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Abstract

Development and Assessment of Electronic Structure Approaches for Non-Covalent
Interactions

by

JONATHON KENDALL WITTE

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin P. Head-Gordon, Co-chair

Professor Jeffrey B. Neaton, Co-chair

This thesis is primarily concerned with the development and assessment of electronic
structure approaches for intermolecular interactions. Various aspects of existing approaches
– most notably the choices of method, grid, and basis set – are examined with respect to
performance in novel ways, and new semi-empirical corrections intended to rectify deficiencies
in standard methods are introduced.
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Chapter 1

Introduction

The driving force for the work described within this thesis is the desire to better under-
stand a novel class of materials: nanoporous materials, particularly metal-organic frameworks
(MOFs)[1]. MOFs are three-dimensional, nanoporous solids built from metal-containing
nodes connected by organic ligands; a cross-section of a MOF looks something like a hon-
eycomb, only at the molecular – rather than macro – level. As a result of this molecular
honeycomb structure, MOFs possess an incredibly high ratio of surface area to volume. This,
in turn, makes them particularly well suited to a variety of applications ranging from catal-
ysis[2] to gas storage[3]. Moreover, as a result of their modularity, MOFs are highly tunable,
and different structures can give rise to significantly different functionality.

There is thus a sort of combinatorial problem with MOFs; there are far too many possible
combinations of metal nodes and linkers to feasibly synthesize and characterize. Ideally, we
would like to be able to accurately model these materials so synthetic efforts can be directed
towards only the most promising candidates. Unfortunately, this is no easy endeavor. The
relevant functional properties of MOFs arise from molecular-scale interactions. Such is the
domain of quantum mechanics.

1.1 Quantum Mechanics

In the early twentieth century, quantum mechanics arose out of an effort to understand
various observed phenomena – most notably black-body radiation and the photoelectric effect
– that were not accounted for by conventional physical models. One of the central equations
in quantum mechanics is the time-independent Schrödinger equation, a wave equation for
particles,

Ĥ |Ψ〉 = E |Ψ〉 , (1.1)

where Ĥ is the Hamiltonian operator, E is the energy of the system, and |Ψ〉 is the wavefunc-
tion (WF), or probability amplitude, from which all observable properties may be derived.
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Due to the correspondence principle, equation 1.1 and its time-dependent analogue may be
used to describe any physical system.

The molecular Hamiltonian may be expressed, in atomic units, as a sum of five terms,

Ĥ = −
n∑
i

1

2
∇2
i −

M∑
A

1

2mA

∇2
A −

n∑
i

M∑
A

ZA

|~ri − ~RA|

+
n∑
i

n∑
j>i

1

|~ri − ~rj|
+

M∑
A

M∑
B>A

ZAZB

|~RA − ~RB|
, (1.2)

where i and ~ri correspond to the indices and coordinates of the n electrons, and A, ~rA, ZA,
and mA represent the indices, coordinates, atomic numbers, and masses of the M nuclei.
The first term in equation 1.2, T̂e, is the kinetic energy of the electrons; the second term,
T̂n, is the kinetic energy of the nuclei; the third term, V̂en, corresponds to the potential
energy of attraction between the electrons and nuclei; the fourth term, V̂ee, is the potential
energy of repulsion between the electrons; and the fifth term, V̂nn, is the potential energy
of repulsion between the nuclei. Both the Hamiltonian and the wavefunction are functions
of the n electronic and M nuclear coordinates; accordingly, solving the time-independent
Schrödinger equation requires solving a 3(n + M)-dimensional partial differential equation.
This is untenable for most systems of interest; hence, we must typically resort to a sequence
of approximations.

1.2 The Born-Oppenheimer Approximation

The first approximation commonly employed to simplify the Schrödinger equation is the
Born-Oppenheimer approximation, wherein the nuclear and electronic degrees of freedom are
separated. Since electrons are nearly 2000 times less massive than the nuclei they orbit, their
motion is “instantaneous” relative to that of the nuclei: the electrons can be roughly viewed
as moving in a field of fixed nuclei. This approximation yields the electronic Hamiltonian,
the central operator in electronic structure theory,

Ĥe = T̂e + V̂en + V̂ee (1.3)

= −
n∑
i

1

2
∇2
i −

n∑
i

M∑
A

ZA

|~ri − ~RA|
+

n∑
i

n∑
j>i

1

|~ri − ~rj|
.

Since Ĥe treats the nuclear coordinates as parameters, rather than explicit variables, the
electronic Schrödinger equation is an eigenvalue problem in 3n dimensions,

Ĥe |Ψe〉 = Ee |Ψe〉 , (1.4)
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where |Ψe〉 and Ee are the electronic wavefunction and energy, respectively. Unfortunately,
this equation is still intractable for all but the most simple systems; accordingly, additional
approximations are needed.

1.3 Hartree-Fock Theory

Perhaps the simplest, most naive, approximation for the n-electron wavefunction is a
product of n single-particle wavefunctions dependent on general coordinates (σ) encompass-
ing both spin and position. This simple product of single-particle wavefunctions, or spin
orbitals |χi(σi)〉, constitutes a Hartree product wavefunction,

|Ψe(σ1, σ2, . . . , σn)〉 ≈ |ΦH(σ1, σ2, . . . , σn)〉

=
n∏
i

|χi(σi)〉 . (1.5)

A Hartree product, however, is not antisymmetric with respect to change of electrons, and
thus is not a valid fermionic wavefunction. The simplest fermionic ansatz – and hence
simplest valid approximation to the electronic wavefunction – is not merely a simple product
of spin orbitals, but rather a determinant, commonly referred to as a Slater determinant:

|Ψe(σ1, σ2, . . . , σn)〉 ≈ |ΦS(σ1, σ2, . . . , σn)〉

=
1√
n!

∣∣∣∣∣∣∣∣∣
|χ1(σ1)〉 |χ2(σ1)〉 . . . |χn(σ1)〉
|χ1(σ2)〉 |χ2(σ2)〉 . . . |χn(σ2)〉

...
...

. . .
...

|χ1(σn)〉 |χ2(σn)〉 . . . |χn(σn)〉

∣∣∣∣∣∣∣∣∣ . (1.6)

Combining this single Slater determinant approximation to the wavefunction with the
time-independent electronic Schrödinger equation yields the Hartree-Fock approach (HF),
in which electron-electron interactions are treated in a mean-field manner: each electron
interacts with the field generated by the other n − 1 electrons. The HF energy is given by
the expectation value of the electronic Hamiltonian in the state |ΦS〉, i.e.

EHF =
〈

ΦS

∣∣∣ Ĥ ∣∣∣ΦS

〉
=

n∑
i

〈
χi

∣∣∣ ĥ ∣∣∣χj〉+
1

2

n∑
i

n∑
j

〈χiχj ‖χjχj〉 , (1.7)

where the one-electron core Hamiltonian is given by
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ĥ(~ri) = −1

2
∇2
i −

M∑
A

ZA

|~RA − ~ri|
. (1.8)

This is a variational method; the best spin orbitals are those that minimize the energy,
subject to the constraint that the various spin-orbitals remain orthonormal. These best spin
orbitals satisfy the Hartree-Fock equations,

f̂ |χi〉 = ε |χi〉 , (1.9)

with the Fock operator, f̂ , being given by

f̂(~r1) = ĥ(~r1) +

n/2∑
i

∫ [
φ∗i (~r2)

1

|~r2 − ~r1|

(
2− P̂12

)
φi(~r2)

]
d~r2. (1.10)

Note that spin-dependence has been integrated out to yield spatial orbitals φi, which are
functions of position (~r). Note also that P̂12 is a permutation operator.

In order to solve the Hartree-Fock equations, we expand the spatial orbitals in a basis
of K atomic orbitals (AOs) – which are in turn constructed from different sequences of
real-space functions, the subject of Chapter 4 – |ωµ〉:

|φi〉 =
K∑
µ

cµi |ωµ〉 . (1.11)

We then left-project with 〈ων | to convert the integro-differential equation – equation 1.9 –
into a generalized eigenvalue equation,

K∑
µ

Fνµcµi =
K∑
µ

Sνµcµiεi, (1.12)

or, in matrix form,

FC = SCε. (1.13)

Although the overlap matrix S is straightforward to compute, the elements of Fock matrix
involve functions of all the electrons, and hence this equation – the Roothaan-Hall equation –
must be solved iteratively, using what is known as the self-consistent field (SCF) procedure.

The Hartree-Fock method recovers more than 99% of the electronic energy. To the
uninitiated, that sounds like HF should be more than sufficient; unfortunately, this is not
the case. That remaining 1% – termed the “correlation energy” – is where all the magic
happens; it describes how electronic motion is correlated, how electrons “talk” to each other,
and it is vital for understanding most of the interesting questions in the field of chemical
physics. Most modern endeavors in electronic structure are centered around coming up with
good, cheap approximations to the correlation energy. These approximations can be broadly
grouped into two distinct classes: wavefunction-based and density-based.
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1.4 Wavefunction-Based Approaches

The first class of correlation approximations are based upon wavefunctions. For most
standard methods, the approximate wavefunction is obtained by incorporating excitations
from the Hartree-Fock reference.

Møller-Plesset Perturbation Theory

The simplest wavefunction-based approach to correlation is Møller-Plesset perturbation
theory, which can be derived by performing Rayleigh-Schrödinger many-body perturbation
theory[4] on the HF wavefunction. The assumption implicit in this approach is that the
interaction between the electrons – the perturbation to the non-interacting HF reference –
is small. The most widely used variant of perturbation theory in the electronic structure
community is second-order Møller-Plesset perturbation theory (MP2)[5], which is the leading
correction in the perturbation expansion. The MP2 correction to the electronic energy is
given by

E(2) = −1

4

occ∑
ij

virt∑
ab

|〈ij ‖ ab〉|2

εa + εb − εi − εj
, (1.14)

where i, j and a, b are canonical occupied and virtual orbitals, respectively, and εi is the Fock
operator – see equations 1.9 and 1.10 – corresponding to orbital i. Unlike the HF energy,
the MP2 energy is nonvariational, and the method struggles when the mean-field solution is
a poor reference, such as in systems with small HOMO-LUMO gaps.

Coupled-Cluster Theory

A more sophisticated family of wavefunction-based methods for recovering correlation
energy is the coupled-cluster (CC) approach[6, 7], wherein a wavefunction is constructed by
operating on the HF reference – the Slater determinant of spin orbitals that minimize the
HF energy – with an exponential excitation operator:

|ΦCC〉 = eT̂ |ΦHF〉 . (1.15)

The cluster operator, T̂ , is given by

T̂ =
∑
κ

T̂κ

=
∑
κ

[
1

(κ!)2

∑
i,b

tb1,b2,...,bκi1,i2,...,iκ
â†bκ . . . â

†
b1
âi1 . . . âiκ

]
, (1.16)
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where t are excitation amplitudes, and â† and â are the standard creation and annihilation
operators from second quantization. In practice, the cluster operator is truncated at a certain
level of excitation (e.g. CCSD corresponds to single and double excitations, κ = 1, 2), and
the excitation amplitudes (and hence also the energy) are obtained by left-projecting with
the series of ground- and excited-state determinants and solving the system of equations
thus formed.

Coupled-cluster is one of the most accurate electronic structure approaches, and it has
a clear hierarchy: incorporating higher-order excitations leads to more accurate (i.e. closer
to the exact electronic energy) results[8]. Unfortunately, this accuracy comes at significant
cost: full inclusion of up to triple and quadruple excitations, CCSDT and CCSDTQ, is
prohibitively expensive for most systems of interest. Thus, in practice, triple and quadru-
ple excitations are often treated perturbatively[9]; this constitutes the the CCSD(T) and
CCSDT(Q) approaches. CCSD(T) – coupled-cluster with full single and double excitations,
and perturbative triple excitations – is colloquially known as the ”gold-standard” in quantum
chemistry.

1.5 Density Functional Theory

The second class of electronic structure approximations capable of handling correlation
is density functional theory (DFT).

Hohenberg-Kohn DFT

The foundations of DFT are the Hohenberg-Kohn (HK) theorems[10].

HK Theorem 1 There is a one-to-one mapping between the electron density and the ex-
ternal potential.

HK Theorem 2 Density functional theory is variational: the exact ground-state density
minimizes the total energy.

This idea is incredibly powerful, in principle. In WF-based methods, such as HF, MP2,
and CC, the wavefunction – a function that lives in a vast Hilbert space of dimension 3n – is
the central entity from which the energy is derived. In DFT, on the other hand, everything
comes from the electron density ρ(~r), a function that lives in Euclidean 3-space. In prac-
tice, however, DFT is not straightforward. The electronic Hamiltonian contains three terms:
electronic kinetic energy T̂e, electron-nuclear potential energy V̂en, and electron-electron po-
tential energy V̂ee. The first Hohenberg-Kohn theorem tells us each of these terms can be
written as a functional of the electron density. The electron-nuclear attraction energy can
be straightforwardly expressed as

Ven[ρ(~r)] =

∫
d~rv̂(~r)ρ(~r), (1.17)



CHAPTER 1. INTRODUCTION 7

but the exact forms of the kinetic and electron-electron potential energies are not known.
The contribution of the kinetic energy to the total electronic energy is massive, but the only
system for which we have a good description of the kinetic energy is the uniform electron
gas, for which the Thomas-Fermi model is exact. Thus, this sort of orbital-free formalism
of DFT has failed to gain much traction within the electronic structure community, as its
utility is limited to systems with nearly uniform electron densities.

Kohn-Sham DFT

Fortunately, there is an alternative formalism for DFT: Kohn-Sham DFT, or KS-DFT[11].
KS-DFT recasts the problem through the introduction of a Slater determinant of spin orbitals
(Kohn-Sham orbitals) that corresponds to a fictitious, non-interacting system of electrons,
yet yields the same ground-state density as the exact electronic wave function. Like orbital-
free DFT, KS-DFT is an exact theory. Its main advantages lie in the fact that the problem
has been transformed from a constrained search over densities to a constrained search over
orbitals, such that the same SCF machinery employed by HF can be used; and the largest un-
known in DFT, the electronic kinetic energy, can be much more accurately reproduced. The
kinetic energy for the fictitious, non-interacting system can be straightforwardly expressed
as

Ts[ρ(r)] =
n∑
i

〈
φi

∣∣∣∣−1

2
∇2

∣∣∣∣φi〉 , (1.18)

where |φi〉, the Kohn-Sham orbitals, are related to the electron density via

ρ(r) =
∑
i

|φi(~r)|2 . (1.19)

This non-interacting kinetic energy Ts is different from the exact kinetic energy, Te; however,
this difference is small, far smaller than the difference between the Thomas-Fermi kinetic en-
ergy and the exact kinetic energy for typical systems. Thus, one of the principle shortcomings
of DFT has been overcome.

At this point, only two entities within the KS-DFT energy expression remain unknown:
the non-classical electron-electron interaction energy, and the difference between the exact
and non-interacting kinetic energies. These two terms, each relatively small in magnitude,
constitute the exchange-correlation term in DFT, Exc[ρ(~r)]. Methodological developments
within the DFT community are primarily centered around newer (and hopefully better) ap-
proximations to the exchange-correlation functional. Local spin density approximations[12,
13] consider Exc to be a functional of only the density; generalized gradient approxima-
tions[14–17] (GGAs) incorporate the gradient of the density as well; meta-GGA function-
als[18–21] include either the Laplacian or (more commonly) the kinetic energy density; and
hybrid functionals[22–26] employ some amount of exact exchange. Such is the basis for the
pseudo-hierarchy provided by the Jacob’s ladder of density functional approximations[27].
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Unfortunately, conventional density functionals are inherently (semi-)local; they lack the
long-range components necessary for correctly describing, e.g., van der Waals interactions.
As such, an additional “stairway” of dispersion corrections to DFT has been constructed
over the years[28]. The most simple models for dispersion rely on the addition of pairwise
atomic corrections with the correct r−6 asymptote, with either pre-tabulated[29–31] or self-
consistently-computed[32–36] isotropic dispersion coefficients. In recent years, attempts have
even been made to develop density functionals with explicit nonlocal correlation[37–40].

1.6 Outline

This work is primarily concerned with the assessment and development of electronic
structure approaches in the context of intermolecular interactions, the type of interaction
that drives a variety of chemical processes, including gas sorption in nanoporous materials.
Chapters 2-4 are generally concerned with the assessment of existing electronic structure
approximations, while chapters 5 and 6 involve the development of novel methods.

Chapter 2

Adsorption of gas molecules in metal-organic frameworks is governed by many factors,
the most dominant of which are the interaction of the gas with open metal sites, and the
interaction of the gas with the ligands. In this chapter, we examine the latter class of inter-
action in the context of CO2 binding to benzene. We begin by clarifying the geometry of the
CO2-benzene complex. We then generate a benchmark binding curve using a coupled-cluster
approach with single, double, and perturbative triple excitations [CCSD(T)] at the complete
basis set (CBS) limit. Against this ∆CCSD(T)/CBS standard, we evaluate a plethora of
electronic structure approximations: Hartree-Fock, second-order Møller-Plesset perturba-
tion theory (MP2) with the resolution-of-the-identity approximation, attenuated MP2, and
a number of density functionals with and without different empirical and nonempirical van
der Waals corrections. We find that finite-basis MP2 significantly overbinds the complex.
On the other hand, even the simplest empirical correction to standard density functionals
is sufficient to bring the binding energies to well within 1 kJ/mol of the benchmark, corre-
sponding to an error of less than 10%; PBE-D in particular performs well. Methods that
explicitly include nonlocal correlation kernels, such as VV10, vdW-DF2, and ωB97X-V, per-
form with similar accuracy for this system, as do ωB97X and M06-L. This work[41] has been
published in The Journal of Chemical Physics.

Chapter 3

Electronic structure approaches for calculating intermolecular interactions have tradi-
tionally been benchmarked almost exclusively on the basis of energy-centric metrics. In this
chapter, we explore the idea of utilizing a metric related to geometry. On a diverse series of
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non-covalently-interacting systems of different sizes, from the water dimer to the coronene
dimer, we evaluate a variety of electronic structure approximations with respect to their abil-
ities to reproduce coupled-cluster-level geometries. Specifically, we examine Hartree-Fock,
second-order Møller-Plesset perturbation theory (MP2), attenuated MP2, scaled MP2, and
a number of density functionals, many of which include empirical or nonempirical van der
Waals dispersion corrections. We find a number of trends that transcend system size and
interaction type. For instance, functionals incorporating VV10 nonlocal correlation tend to
yield highly accurate geometries; ωB97X-V and B97M-V in particular stand out. We es-
tablish that intermolecular distance, as measured by, e.g., the center-of-mass separation of
two molecules, is the geometric parameter that deviates most profoundly among the various
methods. This property of the equilibrium intermolecular separation, coupled with its ac-
cessibility via a small series of well-defined single-point calculations, makes it an ideal metric
for the development and evaluation of electronic structure methods. This work[42] has been
published in Journal of Chemical Theory and Computation.

Chapter 4

With the aim of systematically characterizing the convergence of common families of
basis sets such that general recommendations for basis sets can be made, we have tested
a wide variety of basis sets against complete-basis binding energies across the S22 set of
intermolecular interactions – noncovalent interactions of small and medium-sized molecules
consisting of first- and second-row atoms – with three distinct density functional approxima-
tions: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized
gradient approximation; and B97M-V, a meta-generalized gradient approximation with non-
local correlation. We have found that it is remarkably difficult to reach the basis set limit; for
the methods and systems examined, the most complete basis is Jensen’s pc-4. The Dunning
correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence.
The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set
superposition error (BSSE) is applied: counterpoise-corrected def2-SVPD binding energies
are better than corresponding energies computed in comparably sized Dunning and Jensen
bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are
exhibited regardless of the level of density functional approximation employed. A sense of
the magnitude of the intrinsic incompleteness error of each basis set not only provides a
foundation for guiding basis set choice in future studies, but also facilitates quantitative
comparison of existing studies on similar types of systems. This work[43] has been published
in The Journal of Chemical Physics.

Chapter 5

With the aim of improving the utility of the DFT-D3 empirical dispersion correction,
in this chapter we generalize the DFT-D3 damping function by optimizing an additional
parameter, an exponent, which controls the rate at which the dispersion tail is activated. This
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method – DFT-D3(op), shorthand for “optimized power,” where power refers to the newly
introduced exponent – is then parameterized for use with ten popular density functional
approximations across a small set of non-covalent interactions and isomerization energies; the
resulting methods are then evaluated across a large independent test set of 2475 non-covalent
binding energies and isomerization energies. We find that the DFT-D3(op) tail represents a
substantial improvement over existing damping functions, as it affords significant reductions
in errors associated with non-covalent interaction energies and geometries. The revPBE0-
D3(op) and MS2-D3(op) methods in particular stand out, and our extensive testing indicates
they are competitive with other modern density functionals. This work[44] has been accepted
by Journal of Chemical Theory and Computation.

Chapter 6

With the aim of mitigating the basis set error in density functional theory (DFT) calcu-
lations employing local basis sets, in this chapter we develop two empirical corrections for
basis set superposition error (BSSE) in the def2-SVPD basis, a basis which – when stripped
of BSSE – is capable of providing near-complete-basis DFT results for non-covalent interac-
tions. Specifically, we adapt the existing pairwise geometrical counterpoise approach (gCP)
to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we
parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are
evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402
non-covalent binding energies and isomerization energies. We find that the DFT-C method
represents a significant improvement over gCP, particularly for non-covalently-interacting
molecular clusters. Moreover, DFT-C is transferable among density functionals and can be
combined with existing functionals – such as B97M-V – to recover large-basis results at a
fraction of the cost. This work[45] has been submitted to The Journal of Chemical Physics.
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Chapter 2

Case Study: The CO2-Benzene
Complex

2.1 Introduction

Metal-organic frameworks (MOFs) constitute a promising class of materials for CO2

separation[46]. MOFs are three-dimensional nanoporous solids consisting of metal centers
connected by organic ligands; there exist a tremendous number of synthetically accessible
combinations of ligands and metals[47]. Extensive studies have been conducted to determine
the impact of changing the metal center on CO2 adsorption[48–52], but there is a relative
paucity of work emphasizing the contribution of the ligand[53]. Although open metal sites
are commonly regarded as the most thermodynamically favorable binding locations for gas
molecules, the ligands themselves also contribute significantly to adsorption, and are hence
worthy of further investigation[53, 54].

A handful of studies have involved the investigation of the binding of CO2 to various
forms of organic linkers, predominantly functionalized variants of benzene[55–58], but to
date only one study has considered the interaction at nonequilibrium distances[59]. These
nonequilibrium distances are particularly relevant in the context of CO2 uptake in MOFs.
Additionally, no studies have systematically evaluated the ability of the various existing
electronic structure approximations to describe this gas-ligand interaction. The existing
literature has established density functional theory (DFT) as the primary workhorse for
such systems, a consequence of its ability to balance computational cost [typically O(N3)]
with accuracy[10, 11]. However, the famed Jacob’s ladder of DFT does not offer a clear
way to systematically improve results[27]. Moreover, the local nature of DFT within stan-
dard approximations renders it incapable of describing long-range London dispersion, an
integral component of noncovalent interactions such as gas-ligand binding[60]. To account
for this, a number of dispersion corrections to standard density functional theories have
been developed: the DFT-D, DFT-D2, and DFT-D3 approaches of Grimme[29, 30, 61], the
exchange-hole dipole moment (XDM6 and XDM10) model of Becke and Johnson[32–35, 62–
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64], and methods incorporating fully nonlocal correlation kernels[37–40]. For an overview
of these methods (and many more), the reader is referred to a recent review by Klimeš and
Michaelides[28]. This additional “stairway” of dispersion corrections further complicates the
DFT picture. Although efforts are underway to develop generally-applicable functionals, it
is often not clear a priori what the best functional for a particular application is.

In stark contrast, the hierarchy of wavefunction-based (WF) methods offers a clear path
to systematically obtaining more accurate energies, but at much steeper costs: even the
simplest method of incorporating electronic correlation in WF theory, second-order Møller-
Plesset perturbation theory (MP2), scales as O(N5), and methods that incorprate higher-
order correlation effects, such as coupled-cluster theory with single, double, and perturbative
triple excitations [CCSD(T)], suffer from even worse scaling. Even MP2 can be prohibitively
expensive for calculations involving extended systems. The resolution-of-the-identity (RI)
approximation partly addresses this cost by reducing the prefactor of the calculation, but
the underlying scaling is left unchanged[65–68]. Additionally, MP2 performs quite poorly
for certain classes of systems (notably those involving aromatic interactions) and converges
quite slowly with respect to the size of the basis set[69, 70]. Attenuation of the Coulomb
operator (attenuated MP2) attempts to address some of these problems (as well as that of
basis set superposition error, or BSSE), with the added benefit of introducing sparsity that
could be exploited to potentially reduce scaling[71, 72].

In this work, we evaluate a multitude of electronic structure approximations for the CO2-
benzene complex, a well-defined model system that is also a simple model of a gas binding to
a nonfunctionalized organic linker. We begin by elucidating the equilibrium geometry of the
complex, since there are conflicting reports in the literature[57, 58, 73]. We then characterize
the CO2-benzene potential energy surface using a wide variety of methods, assessing their
strengths and weaknesses. We find MP2 significantly overbinds the complex, particularly in
a finite basis, and hence is unsuitable as a benchmark in dispersion-bound systems. We also
find standard semilocal density functionals are – with some notable exceptions – generally
inadequate for this particular system, although this deficiency is rectifiable via the addition
of a simple C6 dispersion correction or an explicitly nonlocal correlation kernel.

2.2 Computational Methods

Throughout this study, all MP2 calculations employed the RI approximation, but the
RI prefix has been omitted. For all geometry optimizations, we utilized the dual-basis
approximation to HF in conjunction with MP2 (DB-MP2)[74–76], with basis set pairings
from Steele et al.[77]. We feel this approximation is justified based on the high degree of
accuracy it has demonstrated in previous studies[77, 78], as well as in this particular study.

A series of geometry optimizations were performed for the various possible symmetries
(C2v, Cs, and C1) of the flat-on conformations of the benzene-CO2 system at the DB-MP2
level with the dual-basis pairing for Dunning’s augmented correlation-consistent polarized
valence double-zeta basis (aug-cc-pVDZ)[77, 79, 80]. The Hessians and geometries for these
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calculations were then utilized as initial guesses in subsequent geometry optimizations at the
DB-MP2 level with the dual-basis pairing for the larger aug-cc-pVTZ basis. Single point
energy calculations were performed at the same level of theory for each structure in the aug-
cc-pVQZ basis, then extrapolated to the basis set limit using the two-point (T→ Q) formula
of Helgaker[70]. The conformation exhibiting the lowest energy at the extrapolated CBS limit
was determined to be the optimal structure and was utilized in subsequent benchmarking.

In order to evaluate various methods, a series of one-dimensional potential energy sur-
faces of the benzene-CO2 system were generated. The intermolecular structural parame-
ter for these binding curves was the projected distance between the carbon atom in CO2

and the ring center of benzene onto the principal axis of benzene. A wide variety of elec-
tronic structure methods were considered in the aug-cc-pVTZ basis: MP2[5, 81], attenuated
MP2[71, 72], CCSD(T)[9], B3LYP[15, 16, 22, 82], B97[17], B97-D[30], PBE[14], PBE0[83],
TPSS[84], TPSSh[18], M06-L[20], M06-2X[25], M11[85], ωB97X[86], ωB97X-D[87], ωB97X-
V[23], vdW-DF2 (rPW86+PW92)[14, 38, 88], VV10 (rPW86+PBE)[13, 40, 88], XDM6
(PW86+PBE)[14, 32, 33, 89], and Grimme -D2 and -D3 corrections to some of the standard
GGA functionals[30, 31]. The MP2 correlation energy was extrapolated to the basis set
limit (T → Q)[70], and a frozen-core (fc) CCSD(T) correction to the MP2/CBS correlation
energy was calculated in the cc-pVTZ basis as[90]:

ECBS
∆CCSD(T) = ECBS

MP2 + (ECCSD(T) (fc) − EMP2 (fc))
TZ. (2.1)

This benchmark was calculated both with and without the counterpoise correction (CP) for
basis set superposition error (BSSE)[91], and the region bounded by the two curves, denoted
∆CCSD(T)/CBS, represents the standard against which all other methods are evaluated.
With the exception of this benchmark curve, all other results reported herein do not employ
any form of counterpoise correction. Such corrections are expensive and the ideal method
should not necessitate them; furthermore, in the aug-cc-pVTZ basis, these corrections are
typically very small for density functionals, a consequence of the relatively fast convergence
of most density functionals with respect to basis set size[92].

A fine Lebedev integration grid consisting of 75 radial points and 302 angular points was
utilized in the computation of the exchange-correlation components of all of the density func-
tionals. With the exception of CCSD(T) and MP2, all calculations were performed in the
aug-cc-pVTZ basis. Moreover, for the RI calculations, the auxiliary basis sets of Weigend
were used[93]. For all calculations, integral threshholds of 10−14 a.u. were used, and no
symmetry was exploited, save the symmetry of the system itself during all geometry opti-
mizations. All calculations were performed with a development version of Q-Chem 4.1[94].
Molecular structures were generated with Avogadro[95].
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2.3 Results and Discussion

Geometry

In this study, the geometry of the benzene-CO2 system was optimized at the DB-MP2
level in the dual-basis pairing for aug-cc-pVTZ. The optimized geometry of the benzene-CO2

dimer is provided in Figure 2.1. The optimal dimer geometry, unlike that reported by Mackie
and DiLabio[57], is Cs-symmetric, with the principal axis of CO2 bisecting a carbon-carbon
bond of benzene. The CO2 molecule exhibits a slight deviation from linearity and is not
strictly parallel to the benzene ring. These findings compare favorably with related studies
by Besnard et al.[73]. and Chen et al.[58].

There exists a small (1 kJ/mol) thermodynamic driving force to break C2v symmetry,
but the potential energy surface appears to be largely invariant to rotation of the CO2 about
the principal axis of benzene, as evidenced by calculations involving the atom-centric Cs

structure.

P❛�❛✁❡t❡�s

❘ ✸✂✷✄✄ ✗❆

✟ ✄✶✂✄☎
✍

✒ ✵✂✺✆✶
✍

☛ ☎✄✂✷✸
✍

❞❖✝❈ ✄✂✄✞☎ ✗❆

❞❖✠❈ ✄✂✄✞✺ ✗❆

❪❖✝❈❖✠ ✄☎✶✂✆
✍

❞❈❍ ✄✂✵☎✆ ✗❆

❞❈✝❈✠ ✄✂✸✆✵ ✗❆

❞❈✠❈✡ ✄✂✸✶✶ ✗❆

❞❈✡❈✹ ✄✂✸✶✆ ✗❆

❞❈✹❈☞ ✄✂✸✶✶ ✗❆

Figure 2.1: Calculated equilibrium structure of the benzene-CO2 system, determined at the
DB-MP2 level of theory with the dual-basis pairing for Dunning’s augmented correlation-
consistent polarized valence triple-zeta basis. The complex possesses Cs symmetry.

Binding Curves

In order to assess the ability of various electronic structure methods to describe the
interaction between benzene and CO2, the optimized structure of CO2 was rigidly translated
along the principal axis of benzene. Twelve distinct intermolecular separations were thus
sampled, where the intermolecular separation has been defined as the projection onto the
principal axis of benzene of the distance between the carbon atom of CO2 and the center of
the ring. The resulting potential energy surfaces are portrayed in Figures 2.2-2.7.

We begin our analysis with the standard wavefunction-based methods, with results sum-
marized in Figure 2.2. The region bounded by the counterpoise-corrected (CP) and noCP
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∆CCSD(T)/CBS curves represents our best guess of the true potential energy surface along
this coordinate and the uncertainty associated therewith. The equilibrium intermolecular
separation at this level of theory is found to be 3.25±0.01 Å, corresponding to a binding
energy on the order of 10.2±0.4 kJ/mol. It is worth noting that, contrary to expectations,
the CP curve actually lies below the noCP curve, which may be indicative of the limitations
of extrapolation to the CBS limit.

Figure 2.2: Binding energy curves for the benzene-CO2 complex obtained with various wave-
function methods. The region denoted ∆CCSD(T)/CBS is bounded by CP- and non-CP-
corrected ∆CCSD(T) curves, and represents our best guess at the true binding curve. None
of the other methods employ the CP correction. The inset is a close-up of the region around
the equilibrium distance (note different scale), and the curves connecting the points are
merely smooth fits to the data. The equilibrium intermolecular separations for each method
(listed to the right of the legend as re) were determined by cubic spline interpolation of the
data. The reported re for ∆CCSD(T)/CBS is the average of the ∆CCSD(T)/CBS noCP and
CP equilibrium intermolecular separations. For ease of analysis, the legend has been ordered
(with the exception of the benchmark ∆CCSD(T)/CBS region) to mirror the ordering of
the binding curves near the equilibrium separation.

Relative to the ∆CCSD(T)/CBS benchmark, Hartree-Fock theory (HF) provides a rather
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poor description of the potential energy surface; this is unsurprising, given the lack of cor-
relation beyond Pauli exclusion in HF. However, HF theory does yield a bound complex,
with a binding energy curve whose asymptotic form scales with the inverse fifth power of
intermolecular distance. This is consistent with expectations: both CO2 and benzene are
known to be characterized by significant quadrupole moments.

The addition of MP2 correlation significantly improves the description of the complex
relative to HF. However, MP2 theory systematically predicts overbinding in this particular
system, regardless of the choice of basis set. As the size of the basis set increases, so too does
the quality of the description, but even at the extrapolated CBS (T→ Q) limit, the minimum
binding energy is in error by upwards of 15% relative to the benchmark ∆CCSD(T)/CBS
value. Moreover, the equilibrium separation of the benzene and CO2 molecules is signifi-
cantly smaller (on the order of 0.2 Å) for finite-basis MP2 than for ∆CCSD(T)/CBS, which
is again indicative of overbinding. Fundamentally, this overbinding is attributable to the fact
that the frequency-dependent polarizabilities (and hence C6 coefficients, as per the Casimir-
Polder relation) of MP2 are identical to those of uncoupled HF (UCHF) theory[96]. More
specifically, the UCHF polarizabilities of benzene are likely the chief contributor to overbind-
ing; the carbon dioxide dimer is well-described by MP2 theory, whereas the benzene dimer
is known to be significantly overbound[69, 97]. It is clear from these results that MP2 is
unsuitable as a benchmark for systems with significant dispersion interactions, even in the
large aug-cc-pVQZ basis, and hence a more complete description of correlation is required.

