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ABSTRACT OF THE DISSERTATION 
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Dr. Jiří Šimůnek, Chairperson 

 

 

 

Contaminants in water at the soil surface can be rapidly transported to streams or 

locations of surface water storage by runoff. This has been reported to be the primary 

transport route for contaminants on sloping fields and hillslopes. Generally, contaminants 

are transported faster and in larger amounts with runoff, and much slower and in smaller 

amounts with infiltration. Runoff transports are strongly affected by surface topography, 

soil properties, vegetation, and weather. The risk of transport is also highly dependent on 

the contaminant load at the soil surface, interactions with soil particles, and 

transformations. An understanding of and the ability to predict processes that influence 

the transport and fate of contaminants in runoff water are therefore needed to assess and 

mitigate risks of contamination of surface water supplies on human health. 

Physically-based, spatially-distributed models have the potential to be an efficient 

tool to examine and optimize the removal of contaminants from agricultural runoff 

through land-use changes and best management practices. In this research, the existing 

subsurface version of HYDRUS-1D was adapted to simulate uniform or physical 
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nonequilibrium flow and reactive solute transport processes during runoff at the soil 

surface. The numerical results obtained by the new model produced an excellent 

agreement with an analytical solution for the kinematic wave equation. Additional model 

tests further demonstrated the applicability of the adapted model to simulate the transport 

and fate of many different solutes (non-adsorbing tracers, nutrients, pesticides, microbes, 

and sediments) that undergo equilibrium and/or kinetic sorption and desorption, and first- 

or zero-order reactions. 

Along with PBMs, data-driven models are becoming increasingly popular for 

describing the behavior of hydrological and water resources systems since these models 

can be used to complement or even replace physically based-models when there is a lack 

of required data. Here we propose a new data-driven model as an alternative to a 

physically-based overland flow and transport model. Several machine learning techniques 

including Linear Regression (LR), k-Nearest Neighbor regression (kNN), Support Vector 

Machine with linear (SVM-L) and non-linear (SVM-NL) kernels, and Deep Neural 

Networks (DNN) (Neural Networks with multiple hidden layers) were explored to find 

input - output functional relations. The results indicated that the Deep Neural Network 

(DNN) model with two hidden layers performed the best among selected data-driven 

models. This DNN model accurately predicted runoff water quantity over a wide range in 

parameters. It also predicted well runoff water quality for near-equilibrium solute 

transport over a wide range in parameters. 
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1.1 Motivation and Background 

 California produces abundant food supplies for domestic markets and has been 

recognized as the nation’s top agricultural state. However, agricultural activities can 

discharge a wide range of contaminants into subsurface and surface water resources when 

improperly managed. Farming and ranching operations produce a variety of agricultural 

pollutants (e.g., sediment, nutrients, pathogens, pesticides, metals, and salts) that can lead 

to impairments of local and far-field water quality [Wilcock, 1986; Wilcock et al., 1999]. 

These diffuse nonpoint sources can directly harm ecosystem and watershed water quality, 

and adversely affect drinking water supplies. An estimated global use of agricultural 

pesticides is 3 billion kg each year [Pimental et al., 2004]. Leaching and runoff of these 

agricultural chemicals can contaminate surface and groundwater resources that serve as 

the primary source of drinking water throughout North America and Canada [Larson et 

al., 1997; Nowell et al., 1999; Allen et al., 1993; Gustafson, 1993]. In addition to utilizing 

pesticides and chemical fertilizers, farmers frequently use the Concentrated Animal 

Feeding Operations (CAFOs) biomass as a surface applied fertilizer to agricultural fields. 

These wastes contain high concentrations of salts, organics, nutrients, heavy metals, 

hormones and antibiotics, and pathogenic microorganisms [Bradford et al., 2008; 

California Regional Water Quality Control Board, 2013]. Accumulated contaminants at 

the land surface can be transported to water resources faster and in larger amounts with 

surface runoff and much slower and in smaller amounts with subsurface flow. Surface 

runoff from agricultural fields, which may substantially contribute to pollution 

discharges, has therefore been identified as one of the major causes for water impairment 
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in agricultural settings [Carpenter et al., 1998; USGS, 1999; Tyrrel and Quinton, 2003]. 

Understanding of the processes that influence the transport and fate of contaminants in 

runoff water and the ability to predict them are therefore required to assess and mitigate 

risks of contamination of surface water supplies. 

Surface runoff is typically initiated when the inflow rate (precipitation, snow 

melt, or runoff) exceeds the soil infiltration capacity and fills surface depressions 

(Hortonian flow) [Horton, 1933] or when inflow from upland occurs on saturated soil 

[Dunne and Black, 1970]. A certain fraction of water and contaminants infiltrates into the 

ground and is stored in the soil profile and underground aquifers. These losses of water 

delay the initiation and travel time of surface runoff. Both runoff and subsurface transport 

occur simultaneously and are strongly affected by surface topography, soil properties, 

vegetation, soil management, and weather.  

However, overland and subsurface water flow and contaminant transport are 

rarely uniform. At the local scale, spatially varying roughness, vegetation, and 

microtopography influence the distribution of shear stress and create hydrologically 

active and passive, or relatively immobile flow regions. Surface active regions for 

overland flow can be formed in the field by rills or connected networks of 

microdepressions, which route overland water and pollutant fluxes on the soil surface, 

and where the velocity can be much higher than the average flow [Dunkerley, 2003; 

Chen et al., 2013]. These hydraulically active regions pose great risks of contamination of 

water resources because of the presence of large water and contaminant fluxes and 

reduced time for infiltration and contaminant decay, transformation, and/or interphase 
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mass transfer (e.g., interactions with soil particles). Surface passive or relatively 

immobile regions are formed in depressions or in areas with obstructed flow. These 

regions retain water and pollutants, inhibit overland flow, or cause shallow, slow-moving 

flow and exchange water and pollutants with surface active zones. These spatially 

varying surface characteristics generate nonequilibrium overland flow and transport 

processes. 

Obtaining monitoring data using field investigations is very time consuming and 

expensive, and associated with many experimental difficulties. Furthermore, simple field 

observations may be difficult to interpret to obtain a complete picture of potential 

contaminant transport routes and mechanisms, to extrapolate findings to other 

environmental conditions and climates, and to repeat. Alternatively, mathematical models 

have the potential to be an efficient tool to examine and optimize the removal of 

contaminants from overland flow through testing various implementation scenarios of 

land use change and best management practices [Kirkby and Beven, 1979; Park et al., 

1994; Borah and Bera, 2003; Roz, 2011]. Many publicly available overland pollutant 

transport models have been developed [Beven and Kirkby, 1979; Haith and Shoemaker, 

1987; Bathurst and Connell, 1992; Flanagan et al., 1995; Arnold et al., 1998]. These 

modes can be grouped from simple to complex into three categories based on the model 

structure: empirical black-box models, lumped conceptual models, and distributed 

physically-based models. Empirical models, sometimes called data-driven models, are 

entirely lacking the explicit description of internal physical processes which are involved 

in the overland flow and transport. Some examples of empirical models are the SCS-
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Curve Number [USDA, 1986], regression equations, and machine and deep learning 

models. These models quantify input–output functional relations for complex rainfall-

runoff systems without any reference to the involved physical processes [Hsu et al., 1995; 

Minns and Hall, 1996; Dawson and Wilby,1998; Dibike et al.,1999; Abrahart and See, 

2000]. Lumped conceptual models are designed to approximate physical hydrological 

mechanisms by connecting subprocesses in the overall hydrological process. These 

models are represented by reservoir storage models and simplified equations of physical 

hydrological processes [Devi et al., 2015; Vaze, 2012]. These models have been 

commonly used for contaminant transport in overland flow but may be inaccurate 

because they ignore processes acting on water and chemicals at the soil surface (e.g., Soil 

and Water Assessment Tool [SWAT; Sadeghi and Arnold, 2002], Hydrologic Simulation 

Program Fortran [HSPF; Donigian et al., 1995], Integrated Nitrogen CAtchment model 

[INCA; Whitehead et al., 1998; Wade et al., 2002], and COLI [Walker et al., 1990]).  

Physically-based, distributed models explicitly account for main hydrologic and 

contaminant transport processes using mathematical descriptions. Spatial and temporal 

variations can be incorporated into physically-based models, which makes them more 

realistic. As mentioned above, the spatial variation of surface roughness, 

microtopography, vegetation, and soil hydraulic properties strongly influence overland 

flow and transport processes. It is necessary to incorporate spatial variations of land 

surface characteristics to accurately predict the hydraulic and hydrologic behavior of 

overland flow, soil erosion, and contaminant movement. There are many existing two-

dimensional and three-dimensional mechanistic models that can consider local scale 
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parameters (e.g., Parallel Flow [ParFlow; Kollet and Maxwell, 2006], CATchment 

Hydrology [CATHY; Camporese et al., 2010], HydroGeoSphere [HGS; Therrien et al., 

2012], and OpenGeoSys [OGS; Kolditz et al., 2012]). These distributed models use the 

actual varying microtopography based on Digital Elevation Maps (DEM), land use 

imagery from satellites, and gridded precipitation as an input. However, they are 

computationally demanding, and extra effort is needed for collecting the required data. 

Difficulties in collecting distributed input data and large computational time are possible 

reasons why distributed models are not more widely used compared to lumped models 

[Rinsema, 2014]. Over the past several decades, the one-dimensional overland flow 

models usually use the 1D kinematic wave or 1D diffusion wave equations, which 

describe surface runoff as sheet flow with a uniform depth and velocity across the 

homogeneous plane surface (e.g., the KINematic runoff and EROSion model 

[KINEROS2; Miller et al., 2007; Goodrich et al., 2012; Kennedy et al., 2013] or the 

Precipitation–Runoff Modeling System [PRMS; Leavesley et al., 1983]). These models 

neglect local-scale variations in parameters by considering simplified smooth surfaces 

with a global roughness coefficient and a constant average slope. As a result, these 

models may have failed to accurately describe the distribution of water depths, fluxes, 

and contaminant loads [Dunne and Dietrich, 1980; Smith et al., 2011; Cea et al., 2014; 

Bradford et al., 2015]. However, these models may provide an excellent approximation of 

overland flow when calibrated to real data but may not be adequate to describe overland 

contaminant transport that is affected by local-scale parameters. Hence, accurate, 

physically-based modeling of nonequilibrium water flow and solute transport still 
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remains a challenge in the field of surface hydrology, and there is currently no widely 

accepted physically-based model available to simulate overland transport processes and 

all kinds of reactive chemicals and sediments. 

The HYDRUS-1D software [Šimůnek et al., 2016] is a popular numerical 

computer code for solving water flow and reactive transport in variably-saturated porous 

media. This code solves the Richards and convection–dispersion equations, which 

simulate water flow and contaminant transport in the subsurface, respectively. Recent 

studies indicate that the governing overland flow equation can be written in a similar 

mathematical formulation as the Richards equation [Weill et al., 2009; Hromadka and 

Lai, 1985; Panday and Huyakorn, 2004]. The central hypothesis of this dissertation work 

is that the existing numerical schemes of HYDRUS-1D can also be used to solve the 1D-

diffusion wave equation, which usually describes overland flow. Then the existing 

HYDRUS-1D solute transport models coupled with water flow can be used for 

simulating advective and dispersive transport of many different kinds of contaminants 

(e.g., salts, nutrients, pesticides, and microbes) in runoff water by properly selecting the 

sorption (linear and nonlinear equilibrium sorption, kinetic sorption and desorption on 

multiple sites), and zero- and first-order production and decay terms [Ahuja, 1986; 

Wallach et al. 1988; Wallach and Shatai, 1992]. In this case, the new overland flow and 

transport model can be build based on the HYDRUS-1D codes, which will allow many 

existing HYDRUS users to easily operate the new models while having access to various 

features of the HYDRUS software, such as a well-designed GUI, user-friendly graphical 

input, parameter optimization, and the generation of random scale factors. In addition, the 
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existing HYDRUS-1D code includes a variety of physical and chemical equilibrium and 

nonequilibrium models to describe water flow and solute transport processes in the 

subsurface [Šimůnek and van Genuchten, 2008]. These models form a hierarchical 

system of models of increasing complexity accounting for both physical (and chemical) 

equilibrium and nonequilibrium flow, including (i) a uniform flow model, (ii) a dual-

porosity (mobile–immobile water) model, (iii) a dual-permeability model, and (iv) a dual-

permeability model with immobile water. These conceptual models for subsurface can be 

adapted to account for both equilibrium and nonequilibrium overland flow and reactive 

solute transport.  

In addition, a physically-based overland flow model coupled with the mass 

conservation equation for sediments can generate a physically-based soil erosion model. 

This indicates that the HYDRUS-1D model has a potential to be modified to simulate soil 

erosion and transport. Many existing soil erosion and sediment yield and transport 

models have their own capabilities and limitations [e.g., Williams and Berndt, 1977; 

Wischmeier and Smith, 1978; Knisel, 1980; Singh et al., 1982; Abbott et al., 1986; Storm 

et al., 1987; Renard et al., 1994; Hanley et al., 1998; Nearing et al., 1999; Woodward, 

1999; De Jong et al., 1999; Johnson et al., 2000; Van Oost et al., 2000; Tucker et al., 

2001; Ziegler et al., 2001; Torri et al., 2002; Katlin et al., 2003;  Goodrich et al, 2012]. 

The most widely used physically-based soil erosion models (e.g., the Kinematic Runoff 

and Erosion Model [KINEROS: Woolhiser et al., 1990], the European Soil Erosion 

Model [ EUROSEM: Morgan et al., 1998], etc.) commonly divide soil erosion into rill 

and interrill erosion. Interrill erosion is sheet erosion that is caused by sheet flow 
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removing soil in uniform thin layers by forces of raindrops and overland flow whereas 

the rill erosion removing soil by concentrated water. However, natural systems are more 

complex and the ignorance of variable spatial distribution of water fluxes may cause 

significant errors in predicted sediment yield, transport, and erosion. The sheet erosion 

models can be extended to non-equilibrium sediment transport models by adapting 

physical equilibrium and nonequilibrium flow concepts.  

The use of physically-based models, such as HYDRUS, may require significant 

computational time as the spatial and temporal scale of the considered problem increases.   

For example, to simulate runoff and reactive contaminant transport at larger watershed 

scales can take a much longer time. In contrast to physically-based models, data-driven 

models are based on functional relationships between input and output variables. 

Artificial intelligence approaches, such as Machine Learning (ML) and Deep Learning 

(DL) techniques, are increasingly being used in data-driven models to quantify input-

output functional relations for complex systems in hydrology [Hsu et al., 1995; Minns 

and Hall, 1996; Dawson and Wilby,1998; Dibike et al.,1999; Abrahart and See, 2000; 

Mjolsness and DeCoste, 2001; Govindaraju and Rao, 2001; Solomatine and Ostfeld, 

2008; Roz, 2011; Remesan and Mathew, 2014; Bai et al. 2016; Karandish and Šimůnek, 

2016; Fang et al., 2017]. Several ML algorithms for modeling rainfall-runoff processes 

include Linear Regression (LR), K-Nearest Neighbor regression (kNN), Feed-forward 

Artificial Neural Networks (ANN), and Support Vector Machine (SVM) models [Loague 

and Freeze, 1985; Karlasson and Yakowitz, 1987; ASCE, 2000ab; Lin et al., 2006; 

Nourani et al., 2009]. However, there are no existing studies to compare the performance 



10 
 

of these different machine learning techniques on developing relationships between water 

flow/contaminant transport in runoff and environmental variables 

1.2 Research Objectives 

The objective of this dissertation is to develop a comprehensive set of modeling 

tools for the investigation of many important research problems involving overland flow, 

reactive transport, and sediment transport processes. To achieve the overall objective of 

this dissertation, the following specific objectives are: 

1. To adapt the existing version of HYDRUS-1D for subsurface processes to simulate 

similar uniform or physical nonequilibrium flow and reactive solute transport 

processes during runoff at the soil surface. The developed models will improve our 

ability to quantify natural flow and transport processes at the soil surface and to 

enhance our understanding of factors that cause deviations from sheet flow. 

2. To test the ability of data-driven models to mimic physically-based models to 

predict surface runoff water quantity and quality in agricultural settings. Linear 

Regression (LR), k-Nearest Neighbor regression (kNN), Support Vector Machine 

with linear (SVM-L) and non-linear (SVM-NL) kernels, and Deep Neural Networks 

(DNN) (Neural Networks with multiple hidden layers) models will be evaluated on 

their ability to relate model inputs with outputs. 

3. To develop a series of physically-based soil erosion models, which are able to 

simulate sheet flow, interrill erosion, and interrill erosion during derivations from 

sheet flow in agricultural settings. 
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ABSTRACT  

Surface runoff is commonly described in numerical models using either the diffusion 

wave or kinematic wave equations which assume that surface runoff occurs as sheet flow 

with a uniform depth and velocity across the slope. In reality, overland water flow and 

transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil 

heterogeneity control directions and magnitudes of water fluxes, and strongly influence 

runoff characteristics. There is increasing evidence that variations in soil surface 

characteristics influence the distribution of overland flow and transport of pollutants. 

