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Graph-based Active Learning for Nearly Blind
Hyperspectral Unmixing

Bohan Chen(:)| Student Member, IEEE Yifei Lou

Chanussot

Abstract—Hyperspectral unmixing is an effective tool to as-
certain the material composition of each pixel in a hyperspectral
image with typically hundreds of spectral channels. In this paper,
we propose two graph-based semi-supervised unmixing methods.
The first one directly applies graph learning to the unmixing
problem, while the second one solves an optimization problem
that combines the linear unmixing model and a graph-based
regularization term. Following a semi-supervised framework, our
methods require a very small number of training pixels that
can be selected by a graph-based active learning method. We
assume to obtain the ground truth information at these selected
pixels, which can be either the exact abundance value or the
one-hot pseudo label. In practice, the latter is much easier to
obtain, which can be achieved by minimally involving a human
in the loop. Compared to other popular blind unmixing methods,
our methods significantly improve performance with minimal
supervision. Specifically, the experiments demonstrate that the
proposed methods improve the state-of-the-art blind unmixing
approaches by 50% or more using only 0.4% of training pixels.

Index Terms—Hyperspectral Unmixing, Graph Learning, Ac-
tive Learning, Semi-supervised Learning

I. INTRODUCTION

Data obtained by hyperspectral sensors provide both spatial
and spectral representations of a scene. Compared to regular
color images, which only have three color channels (Red,
Green, and Blue), hyperspectral images often contain hundreds
to thousands of spectral channels. However, hyperspectral
imaging is limited by its low spatial resolution, and hence
hyperspectral unmixing (HSU) is an effective tool to identify
the pure materials and estimate the proportions of constituent
endmembers at each pixel, also known as the abundance
map. The spectral signature of a pure material is called
endmember, which can often be measured under a laboratory
setting. Unfortunately, the ground-truth endmember is often
unavailable due to its large variability in any real scenario.
The blind unmixing process involves the estimation of all the
endmembers and the abundance map simultaneously.
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A. Literature Review of HSU

In our study, we employ a linear mixing model for un-
mixing, wherein each pixel’s spectral measurement is repre-
sented as a linear combination of constituent endmembers.
Given the physical interpretation of hyperspectral mixing,
we impose nonnegativity constraints on both endmembers
and the abundance map. Additionally, we apply a sum-to-
one constraint, a common practice in HSU, signifying that
each pixel’s abundance vector resides within the probability
simplex. There are some extended linear mixing models that
consider endmember-wise scaling factors [1]] and the spectral
variability [2]. Note that these nonlinear mixing models [3|],
[4] rely on more complicated assumptions about how light
rays interact with endmembers. It is also plausible to remove
the sum-to-one constraint when illumination conditions or the
topography of the scene change locally [1].

Specifically for blind HSU, it is natural to apply the nonneg-
ative matrix factorization (NMF) [5], 6] that decomposes the
data matrix into a product of two matrices with nonnegative
entries (one encodes the endmember matrix and the other is the
abundance map) [[7]-[9]. However, even with the nonnegativity
and sum-to-one constraints, blind HSU is a highly ill-posed
inverse problem, and hence a variety of regularizations have
been proposed to refine the solution space. One classic method
is the f3-norm in fully constrained least squares unmixing
(FCLSU) [10]. Furthermore, spatial sparsity of abundances
is a reasonable assumption due to the fact that only a few
endmembers could appear in a single pixel. Some popular
sparsity-promoting regularizations used in HSU include the £y-
norm [[11], the £;-norm [12], the ¢; jo-norm [[13]], and the mixed
¢p.q-norm for group sparsity [14]]. By treating the abundance
map for each material as an image, total variation (TV)
regularization [15] has been applied to HSU for spatial con-
tinuity and edge preservation. TV-related approaches include
sparse unmixing via variable splitting augmented Lagrangian
and total variation (SUnSAL-TV) [16], TV with sparse NMF
[17], TV with nonnegative tensor factorization [18|], and an
improved collaborative NMF with TV (ICoNMF-TV) [19].
Recently, TV is reformulated as a quadratic regularization
that promotes the minimum volume in the NMF framework,
referred to as QMV [20].

Graph-based approaches [21]] also play an important role
in HSU. TV has been extended from vectors in Euclidean
space to signals defined on a graph. For example, the graph
TV (gTV) [22] is a special case of the p-Dirichlet form
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The flowchart of our semi-supervised hyperspectral unmixing models. The gray box indicates an input hyperspectral image. The orange boxes

are the graph construction and graph-based active learning to select labeled nodes (pixels) for the training process (Section @@ Two red boxes are
our proposed models, Graph Learning Unmixing, GLU, (Section m and Graph-regularized Semi-Supervised Unmixing, GRSU, (Section m GLU
applies graph Laplace learning directly to the unmixing task while GRSU combines the graph-based regularization term with the linear unmixing model from
hyperspectral imaging into a joint optimization to be solved. GLU also serves as the initialization of the GRSU optimization process. The blue boxes are the

outputs of GLU and GRSU, i.e., estimated endmembers and abundance map.

[23]], [24]] in graph signal processing. Some graph regulariza-
tion techniques for hyperspectral imaging include structured
sparse regularized NMF (SS-NMF) [25] and graph-regularized
l1,9-NMF (GLNMF) [26]. Graph-based approaches, while
powerful, can suffer from intensive computation, particularly
when computing pairwise similarity between pixels. Strategies
in speeding up the weight computation include the use of
superpixels [27] rather than using the entire hyperspectral
image and the Nystrom method [28]] to generate low-rank
approximations of the graph Laplacian [29], [30]. Another
efficient alternative is the use of sparse weight matrices, such
as the K-Nearest Neighbors (KNN) weight matrix [31]], [32].

In recent years, neural networks have been applied to the
blind unmixing problem, such as two-staged self-supervised
networks [33], [34], a minimal simplex convolutional neural
network [35], a two-stream Siamese deep network [36], and
attention networks [37]]. Furthermore, some semi-supervised
advanced deep learning methods [38]], [39] have integrated the
use of the graph Laplacian and exhibited remarkable potential
in HSU. None of these methods address the issues discussed
in the next paragraph.

B. Motivation and Our Contributions

There are limitations of existing blind HSU methods in
many real-world scenarios. For example, unmixing often re-
quires estimation of the number of endmembers [40]], while
the abundance maps require human experts to convey meaning
to each endmember. Meanwhile, acquiring the ground-truth
abundance maps or endmember spectra is a great challenge
[41], [42], making it extremely difficult to train fully super-
vised models. Such drawback motivates us to consider a semi-

supervised model with pseudo labels. These are representative
pixels for each endmember, which can be easily obtained
by expert’s visual inspection of the data. Prior knowledge
of the number of endmembers is naturally included in the
pseudo labels. We further adopt an active learning [43]—
[45]] approach to reinforce semi-supervised machine learning
methods by carefully automating the selection its training set.
Active learning has been successfully applied to hyperspectral
image classification and segmentation tasks [46]—[50]. The
core of active learning is to sample data points according to an
acquisition function [51]], [52] that automates the introduction
of new training data during the algorithm. We believe active
learning and pseudo labels would be an ideal combination to
improve the performance of HSU.