Attenuation of the Coulomb operator in MP2 (attMP2 in Figure 2.2) addresses some of
this overbinding. In fact, the attenuated MP2 method in the aug-cc-pVTZ basis performs
similarly to standard MP2 in the much larger aug-cc-pVQZ basis, at least in the vicinity
of the binding minimum. Unfortunately, this improvement comes at the expense of the
description at larger intermolecular separations – the rate with which the attenuated MP2
interaction energy diminishes with separation is unphysical. Moreover, attenuated MP2
predicts a tighter equilibrium geometry of the complex than ∆CCSD(T). Despite these
caveats, attenuated MP2 still represents a notable improvement over standard, finite-basis
MP2 in this system.

In addition to the aforementioned wavefunction-based approaches, we have applied a
number of density functionals of varying degrees of sophistication to this system. The sim-
plest such functionals utilized here are of the GGA variety: PBE; the global hybrid GGAs
PBE0, B97, and B3LYP; and the long-range corrected hybrid GGA ωB97X. As is evident
from Figure 2.3, all of the GGA functionals employed, with the exception of ωB97X, produce
qualitatively-incorrect binding energy curves that bear striking resemblance to the HF curve,
and it is notable that all of these methods predict a bound complex. The strikingly-good
performance of ωB97X could be, to some extent, a result of the incorporation of range-
separated exchange, though it is more likely an artifact of training: unlike the other GGA
functionals examined here, ωB97X was trained on noncovalent interactions.

Slightly more sophisticated than these GGA functionals are functionals of the meta-GGA
variety. Here, we examined the empirical TPSS, its hybrid variant TPSSh, and a number
of Minnesota functionals: the local M06-L, the global hybrid M06-2X, and the more recent
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Figure 2.3: Binding energy curves for the benzene-CO2 complex obtained with various stan-
dard, hybrid, and long-range corrected hybrid GGA functionals in the aug-cc-pVTZ basis
with a (75,302) integration grid. For further details, see Figure 2.2.

range-separated hybrid M11. Binding curves obtained using these functionals are provided
in Figure 2.4. We see that the empirical TPSS and TPSSh functionals suffer from similar
issues as the GGA functionals: the kinetic energy density is not sufficiently nonlocal so as to
capture dispersion interactions. The Minnesota functionals provide a much better description
of the binding, though this is likely attributable to their high degrees of parametrization, as
well as the fact that their training sets included noncovalent interactions. Unfortunately, this
improved description is not without its flaws: the Minnesota functionals, particularly M06-
2X and M11, are hampered by incorrect asymptotics and unphysical oscillations in binding
energy with increasing separation[98, 99]. M06-L is clearly the top performer amongst the
meta-GGA functionals for this particular system, even outperforming MP2 at the basis set
limit in the vicinity of the equilibrium binding distance.

The next degree of sophistication of DFT explored here constitutes a departure from
Perdew’s ladder – we’ll henceforth be traversing the stairway of Klimeš and Michaelides[28].
The first such step we consider involves Grimme’s empirical DFT-D2 correction to GGA
functionals (henceforth referred to, for simplicity, as DFT-D, since the original iteration of
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Figure 2.4: Binding energy curves for the benzene-CO2 complex obtained with various stan-
dard, hybrid, and range-separated hybrid meta-GGA functionals in the aug-cc-pVTZ basis
with a (75,302) integration grid. For further details, see Figure 2.2.

DFT-D is not in common use)[30]. We consider -D corrections to B3LYP, PBE, and PBE0,
and we also examine Grimme’s unhybridized B97-D, as well as ωB97X-D. The binding energy
curves associated with these methods are given in Figure 2.5. Comparing these results to
those of Figure 2.3, we see that addition of even the simplest form of dispersion correction
improves the description of binding in the benzene-CO2 complex drastically. However, there
is a caveat: the choice of damping function is quite important. PBE0-D exhibits significant
overbinding near the equilibrium separation when the damping function associated with
Grimme’s DFT-D is used; however, use of the damping function of Chai and Head-Gordon[87]
(CHG) yields significantly better energetics near the equilibrium geometry, though at the cost
of lethargic decay of the binding energy in the intermediately-stretched regime. See Figure
2.6 – the PBE0-D (CHG) and PBE0-D3 curves are very similar. Among the DFT-D methods,
PBE-D exhibits the best performance, only deviating from the benchmark curves at very
compressed geometries, where the overly repulsive PBE exchange contribution dominates.

The next step of complexity in describing dispersion interactions involves factoring in the
local environment to the standard C6 correction. This encompasses the DFT-D3 correction
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Figure 2.5: Binding energy curves for the benzene-CO2 complex obtained with various DFT-
D2 methods in the aug-cc-pVTZ basis with a (75,302) integration grid. For further details,
see Figure 2.2.

of Grimme, as well as the XDM model of Becke and Johnson[32, 61]. Binding energy curves
for PBE-D3, PBE0-D3, and XDM6 (with PW86 exchange and PBE correlation) are provided
in Figure 2.6. Comparing the PBE-D3 and PBE0-D3 curves to the DFT-D curves of Figure
2.5, we see that although accounting for the local environment introduces another layer of
complexity, this additional complexity does not necessarily correspond to an improvement
of the description – the -D3 methods exhibit curves which are shifted significantly (around
0.1 Å) towards larger intermolecular separations, with broader wells. Moreover, comparison
with the PBE0-D (CHG) results shows that perhaps the largest difference between the -D
and -D3 methods is not actually this environmental dependence, but rather the choice of
damping function: DFT-D3 utilizes the same form of damping function as -D (CHG).

The XDM approach, though also quite good here, comes with its own disclaimer: it is
highly sensitive to the choice of exchange and correlation functionals. A number of other xc
functionals were examined in conjunction with both XDM6 and XDM10 (using parameters
recommended by various authors), but the performances of most are unsatisfactory – for
instance, the PW86+PBE+XDM10 approach, using optimized parameters from Becke et
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al.[63], shifts the binding minimum to the right by roughly 0.4 Å and only recovers 25% of
the equilibrium binding energy).

Figure 2.6: Binding energy curves for the benzene-CO2 complex obtained with various meth-
ods employing environmentally-dependent C6 corrections in the aug-cc-pVTZ basis with a
(75,302) integration grid. For further details, see Figure 2.2.

The most sophisticated class of methods examined in this study explicitly incorporate
nonlocal contributions to correlation: vdW-DF2, VV10, and ωB97X-V. As illustrated in
Figure 2.7, these methods describe the binding of CO2 to benzene reasonably well through all
intermolecular separations examined. All of the nonlocal methods overbind slightly at their
respective equilibrium geometries, which is indicative of marginally inflated C6 coefficients.
The issues associated with exchange-matching in vdW-DF2 are manifest in fact that the
entire vdW-DF2 curve appears to be shifted 0.1 Å to the right of the ∆CCSD(T) benchmark,
but other than this, none of the methods here deviate by much more than 1 kJ/mol except
at the most compressed geometry, where the overly repulsive exchange components begin to
dominate.
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Figure 2.7: Binding energy curves for the benzene-CO2 complex obtained with various non-
local methods in the aug-cc-pVTZ basis with a (75,302) integration grid. For further details,
see Figure 2.2.

2.4 Conclusion

In this work, we have clarified the geometry of the benzene-CO2 complex and system-
atically generated a series of binding energy curves for the complex using a multitude of
electronic structure approximations. More specifically, we have assessed the efficacy of HF,
MP2, CCSD(T), and a number of DFT exchange-correlation functionals with and without
different empirical and nonempirical van der Waals corrections with regard to the description
of binding in the benzene-CO2 complex.

We find that although HF predicts a bound complex – a consequence of a significant
quadrupole-quadrupole electrostatic interaction – the energetics and intermonomer distance
predicted at such a low level of theory leave much to be desired; the inclusion of electronic
correlation is necessary to achieve any semblance of quantitative accuracy. Moreover, this
description of electronic correlation must be sufficiently nonlocal, as exemplified by the fail-
ure of conventional semi-local density functionals (e.g. PBE, TPSS) to correctly reproduce
the ∆CCSD(T) binding energy curve. Some semi-empirical functionals, namely those in
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the Minnesota suite, perform quite well in the vicinity of the minimum, but they are ham-
pered by incorrect asymptotics and unphysical oscillations. Standouts amongst the standard
GGA and meta-GGA functionals are ωB97X and M06-L, which describe the binding quite
well throughout a range of intermolecular separations; the exemplary performance of these
functionals may be largely attributable to the inclusion of noncovalent interactions in their
respective training sets.

The simplest wavefunction-based approach to correlation – MP2 theory – while quali-
tatively correct, yields substantial overbinding in finite basis sets, and overbinds noticably
even when extrapolated (T → Q) to the CBS limit. Attenuation of the Coulomb operator
addresses some of this overbinding and improves the performance of MP2 in the vicinity
of the equilibrium separation, but at the cost of the long-range limit. In contrast, even
the simplest density-functional-based method of treating dispersion, i.e. the addition of an
empirical C6 correction (DFT-D), is sufficient to bring standard GGA functionals within 1
kJ/mol of the ∆CCSD(T) benchmark, depending on the choice of damping function: PBE-
D in particular performs quite well. Methods that explicitly address nonlocal correlation
– VV10, vdW-DF2, and ωB97X-V – are also rather well-suited to this system, although
vdW-DF2 predicts a characteristically too-large intermonomer distance, consistent with an
overly-repulsive exchange component, and all of the nonlocal methods overbind slightly at
their respective equilibrium separations.

The extent to which the impressive accuracies of the DFT-D, M06-L, ωB97X-V, and
VV10 methods are transferable to larger, more diverse systems – namely a variety of MOFs
– remains to be seen. The vdW-DF2 method has been validated on a wide variety of sys-
tems, and its performance has been remarkably consistent[54, 100–103]. To date, VV10 has
only been benchmarked on noncovalent interactions in systems containing small molecules;
although the results have been promising – particularly when range-separated exchange is
employed – the method has yet to be validated for larger systems, such as MOFs[102, 104].
On the other hand, PBE-D has been demonstrated to be reasonably successful at predict-
ing CO2 adsorption energies in a few MOF variants[54, 103], though the failure of PBE-D3
to describe H2 binding to Cu surfaces again underscores the potential sensitivity of the -D
brand of methods to the choice of damping function and C6 coefficients[101]. M06-L has re-
cently been applied, with some success, to hydrocarbon adsorption in Fe-MOF74[105]. The
ωB97X-V functional is quite new, and although it has excelled in a wide variety of systems,
the range-separated exchange component hinders its adaptation into periodic codes[23]. This
is not necessarily a problem, as calculations on cluster models of MOFs have the potential
to be quite accurate[105, 106], but it is certainly a limitation of not only ωB97X-V, but also
long-range corrected variants of VV10.
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Chapter 3

A New Paradigm for Method
Assessment: Geometries

3.1 Introduction

There exist a tremendous number of approaches to approximately solving the non-
relativistic, time-independent Schrödinger equation for a many-electron system, and it is
often not clear a priori what the optimal choice for a particular application is. The well-
defined hierarchy of wavefunction-based (WF) methods offers a clear path to obtaining highly
accurate energies, though at great expense. The simplest method for adding electronic cor-
relation to the Hartree-Fock (HF) mean field ansatz[107, 108], second-order Møller-Plesset
perturbation theory (MP2)[5], scales as O(N5), and more highly-correlated methods, such as
coupled-cluster theory with single, double, and perturbative triple excitations – CCSD(T)[9]
– exhibit even worse scaling (O(N7) in the case of CCSD(T)). The resolution-of-the-identity
(RI) approximation[65–68] partly addresses this cost by reducing the computational pref-
actor, but the underlying scaling of the method to which it is applied is left unchanged.
Additionally, correlated WF methods exhibit slow convergence with respect to basis set
size, a consequence of their inclusion of excited-state determinants and the correspondingly
large number of basis functions required to accurately describe the virtual space associated
therewith[69, 70]. Though still in its infancy, attenuation of the Coulomb operator is one
promising means of addressing not only these issues, but basis set superposition error (BSSE)
as well[71, 72].

In stark contrast to the clear-cut hierarchy of WF methods, the well-known Jacob’s
ladder[27] of density functional theory (DFT)[10, 11] offers no clear way to systematically
improve results. Moreover, the inherently local description provided by DFT within standard
approximations renders it incapable of recovering long-range dispersion[60]. In the absence
of strong permanent electrostatic interactions, these second-order effects are crucial for the
correct description of non-covalent interactions, which will be the focus of this chapter. In
the past decade, a variety of means of accounting for long-range van der Waals dispersion
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forces have been proposed, from simple pairwise C6 corrections to the exchange-correlation
energy[29, 30, 33, 36, 61] to the inclusion of fully nonlocal correlation kernels[37–40].

When evaluating the performance of any of these various electronic structure approaches,
the recent literature has focused almost exclusively on the ability of the method to reproduce
“exact” electronic energies. Whenever a promising new method is developed, a flurry of
studies arise wherein this method is applied to a variety of systems of physical interest. The
common thread in such studies is their focus on energies; for instance, in a non-covalently
interacting system, the metric of choice is typically the binding energy, defined – at least
for size-consistent methods – as the difference between the total energy of the system and
the energies of its constituent molecules. Although there may be subtle differences in the
precise definition of the binding energy among various studies (e.g., the fragments may or
may not be allowed to relax) the fact remains that it is an objective metric: it provides a
means of methodically comparing electronic structure approaches. Unfortunately, this sort
of energy-centric approach to method evaluation is far from perfect. The ideal method would
recover the entire “exact” potential energy surface, not just a single point; it would reproduce
“exact” geometries as well as energies.

This energy-centric focus has been justified repeatedly over the years by studies in which
intramolecular geometric parameters were considered. It has been well established that –
in any reasonable basis – even HF yields accurate bond lengths and angles for many sys-
tems, and differences between various methods, as measured on the basis of these metrics,
tend to be minimal[109–114]. Although these sorts of intramolecular metrics are sufficient
for describing geometries of small single molecules, they are inadequate in the context of
large molecules and systems composed of multiple molecules, i.e. systems involving signif-
icant non-covalent interactions. In such systems, quantitative comparison of geometries is
difficult; distilling 3N − 6 geometric degrees of freedom into a single objective metric is a
distinctly non-trivial endeavor. Despite being difficult, this is an important avenue of re-
search. Intermolecular interactions are orders of magnitude weaker than covalent bonds.
They involve relatively shallow potential surfaces, and as such, some of these softer degrees
of freedom may be useful for the evaluation of electronic structure approaches.

In the context of non-covalently-interacting systems, the systematic evaluation of elec-
tronic structure methods with regard to their description of geometries is a largely unde-
veloped idea. There have been a number of studies in which binding energy curves were
generated and studied, though the principle metric of evaluation has in every case been the
equilibrium binding energy, not the location of the minimum nor the shape of the curve[115–
121]. There have also been a handful of studies in recent years in which hydrogen bond
lengths predicted by various methods were compared[122–124]; additionally, there has been
a study by Vydrov and Van Voorhis in which the performances of various van der Waals
density functionals were evaluated on the basis of their ability to predict intermolecular sep-
aration in small CO2-containing complexes[102], and a study by Remya and Suresh in which
a tremendous number of density functionals were screened on the basis of their abilities to
minimize the overall root-mean-square deviation with regard to CCSD geometries of ten
small complexes[125]. In the same time frame, there have been countless studies in which
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electronic structure approaches have been evaluated solely on the basis of their abilities to
reproduce single-point energies. Moreover, the conclusions that can be drawn from these
few geometry-based studies are limited, in some cases by confinement to a single interaction
motif, in others by the questionable quality of the reference structures, and in all cases by a
focus on only small systems.

In this work, we evaluate a variety of electronic structure approximations with regard to
their abilities to reproduce complete-basis CCSD(T)-level geometric parameters on a diverse
set of systems for which high-quality reference data is readily available. We explore the
impacts of interaction type and system size on the performances of the various methods.
Moreover, we establish a procedure for obtaining geometric parameters for larger systems,
for which multidimensional optimizations with CCSD(T) are prohibitively expensive. We
find that although a number of deficiencies of various methods – such as the characteristic
overbinding of MP2 – are simply amplified during the transition to larger systems, some are
not.

3.2 Computational Methods

We have examined a wide variety of electronic structure methods with respect to their
abilities to reproduce coupled-cluster geometries of non-covalently-interacting molecules.
Methods examined include HF[107, 108], MP2[5, 81], attenuated MP2[71, 72], simple-scaled
MP2 (sMP2, with same-spin and opposite-spin coefficients set to 0.60 for aug-cc-pVDZ,
0.75 for aug-cc-pVTZ)[71, 72, 126], spin-component scaled MP2 (SCS-MP2)[127], scaled
opposite-spin MP2 (SOS-MP2)[128], B3LYP[15, 16, 22, 82], PBE[14], M06[25], M06-L[20],
M06-2X[25], M11[85], ωB97X[86], ωB97X-D[87], ωB97X-V[23], B97M-V[19], vdW-DF2[13,
38, 88], VV10[14, 40, 88], LC-VV10[40], and Grimme -D2 and -D3 corrections to PBE and
B3LYP[30, 31, 129]. For DFT-D3, two different damping functions were utilized: the original
zero-damping scheme of Grimme[31], which we refer to simply as DFT-D3, and the damping
scheme of Becke and Johnson[34, 61], which we denote as DFT-D3 (BJ).

Throughout this study, all MP2 calculations employ the RI approximation in conjunction
with the auxiliary basis sets of Weigend et al.[93], but the RI prefix has been omitted. All
calculations were performed with a development version of Q-Chem 4.2[94], with the excep-
tion of the calculations on the A21x12 dataset reported in Table 3.1, which were performed
with PSI4[130]. Molecular structures were generated with Avogadro[95]. In this work, we
have utilized three distinct datasets which can broadly be characterized by the sizes of their
constituent systems; due to computational constraints, the manner in which these three
classes of systems were treated differs, and will be detailed forthwith.

Small Systems

The first dataset, henceforth referred to as A21, is comprised of the first 21 systems in
the A24 dataset[131]. These systems were optimized by Řezáč and coworkers[131] at the
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∆CCSD(T)/CBS level, with a two-point (aug-cc-pVTZ, aug-cc-pVQZ) Helgaker extrapo-
lation of the counterpoise-corrected MP2 correlation energy and a counterpoise-corrected
coupled-cluster correction in the aug-cc-pVDZ basis[70, 90, 91, 132]. The systems contained
in this dataset are small enough that high-quality geometries are readily available, and so
we have performed unconstrained relaxations using all of the methods detailed above, in
order to compare the resultant structures to the benchmark-level structures of Řezáč and
Hobza[131]. All geometry optimizations were initialized with the relevant ∆CCSD(T)/CBS
structure and a Hartree-Fock Hessian generated in the 6-31+G* basis. Tight convergence
criteria were employed: the DIIS error was converged to 10−8, the maximum component
of the gradient was converged to 1.5 × 10−4, the maximum atomic displacement was con-
verged to 6 × 10−5, the energy change of successive optimization cycles was converged to
10−9, and integral threshholds of 10−14 were used. All calculations were performed in the
aug-cc-pVTZ basis[79, 80]. No symmetry was exploited, though the point group symmetry
of each optimized structure matched in every instance the symmetry of the reference struc-
ture. Optimizations were performed in Cartesian coordinates. A fine Lebedev integration
grid consisting of 99 radial points and 590 angular points was utilized in the computation of
the semilocal exchange-correlation components of all of the density functionals; the coarser
SG-1 grid was used for nonlocal correlation in the relevant methods, i.e. those involving
vdW-DF2 or VV10 nonlocal correlation[133].

A variety of metrics were employed to compare the geometries associated with each
method with the benchmark ∆CCSD(T)/CBS geometries. One such metric, the overall
root-mean-square deviation (RMSD) is given by

RMSD =

√√√√√ N∑
i=j

d(xi, yi, zi, xj, yj, zj)2

N
(3.1)

where N is the number of atoms in the structure and d(xi, yi, zi, xj, yj, zj) is the Euclidean
distance between the points (xi, yi, zi) and (xj, yj, zj). Specifically, we define the overall
RMSD as the minimum such number, allowing for rigid transformations of the coordinate
systems i and j associated with the reference structure and the optimized structure. The
overall RMSD thus encompasses both inter- and intramolecular errors in geometry. We
also utilized an intermolecular metric, namely the closest point of contact between the two
molecules in each system, and various intramolecular metrics, specifically bond length and
bond angle root-mean-square errors.

Medium Systems

The second dataset, henceforth referred to as M12, consists of a well-balanced subset of
the S66x8 dataset of Řezáč et al.[116], as well as the CO2-benzene complex[41]. Unfortu-
nately, computational constraints have precluded explicit multi-dimensional optimizations of
structures of this size at suitably high levels of theory (i.e. CCSD(T)); as a result, we have
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utilized cubic interpolation of various single point energies corresponding to rigid displace-
ment along a single intermolecular coordinate. The particular coordinates and displacements
used are defined in the original works of Řezáč et al.[116] and Witte et al.[41], and are de-
picted in Figure 3.1.

Figure 3.1: Structures of the systems in the M12 dataset. A light blue sphere corresponds
to the center of mass of a particular molecule. The type of interaction is indicated by the
color of the text: hydrogen-bonded systems are blue, dispersion-bound systems are green,
and systems with mixed interactions are red. Green double-headed arrows indicate the
relevant intermolecular axis for each system. In brackets, abbreviations for the complexes
are introduced.

We have numerically examined the validity of this sort of approach. A representative
summary of our findings is provided in Table 3.1. A variety of means of interpolating along
the potential energy surface have been examined: a cubic spline, a quartic spline, and a
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least-squares-optimized function consisting of a decaying exponential and a power series in
r−1, i.e. a simplification of the model of Tang and Toennies[134]. For the M12 set, the
differences in interpolated equilibrium distances obtained with these methods are on the
order of 0.001 Å.

Benchmark Quality: Basis Sizea Interpolation Typeb

UAD SAD MAX UAD SAD MAX

MP2: (aQ,a5) vs (aT,aQ)c 0.001 0.000 -0.002 Quartic vs Cubic 0.000 0.000 0.001
∆CC: aT vs aDd 0.004 -0.004 -0.009 LSQ vs Cubic 0.001 0.000 -0.004

Benchmark Quality: CO2-Benzenee Validity of Interpolationf

r BE r BE

MP2/CBS (aT,aQ) + ∆CC (aD) 3.248 -2.60 Optimized 3.255 -2.65
MP2/CBS (Q,5) + ∆CC (T)g 3.251 -2.66 Interpolated 3.253 -2.64
Difference 0.003 0.06 Difference 0.001 -0.01

aResults pertain to the A21x12 set.
bResults pertain to the M12 set.
cExtrapolation to the CBS limit was performed according to the scheme of Helgaker et al.[70, 132]. aT,

aQ, and a5 denote aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z, respectively.
dRI-CCSD(T) correction to MP2 correlation energy[90]. aD and aT denote aug-cc-pVDZ and aug-cc-

pVTZ, respectively.
eEquilibrium distances r and binding energies BE were interpolated with a cubic spline.
fCase study on the CO2-benzene complex using VV10.
gT, Q, and 5 denote cc-pVTZ, cc-pVQZ, and cc-pV5Z, respectively.

Table 3.1: Justification of methods. We have considered the quality of the reference data
with regard to basis set size on both small (top left) and moderately-sized (bottom left)
systems, the impact of the specific form of function used for interpolation (top right), and
the difference between interpolation and constrained optimization (bottom right). UAD,
SAD, and MAX denote respectively the unsigned, signed, and maximum average difference
in interpolated equilibrium separation across the indicated dataset, in units of Å. r and BE
denote the equilibrium distance (Å) and binding energy (kcal mol−1), respectively.

We have also investigated whether interpolation is a suitable substitute for explicitly
performing a constrained optimization along the relevant axis. There appears to be no
difference between the two approaches; the results of a case study of VV10 on the CO2-
benzene complex are provided in Table 3.1. Further proof is provided by a recent study on the
parallel-displaced benzene dimer in which both the in-plane shift and interplane spacing were
optimized at the CCSD(T)/aug-cc-pVTZ level of theory[135]. The optimized parameters
correspond to a center-of-mass separation of 3.84 Å, which compares quite favorably with
the value of 3.86 Å obtained by interpolating along the ∆CCSD(T)/CBS binding curve of



CHAPTER 3. A NEW PARADIGM FOR METHOD ASSESSMENT: GEOMETRIES 29

the M12 set.
As a final justification of our methodology, we have addressed the quality of our bench-

marks. For the A21 and M12 sets, the reference data is ∆CCSD(T)/CBS, with a two-point
(aug-cc-pVTZ, aug-cc-pVQZ) extrapolation of the MP2 correlation energy and a correction
for higher-order correlation effects in the aug-cc-pVDZ basis[70, 90, 132]. Specifically, we
have investigated the impact of utilizing larger basis sets for each of these components on
interpolated equilibrium distances in the A21x12 dataset – a set constructed in a manner
analogous to the S66x8 set – wherein we rigidly have scaled the center-of-mass separation of
each system in the A21 set by a factor of 0.9 to 2.0, in increments of 0.1. The A21 set, along
with the relevant intermolecular axis utilized for the generation of the A21x12 set, is depicted
in Figure 3.2. As is evident from Table 3.1, the reference data is indeed sufficiently high-
quality: using larger bases changes the interpolated equilibrium intermolecular distances by
less than 0.01 Å. As a case study of whether such a choice of basis sets is sufficient for larger
systems, we have examined the CO2-benzene complex at two different levels of theory, and
found that our reference data is indeed sufficiently converged with respect to basis set size,
as regards both equilibrium geometry and binding energy.

Figure 3.2: Structures of the systems in the A21x12 dataset. The type of interaction is
indicated by the color of the text: hydrogen-bonded systems are blue, dispersion-bound
systems are green, and systems with mixed interactions are red. Green double-headed arrows
connect the centers of masses of the two molecules in each system, and hence indicate the
relevant intermolecular axis for each system.

As in the case of the A21 set, our calculations on the M12 set utilize a (99,590) Lebedev
integration grid for semilocal components of density functionals, with the SG-1 grid being
used for nonlocal correlation. Furthermore, integral threshholds of 10−14 were used, the DIIS
error was converged to 10−8, and no symmetry was exploited. All calculations were performed
in the aug-cc-pVTZ basis. For the MP2 calculations, the frozen core approximation was
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employed[136]. MP2 results were corrected for basis set superposition error (BSSE) a la
Boys and Bernardi[91].

Large System

In an attempt to probe the transferability of observed trends to even larger systems, we
have treated the coronene dimer in an analogous manner to how the M12 set was treated.
The reference geometry for the coronene dimer, determined at the QCISD(T)/h-aug-cc-
pVDZ level by Janowski et al.[137], is depicted in Figure 3.3. This geometry corresponds
to an interplane spacing of 3.458 Å, with an in-plane shift of 1.553 Å. We constructed
a potential energy surface for each method with a series of seven of single-point energy
calculations; in so doing, we sampled interplane separations from 3.008 Å to 3.908 Å, in
increments of 0.158 Å, holding the in-plane shift and all intramolecular parameters constant.
To aid convergence, densities determined at the LDA level were used as a starting point for
all jobs, and the criterion for determining wavefunction convergence was lowered to 10−6.
All calculations were performed in the aug-cc-pVDZ basis, and all methods were corrected
for BSSE in the usual manner[91]. A (99,590) Lebedev grid was used for the evaluation of
semilocal components of density functionals, the SG-1 grid was used for the evaluation of
nonlocal correlation, integral threshholds were set to 10−14, and no symmetry was exploited.

Figure 3.3: Structure of the coronene dimer. Light blue spheres correspond to the centers
of masses of the coronene monomers. A green double-headed arrow indicates the relevant
intermolecular axis.

3.3 Results and Discussion

Small Systems

A summary of results pertaining to the A21 dataset is provided in Table 3.2 and Fig-
ure 3.4. It is evident from Table 3.2 that of the methods examined, ωB97X-V is the top
performer, treating the various classes of interactions equally well. Moreover, the similarity
between the overall root-mean-square deviation (RMSD) and overall weighted root-mean-
square deviation (wRMSD) indicates that ωB97X-V performs equally well for both weak
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and strong interactions, as opposed to a method such as B3LYP, which performs dispro-
portionately well on stronger interactions, i.e. hydrogen bonds. Within the A21 dataset,
the various modifications of MP2 perform reasonably well for geometry optimizations, with
attenuated MP2 (attMP2) slightly outperforming other versions of MP2. MP2 systemat-
ically underestimates intermolecular distances, as evidenced in Figure 3.4, which can be
attributed somewhat to BSSE, but primarily to the overbinding endemic to the method.
This overbinding and concomitant underestimation is alleviated somewhat by the attenu-
ation of the Coulomb operator; some systems are actually underbound by attMP2, which
suggests the addition of a long-range dispersion correction could be profitable. This has
been explored by Huang et al., who found that attenuation of dispersion-corrected MP2 can
indeed improve the description of intermolecular interactions, though at the possible cost of
a poorer picture of intramolecular interactions[138]. Simple-scaling of the MP2 correlation
energy, on the other hand, leads to systematic overestimation of intermolecular separation.
This is an artifact of the fact that the scaling coefficent was optimized with respect to errors
in interaction energies in the S66 dataset, and is hence too small for the purposes of this
dataset. Scaling of individual components of the MP2 correlation energy (SCS-MP2 and
SOS-MP2) is similarly underwhelming here.

Hydrogen-Bonded Mixed Interactions Dispersion-Bound All

Method RMSD (Å) Method RMSD (Å) Method RMSD (Å) Method RMSD (Å) Method wRMSD (Å)

MP2 0.010 ωB97X-V 0.016 attMP2 0.009 ωB97X-V 0.014 ωB97X-V 0.014
ωB97X-V 0.011 LC-VV10 0.024 MP2 0.012 LC-VV10 0.028 attMP2 0.022
attMP2 0.012 vdW-DF2 0.035 ωB97X-V 0.013 attMP2 0.035 MP2 0.022
SCS-MP2 0.013 ωB97X-D 0.036 B97M-V 0.020 vdW-DF2 0.036 LC-VV10 0.027
sMP2 0.013 sMP2 0.039 B3LYP-D3 0.021 B97M-V 0.037 B97M-V 0.027
B3LYP 0.014 M11 0.050 B3LYP-D3 (BJ) 0.024 ωB97X-D 0.037 sMP2 0.029
B97M-V 0.017 SOS-MP2 0.053 VV10 0.042 MP2 0.038 SCS-MP2 0.029
M11 0.018 B97M-V 0.057 vdW-DF2 0.042 sMP2 0.042 ωB97X-D 0.031
M06-2X 0.019 attMP2 0.062 LC-VV10 0.043 M11 0.045 B3LYP-D3 0.032
B3LYP-D3 0.020 SCS-MP2 0.065 SCS-MP2 0.048 SCS-MP2 0.048 B3LYP-D3 (BJ) 0.034
B3LYP-D3 (BJ) 0.020 PBE 0.065 ωB97X-D 0.050 B3LYP-D3 0.053 vdW-DF2 0.037
LC-VV10 0.021 MP2 0.068 M06-L 0.054 B3LYP-D3 (BJ) 0.054 M11 0.038
SOS-MP2 0.023 M06 0.071 ωB97X 0.057 SOS-MP2 0.055 ωB97X 0.041
ωB97X-D 0.025 B3LYP-D3 0.089 M06 0.059 M06 0.058 SOS-MP2 0.042
PBE 0.027 B3LYP-D3 (BJ) 0.089 M11 0.061 VV10 0.067 M06 0.045
M06 0.029 M06-L 0.092 PBE-D3 0.066 M06-L 0.067 M06-2X 0.049
ωB97X 0.031 PBE-D3 (BJ) 0.093 PBE-D3 (BJ) 0.067 ωB97X 0.069 M06-L 0.051
PBE-D3 0.031 ωB97X 0.096 B3LYP-D 0.070 PBE-D3 (BJ) 0.072 B3LYP-D 0.052
vdW-DF2 0.032 VV10 0.097 M06-2X 0.070 PBE-D3 0.074 PBE-D3 0.056
M06-L 0.033 PBE-D3 0.101 sMP2 0.072 M06-2X 0.084 VV10 0.060
PBE-D3 (BJ) 0.035 PBE-D 0.126 PBE-D 0.083 B3LYP-D 0.090 PBE-D3 (BJ) 0.061
B3LYP-D 0.035 M06-2X 0.126 SOS-MP2 0.084 PBE-D 0.095 PBE 0.062
VV10 0.038 B3LYP-D 0.130 PBE 0.205 PBE 0.096 PBE-D 0.074
PBE-D 0.047 B3LYP 0.152 HF 0.639 HF 0.330 B3LYP 0.138
HF 0.079 HF 0.270 B3LYP 1.128 B3LYP 0.398 HF 0.184

Table 3.2: Average overall root-mean-square deviations (RMSD) and weighted root-mean-
square deviations (wRMSD) in geometries of complexes in various subsets of the A21 Dataset.
Weights were determined from the relative binding energies of each complex. Within each
subset, the methods are listed in order of ascending RMSD or wRMSD. All calculations were
performed in the aug-cc-pVTZ basis with tight convergence criteria. Calculations involving
density functionals utilized a (99,590) grid.
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Figure 3.4: Average signed and unsigned errors in closest-contact distances in geometries of
complexes from the A21 Dataset. The methods are listed in order of ascending unsigned
error. All calculations were performed in the aug-cc-pVTZ basis with tight convergence
criteria. Calculations involving density functionals utilized a (99,590) grid.

Most of the density functionals examined provide rather mediocre geometries for this
dataset; the descriptions of mixed and dispersion-dominated interactions in particular leave
much to be desired. There do appear to be trends in the performances of the various types
of functionals, however. Functionals incorporating some amount of exact exchange tend
to outperform those with approximate exchange kernels, particularly on hydrogen-bonded
systems. Going a step further, long-range corrected hybrids appear to offer a superior de-
scription to global hybrids or functionals with no exact exchange. The best functionals
incorporate range-separated exchange in conjunction with some sort of long-range disper-
sion correction. The nature of the dispersion tail is particularly important: the standard
DFT-D2 treatment of Grimme yields complexes in which the closest-contact distance is
vastly underestimated; in fact, PBE-D2 actually performs worse than PBE, a consequence
of the fact that PBE exchange alone often overbinds in the context of non-covalent interac-
tions[139]. The more repulsive DFT-D3 and DFT-D3 (BJ) variants are thus better suited
for these smaller systems: B3LYP-D3 and PBE-D3 exhibit less severe underestimation of
intermolecular separation than their -D2 counterparts, regardless of whether zero-damping
or BJ-damping is employed, as evidenced in Figure 3.4. The differences between -D2 and -D3
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can be attributed to both differences in their respective C6 coefficients as well as differences
in the damping functions of the two methods. Among the -D3 variants studied, both the
zero-damping and BJ-damping schemes yield similar results. A variant employing Wu-Yang
damping[140] – the function of choice in the original -D2 prescription – in conjunction with
-D3 C6 coefficients is given in Appendix A, and suggests the difference between -D2 and -D3
is in this case primarily due to the starkly different Fermi-type damping function.

