
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Unravelling reference bias in ancient DNA datasets.

Permalink
https://escholarship.org/uc/item/7mh8h0t9

Journal
Computer applications in the biosciences : CABIOS, 40(7)

Authors
Dolenz, Stephanie
van der Valk, Tom
Jin, Chenyu
et al.

Publication Date
2024-07-01

DOI
10.1093/bioinformatics/btae436

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mh8h0t9
https://escholarship.org/uc/item/7mh8h0t9#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Genome analysis
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Abstract
Motivation: The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious 
mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. 
Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either 
contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with 
read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of 
empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome on mismatch 
rates across read lengths.
Results: For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from 
BAM-files and informing on reference bias, read length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence 
read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length 
distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate 
reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimized mapping parameters for 
each read length will be a key step in alleviating reference bias and spurious mappings.
Availability and implementation: AMBER is available for noncommercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts 
used to generate and analyse simulated datasets are available on Github (https://github.com/sdolenz/refbias_scripts).

1 Introduction
The availability of ancient DNA (aDNA) sequence data has 
revolutionized our understanding of evolutionary processes 
and natural history (Green et al. 2010, van der Valk et al. 
2021) but also poses analytical challenges due to the de-
graded nature of aDNA and the presence of environmental 
contaminants (Orlando et al. 2021). Further, as new bound-
aries for aDNA recovery beyond the million year time range 
are tested (van der Valk et al. 2021, Kjær et al. 2022, 
Fernandez-Guerra et al. 2023), the ability to robustly study 
increasingly damaged samples from diverged populations 
requires an assessment of current alignment tools, as target 
data become more diverged from reference genomes. 
Presently, the most common mapping tools for aDNA reads 

are BWA-aln (also known as BWA-backtrack), Bowtie2, and 
BWA-mem, each with applied aDNA parameters (Poullet 
and Orlando 2020, Oliva et al. 2021) and post-filtering map 
quality (MQ) scores of generally ≥25. Without employing 
proper data quality control checks, downstream analyses and 
the reliability of the results obtained from ancient genomes 
can become significantly biassed (G€unther and Nettelblad 
2019, Orlando et al. 2021).

Important summary statistics have been developed to as-
sess aDNA data authenticity and quality, including post- 
mortem DNA damage patterns (Green et al. 2010, J�onsson 
et al. 2013, Skoglund et al. 2014), fragment length distribu-
tions (Green et al. 2010), the breadth of genome coverage 
(Pochon et al. 2023), and sequence read mapping biasses 
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(van der Valk et al. 2021). Although a suite of bioinformatic 
tools to assess aDNA data have been developed, limitations 
remain, as none of the existing tools provide a comprehensive 
overview of all the statistics described above, thus requiring 
the use of multiple different tools, scripts, and separate com-
putational runs to obtain the necessary information.

To address these limitations, we introduce a novel 
command-line based bioinformatics tool, AMBER (Assessing 
Mapping Biases and Evaluating Read Reliability). Further, 
we present the capability of AMBER to observe the impact of 
reference bias (preferential mapping of reads containing ref-
erence over alternative alleles), spurious mappings (mapping 
of reads that did not originate from that position in the ge-
nome), contamination, and the degree of divergence of 
mapped reads to the reference genome, in both simulated and 
empirical datasets. We further showcase the usage of 
AMBER with metagenomic datasets and within-individual 
comparisons of different genomic loci (Supplementary Texts 
S1 and S2; Supplementary Figs S1 and S2).