The key problem we solve in this paper is to maximize the
improvement of our estimated abundance maps and endmem-
ber spectra using minimal supervision. With the training pixels
selected by active learning, we propose two semi-supervised
hyperspectral unmixing models. We refer to these methods
as nearly blind hyperspectral unmixing, since both of them
require a very small number of training labels, and accept
either pseudo one-hot labels or ground-truth abundance maps.
Our first model, called graph learning unmixing (GLU), takes
the output of a graph learning method [21]] directly as the
abundance maps for the hyperspectral unmixing, followed by
the estimation of the endmember matrix. Our second model,
called graph-regularized semi-supervised unmixing (GRSU),
combines the linear unmixing model, a graph-based regulariza-
tion term, and a loss function applied to the label set (obtained
by active learning) by solving a joint optimization problem.
The flowchart of our proposed models (GLU and GRSU) is
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illustrated in Figure [ We summarize the novelties of this
work as follows,

o We present an effective pipeline (Section to select
labeled pixels by graph-based active learning for the
hyperspectral unmixing problem.

e We apply the idea of graph Laplace learning to the
hyperspectral unmixing problem by taking its output
(class probability) as the estimated abundance map. Based
on this idea, we develop the GLU model (Section [III-Bj.

e We develop a novel semi-supervised hyperspectral un-
mixing model, GRSU (Section [II-C), by combining
graph-based regularization terms with the linear mixing
model and a small number of labeled pixels.

o Our proposed methods, GLU and GRSU, bear significant
practical implications. By utilizing only a small number
of easily obtainable pseudo labels, our methods markedly
improve the HSU performance.

The rest of the paper is organized as follows. Section
reviews knowledge about graph learning and active learn-
ing. Section introduces our regularized graph Laplace
learning together with semi-supervised unmixing algorithms.
Section shows the experimental results that compare our
proposed algorithms and other blind hyperspectral unmixing
methods. Finally, Section [V] concludes the paper.

II. BACKGROUND AND NOTATION FOR GRAPH ACTIVE
LEARNING

This section reviews the related works on graph construc-
tion, graph learning, and graph-based active learning ap-
proaches. These techniques are key ingredients in our proposed
semi-supervised unmixing models (detailed in Section [III).

A. Graph Construction using KNN Similarity Weight

Given a set of N nodes or vertices X = {x1,X2,...,Xn}
with x; € RP*! for i = 1,--- | N, we construct a graph G =
(X, W), in which the similarity weight matrix W is computed
by K-Nearest Neighbors (KNN). Specifically, we define the
angular distance function d(x;,Xx;) as the angle between Xx;
and x;, i.e.,

T

X; X;
d(x;,X;) = arccos (’J) .

%321 |2
We only consider edges between x; and its K nearest neighbors
according to the angular distance d(x;, -), which can be imple-
mented by an approximate nearest neighbor search algorithm
[31]. For each node x;, we denote {x;,}, k=1,2,..., K as
the K -nearest neighbors of x; (including x; itself). We define
a weight value WKNN between nodes x; and x; as

WKNN _ ) €Xp (—
1] 0

where o; = /d(X;,X;, ). We define a new weight by W;; :=
(WENNLWENN) /2 s0 that the weight matrix TW is symmetric.
Note that W is sparse and non-negative (i.e. W;; > 0).

Given the weight matrix W, the degree matrix D is a
diagonal matrix, whose diagonal entry is d; = Zjvzl W;; for
i =1,---, N. We further define the graph Laplacian matrix
53], [54] by L =D — W.

D

d(Xi ;X5 )
0i0j

) J=inia ik,
Otherwise,

2

B. Graph Laplace Learning

With the graph G = (X, W) constructed in Section [[I-A] we
review a graph-based approach for semi-supervised learning,
referred to as graph Laplace learning [55]]. We suppose ground-
truth labels of ¢ classes are available on a subset of vertices
X C X. For every X; € X, its label is denoted by y €
{1,2,---,¢} and its corresponding one-hot vector is defined
as yj =e, m where ey, is the k™ standard basis vector with all

Zeros except a 1 at the i™ entry. The goal for graph learning
is to predict the labels of the unlabeled set X \ X.

The classification of nodes is based on a node function
u : & — RI Then the predicted label of x; € X is
y; = argmaxg{ug(x;),k = 1,2,...,q}, where ug(-) is
the k™ entry of u(x;). The graph Laplace learning model
[S5] obtains the optimal node function u* by minimizing the
following objective function,

Jo(u;yh) = < Z Wijllu(x;) —u(x;)|3

Xi,XjEX
+ ) Uu)).yh).

%eX

3)

The first term of J;(u;y") in (@) quantifies the smoothness on
the node function in the sense that u(x;) is closer to u(x;) for
a larger weight W;; between the two nodes. The second term
of Jy(u;y") uses the loss function ¢ to measure the difference
between the prediction u(X;) and the ground-truth y! ; forX; €
X. We follow [I55] to choose the hard-constraint penalty as
the loss function, i.e.,

—+00,
e = { o

The penalty function ¢), forces the minimizer to take u *(x;) =
y] for X; € X. The node function u can be stored by an N x ¢
matrix U whose ith row represents the output of u at node i.
We can rewrite the first term in as

> Willux) —u(x))|* =

X;,X; €X

if x #y,

if x=y. “)

1
§<U7 LU)p (&)

where (-, ) is the Frobenius inner product for matrices. The
matrix form () makes it easier to find the minimizer of the
objective function Jy(u;y').

C. Graph-based Active Learning

The performance of the graph learning method depends on
the selection of the labeled node set X. The classification
accuracy varies over different selections under the same num-
ber of label nodes. a graph-based active learning approach
is an iterative process developed to boost classification accu-
racy by strategically selecting a series of nodes on a graph
G = (X,W) to label. Specifically, one initializes a label set
X2, chosen randomly in practice. At the i iteration with the
current label set X1, one classifies the remaining unlabeled
nodes X'\ X1 via a certain graph learning scheme. Using
the classification result on the set X \ X1 one calculates
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an acquisition function A : X \ Xi=1 _ R. Then a query
set Q - X\ X1 is selected to update the current label set
Xi=Xi-1uQ.