The performances of the various nonlocal functionals are somewhat less intuitive. The
standard exchange-matching issues of vdW-DF2 are manifest in the systematically too-large
closest-contact distance, as illustrated in Figure 3.4. The behaviors of the various function-
als with a VV10 tail, however, are less predictable: variants with range-separated exchange,
namely ωB97X-V and LC-VV10, yield structures very similar to the ∆CCSD(T) bench-
marks, whereas VV10 in its original iteration is somewhat lackluster in its description of
the A21 set. This cannot be understood simply to be a result of a deficiency in any single
component of the VV10 functional. As is apparent in Figure 3.4, VV10 underestimates
intermolecular separations, whereas LC-VV10 on average overestimates them, despite the
fact that the rPW86 exchange incorporated in VV10 is generally more repulsive than the
(short-range) PBE exchange of LC-VV10. There is clearly a subtle interplay between the
exchange components and the nonlocal tail at work. The fact that the parameters of the
nonlocal tail were optimized on different datasets further complicates this issue.

One thing that bears mentioning here is that although we have distilled the comparison
of geometries into two numbers – the overall RMSD and the error in closest-contact distance
– these two metrics alone only tell part of the story. The overall RMSD encompasses all of
the discrepancies between a structure associated with a particular method and the reference
structure; what is lacking, however, is a breakdown of whence these disparities arise. The
error in closest-contact distance, on the other hand, is a much more focused metric; it is
primarily a measure of intermolecular separation, though it can be obfuscated by symmetry-
preserving rotations, provided such transformations exist. A variety of other possible metrics
exist. For instance, two simple intramolecular metrics might be bond length or bond angle
RMS errors; these have been tabulated for the methods examined in the A21 dataset, and
can be found in Appendix A. For the A21 set and the methods examined, these errors are an
order of magnitude smaller than the overall RMSD; moreover, the distributions associated
with these errors are much narrower than the distribution associated with either closest-
contact error or overall RMSD, and hence the utility of such metrics is limited. Perhaps the
most interesting story told by this supplementary data is the lack of a difference between the
base functionals and those incorporating a -D2 or -D3 dispersion correction: addition of a
simple empirical dispersion correction does not significantly impact intramolecular parame-
ters in small molecules. This may not be the case, however, for large or extended molecules,
particularly those involving significant non-covalent intramolecular interactions.
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Medium Systems

It is evident from Table 3.2 and Figure 3.4 that the primary source of overall deviation in
geometries in the chosen methods in the A21 set is the intermolecular separation. Thus, in
systems where performing unconstrained optimizations are infeasible, it is possible to probe
geometric differences solely on the basis of a single intermolecular coordinate. Moreover, we
established earlier (see Table 3.1) that interpolation based on a series of intelligently-chosen
points is, to a small degree of uncertainty (on the order of 0.01 Å), equivalent to explicitly
performing a constrained optimization along the relevant coordinate. Examination of Figure
3.5 further supports this notion; with few exceptions, the methods investigated in this study
yield well-behaved binding energy curves, and so it is no surprise that any sort of reasonable
choice of interpolation scheme would identify the same minimum. Such is the basis for our
treatment of the M12 set of medium-sized molecular systems.
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Figure 3.5: Selection of binding energy curves for the cyclopentane dimer (CyCy in the
M12 dataset). Equilibrium separations associated with each method are denoted by vertical
dashed lines, and were determined via interpolation with a cubic spline. All calculations were
performed in the aug-cc-pVTZ basis. Calculations involving density functionals utilized a
(99,590) grid.

A summary of results pertaining to the M12 dataset are provided in Figures 3.6 and 3.7.
In light of the small uncertainty associated with the interpolation, any difference in inter-
molecular separation larger than 0.03 Å can be safely deemed significant. For certain cases
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where the minimum associated with a particular method lies outside of the range explored,
the second largest (or smallest, as appropriate) separation examined is reported, thereby
providing a lower bound for the error. As a consequence of this and the general problem of
interpolating a minimum from a flat surface, those errors associated with particularly under-
binding methods, namely PBE, HF, and B3LYP on systems involving dispersive interactions,
can only be interpreted in a qualitative sense.

Method ASE AUE Method ASE AUE Method ASE AUE Method ASE AUE Method ASE AUE MAX

ωB97X 0.00 0.00 sMP2 -0.01 0.02 B3LYP-D3 (BJ) 0.01 0.01 B3LYP-D3 (BJ) 0.01 0.01 B3LYP-D3 (BJ) 0.00 0.02 0.03

M06-2X 0.00 0.00 SOS-MP2 0.02 0.02 B97M-V -0.01 0.01 VV10 0.01 0.01 B97M-V 0.01 0.02 0.04

MP2 (CP) 0.00 0.00 LC-VV10 -0.02 0.02 B3LYP-D3 -0.02 0.02 B97M-V 0.02 0.02 VV10 0.00 0.02 -0.05

ωB97X-V 0.01 0.01 ωB97X-D 0.01 0.02 VV10 -0.01 0.02 sMP2 0.00 0.02 B3LYP-D3 0.01 0.03 0.05

M06-L -0.01 0.01 B3LYP-D3 (BJ) 0.00 0.02 ωB97X 0.01 0.02 ωB97X 0.01 0.02 LC-VV10 -0.03 0.03 -0.06

M11 0.01 0.01 M06-L -0.03 0.03 LC-VV10 -0.03 0.03 B3LYP-D3 0.03 0.03 sMP2 0.02 0.03 0.13

B97M-V 0.01 0.01 B97M-V 0.03 0.03 MP2 (CP) -0.03 0.03 SOS-MP2 0.03 0.03 ωB97X-D -0.01 0.03 -0.11

M06 0.01 0.01 VV10 0.03 0.03 SCS-MP2 0.02 0.05 ωB97X-D 0.03 0.03 ωB97X 0.03 0.03 0.10

B3LYP-D3 -0.01 0.01 M06 0.04 0.04 ωB97X-V 0.05 0.05 SCS-MP2 -0.04 0.04 M06 0.01 0.03 -0.10

sMP2 0.01 0.01 PBE-D2 -0.04 0.04 M06 -0.05 0.05 LC-VV10 -0.04 0.04 M06-L -0.03 0.03 -0.08

ωB97X-D -0.01 0.01 B3LYP-D3 0.05 0.05 attMP2 -0.06 0.06 M06-L 0.00 0.04 ωB97X-V 0.04 0.04 0.08

PBE-D3 -0.01 0.01 SCS-MP2 -0.07 0.07 PBE-D3 (BJ) 0.06 0.06 ωB97X-V 0.04 0.04 SCS-MP2 -0.01 0.04 0.10

VV10 -0.01 0.01 PBE-D3 (BJ) 0.07 0.07 sMP2 0.07 0.07 M06 0.04 0.04 SOS-MP2 0.04 0.04 0.16

attMP2 -0.02 0.02 B3LYP-D2 -0.07 0.07 M06-L -0.07 0.07 PBE-D3 (BJ) 0.05 0.05 PBE-D3 (BJ) 0.04 0.05 0.10

B3LYP-D3 (BJ) -0.02 0.02 ωB97X-V 0.07 0.07 ωB97X-D -0.07 0.07 MP2 (CP) -0.06 0.06 MP2 (CP) -0.06 0.06 -0.17

SCS-MP2 0.02 0.02 M11 -0.07 0.07 PBE-D3 0.09 0.09 PBE-D2 -0.08 0.08 M11 -0.06 0.07 -0.13

PBE-D3 (BJ) -0.02 0.02 ωB97X 0.09 0.09 SOS-MP2 0.09 0.09 M11 -0.09 0.09 attMP2 -0.07 0.07 -0.14

PBE 0.01 0.02 M06-2X -0.09 0.09 M11 -0.11 0.11 PBE-D3 0.09 0.09 M06-2X -0.08 0.08 -0.13

LC-VV10 -0.02 0.02 attMP2 -0.12 0.12 M06-2X -0.11 0.11 M06-2X -0.09 0.09 PBE-D2 -0.08 0.08 -0.23

MP2 -0.03 0.03 PBE-D3 0.12 0.12 MP2 -0.12 0.12 attMP2 -0.10 0.10 PBE-D3 0.07 0.08 0.13

B3LYP-D2 -0.03 0.03 MP2 (CP) -0.14 0.14 vdW-DF2 0.12 0.12 B3LYP-D2 -0.10 0.10 B3LYP-D2 -0.10 0.10 -0.28

PBE-D2 -0.04 0.04 vdW-DF2 0.14 0.14 PBE-D2 -0.16 0.16 vdW-DF2 0.14 0.14 vdW-DF2 0.12 0.12 0.16

B3LYP 0.04 0.04 MP2 -0.20 0.20 B3LYP-D2 -0.21 0.21 MP2 -0.14 0.14 MP2 -0.12 0.12 -0.25

SOS-MP2 0.04 0.04 PBE 0.63 0.63 PBE 0.51 0.51 PBE 0.34 0.34 PBE 0.38 0.38 0.86

vdW-DF2 0.07 0.07 HF 1.30 1.30 HF 1.33 1.33 B3LYP 0.62 0.62 HF 0.89 0.89 1.78

HF 0.14 0.14 B3LYP 1.35 1.35 B3LYP 1.57 1.57 HF 0.77 0.77 B3LYP 0.89 0.89 1.78

Hydrogen-Bonded Dispersion (π-π) Dispersion (Other) Mixed All

Figure 3.6: Average signed (ASE) and unsigned (AUE) errors (in units of Å) in interpolated
equilibrium intermolecular separations in geometries of complexes in various subsets of the
M12 dataset. Maximum error for each method (MAX) is given in last column (in units of Å).
Within each subset, methods are sorted in order of ascending AUE. Signed values are colored
as such: positive errors are blue, negative errors are red, and the tint of the color correlates
with the magnitude of the error. Equilibria correspond to the interpolated (cubic spline)
minima of the binding energy curves. All calculations were performed in the aug-cc-pVTZ
basis. Calculations involving density functionals utilized a (99,590) grid.

Due to the uncertainty associated with each interpolated equilibrium separation, it is
difficult to draw the same sorts of conclusions for the M12 set as we did for the A21 set.
Nevertheless, a few trends are apparent. Among the MP2 methods, standard MP2 is the
worst performer, underestimating the intermolecular separation in every system and pro-
viding geometries worse than any of the standard density functional approaches (with the
exception of PBE and B3LYP). The treatment of systems involving π − π interactions is
particularly bad – this is a manifestation of BSSE and the general unsuitability of un-
coupled HF polarizabilities (and hence C6 coefficients) for describing such systems[96]. In
a larger basis, where BSSE is reduced, this underestimation of intermolecular distance is
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somewhat less drastic, though still substantial, as evidenced by the counterpoise-corrected
(CP) MP2 results in Figures 3.6 and 3.7. Attenuation of the Coulomb operator (attMP2)
addresses the underestimation to a similar extent as CP-correction, though at a fraction of
the cost. Simple-scaling of the MP2 correlation energy (sMP2) yields better agreement with
the coupled-cluster benchmarks; this can be at least in part attributed to the optimization of
the scaling coefficient on the S66 dataset, a set which contains eleven of the twelve systems
in M12. However, the dangers of using a single scaling coefficient for a variety of systems
are hinted at by the large error for the method on the cyclopentane dimer, as well as the
lackluster performance of sMP2 with regard to the A21 set. Separate scaling of the different
components of the MP2 correlation energy (SOS-MP2 and SCS-MP2) is generally inferior
to simple-scaling.

Among the density functionals examined, most of the top performers incorporate some
form of long-range dispersion correction. Specifically, those functionals with VV10 nonlocal
correlation reproduce ∆CCSD(T)/CBS equilibrium separations well: B97M-V in particular
is consistently quite accurate. Among the functionals lacking any form of long-range van der
Waals correction, ωB97X, M06, and M06-L stand out. Their impressive performances can
be at least somewhat attributed to the significant overlap between the systems examined
here and the systems in their respective training sets. Interestingly enough, these methods
actually perform better on these larger systems than on the small systems in the A21 set (cf.
Figures 3.4 and 3.6). Thus, in going from small systems (A21) to medium systems (M12), we
do not see an unambiguous amplification of deficiencies. The systematic underestimation of
intermolecular separation associated with MP2 and its attenuated variant, the overestimation
of vdW-DF2 and ωB97X-V, and the overestimation of the DFT-D3 methods relative to
their DFT-D2 counterparts are significantly magnified by the growth in system size, but
the relative performances of certain other methods reverse completely. For instance, VV10
offers an excellent description of every system in the M12 set despite being one of the worst
methods with respect to the A21 set.

There is one more interesting point to be made that is illustrated clearly by Figure 3.5:
overbinding is not synonymous with underestimation of intermolecular separation, i.e. at
least for some methods, horizontal and vertical motion of the binding energy curve associated
with a given system are often decoupled. Throughout this article, we have made a point
of maintaining this distinction by referring to methods as “overestimating intermolecular
separations,” rather than by simply calling them “underbinding.” In general, we might expect
that a method that yields a too-long intermolecular separation would be underbinding, but it
is clear from Figure 3.5 that this is emphatically not the case. For instance, in the case of the
cyclopentane dimer, PBE-D3 and vdW-DF2 both overestimate equilibrium intermolecular
separations despite being overbinding with respect to energy. In a similar manner, M06
underbinds every system in M12 with respect to energy yet predicts a compressed geometry
for half of the dispersion-bound systems. This highlights a serious deficiency in the standard
approach of comparing methods solely on the basis of binding energies. This shortcoming is
further amplified by the practice of comparing energies calculated with different methods on
the same geometry: the binding energies of the cyclopentane dimer as predicted by PBE-
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All

Method PP UU AU BB-π PyPy UPy CyCy BN UP BB-T BE BC AUE

B3LYP-D3 (BJ) -0.02 -0.02 -0.02 -0.03 -0.01 0.03 -0.01 0.00 0.03 0.01 0.00 0.02 0.02

B97M-V 0.01 0.01 0.01 0.03 0.04 0.02 -0.02 0.00 -0.02 0.03 0.01 0.01 0.02

VV10 -0.02 -0.01 -0.01 0.03 0.04 0.04 -0.05 0.00 0.01 0.02 0.00 0.01 0.02

B3LYP-D3 -0.01 -0.01 -0.01 0.04 0.04 0.05 0.00 -0.03 -0.02 0.01 0.02 0.04 0.03

LC-VV10 -0.02 -0.03 -0.03 -0.01 -0.02 -0.03 -0.01 -0.04 -0.03 -0.03 -0.06 -0.02 0.03

sMP2 0.02 0.01 0.01 -0.02 -0.01 0.01 0.13 0.03 0.05 -0.01 -0.02 0.04 0.03

ωB97X-D -0.02 -0.01 -0.01 -0.02 0.00 0.04 -0.11 -0.06 -0.03 0.00 0.02 0.07 0.03

ωB97X 0.00 0.00 0.00 0.10 0.09 0.07 -0.02 0.03 0.02 0.04 -0.01 0.02 0.03

M06 0.00 0.01 0.01 0.03 0.05 0.04 -0.10 -0.02 -0.03 0.04 0.05 0.04 0.03

M06-L 0.00 -0.01 0.00 -0.02 -0.03 -0.03 -0.06 -0.08 -0.07 0.00 -0.06 0.05 0.03

ωB97X-V 0.01 0.00 0.00 0.07 0.08 0.06 0.05 0.04 0.05 0.05 0.02 0.05 0.04

SCS-MP2 0.02 0.02 0.02 -0.09 -0.08 -0.03 0.10 -0.04 0.01 -0.06 -0.05 0.00 0.04

SOS-MP2 0.05 0.04 0.04 0.00 0.01 0.04 0.16 0.04 0.08 0.01 0.01 0.07 0.04

PBE-D3 (BJ) -0.01 -0.03 -0.03 0.05 0.06 0.09 0.05 0.04 0.10 0.05 0.02 0.09 0.05

MP2 (CP) 0.01 0.00 0.00 -0.17 -0.16 -0.08 0.00 -0.06 -0.02 -0.09 -0.06 -0.05 0.06

M11 0.00 0.01 0.01 -0.06 -0.07 -0.08 -0.11 -0.08 -0.13 -0.06 -0.10 -0.10 0.07

attMP2 -0.02 -0.02 -0.02 -0.14 -0.13 -0.09 -0.01 -0.09 -0.07 -0.10 -0.11 -0.07 0.07

M06-2X -0.01 0.00 -0.01 -0.10 -0.09 -0.09 -0.12 -0.09 -0.13 -0.07 -0.08 -0.13 0.08

PBE-D2 -0.04 -0.03 -0.03 -0.04 -0.05 -0.04 -0.23 -0.13 -0.12 -0.10 -0.11 -0.02 0.08

PBE-D3 0.00 -0.02 -0.02 0.12 0.12 0.13 0.08 0.06 0.12 0.09 0.07 0.12 0.08

B3LYP-D2 -0.05 -0.02 -0.02 -0.07 -0.08 -0.06 -0.28 -0.17 -0.18 -0.13 -0.12 -0.05 0.10

vdW-DF2 0.07 0.07 0.07 0.14 0.13 0.16 0.12 0.12 0.13 0.16 0.14 0.11 0.12

MP2 -0.03 -0.02 -0.02 -0.25 -0.22 -0.14 -0.08 -0.16 -0.11 -0.18 -0.14 -0.11 0.12

PBE 0.06 -0.01 -0.01 0.86 0.59 0.45 0.48 0.51 0.54 0.43 0.21 0.38 0.38

HF 0.22 0.10 0.09 1.78 1.37 0.75 1.44 1.26 1.30 1.00 0.51 0.81 0.89

B3LYP 0.09 0.01 0.01 1.78 1.67 0.62 1.44 1.58 1.68 0.85 0.37 0.64 0.89

Hydrogen-Bonded Dispersion (π-π) Dispersion (Other) Mixed

Figure 3.7: Errors in interpolated equilibrium intermolecular separations (in units of Å) in
geometries of complexes of the M12 dataset. The last column, the average unsigned error
(AUE) across all systems (in units of Å), represents the metric by which the methods are
sorted. Signed values are colored as such: positive errors are blue, negative errors are red,
and the tint of the color correlates with the magnitude of the error. Equilibria correspond
to the interpolated (cubic spline) minima of the binding energy curves. All calculations were
performed in the aug-cc-pVTZ basis. Calculations involving density functionals utilized a
(99,590) grid. For the abbreviations, see Figure 3.1.

D3 and MP2 at the ∆CCSD(T) minimum are indistinguishable, though at their respective
minima they differ by nearly 0.2 kcal/mol.

Large System

Interpolated equilibrium interplane separations and binding energies predicted by each of
the methods for the parallel-displaced coronene dimer are provided in Figure 3.8. Note that
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the values of 3.91 Å and 0 kcal mol−1 reported for PBE, B3LYP, and HF simply indicate that
these methods were all repulsive at the maximum separation examined, 3.908 Å. Errors are
expressed relative to current best guesses of 3.458 Å and 23.45 kcal mol−1[19, 137]. It is worth
mentioning, however, that these reference values are not nearly as ironclad as those used for
the A21 and M12 sets: the interplane separation corresponds to QCISD(T)/h-aug-cc-pVDZ,
i.e. cc-pVDZ on hydrogens and alternating carbons, and aug-cc-pVDZ on other carbons[137],
and the binding energy is given by a counterpoise-corrected MP2/CBS (aTZ,aQZ Helgaker
extrapolation)[70, 132] energy corrected for higher-order correlation in this same small ba-
sis[19]. Other notable reports for binding energy include -19.98 kcal mol−1 and -24.36 kcal
mol−1, values which were obtained using different prescriptions for incorporating an MP2
energy correction and a different small basis for the ∆QCISD(T) correction[137, 141]. As a
result of this general uncertainty in the “true” equilibrium interplane separation and binding
energy, any discussion of our results for the coronene dimer can only be semi-quantitative.

It is apparent from Figure 3.8 that some of the general trends observed on the M12
set transfer reasonably well to the case of the coronene dimer: for instance, most methods
involving VV10 nonlocal correlation perform well; DFT-D2 underestimates intermolecular
separation relative to both variants of DFT-D3; some form of correction to MP2 is impor-
tant, standard meta-GGA functionals perform surprisingly well; etc. This does not seem
surprising, since the coronene dimer is often thought, to a first approximation, to be largely
just a bigger version of the benzene dimer. This picture is very limited, however: compari-
son of our data for the coronene dimer with those for the parallel-displaced benzene-benzene
dimer demonstrate that there exists only a very weak correlation between percent errors in
geometries of the benzene dimer and those in the coronene dimer; this correlation is weaker
still – if not entirely absent – when comparing errors in binding energies between the two
systems. Thus, we advocate the use of care when extrapolating to larger systems. Moreover,
as was previously illustrated in Figure 3.5 for the cyclopentane dimer, neither the signs nor
relative magnitudes of the errors in geometry and energy for the coronene dimer are in any
way correlated. This point is illustrated still further by Table 3.3, in which the Pearson’s cor-
relation coefficient for percent errors in interpolated equilibrium energy and intermolecular
separation across the M12 set is listed for each method.

It is clear that equilibrium binding energies and intermolecular separations are only
weakly correlated for a number of methods; for some approaches, they are even somewhat
anticorrelated, i.e. the methods overbind while overestimating intermolecular separation. It
is also notable that wavefunction-based approaches, on average, seem to exhibit a stronger
correlation between equilibrium binding energy and intermolecular separation than density
functionals. This being said, this sort of orthogonality between energy and separation ob-
served for a number of methods is not a flaw; rather, it is simply an interesting phenomenon
that highlights yet again the fact that merely comparing energies is an insufficient means of
assessing the performance of a given method for intermolecular interactions.
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Figure 3.8: Errors in interpolated equilibrium intermolecular separations (in units of Å) and
binding energies (in units of kcal mol−1) for the parallel-displaced coronene dimer. The meth-
ods are listed in order of ascending error in intermolecular separation. Equilibria correspond
to the interpolated (cubic spline) minima of the binding energy curves. All calculations were
performed in the aug-cc-pVDZ basis. Calculations involving density functionals utilized a
(99,590) grid. With the exception of attenuated MP2, all methods incorporate a correction
for BSSE[91]. Errors in separation are relative to R = 3.458 Å reported by Janowski et
al.[137], corresponding to QCISD(T)/h-aug-cc-pVDZ, and errors in binding energy are rel-
ative to Ebind = −23.45 kcal mol−1, which corresponds to QCISD(T)/CBS as reported by
Mardirossian and Head-Gordon[19].

3.4 Conclusion

In this work, we have systematically assessed the abilities of a variety of electronic struc-
ture approximations to replicate coupled-cluster-level geometries of non-covalent complexes.
Methods examined include HF, MP2, and several common DFT exchange-correlation func-
tionals with and without various dispersion corrections. A variety of systems were studied:
the A21 set of small (2-4 heavy atoms) systems, the M12 set of moderately-sized (8-14 heavy
atoms) systems, and the parallel-displaced coronene dimer (48 heavy atoms). For the A21
set, ∆CCSD(T)/CBS geometries are readily available for comparison[131]. However, for the
larger systems, multidimensional optimizations at such a level of theory are prohibitively
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WFT DFT

Method R Method R

SOS-MP2 0.95 PBE 0.96
MP2 (CP) 0.94 B3LYP 0.86
HF 0.93 PBE-D 0.84
SCS-MP2 0.93 M06 0.84
attMP2 0.88 ωB97X 0.83
MP2 0.88 ωB97X-D 0.82
sMP2 0.87 LCVV10 0.74

B97M-V 0.71
B3LYP-D3 0.63
vdW-DF2 0.61
PBE-D3 (BJ) 0.40
M06-L 0.39
PBE-D3 0.22
M11 0.22
M06-2X 0.19
VV10 0.17
B3LYP-D3 (BJ) 0.13
B3LYP-D -0.28
ωB97X-V -0.29

Table 3.3: Pearson’s correlation coefficient, R, for percent errors in interpolated equilibrium
energy and intermolecular separation for the M12 dataset. Methods are divided into two
sets – wavefunction-based (WFT) and density functional theory (DFT) – and listed in order
of descending correlation coefficient within each set. For details about the calculations, see
Figure 3.7.

expensive. Thus, we have established the validity of a protocol for utilizing binding energy
curves along a single intermolecular coordinate to probe the performance of a given method
with regard to geometries: interpolation with a cubic spline yields a minimum consistent with
explicit constrained optimization, even with a relatively large distance between sampled ge-
ometries. Although the overall root-mean-square deviation is the most comprehensive metric
for differentiating among methods, this sort of measure of error in intermolecular separation
is a reasonable substitute.

We find that the relative performances of the various electronic structure methods for
reproducing CCSD(T) geometries is dependent on not only the predominant interaction
type, but also the size of the molecular system. Nevertheless, a number of general trends
that transcend system size are evident. Those methods incorporating the VV10 brand of
nonlocal correlation tend to yield quite accurate geometries; the recently-developed func-
tionals ωB97X-V and B97M-V in particular are remarkably consistent, although the former
tends to overestimate equilibrium separations, especially in the context of small systems.
The vdW-DF2 method, on the other hand, systematically predicts too-large intermolecular
separations, with the associated error dramatically increasing during the transition from
small systems to moderately-sized systems. Conventional GGA functionals (e.g. PBE)
yield wildly inaccurate geometries for systems in which dispersion interactions are domi-
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nant. The addition of some form of correction for long-range dispersion generally improves
their performances; furthermore, for the systems examined, DFT-D3 and DFT-D3 (BJ)
are unambiguously superior to DFT-D2 with respect to geometries, though not necessarily
with respect to equilibrium binding energies. Conventional semilocal functionals, such as
ωB97X and the Minnesota functionals, yield decidedly mediocre geometries, particularly for
dispersion-dominated interactions. Furthermore, some of these functionals – most notably
M06 and M06-L – suffer from nonphysical grid-dependent oscillations, particularly for the
coronene dimer[99]. Such oscillations introduce a large degree of uncertainty into the equi-
librium intermolecular separations and binding energies; after all, an ill-behaved potential
energy surface has an ill-defined minimum.

Among the wavefunction-based approaches examined, Hartree-Fock theory yields grossly
inadequate geometries – even for small hydrogen-bonded complexes, on which it might be ex-
pected to perform reasonably well. A perturbative correction for electronic correlation vastly
improves upon this HF picture: MP2 yields highly accurate geometries for small molecules.
However, the shortcomings of the method are manifest in the deterioration of the quality of
its predicted geometries of larger dispersion-dominated systems. In systems with upwards
of 8 heavy atoms, MP2 yields geometries that are at best on par with standard density
functionals, even when corrected for BSSE. Attenuation of the Coulomb operator achieves
a similar effect to counterpoise correction; both approaches systematically underestimate
intermolecular separation in dispersion-bound systems. It is likely that increasing the size
of the parameter space – by, e.g., combining attenuation with scaling – would improve the
description of geometries further, as it has been shown to do with energies[142].

The evaluation of electronic structure methods with regard to their description of ge-
ometries adds an important additional dimension to benchmarking binding energies. In the
past, relative energies have served as the primary means of comparison of various methods.
This procedure has several shortcomings. There is no information regarding the shape of
the potential energy surface associated with each method. Moreover, it is not a particularly
fair comparison: typically, the same geometry is used for all methods, such that the reported
energy is identically the equilibrium energy for only one method. A self-consistent treatment
with each method, wherein the structure is relaxed prior to the energy calculation, is a more
balanced approach. Incorporating some form of geometric metric – e.g., some measure of
intermolecular separation for non-covalent complexes – into the training and selection of
new density functionals may lead to the development of more robust methods, and can be
achieved with relative ease. This has been done, in a fashion, in the development of the
HCTH, τ -HCTH, and BMK functionals[143–145]. These functionals were parameterized
on experimental geometries of a number of small molecules by incorporating the computed
gradient at these reference geometries into the penalty function for each method. What we
are proposing here is extending this sort of idea to non-covalent interactions, which have
a handful of highly-variable intermolecular degrees of freedom. The inclusion of a single
additional metric is by no means an end-all solution, as information relating to the shape of
the potential energy surface is still absent, but it is a step in the right direction, and it is
something for which sufficiently high quality reference data already exists and further data
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can be relatively straightforwardly generated.
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Chapter 4

Basis Sets for Intermolecular
Interactions

4.1 Introduction

The past two decades have seen an explosion of interest in Kohn-Sham density func-
tional theory (DFT)[11], largely due to the potential of approximations within the formal-
ism to strike a nice balance between computational expense and accuracy. Twenty years
ago, state-of-the-art methods were generalized gradient approximations (GGA) with few, if
any, nonempirical parameters[14–16, 22, 82]. Nowadays, density functionals abound: the
most successful relics of the past (e.g. PBE, B3LYP) still live on, but the quest for the
ultimate density functional continues[20, 23, 25, 85–87]; recent work by Mardirossian and
Head-Gordon involved exploration of a space of over a billion meta-GGAs, a space orders of
magnitude larger than the space of previously-existing density functionals (yet still a tiny
fraction of the unexplored space of B97-esque functionals)[19]. Needless to say, there has
been – and continues to be – a tremendous amount of effort dedicated to the development
and testing of novel density functional approximations.

Although settling on a method is arguably the most important step one makes prior to
running an electronic structure calculation, there remain other decisions that can significantly
impact results, most notably grid – in the case of numerical calculations, as in DFT –
and basis set. The issue of grid is relatively trivial to resolve: a standard semilocal DFT
calculation is linear in the number of grid points, and so it is feasible to employ incredibly
dense grids. The issue of basis set is a bit stickier, however, since it is the size of the
basis that dominates the scaling. In extended and periodic systems, plane waves constitute
the natural choice of basis function, though the delocalized nature of plane waves renders
them ineffective at describing localized densities, e.g. core electrons. As a result, periodic
calculations tend to employ some form of additonal approximation to describe the effects of
core electrons[146]. In calculations on molecular systems, local atomic orbital (AO) basis
sets are arguably more physically relevant; common representations of AOs include Slater
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orbitals[147] and Gaussian-type orbitals (GTOs)[148]. The latter are typically preferred; the
Gaussian Product Theorem renders the necessary integrals more computationally tractable.
The focus of this work will thus be GTO basis sets.

Even limiting oneself to existing GTO basis sets, the space of possibilities is enormous.
There are a vast number of hierarchical basis sets that are in common use; for details pertain-
ing to their construction, see Jensen’s recent review[149]. The fact that so many basis sets are
regularly employed is a testament to the fact that there really is no unambiguously best basis
set of a given size. Here, we focus primarily on three families of GTO basis sets: the Dunning
correlation-consistent sequence[79, 80, 150], the Jensen polarization-consistent sequence[151–
153], and the Karlsruhe property-optimized basis sets[154, 155]. The correlation-consistent
basis sets have been designed to exploit the fact that the correlation energy converges as an
inverse power series in the highest angular momentum of the basis[156, 157]; the result is
systematic convergence with the cardinal number of the basis set. In the case of DFT, how-
ever, the convergence patterns of these basis sets lack the same theoretical underpinnings.
Similarly, the convergence behaviors of the Jensen and Karlsruhe sequences, particularly
in the context of intermolecular interactions – the domain of many interesting problems in
modern chemistry – are not well-documented.

When local basis sets are utilized, two interrelated types of basis set incompleteness errors
(BSIE) emerge: basis set superposition error (BSSE), which arises from the inconsistent
treatment of a supersystem and its constituent fragments[91, 158], and what we will call
the remaining basis set incompleteness error (rBSIE), the leftover incompleteness error once
BSSE is removed that is due to the fact that the Schrödinger equation is being solved in
just a fraction of the full Hilbert space. We will here briefly address the issue of BSSE,
since unlike rBSIE it can be relatively cheaply eliminated. For a more detailed discussion
of basis set errors, particularly in the context of small basis sets, the reader is referred to
a recent review article by Sure et al.[159]. BSSE is often removed by performing fragment
calculations in the full supersystem basis; this constitutes the counterpoise correction (CP)
approach of Boys and Bernardi[91], though the downside of this approach is that there must
exist some natural partitioning of the full supersystem into fragments. The validity of this
and other BSSE correction schemes has long been a contentious issue[160–169], though a
comprehensive review article by van Duijneveldt et al.[165] temporarily resolved the debate
in favor of CP. Recent years have seen a resurgence of arguments against CP[166, 167], though
it has been demonstrated that some of the data used to formulate the conclusions of Kalescky
et al.[167] were impacted significantly by unrelated issues, namely mismatches between the
choices of basis sets and the extent of correlation included[168]. Linear dependency issues
in calculations involving ghost atoms may have affected the results, as well. Some authors
have proposed a compromise – a half-CP approach, wherein uncorrected and counterpoise-
corrected binding energies are averaged – on the basis of its stellar performance for certain
methods[169]. Needless to say, the field has yet to reach a consensus on how BSSE should
be addressed.

In this work, we have endeavored to fill in various gaps in the literature, to characterize
the convergence patterns of several common hierarchical families of basis sets in the context
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of noncovalent interactions as described by DFT. We have further distinguished between
the two manifestations of basis set error, BSSE and rBSIE. Characterizing these errors in
conventional basis sets enables us to make recommendations regarding which basis sets to
use when studying noncovalent interactions with DFT.

