A demand
charge prevents the customers from simply shifting
their on-peak demand to an off-peak period with-
out reducing their peak demand and encourages the
customer to reduce their peak demand regardless of
the TOU pricing period.

A supply charge addresses the problem of exces-
sive electricity sales to the grid especially during
solar peak hours. This rule provides an incentive
to the customers to either self-consume PV gener-
ation, or to curtail their generation output when it
exceeds their load requirements. The supply charge
is a new concept motivated by PV export being lim-
ited to a fixed fraction of PV capacity in some mar-
kets (e.g. Germany), but provides an economic in-
centive to reduce exports rather than a strict rule.
In what follows a capacity charge (CC) combines
both a demand charge and supply charge.

Without loss of generality, we assume here the
supply charge tariff is equal to the demand charge
tariff. Then, the customer monthly peak net de-
mand is subject to the CC tariff Λ = Λs = Λd. The
CC is based on the peak electricity supplied to the
customer or delivered to the grid across a month.
That is, the customer’s largest absolute net demand
over each month is multiplied by the CC tariff Λ in
the billing process.

2.4. Energy Storage System Model

We constrain the ESS charge/discharge u(k) by
B ≤ u(k) ≤ B, where B and B are the discharge
and charge power limit of the ESS, respectively.
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The state of charge (SOC) is defined by

χ(k) := χ(0)−
s∑

k=1

u(k)∆t, (2)

where χ(0) denotes the initial state of charge.
The rated energy capacity of the ESS is repre-

sented by C in kWh. We represent the minimum
allowed SOC and the maximum allowed SOC of the
ESS in kWh as χ and χ, where χ := 0 and χ := C.
Note that χ could be set to a fraction of C for a
specific energy storage technology that would oth-
erwise degrade when fully discharged. It is assumed
here that the efficiency of the ESS is 100% and that
degradation is negligible. Hence we model the up-
per limit of performance for a technology neutral
ESS. That is, the ESS model is deliberately simpli-
fied to encompass a range of different ESS technolo-
gies. For specific applications, this idealized model
could be replaced with a more complex representa-
tion of a specific energy storage technology.

In simulation, we assume each customer has an
ESS with an identical storage capacity of 10 kWh
and a charging and discharging limit of 5 kW. This
is centered within the range of ESS capacities (2-
22kWh) considered in other residential ESS studies
(Luthander et al., 2016; Ranaweera and Midtg̊ard,
2016; Ratnam et al., 2015a; Ren et al., 2016a,b;
Vieira et al., 2017; Zhang et al., 2016). Customer
load and PV generation characteristics are provided
in Section 3.2.

2.5. Scheduling Algorithm

We construct a constrained optimization prob-
lem to minimize the monthly electricity bill of a
customer with an ESS. The customer-owned ESS is
dispatched daily solving the following convex opti-
mization problem:

min
p∈IRs

∆tΛT
e p + Λ[max{||p||∞, p∗} − p∗] , (3)

such that Au ≤ b, 1Tp = 0, where A ∈ IR4s×s,
b ∈ IR4s, u ∈ IRs, Λe ∈ IRs, Λ ∈ IR, p∗ ∈ IR. The
customer net demand p is defined by Eq. 1, where
l ∈ IRs, g ∈ IRs, c ∈ IRs, and k ∈ {1, ..., s}. For
configurations a and c, p ≥ 0. The infinity-norm
of p is ||p||∞ = max

1≤k≤s
|pk|. The first term of Eq.

3 accounts for the time-of-use electricity costs, and
the the second term of Eq. 3. accounts for the
demand charges.

The objective function defined by Eq. 3 is con-
strained by the ESS charge and discharge limits,
capacity constraints, the state of charge dynam-
ics defined in Eq. 2, and by a final state of
charge limit. In more detail, the inequality con-
straint Au ≤ b captures the ESS dynamics de-
fined by Eq. 2 together with the minimum and
maximum SOC allowed (χ and χ), in addition

to the charge and discharge power limits (B and

B), where A = [ I −I T −T ]
T ∈ IR4s×s, b =

[ B1T B1T C1T C1T ]
T ∈ IR4s and u is the ESS

charge/discharge rate. Each component of the ESS
model was introduced in Section 2.1 and 2.4. Note
that the derivation of C and C is straightforward,
and is given in Ratnam et al. (2015a).