The sequential active learning selects the query set Q to
be a single node with the largest acquisition function value
in X\ X, ie, Q = {Xp~}, Xp= = arg max, v 3 A(X). The
batch active learning selects a query set of multiple unlabeled
nodes in graph (. In this paper, we adopt the LocalMax
[56] batch active learning approach as it performs similarly to
sequential active learning but is more efficient, proportionally
to the batch size. It is originally developed for the classification
task of the synthetic aperture radar (SAR) images [56] and is
further proved successful in the image segmentation task [50].
Specifically, in each iteration of the active learning process,
the batch active learning selects the query set Qpy with the
size B > 1, containing the unlabeled nodes that satisfy the
local-max condition on the graph G.

This paper uses graph Laplace learning [55] as the un-
derlying graph-based classifier in the active learning process,
together with two specific acquisition functions: the Variance
Optimality (VOpt) acquisition function [51] and the Model-
Change Variance Optimality (MCVOpt) acquisition function
[45]. Details about the formulas of these two acquisition
functions are provided in Appendix.

III. SEMI-SUPERVISED HYPERSPECTRAL UNMIXING

This section details our semi-supervised hyperspectral un-
mixing methods based on the linear mixing model. Specif-
ically given a hyperspectral data cube I of the dimension
m X n X p with p spectral channels, we reshape I into a
matrix X = [X1,Xg,...,Xy] € RP*N where N = m x n
is the number of pixels. Denote a nonnegative constraint set
Qpwg = {S € RP*7 : S;; > 0} and a probability simplex

constraint set Iy = {A € Qgun @ 1JA = 15} We
assume a linear mixing model that generates the data, i.e.,
X =SA+E, (6)

where S € ., is the endmember spectrum matrix, A =
[a1,a2,...,ay] € Il v is the matrix of abundance maps of
q materials, and the matrix £ € RP*" denotes a noise term.

In Section [III-Al we describe the training data selection
process by adapting the graph-based active (Section [[I-C) to
the hyperspectral setting. Then in Section [[II-B| we introduce
the graph learning unmixing (GLU) model, which applies
graph Laplace learning (Section directly to the HSU
problem. Lastly in Section [[[I-C| we propose our graph-
regularized semi-supervised unmixing (GRSU) model that
combines graph-based regularization terms with the linear
mixing model (6).

A. Training Data Selection

We use the notations X and & to denote a data matrix and a
set of nodes, respectively. Given &X', we can construct a graph
G = (X, W) according to Section Then we apply the
graph-based active learning process (Section to select a
set of pixels to acquire labels for both of the proposed models,
GLU (Section and GRSU (Section [[II-C).

Given two positive integers m < M, we begin the active
learning process with an initial label set of m random pixels. In
each iteration, we apply graph Laplace learning (Section [[I-B])
with the current label set and calculate the acquisition function
on the remaining pixels. Based on the values obtained by the
acquisition function, we select a query set to be augmented to
the label set and terminate this iterative process when the size
of the current label set reaches M. Algorithm |I| summarizes
the active learning process; and its outputs, the label dataset
X = {X1,Xa,...,Xpr} and the set of corresponding labels
A=1{¥,,¥5,---,¥u}, serve as the training data for our semi-
supervised unmixing framework.

We want to clarify three aspects of the outputs of the active
learning (Algorithm [T). First, one example of acquiring labels
in Algorithm [I] is a human-in-the-loop process. Second, the
ground-truth “label” y, € R?*! for the “labeled” pixel X; €
RP*1 can be either the ground-truth abundance vector or its
one-hot pseudo label, the latter of which can be determined
by the experts for identifying the most significant endmember.
According to the experimental results in Section [[V] requiring
the ground-truth abundance for active learning is not necessary.
Third, we adopt the matrix forms of X = [X1,Xa, ..., Xp] €
RPXM, A =[3,,59 Y] € R*M of the output sets X
and A, respectively.

Given the training matrix X, we estimate the abundance
map A for the entire data matrix X. It is true that there is an
overlap between X and X, but we cannot completely trust the
training labels, especially those obtained by using the one-hot
pseudo labels. As a result, we update the abundance map for all
the pixels even though a subset of them are selected to acquire
some sort of ground-truth information. Another rationale to
have two separate matrices X and X is the option to select the
training pixels from one image and perform semi-supervised
unmixing on the other image, which falls out of the scope of
this paper.

B. Graph Learning Unmixing (GLU)

Following the training data selection process, we obtain a
training data matrix X € RPXM consisting of M labeled
pixels. We concatenate X with the original data matrix X,
and construct a graph G based on the combined data matrix
X = [X X with the corresponding graph Laplacian L ac-
cording to Section [[I-A] The graph Laplace learning produces
the class probability, which can be regarded as the abundance
map. Specifically, we adopt (5) to estimate the abundance map
by projecting the graph Laplace learning solution Agp onto
qu N> i.e.,

AgL = argmin — <[A AT L[g, A]T> , (7
AgRaxN 3
AcLu = P, n (AcL)- (8)

Problem is the standard graph Laplace learning. Con-
sider the block representation of L as

=~ |Luy L (M4+N)x (M+N)
L= l:Lul Luu:l < R ’ (9)

where L € RAMXM and L, € RV*N are the parts of the
labeled pixels X and the unlabeled pixels X, respectively, and
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Algorithm 1 Sample Labeled Pixels through Active Learning

INPUT: dataset X'; corresponding graph G' =

(X, W); initial sample number m; total sample number M.

OUTPUT: the label dataset X C X and the set of corresponding labels A.
INITIALIZE: randomly sample mn pixels as the initial label set X; acquire the labels for X as A.

WHILE |X| < M (|- | means cardinality) Do:

Apply the graph Laplace learning on G based on labels of X to predict labels on X'\ X.

Calculate the acquisition function A on X'\ X based on the Laplace learning outputs.

Select a query set Q based on the acquisition function values according to the sequential active learning or LocalMax.
Update the current label set: X XU Q; Acquire the labels of Q and update the label set A accordingly.

END WHILE

L, = LT € RVxM _represents the cross interaction of graph
Laplacian between X and X. Then the minimization problem
(7 has a closed-form solution

AgL = —AL,L; - (10)

which can be solved by the preconditioned conjugate gradient
method thanks to the symmetric and semi-positive definite
properties of the part L,,,,. Equation (8) is to project the output
Agr € R?*N of the graph Laplace learning onto the set I, v
by a projection operator Ppy , defined by,

P,y n(A) = argmin |V — Al|p.
VEquN

Y

This projection operator can be implemented by a fast algo-
rithm [57].

Given AgLy, we can then find the optimal endmember
matrix Sgry that minimizes the combination of the least-
squares errors of the linear mixing model (6) and the misfit
of the training data, i.e.,

SGLy = arg min §||X SAGLU”F + 7||X SAHF7 (12)

SEQpxgq

with a weighting parameter o > 0. Equation (I2)) has a closed-
form solution
-1

SO = (XAT + o/“)?fﬂ) (AAT n oﬂﬁﬂ) . (13)

Soru = max (0, Sgy) - (14)

Equation (I4) means to take the entry-wise maximum of
S, and 0, ie., replace each negative entry in S by
0. Algorithm [2] presents the pseudo-code of our GLU method,
which only involves three steps to find AgLy and SgLy (no
iteration is needed).

