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High-throughput sequencing of the transcriptome and chromatin 
accessibility in the same cell

Song Chen, Blue B Lake, Kun Zhang*

Department of Bioengineering, University of California San Diego, La Jolla, California, USA

Abstract

Single-cell RNA sequencing can reveal the transcriptional state of cells, yet provides little insight 

into the upstream regulatory landscape associated with open or accessible chromatin regions. Joint 

profiling of accessible chromatin and RNA within the same cells would permit direct matching of 

transcriptional regulation to its outputs. Here, we describe droplet-based single-nucleus chromatin 

accessibility and mRNA expression sequencing (SNARE-seq), a method that can link a cell’s 

transcriptome with its accessible chromatin for sequencing at scale. Specifically, accessible sites 

are captured by Tn5 transposase in permeabilized nuclei to permit, within many droplets in 

parallel, DNA barcode tagging together with the mRNA molecules from the same cells. To 

demonstrate the utility of SNARE-seq, we generated joint profiles of 5,081 and 10,309 cells from 

neonatal and adult mouse cerebral cortices. We reconstructed the transcriptome and epigenetic 

landscapes of major and rate cell types, uncovered lineage-specific accessible sites especially for 

low-abundance cells, and connected the dynamics of promoter accessibility with transcription 

level during neurogenesis.

RNA sequencing of single cells or nuclei reveals their transcription state, whereas chromatin 

accessibility sequencing uncovers the associated regulatory landscape. Current strategies1,2, 

which involve profiling these modalities separately followed by computational integration, 

may not fully recapitulate the true biological state. Joint profiling of two layers of -omics 

information within the same cells would enable a direct matching of transcriptional 

regulation to its output, allowing for more accurate reconstruction of the molecular 

processes underlying a cell’s physiology.

To enable highly parallel profiling of chromatin accessibility and mRNA from individual 

nuclei, we developed SNARE-seq, implemented on a micro-droplet platform3. In this 

method, the accessible chromatin in permeabilized nuclei is captured by the Tn5 

transposase, prior to droplet generation. We reason that, without heating or detergent 

treatment, binding of transposases to its DNA substrate after transposition could maintain 

the contiguity of the original DNA strands4, allowing for the co-packaging of accessible 
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genomic sites and mRNA from individual nuclei in the same droplets. As such, we designed 

a splint oligonucleotide with sequence complementary to the adapter sequence inserted by 

transposition (5’ end) and the poly A bases (3’ end) allowing capture by oligo-dT-bearing 

barcoded beads. After encapsulation of nuclei, their mRNAs and fragmented chromatin can 

be released by heating the droplets, allowing access to splint oligos and adaptor coated beads 

having a shared cellular barcode (Fig. 1a). A pair of RNA-seq and chromatin accessibility 

libraries can then be generated for sequencing (see Methods). The resulting data can then be 

connected by their shared cellular barcodes, without the need for probabilistic mapping of 

single-cell clusters from separate analyses. While SNARE-seq shows similarities to sci-

CAR5 conceptually, our method was implemented on a widely accessible Drop-seq platform 

and provides denser chromatin information due to a design that captures chromatin 

information first, then linking it to the transcriptome.

To evaluate SNARE-seq’s ability to capture accessible chromatin, we first performed a 

proof-of-concept experiment on lymphoblastoid cell line GM12878, which have extensively 

characterized chromatin landscapes. Ensemble profiles of SNARE-seq accessibility data 

showed a signal-to-noise ratio similar to ATAC-seq6 and Omni-ATAC7 (Fig. 1b). The 

aggregate SNARE-seq data also showed the expected periodical nucleosome pattern and a 

strong enrichment of fragments within canonical promoter regions (Fig. S1a, c), which are 

typical characteristics of bulk ATAC-seq data. We validated the peaks called from the 

SNARE-seq data by overlapping them with those of published bulk ATAC-seq and Omni-

ATAC data (Fig. S1b) and found that 85.9% of ATAC-seq peaks were shared among all the 

three assays, and that 87.6% of Omni-ATAC peaks were shared between Omni-ATAC and 

SNARE-seq. After filtering out low quality data, we obtained a median of 2720 accessible 

sites per nuclei, which is comparable with several published single cell/nuclei ATAC-seq 

methods and roughly 4–5 folds less dense than the 10X Genomics sc-ATAC-seq method 

(Fig. S1d and S2a).