These spatially varying surface characteristics can generate deviations from sheet flow 

such as physical non-equilibrium flow and transport processes that occur only on a 

limited fraction of the soil surface. Such processes are rarely considered in numerical 

models. In this study, we first adapted the HYDRUS-1D model, a popular numerical 

model for solving the Richards equation for variably-saturated water flow and solute 

transport in porous media, to solve the diffusion wave equation for overland flow at the 

soil surface. The numerical results obtained by the new model produced an excellent 

agreement with an analytical solution for the kinematic wave equation. Additional model 

tests further demonstrated the applicability of the adapted model to simulate the transport 

and fate of many different solutes (non-adsorbing tracers, nutrients, pesticides, and 

microbes) that undergo equilibrium and/or kinetic sorption and desorption, and first- or 

zero-order reactions. HYDRUS-1D includes a hierarchical series of models of increasing 

complexity to account for both uniform and physical non-equilibrium flow and transport; 

e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with 
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immobile water. This same conceptualization was adapted to simulate physical non-

equilibrium overland flow and transport at the soil surface. The developed model 

improves our ability to describe non-equilibrium overland flow and transport processes, 

and our understanding of factors that cause this behavior. 
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2.1 Introduction 

Contaminants at the soil surface (e.g., pesticides, heavy metals, and pathogenic 

microbes) can be rapidly transported to streams or locations of surface water storage by 

overland flow. This has been reported to be the primary transport route for contaminant 

dissemination in agricultural settings [Carpenter et al.,1998; USGS, 1999; Tyrrel and 

Quinton, 2003]. An understanding of and ability to predict processes that influence the 

transport and fate of contaminants in runoff water is therefore needed to assess and 

mitigate risks of contamination of surface water supplies on human health [Furman, 

2008; Vereecken et al. 2016]. 

The diffusion wave equation describes surface runoff as sheet flow with a uniform 

depth and velocity across the slope. In reality, overland water flow and pollutant transport 

are rarely uniform. Local soil micro-topography, surface roughness, vegetation, and 

spatial soil heterogeneity vary over distances of centimeters to meters, and they control 

directions and magnitudes of water fluxes and concentrations of pollutants [Zhang and 

Cundy, 1989]. There is increasing evidence that overland flow and transport processes 

often cannot be described using classical overland flow and transport models that assume 

uniform flow and transport [e.g., Smith et al., 2011; Cea et al., 2014; Bradford et al., 

2015]. At the local scale, spatially varying roughness, vegetation, and micro-topography 

influence the distribution of shear stress and create hydrologically active and passive or 

relatively immobile flow regions. Surface active regions for overland flow can be formed 

in the field by rills or connected networks of micro-depressions which route overland 
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water and pollutant fluxes on the soil surface where velocity can be 2–7 times higher than 

the average flow [Dunkerley, 2003; Chen et al., 2013]. Great risk of contamination to 

water resources occurs from hydraulically active regions because of the presence of large 

water and contaminant fluxes and reduced time for infiltration and contaminant decay, 

transformation, and/or interphase mass transfer (e.g., interactions with soil particles). 

Surface passive or relatively immobile regions are formed by regions of depression and 

obstruction storage that retain water and pollutants, and inhibit overland flow or cause 

shallow, slow-moving flow and exchange with surface active zones. These spatially 

varying surface characteristics generate non-equilibrium overland flow and transport 

processes.  

Physically based, spatially distributed models have the potential to be an efficient 

tool to examine and optimize the removal of contaminants from overland flow through 

land-use changes and best management practices. Many publicly available overland 

pollutant transport models have been developed [Beven and Kirkby, 1979; Haith and 

Shoemaker, 1987; Bathurst and Connell, 1992; Flanagan et al. 1995; Arnold et al. 1997]. 

Lumped parameter conceptual models have commonly been used for contaminant 

transport in overland flow but may be inaccurate because they ignore processes acting on 

water and chemicals at the soil surface {e.g., Soil and Water Assessment Tool (SWAT) 

[Sadeghi and Arnold, 2002], Hydrologic Simulation Program Fortran (HSPF) [Donigian 

et al., 1995], Integrated Nitrogen Catchment model (INCA) [Whitehead et al., 1998; 

Wade et al., 2002], and COLI [Walker et al., 1990]}. Other mechanistic models consider 

local scale parameters {e.g., Parallel Flow (ParFlow) [Kollet and Maxwell, 2006], 
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CATchment Hydrology (CATHY) [Camporese et al., 2010], HydroGeoSphere (HGS) 

[Therrien et al., 2012], OpenGeoSys (OGS) [Kolditz et al., 2012]}. For example, models 

that use the actual varying micro-topography based on digital elevation maps have 

become popular [Gómez and Nearing, 2005; Chen et al., 2013; Zhao and Wu, 2015], but 

they are computationally demanding and extra effort is needed for collecting required 

data. In an attempt to overcome these limitations, some mechanistic models neglect local 

scale variations in parameters by considering simplified smooth surfaces with a global 

roughness coefficient and a constant average slope; e.g., KINematic runoff and EROSion 

(KINEROS2) [Miller et al., 2007; Goodrich et al., 2012; Kennedy et al., 2013] and 

Precipitation-Runoff Modeling System (PRMS) [Leavesley et al., 1983]. These models 

may provide an excellent approximation of overland flow when calibrated to real data but 

may not be adequate to describe overland transport that is affected by local scale 

parameters. Hence, accurate physically-based modeling of non-equilibrium water flow 

and solute transport still remains a challenge in the field of surface hydrology, and there 

is currently no widely accepted physically-based model available to simulate overland 

transport processes of all kinds of reactive chemicals.  

Recent studies have demonstrated that equations for overland water flow 

(diffusion wave equation) and transport (advective-dispersion equation, ADE) are 

equivalent to those for the subsurface (Richards and ADE equations) when using 

different functional forms for water content, water capacity, and hydraulic conductivity 

[Weill et al., 2009; Bittelli et al., 2010]. The HYDRUS-1D software [Šimůnek et al., 

2016], a popular numerical computer code for solving water flow and reactive transport 
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in variably-saturated porous media, can thus be modified to simulate overland flow rather 

than subsurface flow. Existing subsurface flow and transport models in HYDRUS-1D 

include a hierarchical series of physical non-equilibrium models of increasing 

complexity, from dual-porosity and dual-permeability models, up to a dual-permeability 

model with immobile water [Šimůnek and van Genuchten, 2008]. All these non-

equilibrium models were derived from Richards and convection-dispersion equations. 

The objective of this study is to adapt the existing subsurface version of 

HYDRUS-1D to simulate similar uniform or physical non-equilibrium flow and reactive 

solute transport processes during runoff at the soil surface. A detailed description of the 

implemented equations for overland flow and transport will be presented first. Next, 

illustrative examples of model results will be shown, with special focus on modeling 

sorption/desorption processes and physical non-equilibrium flow and transport. A limited 

comparison of model results and experimental and numerical data that exhibit deviations 

from sheet flow will also be provided. The developed models improve our ability to 

quantify natural flow and transport processes at the soil surface, and simulation results 

enhance our understanding of factors that cause deviations from sheet flow.  
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2.2 Numerical Models 

A variety of physical and chemical equilibrium and non-equilibrium models is 

available in HYDRUS-1D to describe water flow and solute transport processes in the 

subsurface [Šimůnek and van Genuchten, 2008]. These models form a hierarchical 

system of models of increasing complexity to account for both physical equilibrium and 

non-equilibrium flow, including (a) a uniform flow model, (b) a dual-porosity (mobile-

immobile water) model, (c) a dual-permeability model, and (d) a dual-permeability model 

with immobile water.  These conceptual models for subsurface flow were adapted in this 

study to account for both equilibrium and non-equilibrium overland flow and reactive 

solute transport, resulting in (a) a uniform flow and transport (UFT) model, (b) a 

horizontal mobile-immobile (HMIM) model, (c) a vertical mobile-immobile (VMIM) 

model, (d) an active-passive region (APR) model, (e) a combined APR and HMIM 

(APR-H) model, and (f) an combined APR and VMIM (APR-V) model. While the 

mobile-immobile models for overland flow correspond to the dual-porosity models for 

subsurface flow, the active-passive region models correspond to the dual-permeability 

subsurface models. Both mobile-immobile and active-passive regions models have two 

additional subsets with either horizontal or vertical subregions. While the focus in this 

manuscript is on physical non-equilibrium models that describe conditions when flow 

and transport occur only on a limited fraction of the soil surface that bypasses regions 

with little or no flow, the implemented models can also account for chemical non-

equilibrium when sorbed concentrations are not in equilibrium with liquid concentrations. 

The schematics of newly developed overland flow models that will be discussed in the 
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next section are shown in Figure 2.1. Below we will also describe the governing 

equations for each of these models. Table 2.1 provides a comparison of different 

definitions of variables for subsurface and surface models.   
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        Table 2.1. Subsurface and overland flow and transport parameters in the various models

Subsurface Models Surface Models 

 

Uniform 

Flow and 

Transport 

Water content θ 

 

Uniform Flow 

and Transport 

(UFT) 

Water depth h 

Hydraulic 

conductivity 
K(h) 

Horizontal 

Conductivity 

2/3kh

n S
 

Hydraulic 

capacity 
C(h) Constant 1 

Darcy’s velocity q Runoff flow rate Q 

Dual-

Porosity 

Model 

Mobile water 

content mo  
Mobile-

Immobile 

Regions Model 

(HMIM and 

VMIM) 

Mobile water 

depth mh  

Immobile water 

content im  
Immobile water 

depth imh  

Dual-

Permeabilit

y Model 

Fracture water 

content f  

Active-Passive 

Regions Model 

(APR) 

Active region 

water depth  
h1 

Matrix water 

content m  
Passive region 

water depth 
h2 

Fracture 

hydraulic 

conductivity 

( )f fK h  
Active horizontal 

conductivity 

5/3

1 1

1

k h

n S
 

Matrix hydraulic 

conductivity 
( )m mK h  

Passive 

horizontal 

conductivity 

5/3

2 2

2

k h

n S
 

Matrix 

concentration mc  
 Concentration in 

the active region 1c  

Fracture 

concentration fc  
Concentration in 

the passive 

region 
2c  

Dual-

Permeabilit

y Model 

with MIM 

Water content / 

concentration in 

the mobile zone 

of the matrix 

region 

, ,/m m m mc  

Active-Passive 

Regions Model 

with Immobile 

Domains 

(APR-H, APR-

V) 

Water depth / 

concentration in 

the mobile zone 

of the active 

region 

1 1/m mh c  

Water content / 

concentration in 

the immobile 

zone of the 

matrix region 

, ,/im m im mc  

Water depth / 

concentration in 

the mobile zone 

of the passive 

region 

2 2/m mh c  

Fracture water 

content / 

concentration 

/f fc  

Water depth / 

concentration in 

the immobile 

zone of the active 

region 

1 1/im imh c  

Water depth / 

concentration in 

the immobile 

zone of the 

passive region 

2 2/im imh c  



 

 

 

Figure 2.1. Conceptual equilibrium and physical non-equilibrium models for overland flow and solute transport: (a) Uniform 

Flow and Transport Model (UFT), (b) Horizontal Mobile-Immobile Regions (HMIM) Model, (c) Vertical Mobile-

Immobile (VMIM) Regions Model, (d) Active-Passive Regions (APR) Model, (e) Combined APR and HMIM (APR-H) 

model (f) Combined APR and VMIM (APR-V) model. In the plots, h is the surface water depth, hm and him in (b) and (c) are 

surface water depths in the mobile (blue) and immobile (red) flow regions, respectively; h1 and h2 in (d) are surface water 

depths in the passive (dark blue) and active (blue) regions, respectively; h1im, h2im, h1m and h2m in (e) and (f) are water depths in 

immobile (subscript im) (red) and mobile (subscript m) zones of the passive (subscript 2) (dark blue) and active (subscript 1) 

(blue) regions, respectively; c are concentrations in corresponding regions, with subscripts having the same meaning as for 

surface water depths, while C is the total solute content of the liquid phase; black and yellow arrows show directions of flow 

and exchange, respectively. wm in (b) is the fraction of the mobile region; wA in (d, e, and f) is the fraction of the active region; 

w1m and w2m in (e) are the fractions of the mobile region in the active and passive regions, respectively. 
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2.2.1 UFT Model 

Overland flow and solute transport are commonly described using diffusion wave 

and advection-dispersion equations, respectively. This approach lumps irregular land 

surface characteristics into effective parameters that are used to simulate uniform sheet 

flow and transport (Fig. 2.1a). The diffusion wave equation for overland flow may be 

written in a similar form to the Richards equation as:   

5 / 3 ( )h kh z h
q

t x xn S

    +
= + 

   
                           [1] 

where x is a space coordinate in direction of flow [L; where L denotes units of length], t 

is time [T; where T denotes units of time], h is the surface water depth [L], q is the 

source/sink term [LT-1] accounting for precipitation, evaporation, and infiltration, z is the 

land surface elevation [L], S is the mean local slope [-], n is a Manning’s roughness 

coefficient for overland flow [-], and k is a unit conversion factor [L1/3T-1]. Detailed 

derivation of this equation can be found, for example, in Weill et al. [2009], Hromadka 

and Lai [1985], Panday and Huyakorn [2004], and Šimůnek [2015]. The n parameter is 

either dimensionless when the units conversion factor k is used or has units of [TL-1/3] 

when it is not. The parameter k can also be used to convert equation [1] between SI and 

English units and can be left out when consistent units are used. However, it is a standard 

practice to use k=1 (m1/3s-1) for SI units and k=1.49 (ft1/3s-1) for English units.  

When rainfall (R, [LT-1]) (or irrigation), evaporation (E, [LT-1]), and infiltration 

(I, [LT-1]) rates are the only source/sink terms then q=R-E-I. Infiltration is usually 

determined using various empirical, semi-empirical, or physical models. In this work the 
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infiltration rate I is described using the Horton’s equation [Horton, 1939]: 

 ( )0
ik t

c cI f f f e
−

= + −        [2] 

where f0 is the initial infiltration rate [LT-1], fc is the final equilibrium infiltration rate 

[LT-1], and ki is a constant representing the rate of decrease in infiltration [T-1]. 

According to Eq. [2] infiltration starts at a rate f0, and then decreases exponentially with 

time until it reaches an equilibrium infiltration rate fc. The use of Horton's equation is 

only the first attempt in our model to consider the infiltration process, since the focus of 

the manuscript is on overland flow and transport processes. This infiltration model will 

be replaced in the future by other empirical and/or process-based infiltration models. 

Solute transport in overland flow is usually described using the advection-

dispersion equation (ADE) of the form: 

 r

hc s c Qc
hD h Rc Ic

t t x x x


     
+ = − + + − 

     
 [3] 

where c is the solute concentration in the aqueous phase [ML-3; where M denotes units of 

mass], cr is the concentration in rainfall water [ML-3], s is the sorbed solute concentration 

at the soil surface area [ML-2], D is the effective dispersion coefficient accounting for 

both molecular diffusion and hydrodynamic dispersion [L2T-1],  is a sink/source term 

that accounts for various zero- and first-order or other reactions [ML-3T-1], and Q is the 

runoff flow rate [L2T-1]. The parameter Q is given as:   

( )5/3 h zkh
Q hU

xn S

 +
= = −


                                          [4] 
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where U is a depth-averaged velocity [LT-1] calculated using the Manning-Strickler 

uniform flow formula [Hromadka and Lai, 1985]. It should be mentioned that the 

subsurface pore-water velocity and U have the same units, but the subsurface Darcy’s 

velocity and Q do not have the same units. The effect of diffusion on the dispersion 

coefficient can often be ignored and in this case, D can be defined as the product of the 

dispersivity (, [L]) and U.  

A variety of sorption processes can be considered in HYDRUS-1D, including 

chemical equilibrium described using both linear and nonlinear adsorption isotherms and 

chemical non-equilibrium described using the first-order kinetic models. These same 

sorption models may also be employed with overland transport. However, the units for s 

are different for subsurface [MM-1] and overland [ML-2] transport. Furthermore, the soil 

bulk density is not required in the overland transport equation, contrary to the subsurface 

transport equation. In the examples given below, the value of s in the equilibrium model 

is given as:  

                                                

DK cs

t t


=

                                                           [5a]                     

  where KD is the distribution coefficient [L].  The 1 site kinetic sorption model is written 

as: 

 ( )D

s
K c s

t



= −


                       [5b] 

where ω is the first-order rate coefficient [T-1] representing kinetic sorption. The 

combined equilibrium and kinetic sorption model is written as: 
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(1 )eq eq eq kf s f ss

t t t

  −
= +

  
                            [5c] 

where feq [-] is the fraction of equilibrium sorption sites, and the subscripts eq and k on s 

denote equilibrium and kinetic sorption sites given by expression similar to Eqs. [5a] and 

[5b], respectively.  The two-site kinetic sorption model is given as: 

                                          

1 2

1
1 det1 1

2
2 det 2 2

k k

k
att k

k
att k

s ss

t t t

s
k hc k s

t

s
k hc k s

t

 
= +

  


= −




= −



                                               [5d] 

where katt1 [T
-1] and katt2 [T

-1] are kinetic sorption rate coefficients, kdet1 [T
-1] and kdet2 [T

-

1] are kinetic desorption rate coefficients, and the subscripts 1 and 2 on parameters denote 

the kinetic sorption sites 1 and 2, respectively. Note that the latter model is commonly 

also used to describe attachment and detachment processes when modeling transport of 

particular substances, such as viruses, colloids or pathogens. It should be mentioned that 

Eq. [5b] can be recast in terms in katt1=ωKD/h and kdet1=ω.   

The upper boundary condition (BC) for water can be either a prescribed water 

head or flux as follows: 

0

5/3

0

( , ) ( ) 0

( )
( ) 0

h x t h t at x

kh z h
q t at x

xn S

= =

 +
= =



                          [6] 

where h0 [L] and q0 [L
2T-1] are the water head and flux at the upper boundary, 

respectively. The water depth gradient at the lower BC is assumed to be zero:  
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                                     0
h

at x L
x


= =


                                   [7] 

Two types of BCs can be applied for transport at the upper or lower boundaries. 

The first-type boundary conditions prescribe the concentration at the boundary: 

                        
0( , ) ( , ) 0c x t c x t at x or x L= = =                            [8] 

whereas third-type (Cauchy type) boundary conditions may be used to prescribe the 

concentration flux at the boundary: 

                          
0 0 0

c
hD Qc q c at x or x L

x

 
− = = = 

 
                           [9] 

in which c0 is the concentration of the incoming fluid [ML-3]. 