C. Graph-regularized Semi-supervised Unmixing (GRSU)

By assuming the linear mixing model (6), it is standard to
solve the blind unmixing problem in a regularized least square
form, )

argmin — || X — SA||% + AT (A),

SEQpxq,
AEHQXN

15)

with a positive weighting parameter \. The term || X —SA||%,
is a least-squares misfit between the matrix product SA and
the data measurement X, while [J(A) is a regularization
term of the abundance matrix A. We impose the nonnegative

Algorithm 2 Graph Learning Unmixing (GLU)

INPUT: data matrix X, training data (X, A), and o > 0.
OUTPUT: matrices SgLy and AgLu.

INITIALIZE: build a graph on X = [X X with correspond-
ing Laplacian matrix L. Segment L into the block form ©.

1, Graph Learning Step:
AL = —ALluL L
2, Projection:

AcLu = P, v (AcL).
3, Estimate the endmember spectrum matrix:
-1

Sy = (XAT + 02X A7) (44T +a244T)
SGLy = max (0, SGLU).

constraints of S and A as well as a sum-to-one constraint of
A.

Following the graph Dirichlet energy [58]], [59]], we consider
a graph Laplacian regularization, formulated by

N
1
=1 > llai — aj]3w(xi,x;), (16)

i,7=1

where the weight function w : R? x R? — R is defined by

w(xi, ;) = exp (— XX
103

with the angular distance d(x;,X;) between node x; and Xx;
and 0;,0; defined in (I) and (2), respectively.

In addition, we further develop a semi-supervised graph
regularization term J3(A, A, X) that includes the label infor-
mation X , 2 that is,
A A X) =

N M
To(4; ZZlaz ¥, Bwxi,x;). (17

We consider the sum of both terms 77 (A) and J2(A; A X )
as the regularization J(A). As J; and J> have the same
form that leads to the same scale, we assign the equal
weight of them when formulating 7, ie., J(A4) = J1(4) +
\7 2 (A’ Av X ) ~ -~

Putting (T3)—(I7) together with the label information (X, A)
obtained by the active learning approach, we propose a graph-
regularized semi-supervised unmixing (GRSU) model to si-

yM»—‘
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multaneously estimate the abundance map Aggrsy and the
endmember matrix Sgrsy, that is,

Scrsus Agrsu = arg m1n7||X SA|%+ —||X SA|%

€8lpxq,
AGquN

FAT(A) + ATa(A; A, X), (18)

with two positive parameters o and A. We define the indicator
function
0, ZeA,

oo, otherwise, (19)

() ={

to rewrite the minimization problem (I8)) into an unconstrained
formulation as follows,

o1 a? s ~
min S|IX = SAF + 51X - SA[E +A7(4)

F A (A A, X) + Yy, (S) + X110 (A). (20)

We apply the alternating direction method of multipliers
(ADMM) [60] to solve the unconstrained problem (20). In
particular, we introduce two auxiliary variables T € RP*4
and B € R?*N to express the problem (20) equivalently as

mll’l

min SIX - TAl+ SR - TA A% ()

21
L ARBAR) 4 v () () Y

st. A=B,S=T.

The augmented Lagrangian of (1) is written as

1 a? -~ ~
= SIX = TAlR + S IX - TAl + A\A(B)

+AT2(B; A, X) 4 X020, (5) + i, (4)
+21A=B+ B} + 2 - T+ T3,

with dual variables B, T and two positive constants p, . One
benefit of ADMM is that it turns the joint minimization prob-
lem into four subproblems that are associated A, B, S, T
separately. In each iteration, we iterate as follows,

T < argmin — T[A, aﬁ]”% +

TeERPXa

’y —
Sl aX] - s -T+112,

S ¢ argmin 2||S — T + T2,
S€Qxq 2

A < argmin f||X TA|% +

AEHq X N

B+ argmin \J1(B) + \J2(B
BeRaXN

B+ B—A+B,
T«T—-S+T.

7HA_B+B”§77
AX)+ A~ B+ Bl

(22)

The A, S, and T' - subproblems are the same as in the blind
unmixing paper [29], thus the details are omitted.

As for the B-subproblem, we write it explicitly by using
B = [by,ba,...,by],

B =argmin J;(B) + (B, A4, X) + iHA — B+ B|%
BeRax N A
—argmmf ||b b;|l3w(x:, X;)
| MM
+Z§:2mm—%@m%%>
i=1 j=1

M
1 o~ “ o~ p =
T2 Z 13 — ¥, 5w, %;) + ﬁ”A— B+ B[}
3,7=1
(23)

Note that we add the term 3 Z” Y = ¥53w(xi,X;) in
(23)) that does not affect the minimization over B, but rather
turns the B-subproblem (23) into a regularized graph Laplacian
learning problem (see Section [[I-BJ). Specifically, we consider
the graph G built on the combined data matrix X = [X,X]
with the graph Laplacian matrix L. Then (23) is equivalent to

B = argmin - <[A BT, L[A, B]T>F +

p ~
~||A— B+ B|3.
BERaxN A

B (24)
Using the block representation of L in (@), we have a closed-
form solution to (24) as

~ ~ -1
B= (AL + 54+ B) (Lu+81x) . 9
where Iy is an N X N identity matrix.
The semi-supervised unmixing (GRSU) method is summa-
rized in Algorithm [3| Its initial values of A° and S° are

obtained by GLU (Section [[II-B)) that outputs AgLy, ScLu-

IV. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to demon-
strate the performance of the proposed unmixing models.
All codes of our proposed methods and following experi-
ments are available on our Github repositoryﬂ Specifically
in Section we compare our semi-supervised methods
(GLU and GRSU) with the state-of-the-art (unsupervised)
blind unmixing methods, followed by a discussion of our
semi-supervised unmixing methods with respect to different
numbers of training pixels in Section In Section
we test the robustness of various methods by adding different
amounts of Gaussian white noise to the HSI. We test on four
standard hyperspectral image datasets, described as follows,

1) Jasper Ridge: The Jasper Ridge dataset [[61] is a hyper-
spectral image of the size 100 x 100 with 198 channels.
Originally it had 224 hyperspectral channels spanning
from 380 to 2500 nm, and 26 channels are removed
as a preprocessing step due to dense water vapor and
atmospheric effects. Four endmembers are latent: Tree,
Water, Dirt, and Road.

2) Samson: The Samson dataset [61] is of the size 95x 95 x
with 156 channels that span from 401 to 889 nm. Three

Uhttps://github.com/wispcarey/Nearly-Blind- Hyperspectral- Unmixing
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Algorithm 3 Semi-supervised Unmixing

INPUT: data matrix X, label 1nf0rmat10n ()A( A) parameters a, A, 7, p, maximum 1terat10n I.x, and error tolerance e.