To assess the accuracy of SNARE-seq in identifying cell types, we performed SNARE-seq 

on mixtures of cultured human BJ, H1, K562 and GM12878 cells, and collected 1,047 

paired profiles (median 500 UMIs; median 805 accessible sites, Fig. S2a,d). Separate 

clustering of expression and chromatin accessibility data showed clear separation into four 

distinct clusters (Fig. 1c). Differential expression of maker genes (Fig. S3a) validated these 

cluster identities. The classification results from both profiles were in good agreement 

(kappa coefficient of 0.92, Fig. 1d). Notably, we found that transcription factors JUN, IRF8, 
POU5F1 and GATA1, which showed enriched expression in BJ, GM12878, H1 and K562 

cells, respectively (Fig. S3c), also exhibited a similar pattern of preferential binding to 

chromatin sequences captured by SNARE-seq accessibility assay (Fig. S3b,d), consistent 

with previous observations8. We improved the detection sensitivity on chromatin further by 

using NP40 based Nuclei EZ buffer to boost tagmentation efficiency and adding RNase 

inhibitor combination9 to protect RNA from degradation. From the mixed cell lines we 

acquired 1,043 paired profiles with median number of 1159 UMIs and 2254 accessible sites 

captured (Fig. S2a, d). We then compared SNARE-seq expression and chromatin data with 

those generated from snDrop-seq or SNARE-seq chromatin only experiments, and observed 

consistent clustering (Fig. S4a,b), high level correlation of raw reads (Fig. S4d), as well as 

efficient recovery rate (Fig. S4e, 66% recovery of RNA and 100% recovery of chromatin). 
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Furthermore, the species-mixing experiment indicated a high purity and low doublet rate 

(6%, Fig. S4f) of SNARE-seq. Therefore, on simple cell mixture, SNARE-seq can 

effectively separate cell types based on both their chromatin signatures and transcriptomes, 

with a high level of concordance.

We next applied SNARE-seq to mouse neonatal cerebral cortex (postnatal day 0, n=5) and 

recovered 5,081 nuclei that had linked transcriptome (median 357 UMIs) and chromatin 

accessibility (median 2583 accessibility sites) data after QC filtering (Fig. S2a, d). 

Correlation analysis of expression or chromatin profiles demonstrated great reproducibility 

between independent SNARE-seq experiments (Fig. S5a,b). Among all RNA reads, 94% 

aligned to the genome, with 37% of these mapped to exons and 42% mapped to introns (Fig. 

S5c), reflecting the enrichment of nascent transcripts in the nucleus1. In comparison, despite 

a similar mapping rate (>91%), the chromatin accessibility data showed a larger fraction of 

reads (34%) mapped to intergenic regions. There was also enrichment of accessibility reads 

in close proximity to the transcription start site (10%) and low coverage in exons, suggestive 

of enhancer and promoter sequences present in those noncoding regions. Therefore, both 

RNA and chromatin reads showed expected genome distributions comparable to the snDrop-

seq1 and snATAC data10.

Unsupervised clustering of cerebral cortex transcriptomes identified 19 cell clusters, 

including: astrocytes/radial glia (Ast/RG); intermediate progenitor cells (IP); excitatory 

neurons (Ex); migrating inhibitory neurons (In); and Cajal-Retzius cells (CR). We further 

detected several non-neuronal cell types, including: oligodendrocyte progenitor cells (OPC); 

endothelial cells (End); pericytes (Peri); and microglia (Mic). These cell clusters ranged in 

size from 37 (0.7%) to 542 (10.7%) cells (Fig. S6a), and were independent of batch or 

sequencing depth (Fig. S6b–e). Uniform Manifold Approximation and Projection (UMAP) 

revealed a trajectory extending from the progenitor states reflective of the sequential 

development of cortical cell fates. Consistently, nuclei occurring adjacent to intermediate 

progenitors represented those of the late born neurons of the superficial layers (proceeding 

deep layer neurons) and glial cell types associated with the onset of gliogenesis that is 

expected at this time point (Fig. 2a). We compared SNARE-seq transcriptome data with a 

recently published single-cell RNA-seq dataset of the mouse cortex at a similar 

developmental time point that was generated by SPLiT-seq9. Despite a lower number of 

detected UMIs, the cell types and their signatures were reasonably well correlated (Fig. S7a–

c). Notably, we captured finer distinctions between closely related cellular states and 

identified three sub-clusters of intermediate progenitor cells: cluster IP-Hmgn2, expressing 

Mki67, Top2a and Kif23 (Fig. 2b, Fig. S7d and Table S1), representing cycling progenitors; 

cluster IP-Gadd45g, which was enriched for Gadd45g, representing apical progenitors that 

exited from cell-cycle11; and cluster IP-Eomes, representing basal progenitors that show 

early commitment to the neuronal lineage. Cell-type and layer identities of our clusters were 

further validated by expected expression of known marker genes and in situ staining of 

makers discovered here (Fig. 2b, S8 and Table S1).