1.1 Tool description
AMBER is specifically designed for the quality assessment of 
aDNA sequence data directly from BAM-files, allows up to 
six samples to be analysed together, and eliminates the need 
for additional file formats, datasets, or preprocessing steps. 
This user-friendly software provides comprehensive insights 
into the quality of aDNA data by offering several key func-
tionalities. Firstly, AMBER computes base mismatches be-
tween reads and the reference, normalized by the read length. 
This allows the user to identify biases introduced during read 
trimming, merging, mapping and quality filtering, and to de-
termine appropriate sample-specific read length cutoffs in or-
der to mitigate such biases (van der Valk et al. 2021). 
Secondly, AMBER assesses aDNA damage patterns by calcu-
lating the rate of C-to-T substitutions across sequence reads. 
An excess of these substitutions arise near read termini due to 
the accumulation of post-mortem cytosine deamination 
(Briggs et al. 2007). By characterizing damage patterns, users 
can distinguish authentic aDNA from modern contaminants, 
thereby ensuring the integrity of the dataset (J�onsson et al. 
2013, Skoglund et al. 2014). AMBER also includes measures 
of DNA damage specifically at CpG sites, thereby allowing 
for the authentication of aDNA libraries that are chemically 
treated to eliminate cytosine deamination damage patterns 
outside of CpG sites (USER-treatment) (Briggs et al. 2010). 
Thirdly, AMBER outputs the aDNA fragment length 
distribution, a critical aspect for assessing the DNA 
degradation profile. The fragment length distribution helps 
users to evaluate the extent of DNA fragmentation, estimate 
the average size of endogenous DNA molecules, and assess 
the suitability of the data for further downstream analyses. 
Finally, AMBER provides an estimation of the genome 
coverage, by measuring both the fraction of the target 
genome covered by sequence reads (breadth of coverage) and 
the average sequence depth across the genome. These metrics 
aid the user in determining the representativeness and 
completeness of their genomic data, guiding downstream 
analyses such as variant calling, genomic sex determination, 
or the authentication of the presence of species of interest in 
metagenomic data (Supplementary Texts S1 and S2; 
Supplementary Figs S1 and S2). The running time of AMBER 
is �5–100× faster than other currently available software 
(Supplementary Text S3; Supplementary Table S1).

To demonstrate the utility of AMBER, we applied this new 
tool to multiple ancient genomes from diverse samples of dif-
ferent quality and age. Through these case studies, we show-
case the capabilities of AMBER in assessing the quality of 
aDNA data and provide insights into different biases that can 
be introduced during the bioinformatic processing of an-
cient genomes.

2 Materials and methods
2.1 AMBER tool implementation
AMBER runs entirely in python3, with the only dependencies 
being pysam (Heger et al. 2014) and matplotlib (Hunter 
2007). To run AMBER, a file containing the paths to a maxi-
mum of six BAM-files is provided by the user. AMBER calcu-
lates four different ancient DNA relevant statistics (described 
hereafter) and outputs these in a four-panelled plot. Optional 
parameters allow for the exclusion of specified contigs/scaf-
folds/chromosomes, the inclusion of error bars, and the plot-
ting of fragment length distributions and genomic coverage 
by read count (recommended for within-sample technical 
comparisons).

2.1.1 Edit distance by read length
AMBER records the length and edit distance (derived from 
the NM tag in the BAM-file) for each mapped read, following 
the strategy of (van der Valk et al. 2021). The average edit 
distance by read length is then plotted for all read lengths. 
Reads >300 bp in length are merged into the 300 bp bin and 
reads containing deletions or indels, reads that are clipped, or 
reads containing unknown bases (‘N’ characters) are ex-
cluded from the calculation.

2.1.2 Post-mortem DNA damage
The reference sequence in the region of the mapped read is 
first reconstructed by AMBER using the MD tag in the BAM- 
file. Next, CG to TG (CpG sites) and all other C-to-T (non- 
CpG sites) mutations with respect to the reference sequence 
are recorded in a hash table together with their position in 
the read. All other mutations are recorded as ‘other’. The 
fraction of substitutions out of the total possible substitutions 
are then plotted with respect to their position in the read and 
averaged over all reads. This procedure follows the same 
strategy as in (Skoglund et al. 2014).

2.1.3 Fragment length distribution
The lengths of all mapped read sequences are recorded in a 
hash table and subsequently the fraction of reads by read 
length are plotted as a line plot with shades.

2.1.4 Genome coverage in 1000 bp windows
AMBER divides the reference genome into non-overlapping 
windows of 1000 bp in length, and for each window in the 
reference, the total read depth of the sample is recorded and 
subsequently saved into a hash table. An average read depth 
histogram is then plotted, with all windows above five times 
the average genome-wide coverage merged into the five times 
average coverage bin. A dashed vertical bar is plotted at the 
average read depth, calculated for all windows below five 
times the genome wide average. The breadth of coverage is 
shown by the fraction of the genome outside of the lowest 
depth bin (i.e. �0× coverage).