2.2.2 HMIM Model 

A schematic of the HMIM model is shown in Figure 2.1b. This model assumes 

that the soil surface is horizontally divided, parallel to the direction of water flow, into 

regions with mobile and immobile water. Water and solutes in the immobile region may 

be stored, retained, and exchanged with the mobile domain. Similar to Equation [1], the 

movement of water in the mobile region and moisture dynamics in the immobile region 

are given as: 

                           

5/3 ( )

1

MIM

m m m w
m

m

MIM

im w
im

m

h kh z h E
q

t x x wn S

h E
q

t w

   +
= − + 

   


= + +

 −

               [10] 

where MIM

wE is the water transfer rate between mobile and immobile regions [LT-1], wm is 

the ratio of the width of the mobile region and the total width of the soil surface, and 
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subscripts m and im denote parameters associated with the mobile and immobile regions, 

respectively. The parameter MIM

wE is assumed to be proportional to the difference in water 

depths between the two regions: 

 ( )MIM

w m imE h h= −  [11] 

where α [T-1] is the first-order mass transfer coefficient [Simunek et al., 2003]. The 

average surface water depth of the entire domain is:   

 ( )1m m m imh = w h w h+ −  [12]  

The governing solute transport equations for the mobile and immobile regions are 

given as follows: 

 

1

MIM

m m m m m m s
m m m m m r m m

m

MIM

im im im s
im im im r im im

m

h c s c Q c E
h D h R c I c

t t x x x w

h c s E
h R c I c

t t w





     
+ = − − + + − 

     

 
+ = + + + −

  −

  [13] 

where MIM

sE is the solute transfer rate between mobile and immobile regions [ML-2T-1].  

The parameter MIM

sE is given as:  

 *(1 ) ( )MIM MIM

s m m im m im wE w h c c E c= − − +  [14] 

where ωm is the solute mass transfer coefficient [T-1], and c* is a concentration that is 

equal to cm for MIM

wE >0 and cim for MIM

wE <0. Note that solute exchange between the two 

liquid regions is modeled in Eq. [14] as the sum of an apparent first-order diffusion 

process and advective transport. 

 It should be mentioned that Eqs. [10] and [13] are written in terms of local-scale 

mass balances in mobile and immobile regions.  To formulate them in terms of the total 
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region the mass balance equations for mobile and immobile regions need to be multiplied 

by wm and (1- wm), respectively.    

2.2.3 VMIM Model  

A schematic of the VMIM model is presented in Figure 2.1c. This model assumes 

that the surface water depth is vertically divided, parallel to the mean surface slope, into 

an immobile region adjacent to the soil surface and an overlying mobile domain. This 

conceptual picture is consistent with an immobile depression and/or obstruction storage 

zone that needs to fill before the initiation of overland flow [Panday and Huyakorn, 2004; 

Guber et al., 2009]. An immobile region is supposed to account for the effects of small 

surface roughness and/or vegetation that prevents an immediate surface runoff once 

ponding is reached. It represents a small water layer that needs to be formed before 

surface runoff can occur. Water flow is described as:  

 

5/3 ( ) MIMm m m
w

MIMim
w

h kh z h
E R E

t x xn S

h
E I

t

   +
= − + − 

   


= + −



 [15] 

In contrast to the HMIM model, the parameter MIM

wE  is now given as:  

 ( ) ( )max/MIM

w up o im TE R E Q L H h h= − +  −  [16] 

where max

imh  is the maximum water depth for the immobile region [L], hT is the total water 

depth [L] that is equal to hm+him, Qup is flow from upstream [L2T-1], and L is the length 

of the surface [L] over which inflow from upstream flows into the immobile region. The 

Heaviside function (Ho) in Eq. [16] is equal to one when max

imh > hT and is zero when max

imh
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≤ hT. Consequently, water flow in the mobile domain only occurs when the immobile 

region is filled ( max

imh ≤ hT) at a particular location.  

Solute transport equations for the mobile and immobile regions are given as 

follows: 

 

MIMm m m m m
m m s m m r

MIMim im im
s im im im

h c c Q c
h D E h Rc

t x x x

h c s
E h Ic

t t





    
= − − + + 

    

 
+ = + + −

 

  [17] 

Note that the transport equation for the mobile region does not include the sorption term 

since this region is not in direct contact with soil. The parameter MIM

sE is given as:  

              ( ) ( ) ( )max max( ) /MIM

s m im m im o T im r up m o im TE h c c H h h Rc Q c L H h h= − − + +  −  [18] 

2.2.4 APR Model 

A schematic of the APR model is given in Figure 2.1d. This model assumes that 

the soil surface is divided, parallel to the direction of water flow, into hydraulically active 

(fast flow) and passive (slow flow) domains. This model allows for water and solute 

transport in both active and passive regions, and exchange between these regions. Surface 

water flow in each region is, in analogy of the dual-permeability subsurface flow model 

of Gerke and van Genuchten [1993], described using separate diffusion wave equations:   

 

5/3

1 1 1
1

1

5/3

2 2 2
2

2

( )

( )

1

APR

w

A

APR

w

A

Eh kh z h
q

t x x wn S

Eh kh z h
q

t x x wn S

   +
= − +     

   +
= + +     − 

 [19] 

where APR

wE is the water transfer rate between active and passive regions [LT-1], wA is the 
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ratio of the width of the surface active region and the total surface width [-], and the 

subscripts 1 and 2 refer to hydrologically active and passive regions, respectively. Values 

of APR

wE and h are quantified in a similar manner to Eqs. [11] and [12] as follows:   

 
12 1 2( - )APR

wE =  h h  [20] 

 
1 2(1 )A Ah w h w h= + −  [21]  

Solute transport is described using separate advection-dispersion equations for 

each region: 

 
1

1 1 1 1 1 1
1 1 1 1 1

2 2 2 2 2 2
2 2 2 2 2 2

1

APR

s
r

A

APR

s
r

A

Eh c s c Q c
h D h Rc I c

t t x x x w

Eh c s c Q c
h D h Rc I c

t t x x x w





     
+ = − − + + − 

     

     
+ = − + + + − 

     − 

 [22]  

where APR

wE is the solute transfer rate between active and passive regions [ML-2T-1]. The 

APR

sE term is quantified in a similar manner to Eq. [14] as: 

 
12 1 2 1 2(1 ) ( ) *APR APR

s wE w h c c E c= − − +  [23] 

where ω12 is the solute mass transfer coefficient for transfer between active and passive 

regions [T-1]. 

The total flux is obtained as: 

 ( )1 2 1A AQ Q w Q w= + −   [24] 

and the average flux concentration is: 

 
( )

( )
1 1 2 2

1 2

1

1

A A

T

A A

w c Q w c Q
c

w Q w Q

+ −
=

+ −
 [25] 

 It should be mentioned that Eqs. [19] and [22] are written in terms of local-scale 
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mass balances in regions 1 and 2. To formulate them in terms of the entire region the 

mass balance equations for regions 1 and 2 need to be multiplied by wA and (1-wA), 

respectively.   

2.2.5 APR-H Model 

A schematic for the combined APR and HMIM (APR-H) model is shown in 

Figure 2.1e. This model assumes that the soil surface is horizontally divided, in the 

direction parallel to water flow, into four regions: (i) an active (fast flow) region; (ii) a 

passive (slow flow) region; (iii) an immobile region that is in contact and exchanges mass 

(water and/or solute) horizontally with the active region; and (iv) and an immobile region 

that is in contact and exchanges mass horizontally with the passive region.   

Several different surface water depths are considered in the combined APR-H 

model. Values of h1 and h2 are divided into mobile (h1m and h2m) and immobile (h1im and 

h2im) regions using Eq. [12] such that the average water depth for the entire domain (h) is 

given as:  

 ( ) ( )1 1 1 1 2 2 2 21 (1 ) 1A m m m im A m m m imh w w h w h w w h w h= + − + − + −        [26]  

The movement of water in active, passive, and immobile zones is given as:   

                                    
5/3

1 1 1 1
1

11

APR MIM

m m m w w
m

A A m

h kh h E E
q

t x x w w wn S

  
= − − +     

    [27a] 

 1 1
1

1(1 )

MIM

im w
im

A m

h E
q

t w w


= + +

 −
  [27b] 

 
5/3

2 2 2 2
2

22
1 (1 )

APR MIM

m m m w w
m

A A m

h kh h E E
q

t x x w w wn S

  
= + − +     − − 

  [27c] 



40 
 

 2 2
2

2(1 )(1 )

MIM

im w
im

A m

h E
q

t w w


= + +

 − −
  [27d]  

where
1

MIM

wE and 
2

MIM

wE denote the water transfer rate between mobile and immobile 

domains in active and passive regions [LT-1], respectively. The parameters 
1

MIM

wE  and 

2

MIM

wE are obtained in an analogous fashion to Eq. [11] using separate values of α, hm, and 

him for active (α1, h1m, and h1im) and passive (α2, h2m, and h2im) regions, whereas APR

wE is 

determined using Eq. [20].   

The following governing equations describe solute transport in the surface active, 

passive, and immobile regions: 
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where
1

MIM

sE and 
2

MIM

sE denote the solute transfer rate between mobile and immobile 

domains in active and passive regions [ML-2T-1], respectively. The parameters 
1

MIM

sE and 

2

MIM

sE are obtained in an analogous fashion to Eq. [14] using separate values of ωm, wm, 

him, cm, cim, and MIM

wE for active (ω1, w1m, h1im, c1m, c1im, and 
1

MIM

wE ) and passive (ω2, w2m, 
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h2im, c2m, c2im, and 
2

MIM

wE ) regions, whereas APR

sE is determined using Eq. [23].   

2.2.6 APR-V Model 

A schematic for the combined APR and VMIM (APR-V) model is shown in 

Figure 2.1f. Similar to the APR model, the combined model assumes that the soil surface 

is horizontally divided, in the direction parallel to water flow, into active (fast flow) and 

passive (slow flow) regions. Each of these regions is further divided vertically into an 

immobile region adjacent to the soil surface and an overlying mobile domain.  

The values of h1 and h2 are again divided into mobile (h1m and h2m) and immobile 

(h1im and h2im) regions for the combined APR-V model. In this case, the average water 

depth for the entire domain (h) is given as:  

   1 1 2 2(1 )A m im A m imh w h h w h h= + + − +                                 [29]  

The movement of water in active, passive, and immobile zones is given as:   
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Values of 
1

MIM

wE  and 
2

MIM

wE are given in this model similar to Eq. [16] using separate 

values of R, E, hT, and max

imh for active (h1T and max

1imh ) and passive (h2T and max

2imh ) regions. 
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Solute transport in the surface active, passive, and immobile regions are described 

using the following model: 
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Parameters 
1

MIM

sE , 
2

MIM

sE , and APR

sE  are determined in a similar manner to Eqs. [18], [18], 

and [23], respectively. Note that the APR-V model assumes that there are no interactions 

between the two immobile regions under the active and passive flow regions. The 

additional assumption in the current implementation of the APR-V model is that the 

maximum water depths max

imh in the two immobile regions are the same. 

2.3. Numerical Implantation 

The HYDRUS software uses the Galerkin-type linear finite element method 

(FEM) for spatial discretization of the governing partial differential equations and the 

finite difference method to approximate temporal derivatives. The FEM is commonly 

used in hydrological models, such as in HydroGeoSphere and OGS. An important 

advantage of the FEM over the finite difference method to solve the 1D diffusion wave 

equation is the ease of increasing mesh resolution, so that shock fronts can be simulated 
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without any numerical oscillations. Since the governing overland flow equations were 

formulated using the subsurface flow equations with different definitions of the water 

content, hydraulic capacity, and conductivity coefficients (see Table 2.1), the original 

fully implicit finite difference scheme with Picard linearization was used to solve the 

overland flow equation as well, while a Crank-Nicholson finite difference scheme was 

used to solve the advection-dispersion equations. Details about the numerical solutions of 

corresponding subsurface flow and transport models are provided in the HYDRUS-1D 

manual [Simunek et al., 2016]. The same graphical user interface (GUI) in HYDRUS-1D 

is used to select and execute subsurface and overland flow and transport models. 

The numerical implementation of the overland flow equation was verified by 

comparing numerical results with the analytical solution of the kinematic wave equation 

[Woolhiser and Liggett, 1967; Singh, 1996]. There was an excellent agreement between 

the numerical and analytical solutions at different times and steady-state conditions. A 

mass balance was also calculated for all of the overland flow and transport models to 

verify the correctness of the implementation of more complex models, for which 

analytical solutions either do not exist or cannot be derived. Results demonstrated that the 

numerical implementation conserved mass.    

2.4 Applications   

This section presents a large number of numerical examples of overland flow and 

solute transport using the various model formulations. The flow domain is 100 m long 

and discretized into 101 finite elements. The slope is 1%, and unless otherwise noted the 

surface roughness n is 0.01. The dispersivity (λ) is set equal to 10 m.    
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Table 2.2. Simulation conditions of test examples 

Models 
Figure 

Numbers 
Simulation Conditions 

UFT  

Fig. 2 

Total simulation time: 20 mins; constant head inflow (1 cm) for 

6 mins; n=0.01. 

a. no infiltration. 

b. infiltration parameters: f0 = 0.00199 cm s-1, fc = 0.00009433 

cm s-1, and ki = 0.00404 s-1. 

Fig. 3 

The same conditions as for Fig. 2a, but additionally with solute 

inflow. 

a. solute inflow and no retardation: KD=0 cm. 

b. solute inflow and retardation: KD=1 cm. 

c. solute inflow and attachment/detachment: ka=0.01 s-1 and 

kd=0.001 s-1. 

HMIM 

Fig. 4 

The same conditions as for Fig. 2a.  

a. constant wm=0.5 with  = 0, 0.001, 0.005, and 0.01s-1. 

b. constant  =0.01 s-1 with wm=0.3, 0.5, and 0.7. 

Fig. 5 

Steady state flow conditions; solute inflow for 30 mins; total 

simulation time 60 min; wm=0.5,  =0.01 s-1, with 
m = 0, 0.001, 

0.005, and 0.01s-1. 

VMIM Fig. 6a 

Total simulation time: 60 mins; constant rainfall R=0.00666 cm 

s-1.s for 20 mins; f0 = 0.00399 cms-1, fc = 0.00009433 cms-1, and 

ki = 0.000404 s-1; 
max

imh = 0, 0.3, and 0.5 cm. 

APR  

Fig. 7a 
Total simulation time: 60 mins; constant head inflow (1 cm) for 

20 mins; n1 = 0.01, n2 = 0.05; wA=0.5; 12 =0, 0.001 and 0.01 s-1. 

Fig. 8a 
The same conditions as the Fig.5; n1 = 0.01, n2 = 0.05; wA=0.5; 

12 =0, 0.001 and 0.01 s-1. 

APR-H  

 

Fig. 7b 

The same conditions as the Fig.7a; 10.01s −= ; wA=0.5; 

w1m=0.5, w2m=0.5; 12 =0, 0.001 and 0.01 s-1. 

Fig. 8b 

 

The same conditions as the Fig.8a; m = 0.01s-1; wA=0.5; 

w1m=0.5, w2m=0.5; 12 =0, 0.001 and 0.01 s-1. 

APR-V           Fig. 6b 

The same conditions as the Fig. 6a, but with two different 

Manning’s roughness coefficients. n1 = 0.01; n2 = 0.05; α=0.1s-1; 
max max

1 2 0.5im imh h= = cm. 
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2.4.1 UFT Model 

Figure 2.2 presents an example of uniform overland flow over an impervious (Fig. 

2.2a) and permeable (Fig. 2.2b) soil surface. In this example, inflow was induced by 

specifying the pressure head equal to 1 cm at the top boundary for 6 min, and then 

simulating overland flow for a total of 20 min. Water depths are shown as a function of 

time at different locations (0, 20, 40, 60, and 80 m) from the top of the slope. The inlet 

water pulse moves along the impervious soil surface in Figure 2.2a and reaches the 

bottom of the profile after about 200 s. A maximum water depth of 1 cm that is consistent 

with the inlet boundary condition is reached and then gradually reduced when the inflow 

is stopped. In contrast to Figure 2.2a, the water depths are not uniform across the 

permeable soil surface in Figure 2.2b due to infiltration. Infiltration reduces the water 

mass that reaches the bottom boundary and delays its arrival. Mass balance calculations 

indicated that the sum of cumulative discharge, infiltration, and water at the soil surface 

equaled the cumulative inflow. This indicates that mass was conserved during infiltration. 

 

 

Figure 2.2. Water depths at different locations for the uniform flow model: (a) no 

infiltration; (b) infiltration. Parameter values are given in Table 2.2. 

(a) (b) 
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The transport of reactive contaminants requires considering the advective-

dispersive transport with a range of biogeochemical processes such as adsorption, 

desorption, volatilization (i.e., mass transfer between different phases), degradation, 

precipitation, dissolution, etc. To demonstrate the applicability of our reactive transport 

code, the numerical examples of solute transport with different sorption processes are 

presented in Fig. 2.3 for the same water flow conditions as in Figure 2.2a. Solute 

transport was induced using a third-type boundary condition at the inlet with a constant 

unit concentration for 6 mins. Solute concentrations are shown as a function of time at 

different locations along the slope. Figure 2.3a shows the simulated transport of a 

conservative tracer.  Similar to water flow (Fig. 2.2a), the tracer reaches the bottom outlet 

after around 200s. The tracer was never eluted with solute-free water. Consequently, the 

solute concentration remains constant after the water and tracer inflow stopped due to a 

decreased volume of runoff water and solute input. Figure 2.3b shows the transport of 

solute that undergoes linear equilibrium sorption. In this case, the retardation coefficient 

equals 1+KD/h; where KD was set equal to 1 cm. In comparison to the conservative tracer 

(Fig. 2.3a), the transport of the solute undergoing linear equilibrium sorption is delayed. 