We compared aggregated SNARE-seq chromatin accessibility profiles with published bulk 

ATAC-seq ENCODE data on neonatal mouse brain cortex and found a strong concordance 

between these two methods (Fig. S7e–f). To cluster co-assayed cells based on their 
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chromatin accessibility profiles, we used their corresponding transcriptional profiles to 

aggregate chromatin accessibility signals for each cluster separately, followed by peak 

calling and the probabilistic topic modeling method implemented in cisTopic12. After 

projecting onto lower dimensions using UMAP, most single-nuclei chromatin accessibility 

clusters (Fig. 2c), corresponded to the same cell types resolved from the corresponding 

expression data (Fig. 2a). Notably, the chromatin accessibility of deep layer excitatory 

neurons and migrating inhibitory neurons, which differentiated earlier in the cerebral cortex 

and ganglionic eminences, respectively, showed well-separated clusters, whereas those of 

late-generated superficial layer excitatory neurons were less distinct. Those diffuse 

boundaries identified by expression profile were also clustered as subtypes based on 

chromatin information (Fig. S9a–b). Those subtypes may represent datasets with insufficient 

clustering power due to the sparsity of chromatin data and/or dynamic epigenetic states that 

are still undergoing maturation. Cell-type identities of the major clusters were further 

supported by the specific accessibility in the promoter region for marker gene loci Hes5 
(Ast/RG), Gadd45g (IP), Meg3 (Neurons), Pdgfra (OPC), Vtn (Peri) and Apbb1ip (Mic) 

(Fig. S9d). We found that the promoter accessibility of lineage markers Vtn and CD45 (for 

pericyte and microglia representing 1% and 0.7% of total cells) were present only in cell-

type aggregated chromatin profiles that were identified de novo with transcriptome data. In 

contrast, chromatin data analyzed based on the accessible peaks called from the batch-

aggregated profiles, the current default strategy for analyzing sc-ATAC-seq data, failed to 

recover these accessible peaks unique to rare cells in the presence of background noise from 

other more abundant cells (Fig. 2e). Consistent with this notion, clustering of chromatin 

profiles generated without using any expression information yielded less clear cell type 

boundary and many of those low-abundant cell types were largely undetected (Fig. S9c). 

Therefore, a priori knowledge of cell type identity in chromatin accessibility data using the 

linked gene expression profiles permits more sensitive detection of accessible chromatin 

region. This underscores the strength of our SNARE-seq dual-omic assay over independent 

single-cell RNA and chromatin accessibility sequencing methods for detecting cell-type and 

subtype specific gene expression and accessible chromatin.

Differential accessibility (DA) test of SNARE-seq chromatin profiles identified 35,166 sites 

(p<0.05) across the 19 murine cerebral cortex cell types (Fig. 2d and Table S2). Of all 

35,166 differential accessible sites, 2,835 (8%) located within promoter regions, and 128 

also showed differential gene expression between clusters (Fig. S10a). For theses 128 genes, 

the expression levels and their promoter accessibilities across all cell types were mostly 

positively correlated (median r 0.34, Fig. S10b), indicating a direct linkage of chromatin 

accessibilities to the corresponding transcriptomes. To further characterize the DA sites, we 

performed gene ontology enrichment and motif discovery analysis using GREAT and 

HOMER, respectively (Fig. S11). Notably, genomic elements that were mostly associated 

with Ast/RG and OPC cells fell into the biological processes regulating stem cell 

maintenance and differentiation. These sites were further enriched for binding motifs of 

LHX2 and SOX2, both of which are known regulators of neurogenesis and gliogenesis13,14. 

We also found that differential accessible sites of the IP-Gadd45g cells (representing 1.9% 

of the total cells) were enriched for the Wnt signaling pathway components, consistent with 

the role or this pathway in regulating cell cycle exit and promoting neuronal differentiation 
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of intermediate progenitors15. Therefore, linking chromatin accessibility profiles to 

transcriptomic data directly allowed us to effectively identify cell-type specific transcription 

regulatory mechanisms.