4.2 Computational Methods

We have examined basis set errors of a wide variety of standard GTO basis sets in the
context of density functional theory calculations on noncovalent interactions. Specifically, we
have considered several Pople split-valence basis sets: 6-31G*, 6-31++G**, 6-311++G**,
and 6-311++G(3df,3pd)[170–177]; the correlation-consistent basis sets of Dunning, cc-pVXZ,
as well as their augmented variants aug-cc-pVXZ, with X=D,T,Q,5[79, 80, 150], the doubly-
augmented versions d-aug-cc-pVDZ and d-aug-cc-pVTZ[79, 80, 178], the core-valence sets
aug-cc-pCVDZ and aug-cc-pCVTZ[79, 80, 179], and Truhlar’s pruned jun-cc-pVXZ ana-
logues[180]; the Karlsruhe sequence def2-SVP, def2-TZVP, and def2-QZVP[154], as well as
the augmented variants def2-SVPD, def2-TZVPD, and def2-QZVPD[155]; and the Jensen
polarization-consistent sequences pc-n and aug-pc-n[151–153]. We have utilized three den-
sity functional approximations: SPW92[10–13], a local-density approximation; B3LYP[15,
16, 22, 82], a global hybrid generalized gradient approximation; and B97M-V[19], a meta-
generalized gradient approximation incorporating VV10 long-range correlation[40]. This set
of approximations was chosen because it spans the space of complexity in common density
functionals: SPW92 is one of the simplest Kohn-Sham density functionals; B3LYP is a bit
more complex due to its incorporation of the gradient of the electron density, as well as a
portion of exact exchange; and B97M-V is a state-of-the-art method with all the accompa-
nying bells and whistles, most notably an explicit nonlocal correlation kernel. Calculations
have been performed on the S22 set of molecules[181], depicted in Figure 4.1.

Figure 4.1: Structures of the systems in the S22 dataset. The systems are classified by
interaction type as per the original work[181].
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All calculations were performed with a development version of Q-Chem 4.3[182]. The
DIIS error was converged to 10−8, integral threshholds of 10−14 were used, and no symmetry
was exploited. Molecular structures were generated with Avogadro[95]. For all systems,
binding energies were determined both with and without the Boys and Bernardi correction
for BSSE[91]. The occupied orbital resolution-of-the-identity approximation (occ-RI-K) was
utilized to accelerate construction of the exact exchange matrix in B3LYP[183]. For the cc-
pVXZ and def2- basis sets, optimized auxiliary basis sets from Weigend were used, though
i functions were omitted[184, 185]. Auxiliary basis sets for the aug-cc-pVXZ basis sets were
generated by adding an even-tempered diffuse function to each primitive set; the (aug-)cc-
pVDZ auxiliary bases were generated by removing the highest angular momentum functions
from the (aug-)cc-pVTZ auxiliary bases; and for the (aug-)pc-n and Pople basis sets, the
corresponding Dunning auxiliary basis sets were used, e.g. cc-pVTZ-jkfit for pc-2.

Due to the constraints of double precision floating point numbers and linear-dependency
issues in calculations on some systems with the larger basis sets, the precision to which we
report all binding energies is 0.01 kcal/mol. For the smaller basis sets we could meaningfully
reproduce binding energies to a much greater level of precision, but the same is not true for
larger basis sets; this is particularly an issue in basis sets rife with diffuse functions, e.g. aug-
pc-3. The desired level of precision dictates the grids necessary: a Lebedev integration grid
consisting of 99 radial points and 590 angular points per atom was utilized to compute the
semilocal exchange-correlation components of the energy, and the coarser SG-1 grid was used
for nonlocal correlation in B97M-V[133]. This combination of grids yields binding energies
that are converged to within 0.01 kcal/mol across the entire S22 set, as can be seen within
Appendix B.

4.3 Results and Discussion

Although the principal objective of this study has been to elucidate the convergence
patterns of various standard GTO basis sets in the context of density functional theory
applied to intermolecular interactions, in the course of this work we have, at three dif-
ferent levels of density functional theory, established what we deem to be complete-basis
(CBS) binding energies for every system in S22. These CBS binding energies correspond
to counterpoise-corrected values in the pc-4 basis. We justify this choice of CBS limit –
counterpoise-corrected pc-4 – in three ways: firstly, the pc-4 basis is the only basis examined
for which the mean BSSE across the S22 set of molecules is not larger than the chosen level
of precision, 0.01 kcal/mol; secondly, pc-4 absolute energies for any given system are lower
than those computed with any other basis set in this study, and as such pc-4 is variationally
the most complete basis examined; thirdly, counterpoise-corrected pc-4 SPW92 binding en-
ergies are converged to within 0.01 kcal/mol relative to those calculated in the much larger
aug-pc-4 basis set, as is illustrated in Appendix B – in fact, even pc-4 absolute energies are
converged to roughly this level of precision. Any reference to basis set limit SPW92, B3LYP,
or B97M-V results henceforth corresponds to counterpoise-corrected pc-4, and all errors –
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unless otherwise noted – are expressed relative to the basis set limit result for the relevant
method. Since complete-basis results are costly to obtain and are of interest for e.g. anyone
testing a novel basis set in one of these methods, we present them in Table 4.1. Reference
CCSD(T)/CBS values generated by Marshall et al.[186] are also provided for comparison.

System SPW92 B3LYP B97M-V CCSD(T)a

Ammonia dimer -5.07 -2.19 -3.09 -3.13
Water dimer -7.81 -4.51 -5.00 -4.99
Formic acid dimer -26.98 -17.45 -18.69 -18.75
Formamide dimer -21.92 -14.07 -15.62 -16.06
Uracil dimer h-bonded -26.27 -17.99 -20.11 -20.64
2-pyridoxine 2-aminopyridine complex -22.89 -13.83 -16.39 -16.93
Adenine thymine Watson-Crick complex -22.08 -12.91 -15.82 -16.66
Methane dimer -0.83 0.39 -0.43 -0.53
Ethene dimer -2.47 0.48 -1.31 -1.47
Benzene - Methane complex -2.02 0.76 -1.34 -1.45
Benzene dimer parallel displaced -2.60 3.72 -2.53 -2.65
Pyrazine dimer -4.43 2.45 -3.85 -4.26
Uracil dimer stack -10.14 -0.95 -9.76 -9.81
Indole benzene complex stack -4.36 4.64 -4.35 -4.52
Adenine thymine complex stack -11.95 1.29 -11.75 -11.73
Ethene ethyne complex -2.27 -0.66 -1.50 -1.50
Benzene water complex -4.44 -1.20 -3.10 -3.28
Benzene ammonia complex -3.04 -0.11 -2.13 -2.31
Benzene HCN complex -5.82 -1.97 -4.21 -4.54
Benzene dimer T-shaped -3.05 0.98 -2.33 -2.72
Indole benzene T-shape complex -6.27 -0.55 -5.02 -5.63
Phenol dimer -9.01 -2.99 -6.57 -7.10

a CCSD(T) values taken from Marshall et al.[186].

Table 4.1: Complete basis set (CBS) binding energies for each system in S22 at various levels
of theory. For the density functional approximations, counterpoise-corrected pc-4 constitutes
the CBS limit. Benchmark CCSD(T)/CBS results from Marshall et al.[186] are provided for
comparison.

Now that benchmarks for each method have been established, it is possible to assess the
qualities of various standard local quantum chemistry basis sets in the context of noncovalent
interactions as described by density functional theory. Note that the most meaningful point
of comparison for each method-basis combination is the CBS limit for that method; by
comparing to reference CCSD(T)/CBS results, we would be confounding method error with
basis set error, whereas by comparing to CBS results within each method we are able to
isolate basis set errors. The uncorrected (noCP) and counterpoise-corrected (CP) root mean
square errors (RMSEs) versus the CBS limit for SPW92 are illustrated in Figure 4.2 for a
variety of basis sets. Basis sets are listed in order of increasing size: the basis with the fewest
functions (6-31G*) is at the top and that with the most (aug-cc-pV5Z) is at the bottom.
Also noteworthy is the fact that there are two axes, one which corresponds to the uncorrected
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RMSE (top, blue), and one which corresponds to the counterpoise-corrected RMSE (bottom,
gold); the scales of these axes differ by roughly a factor of four in order to compensate for
the fact that the CP RMSEs are significantly smaller, on average, than the noCP RMSEs.

Figure 4.2: Uncorrected (noCP) and counterpoise-corrected (CP) root mean square errors
(RMSE) in SPW92 binding energies across the S22 set of molecules. Errors are expressed
relative to SPW92/CBS. Blue corresponds to noCP, gold to CP. The bars are a visual
representation of the actual RMSEs, which are tabulated for each basis set on the left side
of the figure. Basis sets are listed in order of increasing number of basis functions. Note the
difference between noCP (top) and CP (bottom) axes.

From Figure 4.2, it is immediately evident that for any given basis set, the CP RMSE is
significantly smaller than the noCP RMSE; that is, counterpoise-corrected binding energies
across S22 are closer to the basis set limit than uncorrected ones. Since the counterpoise
correction is designed to alleviate BSSE, the CP RMSE is a quantitative measure of the
remaining basis set incompleteness error (rBSIE). The noCP RMSE, on the other hand,
encompasses the entirety of the BSIE, i.e. both rBSIE and BSSE. Basis sets exhibiting a
small CP RMSE can then be said to have a low intrinsic rBSIE: their spans form a good
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approximation to the full Hilbert spaces of the systems in the S22 set. It is worth noting that
when discussing basis set quality, rBSIE is arguably a more important metric than BSSE,
since BSSE can be relatively cheaply removed – at least in the context of intermolecular
interactions.

As the size of the basis increases, computed energies generally approach the basis set
limit. This is trivially true within a given variational space, as exemplified by the difference
between e.g. cc-pVDZ and aug-cc-pVDZ. The trend also weakly holds even when the spaces
are different: a quadruple-zeta basis is usually closer to the basis set limit than a triple-zeta
basis. Nevertheless, the different families of basis sets exhibit different rates of convergence
to the basis set limits, such that it is possible for a basis set in one family to be smaller yet
more complete than one in another family (compare def2-QZVPD to aug-cc-pVQZ). Certain
basis sets are particularly cost-effective. This is represented within Figure 4.2 by smaller bars
higher up, e.g. CP def2-SVPD. Other basis sets – most notably those in the Pople sequence,
e.g. 6-31++G** – outperform their similarly-sized competitors when not corrected for BSSE,
but dramatically underperform once a counterpoise correction is employed. Thus, different
conclusions regarding relative qualities of basis sets may be drawn based on whether or not
counterpoise correction is desired, which is evidenced by different trends between the gold
and blue bars in Figure 4.2. Nevertheless, correcting for basis set superposition error is
useful, particularly in the case of smaller basis sets. For instance, calculating a counterpoise-
corrected binding energy for a dimer in the def2-SVPD basis entails less than 20% of the
effort required to calculate the corresponding uncorrected energy in the aug-cc-pVTZ basis,
despite the fact that the CP def2-SVPD calculation is – as evidenced by these data – more
accurate.

Similar trends regarding the qualities of the various basis sets are observed for the other
density functional approximations, B3LYP and B97M-V, as is illustrated by comparison with
Figures 4.3 and 4.4, respectively. There are, of course, some exceptions: for instance, in the
case of B97M-V, the noCP aug-pc-n results are disproportionately worse, which may simply
be an artifact of its training. Nevertheless, a significant degree of transferability is expected
for any density functional with a well-behaved inhomogeneity correction factor (ICF), re-
gardless of whether exact exchange is incorporated or not. All bets are off, however, when
considering functionals with strongly oscillatory ICFs; for more details, see Mardirossian and
Head-Gordon[99].

One particularly interesting aspect of the similarities among functionals observed in this
study is that the nonlocal VV10 correlation of B97M-V is no more sensitive to basis set than
the semilocal exchange and correlation components. In fact, VV10 nonlocal correlation is
vastly less sensitive to basis set size than even the local exchange and correlation of SPW92:
there is effectively no difference between VV10 nonlocal contributions to binding energies
in the def2-SVPD and pc-4 basis sets. Relevant data are provided in Appendix B. It has
previously been established that nonlocal correlation energies are insensitive to grid[23, 187],
but to our knowledge this is the first time basis set insensitivity has been reported. This is
a conceptually interesting phenomenon which could be exploited to greatly reduce the cost
of electronic structure calculations with VV10; such will be the focus of work to come.
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Figure 4.3: Uncorrected (noCP) and counterpoise-corrected (CP) root mean square errors
(RMSE) in B3LYP binding energies across the S22 set of molecules. For further details, see
Figure 4.2.

The convergence patterns of the Dunning, Jensen, and Karlsruhe basis sequences for
uncorrected and counterpoise-corrected mean binding energies in S22 are summarized in
Figures 4.5 and 4.6, respectively, at the local-density approximation level of DFT. For the
Dunning and Jensen sequences, basis sets of double- through quintuple-zeta quality were em-
ployed (with the exception of aug-pc-4, since those calculations could not all be converged).
For the Karlsruhe sequences, basis sets of double-zeta through quadruple-zeta quality were
used. Similar convergence patterns are observed for B3LYP and B97M-V; relevant figures
may be found in Appendix B. It is evident that the counterpoise-corrected results converge
significantly more quickly than the uncorrected results with respect to the number of basis
functions, regardless of the choice of basis sequence; note the difference in scales between
Figure 4.5 and Figure 4.6. However, this accelerated convergence comes at the cost of a loss
of systematicity in the error: whereas complexes are always overbound when uncorrected
for BSSE (as is guaranteed by the variational borrowing of fragment functions in supersys-
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Figure 4.4: Uncorrected (noCP) and counterpoise-corrected (CP) root mean square errors
(RMSE) in B97M-V binding energies across the S22 set of molecules. For further details,
see Figure 4.2.

tem calculations), they are not always underbound following application of the counterpoise
correction.

It is clear from Figure 4.5 that the Dunning sequences of basis sets cc-pVXZ and aug-
cc-pVXZ converge remarkably slowly to the basis set limit for DFT. In fact, even binding
energies at the uncorrected aug-cc-pV5Z level are not fully converged: in this basis set,
the mean BSSE across S22 ranges from 0.01 to 0.06 kcal/mol, depending on the method.
The pc-4 basis set, on the other hand, is essentially BSSE-free to this level of precision,
despite being roughly 17% smaller. Even binding energies in the def2-QZVPD basis are
converged to approximately the same level as those in aug-cc-pV5Z, despite the fact that
def2-QZVPD is less than half the size of aug-cc-pV5Z. The Dunning sequences of basis
sets are undeniably inefficient for DFT; that being said, they were designed with correlated
wavefunction-based methods in mind, so this is not altogether unexpected. When considering
counterpoise-corrected results, the picture is not nearly as bleak, though the Jensen sequences
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Figure 4.5: Convergence of uncorrected (noCP) SPW92 normalized mean binding energies
across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences of basis
sets. Each binding energy was normalized to the corresponding SPW92/CBS value before
averaging. The number of basis functions for each basis set was determined by averaging the
number of basis functions for each system within each basis set across all systems in S22.

Figure 4.6: Convergence of counterpoise-corrected (CP) SPW92 normalized mean binding
energies across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences
of basis sets. For further details, see Figure 4.5.



CHAPTER 4. BASIS SETS FOR INTERMOLECULAR INTERACTIONS 53

of polarization-consistent basis sets still converge more quickly than the Dunning sequences,
as is illustrated in Figure 4.6. On the basis of these results, it is difficult to justify the use of
Dunning basis sets for density functional theory; for a given Dunning basis set, there exists
a Jensen or Karlsruhe alternative that is simultaneously smaller and more accurate.

In their calendar basis set article, Papajak et al.[180] argue that the augmented Dunning
basis sets contain more diffuse functions than are strictly necessary, and offer pruned versions
at the double- through quadruple-zeta levels. We have thus examined one such sequence,
the so-called jun-cc-pVXZ sequence of basis sets. The convergence pattern of this basis
sequence with B97M-V across S22 is provided in Figure 4.7. At first glance, the jun-cc-
pVXZ sequence seems superior to the aug-cc-pVXZ sequence, particularly in the absence
of a correction for BSSE. Indeed, at the triple- and quadruple-zeta levels this is the case,
but at the double-zeta level BSSE is simply being traded for rBSIE, as evidenced by the
significantly increased CP RMSE in Table 4.2. Additionally, even though the jun-cc-pVTZ
and jun-cc-pVQZ basis sets outperform their fully-augmented counterparts, they can still not
really be recommended. They are not bad basis sets – by all measures examined here, they
are better than the corresponding fully-augmented Dunning basis sets – but they are still
less cost-effective than the Karlsruhe and Jensen alternatives. As a final note, as is evident in
Table 4.2, other methods of altering the Dunning sequence, namely the addition of a new set
of core functions (aug-cc-pCVXZ) or a set of diffuse functions (d-aug-cc-pVXZ), are also not
useful for converging these binding energies. Again, these enhancements were optimized with
other properties in mind, and cannot be expected to be effective in the present application.

Figure 4.7: Convergence of uncorrected (noCP) and counterpoise-corrected (CP) B97M-V
normalized mean binding energies across the S22 set of molecules for the Truhlar, Dunning,
Jensen, and Karlsruhe sequences of basis sets. Each binding energy was normalized to the
corresponding B97M-V/CBS value before averaging.

Figures 4.8 and 4.9 illustrate the convergence behavior of the Dunning, Karlsruhe, and
Jensen sequences of basis sets across various subsets of S22 at the SPW92 level of theory.
The subsets are delineated by interaction type: there is a category for hydrogen-bonded
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RMSE (kcal/mol)

Basis noCP CP

aug-cc-pVDZ 0.72 0.15
d-aug-cc-pVDZ 0.81 0.14
aug-cc-pCVDZ 0.75 0.13
jun-cc-pVDZ 0.57 0.39
def2-SVPD 1.77 0.08

aug-cc-pVTZ 0.26 0.03
d-aug-cc-pVTZ 0.32 0.03
aug-cc-pCVTZ 0.34 0.03
jun-cc-pVTZ 0.20 0.02
def2-TZVPD 0.22 0.04

aug-cc-pVQZ 0.13 0.01
jun-cc-pVQZ 0.14 0.01
def2-QZVPD 0.07 0.01

Table 4.2: Uncorrected (noCP) and counterpoise-corrected (CP) root mean square errors
(RMSE) in B97M-V binding energies across S22 for variants of Dunning-style basis sets and
comparably-sized Karlsruhe alternatives.

complexes, one for dispersion-bound complexes, and one for complexes bound by a combina-
tion of dispersion and permanent electrostatics; see Figure 4.1 a breakdown of which systems
within S22 fall within each category. In these figures, the binding energies for each complex
have been normalized to the SPW92 basis set limit – namely, counterpoise-corrected pc-4
– then these normalized binding energies have been averaged across each subset. Based on
Figure 4.8, it is evident that in the absence of a correction for BSSE, the relatively slow
convergence of the Dunning basis sequences in comparison to the Jensen and Karlsruhe se-
quences cannot be attributed to a failure on any particular interaction type; it is observed
regardless of the type of dominant interaction. Through comparison with Figure 4.9, it be-
comes clear that this issue is a consequence of disproportionately high BSSE rather than
rBSIE; after application of the counterpoise correction, the Dunning sequences converge at
a rate similar to that of the Jensen and Karlsruhe sequences.

As is observed across the entirety of the S22 set (cf. Figures 4.5 and 4.6), comparison of
Figures 4.8 and 4.9 demonstrates that the accelerated convergence counterpoise correction
affords is observed regardless of interaction type, though again at a loss of systematicity.
Thus, it stands to reason that BSSE is – for typical GTO basis sets in the context of typical
noncovalent interactions – the predominant flavor of basis set error. One other particularly
striking feature of Figure 4.9 is the relatively large deviation from the basis set limit exhibited
by the unaugmented double-zeta basis sets. The performance across the hydrogen-bonded
and mixed subsets of S22 is not strongly impacted by the decision to include diffuse func-
tions, but for dispersion-bound complexes, particularly in the limit of smaller basis sets, the
inclusion of diffuse functions is vital to eliminate rBSIE. This reinforces conventional wis-
dom: diffuse functions are necessary in order to accurately describe dispersion interactions,
and, for certain classes of basis sets, other energetic properties[188]. In larger basis sets,



CHAPTER 4. BASIS SETS FOR INTERMOLECULAR INTERACTIONS 55

Figure 4.8: Convergence of uncorrected (noCP) SPW92 normalized mean binding ener-
gies across subsets of the S22 set of molecules for the Dunning, Jensen, and Karlsruhe
sequences of basis sets. Within each subset, each binding energy was normalized to the CBS
limit (counterpoise-corrected pc-4) before averaging. The three subsets – hydrogen-bonded,
dispersion-bound, and mixed interactions – are the same as those in Figure 4.1. The num-
ber of basis functions for each basis set was determined by averaging the number of basis
functions for each system within each basis set across all systems in the relevant subset of
S22.
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Figure 4.9: Convergence of counterpoise-corrected (CP) SPW92 normalized mean binding
energies across subsets of the S22 set of molecules for the Dunning, Jensen, and Karlsruhe
sequences of basis sets. For further details, see Figure 4.8.

additional diffuse functions may not be necessary depending on the system, since these basis
sets tend to already contain basis functions with relatively small exponents, but in basis sets
of double-zeta quality (def2-SVP, pc-1, cc-pVXZ), it is imperative to explicitly expand the
basis sets to include such functions: def2-SVP is a terrible basis for describing dispersion.

One further interesting observation regarding basis set superposition error can be made on
the basis of this work: BSSE is effectively extensive, growing with the number of significant
interactions in the system. This is illustrated in Figure 4.10, where we have plotted BSSE
versus the number of interacting atoms for three distinct method-basis pairings. We have
defined the number of interacting atoms as simply the number of unique atoms within a
given system for which the distance to another atom on a different molecule is less than
110% the sum of the van der Waals radii of the atoms. Even this incredibly simple and
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naive approach yields a striking correlation between BSSE and system size, as measured by
the number of interacting atoms. This property of extensivity justifies the development and
use of geometric approaches to predicting BSSE, such as the interaction-specific approach of
Merz[189, 190] and the more general approach of Grimme[191, 192].

Given this extensive nature of BSSE, it is possible to extract a meaningful measure of the
BSSE associated with each method-basis pairing examined in this study, namely the mean
BSSE per interacting atom across the S22 set. This is illustrated for a variety of basis sets
with the SPW92, B3LYP, and B97M-V methods in Figure 4.11. Each column is color-coded
from highest BSSE (dark red) to lowest BSSE (dark blue) for ease of reading; one thing
that is immediately evident is that although the absolute BSSE within a given basis set is
dependent on the density functional approximation employed, the relative BSSE is largely
independent of method. Note that this extensivity does not extend to the remaining basis
set incompleteness error: there is no such correlation between rBSIE and the number of
interactions, as is illustrated in Figure 4.12.

A measure of mean BSSE per interaction effectively allows us to make back-of-the-
envelope qualitative predictions of BSSE. For instance, for the equilibrium CO2-benzene
complex[41], we predict using this naive approach a BSSE of 1.7 kcal/mol for B3LYP in the
def2-SVPD basis, which is not too far removed from the actual value of 1.1 kcal/mol. If we
consider a larger system, such as the parallel-displaced coronene dimer with an interplane
separation of 3.308 Å[42, 137], we predict a much larger BSSE: 9.9 kcal/mol for the SPW92
method in the def2-SVPD basis, which compares favorably with the actual value of 13.8
kcal/mol. This is not to suggest that the numbers in Figure 4.11 should be used for any
quantitative purpose: they simply provide a rough indication of how much BSSE you can ex-
pect for a given system in a given basis set. In order to get a quantitative estimate of BSSE,
it is necessary to be more clever in the counting of interactions, such as by incorporating an
explicit distance dependence, as in the gCP approach of Kruse and Grimme[191]. Such a
quantitative estimate has the potential to be incredibly useful, since for certain basis sets –
e.g. the augmented Karlsruhe basis sets – BSSE constitutes the vast majority of basis set
error. Thus, judicious choice of basis set could, in combination with some correction scheme
for BSSE, yield effectively complete-basis results at a fraction of the effort.

Although this is intended to be primarily a study on basis sets, the availability of both
DFT/CBS (Table 4.1) and CCSD(T)/CBS[186] data allows us to make one more meaning-
ful analysis: namely, we can distinguish between apparent error and method error, as has
been done previously for wavefunction-based methods[193–195]. The convergences – within
the pc-n sequence of basis sets – of uncorrected and counterpoise-corrected binding energies
for each method towards the CCSD(T)/CBS binding energies are visualized in Figure 4.13.
Unlike RMSEs reported elsewhere in this study, the RMSEs in Figure 4.13 correspond to
differences from “exact” binding energies. It is immediately evident that B97M-V is the
most accurate of the methods examined, which is to be expected, given the nature of its
construction and training. SPW92 and B3LYP are not intended to be used for the de-
scription of intermolecular interactions. SPW92 systematically overbinds across S22, and is
subsequently worse in smaller basis sets without CP. B3LYP, on the other hand, overbinds
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Figure 4.10: Relationship between basis set superposition error (BSSE) and number of inter-
acting atoms for several method/basis set combinations. The number of interacting atoms
is defined as the number of unique atoms in each system for which the distance to another
atom on a different fragment is less than 1.1 times the sum of the van der Waals radii of the
atoms.
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Figure 4.11: Mean basis set superposition error (BSSE) per interaction across the S22 set
of molecules for SPW92, B3LYP, and B97M-V in a variety of basis sets. The number of
interactions per system were determined as in Figure 4.10. Each column is color-coded
with a gradient from dark red (highest BSSE) to white (median BSSE) to dark blue (lowest
BSSE).

hydrogen-bonded complexes in small basis sets and underbinds them in large basis sets and
when a correction for BSSE is applied, which accounts for the seemingly bizarre fact that
B3LYP appears to be “better” in smaller basis sets. This highlights one of the dangers
of judging the merits of a functional on the basis of its apparent error: oftentimes a low
apparent error is simply a product of a fortuitous cancellation of basis set error and method
error. Such cancellation is also manifest in the behavior of B97M-V, which apparently per-
forms “best” in the pc-2 basis without counterpoise correction. The B97M-V noCP RMSE
increases from pc-2 to pc-3, then again from pc-3 to pc-4. This behavior is in stark contrast
to that of B3LYP and SPW92, the noCP RMSE errors of which change monotonically with
increasing basis size within the same family of basis set, and is directly a result of its train-
ing; B97M-V was trained in the aug-cc-pVTZ basis set without counterpoise correction, and
hence compensation for aug-cc-pVTZ basis set error was implicitly built in to the functional.
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Figure 4.12: Relationship between remaining basis set incompleteness error (rBSIE) and
number of interacting atoms for several method/basis set combinations. The number of
interactions per system were determined as in Figure 4.10.
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Figure 4.13: Root mean square errors (RMSE) in uncorrected (noCP) and counterpoise-
corrected (CP) binding energies for each method within the pc-n sequence of basis sets.
Errors here correspond to errors relative to CCSD(T)/CBS results[186]. The number of
basis functions is determined as in Figure 4.5.
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4.4 Discussion and Conclusion

In this work, we have examined the efficacies of various popular families of basis sets with
regards to their abilities to approach complete-basis binding energies across the S22 set of
noncovalent interactions. More specifically, we have tested a number of Pople split-valence
basis sets, the Dunning sequence of correlation-consistent basis sets, the Karlsruhe def2-
basis sets, and the Jensen polarization-consistent sequence of basis sets with three distinctly
different density functional approximations: SPW92, a form of local-density approximation,
B3LYP, a global hybrid GGA, and B97M-V, a meta-GGA with nonlocal correlation.

Although ours is the first systematic study of the convergence patterns of these basis sets
in the context of intermolecular interactions as described by DFT, there have been several
other relevant studies comparing the Dunning and Jensen sequences of basis sets in slightly
different contexts in the past decade. Shahbazian and Zahedi[196] have demonstrated that
polarization-consistent basis sets outperform correlation-consistent basis sets for binding en-
ergies of diatomic molecules at the Hartree-Fock level of theory; we show here that this
behavior applies to other self-consistent methods, namely DFT, and larger molecular sys-
tems. Kupka and Lim[197] have concluded that the pc-n sequence is similarly well-suited to
the calculation of molecular and spectroscopic properties, namely geometries and vibrational
frequencies, so our particular basis set recommendations may be relevant in the context of
such properties. Elsohly and Tschumper[198] have previously shown that binding energies
computed with Møller-Plesset perturbation theory to second order (MP2)[5] in the Dunning
correlation-consistent sequence of basis sets converge more quickly than when the Jensen
polarization-consistent sequence is employed. Correlation-consistent basis sets have their
place; they reign supreme in the realm of correlated wavefunction-based calculations.

We have established that counterpoise correction accelerates convergence to the basis set
limit for DFT in the context of noncovalent interactions – regardless of basis set sequence
– though at the cost of a loss of systematicity of error. Previously, Eshuis and Furche[199]
showed that counterpoise correction leads to faster convergence of random phase approx-
imation (RPA) correlation energies across S22, though in the case of RPA, the corrected
correlation errors have the added benefit of still being systematic. On the other hand, El-
sohly and Tschumper[198] demonstrated that for five weakly bound clusters, counterpoise
correction does not accelerate the convergence of MP2 correlation energies. We thus reit-
erate that our recommendation of counterpoise correction applies strictly to self-consistent
methods, particularly well-behaved density functional approximations. We expect our con-
clusions to be transferable to Hartree-Fock (HF) theory[107, 108]; after all, HF and DFT
have been previously shown to have similar basis set requirements[200], and here we have
demonstrated that functionals with local and exact exchange within the Kohn-Sham formal-
ism exhibit similar convergence patterns.

In this study, we have also established that it is remarkably difficult to truly reach the
basis set limit; even the massive aug-cc-pV5Z basis is plagued by BSSE. In fact, in the context
of S22 DFT binding energies, the only effectively BSSE-free basis set examined is pc-4.
However, at 2064 basis functions for the benzene dimer, pc-4 is not a particularly pragmatic
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basis for day-to-day use. A more economical alternative is the Karlsruhe def2-SVPD basis
set. With only 336 basis functions for the benzene dimer, def2-SVPD is relatively affordable;
moreover, when corrected for BSSE, it yields results that are comparable to those obtained
with the analogous Dunning and Jensen basis sets, aug-cc-pVDZ and aug-pc-1, despite being
significantly smaller. In fact, for the S22 set of systems, counterpoise-corrected def2-SVPD
binding energies are on par with those obtained with significantly larger basis sets: on the
order of 0.1 kcal/mol error across the S22 set of molecules. This is consistent with the findings
of Mardirossian and Head-Gordon[19], who recommended counterpoise-corrected def2-SVPD
as an alternative to aug-cc-pVTZ on the basis of its ability to reproduce reference coupled-
cluster binding energies when combined with the B97M-V functional. We thus demonstrate
here that this reproduction does not stem exclusively from fortuitous error cancellation,
but rather emerges as a result of the strength of B97M-V and the small intrinsic rBSIE of
def2-SVPD in the context of noncovalent interactions.

The complete-basis data presented in Table 4.1, Figure 4.13, and Appendix B shed light
on an interesting aspect of functional development. The parameters of the functional B97M-
V were optimized without counterpoise correction in the aug-cc-pVTZ basis set. As a result,
B97M-V exhibits a smaller RMSE versus CCSD(T)/CBS across S22 without counterpoise
correction in aug-cc-pVTZ than in any other basis, with or without a correction for BSSE: the
noCP aug-cc-pVTZ RMSE of B97M-V is 0.23 kcal/mol, which is more than 30% smaller than
the B97M-V/CBS RMSE of 0.35 kcal/mol. Similarly small RMSEs are exhibited for B97M-
V in other basis sets of triple-zeta quality without counterpoise correction, such as noCP
def2-TZVPD (0.25 kcal/mol). In larger basis sets, or when a correction for BSSE is applied,
B97M-V systematically underbinds across the S22 set (with the exception of two systems: the
uracil dimer stack and the ethene-ethyne complex, both of which are significantly overbound
at the level of noCP aug-cc-pVTZ). Thus, in the case of methods trained in the presence
of significant BSSE and rBSIE – such as B97M-V – it is not necessarily better to use a
larger basis, since compensation for these basis set errors within the training basis has been
implicitly built into the method. Consequently, we recommend future empirical methods
be trained as close to the basis set limit as possible, such as in the def2-QZVPD basis set
with counterpoise correction. When training in any finite basis, it is desirable to ensure that
the method error is significantly larger than the basis set error; otherwise, the method will
invariably rely on some cancellation of these errors and hence underperform when liberated
from basis set error.

In addition to our previous small basis recommendation (CP def2-SVPD), we thus es-
tablish as our large basis of choice def2-QZVPD; when corrected for BSSE, this basis set
is a practical alternative to pc-4. There is an argument to be made against training new
density functionals in basis sets with significant rBSIE, since basis set error becomes con-
founded with method error, as is seen with B97M-V. Counterpoise-corrected def2-QZVPD
thus constitutes an ideal level at which train new density functionals: it is sufficiently large
to reproduce complete-basis results with errors an order of magnitude smaller than the in-
trinsic method errors, yet it is a small enough basis to be feasible. The principle downside
of performing a counterpoise correction when training a new functional is the differential
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treatment of noncovalent interactions and thermochemistry; this could potentially be reme-
died by correcting for BSSE in a manner that allows for the consideration of intramolecular
BSSE, such as by utilizing an atomic[201, 202] or geometric[191] correction. Such will be the
focus of work to come. An additional suitable course of future work would be to extend this
study beyond second-row elements, to see whether the observed trends among and within
the different sequences of basis sets hold for heavier atoms and transition metals.
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Chapter 5

Empirical Dispersion: DFT-D3

5.1 Introduction

Kohn-Sham density functional theory (DFT)[11] is the most widely used formalism in
electronic structure theory, a consequence of its relative simplicity and the nice balance it
strikes between computational expense and accuracy. Nevertheless, DFT has its drawbacks.
Although there is a degree of hierarchy within DFT, as exemplified by the proverbial Jacob’s
ladder of DFT[203], there is no prescription for systematically improving results. Moreover,
standard approximations within the formalism are inherently semi-local, and hence incapable
of correctly describing long-range electron correlation, i.e. strong correlations and dispersion
forces[60]. This latter deficiency is particularly troubling, since dispersion is integral to
the correct description of non-covalent interactions. To address this issue, a “stairway” of
dispersion corrections has been constructed over the years[28].

The simplest such corrections can be traced back to a Hartree–Fock+D approach[204,
205], which, channeling second-order Rayleigh-Schrödinger perturbation theory, adds in a
pairwise atomic correction involving empirical isotropic dispersion coefficients with the cor-
rect r−6 asymptote. This scheme was later adapted to DFT[140], which introduced an
additional complication: since DFT already describes local electron correlation, the added
+D component needs to be damped at small separations in order to avoid double counting.
Grimme systematized this approach, first with his introduction of the DFT-D method[29],
then subsequently DFT-D2[30] and DFT-D3[31]. These methods are widely used for the
same reason that DFT is so prolific within the electronic structure community: they are
simple, incredibly efficient, and quite accurate for a variety of interesting systems.