2                                                                                                                                                                                                                                    Dolenz et al. 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae436#supplementary-data


2.2 Evaluating AMBER and the impacts of 
reference bias
2.2.1 Empirical datasets and initial data processing
We downloaded the raw sequencing data from seven previ-
ously published aDNA datasets, which included six palaeoge-
nomes (one human, four faunal, one floral) and one ancient 
metagenome (Supplementary Table S2). We performed 
adapter trimming and read merging using fastp-v0.23.2, and 
removed reads below a length of 20 bp (or 30 bp in the cases 
of American mastodon and Siberian unicorn) and those that 
could not be merged (Chen et al. 2018).

2.2.2 Empirical palaeogenomic sequence data processing
We mapped the empirical palaeogenomic datasets against either 
the Asian elephant (NCBI RefSeq GCF_024166365.1) with a 
human genome as a decoy (Feuerborn et al. 2020), Black rhi-
noceros (GCA_020826845.1), human (GRCh38.p14), horse 
(EquCab3; GCA_002863925.1), or maize (GCA_02450 
5845.1) reference genomes (Supplementary Table S2). Mapping 
was done using three alignment algorithms: BWA-aln v0.7.17 
(Li and Durbin 2009) with ancient DNA-specific parameters (-l 
16500 -n 0.01 -o 2) (Green et al. 2010), Bowtie2 v2.3.5.1 
(Langmead and Salzberg 2012) on the --sensitive setting in the 
default end-to-end mode as recommended for ancient samples 
(Poullet and Orlando2020), or BWA-mem v0.7.17 (Li 2013) 
with ancient parameters (-t 8 -k 19 -r 2.5) (Xu et al., 2021). We 
note that BWA-mem is unable to align reads <30 bp. We fur-
ther performed a limited comparison between three Bowtie2 
settings: (i) end-to-end --sensitive, (ii) end-to-end --very-sensitive, 
and (iii) local --sensitive (see Supplementary Text S7; 
Supplementary Fig. S6). We removed duplicate sequences 
using samtools rmdup v1.17 (Li and Durbin 2009) and ap-
plied an MQ filter of either 1, 20, 25, or 30.

2.2.3 Simulated datasets and data processing
We simulated sequencing reads from the Asian elephant, 
Black rhinoceros, human, and a concatenation of all bacterial 
reference genomes (Genome Taxonomy Database [GTDB; 
June-2023 release]) using Gargammel (Renaud et al. 2017). 
A total of 18.1 million reads were simulated per reference ge-
nome with 100 000 reads sampled per read length bin from 
20 to 200 bp. For the elephant and rhinoceros, each simula-
tion was generated with either no divergence or a mean se-
quence divergence of 1% to 15% at 1% intervals for 1%– 
6% and 3% intervals from 6% to 15%, for a total of 10 sim-
ulated datasets per reference. Introduced divergence consisted 
of random mismatches across the length of reads. We there-
fore did not model an aDNA damage profile or consider het-
erogeneity in evolutionary rate across the genome. The 
human and bacterial reference genomes were simulated with-
out divergence. Four libraries per divergence level were then 
constructed; (100% endogenous), (50% endogenous, 49% 
bacteria, 1% human), (10% endogenous, 89% bacteria, 1% 
human), and (1% endogenous, 98% bacteria, 1% human). 
Mapping, filtering, and analysis of the simulated reads fol-
lowed the methodology given in Section 2.2.2, with the simu-
lated elephant and rhinoceros datasets respectively mapped 
to their genome of origin. The proportion of mismapped 
reads was calculated by searching for reads whose mapping 
coordinates did not match their known coordinates of origin 
that were retained in the read header by Gargammel.