The equality constraint 1
Tp = 0 prevents

energy-shifting between days. It ensures that χ(s),
the final SOC at time s∆t, equals to the initial SOC
χ(0) and hence prevents the ESS from storing extra
energy for the following day. Throughout the sim-
ulations we set χ(0) to 50% of the rated energy ca-
pacity C, that is also consistent with the approach
taken in Ratnam et al. (2015a).

If ||p||∞ ≤ p∗, then the formulation in Eq. 3 is
equivalent to the minimization of the linear objec-
tive function ∆tΛT

e p with the inequality constraint
||p||∞ ≤ p∗. Otherwise ||p||∞ replaces the exist-
ing p∗ as the new net demand prediction for the
days remaining in the billing period. Thus, this
formulation does not require any integer value in
the constraints.

Since there is no cost associated with the
charge/discharge rate or excessive cycling of the
ESS in the objective function, the CO-based
scheduling algorithm might charge or discharge the
ESS within the same TOU pricing period without
any financial benefit to the customer. To eliminate
these instances we add a penalty term fpenalty to
Eq. 3 given by

fpenalty = 10−6||u||2 , (4)

where ||u||2 ∈ IRs is the Euclidean norm of the
ESS charge/discharge schedule. We multiply the
Euclidean norm with 10−6$/kW to make it small
compared to the rest of the objective function in Eq.
3 ensuring it does not alter the minimum objective
function value achieved.

We solve the CO-based scheduling algorithm us-
ing MATLAB (Version 2016b) with the convex
modeling framework CVX (Version 2.1) and the
solver Gurobi (Version 7.0.2).
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2.6. Operational Inputs

At the start of each day, a day-ahead forecast for
solar PV generation and a day-ahead load predic-
tion are required for each customer. Since demand
and solar forecast techniques are not within the fo-
cus of this study, the day-ahead forecasts are taken
equal to the observed data, i.e. perfect informa-
tion. While it is not realistic to assume availability
of such forecasts, with this perfect information we
model the upper limit of performance of the CO-
based scheduling algorithm. That is, forecast errors
typically result in increased demand charges due to
premature ESS discharges.

In addition, at the beginning of each month a
prediction, p∗, is made for the month-ahead cus-
tomer absolute net demand peak to avoid excessive
peak reductions during the first days of the month.
The CO-based scheduling algorithm is used to find
the optimal dispatch solution of the ESS for the
month-long (Nday×s) data set collected during the
previous month. The resulting maximum absolute
net demand is used as the prediction, p∗, for the
current month.

Net demand prediction is an essential component
for economic performance of the CO-based schedul-
ing algorithm but if a simpler implementation was
desired, p∗ could be set to zero at the beginning of
the month.

2.7. Customer Billing

The billing period spans a calendar month start-
ing with the first day of each month of the year.
The TOU (volumetric) electricity charges, denoted
by (EC), for a calendar month are defined by

EC :=

Nday∑
n=1

∆tΛT
e pn , (5)

where Nday is the number of days in the month
and pn is a vector of size s representing the daily
net demand profile (e.g., the first day of the month
p1 = {p1,1, ..., p1,s}).

Peak capacity charges, denoted by CC, are also
factored into the monthly bill and are defined by

CC := Λpmax , (6)

where pmax = max(||p1||∞, ..., ||pNday
||∞) is the

maximum absolute net demand of the customer ob-
served in the calendar month.

The total monthly electricity bill (i.e., total
charge), denoted by TC, is then

TC := EC + CC . (7)

3. Performance Metrics, Residential Cus-
tomer Data, and Tariff

3.1. Performance Metrics

In addition to the reductions in the customer
electricity bill defined in Section 2.7, we define met-
rics to quantify how the charge/discharge schedules
affect peak demand, PV self-consumption, the net
demand profile, and ESS cycling.

Peak Capacity Reduction is the percentage re-
duction in a customer’s peak capacity in a billing
month achieved relative to the original net demand
without ESS. Peak capacity is defined as the highest
30-minute kW measurement during a billing month.

PV self-consumption is the total amount of solar
generation that is consumed locally during the solar
hours normalized by the total amount of solar gen-
eration. The customers without an ESS consume
PV generation insofar as it coincides with their day-
time load. A greater portion of the solar PV gener-
ation can be consumed locally by storing generation
via an ESS.

Net Demand Fluctuations (NDF) are the sum of
the absolute values of differences in adjacent ele-
ments of p, i.e. fluctuations in the customer net
demand profile, normalized by the mean of the ab-
solute net demand, ||p||∞.