In recent years, a number of additional approaches to dispersion have been developed.
Von Lilienfeld et al.[206] proposed adding in dispersion-corrected atom-centered poten-
tials (DCACPs) within the effective core-potential approximation; this approach was later
adapted to atom-centered basis sets in what is now known as the DCP approach[207]. Several
approaches for self-consistently calculating dispersion coefficients have been introduced, most
notably the exchange-dipole moment (XDM) model[32–35], and the TS-vdW method[36].
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The past decade has even seen the proliferation of methods that attempt to explicitly incor-
porate non-local correlation, such as the vdW-DF[37] and vdW-DF2[38] approaches, which
are popular within the solid-state community, and the VV09[39] and VV10[40] methods.
For a more thorough description of these various methods, the reader is referred to a recent
review by Klimeš and Michaelides[28].

Within this study, we focus on the most computationally inexpensive brand of dispersion
corrections, the aforementioned DFT-D2 and DFT-D3 approaches. Specifically, we explore
the effect of including an additional degree of freedom within the -D3 damping function,
thereby introducing a new, more general damping function. This new damping function
is then optimized for several popular density functionals, and the resulting methods are
compared to those obtained with existing -D3 damping functions. We find that this new it-
eration, which we term DFT-D3(op), shorthand for optimized power, substantially improves
the description of non-covalent interactions – particularly those involving molecular clusters
– and isomerization energies.

5.2 Theory

Within the DFT-D family of methods, the two-body component of the empirical disper-
sion energy is given by

E(2) = −
∑
i<j

∑
n=6,8,10,...

sn
Cn,ij
rnij

fdamp,n(rij). (5.1)

The first sum in eq. (5.1) runs over all unique pairs of atoms i and j; Cn,ij are isotropic nth-
order dispersion coefficients for atom pair ij; rij is the internuclear distance between atoms
i and j; sn are global, density functional-dependent scaling parameters; and fdamp,n(rij) are
damping functions intended to address small-rij singularities, as well as double-counting
of correlation effects. Early iterations of these dispersion models – namely the original
DFT-D[29, 140], as well as DFT-D2[30] – truncated the sum at n = 6, employed chemically-
insensitive, pre-tabulated dispersion coefficients C6,ij and van der Waals radii r0,ij, and uti-
lized Fermi-type damping functions of the form

fD2
damp,6(rij) =

[
1 + exp

(
−α
(
rij
r0,ij

− 1

))]−1

, (5.2)

with α generally fixed to 20.
In 2010, Grimme et al.[31] introduced the now widely used DFT-D3 scheme. Although

many aspects of -D3 are similar to -D2, there are some key fundamental differences: a
counting function is introduced to allow the C6,ij coefficients to be weakly environmentally-
dependent; the sum in eq. (5.1) is extended to include the n = 8 term, and a CHG-style[87]
damping function – given in eq. (5.3) – is used. For the damping function, Grimme et al.[31]
chose to fix sr,8 = 1, α6 = 14, and α8 = 16, thereby optimizing only one nonlinear parameter
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– sr,6 – for each density functional. Moreover, for almost all density functionals, s6 is fixed
to unity, leaving only one linear parameter, s8. This version of DFT-D3 is now known as
zero-damping, or DFT-D3(0).

f
D3(0)
damp,n(rij) =

[
1 + 6

(
rij

sr,nr0,ij

)−αn]−1

(5.3)

One year later, Grimme et al.[61] combined the basic principles of DFT-D3 with the finite-
damping scheme Johnson and Becke[34] had utilized in their XDM approach to dispersion;
this is now the generally preferred style of -D3, termed DFT-D3(BJ). The damping function
is of the form

f
D3(BJ)
damp,n(rij) =

rnij
rnij + (α1r0,ij + α2)n

, (5.4)

where α1 and α2 are adjustable nonlinear parameters. At short internuclear distances rij,
the dispersion energy E(2) in the zero-damping approach vanishes, since fdamp,n(rij) decays
more quickly than Cn,ijr

−n
ij . In the BJ-damping scheme, however, these two terms decay

at the same rate, and hence E(2) asymptotes to a finite value. This is the key difference
between the -D3(0) and -D3(BJ) approaches. Although van der Waals radii r0,ij in -D3(BJ)

are given by
√

C8,ij

C6,ij
instead of their -D3(0) values, the tabulated coefficients Cn,ij are the

same, and – as with -D3(0) – s6 is generally fixed to unity in -D3(BJ), leaving s8 as the sole
linear parameter.

This new version of -D3 with BJ-damping has become the preferred version of -D3 due
to the fact that it consistently outperforms -D3(0)[61]. Recently, Schröder et al.[208] have
attempted to simplify the model with their C-Six-Only (CSO) approach, wherein they intro-
duce a sigmoidal interpolation function to approximate the eighth-order term. In so doing,
they eliminate one linear parameter and one nonlinear parameter without significantly im-
pacting performance across GMTKN30 or S66[208]. The damping function for this approach,
-D3(CSO), is given by

f
D3(CSO)
damp,6 (rij) =

r6
ij

r6
ij + (α3r0,ij + α4)6

[
1 +

α1

s6 [1 + exp (rij − α2r0,ij)]

]
. (5.5)

Note the similarities between eqs. (5.4) and (5.5): α3 and α4 in the CSO scheme correspond to
α1 and α2 in BJ-damping, respectively, and the bracketed term in eq. (5.5) is the interpolation
function. For the density functionals they examined, Schröder et al.[208] found α3 ≈ 0,
α4 ≈ 6.25, and α2 ≈ 2.5, leaving α1 as the sole functional-dependent parameter in -D3(CSO).

In addition to the dispersion corrections mentioned thus far, we consider in this work the
modified version of -D3(BJ) recently proposed by Smith et al.[209]. The damping function in
this approach, -D3M(BJ), is identical to that in eq. (5.4); the method constitutes a refitting
of the BJ-damping parameters to a much broader set of data. Grimme et al.[61] originally
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fit s8, α1, and α2 on 130 data points; Smith et al.[209] utilize a training set of 1526 energies,
with an emphasis on non-equilibrium – particularly compressed – geometries.

It is illustrative to rewrite the damping function for -D3(0) from eq. (5.3). By doing so,
we obtain

f
D3(0)
damp,n(rij) =

rαnij

rαnij +
(
αn
√

6sr,nr0,ij

)αn . (5.6)

The similarities between the functional forms of -D3(0) and -D3(BJ) are striking (cf. eqs.
(5.4) and (5.6)). There is a direct correspondence between α1 in BJ-damping and sr,n.
Whereas in -D3(BJ) α1 is the same for the sixth- and eighth-order terms, in -D3(0) this is
no longer the case, as sr,6 6= sr,8. The original zero-damping scheme thus resembles a slightly
constrained version of BJ-damping, wherein α2 (the constant added to the van der Waals
radii) is zero, and the sixth-order power is 14 instead of 6.

In this work, we generalize the BJ-damping function, adding a parameter to control how
quickly the damping occurs, i.e. the power. The damping function we employ is given by

f
D3(op)
damp,n(rij) =

rβnij

rβnij + (α1r0,ij + α2)βn
(5.7)

This new scheme – optimized-power-damping, or -D3(op) – is mathematically similar to
both BJ-damping and zero-damping. As is the case with both BJ- and zero-damping, we
constrain β8 = β6 + 2. We utilize the same isotropic dispersion coefficients as both -D3(0)

and -D3(BJ), the same van der Waals radii as -D3(BJ) – i.e. r0,ij =
C8,ij

C6,ij
– and optimize three

nonlinear parameters (α1, α2, β = β6) and one linear parameter (s8). The effects of varying
the nonlinear parameters in this model are visualized in Figure 5.1. The holdovers from
BJ-damping – α1 and α2 – primarily control the distance rij at which the damping function
switches off the dispersion correction: α1 and α2 are just multiplicative and additive terms,
respectively, for the sum of van der Waals radii r0,ij. The newly introduced β, on the
other hand, controls the rate at which the dispersion correction is switched off; in the limit
β → ∞, fdamp(rij) → θ(rij), i.e. the damping function just becomes a step function. Most
small changes in β correspond to subtle changes in the dispersion energy, E(2); the exception
is the transition from β = 6 to β = 6 + ε, which is a fundamentally different change than
that from, say, β = 10 to β = 10 + ε. For all β > 6, the contribution of atom pair ij to
the dispersion energy at rij = 0 is zero; for β = 6, this contribution is nonzero. In practice,
however, this difference is not so significant; due to Pauli repulsion, the limit rij = 0 is not
particularly meaningful.

An overview of the six forms of dispersion corrections considered in this study – -D2,
-D3(0), -D3(BJ), -D3M(BJ), -D3(CSO), and -D3(op) – can be found in Table 5.1. Note we
have not considered the modified version of zero-damping, -D3M(0), as it was found to be
inferior to -D3M(BJ) by the original authors[209].
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Figure 5.1: Visualization of the effects of varying parameters α1, α2, and β from eq. (5.7).
The leftmost plots are generated by varying α1 with fixed α2 and β; the center plots are
generated by varying α2 with fixed α1 and β; and the rightmost plots are generated by varying
β with fixed α1 and α2. When not being varied, the parameters are fixed to α1 = 0.5, α2 = 5,
and β = 14, with r0,ij = 2 Å. The top plot in each section shows the damping function for

the sixth-order term, f
D3(op)
damp,6(rij) from eq. (5.7). The bottom plot in each section shows the

sixth-order contribution to the two-body dispersion energy, E(2), which has been normalized
to span the range [0,1].

Fit Parameters

Type Linear Nonlinear C8? Reference

-D2 s6 None No [30]
-D3(0) s8 sr,6 Yes [31]
-D3(BJ) s8 α1, α2 Yes [61]
-D3M(BJ) s8 α1, α2 Yes [209]
-D3(CSO) None α1 No [208]

-D3(op) s6 or s8
α1, α2,
β

Maybe This work

Table 5.1: Summary of empirical dispersion corrections considered in this study.
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5.3 Computational Details

We have optimized the DFT-D3(op) damping function given in eq. (5.7) for several
density functional approximations and compared its performance to that of existing damping
functions. Specifically, we have considered the ten density functionals outlined in Table 5.2.

Functional Class Empirical Dispersion Ref

BLYP GGA D2,D3(0),D3(BJ),
D3M(BJ),D3(CSO)

[15, 16]

B3LYP hybrid GGA D2,D3(0),D3(BJ),
D3M(BJ),D3(CSO)

[15, 16, 22, 82]

B97 GGA D2,D3(0),D3(BJ),
D3M(BJ)

[30]

B97h hybrid GGA D2 [17]
revPBE GGA D3(0),D3(BJ) [14, 210]
revPBE0 hybrid GGA D3(0),D3(BJ) [14, 83, 210]
TPSS meta-GGA D2,D3(0),D3(BJ),

D3(CSO)
[84]

TPSSh hybrid meta-GGA D3(0),D3(BJ) [18]
MS2 meta-GGA D3(0) [211]
MS2h hybrid meta-GGA D3(0) [211]

Table 5.2: Summary of density functionals. The names in the first column are standard,
with two exceptions: B97 corresponds to Grimme’s pure functional B97-D[30], which has
had the dispersion tail stripped away; and B97h corresponds to the original hybrid functional
B97, as parameterized by Becke[17]. The third column details the existing parameterized
DFT-D-style dispersion corrections we consider in this study, and the fourth column lists
the references for the method.

These ten representative density functionals were carefully chosen. There are five natural
pairs of pure/hybrid functionals: BLYP/B3LYP, B97/B97h, revPBE/revPBE0, TPSS/TPSSh,
and MS2/MS2h. The first three of these pairs are generalized gradient approximations
(GGAs), and the last two are meta-GGAs. Moreover, each of these ten density function-
als exhibits positive mean signed errors across every dataset of non-covalent interactions we
considered; that is to say, they consistently underbind every type of system at which we have
looked, and hence can all profit greatly from the addition of a dispersion correction. One
popular functional we excluded from this study is PBE. Since PBE is known to overbind
water clusters[212], we believe it is not a good candidate for a blanket dispersion correction.
That being said, although PBE (and its complement, PBE0) are not found within the main
study, parameterizations for both may be found in the Supporting Information.

All density functional calculations were performed in the def2-QZVPPD basis[154, 155],
near the basis set limit for standard non-covalent interactions[43]. A fine Lebedev integration
grid consisting of 99 radial shells – each with 590 angular points – was utilized in the
computation of all semi-local components of exchange and correlation; non-local correlation
in the VV10-containing functionals was calculated with the coarser SG-1 grid[133]. All
calculations were performed within a development version of Q-Chem 4.4[182].
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For each density functional, we performed an exhaustive determination of the optimal
parameters for the DFT-D3(op) method. Specifically, we scanned α1 from 0 to 1 in steps
of 0.025, α2 from 0 to 10 in increments of 0.25, and β from 6 to 18 in increments of 2; this
resulted in 11767 possible forms of the -D3(op) tail for each density functional.

To identify the best of these many candidate fits, we utilized the comprehensive database
assembled by Mardirossian and Head-Gordon[24]. This database contains 4419 data points
which are spread out among 82 smaller datasets. These smaller constituent datasets are
classified according to eight distinct datatypes: NCED (easy non-covalent interactions of
dimers), NCEC (easy non-covalent interactions of clusters), NCD (difficult non-covalent
interactions of dimers), IE (easy isomerization energies), ID (difficult isomerization energies),
TCE (easy thermochemistry), TCD (difficult thermochemistry), and BH (barrier heights).
“Difficult” interactions involve either strong correlation or self-interaction error, whereas
“easy” interactions are not heavily characterized by either. In order to facilitate the testing
of -D3(op) candidates, the datasets were divided into two categories. A training set was used
to identify the best set of parameters, and a test set was used to assess the performance of
the resulting method relative to existing dispersion corrections. A summary of the datasets
can be found in Table 5.3.

Once all 11767 possible fits were generated for a given functional, we set s6 to unity and
performed a least-squares fit of s8 to a small subset of NCEDTrain and IETrain, namely S66
and Butanediol65. The resulting methods were then sorted according to a simple product of
root-mean-square errors (RMSEs) across eleven training datasets – S66, HB49, AlkBind12,
H2O6Bind8, H2O20Bind4, HW6Cl, Butanediol65, Melatonin52, H2O16Rel5 and two ge-
ometric datasets: interpolated equilibrium binding lengths of BzDC215 and NBC10. To
prevent the appearance of unphysical parameters (negative values of s8), when s8 optimized
to a value less than 0.1, we set s8 = 0 and performed a least-squares fit of s6 instead. The
only functional within this study for which this occurred is B97h.

5.4 Results and Discussion

In the course of this study, we have introduced a new damping function for use in
the DFT-D3 empirical dispersion correction – DFT-D3(op) – which encompasses the space
spanned by DFT-D3(BJ) and an unconstrained form of DFT-D3(0). We have optimized this
new damping function for ten distinct density functionals across a small yet diverse training
set. The resulting optimized fit parameters are listed in Table 5.4; parameterizations for
additional functionals may be found in Appendix C.

This new variant of DFT-D3 was then evaluated in tandem with existing versions across a
large independent test set. The results are given in Figure 5.2, within which we show for each
method the root-mean-square errors (RMSEs) across the three energetic categories for which
empirical dispersion methods are best suited – namely NCEDTest, NCECTest, and IETest –
as well as one geometric category, S66x8 interpolated equilibrium binding lengths (and cor-
responding interpolated equilibrium binding energies). For each of NCEDTest, NCECTest,
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Set Datatype # Constituent Datasets References

Train NCED 127 S66, HB49, AlkBind12 [116, 213–217]
NCEC 18 H2O6Bind8, H2O20Bind4, HW6Cl [218–223]
IE 122 Butanediol65, Melatonin52, H2O16Rel5 [224–226]
BL 20 Interpolated equilibrium binding lengths

from BzDC215 and NBC10
[119, 121, 186, 227, 228]

Test NCED 1617 A24, DS14, HB15, HSG, NBC10, S22, X40,
A21x12, BzDC215, HW30, NC15, S66x8,
3B-69-DIM, CO2Nitrogen16, Ionic43

[42, 117, 119, 121, 131, 181, 186, 213, 227–
236]

NCEC 225 HW6F, FmH2O10, Shields38,
SW49Bind345, SW49Bind6, WATER27,
3B-69-TRIM, CE20, H2O20Bind10

[218–221, 234, 237–240]

NCD 91 TA13, XB18, Bauza30, CT20, XB51 [241–245]
IE 633 AlkIsomer11, ACONF, CYCONF,

Pentane14, SW49Rel345, SW49Rel6,
H2O20Rel10, H2O20Rel4, YMPJ519

[219–223, 238, 246–250]

ID 155 EIE22, Styrene45, DIE60, ISOMERIZA-
TION20, C20C24

[239, 251–253]

TCE 947 AlkAtom19, BDE99nonMR, G21EA,
G21IP, TAE140nonMR, AlkIsod14,
BH76RC, EA13, HAT707nonMR, IP13,
NBPRC, SN13, BSR36, HNBrBDE18,
WCPT6

[188, 221, 246, 252, 254–261]

TCD 258 BDE99MR, HAT707MR, TAE140MR, Pla-
tonicHD6, PlatonicID6, PlatonicIG6, Pla-
tonicTAE6

[252, 262]

BH 206 BHPERI26, CRBH20, DBH24, CR20,
HTBH38, NHTBH38, PX13, WCPT27

[221, 239, 240, 255, 256, 261, 263–267]

Table 5.3: Summary of datasets that comprise the training and test sets. For more details,
see Ref. 24.

Functional s6 s8 α1 α2 β

BLYP 1.00000 1.31867 0.425 3.50 8
B3LYP 1.00000 0.78311 0.300 4.25 10
B97 1.00000 1.46861 0.600 2.50 6
B97h 0.97388 0.00000 0.150 4.25 12
revPBE 1.00000 1.44765 0.600 2.50 6
revPBE0 1.00000 1.25684 0.725 2.25 6
TPSS 1.00000 0.51581 0.575 3.00 14
TPSSh 1.00000 0.43185 0.575 3.00 14
MS2 1.00000 0.90743 0.700 4.00 8
MS2h 1.00000 1.69464 0.650 4.75 6

Table 5.4: Optimized values of -D3(op) fit parameters for each density functional.
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and IETest, both the aggregate results as well as results for two representative constituent
datasets are provided.

From Figure 5.2, it is evident that the newly proposed -D3(op) dispersion correction
represents an improvement over existing corrections for a diverse set of density functionals
and systems. Even in cases where the power optimizes to β = 6, which corresponds to
the DFT-D3(BJ) scheme, we see large improvements in some categories. This is the case,
for instance, for revPBE. Relative to revPBE-D3(BJ), revPBE-D3(op) exhibits significantly
lower RMSEs across all metrics related to non-covalent interactions; the reductions in errors
on molecular clusters (NCEC, 63%) and geometries (BL, 45%) are particularly striking.
This sort of improvement highlights the benefits a simple re-optimization incorporating the
plethora of new high quality data that have been published in the past six years can bring;
after all, revPBE-D3(op) is effectively just a reparameterization of revPBE-D3(BJ). Note
that for this particular functional, there is no DFT-D3M(BJ) version with which to compare
our reparameterization; Smith et al.[209] chose to parameterize PBE instead of revPBE.

Another manifestation of the importance of having a well-balanced training set is the per-
formance of DFT-D3(CSO). In a recent study, it was found that DFT-D3(CSO) reproduces
bond lengths and rotational constants quite well[268]. Here, we find that this satisfactory
intramolecular performance does not transfer to intermolecular metrics, despite the fact
that DFT-D3(CSO) is decent at reproducing accurate energies (particularly isomerization
energies, at which it seems to excel). Regardless of density functional, -D3(CSO) exhibits
significantly larger errors in equilibrium binding lengths than any of the other iterations of
-D3; for B3LYP-D3(CSO), for instance, the RMSE across BL is nearly double the next-
highest B3LYP-D3 BL RMSE. This is likely a consequence of the fact that DFT-D3(CSO)
was trained exclusively on equilibrium systems, specifically S66. This is in stark contrast
to other DFT-D3 variants, which were trained on geometries either implicitly through the
inclusion of nonequilibrium systems – as was the case for -D3(0), -D3(BJ), and -D3M(BJ) –
or by explicitly including geometries in the training metric, as is the case here for -D3(op).

Similarly, deviations among performances across single datasets highlight the need for
diverse aggregate datasets. From the exemplary performance of BLYP-D3(CSO) on the
Shields38 set, one might infer that this method should be particularly well-suited to water
clusters. This is not the case, however; BLYP-D3(CSO) has the highest RMSE of all BLYP-
D3 variants across the H2O20Bind10 set of large water clusters by nearly a factor of two.
Oftentimes, outstanding performance of a particular method on a particular set of systems
will transfer to similar systems, but that sort of transferability is not guaranteed. The larger
and more diverse the independent test set, the more likely the results will be transferable.

This point is further driven home by the relative performances of the DFT-D3(BJ) and
-D3M(BJ) methods. For instance, compare B3LYP-D3(BJ) and B3LYP-D3M(BJ) in Figure
5.2. The -D3M(BJ) method is simply a reparameterization of -D3(BJ) across a significantly
larger training set. In the case of B3LYP-D3M(BJ), however, this reparameterization has
resulted in significant loss of performance as measured by RMSEs across equilibrium non-
covalent interactions. This is likely a consequence of the large emphasis placed on compressed
geometries in the parameterization of -D3M(BJ) by both the composition of the datasets
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Overall

Functional NCED* HSG S22 NCEC* Shields 3B-69 IE* Pent14 YMPJ BL (Å) BE Product

BLYP 3.46 3.39 6.00 14.20 7.82 8.39 1.58 0.55 1.51 0.225 3.80

-D2 0.54 0.48 0.25 2.13 3.23 0.73 1.17 0.83 1.18 0.095 0.58 12.85

-D3(0) 0.36 0.39 0.28 1.67 2.52 0.52 0.83 0.20 0.80 0.028 0.42 1.41

-D3(BJ) 0.33 0.40 0.32 2.07 1.59 0.71 0.71 0.48 0.70 0.027 0.23 1.32

-D3M(BJ) 0.33 0.29 0.34 2.57 3.81 0.69 0.72 0.45 0.71 0.038 0.31 2.33

-D3(CSO) 0.40 0.48 0.38 3.21 0.61 0.80 0.68 0.49 0.65 0.061 0.29 5.29

-D3(op) 0.31 0.40 0.20 1.77 2.24 0.75 0.73 0.41 0.74 0.029 0.21 1.14

B3LYP 2.82 2.68 4.89 8.67 4.54 6.61 1.34 0.47 1.28 0.215 3.12

-D2 0.58 0.45 0.61 5.19 5.14 0.80 0.89 0.54 0.88 0.100 0.81 26.63

-D3(0) 0.35 0.27 0.42 3.69 4.00 0.79 0.50 0.13 0.45 0.027 0.44 1.71

-D3(BJ) 0.30 0.21 0.43 2.67 3.21 0.74 0.51 0.20 0.49 0.022 0.38 0.89

-D3M(BJ) 0.34 0.19 0.52 3.32 3.79 0.80 0.50 0.19 0.49 0.023 0.44 1.32

-D3(CSO) 0.30 0.25 0.30 1.51 2.15 0.63 0.48 0.20 0.44 0.047 0.28 1.01

-D3(op) 0.26 0.30 0.25 1.28 1.88 0.56 0.55 0.20 0.54 0.027 0.24 0.49

B97 3.66 3.70 6.49 21.42 15.11 9.30 1.87 0.64 1.77 0.239 3.86

-D2 0.57 0.72 0.62 5.63 3.66 1.42 1.28 0.66 1.33 0.068 0.53 27.50

-D3(0) 0.39 0.50 0.54 4.12 2.22 1.17 0.76 0.08 0.77 0.034 0.35 4.16

-D3(BJ) 0.46 0.55 0.49 4.75 2.75 1.11 0.82 0.28 0.82 0.047 0.38 8.40

-D3M(BJ) 0.40 0.40 0.38 2.75 0.94 1.17 0.61 0.19 0.60 0.032 0.30 2.14

-D3(op) 0.41 0.39 0.38 1.83 0.42 1.08 0.72 0.30 0.70 0.026 0.29 1.38

B97h 2.41 2.26 4.39 10.42 6.50 5.77 1.27 0.41 1.19 0.218 2.56

-D2 0.49 0.39 0.71 1.14 0.44 0.93 0.72 0.42 0.73 0.045 0.40 1.80

-D3(op) 0.29 0.33 0.44 1.29 0.30 0.55 0.56 0.10 0.59 0.034 0.26 0.71

revPBE 3.61 3.68 6.45 21.85 14.82 9.25 1.76 0.60 1.66 0.238 3.88

-D3(0) 0.41 0.56 0.61 5.50 2.71 1.12 0.81 0.08 0.84 0.037 0.42 6.67

-D3(BJ) 0.48 0.60 0.62 6.56 3.51 1.25 0.81 0.39 0.81 0.056 0.43 14.08

-D3(op) 0.42 0.39 0.40 2.44 0.42 1.06 0.75 0.41 0.74 0.031 0.30 2.36

revPBE0 3.08 3.14 5.45 16.52 12.07 7.78 1.51 0.58 1.41 0.229 3.38

-D3(0) 0.32 0.34 0.36 2.14 1.56 0.53 0.59 0.26 0.62 0.032 0.40 1.32

-D3(BJ) 0.32 0.37 0.32 3.44 2.53 0.77 0.56 0.09 0.56 0.037 0.23 2.26

-D3(op) 0.33 0.26 0.39 0.83 0.33 0.80 0.56 0.09 0.55 0.024 0.29 0.37

TPSS 2.53 2.49 4.61 8.81 3.64 6.48 1.22 0.47 1.08 0.217 2.90

-D2 0.63 0.48 0.64 4.74 5.67 0.89 1.07 0.89 1.03 0.118 0.77 37.47

-D3(0) 0.34 0.25 0.44 2.75 3.90 0.74 0.67 0.38 0.53 0.059 0.35 3.73

-D3(BJ) 0.36 0.26 0.47 1.90 2.85 0.96 0.70 0.55 0.57 0.074 0.34 3.51

-D3(CSO) 0.38 0.25 0.43 1.85 2.69 0.90 0.69 0.56 0.59 0.075 0.33 3.62

-D3(op) 0.32 0.31 0.36 1.76 2.54 0.87 0.78 0.45 0.67 0.053 0.28 2.28

TPSSh 2.46 2.42 4.43 8.33 3.97 6.24 1.19 0.40 1.06 0.214 2.82

-D3(0) 0.34 0.20 0.49 2.59 3.35 0.74 0.56 0.24 0.46 0.056 0.36 2.77

-D3(BJ) 0.35 0.23 0.44 1.49 2.13 0.86 0.63 0.42 0.53 0.072 0.33 2.37

-D3(op) 0.30 0.27 0.35 1.41 2.02 0.80 0.69 0.31 0.59 0.048 0.28 1.41

MS2 1.24 1.28 2.36 4.83 2.77 3.48 0.68 0.29 0.67 0.126 1.70

-D3(0) 0.38 0.38 0.41 1.38 1.24 0.62 0.49 0.09 0.41 0.034 0.43 0.86

-D3(op) 0.29 0.19 0.43 0.91 0.29 0.50 0.35 0.11 0.33 0.039 0.23 0.36

MS2h 1.27 1.31 2.36 4.49 2.84 3.50 0.68 0.34 0.67 0.130 1.72

-D3(0) 0.34 0.33 0.34 1.68 1.14 0.59 0.43 0.12 0.34 0.033 0.39 0.80

-D3(op) 0.26 0.13 0.32 0.56 0.21 0.43 0.27 0.14 0.24 0.027 0.20 0.11

Non-Covalent: Dimers Non-Covalent: Clusters Isomerization Equilibrium

Figure 5.2: Root-mean-square errors across various datasets for all combinations of func-
tionals and dispersion corrections examined. Abbreviations of the dataset names are used;
the full names are, in order, NCEDTest, HSG, S22, NCECTest, Shields38, 3B-69-TRIM,
IETest, Pentane14, YMPJ519, S66x8 BL, and S66x8 BE. The Product column corresponds
to a simple product across the aggregate dataset RMSEs (times 100). All RMSEs are in units
of kcal/mol, with the exception of the equilibrium binding lengths (BL), which are in units
of angstroms. Each column within every functional block is color-coded for ease of read-
ing, with darker cells corresponding to lower RMSEs; note, however, that the color-gradient
is not uniform, but rather skewed to emphasize significant differences among the top fits
for each functional. Additionally, the lowest RMSE achieved by any functional-dispersion
combination on each aggregate dataset is indicated in bold.
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and the unique error metric employed.
A consistent feature of functionals employing the DFT-D3(op) tail is enhanced per-

formance on molecular clusters and geometries, as illustrated by low RMSEs across the
NCECTest and S66x8 BL sets. For instance, B97-D3(op) performs similarly to B97-D3(BJ)
and B97-D3(0) across NCEDTest and IETest, but with dramatic reduction in error across
NCECTest and interpolated S66x8 binding lengths. Even in cases where performance on
molecular dimers is significantly improved, e.g. B3LYP-D3(op) and MS2h-D3(op), we still
see solid performances on clusters and geometries. Whereas with other dispersion tails,
performance on molecular clusters is very dependent on the choice of base functional, the
-D3(op) approach consistently captures cluster binding energies quite well. For instance,
from Figure 5.2, it is clear that BLYP-D3(0) is the best BLYP-based approach examined
on NCECTest, even beating out BLYP-D3(op) by 0.10 kcal/mol; on the other hand, B97-
D3(0) has a NCECTest RMSE more than double that of B97-D3(op). This high degree
of consistency in the new correction, -D3(op), is likely attributable to the incorporation of
molecular clusters in the training set. It is worth noting that a three-body correction of the
form suggested by Grimme et al.[31] was also considered in this study; its inclusion, however,
did not impact results in any meaningful way. It is quite possible that for larger systems, a
three-body term would become relevant.

The one category for which we consistently see the least improvement with the new
DFT-D3(op) correction is IETest, i.e. isomerization energies. For certain functionals –
most notably MS2 and MS2h – the -D3(op) tail actually improves performance on IETest
dramatically. For others, such as TPSS and B3LYP, the new approach is slightly worse
than the existing tails – though still significantly better than the base functionals – for
isomerization energies. There is inevitably some degree of trade-off between performances
across these various properties; of the 11767 combinations of parameters we examined for any
given functional, there were certain fits which excelled at one particular category. Although in
theory it would be possible to recommend specialized fits for each functional which are best
suited for a particular property – B3LYP-D3(op,NCED), B3LYP-D3(op,NCEC), B3LYP-
D3(op,IE), etc. – that sort of approach has limited utility. It is far simpler to recommend a
parameterization that provides a balanced description of all relevant properties. Comparing
B3LYP-D3(op) and B3LYP-D3(BJ), for instance, we see the former has 8% higher RMSE
across IETest; however, this slight reduction in performance for isomerization energies is
compensated by a 13% reduction in RMSE across NCEDTest and a 52% reduction in RMSE
across NCECTest.

Based on the data in Figure 5.2, we can make recommendations regarding which fit
should be used with each density functional. As a metric of optimality, we use a simple
product of the RMSEs across each of the aggregate test sets in Figure 5.2, i.e. the Product
column. It is worth noting that -D2 dramatically underperforms relative to all variants of
-D3 for all functionals examined. That being said, even the -D2 corrections represent a
major improvement over the base functional. For BLYP, B3LYP, TPSS, and TPSSh, the
DFT-D3(op) correction is best, followed by -D3(BJ); for B97, the DFT-D3(op) correction
is best, followed by -D3M(BJ); and for revPBE, revPBE0, MS2, and MS2h, DFT-D3(op) is
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best, followed by -D3(0).
In a similar vein, we can use the data from Figure 5.2 to make recommendations for the

“best” functional/tail combination within each rung of Jacob’s ladder. The top performer
among pure GGAs is BLYP-D3(op); at the hybrid GGA level, revPBE0-D3(op); from the
pure meta-GGAs, MS2-D3(op); and at the hybrid meta-GGA rung, MS2h-D3(op). Based on
the data of Figure 5.2, these four functional/tail groupings provide the best, most balanced
descriptions of non-covalent interactions and isomerization energies, the two datatypes which
empirical dispersion corrections should be capable of improving.

Thus far, we have established two major points: first, when a functional consistently
underpredicts intermolecular interactions, the addition of an empirical dispersion correction
can greatly improve results; and second, among the dispersion corrections examined, for the
systems and density functionals we considered, DFT-D3(op) is best, regardless of the choice
of base functional.

To put these results in broader context, we can compare these “best-in-class” DFT-
D3 functionals with state-of-the-art density functionals corresponding to the same rungs of
Jacob’s ladder. In Figure 5.3, the RMSEs across all eight categories of Table 5.3 are plotted
and tabulated for revPBE0-D3(op) and three other hybrid GGAs: ωB97X[86], ωB97X-D[87],
and ωB97X-V[23]. The left side of Figure 5.3, (a), contains NCED, NCEC, and IE – the three
categories a D3 correction is capable of improving – while the right side, (b), encompasses
the remaining datatypes: difficult cases characterized by strong correlation or self-interaction
error, as well as thermochemistry and barrier heights. Although revPBE0-D3(op) represents
a substantial improvement over ωB97X as far as non-covalent interactions are concerned,
the method is somewhat lacking when it comes to the other datatypes: its performance
on standard thermochemical problems (TCE) is particularly lackluster. That being said,
it represents a decent alternative to ωB97X-D, and even rivals ωB97X-V for non-covalent
interactions.

The same sort of comparison is made at the pure meta-GGA level in Figure 5.4. Therein,
the top performer from this study, MS2-D3(op), is compared to M06-L[20], TM[269], and
B97M-rV[19, 24]. Here, it seems MS2-D3(op) is actually a viable alternative to standard
meta-GGAs; the method generally outperforms both M06-L and TM across the 4419 systems
examined. We see a 47% reduction in RMSE across NCED, a 60% reduction in error across
NCEC, and a 51% reduction in RMSE across IE for MS2-D3(op) relative to M06-L. This
strikes a stark contrast to the performance of the uncorrected MS2 functional, which, relative
to M06-L, has a NCED RMSE of 1.27 kcal/mol, a NCEC RMSE of 4.99 kcal/mol, and an IE
RMSE of 0.76 kcal/mol; without the DFT-D3(op) correction, MS2 is significantly worse than
M06-L across all three categories. This is certainly a testament to the utility of dispersion
corrections. That being said, the exemplary performance of MS2-D3(op) – particularly on
non-covalent interactions and isomerization energies – is eclipsed by that of B97M-rV, which
benefits from the inclusion of non-local van der Waals correlation.