3 Results
3.1 Overview of datasets used to evaluate AMBER 
and investigate reference bias
We tested AMBER on a set of seven empirical aDNA datasets, 
together with datasets simulated from two faunal reference 
genomes. To demonstrate the versatility of AMBER, the empiri-
cal datasets were chosen to represent variations in species (hu-
man, faunal, floral, bacterial), sample age (2 ka - 2 Ma), 
endogenous content (3%–70%), genome coverage (0.3–42.4×), 
and sample type (tissue and sediment) (Supplementary Table 
S2). We additionally chose representatives that had undergone 
USER-treatment to remove aDNA damage, and taxa that could 
be mapped to a conspecific or required an interspecific reference 
genome. To verify and explore the drivers of observed reference 
biases, we generated a total of 80 simulated Asian elephant and 
Black rhinoceros genomic datasets. We constructed simulated li-
braries with either 100%, 50% 10%, or 1% endogenous DNA 
(elephant or rhino), and introduced random mismatches into 
the endogenous DNA , resulting in 10 datasets of 0%–15% di-
vergence from the reference for each simulated library. We re-
port simulated data from the elephant here and provide plots 
from both simulated genomes in Supplementary Data S1 
and S2.

3.2 Estimating optimal minimum read 
length cutoffs
Ancient DNA typically consists of short fragments in the 
range of 10–150 bp (Sawyer et al. 2012). For highly degraded 
samples, the incorporation of ultrashort reads (≤35 bp) in 
downstream analysis can greatly increase the available geno-
mic information. However, the inclusion of ultrashort reads 
increases the risk of spurious mismappings of endogenous 
reads and non-endogenous (environmental) contamination. 
Determining the optimal read length cutoff at which the 
amount of obtained genetic information is maximized while 
spurious mappings are minimized is sample-specific and relies 
on factors such as the DNA fragment length distribution, the 
proportion of endogenous DNA, and the sequence divergence 
between the sample and the reference genome, with the latter 
factor enhanced by aDNA damage. To avoid false inferences, 
aDNA studies often adopt a conservative minimal read length 
filter of 35 bp, potentially excluding a substantial portion of 
usable data (de Filippo et al. 2018, van der Valk et al. 2021).

AMBER facilitates the evaluation of sample-specific read 
length cutoffs by plotting the mismatch rate between the 
mapped reads and the reference genome as a function of read 
length while simultaneously providing an overview of the over-
all read length distribution (Fig. 1). Without underlying bioin-
formatic biases, the average mismatches per base pair between 
a mapped read and the reference are expected to be indepen-
dent of read length, with deviations from this expectation sig-
nalling erroneous mappings and reference bias. AMBER 
visualizes these deviations and allows the user to make an in-
formed decision on selecting sample-specific read length cut-
offs, thus enhancing the accuracy and usable yield of aDNA 
data (Fig. 1). To showcase this feature, we ran AMBER on hu-
man, steppe mammoth, horse, and maize genomes mapped 
with the BWA-aln algorithm and filtered for MQ ≥1, but note 
that this feature is also observed with other aligners and MQ 
thresholds (e.g. Section 3.4). We find a secondary peak in the 
fragment length distribution and that mismatch rates spike for 
reads below a length of 30 bp, suggesting that these ultrashort 
reads are enriched for spurious mappings and should be 
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discarded from downstream analysis (Fig. 1a). Using simulated 
libraries with a varied proportion of endogenous DNA, we re-
cover these secondary spikes below 30 bp (Fig. 1b) and find 
that these spikes derive from bacterial-derived spurious map-
pings, which is exacerbated at low endogenous DNA contents 
(Fig. 1c; Supplementary Data S3). Importantly, a conservative 

MQ threshold of ≥30 greatly reduces the mismatch rate at ul-
trashort read lengths but only marginally improves the fraction 
of mappings that are endogenous (Fig. 1b and c). This suggests 
that caution should be taken, and that appropriate MQ cut- 
offs should be used, if incorporating ultrashort reads into 
downstream analyses.