ESS Cycling is defined as the sum of the absolute
values of differences in adjacent elements of u, i.e.
the number of charge/discharge cycles.

3.2. Customer Load and PV Data

We consider publicly available residential PV
generation and load data for customers located in
distribution networks operated by Ausgrid, an elec-
tricity utility in Australia. The data set includes 3
years of separately reported kWh measurements of
load and PV generation, beginning 1 July 2010 with
30-minute averaging intervals.

We use a subset of the originally released data set
that contains 54 customers with the highest quality
data per Ratnam et al. (2015b). The customer IDs
of this subset are given in Table 4 of Ratnam et al.
(2015b). We further discard Customer 2 as some
data recordings of this customer are missing. The
average daily energy consumption among these 53
customers is 17.4 kWh with a minimum of 7.0 kWh
and a maximum of 35.4 kWh. The average PV
system size is 2.5 kW with a minimum of 1.1 kW
and a maximum of 10.0 kW. The average daily PV
generation is 9.0 kWh with a minimum of 4.2 kWh
and a maximum of 39.3 kWh.
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3.3. Tariff

Table 1: Ausgrid Residential TOU tariff (EA025) network
energy prices (Ausgrid, 2016). This tariff is effective from
1 July 2016 to 30 June 2017 including goods and services
tax in Australia. These energy prices are multiplied with a
constant of 0.56 to adjust the original customer electricity
bills to the addition of a demand charge to this volumetric
energy charge only TOU tariff.

Energy Prices
Time of Use Designation (AU¢/kWh)
Until 7:00 Off-peak 2.7863

7:00 - 14:00 Shoulder 5.4762
14:00 - 20:00 On-Peak 26.4651
20:00 - 22:00 Shoulder 5.4762

Until Midnight Off-peak 2.7863

We consider the residential TOU tariff EA025
(Ausgrid, 2016) in Table 1. The TOU tar-
iff does not include a demand charge, so we
include the demand charge of the TOU tariff
EA302 (Ausgrid, 2016), which is approximately
10.7 AU$/kW-month. Hledik (2014) reports that
demand charges in the current U.S. tariffs vary
between US$1.50/kW-month and US$18.10/kW-
month and the EA302 demand charge tariff roughly
lies at the mean of this range. The supply charge
tariff is set equal to this demand charge tariff.

As we add a demand charge, we subsequently re-
duce volumetric rates since tariffs with a demand
charge often have lower volumetric charges, e.g.
Schedule 1S of Virginia Electric & Power Company
(VEP, 2016) and TOU-RD-3 of Georgia Power
(GP, 2016). To avoid overestimating the bill sav-
ings we scale down the volumetric charges of EA025
by a constant such that the average customer bill
is the same amount as without a demand charge.
By means of iterative computation we determined
a constant scale factor of 0.56.

4. Case Studies and Results

Here we introduce six case studies that bench-
mark the performance of the CO-based schedul-
ing algorithm and examine the effects of introduc-
ing a supply charge to the existing tariff struc-
ture. These case studies are labeled case monthly
(CM ), modified case monthly (CM∗), reference
monthly (RM ), reference daily (RD), linear pro-
gram (LP), quadratic program (QP). In what fol-
lows each of these case studies is explained in detail.
An overview of all case studies is given in Table 2.

4.1. Default case: Case Monthly (CM)

We solve the optimization problem described in
Section 2.5 over all days in a billing month individ-
ually (as opposed to over the whole month at once,
consider further the RM below). On the first day of
each billing month, a net demand prediction, p∗, for
the current month is made as described in Section
2.6. This net demand prediction is updated when
it is exceeded by a daily dispatch solution during
that month. We denote this case as the CM (case
monthly).

When the CM does not include a supply charge,
it is denoted as CM∗. For this case ||p||∞ in Eq. 3
simplifies to p and Λ in Eq. 3 and in Eq. 6 becomes
Λd.

4.2. Reference Cases

There are two reference cases considered to assess
the economic performance of the CO-based schedul-
ing algorithm namely (1) the customer accurately
predicts the month-ahead electricity demand and
generation, and (2) the customer schedules their
ESS without estimating their monthly net demand.
These reference cases are structured considering in-
formation availability to the customer on historical
and future net demand.