As a final example, three popular hybrid meta-GGA functionals – M06-2X[25], MN15[26],
and ωB97M-V[24] – are compared head-to-head with MS2h-D3(op) in Figure 5.5. Although
the DFT-D3(op) dispersion correction allows MS2h to significantly outperform M06-2X and
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Figure 5.3: Root-mean-square errors (RMSEs) across various datatypes (see Table 5.3) for
the top-performing D3-corrected hybrid GGA functional examined in this work, as well as
three other state-of-the-art hybrid GGA functionals. The left plot – (a) – contains datasets
pertaining to standard non-covalent interactions and isomerization energies, whereas the
right plot – (b) – encompasses other data, such as thermochemistry, which is beyond the
realm of a D3 correction. Within each plot, the methods are ordered from best performance
across the constituent datasets at the top, to worst performance at the bottom. Tables of
RMSEs are provided below the bar graphs to facilitate quantitative comparison.

Figure 5.4: Root-mean-square errors (RMSEs) across various datatypes (see Table 5.3) for
the top-performing D3-corrected pure meta-GGA functional examined in this work, as well
as three other state-of-the-art pure meta-GGA functionals. For further details, refer to the
caption of Figure 5.3.
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MN15 for standard intermolecular binding energies and isomerization energies – and even
come close to the stellar performance of ωB97M-V – it can do nothing to rectify the other
deficiencies of the method, which manifest themselves in poor performance across the TCE
and BH categories in particular. At the hybrid meta-GGA level, the top performer is unam-
biguously ωB97M-V.

Figure 5.5: Root-mean-square errors (RMSEs) across various datatypes (see Table 5.3) for
the top-performing D3-corrected hybrid meta-GGA functional examined in this work, as
well as three other state-of-the-art pure hybrid meta-GGA functionals. For further details,
refer to the caption of Figure 5.3.

5.5 Discussion and Conclusion

In this study, we have introduced a new damping function for the DFT-D3 brand of em-
pirical dispersion corrections. This correction is effectively a generalization of DFT-D3(BJ)
wherein the power is treated as an additional parameter, and is accordingly named DFT-
D3(op), for “optimized-power”-damping. We have parameterized this method for ten dis-
tinct density functionals and compared its performance across an external test set to that of
existing forms of DFT-D3.

This new approach, -D3(op), consistently yields substantial improvements in the descrip-
tions of molecular clusters, regardless of the base functional with which it is paired. More-
over, it provides a well-balanced description of intermolecular binding energies, equilibrium
geometries, and isomerization energies – the three broad classes of data that an empirical
dispersion correction can reasonably be expected to improve. Unfortunately, the DFT-D3
correction is not intended to address deficiencies in other aspects – for instance, description
of thermochemical properties – of the base functionals to which it is applied. From Figures
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5.3, 5.4, and 5.5, it is apparent that there exists at each level of Jacob’s ladder beyond pure
GGA at least one functional which will outperform the best comparable DFT-D3 method.
This is not particularly surprising; after all, this isn’t a very fair comparison. Those bet-
ter methods were built from the ground up; all their components were optimized together,
self-consistently. If anything, it is remarkable just how well this sort of simple post-SCF
dispersion correction performs.

The most impressive methods – namely ωB97X-V, B97M-rV, and ωB97M-V – explicitly
include non-local correlation, which is a more robust, more powerful treatment of disper-
sion[104, 270]. Similarly, it might be the case that other self-consistent approaches, such as
dispersion-corrected potentials[206] and TS-vdW,[271] will outperform the methods intro-
duced here. Such comparisons are beyond the scope of this particular study; the aim here
has been simply to introduce an updated, more accurate version of the most computationally
economical form of dispersion correction, DFT-D3. In this particular endeavor, we have been
successful: for all density functionals examined, DFT-D3(op) yields the best, most balanced
performance across the available DFT-D3 dispersion tails.

Specifically, among the pure GGAs examined, BLYP-D3(op) is the stand-out candidate,
offering an unparalleled account of non-covalent interactions. At the hybrid GGA level,
revPBE0-D3(op) shines. As far as pure and hybrid meta-GGA functionals go, MS2-D3(op)
and MS2h-D3(op) are both quite impressive. For these latter two functionals in particular,
the new DFT-D3(op) tail represents a major improvement across all energetic categories over
the existing -D3(0) versions. These DFT-D3(op) methods have a significant cost advantage
over those incorporating VV10 non-local correlation. Moreover, they make relatively small
sacrifices on performance across non-covalent interactions and isomerization energies, which
makes them well suited for certain applications, e.g. calculations on large or condensed-phase
systems, and molecular dynamics.
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Chapter 6

Modeling Basis Set Superposition
Error

6.1 Introduction

In an electronic structure calculation, two forms of basis set errors arise when local
basis sets are employed: basis set superposition error (BSSE), which is a consequence of
inconsistent treatment of a larger supersystem and its constituent subsystems[91, 158], and
intrinsic basis set incompleteness error, the category to which we relegate all remaining basis
set errors once BSSE has been removed. Intrinsic incompleteness error arises from the fact
that the Schrödinger equation is being solved in just a fraction of the full Hilbert space, and
no systematic means of removal – short of simply increasing the number of basis functions
– has yet been discovered, though adaptive-basis approaches have shown some promise[272–
277]. Basis set superposition error, on the other hand, has a long history within the electronic
structure community[160–169]. In the case of distinct non-covalently interacting units, BSSE
can be removed by performing fragment calculations within the basis of the full system, i.e.
via the counterpoise correction (CP) first introduced by Boys and Bernardi[91].

The standard counterpoise correction has two principle shortcomings. First, it requires a
partitioning of the full system into a number of fragments, Nfragments; for some systems, such
as those with simple bimolecular interactions, this partitioning is straightforward, but for
many interesting systems – such as those involving substantial intramolecular interactions – it
is not. Second, although in principal a good approximation to counterpoise-corrected results
may be obtained with minimal extra effort via standard energy decomposition analyses[278,
279], in practice the CP correction often ends up being quite computationally demanding:
whereas an uncorrected binding energy requires only one calculation in the full supersystem
basis, a counterpoise-corrected one requires Nfragments + 1 such calculations.

The issues of partitioning and the inability of the CP scheme to address intramolecular
BSSE were first addressed by Galano and Alvarez-Idaboy with an atom-by-atom counter-
poise correction[201]; Jensen later generalized this into the atomic counterpoise (ACP-n)
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approach[202]. In the ACP-n scheme, BSSE is estimated as a sum of atomic BSSEs, where
each atomic BSSE is calculated by considering basis functions up to n bonded atoms away.
This approach has shown some promise in addressing intramolecular BSSE, though it suffers
from the same partitioning problem as CP when ambiguous bonding patterns are involved –
e.g. in transition states and hydrogen-bonded systems – and the computational complexity
of the method is unchanged.

More recently, there have been attempts to develop empirical models for BSSE, as such
approaches can potentially address both the partitioning and complexity issues. The first
such model was proposed six years ago by Faver and Merz[189, 190], who constructed so-
called “proximity functions” for molecular fragments from atomic pairs. Since the targets for
this method are large biomolecules, the parameters are trained on a variety of proteinogenic
systems. To date, this is the only empirical correction for BSSE developed for correlated
wavefunction-based methods. The chief shortfall of the approach lies in its limited transfer-
ability: the parameters for modeling typical nonpolar, van der Waals-driven interactions are
significantly different than those used for modeling hydrogen bonding.

Kruse and Grimme more recently introduced the so-called geometrical counterpoise (gCP)
scheme[191], which was later adapted to the HF-3c, PBEh-3c, and HSE-3c methods[192,
280, 281]. The gCP scheme loosely resembles the proximity function approach of Faver and
Merz, inasmuch as both methods are strictly pairwise atomic corrections. Unlike the prox-
imity function-based correction, however, gCP has gained considerable traction within the
electronic structure community, largely due to its low-cost, satisfactory transferability, and
ease of use. The gCP approach is utilized in conjunction with very small basis sets – on the
order of 6-31G* – and is capable of recovering most of the BSSE in typical systems.

Within this work, we adapt the gCP empirical correction for BSSE to the def2-SVPD
basis. We focus exclusively on the def2-SVPD basis set[154, 155] due to its good balance
of expense and performance; def2-SVPD has low intrinsic incompleteness error relative to
other comparably-sized bases[43], and hence seems to us to be a particularly promising basis
set for BSSE correction schemes. In addition, we develop an alternative beyond-pairwise
empirical correction for BSSE within density functional theory: DFT-C. The many-body
nature of the method accounts for the overcounting concomitant with any pairwise approach
and allows DFT-C to treat both large and small systems in a consistent manner. Whereas
gCP is developed for use with exceptionally small basis sets, with the aim of providing
semi-quantitative results, we demonstrate DFT-C can recover near-basis-set-limit results at
a fraction of the cost, particularly in the case of non-covalent interactions.

6.2 Theory and Methods

gCP

Here, we will briefly summarize the geometrical counterpoise (gCP) correction for BSSE;
for further details, see the original study by Kruse and Grimme[191]. At the core of gCP lies
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a function describing the decay of BSSE on atom A due to the presence of basis functions
on atom B a distance rAB away, which we denote f gCP

AB∗(rAB). This term is given by

f gCP
AB∗(rAB) = cAB exp

(
−αrβAB

)
, (6.1)

and includes a multiplicative constant, cAB as well as a universal decay parameter α and
exponent β. The contributions of all atom-ghost pairs are summed up to yield the gCP
correction for BSSE,

EgCP = σ
∑
A

cA
∑
B 6=A

f gCP
AB∗(rAB), (6.2)

where cA are atom-dependent parameters and σ is an overall scaling parameter. In practice,
EgCP is just added to the total electronic energy for a given system. The gCP approach is
strictly pairwise additive with respect to nuclear centers.

Parameterization of gCP

Equations (6.1) and (6.2) contain several parameters: multiplicative constants cAB, lin-
ear coefficients cA, decay factors α and β, and an overall scaling factor σ. The pairwise
multiplicative constants, cAB, are calculated as

cAB =
1√

SABNvirt
B

, (6.3)

where Nvirt
B is the number of virtual orbitals on atom B – given by Nvirt

B = Nbasis functions
B −

1
2
N electrons
B – and SAB is a measure of the Slater overlap between atoms A and B. The overlap

term is described in detail in the original study[191]; here, we will simply note that it involves
an additional linear parameter, η.

The atomic linear coefficients, cA, are calculated within the gCP approach as “missing
energy” terms, i.e. cA is calculated as the difference in restricted open-shell Hartree-Fock[282]
energy between atom A in a target basis (here def2-SVPD) and a large basis, in the presence
of an external electric field to populate higher angular momentum functions. We have utilized
aug-pc-4 as the large basis[151–153].

The remaining parameters – three nonlinear (α, β, and η) and one linear (σ) – are
obtained by minimizing the error in predicted gCP BSSE relative to Boys-Bernardi BSSE
with the B3LYP[15, 16, 22, 82] density functional across the S66x8 dataset of intermolecular
interactions[116, 283], within the def2-SVPD basis. As in the original work, the most com-
pressed geometries are weighted for this optimization by a factor of 0.5 in order to emphasize
equilibrium and long-distance structures.

The optimized set of parameters is provided in Appendix D; this set of parameters allows
the existing gCP approach to be utilized with the def2-SVPD basis set for DFT. Briefly, we
mention one particularly interesting aspect of the optimized parameters: the optimal value
of η – the parameter controlling atomic overlap in the gCP model – in the def2-SVPD basis



CHAPTER 6. MODELING BASIS SET SUPERPOSITION ERROR 83

is 0.00001, which suggests that for this particular basis set, the gCP expression can be
simplified without degrading performance by simply removing the overlap term. We have
verified that this is in fact true; we present in Appendix D a simpler formulation of gCP for
def2-SVPD.

DFT-C

In addition to re-parameterizing the gCP method for use with the def2-SVPD basis,
we also present a more complex, though physically-motivated, geometry-based empirical
approximation for BSSE, which will henceforth be referred to as DFT-C. This model is in
many ways similar to gCP[191]. At its core lies a term describing the decay of BSSE on
atom A due to the presence of basis functions on atom B a distance rAB away, which we
denote fDFT-C

AB∗ (rAB). This term is given by

fDFT-C
AB∗ (rAB) = cAB exp

(
−αABr2

AB + βABrAB
)
, (6.4)

and includes a multiplicative constant, cAB, a Gaussian decay parameter, αAB, and an
exponential decay parameter, βAB. We expect the decay of BSSE to mirror that of the
electron density; the exponential term accounts for the standard decay expression[284], and
the Gaussian term reflects the nature of the basis functions employed. The DFT-C approach
includes both an exponential and Gaussian term, with pair-dependent decay factors; these
differences set it apart from the gCP core term given in eq. (6.1).

In DFT-C, we damp this atomic contribution to BSSE, much as the contribution of gCP is
damped in PBEh-3c to potentially address short-rAB issues that can arise in thermochemical
problems[192]. We employ the same form of damping function as PBEh-3c[192],

d(rAB) =
1

1 + k1,AB (rAB/r0,AB)−k2,AB
, (6.5)

where r0,AB is the sum of the van der Waals radii of atoms A and B, and k1,AB and k2,AB

are parameters that control the precise shape of the damping function. Whereas Grimme
et al.[192] set k1 = 4 and k2 = 6 for all pairs of atoms A and B by inspection, we compute
them systematically for each atom pair based on the sums of covalent and van der Waals
radii such that d(rcov,AB) = 0.05 and d(r0,AB) = 0.95. Doing so yields k1,AB = 19 and
k2,AB = 5.8889 [log (r0,AB/rcov,AB)]−1. Moreover, we propose damping to a finite value, rather
than zero, to more accurately reflect the actual short-range behavior of BSSE; after all, BSSE
does not simply vanish in the covalent bonding distance regime. Thus, rather than simply
multiplying the contribution from eq. (6.4) by the damping function in eq. (6.5), we define
a damped contribution, gDFT-C

AB∗ (rAB) as

gDFT-C
AB∗ (rAB) = d(rAB)fDFT-C

AB∗ (rAB) + (1− d(rAB)) fDFT-C
AB∗ (rcov,AB). (6.6)

At long range, this term reduces to fDFT-C
AB∗ (rAB), while at short range, it reduces to a pair-

dependent constant, fDFT-C
AB∗ (rcov,AB).



CHAPTER 6. MODELING BASIS SET SUPERPOSITION ERROR 84

Whereas the gCP correction is strictly pairwise, we incorporate into DFT-C a many-body
component. We do so in the following physically-motivated though ad hoc way, by simply
modifying each pairwise contribution by an additional term, hAB∗({A,B, ...}), which is given
by

hAB∗({A,B, ...}) =

[
1 +

∑
C 6=A,B

Nvirt
C

Nvirt
B

terfc (rAC , rAB) terfc (rBC , rAB)

]−1

, (6.7)

where Nvirt
B is the number of virtual orbitals on atom B – given by Nvirt

B = Nbasis functions
B −

1
2
N electrons
B as in gCP, with N electrons

B being the number of electrons on neutral atomic B and
Nbasis functions
B corresponding to the number of basis functions centered at atom B – distances

are in atomic units, and terfc(x, y) is the attenuator defined by Dutoi and Head-Gordon[285],

terfc (x, y) = 1− 1

2
[erf (x+ y) + erf (x− y)] . (6.8)

This additional correction, hAB∗({A,B, ...}), addresses the nonzero overlap between the
Hilbert space of atom B and the Hilbert spaces of all atoms C 6= A,B. As more and
more atoms are added in the vicinity of atoms A and B, the contribution of the ghost
functions centered at B to the atomic BSSE of A should decrease; eventually, once the space
is saturated, adding additional atoms (i.e. ghost functions) does not change the BSSE of
atom A. This phenomenon is not captured by a strictly pairwise approach. The many-body
correction we employ is visualized for a planar 3-atom system in Figure 6.1.
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Figure 6.1: Visualization of how adding a third atom C impacts the contribution of basis
functions centered at B to the BSSE on atom A, as per hAB∗({A,B,C}). When atom C is
sufficiently far away from A and B (lighter areas), the model reduces to a pairwise approach.
In this example, C and B are assumed to have the same number of virtual orbitals, and A
and B are located at (-1.5 a.u., -1.5 a.u.) and (1.5 a.u., 1.5 a.u.), respectively.
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The final form of the DFT-C correction for BSSE is given by

EDFT-C = σ
∑
A

cA
∑
B 6=A

gDFT-C
AB∗ (rAB)hAB∗ ({A,B, ...}) , (6.9)

where σ is an overall scaling coefficient, cA is a linear coefficient that modifies the con-
tributions of ghost functions on all atoms B to the BSSE on A, and the damped pairwise
contribution, gDFT-C

AB∗ (rAB), and many-body correction, hAB∗ ({A,B, ...}), are defined in equa-
tions (6.6) and (6.7). With the exception of the many-body term, this expression for the
DFT-C energy is mathematically similar to that for gCP – c.f. eqs. (6.9) and (6.2).

Parameterization of DFT-C

As can be seen from eq. (6.9), DFT-C has a large number of parameters. For each
unique set of atom A and ghost functions centered at atom B, there are exponential and
Gaussian decay parameters, αAB and βAB, and there is a multiplicative constant, cAB. These
parameters are obtained by generating BSSE curves for neutral atomic pairs AB∗ using a
form of local spin-density approximation (LSDA), SPW92[10–13], in the def2-SVPD basis.
For each unique atom A and corresponding ghost atom B, we perform a least squares fit
on a log BSSE curve generated over the range [rcov,AB, 5rcov,AB] in units of 0.1 a0. To avoid
overemphasizing the long-distance regime – where the atomic BSSE is nearly zero, and hence
the logarithm of the BSSE is very large in magnitude – we weight each point by the inverse of
the logarithm of the BSSE at each distance. The viability of this approach is demonstrated
in Figure 6.2 for the neon component of neon-argon BSSE. The DFT-C method does a
reasonable job of capturing BSSE throughout the entire distance regime, yielding an RMSE
of 0.002 kcal/mol. Note the gCP RMSE for this system is an order of magnitude larger: the
lack of a many-body term in gCP necessitates the systematic underprediction of pairwise
atomic BSSEs. For pairs AB∗ where the Gaussian decay parameter αAB optimizes to a
negative value, we set βAB = 0 and re-optimize, so as to avoid divergence in the large-rAB
limit.

We have parameterized all 1296 combinations of the first 36 elements of the periodic
table in this manner; the resulting cAB, αAB, and βAB are tabulated in Appendix D. In
the cases of manganese, iron, and cobalt, we have taken averages of the BSSEs for the two
competing spin states. For elements heavier than krypton, we propose using the parameters
from 4th-row analogues, as is done in gCP.

The linear coefficients cA in eq. (6.9) are all unity, with the exception of those for hy-
drogen, carbon, nitrogen, and oxygen, which are fit via least-squares regression of DFT-C
predicted BSSEs to actual BSSEs at the SPW92/def2-SVPD level across the S66 dataset
of intermolecular interactions[116]. The overall scaling parameter, σ, is by definition unity
for LSDA, and is allowed to vary for different density functionals. We have optimized σ for
several generalized gradient approximations (GGAs) and meta-GGAs, again by minimizing
the root-mean-square error (RMSE) across BSSEs in S66, using the pairwise parameters
(cAB, αAB, and βAB) and linear coefficients (cA) obtained at the LSDA level. For GGA
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Figure 6.2: Dependence of actual and predicted neon atom SPW92/def2-SVPD BSSEs on
distance to argon ghost functions.

functionals, the optimal value of σ is approximately 0.9, while for meta-GGA functionals, it
is slightly lower, near 0.85. We thus propose using σ = 1 for LSDA, σ = 0.9 for GGAs, and
σ = 0.85 for meta-GGAs.

Ultimately, almost all of the parameters associated with the DFT-C method are obtained
from toy systems – neutral atom-ghost pairs – at the LSDA level. Four linear coefficients are
trained on S66 BSSEs, also at the LSDA level, and for non-LSDA density functionals, we
allow for one scaling parameter, which is trained on S66 BSSEs. An implementation of this
method within the python programming language is provided in Appendix D. In practice,
the DFT-C correction is applied in the same manner as gCP: the term from eq. 6.9 is simply
added to the total electronic energy for a given system.

Datasets and Computational Details

To assess the performance of the gCP and DFT-C methods, we employ a subset of
the comprehensive database assembled by Mardirossian and Head-Gordon[24]. The subset
we utilize contains 3402 data points distributed over 48 distinct datasets. These smaller
constituent datasets are classified according to five distinct datatypes: NCED (easy non-
covalent interactions of dimers), NCEC (easy non-covalent interactions of clusters), NCD
(difficult non-covalent interactions of dimers), IE (easy isomerization energies), and RG10
(binding curves of rare gas dimers). Unlike “easy” interactions, “difficult” interactions are
characterized by strong correlation or self-interaction error. A summary of the datatypes
may be found in Table 6.1.

In addition to the version of LSDA on which DFT-C is parameterized – SPW92[10–13] –
we consider in this study three GGA and three meta-GGA functionals. At the GGA level, we
examine a pure functional, PBE[14]; a global hybrid, B3LYP[15, 16, 22, 82] – the functional
with which gCP is parameterized – and a range-separated hybrid, ωB97X-V[23]. At the
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Datatype # Constituent Datasets References

NCED 1744 S66, A24, DS14, HB15, HSG, NBC10, S22, X40,
A21x12, BzDC215, HW30, NC15, S66x8, 3B-
69-DIM, AlkBind12, CO2Nitrogen16, HB49,
Ionic43

[42, 116, 117, 119, 121, 131, 181, 186, 213–217,
227–236, 283]

NCEC 243 H2O6Bind8, HW6Cl, HW6F, FmH2O10,
Shields38, SW49Bind345, SW49Bind6, WA-
TER27, H2O20Bind4, 3B-69-TRIM, CE20,
H2O20Bind10

[218–223, 234, 237–240]

NCD 91 TA13, XB18, Bauza30, CT20, XB51 [241–245]
IE 755 AlkIsomer11, Butanediol65, ACONF, CY-

CONF, Pentane14, SW49Rel345, SW49Rel6,
H2O16Rel5, H2O20Rel10, H2O20Rel4, Mela-
tonin52, YMPJ519

[219–226, 238, 246–250]

RG10 569 RG10 [286]

Table 6.1: Summary of datatypes. For more details, see Ref. 24.

meta-GGA level, we test a pure functional, B97M-V[19]; a global hybrid, M06-2X[25]; and
a range-separated hybrid, ωB97M-V[24].

All density functional calculations are performed in the def2-SVPD basis[154, 155]. A fine
Lebedev integration grid of 99 radial shells – each with 590 angular points – is used to com-
pute semi-local components of exchange and correlation, while non-local correlation in the
VV10-containing functionals is calculated with the coarser SG-1 grid[133]. All calculations
are performed within a development version of Q-Chem 4.4[182].

6.3 Results and Discussion

In this study, we have developed two geometry-based empirical corrections for BSSE in
the def2-SVPD basis: gCP and DFT-C. This particular basis was chosen based on its low
intrinsic basis set incompleteness error; BSSE-corrected results obtained within this basis
are quite near the basis set limit. This is illustrated in Figure 6.3, wherein root-mean-square
errors (RMSEs) for B97M-V with (CP) and without (noCP) counterpoise correction against
B97M-V/def2-QZVPPD across the various non-covalent datatypes of Table 6.1 are shown.
Within the def2-SVP basis, even when BSSE is removed (i.e. the CP SVP specification in
Figure 6.3), the remaining basis set incompleteness error is quite large – significantly larger
than method errors for typical density functionals. This indicates the def2-SVP basis is
not suitable for a high-accuracy BSSE correction scheme; its utility would ultimately be
contingent on significant cancellation of method and basis set errors. On the other hand,
intrinsic incompleteness error in the def2-SVPD basis is quite small, and so a BSSE correction
scheme developed in this basis can, in principle, allow for quantitative reproduction of large-
basis results.

In addition to developing the DFT-C method, we have also parameterized the existing
gCP scheme within the def2-SVPD basis for comparison. The first of these assessments is
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Figure 6.3: Root-mean-square errors of B97M-V with (CP) and without (noCP) the Boys-
Bernardi correction for BSSE in two small basis sets relative to B97M-V in the def2-QZVPPD
basis, near the basis set limit. SVP and SVPD correspond to def2-SVP and def2-SVPD,
respectively. Methods in the chart are ordered from lowest overall RMSE at the top, to
highest overall RMSE at the bottom. A table of values is provided below the chart to
facilitate quantitative comparison.

shown in Figure 6.4, wherein we have plotted for the three non-covalent datatypes from Table
6.4 normalized root-mean-square errors (NRMSEs) for DFT-C and gCP predicted BSSEs at
the LSDA level of DFT. The normalized RMSE is simply the RMSE divided by the mean
of the reference data, and hence provides a measure of relative error. Its use facilitates
comparison between e.g. NCED and NCEC, since the energy scales of those two datatypes
differ by more than an order of magnitude.

Within Figure 6.4, it is evident that both gCP and DFT-C reproduce Boys-Bernardi
BSSEs at the LSDA level reasonably well; either correction is a substantial improvement over
no correction. The performance of DFT-C on molecular dimers is particularly promising,
as is its consistency across the various datatypes: the lowest DFT-C NRMSE in SPW92 is
25%, for NCED, and the highest is 33% (NCD). On the other hand, the performance of gCP
is quite variable; the method boasts an exceptionally low NRMSE of 19% across NCEC,
but a significantly worse NRMSE of 56% for NCD. Neither correction can be considered a
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Figure 6.4: Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted
BSSEs versus Boys and Bernardi BSSEs at the LSDA level of DFT in the def2-SVPD basis.
The datatypes NCED, NCD, and NCEC are defined in Table 6.1. The normalized root-
mean-square error is obtained by dividing the RMSE by the mean reference value in the
dataset, as described in the text. Direct use of LSDA/def2-SVPD without any correction
would result in 100% NRMSE.

quantitative replacement for the full counterpoise correction.
This same sort of comparison is made for three popular GGA functionals in Figure 6.5.

Therein, NRMSEs for DFT-C and gCP BSSEs versus actual BSSEs obtained with a pure
functional (PBE), a global hybrid (B3LYP), and a range-separated hybrid with non-local
correlation (ωB97X-V) may be found. It is clear that for all three density functionals, both
DFT-C and gCP are quite consistent with regards to their performances across the various
datatypes. Moreover, comparing with Figure 6.4, this consistency extends across the LSDA-
GGA gap for DFT-C, which bodes well for its transferablity.

This same level of consistency is not seen for gCP, however: whereas gCP reproduces
LSDA cluster BSSEs with unparalleled accuracy, the method is not nearly as good for clusters
at the GGA level: the gCP NRMSE across NCEC in ωB97X-V is more than double that
in SPW92. This is a consequence of the fact that gCP tends to overestimate BSSE in
molecular clusters, and BSSEs obtained at the LSDA level are on average larger than those
at the GGA level. The exceptional performance of gCP on SPW92 cluster BSSEs may thus
be understood to be largely a consequence of the offsetting of these two phenomena.

It is also evident from Figure 6.5 that at the GGA level, DFT-C affords significant gains
over gCP regardless of datatype or density functional. This is quite promising, as DFT-C
is parameterized almost entirely at the LSDA level of theory, with only the overall scaling
parameter changing from σ = 1 to σ = 0.9. On the other hand, gCP is parameterized at
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Figure 6.5: Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted
BSSEs versus Boys and Bernardi BSSEs for three GGA density functionals in the def2-SVPD
basis. For further details, see Figure 6.4.

the GGA level, specifically with B3LYP. It is still true that use of gCP is significantly better
than no correction at all.

In Figure 6.6, we further assess the transferability of the gCP and DFT-C BSSE correction
schemes across three distinct meta-GGAs: a pure meta-GGA B97M-V, a global hybrid
M06-2X, and a range-separated hybrid ωB97M-V. Again, we see that across the three meta-
GGA functionals, the relative performances of gCP and DFT-C are similar: for all three
functionals, gCP exhibits a NRMSE of around 35% for NCED, 50% for NCD, and 60%
for NCEC; the corresponding NRMSEs for DFT-C are 25%, 35%, and 20%. Similarly, we
see the same sort of consistency for the DFT-C approach at the meta-GGA level as was
seen at the GGA and LSDA levels (c.f. Figures 6.5 and 6.4). On the other hand, gCP
is slightly worse at describing molecular clusters at the meta-GGA level than it was at the
GGA level. Again, this can be traced back to the facts that gCP systematically over-predicts
BSSE in molecular clusters, and meta-GGA BSSEs tend to be even lower than their GGA
counterparts. This overcorrection by gCP can in turn be attributed to its strictly pairwise
nature; due to the inclusion of a many-body correction, the DFT-C approach does not suffer
from this overcounting issue.

Across the seven density functionals examined, the average NRMSE of the DFT-C ap-
proach across NCED is 30%, compared to the 42% of gCP; this corresponds to an im-
provement of more than 25%. For the NCD datatype, the gCP average NRMSE is 59%,
compared to 38% – an improvement of 35%. Across the NCEC set of molecular clusters, we
see a 46% improvement for DFT-C over gCP: a reduction in average NRMSE from 52% to
28%. It is clear that for a wide variety of systems, across a diverse set of density functionals,
in the def2-SVPD basis, the DFT-C method is satisfactorily transferable and represents a
significant improvement over gCP for the reproduction of Boys-Bernardi BSSEs. The re-
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Figure 6.6: Normalized root-mean-square errors (NRMSEs) of gCP and DFT-C predicted
BSSEs versus Boys and Bernardi BSSEs for three meta-GGA density functionals in the
def2-SVPD basis. For further details, see Figure 6.4.

maining DFT-C error of course represents the remaining gap to perfect reproduction of the
Boys-Bernardi counterpoise correction.

Thus far, with the exception of the basis set comparison in Figure 6.3, all errors have
been expressed relative to “exact” BSSEs. Although such metrics are relevant for this
particular work, since the DFT-C and gCP methods are designed and trained to reproduce
BSSEs, they are not of the same broad interest as, say, errors relative to high-level electronic
structure methods. In Figure 6.7, we show root-mean-square errors (RMSEs) across the
five datatypes from Table 6.1 for the B97M-V functional relative to high-level (generally
CCSD(T)/CBS) results. The noCP and CP designations correspond to uncorrected and
counterpoise-corrected B97M-V/def2-SVPD, respectively, and CBS corresponds to B97M-
V/def2-QZVPPD – effectively B97M-V at the basis set limit. DFT-C and gCP refer to
B97M-V/def2-SVPD with the corresponding approximation for BSSE included.

From Figure 6.7, it is immediately evident that any sort of BSSE correction is preferable
to no correction. By correcting using the standard Boys-Bernardi approach, we are able to
eliminate 90% of basis set error for NCED, 71% for NCD, 97% for NCEC, and even improve
upon CBS results for RG10. Unfortunately, the standard counterpoise correction can not be
applied for the vast majority of isomerization energies – it can only be applied for relative
relative energies, such as relative binding energies – and so the CP and noCP results are
almost identical for IE. On the other hand, both gCP and DFT-C offer solid improvements
over noCP for every datatype examined, including isomerization energies, for which we are
able to eliminate roughly 60% of basis set error. A full table of RMSEs across the individual
datasets composing each aggregate datatype may be found in Appendix D.

For B97M-V/def2-SVPD, the DFT-C approach offers modest improvements over gCP
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Figure 6.7: Root-mean-square errors of B97M-V versus high-level reference values at five
levels of theory: uncorrected in the def2-SVPD basis (noCP); counterpoise-corrected in def2-
SVPD (CP); with the geometrical counterpoise correction in def2-SVPD (gCP); with the
correction introduced in this work in the def2-SVPD basis (DFT-C); and near the complete-
basis set limit (CBS), in def2-QZVPPD. Methods in the chart are ordered from lowest overall
RMSE at the top, to highest overall RMSE at the bottom. A table of values is provided
below the chart to facilitate quantitative comparison.

for molecular dimers (NCED, NCD, and RG10), a significant improvement for molecular
clusters (NCEC), and is slightly inferior for isomerization energies (IE). The DFT-C method
outperforms the Boy-Bernardi counterpoise correction across the full dataset, with an overall
RMSE of 0.56 kcal/mol compared to a CP RMSE of 0.63 RMSE; the large improvements
it affords for NCEC and IE offset the small losses on NCED and NCD. As such, DFT-C is
a viable alternative to the traditional counterpoise correction in the def2-SVPD basis set,
yielding similar results to CP with effectively no increase in cost over noCP.

To further illustrate the power of the DFT-C BSSE-correction scheme, in Figure 6.8
we show RMSEs across the four aggregate datatypes for B97M-V with (B97M-V-C) and
without (B97M-V) the DFT-C correction for BSSE in the def2-SVPD basis, as well as for
four popular pure meta-GGA density functionals – B97M-V[19], MS2-D3(op)[44, 211], M06-
L[20], and TM[269] – near the CBS limit, in the def2-QZVPPD basis. From Figure 6.8, it
is clear that although B97M-V/def2-SVPD is not competitive with standard meta-GGAs at
the basis set limit, B97M-V-C/def2-SVPD certainly is – despite requiring a small fraction
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of the computational effort.
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Figure 6.8: Root-mean-square errors in kcal/mol of several pure meta-GGA density func-
tionals relative to high-level reference values. B97M-V-C corresponds to B97M-V with the
DFT-C correction. Results for the additional density functionals are taken from a previous
study[44]. SVPD corresponds to def2-SVPD, and QZVPPD corresponds to def2-QZVPPD.
Each datatype category is color-coded, with the darkest color corresponding to the lowest
RMSE within that category.

6.4 Discussion and Conclusions

In this study, we have introduced a physically-motivated empirical correction for basis
set superposition error within the def2-SVPD basis set: DFT-C. This correction differs from
the existing gCP approach – which we have also re-parameterized for use in the def2-SVPD
basis –in two critical areas. First, whereas the linear coefficients within gCP include all man-
ifestations of basis set incompleteness error, the DFT-C approach is constructed exclusively
from basis set superposition errors. Second, although gCP is a strictly pairwise correction, in
DFT-C each pairwise contribution is reduced by a many-body term to ameliorate the over-
counting concomitant with the non-orthogonality of the Hilbert spaces of nearby atoms. We
have evaluated both gCP and DFT-C across a diverse dataset containing 3402 non-covalent
interactions and isomerization energies.

This new method, DFT-C, yields significantly more accurate BSSEs than gCP for a
wide variety of interaction motifs. Moreover, the correction is transferable. DFT-C exhibits
roughly the same relative performances across the various non-covalent datatypes regardless
of the particular density functional with which it is paired: for non-covalently interacting
dimers, DFT-C offers a modest improvement over gCP; in the case of molecular clusters
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– particularly when a meta-GGA functional is employed – the improvement is more pro-
nounced, which is likely attributable to the many-body nature of the method.