Next, we focused on the transition of intermediate progenitors to upper layer excitatory 

neurons. Using Monocle, we ordered gene-expression profiles of 1,469 nuclei along a 

pseudotime trajectory based on the top differential expressed genes (qval<0.05, Fig. 2f, 

upper panel). From transcription kinetics, we found a clear pattern originating from a cell-

cycle exited state (Mki67 and Gadd45g), that progressed from neuroblast stages (Eomes and 

Unc5d) to Foxp1 and Cux1-expressing upper layer neurons16,17 (Fig. S12a). We further 

oriented accessibility profiles of the same nuclei along a separate trajectory (Fig. 2f, lower 

panel) based on a set of 1,332 sites that showed differential accessibility (qval<0.1). These 

separately constructed developmental trajectories showed high correlation (r=0.87) along 

pseudotime. From these differential accessible sites, 103 were found within promoter 

regions and 21 associated genes were also differentially expressed by pseudotime. Most of 

these genes presented similar directional changes in promoter accessibility and expression 

level (Fig. S12b–c). For example, Sox6, a transcription factor required for maintenance of 

neural precursor cells18, and membrane protein-encoding Mlc1 showed a decline along 

neuronal differentiation, while Khdrbs2 (SLM1), an RNA-binding protein participating in 

alternative splicing, and its regulating target Nrxn119 showed similar directional raise along 

neurogenesis (Fig. 2g, S12c,d). Thus, SNARE-seq provided linked expression and chromatin 

accessibility profiles that enables construction of regulatory dynamics during developmental 

programs, as well as detailed characterization of epigenetic state for the cell clusters (Fig. 

S13).

We finally applied SNARE-seq to adult mouse cerebral cortex and obtained 10,309 paired 

profiles (median 1,332 RNA UMIs and median 2,000 chromatin accessibility sites per 

nucleus) after QC filtering (Fig. S2a,d). Unsupervised clustering of the 10,309 

transcriptomes revealed 22 cell clusters, including 10 excitatory neuron types, 4 inhibitory 

neuron types (Pvalb, Sst, Npy and Vip-expressing) and oligodendrocyte progenitor cells 

(OPC), newly-formed Itpr2-expressing oligodendrocyte (Oli-Itpr2) and mature 

oligodendrocyte (Oli-Mal), as well as other non-neuronal cells (Fig. 3a). Most of the clusters 

can be identified with existing lineage or cortical layer markers. Those marker genes 

expressed in a similar but more specific pattern (Fig. S8, 14a–d and Table S1) in the cell 

clusters. To investigate the epigenetic patterns of each cell cluster, we aggregated SNARE-

seq chromatin data of adult cerebral cortex, which showed high similarity to bulk ATAC-seq 

data (Fig. S14e), based on cell-type identifies defined by de novo clustering of linked 

transcriptome data. We then performed peak-calling and clustering using the topic modeling 

method12. The cell clusters were more cleanly and distinctly separated, compared to 

chromatin profile of neonatal cortex, probably due to the more discrete cell states of adult 

brain. We next performed gene ontology and motif enrichment analysis on those differential 

accessible peaks identified across all cell clusters (Table S3). Although some clusters, such 

as astrocyte and microglia showed similar enrichment of biological process and transcription 

factors (Fig. S15), most other clusters revealed regulation features different from the 

corresponding cells in the developing mouse cortex, which might reflect the postnatal 

maturation within brain.
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Overall, SNARE-seq is a robust method allowing the joint measurement of transcriptome 

and chromatin accessibility in single cells or nuclei. Due to a simple design that does not 

rely on proprietary reagents, SNARE-seq can be widely implemented. Compared to the 

recently reported sci-CAR5, SNARE-seq detects RNA molecules at a sensitivity comparable 

to other single nuclei RNA-seq methods (Fig. S2d,e), and captures 4–5x more accessible 

sites (Fig. S2a,b), which improved the discovery of differentially accessible sites by ~2-fold 

and provided a better separation of cell clusters (Fig. S13). Finally, the throughput of this 

assay can be further improved through an integration with a cellular combinatorial indexing 

strategy10. SNARE-seq represents a valuable tool for characterizing tissue complexity on 

both the inputs and outcomes of transcriptional regulation units, and would be especially 

useful for creating cell atlases of human tissues and clinical samples.

Online Methods

Ethics.

The human embryonic stem cell line H1 was purchased from WiCell and the related study 

was approved by UCSD Embryonic Stem Cell Research Oversight (ESCRO) Committee.

Cell culture.