RM: Perfect information on monthly net demand

A customer achieves maximum operational sav-
ings over a month when TC in Eq. 7 is simul-
taneously minimized over a set of pn for all days
n ∈ {1, ..., Nday}. In this reference case we optimize
with known customer load and solar PV generation
of a whole month (Nday × s).

While it is not realistic to assume knowledge of
monthly customer load and solar PV generation,
the solution to this reference case determines the
theoretical upper bound on TC achievable by the
scheduling algorithm. We denote this reference case
as RM (reference monthly).

RD: Daily Scheduling without p∗

When the daily scheduling solution is determined
without a net demand prediction, i.e. p∗ = 0, the
scheduling algorithm overvalues the capacity charge
reduction. The resulting scheduling does not nec-
essarily achieve the best economic operation since
the daily reduction of the capacity charge is un-
necessary when the net demand of a day does not
exceed the preexisting maximum net demand.
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Table 2: An overview of the case studies. Plus (+) indicates that monthly net demand p∗ is predicted for the customer. This
prediction is set to 0 for the RD. Minus (−) indicates cases that do not consider demand charges in their formulation and thus
do not require a net demand prediction. The acronyms of the case studies (Section 4) stand for case monthly (CM ), modified
case monthly (CM∗), reference monthly (RM ), reference daily (RD), linear program (LP), quadratic program (QP).

Case Study Method p∗ Description
CM CO + Default case.
CM∗ CO + Default case without considering a supply charge.
RM CO + Best theoretical economic performance achievable by CM.†

RD CO 0 Reference case that minimizes daily (rather than monthly) capacity charge.
LP LP - Best economic performance without a demand or supply charge tariff.
QP QP - Best mitigation of power fluctuations in a net demand profile.

†We assume knowledge of month-ahead customer data to construct an upper performance bound for CM.

Table 3: The objective functions of the Linear Program (LP) and the Quadratic Program (QP) presented in Ratnam et al.
(2015a) along with the CO-based scheduling algorithm presented in this paper. All algorithms have the same set of constraints
as described in Section 2.

CO-based Scheduling Algorithm Linear Program Quadratic Program�

Goal Cost Minimization Cost Minimization Power Minimization

Objective Function min
p∈IRs

∆tΛT
e p + Λ[max{||p||∞, p∗} − p∗] min

p∈IRs
∆tΛT

e p min
p∈IRs

pT Ip

�The matrix H in the QP, originally defined as H ∈ IR2s×2s, is simplified here as H := I ∈ IRs×s.

In this reference case p∗ is set to zero for each day
of the month and the results give the lower theo-
retical bound on EC achievable by the scheduling
algorithm. We denote this reference case as RD
(reference daily).

4.3. Reference Algorithms

The CO-based scheduling algorithm is compared
against two alternate approaches to designing day-
ahead charge/discharge schedules. The two ap-
proaches, namely QP-based energy shifting and LP-
based energy shifting have been presented in Rat-
nam et al. (2015a), and will serve as reference cases.
Table 3 lists the objective function for each respec-
tive method. Each method is subject to the ESS
constrains described in Section 2. We replicate
the LP-based and QP-based methods in this pa-
per for the purpose of benchmarking the proposed
CO-based scheduling algorithm defined in Section
2.5.

LP: Best EC Minimization

The Linear Program maximizes the operational
daily EC savings by energy shifting and/or energy
arbitrage. When the customer cannot sell energy
back to the grid, this method minimizes the opera-
tional costs by shifting energy use of the customer

from on-peak pricing periods to off-peak pricing pe-
riods. When energy arbitrage is allowed, the net
demand profile of the customer becomes irrelevant
for ESS scheduling and the method instead focuses
on maximizing the profit from arbitrage.

This method dispatches ESS in the most prof-
itable way possible when the customer is not sub-
ject to a demand or a supply charge tariff. Thus it
determines the upper performance bound for the
EC minimization using ESS. We solve this opti-
mization problem using MATLAB (Version 2016b)
with the convex modeling framework CVX (Version
2.1) and the solver Gurobi (Version 7.0.2). We de-
note this reference method as LP.

QP: Mitigation of Power Fluctuations

The Quadratic Program minimizes the daily fluc-
tuations in the net demand profile of the customer
through energy shifting while also reducing peak
net demand. It ignores the TOU rate structure. As
a consequence, it does not necessarily improve the
operational savings of the customer. This method
depicts a grid-friendly ESS operation mode and rep-
resents the performance bound in that context. We
solve this optimization problem using MATLAB’s
interior-point-convex quadprog algorithm. We de-
note this reference method as QP.