Figure 1. Assessing minimum read length thresholds in ancient genomic datasets aligned using BWA-aln. (a) AMBER plots at MQ ≥1 for four empirical 
datasets (steppe mammoth, maize, human, and horse) and a simulated dataset (10% endogenous elephant with 1% sequence divergence) showing a 
secondary peak at 20–30 bp; (b) mismatch and fragment length distribution plots for a simulated dataset of 10% endogenous elephant with 1% 
sequence divergence at four MQ thresholds; (c) the proportions of simulated endogenous elephant with 1% sequence divergence, human, and bacterial 
data aligned using BWA-aln to the Asian elephant genome for two endogenous DNA contents: 10% (MQ ≥1, ≥30) and 1% (MQ ≥1). Aligned ultrashort 
reads (≤35 bp) are dominated by bacteria, with this trend enhanced at a lower endogenous DNA content and only marginally reduced at MQ ≥30. For all 
comparisons, see Supplementary Data S3. In (c), zero values are not plotted
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3.3 Assessing mapping strategies
A wide range of mapping software and aDNA-specific map-
ping parameters to optimize sequence yield have been ex-
plored (Schubert et al. 2012, Martiniano et al. 2020, Poullet 
and Orlando 2020, Oliva et al. 2021). The optimal mapping 
parameters are often sample-specific, and dependent on the 
reference genome used, the type of samples being analysed, 
and the questions under investigation. A commonly used sta-
tistic for assessing optimal mapping strategies is the mapped 
read count, which disregards the effects of spurious mappings 
and reference bias. AMBER allows the evaluation of mapping 
strategies and how they affect the underlying data, helping 
the user to implement the optimal strategy for their specific 
case. We used AMBER to compare USER-treated sequencing 
reads of an American mastodon that was mapped to the 
Asian elephant genome using BWA-aln, BWA-mem and 
Bowtie2, and filtered with MQ ≥1. In this particular exam-
ple, a �10 bp periodicity is also observed in the fragment 
length distribution, consistent with DNA fragmentation in 
the presence of histone-DNA complexes (Pedersen et al. 
2014). To further explore the three alignment tools, we addi-
tionally used simulated elephant reads with 2% sequence di-
vergence, which is comparable to the observed divergence 
between American mastodon and Asian elephant (Fig. 2a, 
top left). In both the empirical and simulated data, Bowtie2 
resulted in the greatest proportion of mapped data (Fig. 2a 
and b). At short read lengths (30–40 bp), BWA-mem displays 
a precipitous increase in reference bias, Bowtie2 recovers 
only two-thirds of the expected mismatches per bp, whereas 
BWA-aln shows performance comparable to other read 
lengths (Fig. 2a and b, top left). However, between �40 and 
80 bp, which includes the majority of empirical data, we ob-
serve that reads mapped with Bowtie2 have fewer mis-
matches to the reference than those mapped with BWA-aln 
and BWA-mem (Fig. 2a and b, top left). This implies that the 
divergence between American mastodon and Asian elephant 
would be significantly underestimated when analysing a 
Bowtie2 mapped genome. This reference bias is mirrored in 
the aDNA damage plot, whereby Bowtie2-mapped data 
appears to exhibit less damage than the BWA-mapped data 
(Fig. 2a, top right). In contrast, a step-down pattern, or pull 
to the reference, is observed at longer read lengths (>120 bp) 
with BWA-aln although this appears to not affect those 
mapped with BWA-mem (Fig. 2b, right). The read mismap-
ping rate of simulated data is lower for both BWA-aln and 
BWA-mem as compared to Bowtie2 (Fig. 2c). However, the 
Bowtie2 mismapping rate is greatly reduced at MQ ≥20 
(Fig. 2c, Supplementary Data S4).

3.4 The impact of map quality filtering thresholds
After mapping, filtering of reads based on a minimum MQ 
threshold is commonly employed. Such filters may differen-
tially affect reads of varying lengths. Using AMBER, we com-
pared both the Bowtie2-mapped steppe mammoth and 
simulated elephant at 1% divergence datasets filtered for in-
creasing MQ filters (≥1, ≥20, ≥25, ≥30). In both the empiri-
cal and simulated examples, we show that a strict MQ filter 
of ≥25 results in a strong reference bias (Fig. 3a and b, top 
left) that is most pronounced in the shortest reads. Using MQ 
≥1, reads below 65 bp are �50% more divergent from the 
reference compared to using MQ ≥30. Crucially, below a 
read length of �32 bp, this bias at MQ ≥30 only retains reads 
without any mismatches despite the known divergence 

between the sample and reference. As with the mapping soft-
ware comparison (Fig. 2a and b), the usage of different MQ 
filters also impacts deamination profile estimates (Fig. 3a, top 
right). Although we focus on Bowtie2 here, we note that the 
calculation of MQ scores differs between aligners and that 
this can affect downstream comparisons of datasets using dif-
ferent alignment tools if the same MQ filters are applied 
(Fig. 3c). A threshold of up to MQ 25 only marginally 
impacts BWA-aln mapping results, whereas MQ ≥30 gener-
ates a reference bias across all read lengths (Supplementary 
Text S4).