BJ and K562 cells were maintained in DMEM medium supplemented with 10% fetal bovine 

serum. GM12878 cells were maintained in 1640 medium supplemented with 15% fetal 

bovine serum. H1 human embryonic stem cell line was maintained in feeder-free mTeSR 

medium and passaged with ReLeSR according to manufacturer’s instruction.

Nuclei preparation.

GM12878 nuclei were extracted with ATAC-Resuspension Buffer containing 0.1% NP40, 

0.1% Tween-20, and 0.01% Digitonin as described previously7. Nuclei from human cell line 

mixture were extracted with either nuclear extraction buffer (NEB) (0.32 M sucrose, 5 mM 

CaCl2, 3 mM Mg(Ac)2, 0.1 mM EDTA, 20 mM Tris-HCl (pH=8), and 0.1% Triton X-100) 

or ice-cold Nuclei EZ Prep buffer (Cat # NUC101). To extract nuclei from mouse cerebral 

cortex (C57BL/6 mouse cortex at postnatal day 0 and 2 months, purchased from BrainBits 

(Cat # C57PCX)), the pair of tissue samples were chopped into small pieces with a razor 

blade and were homogenized using a glass Dunce tissue grinder (10 times with pastel A and 

20 times with pastel B) in 2 ml ice-cold Nuclei EZ Prep buffer. Nuclei were then passed 

through a 30-μm filter (Sysmex Partec), spun down for 10 min at 900g, and then washed and 

resuspended in PBS supplemented with 1% fatty-acid-free BSA.

Tn5 tagmentation of nuclei.

Nuclei were counted with an automated cell counter and approximately 200,000 nuclei were 

used for tagmentation. Nuclei pellets were resuspended in a total of 50 μL reaction mix 

containing 25 μL 2X Nextera Tagment DNA Buffer, 8 μL TDE1 Tagment DNA Enzyme and 

1 μL NxGen RNase inhibitor (or 1 μL Enzymatics RNase-In and 1 μL Superase-In for 

human cell line mix and adult mouse cerebral cortex experiments) and incubated at 37 °C 

for 30 min with shaking at 500 rpm. After tagmentation, nuclei were resuspended and 

washed with PBS containing 1% BSA and kept on 4 °C until droplet generation.
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Nuclei barcoding.

Droplet generation was performed as described previously1, with a few modifications. 

Briefly, tubing and syringes were coated with 1% BSA to prevent nonspecific binding and 

then rinsed with PBS prior to experiment. Ficoll PM-400 was added in nuclei suspension 

buffer instead of lysis buffer to mitigate nuclei settling. To capture released chromatin 

fragments with barcoded beads, 1 μL splint oligo (Nextera-R1-rc-polyA, 10 μM, Table S3) 

was added into Drop-seq lysis buffer. Nuclei suspension at a concentration of 100 nuclei/μl 

were co-encapsulated with barcoded beads (from ChemGenes, Cat # Macosko201110) in 

droplets. When encapsulation was complete, microfluidic emulsion collected in Falcon tubes 

were overlaid with a layer of mineral oil and then transferred to a 72 °C water bath to lyse 

nuclei and release binding of Tn5 with genomic DNA. After 5 minutes of incubation, 

collection tubes were moved from the water bath to ice.

Sequencing library preparation.

Droplets were broken by perfluoro-octanol, after which beads were harvested and washed 

with 6X SSC containing 10 μL blocking oligos (Nextera-R1-bk and Nextera-Ad2-bk, 100 

μM). After washing beads with 6X SSC again and RT buffer once, beads were resuspended 

in 200 μL reverse transcription/ligation mix (2X T7 ligation buffer, 50 mM KCl, 2% FicoII, 

1 nM dNTP, 2.5 μM Template Switch Oligo, 10 mM DTT, 5 μl RNase inhibitor, 12.5 μL 

Hemo Klentaq, 2.5 μL T7 ligase and 2.5 μL reverse transcriptase), and incubated at room 

temperature for 30 minutes and at 42 °C for 90 minutes, followed by treatment with 

Exonuclease I at 37 °C for 45 minutes. Then an aliquot of 10,000 beads were spun down and 

library was then PCR amplified using primer pair Nextera-R2/Tso-PCR for a total of 16 

cycles. After column purification, PCR products were split into two halves for either cDNA 

or chromatin library amplification. To prepare the cDNA sequencing library, 0.6X bead size 

selected PCR products were amplified with primer Tso-PCR alone to enrich cDNA library, 

following by another round of 0.6X bead size selection. Sequencing libraries were 

constructed with Nextera XT kit as described previously3. To prepare the chromatin 

sequencing library, primer pair P5XX-Tso/Ad2.X (Supplementary Table 4) were used to add 

indexes and P5/P7 sequences, and the DNA library with fragment sizes between 225 to 1000 

bp was carefully excised from PAGE gel and purified using column purification.