The retardation factor is equal to 2 at the maximum water depth of 1 cm, but drastically 

increases as h goes to zero. Consequently, the delay in solute transport (Fig. 2.3b) 

becomes more pronounced during the receding limb of the hydrograph (Fig. 2.2a). Figure 

2.3c shows the transport of a solute that undergoes kinetic sorption (sorption rate of 0.01 

s-1) and desorption (desorption rate of 0.001 s-1). The solute concentration continuously 

decreases as is it transported over the soil surface during inflow due to kinetic sorption. 
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The solute concentration rapidly increases after inflow ceases due to a decrease in 

volume of surface water and continued solute desorption from the land surface. 

Eventually, the solute concentration reaches an equilibrium concentration level after 

inflow ceases. The equilibrium aqueous phase concentration is kd/hminka where hmin [L] is 

a minimum water depth. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Concentrations at different locations for the UFT model: (a) conservative 

tracer, (b) solute with linear equilibrium partitioning, and (c) solute with kinetic sorption 

and desorption. Parameter values are given in Table 2.2. 

(b) 

(a) 

(c) 
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2.4.2 HMIM Model 

The HMIM model has two additional input parameters for overland flow 

compared with the UFT model: (i) the water mass transfer coefficient, ; and (ii) the ratio 

of the width of the mobile domain to the total width of the surface domain, wm. The 

influence of these two parameters on the outflow rate at the bottom boundary as a 

function of time is demonstrated in Figure 2.4. Similar to Figure 2.2a, the inlet water 

depth was equal to 1 cm for 6 min and the soil surface was impervious. A constant value 

of wm=0.5 and different values of =0, 0.001, 0.005, and 0.01 s-1 are considered in Figure 

2.4a. No exchange of water occurs between the mobile and immobile domains when =0, 

and the resulting outflow rate is equal to the uniform flow model. Conversely, a fraction 

of inflow water is transferred to and from mobile and immobile regions when >0. This 

process slows down overland flow and delays the arrival of the water front relative to the 

uniform model. It also produces prolonged tailing in the outflow rate compared with the 

uniform model. Increasing  produces a faster equilibration of water depths between the 

mobile and immobile zones and causes a greater delay in outflow. It should be mentioned 

that the relative importance of  on outflow will increase with smaller values of wm. A 

constant value of =0.001 s-1 and different values of wm=0.3, 0.5, and 0.7 were 

considered in Figure 2.4b. Increasing wm produces a slightly earlier outflow arrival time, 

a higher outflow rate, and less outflow tailing because of the larger mobile domain area. 

The relative importance of wm increases with smaller values of .  
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Figure 2.4. Outflow rates at the bottom boundary simulated using the HMIM Model 

with different values of α (s-1) (wm=0.5) (a) and wm (α =0.01s-1) (b). Parameter values are 

given in Table 2.2. 

 

In contrast to the uniform transport model, the HMIM model also depends on the 

solute mass transfer coefficient (ωm). Figure 2.5 presents simulated breakthrough curves 

(BTCs) at the bottom boundary for a 30 min conservative tracer pulse when using the 

HMIM model with wm=0.5 and ωm =0, 0.001, 0.005, and 0.01 s-1. Steady-state overland 

flow conditions were considered in these simulations to isolate the influence of ωm from 

water exchange (e.g.,). The BTC is equivalent to the uniform transport model when 

ωm=0. Increasing ωm produces greater amounts of diffusive solute exchange and a faster 

equilibration between mobile and immobile domains. Consequently, increasing ωm 

produces a greater delay in the initial tracer breakthrough, but also less long-term 

concentration tailing for the considered parameters. It should be mentioned that the 

relative importance of ωm on BTCs will increase with smaller values of wm. 

 

  

(a) (b) 
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Figure 2.5. Breakthrough curves calculated using the HMIM Model with different 

solute exchange rates m (s-1). Parameter values are given in Table 2.2. 

 

2.4.3 VMIM Model 

The VMIM model allows the consideration of depression storage by assigning 

different values of the maximum water depth for the immobile region ( max

imh ). Figure 2.6a 

shows plots of the water depth as a function of time at the bottom boundary when using 

the VMIM model with values of max

imh =0, 0.3, and 0.5 cm. In this case, rainfall was 

uniformly applied over the soil surface for 20 mins at a rate of 0.4 cm min-1 and 

infiltration was also considered (Table 2.2). Figure 2.6a demonstrates that the water level 

rises from the land surface up to max

imh , and that overland flow is initiated when hT> max

imh . 

Overland flow occurs immediately when max

imh =0 cm, otherwise overland flow is delayed 

until the immobile, depression storage, zone is filled. As we expected, higher values of 

max

imh resulted in a greater delay in overland flow. The model also simulated the dynamics 
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of overland flow and infiltration for 40 min after rainfall ceased. In particular, overland 

flow continued when hT> max

imh , whereas infiltration occurred as long as hT>0.    

 
 

 
 

 

Figure 2.6. Water depths at the bottom boundary simulated using the VMIM model (a) 

and the APR-V model (b) with different maximum water depths for the immobile 

region. Parameter values are given in Table 2.2. 

 

 

(b) 

(a) 
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2.4.4 APR Model 

Overland flow and transport occurs in two parallel surface regions in the APR 

model. Water exchange between the active and passive regions is determined by the mass 

transfer coefficient 12. Separate Manning’s roughness coefficients are employed in the 

surface active (n1) and passive (n2) regions to obtain different velocities. Figure 2.7a 

presents simulated active, passive, and total outflow rates as a function of time when 

using the APR model with wA=0.5, n1=0.01, n2=0.05, and 12=0, 0.001 and 0.01 s-1. 

Overland flow over an impervious soil surface was initiated by setting the inlet boundary 

to a water depth of 1 cm for 20 min. Water moves independently in active and passive 

domains when 12=0 (red lines). In this case, two outflow peaks are observed with 

outflow starting after about 200 s and 1000 s in the active and passive domains, 

respectively, due to differences in the roughness coefficient. An increase in 12 produces 

faster water exchange and equilibration that cause the outflow peaks for the active and 

passive regions to decrease and increase, respectively. The APR model approaches the 

behavior of the uniform flow model at the average velocity when 12 is very high. It 

should be mentioned that an increase in n2 decreases the water velocity in the passive 

region and the APR model, therefore, approaches the HMIM model when n2 is very 

larger. Figure 2.7a illustrates that classic non-equilibrium flow behavior (an early arrival, 

multiple peaks, and long-term tailing in the outflow rate) can be obtained with the APR 

model.    
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Figure 2.7. Outflow rates at the bottom boundary calculated using the APR model (a) 

and the APR-H model (b) with different water exchange coefficients α12 (s
-1). Parameter 

values are given in Table 2.2. 

 

 Figure 2.8a presents simulated active (dash with dot), passive (dashed line), and 

total (solid) BTCs at the bottom boundary for a 40 mins conservative tracer pulse when 

using the APR model with wA=0.5, n1=0.01, n2=0.05, and ω12=0, 0.001, and 0.01 s-1. 

Steady-state overland flow conditions over an impervious soil surface (an inlet water 

(a) 

(b) 
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depth of 1 cm) were considered in these simulations to isolate the influence of ω12 from 

water exchange (e.g., 12). When the exchange coefficient is equal to zero (red lines), 

solute moves independently through each of the two surface domains. In this case, the 

total BTC is the weighed superposition of BTCs from the active and passive regions. 

Increasing ω12 causes greater amounts of diffusive solute exchange and a faster 

equilibration between the active and passive domains. This produces a decrease and an 

increase in effluent concentrations in the active and passive regions, respectively. When 

ω12 is very high the BTCs from the two domains converge and resemble the results of the 

uniform transport model at the average water velocity (Purple line in Fig. 2.4a).   
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Figure 2.8. Breakthrough curves calculated using the APR model (a) and the APR –H 

model (b) with different solute exchange coefficients ω12 (s
-1). Parameter values are 

given in Table 2. 

 

2.4.5 APR-V Model  

A simulation associated with Figure 2.6a (the VMIM model) was repeated for the 

combined APR and VMIM (APR-V) model in Figure 2.6b. Additional APR parameters 

for this simulation included: wA=0.5, 12=0.1 s-1, n1=0.01, n2=0.05, and max max

1 2 0.5im imh h= =

cm. Similar to the VMIM model, overland flow in the APR-V model does not occur until 

(b) 

(a) 
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the depression storage zone is filled. Overland flow may then occur at faster and slower 

rates in the active and passive regions, respectively. The water depth will, therefore, be 

higher in the passive than the active domain for the same rainfall and infiltration rates in 

both regions. Consequently, the steady-state water depth at the outlet is higher in the 

APR-V model than in the VMIM model when 12=0. However, increases in 12 cause 

exchange of water between the passive and active regions, such that the steady-state 

water depths approach each other when 12 is very high.   

2.4.6 Solute Wash-off 

Figure 2.9a and 2.9b shows plots of a runoff hydrograph and solute wash-off from 

the impervious soil surface, respectively, when using the several model formulations 

(UFT, HMIM, APR, and APR-H). In this case, the same inflow (1 cm constant head for 6 

min), a runoff flow rate (45 cm2s-1), the initial soil solute concentration (unit 

concentration), and solute desorption rate (0.01 s-1) were considered. Other model 

parameters included: (i) the UFT model with n=0.01; (ii) the HMIM model with wm=0.5, 

 =0.01, and ωm=0.001 s-1; (iii) the APR model with wA=0.5, n1=0.005, n2=0.02, 

α12=0.001 s-1, and ω12=0.001 s-1; and (iv) the APR-H model with wA=0.5, w1m=0.5, 

w2m=0.5, n1=0.005, n2=0.02, 1=0.01 s-1, 2=0.01 s-1, ω1=0.01 s-1, ω2=0.01 s-1, 12 =0.001 

s-1, and ω12 0.001 s-1. Drastically different hydrographs and solute wash-off behavior are 

observed when using the various physical non-equilibrium model formulations in 

comparison to the uniform model for the same initial and runoff flow rate. Clearly, the 

physical non-equilibrium models can produce hydrographs and/or solute wash-off with 
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earlier or delayed arrivals, multiple peaks, and prolonged tailing. 

        

 

Figure 2.9. Simulated outflow rates (a) and concentrations (b) at the bottom boundary 

using equilibrium (UFT) and non-equilibrium flow and transport models (HMIM, APR, 

and APR-H). 

 

2.5 Validation of Physical Non-Equilibrium Models 

This section first presents visual evidence for physical non-equilibrium 

phenomenon during overland flow and transport. The UFT and HMIM models are then 

used to describe published tracer transport data from this system [Bradford et al., 2015]. 

(b) 

(a) 



58 
 

Finally, a comparison is made between simulation results from several 1D models (UFT, 

HMIM, and APR) and a 2D model domain having spatial variations in the Manning 

roughness coefficient. 

A dye tracer experiment was performed in a laboratory runoff chamber. The 

chamber was 2.25 m long, 0.15 m wide and 0.16 m high. Autoclaved ultrapure quartz 

sand was uniformly packed into the chamber to a depth of 0.1 m. The chamber slope was 

then set to 11.8%. Steady-state water flow at a rate of 124 ml min-1 was achieved in the 

chamber before initiating a dye tracer experiment using a peristaltic pump connected to a 

rain simulator at the upslope portion of the chamber. A step pulse (30 minutes) of 10 ppm 

yellow-colored fluorescent dye tracer was subsequently pumped to the rain simulator at 

the same flow rate. Figure 2.10 shows several pictures of water and dye movement at the 

soil surface during this experiment. The water flow and dye was clearly not uniformly 

distributed (sheet flow) over the soil surface. The concentrated flow mostly occurred at 

the edge of the chamber, whereas other areas had little or no overland flow. These 

observations provide visual evidence that physical non-equilibrium processes were 

significantly contributing to overland water flow and tracer transport in this experiment. 
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Figure 2.10. Illustrative pictures of the distribution of fluorescent dye tracer and surface 

water in a 2.25 m long, 0.15 m wide, and 0.16 m high runoff chamber with a 11.8% 

slope. 

 

Bradford et al. [2015] presented salt tracer (100 mM NaCl solution) data from this 

same runoff chamber setup when the slope was 5.6, 8.6, and 11.8%. In this case, the 

eluted solution was collected at the toe of the slope using a fraction collector every 3 

mins for 30 mins, then the chamber was eluted with deionized water for another 90 mins. 

The UFT and the HMIM models were used to simulate the tracer breakthrough curves 

(BTCs) when the Manning's coefficient was 0.02, the dispersivity was taken as 0.1 of the 

chamber length [Gelhar et al., 1985, 1992], and other model parameters (wm and m)  

were determined by inverse optimization. The fitted parmeters were wm =0.39E-02, 

0.22E-02, and 0.12E-02 and m=0.37E-03, 0.44E-03, and 0.59E-03 s-1 for the slopes of 

5.6%, 8.6%, and 11.8%, respectively. Figure 2.11a presents observed and simulated 

BTCs. The values of the Pearson’s correlation coefficient (R2 ) for the HMIM models at 
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the slopes of 5.6%, 8.6%, and 11.8% were 0.94, 0.92, and 0.90, respectively. The 

simulation results indicated that the HMIM model provided a reasonable fit to the 

experimental data, whereas the UFT model was unable to accurately describe the initial 

pulse and the prolonged tailing behavior. The value of wm (the ratio of the width of the 

mobile region and the total width of the soil surface) were generally very small and 

tended to decrease with increasing chamber slope. The higher slope generates more 

dynamic water flow and apparently creates a wider range of immobile regions to store the 

surface water. A greater rate of diffusive mass transfer (m) also occurred with increasing 

slope. Figure 2.11b shows an enlarged snapshot of the simulated effluent tracer 

concentrations during the first 60 s. The HMIM model generates earlier tracer arrival 

compared to the UFT model. It should be mentioned that these differences in the arrival 

time between HMIM and UFT models will increase with the domain scale. 
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Figure 2.11. Observed and simulated runoff breakthrough curves for a 100mM NaCl 

tracer when the runoff chamber slope was 5.6%, 8.6%, and 11.8% (a). Simulations for the 

HMIM (solid lines) and UFT (dashed lines) models are shown. An enlarged snapshot of 

simulated BTCs during the first 60s is also provided (b).   

 

Most process-based overland flow and transport models neglect local scale 

parameter heterogeneity by employing average values of the slope and Manning 

roughness coefficient over the entire surface [Wallach and Van Genuchten, 1990; Deng 

et al., 2005]. This approach significantly reduces the input parameter requirements and 

computational time, but may sometimes result in a poor description of experimental data.  

(b) 

(a) 
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The developed HMIM and APR models allow us to simply represent spatial variability in 

flow and transport parameters in a simple 1D domain with a limited number of 

parameters. As an illustration, simulation results from several 1D models (UFT, HMIM, 

and APR) and a 2D model domain having spatial variations in the Manning roughness 

coefficient were compared. In this case, HYDRUS-2D was similarly adapted as 

HYDRUS-1D to simulate uniform (sheet) overland flow and transport over a 2D domian. 

A hypothetical spatially varying roughness coefficient was generated using the 

HYDRUS-2D GUI in a 10 m X 100 m simulation domain. The roughness coefficient at 

the edge of the domain was set to 0.005 and rest of the domain was set to 0.1 (Fig. 2.12a) 

to achieve spatial variations in the overland flow field. As expected, solute transport was 

much faster in the domain with a smaller roughness coefficient (Fig. 2.12b). The 

integrated BTCs at the bottom boundary of the 2D domain were subsequently calculated 

and analyzed using various 1D (UFT, HMIM, and APR) models.  
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Figure 2.12. The 2D simulation domain showing the distribution of Manning’s 

roughness coefficient (a) and the graphical output of normalized concentration value at 

time equals to 4060 s (b) when using a version of HYDRUS-2D that was adapted to 

simulate overland flow and transport in a similar manner to the UFT model. 

 

Figure 2.13 shows the observed (average effluent concentration from the 2D 

simulation) and simulated BTCs from the 1D models. The 1D UFT model with an 

averaged Manning’s roughness coefficient (n=0.1) provided a poor description of the 

average 2D data. In contrast, the HMIM and especially the APR models provided a much 

better description of the average 2D data. The Manning’s coefficient set in the APR 

models are n1=0.005 and n2=0.1 for active domain and passive domain, respectively. The 

values of wA and 12 were determined by inverse optimization, they were 0.05 and 0.53E-
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03 s-1, respectively. For the HMIM model, the Manning’s coefficient in mobile domain 

set equal to 0.005, the inversed wm and m were equal to 0.09 and 3.50E-03 s-1, 

respectively. In contrast, the HMIM and especially the APR models provided a much 

better description of the average 2D data. It should be mentioned that distribution of 

Manning roughness coefficients in the 2D simulation was selected to achieve physical 

non-equilibrium flow behavior. Additional research is needed to systematically study and 

assess the ability of 1D physical non-equilibrium models to describe overland flow and 

transport on 2D and/or 3D domains with heterogeneous soil surface properties. 

 

Figure 2.13. Observed (average effluent concentration from the 2D simulation shown in 

Fig. 12) and simulated BTCs from the 1D UFT, HMIM, and APR models. 