CONSTRUCT: a graph G=onX =

INITIALIZE: SO = Sgry and A° = Agy (by GLU Algorlthm R); B® =

WHILE i < Iph.x AND Err > ¢, DO:

[X X] (by Section ) with the graph Laplacian L and its block form of ()

A% BO=0,T=0,Er=1,and i=0.

~ o~ —1
a2 A(A)T +71q)

= A R)/ (1A% )

i+l X(Ai)T + 042)2(11)T _|_,Y(Sz' + Tn)) (Ai(Ai)T
S = max (T — T°,0). B
Ai+1 — PquN (((Si+1)Tsi+1 +p1q)—1((5i+1)TX +p(Bi _ Bz))
Bt = (= ALy + §(A7 4+ BY)) (L + §In) ™
Bi*! = Bi 4 (AT — BiHY),
TiJrl — Tz + (Si+1 _ Ti+1).
i i+ 1 and Err = max ((||S* — S| #) /(S| F), (|| AT+
END WHILE

OUTPUT: Sgrsu = S°, Agrsy = A’

TABLE I
TRAINING INFORMATION FOR EACH DATASET

Parameters Training Data Info
Dataset « A ¥ P Acq Fun Training pixels Training Percentage Num Each Class
Jasper 10 1 1 1 MCVOPT 44 0.44% 13,7, 16, 8
Samson 20 50 0.1 0.1 VOPT 36 0.40% 13, 14,9
Urban4 50 500 0.1 0.1 VOPT 364 0.38% 138, 105, 72, 49
Apex 10 50 1 1 VOPT 54 0.40% 7, 24, 13, 10

Parameter choices and training data information for our GLU and GRSU models. Parameters «, A, v, p are all associated with GRSU, while GLU only involves

one parameter o (same as the one used in GRSU). “Acu Fun” means the acquisition function applied in the active learning process.
“Training Percentage” means the percentage of labeled pixels to all pixels.

the number of labeled pixels used for the training process.
means the number of labeled pixels of each endmember.

endmembers are latent: Soil, Tree, and Water. Note that
a different ground truth is considered in [35[], while we
use the original ground-truth information.

Urban4: The Urban dataset [61] is of the size 307 x 307
with 162 channels. Each pixel of this image corresponds
to a 2 x 2m? area. The original 221 channels span from
400 nm to 2500 nm. There are three versions of the
ground truth, which contain 4, 5, and 6 endmembers.
Here we use the version of four endmembers, labeled
as Asphalt, Grass, Tree, and Roof.

Apex: The Apex dataselﬂ [62] is a hyperspectral image
of the size 111 x 122 with 285 bands spanning from
413 to 2420nm. Four endmembers are latent in this data:
Road, Tree, Roof, and Water.

3)

4)

We apply two metrics, root mean square error (RMSE) and
spectral angle distance (SAD), to evaluate the quality of the
abundance matrix A and the endmember spectrum matrix S,
respectively. RMSE and SAD are defined as follows,

1
RMSE(A4, A%) = 100 x 7”,4 — A2,

gt
s
- g arccos( 84 z>

Isillz sl

(26)

) @D

where A, S are the fitted matrices, A%, S¢ are the ground-
truth, and s; denotes the ¢™ column of the matrix S.

SAD(S, S¢) =

Zhttps://github.com/BehnoodRasti/MiSiCNet

“Training Pixels” means
“Num Each Class”

A. Method Comparison

We compare our semi-supervised methods with five state-of-
the-art unsupervised unmixing methods, namely, FCLSU [10],
GLNMF [26], QMV [20], GTVMBO [30], MSC [35]
and EGU [36]. The first three methods (GLNMF, QMY,
GTVMBO) initialize with the output of FCLSU [10]. MSC
and EGU are neural network methods. Note that the EGU
method supports the use of either the ground truth endmember
spectrum matrix S or the estimated matrix S using vertex
component analysis (VCA) [63]. We use VCA to estimate S,
which serves an input for the pixel-wise EGU-net method.
In the following experiments, GLNMF [26], QMV [20], and
GTVMBO [30] are executed in MATLAB and conducted on
an Intel i9-9900K CPU, while MSC [35]] and EGU [36] are
implemented in Python and conducted on an Nvidia 2080 Ti
GPU.

Table (I shows the computation times of various methods
applied to each dataset. Our semi-supervised method GLU
is much faster than the neural network methods approaches
(MSC and EGU) and is comparable to traditional unsupervised
methods (GLNMF, QMYV, and GTVMBO) in terms of compu-
tation time. As the GRSU method requires solving the graph
Laplace learning problem in each iteration, it does require
more computation times compared to the regularization-based
methods, while it is still faster than neural network methods.

For labels used in our semi-supervised framework, we
consider the exact abundance map (EXT) and the one-hot
pseudo label (OH). The latter (OH) can be obtained by
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TABLE 11
COMPUTATION TIMES FOR DIFFERENT METHODS
Unsupervised Methods Our Semi-supervised Methods
Dataset GLNMF |26 OMV [20] GTVMBO |30] MSC [35] EGU [36] GLU-OH GLU-EXT GRSU-OH GRSU-EXT
Jasper 8.81s* 2.51s* 2.77s* 112.09s 51.36s 2.38s 2.45s 3.07s 2.92s
Samson 3.89s* 1.40s* 0.51s* 95.32s 43.58s 1.52s 1.47s 10.42s 12.92s
Urban4 67.31s* 23.57s* 14.60s* 974.05s 583.16s 22.29s 22.37s 201.89s 294.71s
Apex 26.47s* 2.12s* 0.59s* 166.03s 87.84s 3.81s 3.97s 20.46s 24.04s

This table presents the computation times of various methods applied to each dataset. Specifically, the methods of GLNMF [26], QMV [20], and GTVMBO
[30] are executed in MATLAB, with their times being indicated by an asterisk (x) while the other methods are implemented in Python. The computation
time is measured in seconds. In each row, the best computation times from the unsupervised and semi-supervised methods are highlighted in bold. Regarding
computational time, the proposed methods (GLU and GRSU) run much faster than the neural network methods approaches (MSC and EGU), and are comparable
to traditional unsupervised methods (GLNMF, QMYV, and GTVMBO).

TABLE III
RMSE BETWEEN THE ESTIMATED ABUNDANCE MATRIX AND THE GROUND TRUTH.