3.5 Assessing the effect of reference-sample 
edit distance
Since reference genomes are unavailable for extinct species, 
interspecific reference genomes are used for mapping aDNA 
data. This can result in a substantial genetic distance between 
reads and the reference, especially if the sample has no close 
living relative, is of deep-time age (e.g. >100 000 years old), 
and/or has high levels of aDNA damage. Increased genetic 
distance leads to increased reference bias, which can differen-
tially impact reads of varying lengths. AMBER provides a 
means to observe sample-reference divergence and to roughly 
quantify and evaluate the extent of reference bias in ancient 
genomes (Fig. 4). We show that reference bias is most pro-
nounced when the genetic distance between a sample and ref-
erence is extreme, as exemplified by the non-USER treated 
Siberan unicorn, and increasingly in the simulated datasets 
with a divergence of >3% (Fig. 4a and b, top left). Reference 
bias is less pronounced when the sample-reference divergence 
is lower, as is the case for the USER-treated American masto-
don, and simulated datasets with 1%–3% divergence (Fig. 4). 
However, we show that even at the lowest sample-reference 
divergence, as is the case for human and simulated datasets 
with 1% divergence, reference bias can be pronounced in 
long reads (>145 bp), which is likely due to the limitations of 
BWA-aln with aDNA parameters (Fig. 4a and b).

4 Discussion
AMBER fills a gap in the toolkit for aDNA data authentica-
tion by providing a diversity of read mapping quality checks 
for up to six genomes simultaneously. AMBER allows the 
evaluation of data integrity prior to downstream analyses 
while offering users the chance to increase their data yield by 
allowing ultrashort reads to be included in the dataset. We 
anticipate that AMBER will aid discovery of bioinformatic 
biases introduced during data processing, such as the effects 
of different read trimming and merging tools, alternative 
mapping algorithms, parameters, and MQ filters not investi-
gated here, and the resultant read length biases. AMBER 
could also reveal novel biases of which the aDNA community 
is not yet aware, especially now that the field is moving to-
wards ever older, more degraded, and low endogenous sam-
ples (van der Valk et al. 2021, Kjær et al. 2022). Given its 
speed, AMBER can also be used to confirm that AMBER- 
informed improvements to sample data processing have been 
successful, by determining the best-fit reference genome to 
mitigate reference bias. We anticipate that this feature will 
gain increasing popularity as the number of reference 
genomes available through pan-genome initiatives increases. 
Nonetheless, aDNA samples are highly complex, and even 
with the statistics provided by AMBER, nonendogenous data 
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can mimic expected aDNA patterns and look authentic. We 
therefore recommend using AMBER only as a first data au-
thentication check. Other tools offer additional features, such 

as the assessment of post-mortem depurination footprints in 
mapDamage2 (J�onsson et al. 2013), and so we advocate the 
use of multiple tools in cases where additional detailed 

Figure 2. The impact of three mapping algorithms (BWA-aln, Bowtie2, BWA-mem) on ancient genomic datasets. (a) AMBER plots for the American 
mastodon empirical dataset with MQ ≥1; (b) mismatch and fragment length distribution plots for a simulated dataset of 100% endogenous elephant with 
2% sequence divergence at MQ ≥1. (c) The counts of mismapped reads for each read length for the three aligners at MQ ≥1, ≥20, ≥25, or ≥30. For all 
comparisons, see Supplementary Data S4. Bowtie2 exhibits the greatest reference bias for read lengths typical of ancient DNA (30–80 bp), whereas 
BWA-aln shows reference bias for read lengths >120 bp. BWA-mem does not exhibit this latter bias, but maximizes reference bias for alignments 
≤40 bp. There were 100 000 available reads per length bin in all simulated datasets
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quality control checks are desired. We further emphasize that 
study-specific quality checks should also be employed during 
further downstream analyses such as calling or imput-
ing variants.