7



on-peak

charging excess solar

symmetrical
maxima levels

off-peak shoulder shoulder off-peak

unbounded
solar supply

Time of Day [hh:mm]

Energy prices:

early discharge

Figure 2: Scheduling under increasing solar PV penetration for the customer #38 with configuration d (with PV, exports
allowed) on October 23, 2011. The customer net demand (with solar PV, but without ESS) is shown as ND and has a peak
of 2.76 kW. Each case has a 30-minute resolution and 48 data points in total. To avoid cluttering, the lines are printed with
sparser markers that are shown at different points in time. The original solar PV generation data (1x) has been increased by
a factor of 5 (5x) to depict increasing PV penetration. The scheduling is done by applying only demand charge, CM∗ (blue
lines), and a capacity charge that includes a demand charge and a supply charge, CM (green lines) as in the rest of the paper.

4.4. Example CO-based algorithm schedule

An example charge schedule is given in Figure 2
for the CM (green lines) and the CM∗ (blue lines).
In this case the customer has a 1.05 kW solar PV
system and can send back energy to the grid (con-
figuration d). To demonstrate the characteristic be-
havior of the scheduling algorithm under increasing
PV penetration, we increase the solar PV system
size of the customer. We designate the customer
with the original solar PV generation as 1x (dashed
lines) and increase this generation by a factor of 5
(solid lines) denoted as 5x.

In all cases, the scheduling algorithm shifts cus-
tomer load away from the on-peak pricing period
and charges the ESS during the off-peak pricing pe-
riods while capping the net demand peak. Since the
CM∗ does not consider a supply charge tariff the so-
lar generation is simply fed to the grid. The ESS is
instead charged during the off-peak pricing period
before 7:00 of the day until it is fully charged and
then discharged during the on-peak pricing period
to maximize cost reductions.

The CM follows the same scheduling in the 1x

case with a single deviation in scheduling at 14:30
of the day when it restricts the maximum supply
to the same level of the maximum demand to avoid
an increase in the customer’s peak capacity. We
observe a significant change in scheduling pattern
for the 5x case. The ESS is being discharged start-
ing at 7:00 of the day in preparation for absorbing
excess generation at solar peak hours and cap the
maximum supply to the same level of the maximum
demand. Nevertheless, the scheduling algorithm is
still forced to increase the peak capacity of the cus-
tomer by 23% in this case.

Table 4 shows how the maximum demand, the
maximum supply, the energy cost to the customer
and the PV self-consumption change with increased
PV penetration levels. In addition to the cases in
Figure 2, we also present results for the 2x case
where the solar generation of the customer is in-
creased by a factor of 2. The customer’s energy
cost is not impacted by the introduction of a sup-
ply charge in the 2x case and the ESS cycling does
not change. The compensation to the customer
is reduced roughly by 8% in the 5x case but the
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Figure 3: Comparison of the default case CM with the results from the reference cases RM, RD (top) and the reference
algorithms LP, QP (middle) for customer #13 with configuration b (no PV, exports allowed) on May 15, 2012. The customer
load has a peak of 3.40 kW and a minimum of 0.14 kW. The other cases have the following peak and minimum power in kW:
CM : 1.59, -1.37; RM : 1.98, -1.16; RD : 1.09, 1.09; QP : 1.09, 1.09; LP : 3.53, -1.52. The acronyms here stand for case monthly
(CM ), reference monthly (RM ), reference daily (RD), linear program (LP), quadratic program (QP), and net demand (ND).

customer’s maximum energy supply is also signifi-
cantly reduced from 3.73 kW to 2.23 kW. The ESS
approximately makes one additional cycling for this
case. The PV self-consumption stays similar for the
1x and 2x cases but it is increased by more than
%14 with the introduction of a supply charge.

4.5. Example scheduling for all case studies

To present representative results for one day we
consider the scenario where the customer can de-
liver energy back to the grid, and does not have a so-
lar PV system (configuration b). The customer has
an average daily load of 12.3 kWh with a minimum
of 1.6 kWh and a maximum of 64.8 kWh. Figure
3 shows the net demand profiles and the SOC op-
timized under each case study excluding the CM∗.
All charge schedules start the day with charging
the ESS in the off-peak period. The LP case study
shows energy being purchased and storage during
the off-peak period until the ESS is full, and the
ESS discharging during the peak period to maxi-
mize operational savings. The other case studies

show the ESS being cycled during the day in or-
der to reduce peak net demand. In all cases, the
ESS charges after 22:00 to fulfill the SOC equality
constraint at the end of the day.