NGS Sequencing.

SNARE-seq cDNA libraries were sequenced on an Illumina HiSeq2500 instrument with 

Read1CustSeqB and HP11 for priming of read 1 (30 bp) and read 2 (80 bp) respectively. 

SNARE-seq chromatin libraries were sequenced on the same instrument with 

Read1CustSeqB for priming of read 1 (30 bp), HP10 for priming of index 1 (75 bp), and 

HP11 for priming of read 2 (75 bp), with 8 bp index 2 read for de-multiplexing.

Sequencing data preprocessing.

Paired-end sequencing reads of cDNA libraries were processed exactly as described 

previously3. First, reads with less than six T bases in the last nine bases of read 1 or a poor 

quality score (<10) were filtered out to remove any contaminated or low quality reads. Cell 

barcode and UMI information were then inferred from the first 20 bases. After trimming 
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away any portion of the SMART adaptor sequence or large stretches of poly(A) tails, read 2 

were then aligned to the human (hg38) or mouse genome (mm10) with STAR v2.5 using 

default parameter settings. Reads that mapped to intronic or exonic regions of genes were 

recorded and digital expression matrix was then generated with genes as rows and cells as 

columns. UMI counts for each gene of each cell were assigned by collapsing UMI reads that 

had only 1 edit distance. To process chromatin sequencing results, cell barcode and UMI 

were assigned in a similar way as aforementioned. Paired chromatin reads (read2 and read3) 

were processed using ENCODE ATAC-seq pipeline (https://github.com/kundajelab/

atac_dnase_pipelines), and peaks were called with hg38 or mm10 as reference and using 

default settings. Peak files were then converted to Picard style interval list file and 

overlapped with each mapped reads to assign reads with peak names. Digital chromatin 

accessibility count matrix was then generated with peak names as rows and cells as columns.

Sample correlation analyses.

For expression data, Pearson correlation was calculated with log normalized transcriptional 

reads aggregated by samples. For chromatin data, pairwise genomic read coverage was 

calculated using multiBamSummary with consecutive bins of equal size (10 kb) across 

genome, and the resulting correlation matrices were used to compute the overall similarity 

between samples.

Expression data clustering.

For human cell line mixture, barcodes with fewer than 200 UMIs or more than 2,000 UMIs 

(Triton-X lyzed)/ 5,000 UMIs (Nuclei EZ lyzed) were omitted, and barcodes with both 

transcriptome and chromatin accessibility profiles were selected. The expression count 

matrix was then normalized in PAGODA2 package (https://github.com/hms-dbmi/pagoda2). 

Winsorization procedure was employed to cap the magnitude of the ten most extreme values 

for each gene. Variance of each gene were modeled as dependency on the expression 

magnitude (log scale) as a smoothed generalized additive model with smoothing term k = 10 

(mgcv package in R). The observed-to-expected variance ratio for each gene was modeled 

by F distribution using the degrees of freedom corresponding to the number of successful 

gene observations. To normalize the contribution of each gene in the subsequent principal 

component analysis, we rescaled the variance of each gene to match the tail probability 

obtained from the F distribution under a standard normal sampling process. Cell clusters 

were determined from an approximate k-nearest-neighbors graph based on a cosine distance 

of the top 10 principal components derived from the top 1,000 variable genes from the 

variance-adjusted expression matrix, using the Infomap community detection algorithm (as 

implemented in the igraph R package). Cell clusters were visualized by t-distributed 

stochastic neighbor embedding (t-SNE). For postnatal day 0 mouse cerebral cortex 

experiments, 6663 barcodes with more than 200 UMIs and less than 1200 UMIs were 

retained, and 5488 (82.4%) barcodes were left after a second round filtration to remove 

those with fewer than 250 accessible sites and fraction of reads in peak lower than 0.4. The 

expression count matrices were combined across independent experiments and were batch 

corrected, and normalized in PAGODA2 package. Expression variance was adjusted as 

aforementioned. Then top 2,000 variable genes were used to derive top 50 principal 

components, and cell clusters were determined from KNN graph. Cell clusters with fewer 
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than 25 cells were omitted from further analysis and resulting 5081(76.3%) cells were re-

clustered and visualized by UMAP projection on the top 20 principal components. Genes 

that were differentially expressed between cell types were identified using Wilcoxon rank 

sum test in Seurat (v2.3.4, https://satijalab.org/seurat/). Cell clusters were annotated 

manually on the basis of known markers for the cerebral cortex and gene expression pattern 

from DropViz (http://dropviz.org/). 10,309 adult mouse cerebral cortex expression datasets 

were recovered and clustered in a similar way but using different cutoffs (minimum 200 

genes, maximum 2500 genes and fraction of reads in peak higher than 0.5).