 

2.6 Summary and Conclusion 

 The popular HYDRUS-1D code was extended to simulate uniform and 

physically non-equilibrium overland flow and reactive solute transport (such as salts, 

nutrients, pesticides, and microbes). This code provides information on the temporal and 
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spatial distribution of water depths and solute concentrations in different phases (e.g., 

liquid and solid) and regions (e.g., mobile and immobile zones, active and passive 

regions), as well as on mass balance on the soil surface, inflow, rainfall, infiltration, and 

evapotranspiration. These models provide a comprehensive set of tools to numerically 

investigate many important research problems involving overland flow and reactive 

transport processes. Physical non-equilibrium models may be better suited for studying 

hydrological processes at the plot and field scale than equilibrium models when spatial 

patterns of land surface characteristics are poorly characterized. However, the physical 

non-equilibrium models also involve a relatively large number of parameters which may 

need to be obtained by calibrating against laboratory or field measurements. The 

HYDRUS-1D model includes provisions to estimate these parameters by inverse 

optimization as demonstrated above in the "Validation" section, and a variety of objective 

functions can be considered based on different measurements (e.g., water fluxes, water 

depths, resident concentrations, flux concentrations, etc.). Ideally, the model selection 

should be based on calibration with experimental data. If one model does not provide a 

satisfactory description of the data, then another model with an additional level of 

complexity may be considered. The simplest model (with the fewest number of fitting 

parameters) that accurately describes experimental data is generally preferred. 

Additional modifications to the code are needed to consider other infiltration 

equations, and the full coupling between runoff water and the subsurface.   
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ABSTRACT 

 Contaminants can be rapidly transported at the soil surface by runoff to surface water 

bodies. Physically-based models (PBMs), which are based on the mathematical 

description of main hydrological processes, are key tools for predicting surface water 

impairment. Along with PBMs, data-driven models are becoming increasingly popular 

for describing the behavior of hydrological and water resources systems since these 

models can be used to complement or even replace physically based-models when there 

is a lack of required data. Here we propose a new data-driven model as an alternative to a 

physically-based overland flow and transport model. First, we have developed a 

physically-based numerical model to simulate overland flow and contaminant transport 

(the HYDRUS-1D overland flow module). Then, a large number of numerical 

simulations was carried out to develop a database containing information about the 

impact of various relevant factors on surface runoff quantity and quality. Numerical 

simulations were conducted to evaluate the influence of different weather patterns, 

surface topography, vegetation, soil conditions, contaminants, and best management 

practices on runoff water quality. Finally, the resulting database involving various 

input/output surface runoff interactions was used to train data-driven models. Traditional 

Machine Learning and Deep Learning techniques were explored to find input - output 

functional relations. The results indicated that the Deep Neural Network (DNN) model 

with two hidden layers performed the best among selected data-driven models. This DNN 

model accurately predicted runoff water quantity over a wide range in parameters. It also 
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predicted well runoff water quality for near-equilibrium solute transport over a wide 

range in parameters.  
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3.1. Introduction 

A variety of agricultural pollutants result from farming and ranching operations 

(e.g., sediment, nutrients, pathogens, pesticides, metals, and salts) can lead to 

impairments of local and far-field water quality. These diffuse nonpoint sources can 

directly harm ecosystem and watershed water quality, and adversely affect our drinking 

water supply. Agricultural runoff, generated by rainfall or irrigation events, can transfer 

pollutants accumulated at the land surface into receiving water bodies. This process has 

been identified as one of the major causes of  water impairment in agricultural settings 

[Carpenter et al., 1998; USGS, 1999; Tyrrel and Quinton, 2003]. The amount of 

pollutants transported to surface runoff water is dependent on local soil and crop 

management, climatic conditions, contaminant properties and environmental factors. The 

discharge of pollutants from agricultural activities to surface waters can be minimized by 

locally implementing Best Management Practices (BMPs). However, obtaining 

monitoring data using field investigations is very time consuming and expensive, and 

associated with many experimental difficulties. Furthermore, simple field observations 

may be difficult to interpret to obtain a complete picture of potential contaminant 

transport routes and mechanisms, and to extrapolate findings to other environmental 

conditions and climates. 

Alternatively, physically-based and data-driven models are potential tools for 

examining and optimizing the effects of land-use changes and BMPs on surface water 
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quality [Kirkby and Beven, 1979; Donigian et al., 2002; Borah and Bera, 2003; Roz, 

2011]. Indeed, numerical experiments can be cheaply conducted using a physically-based 

model (PBM) to predict runoff water quality over a wide range of agricultural fields, 

weather patterns, and BMPs. PBMs explicitly account for main hydrologic and 

contaminant transport processes using mathematical descriptions. Complex numerical or 

analytical techniques are commonly used to solve these mathematical descriptions, which 

may require significant computational time as the spatial and temporal scale of the 

considered problem increases. In contrast to PBMs, data-driven models are based on 

functional relationships between input and output variables. Artificial intelligence 

approaches, such as Machine Learning (ML) and Deep Learning (DL) techniques, are 

increasingly being used in data-driven models to quantify input-output functional 

relations for complex systems in hydrology [Hsu et al., 1995; Minns and Hall, 1996; 

Dawson and Wilby,1998; Dibike et al.,1999; Abrahart and See, 2000; Mjolsness and 

DeCoste, 2001; Govindaraju and Rao, 2001; Solomatine and Ostfeld, 2008; Roz, 2011; 

Remesan and Mathew, 2014; Bai et al. 2016; Karandish and Šimůnek, 2016; Fang et al., 

2017]. Several ML algorithms for modeling rainfall-runoff processes include Linear 

Regression (LR), K-Nearest Neighbor regression (kNN), Feed-forward Artificial Neural 

Networks (ANN), and Support Vector Machine (SVM) models [Loague and Freeze, 

1985; Karlasson and Yakowitz, 1987; ASCE, 2000ab; Lin et al., 2006; Nourani et al., 

2009]. The ANN technique consists of a neural network with a single hidden layer. In 

contrast, DL data-driven techniques like Deep Neural Networks (DNN) consist of 

multiple hidden layers to describe more complex, non-linear structures in data. DL has 
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been successfully applied in many commercial products that are already available to the 

public, such as computer vision and speech recognition, language translation, and self-

driving cars[Hinton et al., 2012; Lecun et al., 2015; Goodfellow et al., 2016]. In contrast 

to ML techniques, only a few studies have attempted to use DL techniques to model 

hydrological processes [Marçais and de Dreuzy, 2017; Fang et al., 2017].  However, no 

existing DL studies have related water flow and contaminant transport in runoff to 

environmental variables.                                                                   

In contrast to PBMs, existing data-driven models do not explicitly account for the 

underlying physics of hydrological processes. The performance and accuracy of data-

driven model algorithms therefore vary depending on the training data set, which are 

frequently restricted to a small range of site specific conditions. To overcome these 

limitations, we synthetically generated an extensive database using a PBM that uses 

standard descriptions of overland flow and transport processes that have been extensively 

verified to properly represent real field processes [Ahuja et al., 1982; Sharda et al., 1994; 

Wallach et al., 2001; Goodrich et al., 2002]. This numerically generated database 

contains information about the impact of a wide range of physical factors on surface 

runoff quantity and quality in agricultural fields. This database was then used in 

conjunction with ML and DL techniques to develop correlation relationships between 

model inputs and outputs from a PBM.   

 The overall objective of this research was to develop data-driven models to 

predict contaminant loads in runoff water from agricultural fields. Inputs for these models 

included information about the agricultural field (slope, length, and area), the soils (type, 
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roughness, initial water content, and initial contaminant concentration), and precipitation 

events (rainfall intensity and duration).  Outputs from these models included the 

cumulative water volume and the contaminant mass in runoff water. BMPs to minimize 

pollution loads can be developed by exploring the relationship between model input and 

output parameters. Multiple data-driven models were tested on their ability to relate 

model inputs with outputs. 

3.2 Database Preparation 

3.2.1 Physically-Based Model 

The one-dimensional diffusion-wave and advection-dispersion equations, which 

are commonly used for describing overland flow and solute transport, respectively, have 

recently been implemented into the popular HYDRUS-1D code [Liang et al., 2017]. This 

code has previously been used to numerically solve the Richards equation, which 

simulates water flow, and convection-dispersion equation, which simulates contaminant 

transport in the subsurface [Šimůnek et al., 2016]. Recent studies indicated that the 

governing overland flow equation can be written in a similar mathematical formulation as 

the Richards equation [Hromadka and Lai, 1985; Panday and Huyakorn, 2004; Weill et 

al., 2009; Liang et al., 2017] so that existing numerical schemes of HYDRUS-1D can be 

used to solve the following 1D-diffusion wave equation:  
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                                 [1] 

where x is a space coordinate in direction of flow [L; where L denotes units of length], t 
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is time [T; where T denotes units of time], h is the surface water depth [L], R is rainfall or 

the irrigation rate [LT-1], and I is the infiltration rate [LT-1], S is the mean local slope [-], 

and k is a unit conversion factor [L1/3T-1]. The parameter nman is a Manning’s roughness 

coefficient for overland flow, and it is dimensionless when k=1 m1/3s-1 or has units of TL-

1/3 when k is not equal to unity.     

In this work, the infiltration rate I is described using the Green-Ampt infiltration 

model [Green and Ampt,1911]. This model is a simplified physically-based approach that 

is based on fundamental physics to describe the infiltration process as a function of the 

soil suction head, water content, and soil hydraulic conductivity: 

                                        1I K
F

  
= + 

 
                                                      [2] 

where ψ is the wetting front soil suction head [L],   is the water content difference [-], 

K is the saturated hydraulic conductivity [LT-1], and F is the cumulative depth of 

infiltration [L]. The value of  is defined by using the following equations: 

                                   (1 )e es  = −                                                      [3] 

( )i e
e

e

n
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 



− −
=                                                    [4] 

           e rn = −                                                        [5]                                                      

where se is the effective saturation [-], θe is the effective water content [L3L-3], n is the 

porosity [L3L-3], θi is the initial water content [L3L-3], and θr is the residual water content 

[L3L-3].  

Solute transport in overland flow is usually described using the advection-

dispersion equation (ADE) of the form: 
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where c is the solute concentration in the aqueous phase [ML-3; where M denotes units of 

mass], cr is the concentration in rainfall water [ML-3], s is the sorbed solute concentration 

at the soil surface area [ML-2], D is the effective dispersion coefficient accounting for 

both molecular diffusion and hydrodynamic dispersion [L2T-1],  is a sink/source term 

that accounts for various zero- and first-order or other reactions [ML-3T-1], and Q is the 

runoff flow rate [L2T-1]. The parameter Q is given as:   

                                  
( )5/3

man

h zkh
Q hU

xn S

 +
= = −


                                            [7] 

where U is a depth-averaged velocity [LT-1] calculated using the Manning-Strickler 

uniform flow formula [Hromadka and Lai, 1985]. The effect of diffusion on the 

dispersion coefficient can often be ignored and in such case D can be defined as the 

product of the dispersivity (, [L]) and U. Kinetic sorption/desorption between the solid 

and aqueous phases can be described using the following equation: 

                        ( )D

s
K c s

t



= −


             [8] 

where KD is the linear equilibrium partition coefficient [L] and ω is the first-order 

desorption rate coefficient [T-1].  The product of KD and ω is proportional to the sorption 

rate coefficient.  Details about the numerical solutions of flow and transport models are 

provided in the HYDRUS-1D manual [Šimůnek et al., 2008]. 
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3.2.2 Numerical Simulations 

A large number of numerical simulations was carried out to develop a database 

containing information about the impact of various relevant factors on surface runoff 

quantity and quality. In agricultural settings, land surface contaminants can be easily 

picked up and transported by surface runoff or can seep into the soil by infiltration. 

Therefore, simulation scenarios considered in this work mainly focused on the transport 

of various contaminants in overland flow over different soil and land surfaces under 

different rainfall rates.  

At first, numerous water flow simulations were run with various input parameters 

shown in Table 3.1.  In order to build a realistic training database, a wide range of input 

parameter values was selected. In these simulations, precipitation was distributed 

uniformly over the land surface and lasted one hour. Historical records of precipitation 

frequency for the San Jacinto, CA watershed (http://hdsc.nws.noaa.gov/hdsc/pfds) were 

employed to generate precipitation-frequency estimates that were employed in 

simulations. Seven different percent probabilities of exceedance were selected: 1%, 2%, 

4%, 10%, 20%, 50%, and 100%. Various agricultural field conditions were obtained by 

assigning different values of the Manning’s roughness coefficient, slope, and length. As a 

result, 150 different field conditions (6 Manning’s roughness coefficients × 5 Slopes × 5 

Lengths) were considered. Additionally, four different initial water contents were 

considered: max ( ,0.1)r , 0.2, 0.3, and the saturated water content, for each soil type. 

Selected Green-Ampt infiltration parameters (soil porosity, residual water content, 

suction head, and hydraulic conductivity) were taken from Rawls et al. [1983] (Table 

http://hdsc.nws.noaa.gov/hdsc/pfds
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3.2). In all water flow simulations, cumulative water volumes at the bottom outlet at 25 

evenly spaced times were outputs. The resulting water flow database thus contained 

2,310,000 entries (22 soils × 7 rainfall rates × 150 field conditions × 4 initial water 

contents × 25 print times).  

Solute transport simulations were subsequently conducted for the previously 

described water flow simulations. In these simulations, it was assumed that a unit 

concentration (ci = 1 g/cm2) of solute was initially distributed along the soil profile. Since 

the solute transport equation is a linear equation, the results obtained for a unit initial 

solute concentrations can be simply multiplied by other initial concentrations to get 

corresponding results. Runoff water generated by rainfall events "washed-off" solutes 

from the land surface and transported them to the bottom outlet of the field. The "wash-

off" process was described using different sorption and desorption rates. The exchange of 

solute concentrations between solid and liquid phases is controlled by the overland water 

flow rate and kinetic sorption/desorption parameters (ω and KD) in Eq. [8]. The kinetic 

sorption model approaches equilibrium conditions when ω is large, whereas non-

equilibrium conditions prevail and slow solute release occurs when ω is small. In this 

study, the solute transport database considered transport processes and solute desorption 

for near-equilibrium conditions (ω = 8640 day-1) in order to mitigate the complexity of 

transport processes. Hence, two additional input parameters, variable KD shown in Table 

3.1 and constant ω = 8640 day-1, were accounted for in these simulations. Solute 

transport simulations generated the output that included the cumulative solute mass at the 

bottom outlet at 25 evenly spaced times. The inclusion of two additional parameters to 
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describe solute wash-off (KD and ω) resulted in a database that was 5 times bigger than 

the water flow database. Furthermore, the variance in the solute transport database was 

higher than the water flow database. 

Table 3.1. Input parameters used in the numerical simulations. 

Input Values 

Rainfall intensity (cm day-1) 21.6, 28.8, 40.8, 52.8, 69.6, 86.4, 105.6 

Manning’s roughness coefficient 0.01, 0.02, 0.04, 0.07, 0.15, 0.24 

Slope (-) 0.01, 0.02, 0.04, 0.08, 0.16 

Length (m) 30, 60, 120, 240, 480 

KD (cm) 0.1, 0.5, 1, 1.5, 2 

Initial water content, i r, 0.2, 0.3, s 
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Table 3.2. Green-Ampt infiltration parameters for various soil classes. 

Texture θs θr θe ψ (cm) K (cm s-1) 

Sand 0.437 0.020 0.417 4.950 3.272E-03 

Loamy Sand 0.437 0.036 0.401 6.130 8.306E-04 

Sandy Loam 0.453 0.041 0.412 11.010 3.028E-04 

Loam 0.463 0.029 0.434 8.890 9.444E-05 

Silt Loam 0.501 0.015 0.486 16.680 1.806E-04 

Sandy Clay Loam 0.398 0.068 0.330 21.850 4.167E-05 

Clay Loam 0.464 0.155 0.309 20.880 2.778E-05 

Silty Clay Loam 0.471 0.039 0.432 27.300 2.778E-05 

Sandy Clay 0.430 0.109 0.321 23.900 1.667E-05 

Silty Clay 0.470 0.047 0.423 29.220 1.389E-05 

Clay 0.475 0.090 0.385 31.630 8.333E-06 

Tilled Sand* 0.524 0.024 0.500 5.940 3.927E-03 

Tiled Loamy Sand* 0.524 0.043 0.481 7.356 9.967E-04 

Tilled Sandy Loam* 0.544 0.049 0.494 13.212 3.633E-04 

Tilled Loam* 0.556 0.035 0.521 10.668 1.133E-04 

Tilled Silt Loam* 0.601 0.018 0.583 20.016 2.167E-04 

Tilled Sandy Clay 

Loam* 

0.478 0.082 0.396 26.220 
5.000E-05 

Tilled Clay Loam* 0.557 0.186 0.371 25.056 3.333E-05 

Tilled Silty Clay 

Loam* 

0.565 0.047 0.518 32.760 3.333E-05 

Tilled Sandy Clay* 0.516 0.131 0.385 28.680 2.000E-05 

Tilled Silty Clay* 0.564 0.056 0.508 35.064 1.667E-05 

Tilled Clay* 0.570 0.108 0.462 37.956 1.000E-05 
* Tillage management, multiply the values for the textural class by 1.2 (20% increase) 

 

3.3 Data-driven Models 

In this section, we briefly describe the data-driven models used in this paper. 

They are divided into two broad classes, linear and non-linear models. The selected linear 

data-driven models include Linear Regression (LR) and Linear Support Vector Machine 

(SVM-L). Non-linear models include K-Nearest Neighbor Regression (kNN), Support 

Vector Machines with non-linear kernel (SVM-NL), and Deep Neural Networks (DNN) 

with different numbers of hidden layers. We used the previously generated synthetic 
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databases from the PBM to train the selected data-driven models to predict surface runoff 

water quantity and quality. All these models were implemented using the open-source 

Scikit-learn and Keras Libraries in Python 3.5 [Pedregosa et al., 2011; Chollet, 2015].  

3.3.1 Linear Regression 

LR is the simplest ML model, which is often treated as the baseline method. It 

applies linear mapping to minimize the sum of least square errors between input data 

(either experimental or (PBM) model-derived) and output data (of the regression model). 