There are three important observations in Figure
3: (1) The RD results in the same charge schedule
as the QP even though the QP does not consider a
TOU tariff in its formulation. The RD lacks a net
demand prediction p∗ and consequently it overval-
ues the peak reduction and flattens the net demand
profile in the same way as the QP. (2) The CM re-
duces peak net demand to a greater degree than
the RM for this particular day (see 06:00 - 07:00).
However, when the billing month is considered this
lower level of peak net demand is suboptimal with
respect to the total monthly electric bill TC, for
this particular customer. Since the CM does not
have the same information as the RM it optimizes
the scheduling for this day with a lower bound on
peak net demand. Consequently, the CM looses
flexibility associated with a higher bound on peak
net demand which results in economically undesir-
able discharging during the off peak period (06:00

9



Table 4: Details of scheduling under increasing solar PV penetration for the customer #38 on October 23, 2011. Max. Supply
is the maximum power that the customer supplies to the grid. Daily EC shows the daily energy cost of the customer. A
negative value of Daily EC indicates a financial compensation to the customer. The values given in parentheses show results
for the same customer without an ESS.

Demand Charge (CM∗) Max. Max. Daily PV Self- ESS
PV Penetration Demand [kW] Supply [kW] EC [AU$] consumption [%] Cycling [#]

1x 1.81 (2.76) 1.92 (0.63) -1.64 (0.60) 57.8 (49.8) 1.72
2x 1.81 (2.76) 2.67 (1.40) -2.54 (0.60) 34.2 (31.1) 1.72
5x 1.81 (2.76) 5.01 (3.73) -5.22 (0.60) 15.8 (14.9) 1.72

Capacity Charge (CM) Max. Max. Daily PV Self- ESS
PV Penetration Demand [kW] Supply [kW] EC [AU$] consumption [%] Cycling [#]

1x 1.81 (2.76) 1.81 (0.63) -1.64 (0.60) 57.9 (49.8) 1.72
2x 1.81 (2.76) 1.81 (1.40) -2.54 (0.60) 34.1 (31.1) 1.72
5x 2.23 (2.76) 2.23 (3.73) -4.82 (0.60) 30.0 (14.9) 2.67
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Figure 4: Electricity cost breakdown of all scheduling cases for the customer #13 with configuration b (no PV, exports allowed)
covering a 2-year data set. The costs for the original customer load is shown as L. Scheduling is optimized during each billing
month. The average (of the two) values for each billing month are shown. The annual mean for each case is shown to the right
of each figure. Note that the June is Winter in the Southern hemisphere. The acronyms here stand for case monthly (CM ),
reference monthly (RM ), reference daily (RD), linear program (LP), quadratic program (QP).

- 07:00). (3) The LP practically shifts the original
peak net demand to the off-peak period without any
mitigation of the peak net demand. It even causes a
slight increase in peak net demand over the course
of the day (by 4%).

In Figure 4, the electricity cost breakdown for the
same scenario (customer #13 and configuration b)
is shown for the 2-year data set. The LP marks
the lowest bound on electricity charge EC, but the
RM follows this bound very closely. This indicates
that the CO-based scheduling algorithm results in
charge schedules that perform near-optimally in EC
reductions. Furthermore the CM yields similar re-
sults to the RM even without the same informa-
tional leverage that the RM has. This indicates
that given an accurate daily load and solar forecast,

and peak net demand predictions based on the pre-
vious month, the CO-based schedules can in fact
yield near optimal EC reductions for customers in
real world ESS operations. Lastly, capacity charges
are minimized by the QP and RD, while the LP
performs worst. For the total cost the RM and CM
perform best.

4.6. Bulk Simulation Results

Using the Ausgrid data (Section 3.2) for each cus-
tomer we perform the optimization with the case
studies CM, RM, RD, QP, and LP for a 2-year pe-
riod starting in July 2011. The last month of the
first year has to be used for the net demand pre-
diction for the first month of the second year in the
CM. Therefore, we do not perform the optimization
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for the first year in the context of the data set.
Figures 5 - 9 present the performance metric re-

sults for the bulk simulations. For each customer
24 metrics calculated for 24 billing months are av-
eraged. The histograms show the distributions of
the averaged value for 53 customers.