Comparison of SNARE-seq expression data with SPLiT-seq and DroNc-seq data.

Top 20 genes from the statistically significant principal components differentiating cell 

types, as well as the top 50 differentially expressed genes associated with each cell type, 

were identified by Seurat and cluster-averaged expression values were used for correlation 

analysis between SNARE-seq P0 and SPLiT-seq P2 mouse cerebral cortex expression 

dataset, and between SNARE-seq and DroNc-seq adult mouse cerebral cortex dataset.

Cell Cycle Phase Assignments.

Each cell was scored using CellCycleScoring function in Seurat based on its expression of 

G2/M and S phase marker genes. Cells with high G2/M or S scores were assigned as G2/M 

phase or S phase respectively while cells expressing neither are assigned as G0/G1 phase.

Clustering of chromatin accessibility data.

To cluster chromatin accessibility data from the human cell mixture, the count matrix was 

first binarized and peaks with fewer than overall 5 counts or expressing in more than 10% of 

cells were removed. Probability of a region-topic distribution and topic-cell distribution were 

calculated using latent Dirichlet allocation model with a collapsed Gibbs sampler in cisTopic 

(v0.1, https://github.com/aertslab/cisTopic). The number of topics with the highest 

likelihood were picked and principal component analysis were performed for all topics and 

clustering was visualized by UMAP projection of PCA scores. For mouse cerebral cortex 

accessibility datasets, cell clusters identified by expression data were used and raw 

chromatin reads associated with barcodes from the same cell types were aggregated together 

and cluster-specific peaks were called with bulk ATAC-seq pipeline for each identified 

cluster. Peaks lists were then merged and the accessibility count matrices were generated by 

overlapping reads with the merged list. The accessibility count matrices were combined 

across experiments and clustering was done in a same way in cisTopic as aforementioned. 

Cell clusters were visualized by UMAP projection of the principal components scores of top 

25 topics.

Identification of differential accessible sites.

To identify cluster-specific accessible sites, differential accessible probabilities (p-value) for 

each peak in each cluster were calculated using Fisher’s exact test. P-values were then 

converted to q-values by the Benjamini-Hochberg procedure, and peaks with p-values lower 

than 0.05 in each cluster were kept. The cluster-specific peak counts per cell were then 

aggregated and normalized by cell-specific library size factors computed separately by 

Chen et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2020 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://satijalab.org/seurat/
http://dropviz.org/
https://github.com/aertslab/cisTopic


estimateSizeFactorsForMatrix in Monocle (v2.10, http://cole-trapnell-lab.github.io/monocle-

release/) and visualized using heatmap.

Developmental ordering of early neurogenesis subset.

To order cells according to their developmental trajectory of early neurogenesis based on 

expression data, we selected 1,498 expression datasets for cells from the mouse cerebral 

cortex identified as IP-Hmgn2, IP-Gadd45g, IP-Eomes, Ex-L2/3-Cntn2 and Ex-L2/3-Cux1 

by the previous PAGODA2 clustering-based approaches. Differentially expressed genes 

across cell types were identified with the differentialGeneTest function of Monocle and 503 

most significant genes (qval < 0.001) were retained to construct the pseudotime trajectory. 

Cells were ordered according to their value along the trajectory tree. The gene expression 

along pseudotime was calculated in the same way and genes passing significant test (qval < 

0.05) and gene expression kinetics were visualized using the plot_genes_in_pseudotime 

function in Monocle. Chromatin accessibility dynamics along pseudotime were calculated 

similarly with gene expression. Briefly, peaks within 10 kb distance were merged in Cicero 

and differential accessible sites across cell types were tested. After ranking accessible sites 

by significance (as reported by differentialGeneTest), the top 1,300 most significant sites 

(qval<0.1) were used to construct the pseudotime trajectory. To select the differentially 

accessible promoters along pseudotime, we first selected the differential accessible sites 

within 2 kb of a gene’s transcriptional start site and intersected with the list of differential 

expressed genes obtained from the step above. Promoter accessibilities were then visualized 

with the plot_accessibility_in_pseudotime function in Monocle and a natural spline was 

used to fit the promoter accessibilities along pseudotime with percentage of accessible cells 

as a covariate.