Suppose we have a set of training dataset ( ),i ijy x , where i =1, 2, 3…n and j =1, 2, 3…k. 

In here, i is the index for training samples in the dataset, j is the index for the input 

parameters. A general linear regression problem can be developed by assuming that 

output variables yi are influenced by input parameters xij as:  

             0

1

k

i j ij i

j

y x e 
=

= + +                                                  [9] 

where βj are regression coefficients, β0 is intercept, and ei represent a deviation between 

actual and predicted values. The ordinary least squares procedure seeks to minimize the 

total sum of the residuals. However, since this approach treats data as a matrix, the 

process will be very computational intensive when we have large data sets. Therefore, 

gradient-based optimization approaches, which optimize the values of the coefficients by 

iteratively minimizing the sum of the squared errors for each pair of input and output 

values are used here [Ticlavilca et al., 2011].  
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3.3.2 Support Vector Machine 

The SVM is another widely used model for both classification and regression 

tasks. The SVM model was originally developed for classification problems to find a 

hyperplane, which can separate a data set into one class from those of another class 

[Vapnik, 2013; Vapnik & Vapnik, 1998]. The SVM models have been successfully 

extended to solve regression problems by the introduction of the so-called ε-insensitive 

loss function. This loss function is used to penalize errors that are greater than the 

threshold ε (an insensitivity zone). A version of the SVM for regression problems is 

called support vector regression (SVR) and it depends on a subset of the training data. 

The ε-SVR aims to find the flattest regression function f(xij) that has at most a deviation ε 

from actual yi for all training points xij:  

1

( )
k

ij j ij i

j

f x w x b
=

= +                                               [10] 

where wj are weights and bi is the bias term that should be estimated from the training 

data. One great benefit of using ε-SVR is the use of kernels, which inherently map the 

data into a non-linear space depending on the chosen kernel function. Therefore, the 

above regression can be formulated as [Van Looy et al., 2017]: 

                              
1

( ) ( )
k

ij j ij i

j

f x w x b
=

=  +                                            [11]                  

where ( )ijx denotes nonlinear transformation (kernel functions). Several non-linear 

kernel functions are available, such as polynomial, radial basis, and sigmoid functions. In 

this study, we tested both SVR with linear (SVM-L) and non-linear (SVM-NL) sigmoid 



86 
 

kernel functions. 

The optimization of ε-SVR is more complicated than the LR model because there 

is a linear constraint. In this case, the penalty factor C and the slack variables 
i and *

i

are introduced to cope with infeasible constraints [Vapnik, 2013]. Hence, wj and bj are 

estimated by minimizing the following objective function: 
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1
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+ +                                            [12]    
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where 
2 2

1

k

j

j

w w
=

=  . The penalty factor C determines the trade-off between the flatness 

of the function f(xij) and the amount up to which deviations larger than ε are tolerated. 

The slack variables *andi i   determine the degree to which data points will be penalized 

if the error is larger than ε.  

3.3.3 K-Nearest Neighbor Regression 

K-Nearest Neighbor (kNN) regression is another machine learning method for 

regression problems. The kNN is a non-parametric regression type of analysis. 

Predictions are made by computing the distance between all the data points in the 

database and searching for the number of neighbors (Knn) which are most similar to a 

new instance. Once the nearest-neighbor list is obtained, the prediction of output y is 
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achieved by assigning weights to the contributions of the neighbors, so that the nearer 

neighbors contribute more to the average than the more distant ones. For example, the 

Euclidean distance d between lth training sample xlj and ith test sample xij is defined as 

[Friedman et al., 2013]: 

                               
2

,

1

( ) ( )
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ij lj ij lj

j

d x x x x
=

= −                                            [14] 

The weight wd can be defined by a selected Knn value and a distance between lth and ith 

samples: 
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Thus, the output yi can be predicted by  

1

( , )
nnK

i d ij lj l

l

y w x x y
=

=                                           [16] 

3.3.4 Deep Feed-Forward Network 

Neural networks (NN) are the most popular ML models used nowadays. The 

classical feed-forward network is a neural network that has been widely used in the 

hydrologic and water quality problems [ASCE, 2000ab; Maier and Dandy, 2000; 

Sharma et al., 2003; Khalil et al., 2011]. The fundamental components of these 

algorithms include the input layer, intermediate layers, output layers, and neurons. 

Adjustable parameters characterize the neurons that are connected to the input and 

transmit the information from one neuron to another in one direction: from an input 
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layer, through one or more hidden layers, to an output layer. Figure 1 illustrates the 

adjustable parameters for an individual neuron. In a network, the input variables xij are 

weighted and summed up to produce the hidden neurons Sp (p =1, 2, …P): 

                                               
1

k

p jp ij

j

S w x
=

=                                                       [17] 

where p is the number of hidden neurons. A neuron computes an output, based on the 

weighted sum of all its inputs (Sp), according to an activation function (f(Sp)). Finally, an 

activation function which is applied to Sp provides the final output from this logistic 

sigmoid [Dawson and Wilby, 1998] (see Fig. 3.1). The sigmoid activation function is 

given as: 

                               
1

( )
1 p

p S
f S

e
−

=
+

                                       [18] 

 

 

 

 



89 
 

Figure 3.1. Activation of a single neuron. 

 

The so-called Deep Neural Networks (DNN) model is a direct extension of the 

feed-forward network that contains multiple hidden layers that are stacked as shown in 

Figure 3. 2 [Schmidhuber, 2015]. The DNN model becomes “deeper” as the number of 

hidden layers increases. Deeper DNN models allow for simulating more complicated, 

non-linear mapping functions between input and output data. However, DNN models 

often suffer from overfitting when using too many hidden layers. This problem can be 

mitigated by dropping layers. It should be noted that the DNN model with one hidden 

layer is equivalent to the traditional ANN model. We have tested the DNN model with 

one, two, and three hidden layers to determine the optimum number of hidden layers 

and to minimize overfitting. 

 

Figure 3.2. A feed-forward (non-deep) neural network (left) and a deep feed-

forward neural network (right). 
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3.4 Model Training and Evaluation 

The runoff water database generated using the PBM was divided into training 

(about 80% of the entire database) and validation (about 20% of the entire database) 

data sets for the data-driven models. Variable input parameters and output values were 

used to train the data-driven models by randomly selected 18 out of 22 soil types. After 

the training was completed, data-driven models were tested on the remaining 4 soil 

types over many different scenarios. The accuracy and predictive capability were first 

assessed by making scatter plots of cumulative runoff water volumes (Qc) for data-

driven models and the PBM. The calculated R2 and the best-fitted regression line were 

shown in these scatter plots to quantify the goodness of the data-driven model 

prediction.     

 In addition, two examples were chosen to show the accuracy between observed 

and predicted cumulative runoff hydrographs between the PBM and data-driven models, 

respectively, over a range of initial water contents and soil types. The first example 

considered four different initial water contents and the following conditions: the rainfall 

rate of 69.6 cm/day for 1 hr, the surface length of 240 m, a Silt Loam soil, the Manning 

roughness coefficient of 0.24 (dense grass), and a steep slope of 16%. The total 

simulation time was 1 hr and 10 minutes so that the water recession process could be 

fully captured in these simulations. The second example considered surface runoff from 

Silt Loam, Clay, tilled Silt Clay, and tilled Clay soils under the following conditions: an 

initially saturated soil, the rainfall rate of 105.4 cm/day for 1 hr, a surface length of 48 

m, a slope of 16%, and the Manning roughness coefficient of 0.24.  
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Statistical measures were used to quantify the ability of various ML and DL 

models to predict an output from the PBMs. Calculated statistical parameters included 

the root mean square error (RMSE), the mean absolute error (MAE), the mean bias error 

(MBE), the model efficiency (EF), and the Relative Error 
i . These statistical 

parameters were determined as:  
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where Pi and Oi are the output values predicted by data-driven models and observed data 

obtained from the PBM, respectively, iO  is the average of observed data, and n is the 

number of observations.  It should be noted that data with zero values of surface runoff 

were removed from this analysis for the purpose of model inter-comparison.  

A database for solute wash-off with runoff water (e.g., the cumulative solute 

mass at the outlet) was developed using the PBM that encompassed a wide range in 
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rainfall rates, soil physical properties, initial water contents, slopes, field size, Manning 

roughness coefficients, and kinetic sorption/desorption parameters. As we mentioned 

before, the solute transport database in this study considered transport processes and 

solute desorption for near-equilibrium conditions with a constant desorption rate 

coefficient (ω = 8640 day-1) and different KD. The solute transport databases had a 

similar structure as the water flow database, but was 5 times bigger in size.   

 The contaminant transport is highly related to water flow. The data-driven model 

with the best performance in predicting the runoff water volume was therefore selected 

for training on the solute transport databases. Data-driven models were trained against 

about 80% of these solute transport databases using Qc, KD, and other input parameters 

associated with the water flow database. The remaining 20% of the solute transport 

databases were employed for validation. Two simulation examples were chosen to 

further investigate the predictive ability of the trained data-driven models. These 

simulation scenarios considered the same input variables as for the water flow model 

(e.g., differences in initial water contents or soil texture) with KD=2 cm and ω=8640 

day-1.  

3.5 Results and Discussion 

3.5.1 Surface Runoff Quantity 

3.5.1.1 Linear Regression  

A scatter plot of estimated Qc using the LR model versus observed Qc for the 

PBM validation data set are shown in Figure 3.3a. We can see that R2 is equal to 0.483, 
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which indicates that the LR model failed to accurately describe the PBM data. The LR 

algorithm usually works well with high-bias and low variance data. However, the PBM 

describes real-world scenarios with complex, non-linear relationships between input and 

output variables that generate high variance data sets.  

 The observed (PBM) runoff water volume in Figure 3.3b decreased and was 

increasingly delayed when the initial soil water content was lower. The observed (PBM) 

simulations in Figure 3.3c demonstrate that the Clay and tilled Clay textured soils 

produced the most runoff water because of their lower saturated hydraulic conductivity 

and infiltration. After rainfall stops, the cumulative runoff water flux continues to 

increase because water flows slowly over the rough surface before reaching the bottom 

boundary. The LR model failed to accurately describe runoff water dynamic for these 

two selected examples, especially when the initial water content was higher (Fig. 3.3b) 

and the hydraulic conductivity was lower (Fig. 3.3c). In particular, the LR model tended 

to overestimate Qc for early times and underestimate Qc for later times.   

 

 

Figure 3.3. Comparison of cumulative water fluxes (Qc) calculated by the PBM and the 

Linear Regression (LR) model (a - overall, b - different initial water contents, c - 

different textures). 
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3.5.1.2 Support Vector Machine 

Similar to the LR model, the Support Vector Machine model with linear kernel 

functions (SVM-L) produced a linear input-output relationship. Two user-defined 

parameters for the SVM-L model were the penalty parameter C on the error term, which 

was set to 1, and the maximum number of iterations, which was 2,000 [Joachims, 2002]. 

Figure 3.4a indicates that this SVM-L model had an even lower R2 (R2=0.386) than the 

LR model (R2=0.483). Similarly, simulation examples shown in Figure 3.4b (different 

initial water contents) and 3.4c (different textures) indicate that the SVM-L model 

completely failed to capture the large values of Qc at later times. Linear models (LR and 

SVM-L) are therefore not well suited to describe complex non-linear runoff problems.  

 

 

Figure 3.4. Comparison of cumulative water fluxes (Qc) calculated by the PBM and the Linear 

Support Vector Machine (SVM-L) model (a - overall, b - different initial water contents, c - 

different textures). 

 

Many researchers have indicated that the SVM model with non-linear kernels (SVM-

NL) can successfully describe surface/subsurface hydrology problems [Dibike et al., 
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2001; Bray and Han, 2004; Yu et al., 2006; Karandish and Šimůnek, 2016]. However, 

previous SVM-NL applications have considered only a relatively small training and 

validation dataset. Training the SVM-NL model takes a tremendous amount of 

computational time because of the complexity of this model. For example, we estimated 

that training the SVM-NL model to our complete runoff water database would take 

somewhere between a few days and a month. Consequently, only about 20% of the 

original runoff water training data set were randomly selected to train the SVM-NL 

model. The trained model was then used for testing against the validation data set with 

C=1 and ε=0.2. Figure 3.5a shows the scatter plot of estimated Qc using the SVM-NL 

model versus observed Qc from the validation set. The R2 (R2=0.931) for the SVM-NL 

model was much higher than for the LR and SVM-L models. The SVM-NL model also 

provided a much-improved description of the PBM results for the two examples shown in 

Figures 3.5b and 3.5c. However, there were still considerable deviations between the 

SVM-NL model and the PBM, especially for larger print times, higher initial water 

contents (Fig. 3.5b), and for the Silt Loam soil (Fig. 3.5c).  
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Figure 3.5. Comparison of cumulative water fluxes (Qc) calculated by the PBM and the 

Non-Linear Support Vector Machine (SVM-NL) model (a - overall, b - different initial 

water contents, c - different textures). 

 

3.5.1.3 K-Nearest Neighbor Regression 

The kNN models with different numbers of neighbors (the K value) were tested 

while all points in each neighborhood were weighted equally. We observed that the 

optimal K value is equal to 5. The results of calculations with the kNN model are 

summarized in Figure 3.6. The R2 (R2=0.959) for the kNN-5 model was slightly higher 

than that for the SVM-NL model (R2=0.9305). However, there were more predicted 

outliers when the observed Qc was relatively small. Although the overall runoff trends 

were correctly captured in Figure 3.6b, the kNN-5 model underestimated the cumulative 

water flux at every print time and incorrectly predicted that Qc stopped increasing when 

rainfall ended. Furthermore, this deviation tended to increase for smaller initial water 

contents. However, Figure 3.6c shows that the kNN-5 model did a much better job of 
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predicting large values of Qc than the SVM-NL model.   

  

Figure 3.6. Comparison of cumulative water fluxes (Qc) calculated by the PBM and the 

k-Nearest Neighbor Regression (kNN-5) model (a - overall, b - different initial water 

contents, c - different textures). 

 

3.5.1.4 Deep Feed-Forward Neural Network 

The DNN models with one, two, and three hidden layers were tested to 

determine the optimum number of hidden layers and to minimize overfitting. In this 

study, the optimal number of neurons in each hidden layer was determined by trial and 

error. We tested possible numbers of neuron from 3 to 20 to see if the model 

performance was improved. The R2 and the Root Mean Squared Error (RMSE) were not 

improved when neuron numbers were increased beyond 16. Therefore, the number of 

neurons in each hidden layer was set to 16.  

Figure 3.7a shows the scatter plot of estimated Qc using DNN models with three 

different layers versus observed Qc for the PBM validation data set. Values of R2 were 

equal to 0.975, 0.981, and 0.976 for the DNN-1, DNN-2, and DNN-3 models, 

respectively. The DNN models provided fairly accurately runoff and obtained higher R2 
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values than the other ML models. However, the top and bottom rows of Figure 3.7 

indicate that the DNN-1 and DNN-3 models tended to underestimate and overestimate 

observed values of Qc, respectively, whereas the DNN-2 model provided the best 

prediction. This result suggests that a one hidden layer model is not “deep” enough, 

whereas a three-layer model probably is too complicated and results in overfitting. A 

more quantitative comparison of various ML models is given below.    

 
Figure 3.7. Comparison of cumulative water fluxes (Qc) calculated by the PBM and the 

Deep Feed-Forward Neural Network (DNN-1 (top row), DNN-2 (middle row), and 

DNN-3 (bottom row)) models (a - overall, b - different initial water contents, c - different 

textures). 
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3.5.1.5 Comparison of Data-driven models 

 Figure 8 presents a box plot of the relative error distribution for various data-

driven models, as well as other statistical parameters for their agreement with the PBM. 

The LR and SVM-L models show the big error distributions, which indicates that these 

models were not well suited to predict runoff. The SVM-NL model performed much 

better than the SVM-L and LR models, but not as well as kNN-5 and DNN models. It is 

possible that the performance of the SVM-NL model could be further improved if the 

training data size was increased, but this would also dramatically increase the 

computational time. The boxplot of relative errors for the kNN-5 model was narrow, but 

it included a lot of outliers which indicated that the model performance may be different 

under other conditions. According to Figures 3.7a and 3.8, outliers of the relative error 

for DNN-1 appeared when Qc was over 100 L, whereas the DNN-3 model slightly 

underestimated large Qc values. The DNN-2 model shows the narrowest box plot of 

relative errors and the best performance statistics for the considered ML models. This 

indicates that the DNN-2 model provided the best prediction of runoff water volumes.   
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Figure 3.8. Statistical parameters associated with the trained data-driven models of 

runoff quantity and quality. The root mean square error (RMSE), mean bias error (MBE), 

mean absolute error (MAE), model efficiency (EF), and a box plot of the relative error 

distribution for data-driven models are given. The units of RMSE, MBE, and MAE of the 

runoff quantity and quality are L and g, respectively. The upper and lower boundaries of 

the boxes show the 75th and 25th percentile, the whiskers of the box plot show the 

maximum and minimum values, and the red line within the box is the median value. Blue 

dot symbols indicated the outliers. 

 

3.5.2 Surface Runoff Quality 

             We discovered that the DNN-2 model structure with fine adjusted model 

parameters performs best among all selected data-driven models for predicting the 
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runoff water volume. We therefore trained the DNN-2 model with the near equilibrium 

solute transport database. The DNN-2 model for water flow could be directly adjusted to 

produce a data-driven model that relates physical factors and the cumulative solute 

mass.  