Whereas gCP has been developed as a general purpose tool that can be relatively easily
adapted to any basis set, the DFT-C approach is much more complicated and specialized;
tabulating the many pairwise coefficients and decay parameters is a nontrivial task. In this
particular work, we have have introduced a correction for def2-SVPD, a double-zeta basis
set that has disproportionately low intrinsic basis set incompleteness error for how few basis
functions it contains[43]. We are also exploring the possibility of extending this method to
triple-zeta basis sets in order to truly push the basis set limit; such may be the focus of work
to come.

Much as gCP is employed as a component of a small-basis functional in PBEh-3c, so
too could DFT-C be adapted, with either some subset of the linear parameters cA or simply
the overall scaling parameter σ being allowed to vary. Even without modification, however,
the method is immensely powerful; we have demonstrated it can be paired with an existing
functional, B97M-V, to yield def2-SVPD results on par with def2-QZVPPD results for other
state-of-the-art pure meta-GGA density functionals. DFT-C should prove immensely useful
for recovering large-basis results for many energetic properties with small-basis effort – the
correction scales with the number of atoms, not the number of basis functions, after all, and
is essentially free on the scale of an electronic structure calculation – and it can be paired
without modification with any density functional. This could allow us to obtain high-quality
results for large systems which are currently out of the domain of quantitative electronic
structure theory.
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Appendix A

Geometry Study

A.1 Damping Function

Method Contact RMS Error (Å) Contact Signed Error (Å)

PBE 0.224 0.060
PBE-D2 0.202 -0.139
PBE-D2 (CHG) 0.165 -0.054
PBE-D3 0.155 -0.082
PBE-D3 (BJ) 0.167 -0.070
PBE-D3 (Fermi) 0.196 -0.129

Table A.1: Impact of damping function. All results pertain to A21 set, aug-cc-pVTZ basis,
(99,590) grid, tight convergence criteria (details in article). Average RMS and signed errors
in the closest point of contact for each optimized structure are shown. The method marked
CHG combines -D2 C6 coefficients with a -D3 style damping function. The method marked
Fermi combines -D3 C6 coefficients with the -D2 damping function (a Fermi-type damping
function).
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A.2 MP2 Basis

Basis Contact Signed Error (Å)

aug-cc-pVTZ -0.043
aug-cc-pVQZ -0.030

Table A.2: Effect of finiteness of basis on MP2 A21 calculations. Since the reference struc-
tures are ∆CCSD(T)/CBS, it is possible that our MP2 results suffer from considerable BSSE.
We thus show here average contact signed errors across the A21 dataset in the aug-cc-pVQZ
basis (in which we expect our results should be well-converged with respect to basis size).
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A.3 Intramolecular Metrics

Method MBL (pm) MBA (

SOS-MP2 0.16 0.08
SCS-MP2 0.17 0.08
MP2 0.26 0.10
attMP2 0.28 0.08
B3LYP-D3 0.31 0.31
B3LYP 0.31 0.31
B3LYP-D3 (BJ) 0.32 0.30
ωB97X-D 0.33 0.26
M06-2X 0.34 0.24
ωB97X 0.34 0.28
sMP2 0.34 0.14
ωB97X-V 0.35 0.21
B3LYP-D2 0.35 0.28
M06 0.41 0.33
M06-L 0.42 0.41
M11 0.45 0.48
vdW-DF2 0.50 0.23
LC-VV10 0.51 0.41
B97M-V 0.56 0.30
VV10 0.69 0.22
PBE-D3 (BJ) 0.92 0.26
PBE 0.92 0.27
PBE-D3 0.93 0.27
PBE-D2 1.00 0.22
HF 1.27 0.51

Table A.3: Mean bond length (MBL) and bond angle (MBA) RMS errors across the A21
set. Methods are sorted in order of ascending MBL.
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Appendix B

Basis Set Study

B.1 Numbering Convention: Key for S22

System Number System Name

1 Ammonia dimer
2 Water dimer
3 Formic acid dimer
4 Formamide dimer
5 Uracil dimer h-bonded
6 2-pyridoxine 2-aminopyridine complex
7 Adenine thymine Watson-Crick complex
8 Methane dimer
9 Ethene dimer

10 Benzene - Methane complex
11 Benzene dimer parallel displaced
12 Pyrazine dimer
13 Uracil dimer stack
14 Indole benzene complex stack
15 Adenine thymine complex stack
16 Ethene ethyne complex
17 Benzene water complex
18 Benzene ammonia complex
19 Benzene HCN complex
20 Benzene dimer T-shaped
21 Indole benzene T-shape complex
22 Phenol dimer

Table B.1: Numbering convention of S22 used to abbreviate systems in the remainder of this
Appendix to make tables more compact.
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B.2 Justification of CP pc-4 as CBS limit

BE difference from CP pc-4 (kcal/mol)

System noCP aug-pc-4 CP aug-pc-4

1 0.000 -0.001
2 0.002 -0.001
3 0.002 0.000
4 0.001 -0.001
5 n/a n/a
6 0.003 0.000
7 n/a n/a
8 0.001 0.000
9 0.003 0.001
10 0.002 0.001
11 0.003 -0.001
12 0.005 0.002
13 0.005 0.004
14 0.005 0.003
15 0.008 0.001
16 0.001 0.000
17 0.003 0.001
18 0.004 0.001
19 0.003 0.000
20 0.002 0.001
21 0.003 0.001
22 0.009 0.001

Table B.2: Differences in SPW92 binding energies calculated in the aug-pc-4 basis set with
(CP) and without (noCP) counterpoise correction, as compared to CP pc-4 values. Two
systems could not be converged in the aug-pc-4 basis set (issues with linear dependencies);
these are listed as ”n/a.”
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B.3 Semilocal Exchange-Correlation Grid

BSSE (kcal/mol) Incremental Change in BSSE (kcal/mol)

System SG-1 (75,302) (99,590) 250,974

1 3.18 0.01 0.00 0.00
2 3.85 -0.01 0.00 0.00
3 6.40 -0.02 0.00 0.00
4 5.91 -0.05 0.00 0.00
5 4.72 -0.15 -0.01 0.00
6 4.57 0.03 0.03 0.00
7 5.43 -0.02 -0.02 0.00
8 0.19 0.00 0.00 0.00
9 0.74 -0.04 -0.01 0.00
10 0.44 0.01 0.00 0.00
11 1.26 -0.13 0.06 0.00
12 1.53 0.12 0.00 0.00
13 3.62 -0.21 0.03 0.00
14 1.55 0.26 0.00 0.00
15 4.30 0.18 -0.02 0.00
16 0.39 0.00 0.00 0.00
17 1.30 -0.04 0.02 0.00
18 0.76 -0.07 0.02 0.00
19 0.59 0.01 0.01 0.00
20 0.67 0.06 0.01 0.00
21 1.06 0.06 0.02 0.00
22 3.19 0.24 0.02 0.00

Table B.3: Impact of semilocal exchange-correlation grid. All results are for SPW92 using
the cc-pVDZ basis set. Each column (SG-1 and the following columns) refers to a different
Lebedev grid. The ”incremental change in BSSE” refers to the change in BSSE upon switch-
ing to that grid from the next smallest grid, e.g. the numbers under (99,590) correspond to
the change in BSSE accompanying the change from the (75,302) to the (99,590) grid.
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B.4 Nonlocal Correlation Grid

noCP BE (kcal/mol) CP BE (kcal/mol) BSSE (kcal/mol)

System SG-1 (99,590) SG-1 (99,590) SG-1 (99,590)

1 -5.39 -5.39 -2.89 -2.89 2.50 2.50
2 -7.81 -7.81 -4.87 -4.87 2.94 2.94
3 -22.68 -22.68 -17.85 -17.85 4.83 4.83
4 -19.34 -19.34 -14.85 -14.84 4.49 4.49
5 -22.79 -22.79 -19.29 -19.29 3.49 3.50
6 -19.61 -19.61 -16.02 -16.02 3.60 3.60
7 -19.54 -19.54 -15.31 -15.31 4.23 4.23
8 -0.52 -0.52 -0.38 -0.38 0.15 0.15
9 -1.78 -1.78 -1.19 -1.19 0.59 0.59
10 -1.57 -1.57 -1.18 -1.18 0.39 0.39
11 -3.32 -3.32 -2.15 -2.15 1.17 1.17
12 -4.97 -4.98 -3.43 -3.44 1.54 1.54
13 -11.92 -11.91 -8.83 -8.82 3.09 3.09
14 -5.57 -5.58 -3.83 -3.84 1.74 1.73
15 -14.74 -14.76 -10.71 -10.72 4.03 4.03
16 -1.93 -1.93 -1.59 -1.59 0.34 0.34
17 -3.76 -3.76 -2.67 -2.67 1.08 1.08
18 -2.45 -2.45 -1.83 -1.83 0.62 0.62
19 -4.72 -4.72 -4.19 -4.19 0.52 0.52
20 -2.91 -2.91 -2.25 -2.25 0.66 0.66
21 -5.98 -5.99 -4.95 -4.95 1.04 1.04
22 -9.24 -9.25 -6.41 -6.41 2.83 2.84

Table B.4: Impact of nonlocal correlation grid. All results are for B97M-V and the cc-pVDZ
basis set with a (99,590) semilocal grid. Both uncorrected (noCP) and counterpoise-corrected
(CP) binding energies (BEs) are provided for each grid (SG-1 and (99,590)) to demonstrate
that the fact that BSSE is converged is not a result of some fortuitous error cancellation.
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B.5 SPW92 RMSE versus CBS and S22B

noCP RMSE (kcal/mol) CP RMSE (kcal/mol)

Basis vs CBS vs S22B vs CBS vs S22B

6-31G* 2.48 5.54 0.88 3.36
cc-pVDZ 2.83 5.89 0.57 2.96
def2-SVP 3.10 6.12 0.50 3.29
pc-1 2.41 5.27 0.49 3.40
6-31++G** 0.87 3.60 0.31 3.09
def2-SVPD 2.17 4.76 0.14 3.26
6-311++G** 1.05 3.70 0.30 3.10
aug-cc-pVDZ 0.86 3.69 0.12 3.09
aug-pc-1 2.09 4.50 0.11 3.08
def2-TZVP 0.59 3.48 0.22 3.05
cc-pVTZ 0.98 4.00 0.12 3.13
pc-2 0.42 3.41 0.08 3.14
def2-TZVPD 0.29 3.19 0.13 3.04
6-311++G(3df,3pd) 0.69 3.49 0.06 3.11
aug-cc-pVTZ 0.20 3.26 0.04 3.13
aug-pc-2 0.29 3.31 0.04 3.13
cc-pVQZ 0.46 3.51 0.05 3.17
def2-QZVP 0.17 3.27 0.02 3.16
def2-QZVPD 0.06 3.18 0.02 3.15
pc-3 0.03 3.18 0.01 3.17
aug-cc-pVQZ 0.11 3.22 0.00 3.16
aug-pc-3 0.03 3.16 0.03 3.15
cc-pV5Z 0.12 3.24 0.01 3.17
pc-4 0.01 3.17 0.00 3.16
aug-cc-pV5Z 0.01 3.17 0.00 3.16

Table B.5: Root mean square errors (RMSE) of uncorrected (noCP) and counterpoise-
corrected (CP) SPW92 versus two different types of references: complete-basis SPW92 (CBS)
and complete-basis CCSD(T) (S22B[186]).



APPENDIX B. BASIS SET STUDY 103

B.6 B3LYP RMSE versus CBS and S22B

noCP RMSE (kcal/mol) CP RMSE (kcal/mol)

Basis vs CBS vs S22B vs CBS vs S22B

6-31G* 2.72 3.59 0.56 5.21
cc-pVDZ 1.71 3.79 0.32 5.19
def2-SVP 2.98 3.68 0.30 5.09
pc-1 2.11 3.57 0.31 4.84
6-31++G** 0.75 4.34 0.28 5.04
def2-SVPD 1.84 3.24 0.12 5.02
6-311++G** 0.70 4.37 0.26 5.00
aug-cc-pVDZ 0.75 4.23 0.15 5.05
aug-pc-1 2.00 3.03 0.22 5.11
def2-TZVP 0.53 4.57 0.15 4.98
cc-pVTZ 0.99 4.28 0.07 4.97
pc-2 0.31 4.71 0.07 4.95
def2-TZVPD 0.18 4.78 0.11 5.01
6-311++G(3df,3pd) 0.50 4.47 0.09 5.02
aug-cc-pVTZ 0.21 4.74 0.05 4.95
aug-pc-2 0.14 4.81 0.03 4.94
cc-pVQZ 0.46 4.61 0.04 4.94
def2-QZVP 0.15 4.83 0.02 4.95
def2-QZVPD 0.05 4.89 0.01 4.94
pc-3 0.03 4.92 0.01 4.95
aug-cc-pVQZ 0.10 4.85 0.01 4.94
aug-pc-3 0.02 4.93 0.01 4.95
cc-pV5Z 0.10 4.88 0.01 4.95
pc-4 0.00 4.94 0.00 4.94
aug-cc-pV5Z 0.01 4.94 0.02 4.96

Table B.6: Root mean square errors (RMSE) of uncorrected (noCP) and counterpoise-
corrected (CP) B3LYP versus two different types of references: complete-basis B3LYP (CBS)
and complete-basis CCSD(T) (S22B[186]).
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B.7 B97M-V RMSE versus CBS and S22B

noCP RMSE (kcal/mol) CP RMSE (kcal/mol)

Basis vs CBS vs S22B vs CBS vs S22B

6-31G* 2.00 1.74 0.64 0.75
cc-pVDZ 1.71 1.91 0.49 0.75
def2-SVP 2.28 2.05 0.34 0.53
pc-1 2.04 1.81 0.45 0.53
6-31++G** 0.70 0.56 0.30 0.50
def2-SVPD 1.77 1.57 0.08 0.34
6-311++G** 0.65 0.51 0.25 0.41
aug-cc-pVDZ 0.72 0.55 0.15 0.44
aug-pc-1 2.35 2.15 0.28 0.55
def2-TZVP 0.56 0.41 0.16 0.37
cc-pVTZ 0.94 0.75 0.14 0.40
pc-2 0.37 0.27 0.16 0.36
def2-TZVPD 0.22 0.25 0.04 0.35
6-311++G(3df,3pd) 0.41 0.35 0.06 0.38
aug-cc-pVTZ 0.26 0.23 0.03 0.33
aug-pc-2 0.54 0.40 0.03 0.34
cc-pVQZ 0.44 0.34 0.06 0.35
def2-QZVP 0.15 0.28 0.02 0.35
def2-QZVPD 0.07 0.31 0.01 0.34
pc-3 0.07 0.30 0.02 0.34
aug-cc-pVQZ 0.13 0.27 0.01 0.34
aug-pc-3 0.15 0.38 0.13 0.43
cc-pV5Z 0.13 0.30 0.01 0.35
pc-4 0.02 0.34 0.00 0.35
aug-cc-pV5Z 0.07 0.31 0.01 0.35

Table B.7: Root mean square errors (RMSE) of uncorrected (noCP) and counterpoise-
corrected (CP) B97M-V versus two different types of references: complete-basis B97M-V
(CBS) and complete-basis CCSD(T) (S22B[186]).
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B.8 Nonlocal Correlation Basis Set Insensitivity

Nonlocal BE (kcal/mol)

System def2-SVPD noCP pc4 CP Difference

1 -0.68 -0.68 0.00
2 -0.62 -0.61 0.00
3 -2.24 -2.22 0.02
4 -2.10 -2.09 0.01
5 -2.76 -2.75 0.02
6 -3.03 -3.01 0.02
7 -3.34 -3.33 0.01
8 -0.52 -0.53 -0.01
9 -1.19 -1.20 -0.01
10 -1.45 -1.45 0.00
11 -4.47 -4.44 0.02
12 -4.61 -4.59 0.02
13 -6.77 -6.78 -0.01
14 -6.49 -6.47 0.02
15 -9.64 -9.64 0.00
16 -0.61 -0.60 0.00
17 -1.39 -1.40 -0.01
18 -1.42 -1.43 -0.02
19 -1.69 -1.69 0.00
20 -2.49 -2.50 -0.01
21 -3.43 -3.44 -0.01
22 -3.03 -3.03 0.00

Table B.8: Nonlocal (VV10) contributions to B97M-V binding energies across S22 with a
small basis (uncorrected def2-SVPD) and the complete basis (counterpoise-corrected pc4).
This does not arise solely from fortuitous error cancellation between the dimers and their
constituent monomers; absolute energies are converged to nearly this same level of precision.



APPENDIX B. BASIS SET STUDY 106

B.9 Basis Set Convergence Figures

Each figure in this section depicts normalized mean binding energies across the S22 set.
Binding energies were normalized to the relevant [Method]/CBS value before averaging.
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Figure B.1: Convergence of uncorrected (noCP) SPW92 normalized mean binding energies
across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences of basis
sets.
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Figure B.2: Convergence of counterpoise-corrected (CP) SPW92 normalized mean binding
energies across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences
of basis sets.
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B3LYP
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Figure B.3: Convergence of uncorrected (noCP) B3LYP normalized mean binding energies
across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences of basis
sets.
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Figure B.4: Convergence of counterpoise-corrected (CP) B3LYP normalized mean binding
energies across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences
of basis sets.
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Figure B.5: Convergence of uncorrected (noCP) B97M-V normalized mean binding energies
across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences of basis
sets.
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Figure B.6: Convergence of counterpoise-corrected (CP) B97M-V normalized mean binding
energies across the S22 set of molecules for the Dunning, Jensen, and Karlsruhe sequences
of basis sets.
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Appendix C

DFT-D3 Study

C.1 Additional DFT-D3(op) Parameterizations

Functional s6 s8 α1 α2 β

PBE0 0.91826 0.00000 0.200 4.750 12
PBE 0.88290 0.00000 0.150 4.750 12
revTPSS 1.00000 0.27632 0.700 2.500 14
revTPSSh 1.00000 0.12467 0.575 3.000 16

Table C.1: Optimized values of DFT-D3(op) fit parameters for four additional density func-
tionals.
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C.2 Rare Gas Dimers (RG10)

Functional Correction RG10 BL (Å) RG10 BE RG10

MS2 0.150 0.10 0.23
-D3(op) 0.153 0.08 0.23
-D3(0) 0.187 0.11 0.23

MS2h 0.142 0.11 0.23
-D3(op) 0.138 0.06 0.23
-D3(0) 0.180 0.10 0.23

TPSS 0.373 0.15 0.24
-D2 0.109 0.12 0.15
-D3(BJ) 0.144 0.07 0.15
-D3(CSO) 0.120 0.07 0.15
-D3(op) 0.152 0.08 0.18
-D3(0) 0.150 0.09 0.16

TPSSh 0.382 0.16 0.24
-D3(BJ) 0.147 0.06 0.15
-D3(op) 0.153 0.06 0.18
-D3(0) 0.145 0.07 0.15

Table C.2: Root mean square errors (RMSEs) for meta-GGAs across the RG10 set of rare gas
dimers. BL and BE refer to interpolated equilibrium binding length and energy, respectively,
and the rightmost column (RG10) is an RMSE across all 569 datapoints. RMSEs are in
kcal/mol unless otherwise noted.
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Functional Correction RG10 BL (Å) RG10 BE RG10

B3LYP 3.677 0.21 0.28
-D2 0.140 0.06 0.16
-D3(BJ) 0.062 0.04 0.15
-D3(CSO) 0.514 0.07 0.15
-D3(op) 0.021 0.06 0.13
-D3(0) 0.072 0.05 0.16
-D3M(BJ) 0.029 0.04 0.17

B970 0.673 0.18 0.51
-D2 0.167 0.07 0.36
-D3(BJ) 0.220 0.05 0.26
-D3(op) 0.234 0.03 0.24
-D3(0) 0.198 0.03 0.27
-D3M(BJ) 0.196 0.04 0.23

B97h 0.250 0.14 0.21
-D2 0.118 0.10 0.15
-D3(op) 0.100 0.07 0.13

BLYP 3.697 0.21 0.39
-D2 0.839 0.10 0.22
-D3(BJ) 1.006 0.09 0.14
-D3(CSO) 1.100 0.11 0.14
-D3(op) 1.069 0.12 0.14
-D3(0) 0.588 0.08 0.20
-D3M(BJ) 1.043 0.10 0.13

revPBE 0.629 0.18 0.46
-D3(BJ) 0.180 0.06 0.22
-D3(op) 0.187 0.05 0.19
-D3(0) 0.131 0.05 0.25

revPBE0 0.629 0.19 0.36
-D3(BJ) 0.160 0.03 0.15
-D3(op) 0.220 0.06 0.19
-D3(0) 0.105 0.03 0.18

Table C.3: Root mean square errors (RMSEs) for GGAs across the RG10 set of rare gas
dimers. BL and BE refer to interpolated equilibrium binding length and energy, respectively,
and the rightmost column (RG10) is an RMSE across all 569 datapoints. RMSEs are in
kcal/mol unless otherwise noted.
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Appendix D

DFT-C Study

D.1 Additional Figures and Tables

0 2 4 6 8 10 

noCP 

gCP 

CP 

jCP 

RMSE (kcal/mol) 

noCP gCP CP jCP 
NCED 1.01 0.36 0.14 0.29 
NCD 1.35 0.97 0.87 0.92 
NCEC 6.31 2.46 1.19 0.92 
IE 0.72 0.36 0.70 0.39 
RG10 0.13 0.05 0.03 0.12 

Figure D.1: Root-mean-square errors of B97M-V/def2-SVPD versus B97M-V/def2-
QZVPPD with no correction (noCP), the standard counterpoise correction (CP), the ge-
ometrical counterpoise correction (gCP), and the treatment introduced here (DFT-C). All
RMSEs are in units of kcal/mol. Methods are ordered from lowest overall RMSE at the top,
to highest overall RMSE at the bottom.
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Dataset noCP CP DFT-C gCP

S66 1.22 0.20 0.34 0.41

A24 0.52 0.17 0.26 0.24

DS14 0.86 0.16 0.27 0.29

HB15 0.82 0.28 0.36 0.34

HSG 0.87 0.14 0.38 0.42

NBC10 1.19 0.37 0.42 0.27

S22 1.57 0.34 0.50 0.45

X31 1.02 0.21 0.29 0.42

A21x12 0.30 0.10 0.18 0.17

BzDC215 0.70 0.28 0.28 0.26

HW30 0.62 0.14 0.20 0.17

NC15 0.43 0.10 0.23 0.25

S66x8 0.95 0.25 0.36 0.42

3B-69-DIM 1.01 0.26 0.32 0.38

AlkBind12 1.34 0.20 0.73 0.60

CO2Nitrogen16 0.94 0.21 0.46 0.31

HB49 0.85 0.41 0.58 0.64

Ionic43 1.27 1.11 1.41 1.90

TA13 4.92 4.64 4.61 4.58

XB18 2.09 1.20 1.41 1.51

Bauza30 2.60 1.94 2.00 2.13

CT20 0.92 0.32 0.51 0.53

XB51 2.43 1.51 1.66 1.80

H2O6Bind8 3.28 0.22 0.51 1.57

HW6Cl 2.64 0.44 0.84 1.42

HW6F 2.78 0.52 0.54 1.94

FmH2O10 9.53 0.33 0.64 5.66

Shields38 4.05 0.22 0.44 1.84

SW49Bind345 1.17 1.17 0.35 1.39

SW49Bind6 2.51 2.51 0.68 2.83

Water27 3.27 1.08 0.96 1.61

H2O20Bind4 18.11 0.49 1.83 8.75

3B-69-TRIM 2.66 0.54 0.70 0.89

CE20 2.84 0.55 0.64 1.37

H2O20Bind10 18.72 2.63 0.58 11.23

AlkIsomer11 0.46 0.46 0.37 0.36

Butanediol65 0.37 0.37 0.18 0.12

ACONF 0.21 0.21 0.12 0.11

CYCONF 0.17 0.17 0.19 0.14

Pentane14 0.07 0.07 0.15 0.11

SW49Rel345 0.36 0.36 0.34 0.41

SW49Rel6 0.38 0.38 0.42 0.70

H2O16Rel5 1.44 1.44 1.02 0.36

H2O20Rel10 0.82 0.13 0.64 0.39

H2O20Rel4 2.59 0.49 1.88 0.62

Melatonin52 0.73 0.73 0.49 0.70

YMPJ519 0.83 0.83 0.51 0.47

RG10 0.28 0.18 0.15 0.20

Figure D.2: Root-mean-square errors of B97M-V/def2-SVPD versus “exact” reference val-
ues with no correction (noCP), the standard counterpoise correction (CP), the geometrical
counterpoise correction (gCP), and the treatment introduced here (DFT-C). All RMSEs are
in units of kcal/mol. Note for SW49 and most of IE, the standard counterpoise correction
is not possible, and so for these datasets the noCP and CP methods are identical.
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D.2 gCP

Parameters

The following is the gcppar file for running gCP in the def2-SVPD basis. The first four
numbers are σ, η, α, and β; the following 36 lines are the number of basis functions followed
by cA, the missing energy terms for each atom.

# dft/svpd (comment line)
0.064821
0.000010825449487
0.576143886630077
0.946479745728949
8 0.002033712
8 0.006654316
12 0.245968569
12 0.093473481
20 0.193813847
20 0.059562241
20 0.068548897
23 0.095407956
23 0.12694673
23 0.163230942
18 0.370363706
21 0.274630257
24 0.343131329
24 0.23920287
24 0.147501274
27 0.154971698
27 0.160130459
27 0.180879081
27 0.336846485
27 0.404584507
34 0.383701913
34 0.336299149
34 0.18248286
34 0.274357288
34 0.108694613
34 0.277306996
34 0.262711007
34 0.317486445
34 0.314512981
34 0.300910789
38 0.501994778
38 0.423565755
38 0.355940629
41 0.333722951
41 0.3631844716
41 0.3815829321
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gCPmod

As mentioned in the text, the low value of η = 0.0000108 suggests the overlap term is
superfluous for gCP in the def2-SVPD basis. Moreover, since β is so close to unity, we also
might be able to just assume exponential decay of BSSE. These approximations lead to a
modified form of gCP, gCPmod:

EgCPmod = σ
∑
A

Emiss
A

∑
B 6=A

1√
Nvirt
B

exp (−αrAB) (D.1)

Here, the linear atomic coefficents cA are the same as in gCP, namely Emiss
A ; the pairwise

atomic coefficients now assume the atomic overlap SAB = 1, and we have assumed β = 1.
We are left with a much simpler model, with only one linear parameter (σ) and one nonlinear
parameter (α), which we fit, as in gCP, to B3LYP BSSEs across S66x8.

The optimized parameters for gCPmod in the def2-SVPD basis are:

• σ = 0.08032

• α = 0.53848

Root-mean-square deviations of gCP and gCPmod predicted BSSEs relative to Boys-
Bernardi B3LYP/def2-SVPD BSSEs are given in Table D.2.

Datatype gCP gCPmod

NCED 0.32 0.32
NCD 0.45 0.48
NCEC 1.91 1.52
RG10 0.14 0.14

Table D.1: RMSEs (kcal/mol) for gCP and gCPmod predicted BSSEs in B3LYP/def2-SVPD
versus Boys-Bernardi BSSEs.
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D.3 DFT-C

Python Implementation

The following python file, dftc.py, calculates the DFT-C empirical correction for BSSE
within the def2-SVPD basis, given an .xyz file.

The program can be run for a meta-GGA functional, e.g., via ./dftc.py file.xyz -level
meta-gga. If the -level tag is omitted, the program defaults to GGA.

#!/ usr / bin /env python

”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ DFT − C ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Copyright (C) 2017 , Jonathon Witte , UC Berke ley

This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
the Free Software Foundation ; e i t h e r v e r s i o n 1 , or ( at your opt ion )
any l a t e r v e r s i o n .

This program i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L i cense f o r more d e t a i l s .

”””

import os , sys , numpy , math

# cova l en t rad ius
def c o v a l e n t r a d i u s ( atom ) :

covrad = [
31 ,28 , \
127 ,96 ,84 ,76 ,71 ,66 ,57 ,58 , \
166 ,141 ,121 ,111 ,107 ,105 ,102 ,106 ,203 ,176 ,170 ,160 ,153 ,139 ,150 ,142 ,138 ,124 , \
132 ,122 ,122 ,120 ,119 ,120 ,120 ,116 \

]
return covrad [ atom−1]/100.0

# end of c o va l en t r ad i u s

# van der waals rad ius
def vdw radius ( atom ) :

vdwrad = [
120 ,140 , \
182 ,153 ,192 ,170 ,155 ,152 ,147 ,154 , \
227 ,173 ,184 ,210 ,180 ,180 ,175 ,188 ,275 ,231 ,211 ,320 ,306 ,278 ,300 ,284 ,276 ,163 , \
140 ,139 ,187 ,211 ,185 ,190 ,185 ,202 \

]
return vdwrad [ atom−1]/100.0

# end of vdw radius

# read in xyz f i l e
def read xyz ( f i l ename ) :

f = open( f i l ename , ’ r ’ )
l i n e s = f . r e a d l i n e s ( )
f . c l o s e ( )
l i n e s . pop (0 ) # sk ip number o f atoms
l i n e s . pop (0 ) # sk ip comment l i n e
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coords = [ ]
for l i n e in l i n e s :

( at , x , y , z ) = l i n e . s p l i t ( )
coords . append ( [ at , [ f loat ( x ) , f loat ( y ) , f loat ( z ) ] ] )

return coords
# end of read xyz

# conver t atomic symbol to number
def atomic number ( atom ) :

atoms = [
”H” , ”He” , ” Li ” , ”Be” , ”B” , ”C” , ”N” , ”O” , ”F” , ”Ne” ,
”Na” , ”Mg” , ”Al” , ” S i ” , ”P” , ”S” , ”Cl” , ”Ar” , ”K” , ”Ca” ,
”Sc” , ”Ti” , ”V” , ”Cr” , ”Mn” , ”Fe” , ”Co” , ”Ni” , ”Cu” , ”Zn” ,
”Ga” , ”Ge” , ”As” , ”Se” , ”Br” , ”Kr” , ”Rb” , ”Sr” , ”Y” , ”Zr” ,
”Nb” , ”Mo” , ”Tc” , ”Ru” , ”Rh” , ”Pd” , ”Ag” , ”Cd” , ” In ” , ”Sn” ,
”Sb” , ”Te” , ” I ” , ”Xe” , ”Cs” , ”Ba” , ”La” , ”Ce” , ”Pr” , ”Nd” ,
”Pm” , ”Sm” , ”Eu” , ”Gd” , ”Tb” , ”Dy” , ”Ho” , ”Er” , ”Tm” , ”Yb” ,
”Lu” , ”Hf” , ”Ta” , ”W” , ”Re” , ”Os” , ” I r ” , ”Pt” , ”Au” , ”Hg” ,
”Tl” , ”Pb” , ”Bi” , ”Po” , ”At” , ”Rn” , ”Fr” , ”Ra” , ”Ac” , ”Th” ,
”Pa” , ”U” , ”Np” , ”Pu” ,

]
try :

atno = int ( atom )
except ValueError :

# given as a symbol
atom = atom . upper ( )
i f len ( atom ) > 1 :

atom = atom [0]+ atom [ 1 ] . lower ( )
try :

atno = atoms . index ( atom)+1
except ValueError :

print ”DFT−C only supports atoms up to Pu”
sys . e x i t (1 )

# atno i s now atomic number ; remap to lower homologue i f >36
i f atno > 94 :

print ”DFT−C only supports atoms up to Pu”
sys . e x i t (1 )

e l i f atno > 89 :
atno = 21

e l i f atno > 71 :
atno = atno − 2∗18 − 14

e l i f atno > 57 :
atno = 21

e l i f atno > 54 :
atno = atno − 2∗18

e l i f atno > 36 :
atno = atno − 18

return atno
# end atomic number

# process the atom tags in the xyz f i l e
def read atoms ( coords ) :

for i , coord in enumerate( coords ) :
atom = coord [ 0 ]
# conver t atom symbol to atomic number
# also , i f >36, remap to lower homologue
coords [ i ] [ 0 ] = atomic number ( atom )

return coords
# end read atoms

# number o f b a s i s f unc t i ons
def num basis ( atom ) :

# assumes def2−svpd ba s i s
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bas = [
8 ,8 , \
12 ,12 ,20 ,20 ,20 ,23 ,23 ,23 , \
18 ,21 ,24 ,24 ,24 ,27 ,27 ,27 ,27 ,27 ,34 ,34 ,34 ,34 ,34 ,34 ,34 ,34 , \
34 ,34 ,38 ,38 ,38 ,41 ,41 ,41 \

]
return bas [ atom−1]

# end of num bas

# d i s tance between two po in t s c = (x , y , z )
def d i s t ance ( c1 , c2 ) :

( x1 , y1 , z1 ) = c1
( x2 , y2 , z2 ) = c2
return numpy . s q r t ( \

( f loat ( x1)− f loat ( x2 ))∗∗2 + \
( f loat ( y1)− f loat ( y2 ))∗∗2 + \
( f loat ( z1)− f loat ( z2 ))∗∗2 \

)
# end of d i s t ance

# t e r f c func t i on
def t e r f c (x , y ) :

return 1 .0 − 0 .5 ∗ (math . e r f ( x+y ) + math . e r f (x−y ) )
# end t e r f c

# ca l c u l a t e d f t−c empi r i ca l co r r ec t i on fo r bs se g iven a system
# system i s a l i s t o f [ atom , [ x , y , z ] ]
def c a l c u l a t e b s s e ( system ) :

# convers ion f a c t o r s
angs to bohr = 1.88973
# parameters
c a l i s t = s e t l i n e a r c o e f f s ( ) # 1x36
c a b l i s t = s e t c o e f f s ( ) # 36x36
a l p h a l i s t = s e t a l p h a ( ) # 36x36
b e t a l i s t = s e t b e t a ( ) # 36x36
# energy
d f t c b s s e = 0 .0
# loop over atom 1
for a1 in system :

a1 energy = 0 .0
# loop over atom 2
for a2 in system :