Annotation of genomic elements.

The GREAT algorithm (http://great.stanford.edu/public/html/) was used to annotate 

differential accessible sites using the following settings:1 kb upstream and 1 kb downstream, 

up to 500-kb max extension. The HOMER package (v4.10, http://homer.ucsd.edu/homer/) 

was used to determine motif enrichment using default setting.

External data.

Published Omni-ATAC (SRP103230), scATAC-seq (GSE65360), snATAC (GSE100033), 

SPLiT-seq (GSE110823), sci-ATAC(GSE68103), sci-CAR (GSE117089), DroNc-seq 

(https://portals.broadinstitute.org/single_cell) and ATAC-seq (ENCODE, https://

www.encodeproject.org/experiments/ENCSR310MLB/ and https://www.encodeproject.org/

experiments/ENCSR889WQX/) data were reprocessed. RNA in situ hybridization images 

for marker genes was taken from the Allen Institute Brain Atlas.

Data availability.

Raw and processed data is available at Gene Expression Omnibus database under the 

accession number GSE126074.
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Code availability.

Custom script for processing single nucleus chromatin accessibility reads is available at 

https://github.com/chensong611/SNARE_prep.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Linked single-nucleus transcriptome and chromatin accessibility sequencing of human cell 

mixtures. a, Workflow of SNARE-seq. Key steps are outlined in the main text. b, Aggregate 

single-nucleus chromatin accessibility profiles recaptured published profiles of ATAC-seq 

and Omni-ATAC in GM12878 cells. c, t-SNE visualization of SNARE-seq paired gene 

expression (upper panel) and chromatin accessibility (lower panel, n=1,047) data from BJ, 

GM12878, H1 and K562 cell mixture. Cellular identities are colored based on independent 

clustering results with either expression or chromatin data. d, Inter-assay identity agreement 

reveals consistent linked transcriptome and chromatin accessibility profiles of SNARE-seq 

data. The size and color depth of each circle represents the number of cellular barcodes that 

were identified by the different assays.
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Figure 2. 
Dual-omics profiling of neonatal mouse cerebral cortex with SNARE-seq (n=5 replicates). a, 

UMAP projection of 5,081 SNARE-seq expression data of mouse cerebral cortex nuclei. 

Cell types were assigned based on known markers. b, Heatmap showing the normalized 

expression of cell type-specific genes relative to the maximum expression level across all 

cell types. c, UMAP projection of SNARE-seq chromatin accessibility data of mouse 

cerebral cortex nuclei. Cells are labeled with the same color codes for cell types identified 

by the linked expression data. d, Heatmap showing the normalized chromatin accessibility 

of type-specific accessible sites relative to the maximum accessibility across all cell types. e, 

Chromatin accessibility tracks generated from cell-type specific or batch aggregated (batch 

code 12A, 12B and 12C) chromatin accessibility data at pericyte (left) and microglia (right) 

marker gene loci (Vtn and CD45 respectively). For better visualization, the promoter regions 
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were shaded in gray. f, Pseudotime trajectories constructed with SNARE-seq expression 

(upper panels) and chromatin accessibility (lower panels) profiles for 1,469 nuclei (214 IP-

Hmgn2, 99 IP-Gadd45g, 437 IP-Eomes, 177 Ex-L2/3-Cntn2 and 542 Ex-L2/3-Cux1) from 

the mouse cerebral cortex. Cells are colored according to pseudotime score (left panels) or 

cellular identities (right panels). g, Promoter accessibility (yellow) and gene expression (red) 

changes of Sox6, Gpm6b, Nrxn1 and Khdrbs2 across pseudotime during early neurogenesis. 

Misc, cells of miscellaneous clusters.
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Figure 3. 
SNARE-seq profiling of adult mouse cerebral cortex. a, tSNE projection of SNARE-seq 

expression data of mouse cerebral cortex 10,309 nuclei (n=12 replicates). Cell types were 

assigned based on known markers. b, tSNE projection of SNARE-seq chromatin 

accessibility data of adult mouse cerebral cortex nuclei. Cells were labeled with the same 

color codes for cell types identified by the linked expression data.
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