Figure 9a presents a scatter plot of the cumulative solute mass predicted by the 

DNN-2 model and observed by the PBM under near equilibrium conditions. The 

constructed DNN-2 relationship between input and output variables for near equilibrium 

conditions was very accurate. The goodness of the DNN-2 predictions for solute 

transport near equilibrium conditions is reflected by the statistical parameters (RMSE= 

4.77 g, MAE=1.57 g, MBE=0.18 g, and EF=0.96 g) in Figure 8, the value R2 =0.992 in 

Figure 3.9a, and the agreement between observed (PBM) and predicted results for the 

example simulations for various water contents (Fig. 3.9b) and soil types (Fig. 3.9c).   
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Figure 3.9. Comparison of the cumulative solute mass calculated by the PBM and the 

DNN-2 model for the near equilibrium training dataset (a - overall, b - different initial 

water contents, c - different textures).   

3.6 Conclusion and Outlook 

This study tested the ability of data-driven models to mimic PBMs to predict 

surface runoff water quantity and quality in agricultural settings. A physically-based 

overland flow and transport model was used to develop a large database containing 

information about the impact of various factors on surface runoff quantity and quality. In 

order to build a realistic training database, a wide range of input parameter values was 

selected. The input factors included: a) rainfall intensities (for seven different percent 

probabilities of exceedance of 1%, 2%, 4%, 10%, 20%, 50%, and 100% for the San 

Jacinto Watershed, Southern California), b) Manning's roughness coefficients (reflecting 

management practices; 6 values), c) field slopes (5 values), d) field lengths (5 values), e) 

soil properties (affecting infiltration; 11 soil types with and without tillage), e) initial 

water contents (4 values), and f) solute sorption parameters (5 conditions). The resulting 

water flow database thus contained 2,310,000 entries, whereas the solute transport 

database was 5 times larger. 

Multiple data-driven models were tested on their ability to relate/correlate model 
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inputs with outputs. The following data-driven models were used in the analysis: Linear 

Regression (LR), k-Nearest Neighbor regression (kNN), Support Vector Machine with 

linear (SVM-L) and non-linear (SVM-NL) kernels, and Deep Neural Networks (DNN) 

(Neural Networks with multiple hidden layers). The LR and SWM-L models failed to 

accurately describe runoff water dynamics, having the regression coefficient (R2) less 

than 0.5. In particular, both linear models tended to overestimate the runoff water volume 

for early times and underestimate it for later times. Both SVM-NL and kNN models 

performed much better than linear models, having R2 of 0.93 and 0.96, respectively. 

However, there were still considerable deviations between the SVM-NL and kNN models 

and PBM predictions, especially for larger times, higher initial water contents, and for 

some textures (such as Silt Loam). Finally, the DNN models with one, two, and three 

hidden layers (DNN-1, DNN-2, and DNN-3) were tested to determine the optimum 

number of hidden layers and to minimize overfitting of output variables. The best 

performance was obtained by the DNN model with two hidden layers (DNN-2) 

(R2=0.98). The DNN-1 and DNN-3 models tended to underestimate, and overestimate 

observed values of runoff water volumes, respectively.  

In conclusion, DNN techniques exhibited a better capability to reproduce the 

results of the PBM compare with traditional ML techniques. In particular, results indicate 

that the simple linear models are not well suited to develop correlations for runoff from 

agricultural lands because runoff is a complex non-linear hydrological process. Although 

non-linear models like kNN and SVM-NL can fairly accurately capture the surface water 

flow dynamic, the DNN models are more promising for dealing with complex hydrologic 
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problems. Applications of the DNN models inherit benefits of traditional ANNs, but 

additional hidden layers provide a possibility to further improve the model performance. 

Similarly, the trained DNN-2 model provided an excellent prediction of near equilibrium 

solute transport.  

It should be noted that the training databases from the PBM could also be 

augmented to include real monitoring data and/or more complex model formulations 

(e.g., multidimensional simulations, stochastic simulations, other reactive transport 

processes, and physical non-equilibrium flow and transport). This approach would 

preserve the benefits of data-driven models over PBMs (e.g., faster execution times and 

ability to incorporate real data), while constraining data-driven models to the underlying 

physics of hydrological processes.  
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ABSTRACT 

The popular HYDRUS-1D code was modified to simulate erosion, sediment transport, 

and deposition over the land surface. The resulting numerical model has an excellent 

agreement with the KINEROS model, which confirms that the numerical solution was 

correctly implemented. Interrill erosion has been assumed to be an equilibrium transport 

process in many publicly available models. Conversely, sediment transport in interrill 

flow exhibits characteristics of non-equilibrium transport because of irregularity of 

hillslope surfaces, soil heterogeneity, and instability of flow. In this study, we propose a 

series of process-based models to simulate sediment transport during uniform and non-

uniform flow. Numerical experiments were conducted to demonstrate the model’s 

applicability and to provide insight erosion processes during sheet-flow derivations. The 

newly developed erosion models provide a comprehensive set of tools to numerically 

investigate many important research problems involving sediment erosion, transport, and 

deposition processes. 
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4.1. Introduction 

Soil erosion is recognized as one of the major environmental threats to sustainable 

agriculture because the erosion process removes organic matter and nutrients from 

agricultural fields, which results in a reduction of cultivable soil and a decline in soil 

fertility. In addition, soil erosion produces sediment downstream, which reduces the 

capacity of rivers or streams and increases pollution levels of nitrogen and phosphorus, 

which are often adsorbed to sediments [Morgan, 2009]. Agricultural activities increase 

the vulnerability of soil to erosion because the removal of the vegetation cover and 

repeated preparations by tillage leave the soil exposed to energy from raindrops or wind. 

An estimated 10 million ha of cropland are annually abandoned worldwide due to the 

lack of productivity caused by erosion [Feath, 1994]. Therefore, knowledge of what 

happens during individual rainstorms on agricultural land is required to effectively 

manage soil erosion.  

Soil erosion is closely related to rainfall and runoff and is comprised of three 

major components: erosion due to raindrop splash, interrill erosion by sheet flow, and rill 

erosion by concentrated flow in rills [Liu et al., 2006]. On well-maintained agricultural 

land, sheet erosion has been reported to be the predominant source of both soil loss and 

fluvial sediments [American Society of Civil Engineers, 1970]. Sheet erosion caused by 

sheet flow removes soil uniformly in thin layers by forces from raindrops and overland 

flow whereas rill erosion caused by runoff water forms small channels as it concentrates 

down a slope. Quantitative assessment of sheet erosion is more difficult than rill erosion 

because sheet erosion is less visible than rill erosion, which is more easily identified on 
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agricultural fields. In addition, sheet erosion processes are rarely uniform due to spatial 

variabilities of local soil topography, vegetation, and soil heterogeneity.  

Point measurements of erosion are labor-intensive and expensive, and often not 

reliable because they are affected by a wide spatial and temporal variability of 

influencing factors. Consequently, mathematical models are commonly used to predict 

spatial and temporal variations in erosion and to improve erosion management. Many 

different models and relations have been proposed during the last few decades to describe 

and predict soil erosion and associated sediment yield [Williams and Berndt, 1977; 

Wischmeier and Smith, 1978; Knisel, 1980; Singh et al., 1982; Abbott et al., 1986; Storm 

et al., 1987; Renard et al., 1994; Hanley et al., 1998; Nearing et al., 1999; Woodward, 

1999; De Jong et al., 1999; Johnson et al., 2000; Van Oost et al., 2000; Tucker et al., 

2001; Ziegler et al., 2001; Torri et al., 2002; Goodrich et al, 2002; Katlin et al., Borah et 

al., 2017; ]. Existing soil erosion models can be divided into two categories: empirical 

models and physically-based models. Empirical models, such as the universal soil loss 

equation [USLE model; Wischmeier and Smith, 1978] and the revised USLE [RUSLE; 

Renard et al., 1991] have been extensively used to predict the total mass of soil erosion at 

specific location. However, empirical models are not able to describe sediment 

deposition, pathways taken by eroded material, or the spatial variability of soil erosion. 

On the other hand, physically-based erosion models, which solve the sediment mass 

conservation equation, provide much more detailed information than the USLE or its 

derivatives. Physically-based erosion models such as the Chemicals, Runoff, and Erosion 

from Agricultural Management Systems (CREAMS) model [Knisel, 1980], the Areal 
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Nonpoint Source Watershed Environment Response Simulation (ANSWERS) model 

[Beasley et al., 1980], the Kinematic Runoff and Erosion (KINEROS) model [Woolhiser 

et al., 1990], the European Soil Erosion Model [EUROSEM; Morgan et al., 1998] and the 

Water Erosion Prediction Project (WEPP) model [Nearing et al., 1989], are widely used 

models nowadays.  

The WEPP, CREAMS, and EUROSEM models calculate rill and interrill 

processes separately whereas the KINEROS and ANSWERS models do not explicitly 

separate rill and interrill erosion. However, all these models considered overland flow 

and interrill erosion to be uniform processes. In reality, overland flow is rarely uniformly 

distributed over the land surface and so is soil erosion. An alternative modeling approach 

is needed to consider non-equilibrium, non-uniform soil erosion and sediment transport 

under conditions of deviations from sheet flow. Therefore, the overall objective of this 

study is to develop a series of physically-based soil erosion models capable of simulating 

not only interrill erosion during sheet flow but also interrill erosion during deviations 

from sheet flow. This chapter describes the development and applications of such models, 

which are different from existing physically-based models discussed above, and which 

are analogous to the non-equilibrium overland flow and solute transport models of Liang 

et al. [2017].  
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4.2 Numerical Models 

4.2.1 Sheet Erosion Model 

The HYDRUS-1D overland flow module [Liang et al., 2017] was extended to 

simulate soil erosion in overland flow. The surface water depth and runoff flow rates are 

obtained by solving the diffusive wave equation. The detailed development and 

numerical implementation of the overland flow module in the HYDRUS-1D software are 

described in Chapter 2. Sediment transport during uniform overland flow is described 

using the following equation:  

                                        e e e
e

hc c Qc
hD hc h

t x x x
 

    
= − − − 

    
                                 [1]                           

where x is a space coordinate in the direction of flow [L], t is time [T], h is the surface 

water depth [L], ce is the sediment concentration [ML-3], D is the effective dispersion 

coefficient accounting for both molecular diffusion and hydrodynamic dispersion [L2T-1], 

Q is the runoff flow rate [L2T-1], μ [T-1] is the first-order decay coefficient, and γ [ML-3T-

1] is a zero-order decay coefficient. The sediment carrying capacity approach [Miller et 

al., 2007; Goodrich et al., 2012; Kennedy et al., 2013] was implemented into HYDRUS-

1D to model erosion due to the raindrop impact and surface runoff, and sediment 

deposition. In this case, values of γ and μ in Eq. [1] were defined to be consistent with the 

sediment carrying capacity approach that is implemented in Kineros2 [Goodrich et al., 

2012]. In particular, the value of γ is given as: 

                                ( ) 2exps
f cohesion h mc f c h R C

hW


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where fcohesion [-] is the particle cohesion fraction, W [L] is the width of the field, cf [T] is 

the splash erosion coefficient, ch [L
-1] is the dampening coefficient, ρs [ML-3] is the 

specific density of the particle, and Cm [ML-3] is the maximum particle carrying capacity. 

The first-term on the right-hand side of Eq. [2] accounts for erosion due to the raindrop 

impact, whereas the second term is used to describe hydraulic erosion. Experimental 

work by Govers [1990] and others using shallow flows over soil have demonstrated that 

Cm was well described using the Engelund and Hansen [1967] relation:  

                                        
( )
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−
                                           [3]                                            

where g [LT-2] is the acceleration due to gravity, Us [LT-1] is the shear velocity (e.g., Us=

ghS ), dp [L] is the particle diameter, and γs [-] is the suspended specific gravity of the 

particles.   

The sediment carrying capacity approach considers that erosion from surface 

runoff occurs when Cm≥ce and particle deposition occurs when Cm<ce. The value of μ is 

theoretically equal to the particle settling velocity divided by the hydraulic depth, h. To 

account for this effect, the value of μ in Eq. [1] is equivalent to the runoff erosion rate 

coefficient, which takes on different values during runoff erosion and deposition as 

follows:   

                              s
cohesion

v
f

h
 =    (Cm≥ce)                                          [4a]  
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                         sv

h
 =   (Cm<ce)                                          [4b] 

where vs [L T-1] is the particle settling velocity. The value of vs is calculated from the 

particle size and density, assuming that particles have drag characteristics and terminal 

fall velocities similar to those of spheres [Fair and Geyer, 1954]. This relation is as 

follows: 

                                        
( )2

14
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g d
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in which CD [-] is the particle drag coefficient. The drag coefficient is a function of the 

particle Reynolds number Rn:  

24 3
0.34D

n n

C
R R

= + +                                    [6] 

which is defined as:  

s p

n

v d
R


=                                                       [7] 

where  is the kinematic viscosity of water [L2T-1]. The settling velocity of a particle is 

found by solving Eqs. [5]-[7] for vs. 
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4.2.2 Horizontal Mobile-Immobile (HMIM) Erosion Model 

Similar to the HMIM solute transport model [Liang et al., 2017], the HMIM 

erosion model assumes that the soil surface is horizontally divided, parallel to the 

direction of water flow, into regions with mobile and immobile water. Sediments in the 

immobile region may be stored, retained, and exchanged with the mobile domain.                       

         
, , ,
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where wm [-] is the ratio of the width of the mobile region to the total width of the soil 

surface, and the subscripts m and im denote parameters associated with the mobile and 

immobile regions, respectively. The parameter MIM

eE [ML-2T-1] represents the sediment 

transfer rate between mobile and immobile regions and is given as: 

*

, , , ,(1 ) ( ) ( )MIM

e e m m im e m e im e m m im eE w h c c h h c = − − + −                      [9] 

where ,e m  [T-1] is the sediment transfer coefficient, ,e m  [T-1] is the first-order mass 

transfer coefficient, and *

ec  is a concentration that is equal to ,e mc  for hm>him and ,e mc  for 

hm<him. It should be mentioned that Eqs. [8a] and [8b] are written in terms of the local-

scale mass balance in the mobile and immobile regions, respectively. To formulate them 

in terms of the total region, the mass balance equations for mobile and immobile regions 

need to be multiplied by wm and (1-wm), respectively.  
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2.3 Active-Passive Regions (APR) Erosion Model 

In analogy of the APR solute transport model [Liang et al., 2017], the APR 

erosion model assumes that the soil surface is divided, parallel to the direction of water 

flow, into hydraulically active (fast flow) and passive (slow flow) domains. This model 

allows sediment transport in both active and passive regions and exchange between these 

two regions. Soil erosion in each region is described using separate diffusion wave 

equations: 

            
1 ,1 ,1 1 ,1

1 1 1 1 ,1 1 1

APR
e e e e

e

A

h c c Q c E
h D h c h

t x x x w
 

   
= − − − − 

    
                        [10a] 

2 ,2 ,2 2 ,2

2 2 2 2 ,2 2 2
1

APR
e e e e

e

A

h c c Q c E
h D h c h

t x x x w
 

   
= − + − − 

    − 
                [10b] 

where APR

eE [ML-2L-1] is the sediment transfer rate between active and passive regions, wA 

[-] is the ratio of the width of the surface active region and the total surface width, and the 

subscripts 1 and 2 refer to hydrologically active and passive regions, respectively. Value 

of APR

eE is quantified in a similar manner to Eq. [9]: 

         
*

,12 2 ,1 ,2 ,12 1 2(1 ) ( ) ( )APR

e e A e e e eE w h c c h h c = − − + −                        [11] 

where ,12e [T-1] is the sediment transfer coefficient for transfer between active and 

passive regions, ,12e  [T-1] is the first-order mass transfer coefficient, and *

ec  is a 

concentration that is equal to ,1ec  for h1>h2 and ,2ec  for h1<h2. The average sediment flux 

is: 
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                                           [12] 

It should be mentioned that Eqs. [10a] and [10b] are written in terms of local-

scale mass balances in Regions 1 and 2. To formulate them in terms of the entire region, 

the mass balance equations for Regions1 and 2 need to be multiplied by wA and (1- wA), 

respectively.  

4.3 Numerical Examples 

Several numerical examples were conducted using the newly developed soil 

erosion models in order to show the models’ applicability. All simulation domains are 

considered to be 100 m long and 1 m wide, consisting of single size particle grains. The 

default erosion parameters used in all simulations (unless mentioned otherwise) are given 

in Table 4.1.   

Table 4.1. Default erosion parameters used in simulations. 

Input parameters Values 

Particle density, 
s  (kg/m3) 2.65×103 

Splash erosion coefficient, cf (s) 50 

Dampening coefficient, ch (m
-1) 656 

Temperature, T (°C) 33 

           Particle cohesion fraction, fcohesion [-] 1 

 

4.3.1 Sheet Erosion Model 

Figure 4.1 shows the comparison of simulation results obtained by the KINEROS 

and HYDRUS sheet erosion models for three different particle sizes with diameters of 

0.1, 0.05, and 0.01 mm, respectively. Two different rainfall rates (0.2 and 0.9 mm/s) were 
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applied to the land surface (brown dashed line) with the Manning’s coefficient of 0.04 

and the slope of 5%. The simulated results show that the sediment transport rate 

increased as the rainfall intensity increased because higher rainfall rates produce higher 

discharge, which in turn leads to the increased eroding capability. Smaller soil particles 

have higher erodibility and smaller settling velocities than larger soil particles which 

cause them to travel longer distances along the slope. There is generally an excellent 

agreement between the KINEROS and HYDRUS sheet erosion models. However, the 

HYDRUS erosion model predicted lower peak sediment concentration for the 0.01 mm 

soil particles compared with the KINEROS model. This deviation is likely due to 

differences in the governing equations and numerical solution of these models; e.g., the 

HYDRUS overland flow model solves the diffusion wave equation using the finite 

element method and considers the dispersive sediment flux, whereas the KINEROS 

model solves the kinematic wave equation using the finite difference approach and 

neglects the dispersive flux. As a result, flow shock fronts, as well as the corresponding 

sediment transport rates, may be slightly different.  
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Figure 4.1. Comparison of simulation results obtained by the KINEROS and HYDRUS 

erosion models. Different colors represent the sediments transport rates (kg/m/s) at the 

outlet for different soil particle sizes (PS) for the soil profile with the Manning’s 

coefficient of 0.04 and the slope of 5%. 