Reference bias and spurious mapping remain a significant 
concern in aDNA research, especially as datasets push the 
boundaries of alignment software tools not intended for use 
on such diverged, deaminated, and fragmented reads. These 
phenomena can occur when mapping to either a conspecific 
or closely related genome in which the alignment tool favours 
alleles found within the reference over alternative alleles 
(G€unther and Nettelblad 2019, Orlando et al. 2021). The 
findings of this study demonstrate that reference bias and 

spurious mapping are dependent on factors such as sequence 
length and divergence, alignment tool, and MQ filtering.

Within the mapping parameters considered in this study, it 
appears that Bowtie2 has a stronger reference bias than 
BWA-aln or BWA-mem at aDNA-relevant read lengths 
(≤80 bp), especially with MQ filter thresholds of ≥20. To 
mitigate this issue, one approach could be to use MQ ≥1; 
however, this retains many mismapped reads across all align-
ers with the rate of mismapping being an order of magnitude 
higher with Bowtie2 than the two BWA options (Fig. 2; 
Supplementary Data S4). The higher rate of mismapping seen 
with Bowtie2 compared to BWA has previously been noted 
(Hatem et al. 2013), including at higher MQ filter thresholds 

Figure 3. The impact of filtering using different MQ thresholds (≥1, ≥20, ≥25, or ≥30) on ancient genomic datasets. (a) AMBER plots for the steppe 
mammoth empirical dataset mapped with Bowtie2; (b) mismatch and fragment length distribution plots for a simulated dataset of 100% endogenous 
Asian elephant reads with 1% sequence divergence mapped with Bowtie2 at varying MQ thresholds; (c) Bowtie2, BWA-aln and BWA-mem, and using 
MQ ≥25. Higher MQ score thresholds differentially impact the various aligners, with the greatest impact on Bowtie2-mapped data. There were 100 000 
available reads per length bin in all simulated datasets. The vertical dashed lines on panel (a) indicate the average depth of coverage achieved for each 
MQ threshold considered
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of up to 30 (Poullet and Orlando 2020). However, our simu-
lations reveal that at longer read lengths (>100 bp), the 
Bowtie2 mismapping rate is negligible when MQ ≥20. 
Further, a previous benchmarking study found that BWA-aln 
outperforms BWA-mem for aDNA data, likely due to its limi-
tations at shorter read lengths (Oliva et al. 2021). Therefore, 
we recommend that a combination of both BWA-aln for 
shorter reads and BWA-mem or Bowtie2 for longer reads can 
mitigate the step-down pattern, or reference bias, seen in 
BWA-aln mappings of longer reads while maintaining the 
higher accuracy for shorter reads observed with BWA-aln. 
We emphasize that the threshold between ‘shorter’ and 
‘longer’ reads is dependent on sample-reference sequence di-
vergence but can be inferred from an AMBER mismatch plot. 
For example, in the simulated datasets with 100% endoge-
nous DNA, it is recommended to switch to BWA-mem at 
>100 bp read lengths. Future efforts to mitigate reference 
and spurious mapping biases could focus on mapping reads 
using a third-allele reference, which allows both alleles at het-
erozygous sites to be considered equally when mapping, 
therefore greatly reducing the impact of reference bias, albeit 
at the cost of decreased mapping rates (G€unther and 
Nettelblad 2019, Vernot et al. 2021).

While AMBER can be used to observe reference bias and spu-
rious mappings to understand data biases and inform sample- 

specific read length cutoffs, in addition to biological relevant 
inferences such as genomic sex determination (Supplementary 
Text S2), a deeper understanding of the impact of reference bias 
on downstream population genomics analyses is integral. For 
example, a previous study using principal components analysis 
found that samples were separated on the PC2 axis by read 
length rather than population (Meisner et al. 2021), which 
could have led to misinformed interpretations. These previous 
observations and our findings suggest that read length biases 
warrant further research for their impact on downstream analy-
ses, including DNA methylation mapping, and especially those 
reliant on random allele sampling.
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