Unsupervised Methods Our Semi-supervised Methods (0.4% training)
Dataset  Class GLNMF [26] OMV [20] GTVMBO [30] MSC [35] EGU [36] | GLU-OH GLU-EXT GRSU-OH  GRSU-EXT
Tree 10.04 10.59 18.70 12.34 11.25 7.09 10.91 4.04 6.48
Water 14.06 4.18 7.38 7.30 6.22 7.33 11.40 4.39 4.27
Jasper Dirt 14.32 10.93 17.10 15.35 14.59 8.64 13.04 6.48 6.85
Road 51.82 14.74 15.64 52.09 32.84 14.78 15.75 6.99 6.34
Overall 18.79 9.51 15.16 18.24 13.78 8.37 12.03 5.10 593
Soil 22.51 20.28 8.01 20.05 30.73 4.37 5.73 5.18 4.10
Samson Tree 31.29 24.92 16.10 28.90 29.56 7.51 6.02 6.35 4.38
Water 16.26 16.63 9.19 16.45 15.58 11.06 4.70 11.32 4.89
Overall 25.21 21.48 12.19 23.32 27.08 7.81 5.61 7.66 4.43
Asphalt 33.89 21.58 19.19 18.19 21.4 14.48 7.99 14.55 8.32
Grass 10.15 29.07 10.44 31.61 45.83 7.61 6.86 7.47 6.93
Urban4  Tree 15.82 25.65 13.87 31.37 14.32 7.78 9.51 7.88 9.67
Roof 17.53 31.18 23.49 38.00 18.86 9.93 10.65 9.78 10.59
Overall 22.13 26.17 15.71 28.58 30.77 10.48 8.30 10.49 8.46
Road 23.13 25.34 57.78 22.77 43.61 11.35 17.40 10.16 13.68
Tree 13.51 19.99 32.29 14.08 25.27 11.33 12.22 11.07 9.44
Apex Roof 29.15 25.65 46.64 19.91 33.67 16.67 12.69 17.31 13.71
Water 16.81 8.70 21.63 5.50 11.56 14.85 14.43 15.08 14.85
Overall 19.28 20.09 37.10 15.27 27.49 13.34 13.44 13.35 12.15

Comparison results in terms of RMSE(A, A&') for the abundance maps: four of our semi-supervised methods (with around 0.4% of labeled pixels) are
compared with five (unsupervised) blind unmixing methods on four publicly available datasets. For each row, the best results of unsupervised methods and
our semi-supervised methods are bolded, respectively. The best of our methods achieves nearly 50% improvements over the unsupervised ones in most cases.

TABLE IV
SAD BETWEEN THE ESTIMATED SPECTRUM MATRIX AND THE GROUND TRUTH.
Unsupervised Methods Our Semi-supervised Methods (0.4% training)
Dataset  Class GLNMF [26] OMV [20] GTVMBO [30] MSC [35] EGU [36] | GLU-OH GLU-EXT  GRSU-OH  GRSU-EXT
Tree 5.63 2.66 13.95 2.48 8.49 7.49 2.50 2.00 4.70
Water 3.60 5.02 22.43 16.60 14.64 2221 22.66 5.04 22.27
Jasper Dirt 6.53 2.50 8.37 3.80 6.68 3.99 1.80 1.89 2.54
Road 43.94 3.96 6.61 18.88 5.16 2.41 2.05 1.28 2.20
Overall 14.92 3.55 12.83 10.44 8.74 9.03 7.25 2.55 7.92
Soil 1.37 2.48 2.59 23.13 1.35 2.07 1.87 1.44 2.32
Samson Tree 1.62 3.04 5.53 2.03 2.29 4.12 2.54 3.20 2.56
Water 10.48 32.94 21.40 45.95 8.62 9.50 30.96 2.41 31.45
Overall 4.50 12.82 9.83 23.71 4.09 5.24 11.79 2.36 12.11
Asphalt 7.36 150.64 6.98 43.06 7.62 6.35 3.02 6.25 3.08
Grass 10.85 23.49 6.66 22.39 37.45 3.49 3.82 3.35 3.74
Urban4 ~ Tree 9.11 7.52 1.58 5.67 4.86 7.02 3.80 6.35 4.39
Roof 4415 3.85 44.23 2.59 45.89 3.26 3.89 3.22 4.16
Overall 17.87 46.37 14.87 18.43 23.96 5.04 3.64 4.79 3.83
Road 29.38 8.39 40.88 14.90 5.61 7.68 14.95 4.25 17.61
Tree 6.55 11.86 24.21 7.88 7.41 10.15 5.08 8.03 6.62
Apex Roof 6.23 6.26 5.65 10.10 4.86 9.59 6.47 6.82 4.30
Water 9.70 106.13 51.46 43.85 12.73 30.73 11.33 12.62 17.11
Overall 12.96 33.16 30.55 19.19 7.65 14.54 9.46 7.94 11.41

Comparison results in terms of SAD(S, S€') for the endmember spectrum matrices S: four of our semi-supervised methods (with around 0.4% of labeled
pixels) are compared with five (unsupervised) blind unmixing methods on four publicly available datasets. For each row, the best results of unsupervised
methods and our semi-supervised methods are bolded, respectively.
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thresholding the exact abundance map or an expert identifying
the most significant endmember, which is more practical than
the former (EXT) in real circumstances.

For each experiment, the active learning process starts with
only one random pixel per material as an initial label set and
terminates until around 0.4% of the total pixels are sampled
according to the active learning algorithm (Algorithm [I)). We
fix € = 1073, Iny = 1000 and K = 50 in the KNN
graph construction (Section [[I-A). Note that K is chosen to be
relatively small for computational benefits, while ensuring the
connectivity of the constructed graph G, which is required in
the calculation of the acquisition function (28). We select the
optimal combination of the parameters «, \,~y, p in the range
of a € {10,20,50,100}, X € {10%,5 x 10%]i = 0,1,2,3},
v =p € {10'i = —2,—1,0,1, 2} that yields the smallest sum
of RMSE and SAD using 10% of randomly selected pixels as
a validation set. We list the parameter choices, the amount of
training data, and the acquisition function (Acq Fun) in the
active learning approach for each dataset in Table [I|

Table 11| and Table [IV| report the results of RMSE(A, A%")
values and SAD(.S, Sg‘) values, respectively. For our methods,
the ’-OH’ suffix refers to training on the one-hot pseudo
labels, while the *-EXT’ suffix refers to training on the
exact abundance maps. In both tables, we highlight the best
results in our four semi-supervised methods and the other
five unsupervised methods, separately. By comparing the bold
results in each row, the best of our methods achieves nearly
50% improvements over the competing unsupervised methods
in most cases. There are only a few exceptions. For example,
EGU has an outstanding performance of the SAD on the Apex
dataset, which is slightly better than ours.