4.6.1. Electricity Cost

Figure 5 gives the electricity charge EC, the peak
capacity charge CC, and the total monthly elec-
tricity bill TC for each customer system configura-
tion. Overall the results are consistent with those
observed for customer #13 in Figure 4, but they
also highlight some differences between the config-
urations with and without grid exports. The LP
yields greater reductions in EC in configurations a
and b, where energy sale back to the grid is not
incentivized. The RM and CM perform similarly
to the LP with the performance especially close to
the LP when energy arbitrage is allowed (configu-
ration b and d). Scheduling through the QP results
in the lowest CC (with RD a close second) since it
focuses on flattening the net demand profile. The
RM and CM also incur comparably small CC es-
pecially when energy sale back to the grid is not
incentivized. These observations are in agreement
with our earlier observations in Section 4.5.

4.6.2. Peak Reduction

Reducing peak demands generally goes along
with reduced grid impacts as the infrastructure is
utilized more evenly. Figure 6 shows peak reduc-
tions achieved by the CM, QP, and LP. For this
figure and the following ones, we only report re-
sults for the CM, QP, and LP as the RM and RD
do not show much difference from the CM and QP,
respectively.

The QP results in the greatest reductions in peak
net demand averaging 67 to 69%, depending on the
configuration. The CM achieves comparable results
in configurations a and c (61%, 64%, respectively)
but in configuration b and d results in lesser peak
net demand reductions (51%, 43%, respectively) in
return for profit through energy arbitrage in the top
row of Figure 5. The LP is ineffective in peak net
demand mitigation and causes an increase in peak
net demand for most customers.

4.6.3. Storage Cycling

Increased storage cycles go along with a reduction
in ESS lifetime. The QP is the least straining on

the ESS in terms of storage cycling in all configura-
tions. For configuration b, the CM and LP cause a
doubling in cycling due to energy arbitrage. In con-
figuration b and d with grid exports allowed, the LP
results in a single storage cycle per day for all cus-
tomers and months; in these cases the LP profit is
maximized by charging to 100% during the morning
off-peak, discharging to 0% on-peak, and charging
back up to 50% during the evening off-peak. Since
the CM similarly utilizes only about one cycle per
day in configurations b and d indicates that either
(i) customer peak demands coincide with the on-
peak period, so a discharging will accomplish both
EC and CC objectives or (ii) the energy required to
reduce peak demand is small compared to the ESS
energy capacity. The cycling for the CM may in-
crease compared to the LP if smaller batteries were
considered.

4.6.4. Net Demand Fluctuation

Figure 8 shows fluctuations in net demand pro-
files for each configuration and without an ESS. The
QP mostly achieves constant power (flat) customer
net demand profiles and reduces net demand fluctu-
ation dramatically. This indicates that the ESS is
sized large in comparison to most customers’ daily
load variations. The CM results in 25 to 50% reduc-
tions in net demand fluctuations when compared to
the original customer data, while the LP increases
fluctuations by 13% for configuration c and yields
reductions between 25 - 31% for others.

4.6.5. PV Self-Consumption

Figure 9 shows PV self-consumption for each con-
figuration and without an ESS. All cases result in
increased PV self-consumption when energy sale
back is not incentivized. The QP overall results in
the largest mean self-consumption with 89 - 93%.
The CM, QP, and LP achieve the same mean self-
consumption in configuration c with 93%, a sub-
stantial increase over 54% achieved without an ESS.
When energy arbitrage is allowed the CM and LP
yield lower self-consumptions but still 20% higher
than the self-consumption without an ESS.

4.7. Impact of a Supply Charge on Solar Supply

In this paper we introduced a supply charge tar-
iff that incentivizes ESS customers to store excess
solar PV generation that would otherwise result in
reverse power flow in the distribution grid. We com-
pare the CM with the CM? that does not consider a
supply charge but still considers a demand charge.
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Figure 5: Electricity cost breakdown of all scheduling cases for 53 residential customers over a 2-year data set. The columns
represent the different configurations given in Figure 1. The original customer data is labeled as L (load) when a solar PV
system does not exist and labeled as ND (net demand) otherwise. 24 electricity cost values optimized for 24 billing months
are averaged. Then a histogram is drawn for 53 customers. The variation in box plot thickness represents the distribution of
the values. Thicker regions mean more customers fall in this bracket. A light colored square sign (�) indicates the median and
a dark colored plus sign (+) shows the mean of all customers. A negative cost indicates compensation to the customer. The
acronyms here stand for case monthly (CM ), reference monthly (RM ), reference daily (RD), linear program (LP), quadratic
program (QP).