 

Another numerical example was conducted to show the effect of the slope gradient 

on soil erosion since the slope gradient is one of the most important factors affecting 

surface flow erosion. A uniform rainfall of 9.25×10-3 mm/s was applied for 1200 s on a 

land surface with a Manning’s roughness coefficient of 0.01 and soil particle size of 0.05 

mm. The slope in the top half of the profile was 1% and in the bottom half was 5%. The 

HYDRUS erosion model can provide temporal and spatial distributions of sediment 

concentrations. Figure 4.2 shows the sediment concentration fluxes in kg/m/s at different 

times along the land surface. Sediment concentration fluxes are always higher in the bottom 

half of the profile with the higher slope. The higher slope produces lower water depths, 

higher flow velocities, and lower settling velocities of soil particles, and as a result higher 

sediment concentrations.  
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Figure 4.2. Sediment concentration fluxes at different times for an example with uniform 

rainfall (9.25×10-3 mm/s) on the soil surface with two different slopes (1 and 5%), a 

particle size of 0.05 mm, and a Manning’s roughness coefficients of 0.01. 

 

To investigate differences between mechanisms of sediment transport and 

reactive solute transport, Fig. 4.3 shows the simulation results for the same flow 

conditions induced by inflow at the upslope inlet and involving either solute wash-off or 

sediment transport. Surface runoff is induced by a 1 cm constant head at the top of the 

slope for 360 s. The Manning’s coefficient of the land surface was 0.01, the slope was 

1%, and the total simulation time was 1200 s. The most sensitive parameters affecting 

solute and sediment concentrations are sorption/desorption rates and transport capacities 

of soil particles, respectively. Solute wash-off simulations were conducted using the 

HYDRUS overland flow one-site kinetic sorption model (eq. [3] in Chapter 2). A 

uniform unit initial soil solute concentration, the distribution coefficient KD of 1 m, and 

different kinetic sorption rates ω (s-1) were considered in the solute wash-off scenarios 

(Fig. 4.3a). A higher sorption/desorption rate produces a higher initial concentration pulse 
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because solute detaches faster from the land surface and is transported in surface runoff 

water rapidly during the inflow period. A lower kinetic sorption rate results in lower 

initial outflow solute concentrations during inflow. However, once inflow ceases, solute 

concentrations increase due to continued solute desorption from the land surface into a 

decreasing surface water layer.  

The soil erosion simulations (Fig. 4.3b) were conducted using different values of 

particle sizes (PS=0.01, 0.025, 0.05, and 1 mm). In these simulations, the transport of 

particles by runoff water is the main soil erosion factor since there is no impact of 

raindrops in the inflow simulations. We can observe increased sediment concentrations at 

the outlet during the inflow period and a gradual decrease in sediment concentrations 

(due to sedimentation) after inflow ceased. The sediment concentrations are highest for 

soil particles of 0.01 mm than for larger particle sizes (0.1, 0.05, and 0.025 mm) during 

the entire simulation time. The sediment settling velocity of the soil particle of 0.01 mm 

is smaller than for larger particles, producing higher concentrations of smaller eroded soil 

particles and longer travel distances than for larger soil particles due to the higher particle 

carrying capacity. Fig. 4.3 illustrates that solute transport and sediment erosion produce 

quite different concentration profiles under the same flow conditions. The tailing and 

peak solute concentrations are mainly controlled by sorption/desorption rates whereas the 

peak sediment concentrations are mainly controlled by the transport carrying capacity 

and settling velocities when flow conditions are the same.  
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Figure 4.3. Simulated (a) solute concentrations and (b) sediment concentrations at the 

bottom boundary under the same runoff velocities. Different sorption/desorption rates 

(=0.0001, 0.001, 0.01, and 0.1 s-1) are considered in solute transport simulations and 

different particle sizes (PS=0.01, 0.025, 0.05, and 1 mm) are considered in sediment 

transport simulations. The surface runoff is induced by a 1 cm constant head at the top of 

the slope for 360 s. The Manning’s coefficient of the land surface is 0.01 and the slope is 

1%. 

 

4.3.2 Horizontal Mobile-Immobile Erosion Model  

The example presented in Fig. 4.1 (slope=5%; the Manning coefficient=0.04) for 

the particle size of 0.1 mm was rerun using the HMIM model. Three additional input 

parameters were needed compared with the sheet erosion model: (i) the ratio of the width 

(A) 

(B) 
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of the mobile domain to the total width of the surface domain, wm, (ii) the water mass 

transfer coefficient, 
,e m , and (iii) the sediment transfer coefficient 

,e m . The influence of 

the sediment transfer coefficient on the sediment transport rate at the bottom boundary as 

a function of time is demonstrated in Fig. 4.4. Constant values of wm =0.5 and ,e m =0 

and different values of 
,e m = 0, 0.0001, 0.001, and 0.01 s-1 are considered in Fig. 4.4. 

When no exchange of sediment occurs between the mobile and immobile domains ( ,e m

=0), the sediment transport rate is half of that for the sheet erosion model since only half 

of the total region (the mobile region) contributes to soil erosion. In general, the surface 

water depth in the immobile region is higher than in the mobile region under the same 

rainfall intensity because rainfall water accumulates in this region without runoff outflow. 

Similarly, sediment concentrations (due to raindrop erosion and no outflow) are higher in 

the immobile region than in the mobile region. Therefore, a fraction of the sediment in 

the immobile region is transferred to the mobile region when ,e m >0, resulting in higher 

sediment transport rates compared to when ,e m =0. An increase in ,e m  produces a faster 

equilibration of sediment concentrations between the mobile and immobile zones and 

produces higher peaks in the sediment transport rate whereas a decrease in ,e m  produces 

prolonged tailing. 
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Figure 4.4. Sediment transport rates at the outflow boundary simulated using the 

horizontal mobile–immobile (HMIM) erosion model with different values of solute 

exchange rates (e,m=0, 0.0001, 0.001, and 0.01 s-1) when rainfall (0.2 and 0.9 mm/s) is 

applied on the entire soil profile (the Manning coefficient=0.04, slope=5%, wm =0.5). 

 

Soil erosion due to inflow at the upslope boundary instead of rainfall is simulated 

in Fig. 4.5. An inlet water depth is equal to 1 cm for 6 min and soil surface is considered 

to be impervious. The Manning’s coefficient is equal to 0.01 and the slope is 1%. A 

constant value of wm =0.5, ,e m =0, and different values of ,e m  =0, 0.001, 0.005, and 

0.01 s-1 are considered in Fig. 4.5. No exchange of water occurs between the mobile and 

immobile domains when ,e m = 0 and the resulting sediment transport rates are equal to 

those predicted by the sheet erosion transport model. Conversely, a fraction of inflow 

water is transferred to and from mobile and immobile regions when ,e m >0. This process 

slows down the sediment transport and delays the arrival of sediment to the outlet 

compared to the sheet erosion model. It also produces prolonged tailing in the sediment 
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transport rate compared with the sheet erosion model. Increasing ,e m  produces a faster 

runoff water movement from mobile zone to immobile zone, water depth gradient 

between the moible and immobile zones causes a greater delay in the arrival of sediment 

to the outlet.  

 

Figure 4.5. Sediment transport rates at the outflow boundary simulated using the 

horizontal mobile–immobile (HMIM) erosion model with different values of the first-

order mass transfer rate (e,m=0, 0.0001, 0.001, and 0.01 s-1) when inflow (h0= 1 cm) is 

initiated from the upslope boundary. The Manning coefficient=0.01, slope=1%, and wm 

=0.5. 

 

4.3.3 Active-Passive Regions Erosion Model 

The sediment transport occurs in two parallel surface regions in the APR model. 

Water and sediment exchange between the active and passive regions is determined by 

the water mass transfer coefficient 12

e  and sediment transfer rate 12

e , respectively. 

Three different simulation scenarios were considered in this section using the APR 
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erosion model. Separate Manning’s roughness coefficients are used in the surface active 

(n1) and passive (n2) regions to obtain different velocities. Figure 4.6 presents simulated 

active, passive, and total sediment transport rates as a function of time when using the 

APR model with wA = 0.5, n1 = 0.01, n2 = 0.04, slope=5% and ,12e  = 0 s−1 and ,12e = 

0.01 s−1. The same rainfall rates as in Fig. 4.1 were applied on the impervious land 

surface. We can observe that the sediment transport rate at the outflow boundary in the 

active region is higher than in the passive region. Therefore, the composite sediment 

transport rate is greater than the sediment transport rate calculated by the sheet erosion 

model. The active transport region can be interpreted as a rill region with rill erosion, in 

which the occurrence of concentrated flow produces increased erosion and increased total 

sediment transport rates.  

 

 

 

 

 

 



130 
 

 

Figure 4.6. Sediment transport rates at the outflow boundary simulated using the Active-

Passive Regions (APR) erosion model when rainfall (0.2 and 0.9 mm/s) is applied on the 

entire soil profile (the Manning coefficients n1=0.01 and n2=0.04, slope=5%, wA =0.5). 

 

Figure 4.7 presents simulated active, passive, and total sediment transport rates as 

a function of time when using the APR model with wA = 0.5, n1 = 0.01, n2 = 0.05, 

slope=1%, ,12e = 0.01 s−1, and ,12e  = 0, 0.01, and 0.001 s−1. Overland across an 

impervious soil surface was initiated by setting the inlet boundary to a water depth of 1 

cm for 20 mins during 60 mins simulation time. The sediment transport occurs 

independently in the active and passive domains when ,12e =0 (blue lines). In this case, 

two sediment peaks are observed, with outflow starting after about 200 and 1000 s in the 

active and passive domains, respectively, due to different values in the roughness 

coefficient. An increase in ,12e  produces faster exchange of water and sediments 

between the two regions and causes a decrease in the peak of the sediment transport rate 

in the active region and a corresponding increase in the passive region. Figure 4.7 
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illustrates that the nonequilibrium sediment transport behavior, such as an early arrival, 

multiple peaks, and long-term tailing, can be obtained with the APR erosion model. It 

should be noted that this new modeling approach can represent an alternative approach to 

the existing interrill-rill erosion models.  

 

Figure 4.7. Sediment transport rates at the outflow boundary calculated using the active–

passive regions (APR) erosion model with different values of the water exchange 

coefficient (e,12=0, 0.001, and 0.01 s-1) when inflow (h0= 1 cm for 20 mins) is initiated 

from the upland. The Manning coefficients n1=0.01 and n2=0.05, slope=1%, wA =0.5, and  

,12e = 0.01 s−1. 

 

Finally, the effect of particle size on the sediment transport rates in the active and 

passive regions are shown in Fig. 4.8. In this case, the previous example from Fig. 4.7 is 

rerun with ,12e =0.001 s-1 and particle sizes = 0.1 mm, 0.05 mm, and 0.01 mm. Smaller 

soil particles produce higher sediment transport rates due to the slower settling velocity in 

both active and passive regions (Fig. 4.8a and 4.8b, respectively). The velocity in the 
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passive region is lower than in the active region, resulting in higher sediment transport 

rates in the active region. However, the sediment transport in the passive region has a 

significant effect on the tailing and the peak of the composite sediment transport rate.   

 

Figure 4.8. Sediment transport rates at the outflow boundary of the active (a) and passive 

(b) regions calculated using the active–passive regions (APR) erosion model with  

different particle sizes (0.1, 0.05, and 0.01mm). when inflow (h0= 1 cm for 20 mins) is 

initiated from the upland. The Manning coefficients n1=0.01 and n2=0.05, slope=1%, wA 

=0.5, e,12 = 0.01 s−1, and ,12e = 0.01 s−1. 

 

4.4 Summary and Conclusions 

The HYDRUS-1D overland flow and transport code was extended to simulate 

sheet erosion and non-equilibrium erosion during sheet flow deviations. The code 

provides information on the temporal and spatial distributions of sediment concentrations 

in different flow regions (e.g., mobile and immobile zones, active and passive regions). 

The erosion models implemented into HYDRUS-1D provide a comprehensive set of 

tools to numerically investigate many important research problems involving sediment 

erosion, transport, and deposition processes. The HMIM (horizontal mobile-immobile) 

model can be a useful tool to simulate soil erosion at land surfaces containing depressions 

(a) (b) 
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and flow obstructions that retain surface water and sediments. The APR model can be an 

alternative modeling tool to investigate interactions between rill and interrill erosion 

when spatial patterns of the land surface are poorly characterized. However, these newly 

developed non-equilibrium sediment transport models may require a relatively large 

number of additional parameters that needs to be obtained by calibrating against 

laboratory or field measurements. Similar to HYDRUS-1D overland flow and transport 

models, the HYDRUS erosion model also includes provisions to estimate these 

parameters by inverse parameter optimization, and a variety of objective functions can be 

considered based on available measurements (e.g., water fluxes, water depths, resident 

concentrations, and flux concentrations). However, the current limitation of the 

HYDRUS erosion model is that it only considers a single mean soil particle size sediment 

transport and thus additional modifications are needed to consider entire particle size 

distributions.  
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The overall goal of this doctoral thesis was to develop a comprehensive set of 

modeling tools for the investigation of many important research problems involving 

overland flow, reactive transport, and sediment transport processes. Physically-based, 

spatially-distributed models, or machine learning algorithms trained on large 

experimental or model-generated datasets have the potential to be an efficient tool to 

examine and optimize the removal of contaminants from agricultural runoff through land-

use changes and best management practices. 

In Chapter 2, the popular HYDRUS-1D code was extended to simulate uniform 

and physical nonequilibrium overland flow and reactive solute transport (such as salts, 

nutrients, pesticides, and microbes). To demonstrate the applicability of the developed 

models, a large number of numerical examples was presented. The newly developed non-

equilibrium overland flow and transport models included Horizontal Mobile-Immobile 

(HMIM), Vertical Mobile-Immobile (VMIM), Active-Passive Regions Model (APR), 

Combined Active-Passive regions and Horizontal Mobile-Immobile (APR-HMIM), and 

Combined Active-Passive regions and Vertical Mobile-Immobile (APR-VMIM). Using 

numerical experiments, we observed that the physical nonequilibrium models can 

produce hydrographs and/or solute BTCs with earlier or delayed arrivals, multiple peaks, 

and prolonged tailing. Model validation was achieved using published overland transport 

data in conjunction with the non-equilibrium overland transport model. Physical 

nonequilibrium models may be better suited than equilibrium models for studying 

hydrological processes at the plot and field scales when spatial patterns of land surfaces 

are poorly characterized. 
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In Chapter 3, a new data-driven model was proposed as an alternative to a 

physically-based overland flow and transport model. The HYDRUS-1D overland flow 

and transport model which was developed in Chapter 2 was used to develop a large 

database containing information about the impact of various relevant factors on the 

surface runoff quantity and quality. The database containing surface runoff water quantity 

and quality information was then used to develop correlations between model inputs 

(various relevant input factors discussed above such as rainfall rate, soil hydraulic 

conductivity, field slope, initial water content, and the Manning roughness coefficient) 

and outputs (surface runoff quantity and quality). Multiple data-driven models were 

tested on their ability to relate/correlate model inputs with outputs. The following 

Machine Learning (ML) models were used in the analysis: Linear Regression (LR), K-

nearest neighbor regression (kNN), Artificial Neural Networks (ANN) (with one hidden 

layer), Support Vector Machine with linear (SVM-L) and non-linear (SVM-NL) kernels, 

and Deep Neural Networks (DNN) (Neural Networks with multiple hidden layers). The 

best performance was obtained by the DNN model with two hidden layers (DNN-2) 

(R2=0.98).  

In Chapter 4, the HYDRUS-1D overland flow and transport code was further 

extended to simulate sheet erosion and non-equilibrium erosion during sheet flow 

deviations. The developed models can be an efficient tool for the investigation of erosion 

processes under non-equilibrium water flow conditions. The Horizontal Mobile-immobile 

model and Active Passive Regions erosion models have the ability to predict earlier or 
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delayed arrivals, multiple peaks, and prolonged tailing in the sediment transport rate 

compared to traditional erosion modes.  

The modeling approaches developed and described in this dissertation improve 

our ability to describe overland flow and transport processes in complex natural systems. 

The proposed models have the following features that make then different from other 

existing models:  

1. First, the overland flow, solute transport, and sediment transport models are built 

based on the existing, widely-used HYDRUS code, which will allow many 

current HYDRUS users to easily operate the new models while having access to 

many useful features of the HYDRUS software. For example, the same graphical 

user interface (GUI) of HYDRUS-1D may be used to select and execute 

subsurface and overland flow and transport models.  

2. Second, the developed models include a hierarchical system of physical 

equilibrium and nonequilibrium models of increasing complexity, from Uniform 

Flow and Transport, Horizontal Mobile-Immobile (HMIM), Vertical Mobile-

Immobile (VMIM), Active-Passive Regions Model (APR), Combined Active-

Passive regions and Horizontal Mobile-Immobile (APR-HMIM), to Combined 

Active-Passive regions and Vertical Mobile-Immobile (APR-VMIM). If one 

model does not provide a satisfactory description of the data, then another model 

with an additional level of complexity may be considered.  
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3. Third, the framework of data-driven models can be used for more complex 

scenarios with increased spatial and temporal scales to produce a fast data-driven 

model, which can mimic the computationally intensive physically-based model.  

However, it should be emphasize that future work is requested to better define the 

physical meaning of additional parameters of the non-equilibrium overland flow and 

transport models.  

 

 

 