In addition, we observe that the winner of the five super-
vised methods scatters over Table [[IIl and Table For exam-
ple, QMV and GTVMBO perform the best on Jasper Ridge
and Urban4, respectively, for both abundance and endmember
estimations. For the Samson dataset, GTVMBO attains the
best RMSE, while EGU has the best SAD. For Apex, MSC
has the best RMSE, while EGU achieves the best SAD. Our
methods, on the other hand, yield consistent performance in
that GRSU is generally better than GLU. One exception is the
Urban4 dataset, in which GRSU-EXT is slightly worse than
GLU-EXT. Since GLU is the initialization of GRSU, we can
see improvements of GRSU after the ADMM iterations, which
are particularly significant on the SAD values of the Jasper
Ridge, Samson, and Apex datasets. Furthermore, training on
one-hot pseudo labels (OH) sometimes has a better perfor-
mance than training on the exact abundance map (EXT), which
implies that it is not necessary to require the exact abundance
maps for the training process of our approaches.

We arrange the estimated abundance maps and endmembers
in pairs for Jasper Ridge, Samson, Urban4, and Apex datasets,
sequentially, showing in Figures 2H9] Note that we normalize
each endmember (column) in the spectrum matrix S to have
the unit norm, i.e., ||s;||2 = ||s{'||2 = 1. The labeled pixels that
are selected by active learning are indicated in red dots on the
ground truth abundance map.

The active learning approach can identify the distribution
of each endmember by selecting a few representatives. Take

the Road in the Jasper Ridge dataset for an example. As
illustrated in the last row of Figure [2| the abundance map
for the Road contains fine structures that are easily smeared
out by other methods, while active learning can successfully
identify pixels with high abundance values of this endmem-
ber to acquire labels. With those sampled labeled pixels,
the estimated abundance maps’ quality increases significantly
compared to unsupervised methods. Another evident example
is the endmember Roof in the Urban dataset (the last row of
Figure [6). Both GLU-OH and GRSU-OH well preserve the
contrast of the rectangular rooftop in the Roof abundance.

In conclusion, our methods demonstrate a significant im-
provement of approximately 50% in unmixing performance as
measured by the RMSE of the abundance maps and the SAD
of the mixing matrices, requiring only a minimum amount
of supervision (e.g., 0.4% labeled pixels). It is important to
note that exact abundance maps are not needed during the
training process; instead, we leverage the practical and readily
obtainable OH labels. Furthermore, while our GRSU methods
may exhibit slower computation times due to the iterative
nature of our optimization approach, they still maintain a
speed advantage over neural network methods, such as MSC
and EGU. This not only underlines the efficiency of our
methods but also represents a competitive balance between
computational speed and unmixing performance.

B. Discussion on the Number of Training Pixels

We discuss the influence of the number of labels sampled
by active learning on our semi-supervised methods, GLU-
OH, GLU-EXT, GRSU-OH, and GRSU-EXT. The active
learning process starts with one random pixel per material
as an initial label set, followed by Algorithm [I| (the active
learning algorithm) until 5% of the total pixels are reached.
We conduct experiments only on the Jasper Ridge and the
Apex datasets for demonstration purposes. The corresponding
parameters A,<y,p are provided in Table [II The parameter
o is designed to balance the numbers of the training pixels
and total pixels. Since we have various numbers of training
pixels in this experimental setting, we choose a9 = 10 and
a = Co0/Nyain, where C,, is a constant depending on the
dataset and Ny, is the number of training pixels. In practice,
C, = 50 for the Jasper Ridge dataset and C, = 10 for the
Apex dataset.

Figure shows the changes in the RMSE on abundance
and SAD on the endmembers with respect to the number of
labeled pixels obtained by active learning. Two abundance
RMSE curves in Figure [I0] (a) and (c) illustrate that our
methods trained on one-hot pseudo labels (GLU-OH, GRSU-
OH) improve in the very beginning and deteriorate with more
labeled pixels (after 1%), which is attributed to the inaccurate
information of the OH labels. At the beginning of active
learning, the most representative pixels are selected, whose
ground-truth abundance vectors might be close to a one-hot
vector. When we incorporate more OH labels for unmixing, the
OH labels are misleading as opposed to the exact abundance
map. On the other hand, GLU-EXT and GRSU-EXT always
benefit from increasing the number of labeled pixels increases,



IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING - SUBMITTED 10

GLU-OH GLU-EXT GRSU-OH  GRSU-EXT

1.0

I

8

o

6

0.4

0.2

0.0

Fig. 2. Abundance maps estimated by different methods on the Jasper Ridge dataset. Each row of the plot matrix corresponds to an endmember of the
dataset, including Tree, Water, Dirt, and Road. The first five columns are (unsupervised) blind unmixing methods and the following four columns are our
semi-supervised methods. The last two columns are the ground truth and the label pixels selected by active learning (red dots) for our GLU and GRSU
methods. Each red dot corresponds to a labeled pixel, which is enlarged for visual illustration. Notice that the Road abundance map contains fine structures
that are easily smeared out by other methods, while active learning can successfully identify pixels with high abundance values for Road to acquire labels.
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Fig. 3. Endermember matrix estimated by different methods (in orange) on the Jasper Ridge dataset with the ground truth (in blue). All the endmember
vectors are normalized to have the unit norm. Each row of the plot matrix corresponds to an endmember of the dataset, including Tree, Water, Dirt, and Road.
The first five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-supervised methods.

MSC EGU GLU-OH GLU-EXT  GRSU-OH GRSU-EXT Labels

Tree Soil

Water

Fig. 4. Abundance maps estimated by different methods on the Samson dataset. Each row of the plot matrix corresponds to an endmember of the dataset,
including Soil, Tree, and Water. The first five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-supervised
methods. The last two columns are the ground truth and the label pixels selected by active learning (red dots) for our GLU and GRSU methods. Each red
dot corresponds to a labeled pixel, which is enlarged for visual illustration.
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Fig. 5. Endermember matrix estimated by different methods (in orange) on the Samson dataset with the ground truth (in blue). All the endmember vectors
are normalized to have the unit norm. Each row of the plot matrix corresponds to an endmember of the dataset, including Soil, Tree, and Water. The first five
columns are (unsupervised) blind unmixing methods and the following four columns are our semi-supervised methods.
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Fig. 6. Abundance maps estimated by different methods on the Urban4 dataset. Each row of the plot matrix corresponds to an endmember of the dataset,
including Asphalt, Grass, Tree, and Roof. The first five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-
supervised methods. The last two columns are the ground truth and the label pixels selected by active learning (red dots) for our GLU and GRSU methods.
Each red dot corresponds to a labeled pixel, which is enlarged for visual illustration. Note that both GLU-OH and GRSU-OH well preserve the contrast of
the rectangular rooftop in the Roof abundance.
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Fig. 7. Endermember matrix estimated by different methods (in orange) on the Urban4 dataset with the ground truth (in blue). All the endmember vectors
are normalized to have the unit norm. Each row of the plot matrix corresponds to an endmember of the dataset, including Asphalt, Grass, Tree, and Roof.
The first five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-supervised methods.
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Fig. 8. Abundance maps estimated by different methods on the Apex dataset. Each row of the plot matrix corresponds to an endmember of the dataset,
including Road, Tree, Roof, and Water. The first five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-
supervised methods. The last two columns are the ground truth and the label pixels selected by active learning (red dots) for our GLU and GRSU methods.
Each red dot corresponds to a labeled pixel, which is enlarged for visual illustration.
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Fig. 9. Endermember matrix estimated by different methods (in orange) on the Apex dataset with the ground truth (in blue). All the endmember vectors are
normalized to have the unit norm. Each row of the plot matrix corresponds to an endmember of the dataset, including Road, Tree, Roof, and Water. The first
five columns are (unsupervised) blind unmixing methods and the following four columns are our semi-supervised methods.

but with a diminishing gain after around 3% of the label rate.
In practice, we would like to use the one-hot pseudo labels for
training, since it is much easier to obtain, but not exceeding
1% for the active learning process.