In order to compare performance of the CM and
CM?, similar to the practice in Figure 2, we desig-
nate the customer with the original solar PV gener-
ation as 1x and increase this generation by a factor
of 2. Here we only consider configuration d since
configuration a and c do not have solar PV systems,
and the constraint p ≥ 0 in configuration b avoids
any energy to be supplied back to the grid, thus
causes no difference in solar supply with increased
PV penetration.

Figure 10 shows PV self-consumption, maximum
supply to the grid, storage cycling and the total
cost to the customer achieved in the CM and CM?.
As the customers have larger solar PV systems the
overall PV self-consumption decreases and the over-
all maximum supply to the grid increases in both
cases. The maximum supply in Figure 10 reflects
the capacity requirements of the infrastructure that
would be required to support the PV system own-
ers.

We observe that the CM yields higher PV self-
consumption than the CM? by 2% and 10% in the
1x case and the 2x case, respectively. Furthermore,
it reduces the maximum reverse power flow to the
grid in the 2x case by 0.60 kW on average from
4.2 kW without an ESS. The 1x case does not have
enough solar PV feed-in (2.0 kW on average) to ex-
ceed the peak capacity of the customers and the
maximum reverse power flow does not get penal-
ized by a supply charge in most cases. It results in
an increased ESS cycling by 3 cycles per month in
the 2x case but causes approximately the same ESS
cycling in the 1x case. Moreover, introduction of a
supply charge has negligible impact on the customer
TC. However, there are a few customers – presum-
ably those with large PV systems – that need to
cycle the ESS significantly more per month under
the CM with up to 48 cycles. Presumably some of
the same customers with the largest PV systems see
their TC reimbursements from the utility cut sig-
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Figure 6: Monthly Peak Reductions achieved by the CM,
QP, LP by configuration. Negative values indicate an in-
crease in peak demand (primarily occurring for the LP).

nificantly, from up to 140 AU$/month to less than
70 AU$/month.

5. Conclusions

We have presented a CO-based charge/discharge
scheduling algorithm for distributed ESSs with co-
located solar PV systems. The results of a case
study including 53 residential customers located in
an Australian distribution network confirmed that
the daily CO-based charge/discharge schedules re-
duce (1) peak net demand of the customer (by de-
sign), (2) power fluctuations in the net demand pro-
file (ancillary benefit), and (3) the reliance of the
customer on the grid by way of promoting energy
self-consumption of local solar PV generation (also
an ancillary benefit).

We benchmark the performance of the CO-based
scheduling algorithm with two alternate meth-
ods for behind-the-meter ESS scheduling. Re-
sults based on 2-years of customer data show that
the CO-based scheduling algorithm provides mean
monthly peak net demand reductions between 46%
- 64%, reduces net demand fluctuations by 25% -
49% on average, and increases the mean solar PV
self-consumption between 24% - 39% when com-
pared to the original customer data. Maybe most
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Figure 7: Monthly ESS cycling in the CM, QP, LP by con-
figuration.

importantly, the CO-based schedules yield a nearly
optimal energy cost reductions.

Prior to deployment of this scheduling algorithm
in real-world applications, further work is needed
to show susceptibility of the algorithm to load and
solar forecast accuracy as well as ESS sizing (specifi-
cally smaller ESS) and inclusion of ESS degradation
costs. For specific applications the tariffs should ob-
viously be adjusted to the local conditions.

In this paper we have also introduced the con-
cept of having a supply charge in electricity rates.
We demonstrated that the introduction of a supply
charge does not financially impact customers with
an ESS while it encourages customers to reduce
their peak solar power supply to the grid. This new
tariff mechanism reduces the maximum monthly so-
lar PV power supply to the grid by 19% on average
in the data set considered here.

We envision our assessment would assist pol-
icy makers in developing tariff structures where a
penalty or subsidy on restricting solar power sup-
ply may encourage customers to reduce reverse
power flow through procurement of an ESS. This,
in return, would help utilities to support more dis-
tributed renewable energy generation on their dis-
tribution systems.
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configuration in comparison with the original customer data
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