Compared to the RMSE curves, the endmember SAD curves
are relatively more stable with respect to the increase in the
number of training pixels. Practically, after 2% of the label
rate, the SAD values do not change much for all our methods,
which implies that only a small number of training pixels are
needed to estimate the endmembers.

Overall for both GLU and GRSU, the increase in the
training pixels does not always deem improvements in the
performances. In fact, including more OH pseudo labels is
not beneficial for unmixing. A label rate around 1% would be
a good choice experimentally.

C. Robustness Study

In order to provide a quantitative validation of the robustness
exhibited by our approach, we have undertaken an extensive

investigation into the performances evaluated by RMSE (26)
and SAD (27) of various methods applied to the Jasper Ridge
dataset. We add different amounts of Gaussian white noise to
this data matrix such that the resulting data has the signal-
to-noise ratio (SNR) ranging from 5dB to 40dB with a 5dB
increment. Note that a higher SNR value implies less noisy
data.

As evidenced in Figure [T1] the proposed GRSU method
achieves the highest accuracy in estimating the abundance
map A, no matter whether OH or EXT is considered under
all the noise levels. The spectrum matrix S estimated by
GRSU is the best for low SNR regime, and is comparable to
QMYV when the data is less noisy (SNR>15dB). This result
is reasonable, as we only impose two simple constraints on
S (i.e., nonnegativity and sum-to-one). On the other hand, the
GLU method seems sensitive to noise. In circumstances where
the SNR is relatively low, the RMSE and SAD values produced
by GLU tend to be large. But we also observe a sharp decline
in both RMSE and SAD by the GLU method with a gradual
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Fig. 10. RMSE and SAD curves with respect to the number of labeled pixels for the Jasper Ridge and the Apex datasets. For each plot, the x-axis on the
top shows the percentage of labeled pixels, while the bottom one is the number of labeled pixels. In the active learning process, we apply the MCVOpt and
VOpt acquisition functions for the Jasper Ridge and Apex datasets respectively. Each curve starts with only one random pixel per endmember and sample up

to 5% of labeled pixels.

increase in SNR.

V. CONCLUSION

In this paper, we propose two semi-supervised hyperspec-
tral models, the graph learning unmixing (GLU) and graph-
regularized semi-supervised unmixing (GRSU). GLU applies
the graph Laplace learning directly to solve the HSU problem
by regarding the class probability as the abundance map.
Initialized by GLU, GRSU estimates the abundance map A
and endmember spectrum matrix S by solving an energy-
minimizing problem via an iterative ADMM scheme. We ex-
tended the graph Laplace learning to a regularized version and
explored the close-form solutions for efficient computation.
This regularized graph Laplace learning is a subproblem in the
ADMM iteration process. We conducted extensive experiments
using four standard hyperspectral datasets to compare our

semi-supervised methods with five state-of-the-art methods in
hyperspectral blind unmixing. All the results demonstrated
the proposed GLU and GRSU methods have a significant
improvement with a minimum amount of supervision. Further-
more, both methods can take either the ground-truth abundance
maps or the one-hot pseudo labels as the training information,
the latter of which is much easier to obtain since it only
requires determining the major endmember of each training
pixel. According to our experiments, it iS unnecessary to
require the ground-truth abundance maps to feed in the semi-
supervised framework. Sometimes, models trained on pseudo
labels yield better performance than the exact values. We also
discussed the influence of the number of training pixels on
the model performance, revealing that a label rate of 1% is
experimentally sufficient for satisfactory results. In addition,
our GRSU method has great robustness over Gaussian white
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Fig. 11. RMSE (for A) and SAD (for S) curves with respect to the SNR values of noisy input of the Jasper Ridge dataset corrupted by Gaussian white noise.
In both panels, the performance of other blind methods is illustrated by dashed lines, whereas our proposed semi-supervised methods are represented by solid

lines.

noise. The new methods have a great potential for real world
problems since they do not need a ground truth abundance
map and instead can work with pseudo-labels.

There are several promising directions following this work.
First, scaling factor [1] and spectral variability [2] terms
can be incorporated into our model to further enhance the
unmixing performance. Second, Figure [IT] (b) suggests a
need for regularizations of the spectral matrix, in addition to
nonnegativity and sum-to-one constraints, for improving the
robustness of the proposed methods. Lastly, the current graph
Laplacian learning solver can be replaced with neural networks
or graph neural network techniques.

APPENDIX
ACQUISITION FUNCTION FORMULAS

To make the paper self-contained, we provide the formulas
for the VOpt [51] and MCVopt [45] functions. Given a graph
G (X, W), the formulas are based on a low-rank approximation
of the graph Laplacian matrix L. With ordered eigenvalues of
Las 0=\ <X <...< Ay, the truncated decomposition
of L with the smallest M < N eigenvalues has the form
L ~ VAV, where A € RM*M 5 a diagonal matrix
with diagonal entries A, Ao, ..., Ay and V € RVXM g the
matrix of corresponding eigenvectors. Furthermore, a Gaussian
correlation matrix C' is defined by:

-1
C = (A +VT <1QPTP> V) :
g

where P € RI¥2I*N s a projection matrix onto the indices
corresponding to the label set X', and ~ is a positive con-
stant (we choose v = 0.1 in this paper). When the graph
G is connected, such a matrix C exists, i.e., the matrix
A+ VT (HPTP)V is invertible.

At each iteration in the active learning process with the
current label set X', graph Laplace learning gives the optimized

(28)

node function u* (and corresponding node matrix U*) by
minimizing the energy (3). Denoting the k™ column of VT
by v, the VOpt and MCVOpt acquisition functions are given
by:

1

A = ———||[Cvi|?, 29
vopt (Xx) 72+V;§|—CV]€|| vill3 (29)
1
A = ——— ICVe| AU TV Vi — yi]|2,
mevop(Xk) v2+v{0vk” Vill2Il(U") Vv = yill2

(30)

where y; is the one-hot thresholding of u*(xy).
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