# no s e l f−BSSE
i f a2 == a1 :

continue
r12 = d i s t ance ( a1 [ 1 ] , a2 [ 1 ] ) ∗ angs to bohr
rvdw = ( vdw radius ( a1 [0 ] )+ vdw radius ( a2 [ 0 ] ) ) ∗ angs to bohr
rcov = ( c o v a l e n t r a d i u s ( a1 [0 ] )+ c o v a l e n t r a d i u s ( a2 [ 0 ] ) ) ∗ angs to bohr
dampk1 = 19 .0
dampk2 = −5.8889/numpy . log10 ( rvdw/ rcov )
dampfn = 1 .0 / ( 1 . 0 + dampk1 ∗ ( r12 / rcov ) ∗∗ dampk2)
# many−body term
mbdy = 0 .0
# loop over atom 3
for a3 in system :

i f a1 == a3 or a2 == a3 :
continue

num vir t s 3 = num basis ( a3 [ 0 ] ) − a3 [ 0 ] / 2 . 0
num vir t s 2 = num basis ( a2 [ 0 ] ) − a2 [ 0 ] / 2 . 0
r13 = d i s t ance ( a1 [ 1 ] , a3 [ 1 ] ) ∗ angs to bohr
r23 = d i s t ance ( a2 [ 1 ] , a3 [ 1 ] ) ∗ angs to bohr
mbdy = mbdy + ( num vir t s 3 / num vir t s 2 ) ∗ t e r f c ( r13 , r12 ) ∗ t e r f c ( r23 , r12 )

# end loop over atom 3
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mbdy = 1 .0 / ( 1 . 0 + mbdy)
# array index f o r (a1 , a2 ) element
ind = 36∗( a1 [0]−1)+ a2 [0]−1
ca = c a l i s t [ a1 [0 ] −1 ]
cab = c a b l i s t [ ind ]
a lp = a l p h a l i s t [ ind ]
bet = b e t a l i s t [ ind ]
a1 energy += ca ∗ cab ∗ mbdy ∗ \

( ( dampfn ∗ numpy . exp ( a lp ∗ r12 ∗∗2 .0 + bet ∗ r12 ) ) + \
((1.0−dampfn ) ∗ numpy . exp ( a lp ∗ rcov ∗∗2 .0 + bet ∗ rcov ) ) )

d f t c b s s e += a1 energy
return d f t c b s s e

# end of c a l c u l a t e b s s e

# main func t ion
def main ( ) :

# ensure the program i s be ing c a l l e d c o r r e c t l y
# i . e . v ia ”python d f t c . py f i l e . xyz ”
usage = ” usage : %s f i l ename [− l e v e l gga ] ” % os . path . basename ( sys . argv [ 0 ] )
i f len ( sys . argv ) < 2 :

print >> sys . s tde r r , usage
sys . e x i t (1 )

f i l ename = sys . argv [ 1 ]
print ”Running DFT−C on %s ” % f i l ename
i f ”− l e v e l ” in sys . argv :

l e v e l = sys . argv [ sys . argv . index ( ”− l e v e l ” )+1 ] . upper ( )
i f l e v e l == ”LDA” or l e v e l == ”LSDA” or l e v e l == ”L” :

sigma = 1 .0
print ”LDA l e v e l ”

e l i f l e v e l == ”GGA” or l e v e l == ”G” :
sigma = 0 .9
print ”GGA l e v e l ”

e l i f l e v e l == ”METAGGA” or l e v e l == ”META” or l e v e l == ”M” \
or l e v e l == ”MGGA” or l e v e l == ”META−GGA” :

sigma = 0.85
print ”meta−GGA l e v e l ”

else :
print ” Unrecognized l e v e l o f DFT: De fau l t ing to GGA”
sigma = 0 .9

else :
print ”No l e v e l o f DFT s p e c i f i e d ; d e f a u l t i n g to GGA ( sigma =0.9) ”
print ”For LDA or meta−GGA, use ’− l e v e l LDA’ or ’− l e v e l meta−GGA’ ”
sigma = 0 .9

i f not os . path . i s f i l e ( f i l ename ) :
print ” F i l e not found : %s ” % f i l ename
sys . e x i t (1 )

# read in the xyz f i l e
coo rd ina t e s = read xyz ( f i l ename )
# process the coord ina te s
# change atom symbols to atomic numbers
# a l so map elements >36 to lower homologues
coo rd ina t e s = read atoms ( coo rd ina t e s )
# ca l c u l a t e d f t−c cor r ec t i on fo r bs se
d f t c b s s e = sigma ∗ c a l c u l a t e b s s e ( coo rd ina t e s )
print ”DFT−C energy = %.8 f Hartree , %.4 f kca l /mol” \

% ( d f t c b s s e , 627.5095∗ d f t c b s s e )
# end main

# se t l i n e a r atomic c o e f f i c i e n t s
def s e t l i n e a r c o e f f s ( ) :

c o e f = [
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0 . 9 3 8 , 1 . 0 00 , \
1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 0 . 6 0 1 , 0 . 3 3 9 , 0 . 4 8 3 , 1 . 0 0 0 , 1 . 0 0 0 , \
1 . 0 0 0 , 1 . 0 00 , \
1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , \
1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , \
1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 , 1 . 0 0 0 \

]
return c o e f

# end of s e t l i n e a r c o e f f s ( )

# se t pa i rw i se mu l t i p l i c a t i v e cons tant s
def s e t c o e f f s ( ) :

c o e f = [
4 .7808E−05 ,8.9242E−05 ,4.2334E−04 ,5.6254E−04 ,6.5537E−04 ,6.0955E−04, \
3 .8127E−04 ,4.9051E−04 ,3.1840E−04 ,1.1761E−04 ,3.8246E−04 ,4.8047E−04, \
4 .1553E−04 ,3.9824E−04 ,3.2342E−04 ,4.4509E−04 ,4.2454E−04 ,3.7003E−04, \
3 .6533E−04 ,3.1426E−04 ,4.1569E−04 ,4.3617E−04 ,4.1593E−04 ,3.6462E−04, \
4 .1800E−04 ,4.0159E−04 ,3.8876E−04 ,3.8246E−04 ,3.6980E−04 ,3.6940E−04, \
4 .0159E−04 ,3.6812E−04 ,3.2207E−04 ,3.7482E−04 ,3.6326E−04 ,3.5920E−04, \
1 .5669E−03 ,1.0709E−04 ,2.4815E−03 ,2.6725E−03 ,1.5952E−03 ,1.6282E−03, \
2 .1772E−03 ,1.6411E−03 ,1.5625E−03 ,1.5891E−03 ,2.7171E−03 ,2.1633E−03, \
1 .2912E−03 ,1.2245E−03 ,1.2805E−03 ,1.0900E−03 ,1.0967E−03 ,1.1158E−03, \
4 .6517E−03 ,1.7691E−03 ,1.3856E−03 ,1.2169E−03 ,1.3518E−03 ,1.5917E−03, \
1 .1992E−03 ,1.3922E−03 ,1.4636E−03 ,1.5777E−03 ,1.5071E−03 ,1.5624E−03, \
1 .2406E−03 ,1.2691E−03 ,1.2437E−03 ,1.0671E−03 ,1.0336E−03 ,1.0483E−03, \
6 .4899E−04 ,6.0015E−04 ,2.2087E−04 ,2.4223E−04 ,2.6215E−03 ,7.9919E−04, \
7 .2836E−04 ,8.2357E−04 ,9.6995E−04 ,7.9457E−04 ,2.4103E−04 ,2.7012E−04, \
5 .9959E−04 ,9.9967E−04 ,2.2850E−03 ,4.5115E−04 ,4.7760E−04 ,4.3314E−04, \
5 .2151E−04 ,3.2239E−04 ,2.5091E−04 ,2.3091E−04 ,2.2589E−04 ,2.5944E−04, \
2 .1243E−04 ,2.3091E−04 ,2.4175E−04 ,2.6773E−04 ,2.4860E−04 ,2.6342E−04, \
8 .3186E−04 ,6.3107E−04 ,1.2026E−03 ,3.9776E−04 ,4.1195E−04 ,4.2884E−04, \
6 .2987E−04 ,7.4405E−04 ,7.0612E−04 ,7.0597E−04 ,5.0924E−03 ,1.1866E−03, \
1 .2490E−03 ,2.3254E−03 ,8.0190E−04 ,7.5154E−04 ,9.5616E−04 ,1.2526E−03, \
3 .2685E−03 ,5.1419E−03 ,4.9802E−03 ,1.1354E−03 ,9.9058E−04 ,1.5404E−03, \
5 .5497E−04 ,4.0908E−04 ,1.3145E−03 ,1.3855E−03 ,1.4378E−03 ,1.6127E−03, \
1 .4424E−03 ,1.4390E−03 ,1.3721E−03 ,1.4024E−03 ,1.5134E−03 ,9.4469E−04, \
2 .8255E−03 ,4.6243E−03 ,5.0845E−03 ,1.3195E−03 ,1.0149E−03 ,1.0446E−03, \
4 .9003E−04 ,5.7338E−04 ,6.3919E−04 ,6.8525E−04 ,9.7050E−04 ,8.8859E−04, \
8 .6246E−04 ,1.1294E−03 ,2.0165E−03 ,2.0969E−03 ,8.7250E−04 ,6.4302E−04, \
7 .9202E−04 ,7.0166E−04 ,6.3370E−04 ,3.7545E−04 ,3.9211E−04 ,3.9872E−04, \
1 .7430E−03 ,5.4182E−04 ,5.2055E−04 ,3.4820E−04 ,3.4063E−04 ,3.6812E−04, \
2 .8438E−04 ,3.0788E−04 ,3.1035E−04 ,3.4422E−04 ,3.2940E−04 ,3.4517E−04, \
7 .4222E−04 ,7.0820E−04 ,6.2700E−04 ,3.2892E−04 ,3.1458E−04 ,3.4087E−04, \
2 .0044E−03 ,6.3473E−04 ,2.4212E−03 ,2.8796E−03 ,2.5601E−03 ,1.0484E−03, \
7 .3624E−04 ,2.4435E−03 ,2.2465E−03 ,1.3367E−03 ,3.1733E−03 ,2.5434E−03, \
1 .4948E−03 ,1.1866E−03 ,7.4676E−04 ,1.4564E−03 ,9.1098E−04 ,6.5115E−04, \
6 .6903E−03 ,1.9831E−03 ,1.8163E−03 ,1.2022E−03 ,1.1080E−03 ,1.3568E−03, \
8 .8740E−04 ,8.5672E−04 ,8.5266E−04 ,9.7528E−04 ,8.9807E−04 ,8.2055E−04, \
1 .3733E−03 ,1.0062E−03 ,7.6405E−04 ,1.4151E−03 ,9.5122E−04 ,7.7704E−04, \
3 .4577E−03 ,8.0764E−04 ,6.6329E−03 ,5.2971E−03 ,3.3912E−03 ,3.2862E−03, \
1 .1806E−03 ,2.8795E−03 ,2.8656E−03 ,2.9431E−03 ,9.8664E−03 ,6.5736E−03, \
5 .2513E−03 ,4.9387E−03 ,2.6373E−03 ,3.9665E−03 ,3.9004E−03 ,3.3963E−03, \
3 .8346E−03 ,7.5747E−03 ,6.8383E−03 ,4.0795E−03 ,3.5426E−03 ,4.3579E−03, \
2 .6827E−03 ,2.5735E−03 ,2.5286E−03 ,3.1681E−03 ,2.7471E−03 ,2.6070E−03, \
5 .3425E−03 ,5.2238E−03 ,3.4982E−03 ,4.8535E−03 ,4.6999E−03 ,4.2994E−03, \
5 .8565E−04 ,6.4366E−04 ,6.5927E−04 ,1.1825E−03 ,9.4540E−04 ,3.3133E−03, \
4 .0336E−03 ,1.4958E−03 ,1.4358E−03 ,1.7440E−03 ,6.7728E−04 ,7.3863E−04, \
1 .0291E−03 ,1.0051E−03 ,2.2166E−03 ,7.0852E−04 ,9.3457E−04 ,1.0757E−03, \
8 .9242E−04 ,6.6915E−04 ,1.2995E−03 ,1.5981E−03 ,1.5311E−03 ,1.3673E−03, \
1 .7542E−03 ,1.8875E−03 ,2.0189E−03 ,1.5426E−03 ,1.9204E−03 ,1.8076E−03, \
1 .1761E−03 ,9.4309E−04 ,1.7097E−03 ,7.1521E−04 ,9.1377E−04 ,1.0336E−03, \
9 .0118E−04 ,8.2325E−04 ,8.7178E−04 ,1.2589E−03 ,7.3624E−04 ,1.8422E−03, \
4 .0835E−03 ,2.4374E−03 ,2.1286E−03 ,1.1789E−03 ,1.2271E−03 ,1.4462E−03, \
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1 .6231E−03 ,9.4548E−04 ,1.2911E−03 ,5.6318E−04 ,7.6063E−04 ,1.1761E−03, \
1 .5813E−03 ,1.6417E−03 ,2.1571E−03 ,2.5914E−03 ,2.3593E−03 ,1.6688E−03, \
2 .5765E−03 ,2.7107E−03 ,2.4240E−03 ,1.4948E−03 ,1.9204E−03 ,1.7561E−03, \
1 .5346E−03 ,1.2446E−03 ,1.2163E−03 ,6.4254E−04 ,8.0142E−04 ,1.0593E−03, \
4 .2669E−04 ,5.6445E−04 ,1.0391E−03 ,1.5458E−03 ,1.6816E−03 ,9.5090E−04, \
2 .5348E−03 ,1.6895E−03 ,3.2047E−03 ,1.9219E−03 ,1.6354E−03 ,2.4430E−03, \
2 .0777E−03 ,1.9181E−03 ,1.3778E−03 ,7.6907E−04 ,8.9624E−04 ,1.5232E−03, \
2 .3036E−03 ,2.5791E−03 ,2.9810E−03 ,3.3098E−03 ,2.8398E−03 ,2.1737E−03, \
3 .0562E−03 ,2.9985E−03 ,2.7278E−03 ,1.7625E−03 ,2.2312E−03 ,2.0801E−03, \
1 .8896E−03 ,2.6855E−03 ,2.1208E−03 ,1.0403E−03 ,1.2995E−03 ,1.4185E−03, \
7 .2071E−04 ,5.8676E−04 ,8.1991E−04 ,3.8884E−04 ,1.1239E−03 ,1.1405E−03, \
9 .7552E−04 ,1.2444E−03 ,1.1911E−03 ,1.0527E−03 ,7.4102E−04 ,6.9800E−04, \
1 .2243E−03 ,1.0972E−03 ,5.4088E−03 ,9.4166E−04 ,9.9353E−04 ,1.0499E−03, \
1 .1072E−03 ,9.4548E−04 ,7.2278E−04 ,5.5346E−04 ,4.8406E−04 ,5.4692E−04, \
3 .8717E−04 ,3.6478E−04 ,3.5609E−04 ,3.8565E−04 ,3.8533E−04 ,3.6637E−04, \
1 .3087E−03 ,1.1499E−03 ,5.2319E−03 ,8.7967E−04 ,9.2126E−04 ,9.9329E−04, \
1 .0028E−03 ,4.0605E−04 ,1.9226E−03 ,1.2765E−03 ,1.6761E−03 ,9.6174E−04, \
7 .3098E−04 ,1.7350E−03 ,1.5743E−03 ,1.2822E−03 ,2.6334E−03 ,3.3633E−03, \
1 .8350E−03 ,1.7067E−03 ,1.1570E−03 ,1.1839E−03 ,1.3355E−03 ,1.5031E−03, \
1 .3805E−03 ,1.5740E−03 ,2.8612E−03 ,1.3562E−03 ,9.6453E−04 ,1.6513E−03, \
4 .0772E−04 ,3.0119E−04 ,2.4502E−04 ,3.6334E−04 ,3.7290E−04 ,2.5434E−04, \
1 .9506E−03 ,1.9002E−03 ,1.4973E−03 ,1.1589E−03 ,1.1946E−03 ,1.3048E−03, \
2 .9880E−04 ,1.2505E−03 ,8.0150E−04 ,9.4182E−04 ,9.8166E−04 ,9.6174E−04, \
7 .2573E−04 ,1.0507E−03 ,9.3752E−04 ,7.3720E−04 ,1.0338E−03 ,9.5855E−04, \
1 .4083E−03 ,6.0413E−04 ,4.7593E−04 ,8.6294E−04 ,5.8374E−04 ,4.2167E−04, \
1 .5617E−03 ,7.0437E−04 ,9.5871E−04 ,5.4979E−04 ,4.9840E−04 ,7.7130E−04, \
3 .8374E−04 ,3.7816E−04 ,3.7569E−04 ,4.8127E−04 ,4.4748E−04 ,3.8151E−04, \
1 .6996E−03 ,7.1170E−04 ,4.7282E−04 ,8.6437E−04 ,5.5051E−04 ,4.5816E−04, \
2 .3187E−04 ,4.7410E−04 ,2.6220E−03 ,2.3187E−03 ,9.9281E−04 ,6.6915E−04, \
7 .7831E−04 ,1.4473E−03 ,1.0083E−03 ,7.2859E−04 ,2.6055E−03 ,2.1872E−03, \
2 .0330E−03 ,7.1250E−04 ,4.1808E−04 ,1.1294E−03 ,6.9282E−04 ,4.8764E−04, \
4 .6378E−03 ,2.4951E−03 ,1.9137E−03 ,1.2022E−03 ,1.1223E−03 ,1.3112E−03, \
9 .3536E−04 ,9.1027E−04 ,8.8206E−04 ,1.0008E−03 ,9.1983E−04 ,7.8421E−04, \
1 .9900E−03 ,9.1505E−04 ,4.5569E−04 ,1.4381E−03 ,9.3250E−04 ,6.6342E−04, \
7 .9720E−04 ,2.3314E−04 ,4.2602E−03 ,3.7466E−03 ,2.6131E−03 ,5.5266E−04, \
6 .3895E−04 ,2.2769E−03 ,2.0431E−03 ,9.6955E−04 ,5.0238E−03 ,3.6454E−03, \
2 .9059E−03 ,1.5442E−03 ,5.4955E−04 ,2.4647E−03 ,1.7129E−03 ,8.7489E−04, \
1 .0678E−02 ,3.2401E−03 ,3.7262E−03 ,2.8956E−03 ,2.7215E−03 ,2.9064E−03, \
2 .3093E−03 ,2.2355E−03 ,2.1921E−03 ,2.4414E−03 ,2.2592E−03 ,2.0347E−03, \
2 .7537E−03 ,2.1000E−03 ,7.9146E−04 ,2.5357E−03 ,2.3219E−03 ,1.7044E−03, \
1 .0733E−03 ,2.3337E−03 ,1.0207E−03 ,1.8709E−03 ,6.1549E−03 ,7.4718E−03, \
5 .0143E−03 ,3.4094E−03 ,4.3161E−03 ,5.9234E−03 ,1.3984E−03 ,2.5529E−03, \
4 .2167E−03 ,6.3258E−03 ,1.2753E−03 ,3.3397E−03 ,3.7176E−03 ,4.9309E−03, \
6 .4979E−04 ,5.1202E−04 ,4.1344E−03 ,2.9139E−03 ,2.5637E−03 ,3.7408E−03, \
2 .1517E−03 ,2.4028E−03 ,2.1463E−03 ,2.5721E−03 ,2.6010E−03 ,2.1467E−03, \
5 .0557E−03 ,7.0504E−03 ,8.6924E−03 ,3.4192E−03 ,2.9023E−03 ,3.4674E−03, \
1 .0984E−03 ,4.2412E−03 ,9.3202E−04 ,2.3745E−03 ,4.7744E−03 ,9.1893E−03, \
8 .8297E−03 ,3.5547E−03 ,4.2277E−03 ,5.1833E−03 ,1.0677E−03 ,1.5681E−03, \
1 .8880E−03 ,5.1555E−03 ,1.2017E−03 ,2.9703E−03 ,2.8686E−03 ,3.2557E−03, \
8 .5058E−04 ,4.4971E−04 ,2.8087E−03 ,2.5071E−03 ,2.3020E−03 ,2.8258E−03, \
2 .2442E−03 ,2.4263E−03 ,2.5906E−03 ,3.1553E−03 ,2.7377E−03 ,3.2277E−03, \
2 .0044E−03 ,4.2492E−03 ,7.6302E−03 ,2.3445E−03 ,2.4642E−03 ,2.4484E−03, \
6 .9800E−04 ,7.1728E−04 ,9.2198E−04 ,2.1641E−03 ,2.2506E−03 ,5.5781E−03, \
7 .3204E−03 ,2.2406E−03 ,2.2848E−03 ,2.8111E−03 ,8.9839E−04 ,1.1832E−03, \
1 .1601E−03 ,2.1944E−03 ,4.9144E−03 ,2.0650E−03 ,2.5030E−03 ,2.8427E−03, \
1 .4753E−03 ,6.9354E−04 ,1.8088E−03 ,1.7337E−03 ,1.6637E−03 ,1.8932E−03, \
1 .7645E−03 ,1.9377E−03 ,2.0875E−03 ,2.5721E−03 ,2.1815E−03 ,2.6130E−03, \
1 .2155E−03 ,1.5847E−03 ,2.8746E−03 ,1.5375E−03 ,1.8013E−03 ,2.0782E−03, \
4 .8047E−04 ,1.1300E−03 ,3.4302E−04 ,3.7768E−04 ,7.7250E−04 ,6.4206E−04, \
4 .7067E−04 ,7.2365E−04 ,7.3114E−04 ,5.7656E−04 ,4.0238E−04 ,5.6413E−04, \
5 .6055E−04 ,5.8246E−04 ,5.2589E−04 ,6.1768E−04 ,6.0143E−04 ,5.5362E−04, \
4 .7967E−04 ,4.7951E−04 ,3.5203E−04 ,3.1888E−04 ,3.2629E−04 ,3.7163E−04, \
3 .1179E−04 ,3.2796E−04 ,3.3322E−04 ,3.4103E−04 ,3.2318E−04 ,3.3306E−04, \
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2 .4669E−03 ,5.8198E−04 ,5.7218E−04 ,6.5401E−04 ,6.4039E−04 ,6.2310E−04, \
4 .5179E−04 ,3.8820E−04 ,3.9155E−04 ,5.4023E−04 ,4.3199E−03 ,7.3146E−04, \
6 .3107E−04 ,1.0325E−03 ,8.8740E−04 ,7.1712E−04 ,5.2390E−04 ,8.5337E−04, \
1 .2605E−03 ,9.4548E−04 ,4.6042E−03 ,1.0446E−03 ,1.0761E−03 ,1.0929E−03, \
6 .9162E−04 ,6.4206E−04 ,4.4940E−04 ,4.1784E−04 ,3.8366E−04 ,4.8031E−04, \
3 .5976E−04 ,3.7816E−04 ,3.9856E−04 ,4.7171E−04 ,4.1330E−04 ,4.8143E−04, \
1 .3554E−03 ,1.0938E−03 ,5.6225E−03 ,1.0288E−03 ,1.0411E−03 ,1.0556E−03, \
1 .3291E−03 ,9.0580E−04 ,6.8387E−03 ,2.5625E−03 ,7.6134E−04 ,9.9154E−04, \
3 .4814E−03 ,4.3298E−04 ,6.3385E−04 ,1.3711E−03 ,1.3105E−02 ,1.9482E−03, \
1 .1127E−03 ,7.6397E−04 ,8.8086E−04 ,2.7251E−04 ,2.6239E−04 ,3.2988E−04, \
5 .1091E−03 ,2.0589E−03 ,6.0706E−03 ,2.1808E−03 ,1.8609E−03 ,1.8020E−03, \
1 .2266E−03 ,1.0441E−03 ,8.9186E−04 ,7.9361E−04 ,9.1983E−04 ,6.2374E−04, \
1 .2908E−03 ,8.2039E−04 ,7.0923E−04 ,3.2892E−04 ,2.5466E−04 ,2.5290E−04, \
1 .5609E−03 ,1.6833E−03 ,2.1810E−02 ,5.8645E−03 ,3.3605E−03 ,2.4030E−03, \
8 .4090E−03 ,1.5624E−03 ,1.7601E−03 ,3.3676E−03 ,5.8147E−03 ,8.8230E−03, \
3 .4414E−03 ,2.6766E−03 ,2.6321E−03 ,1.3716E−03 ,1.2648E−03 ,1.4715E−03, \
7 .1059E−03 ,1.0769E−02 ,2.6230E−02 ,7.6128E−03 ,6.1744E−03 ,5.0415E−03, \
3 .6969E−03 ,3.1157E−03 ,2.6298E−03 ,2.4637E−03 ,2.4239E−03 ,1.9015E−03, \
3 .5211E−03 ,3.1027E−03 ,2.4737E−03 ,1.4534E−03 ,1.2246E−03 ,1.1179E−03, \
2 .5850E−02 ,4.4011E−02 ,4.2399E−02 ,1.5703E−02 ,3.6628E−02 ,4.3370E−02, \
6 .0193E−02 ,3.7000E−02 ,4.6699E−02 ,6.3677E−02 ,8.5776E−03 ,6.6515E−02, \
2 .3872E−02 ,4.7022E−02 ,5.8463E−02 ,1.8276E−02 ,2.6171E−02 ,4.4837E−02, \
9 .7608E−03 ,6.1733E−02 ,7.9580E−03 ,2.3689E−02 ,1.8197E−02 ,1.8504E−02, \
1 .1194E−02 ,1.0033E−02 ,9.0623E−03 ,9.3576E−03 ,1.0047E−02 ,8.2600E−03, \
1 .9301E−02 ,3.7794E−02 ,5.5091E−02 ,1.3887E−02 ,1.9346E−02 ,2.6713E−02, \
6 .9824E−03 ,1.5829E−03 ,2.1517E−02 ,1.1558E−02 ,1.9767E−02 ,2.0570E−02, \
1 .3484E−02 ,2.1616E−02 ,2.3058E−02 ,2.4267E−02 ,8.5230E−02 ,3.4627E−02, \
1 .3372E−02 ,2.4558E−02 ,3.0717E−02 ,1.0806E−02 ,1.5702E−02 ,2.6407E−02, \
1 .0899E−02 ,3.7175E−02 ,3.5532E−02 ,1.4119E−02 ,1.1639E−02 ,1.1899E−02, \
9 .2063E−03 ,8.6308E−03 ,8.3208E−03 ,8.6182E−03 ,9.1889E−03 ,8.7141E−03, \
1 .0746E−02 ,1.9872E−02 ,3.2145E−02 ,9.0032E−03 ,1.1381E−02 ,1.5519E−02, \
5 .3163E−02 ,3.9166E−03 ,4.2234E−03 ,2.3906E−02 ,7.7794E−02 ,1.5490E−01, \
7 .6911E−03 ,6.9586E−02 ,9.4869E−02 ,8.1723E−03 ,5.9043E−03 ,8.3282E−03, \
4 .1723E−02 ,1.0547E−01 ,1.9482E−01 ,4.1179E−02 ,5.6817E−02 ,9.5199E−02, \
5 .7672E−03 ,8.0163E−03 ,5.5987E−03 ,4.6806E−03 ,3.3518E−02 ,4.9994E−03, \
1 .5983E−02 ,1.5207E−02 ,1.2016E−02 ,1.4228E−02 ,1.5960E−02 ,1.1203E−02, \
3 .4472E−02 ,7.9202E−02 ,1.4951E−01 ,3.2138E−02 ,4.4453E−02 ,5.8670E−02, \
1 .9543E−02 ,1.2629E−02 ,1.4327E−02 ,4.9386E−02 ,1.7141E−01 ,2.5049E−02, \
2 .2334E−02 ,2.3275E−02 ,2.2061E−02 ,2.1456E−02 ,1.8814E−02 ,2.8588E−01, \
6 .8256E−02 ,4.1742E−01 ,2.8453E−02 ,8.1022E−02 ,2.2104E−01 ,2.8168E−02, \
1 .9965E−02 ,2.8085E−01 ,1.9837E−02 ,1.5334E−01 ,1.2727E−01 ,1.3480E−01, \
7 .4641E−02 ,6.9378E−02 ,7.2695E−02 ,7.3726E−02 ,8.1520E−02 ,8.2439E−02, \
5 .3465E−02 ,2.0838E−01 ,2.9366E−02 ,5.3992E−02 ,9.3444E−02 ,2.1391E−01, \
2 .0961E−02 ,1.5249E−02 ,1.4141E−02 ,6.5334E−02 ,2.5875E−02 ,2.6075E−02, \
2 .3328E−02 ,2.4937E−02 ,2.2604E−02 ,2.2948E−02 ,1.8579E−02 ,2.4162E−02, \
1 .3458E−01 ,2.6354E−02 ,3.0055E−02 ,1.6474E−01 ,4.5233E−01 ,2.7646E−02, \
1 .9524E−02 ,2.1776E−02 ,1.9508E−02 ,1.5475E−02 ,1.8203E−01 ,1.6615E−02, \
1 .0004E−01 ,1.2543E−02 ,8.1603E−02 ,1.2857E−01 ,9.8754E−02 ,1.0479E−01, \
1 .3611E−01 ,3.8290E−01 ,3.0675E−02 ,1.0938E−01 ,2.2374E−01 ,3.7973E−01, \
1 .8634E−01 ,2.2721E−02 ,1.6333E−02 ,8.1092E−02 ,5.4050E−01 ,3.6511E−02, \
3 .1814E−02 ,3.5607E−02 ,3.4930E−02 ,3.2792E−02 ,2.2832E−02 ,3.1015E−02, \
1 .9934E−01 ,3.7280E−02 ,3.8343E−02 ,3.6435E−01 ,3.6882E−02 ,3.6966E−02, \
2 .2561E−02 ,2.9901E−02 ,2.4189E−02 ,2.1497E−02 ,3.1427E−01 ,2.2185E−02, \
1 .8215E−01 ,1.7354E−01 ,1.6131E−01 ,1.5199E−01 ,1.6097E−01 ,1.4829E−01, \
1 .5972E−01 ,6.5145E−01 ,3.9727E−02 ,2.3074E−01 ,4.1908E−01 ,7.4941E−01, \
2 .1742E−01 ,1.7069E−02 ,1.2541E−01 ,5.1072E−02 ,2.6733E−01 ,2.9719E−02, \
2 .5637E−02 ,2.7705E−02 ,2.6920E−02 ,2.5925E−02 ,2.0253E−02 ,3.6806E−01, \
1 .1330E−01 ,5.5374E−01 ,3.3152E−02 ,1.5440E−01 ,3.6483E−01 ,3.1955E−02, \
2 .0498E−02 ,4.0305E−01 ,2.1683E−02 ,1.7440E−01 ,1.3009E−01 ,1.5556E−01, \
8 .8383E−02 ,8.3052E−02 ,7.9830E−02 ,7.6171E−02 ,8.0218E−02 ,8.2079E−02, \
8 .1519E−02 ,3.0637E−01 ,3.4848E−02 ,9.8867E−02 ,1.7831E−01 ,3.6433E−01, \
1 .5773E−01 ,1.6920E−02 ,8.3447E−03 ,6.8107E−02 ,2.0740E−02 ,2.3743E−02, \
2 .1822E−02 ,2.1916E−02 ,2.1958E−02 ,2.1430E−02 ,1.2593E−02 ,1.7340E−02, \
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1 .7405E−01 ,2.2041E−02 ,2.4548E−02 ,2.1083E−02 ,2.1743E−02 ,2.2807E−02, \
1 .2081E−02 ,1.6133E−02 ,1.3770E−02 ,1.2198E−02 ,1.0950E−02 ,1.3189E−02, \
9 .6414E−03 ,9.6850E−03 ,1.1449E−01 ,1.0486E−02 ,1.0034E−02 ,9.2028E−02, \
1 .5372E−01 ,2.1968E−02 ,2.4700E−02 ,2.2087E−01 ,2.1215E−02 ,2.1746E−02, \
6 .6334E−04 ,7.0389E−04 ,5.3545E−04 ,6.0079E−04 ,7.9760E−04 ,9.0485E−04, \
9 .6238E−04 ,1.1627E−03 ,1.8455E−03 ,1.5777E−03 ,6.8923E−04 ,6.0955E−04, \
8 .1154E−04 ,4.2533E−04 ,4.6015E−04 ,5.9648E−04 ,4.3633E−04 ,3.0980E−04, \
1 .2271E−03 ,4.1450E−04 ,5.0931E−04 ,3.5187E−04 ,3.2988E−04 ,4.5928E−04, \
2 .8095E−04 ,2.8111E−04 ,2.8095E−04 ,3.5378E−04 ,3.1697E−04 ,2.9067E−04, \
9 .8604E−04 ,5.1888E−04 ,4.2485E−04 ,5.1633E−04 ,4.0820E−04 ,3.0422E−04, \
2 .4263E−04 ,1.0798E−03 ,1.4240E−03 ,1.4550E−03 ,6.2748E−04 ,7.4230E−04, \
1 .0728E−03 ,8.8716E−04 ,1.0672E−03 ,9.2652E−04 ,1.6872E−03 ,1.4390E−03, \
1 .2271E−03 ,5.0661E−04 ,4.8645E−04 ,6.4493E−04 ,5.6605E−04 ,4.3601E−04, \
3 .1513E−03 ,1.2354E−03 ,1.0037E−03 ,6.6342E−04 ,6.3465E−04 ,7.2573E−04, \
5 .5505E−04 ,5.8565E−04 ,5.4557E−04 ,6.0557E−04 ,5.9354E−04 ,5.5712E−04, \
1 .2801E−03 ,5.9250E−04 ,4.2828E−04 ,7.4581E−04 ,5.5425E−04 ,4.6916E−04, \
2 .8924E−04 ,5.1202E−04 ,2.8780E−03 ,2.9163E−03 ,1.0235E−03 ,6.8812E−04, \
1 .2595E−03 ,1.0022E−03 ,9.4931E−04 ,7.6015E−04 ,3.2948E−03 ,2.8374E−03, \
1 .7932E−03 ,8.2628E−04 ,6.3370E−04 ,1.0083E−03 ,7.6357E−04 ,6.2533E−04, \
6 .8493E−03 ,2.3569E−03 ,1.9961E−03 ,1.3048E−03 ,1.2944E−03 ,1.4024E−03, \
1 .0176E−03 ,1.0575E−03 ,1.0487E−03 ,1.0932E−03 ,1.0628E−03 ,9.7799E−04, \
1 .8717E−03 ,9.3959E−04 ,6.0645E−04 ,1.3730E−03 ,9.4748E−04 ,7.4772E−04, \
7 .5178E−04 ,6.6931E−04 ,1.5913E−03 ,4.4780E−04 ,1.0291E−03 ,8.7505E−04, \
8 .4668E−04 ,9.4771E−04 ,1.0289E−03 ,8.8062E−04 ,5.5577E−04 ,7.3385E−04, \
8 .0039E−04 ,9.2923E−04 ,8.5983E−04 ,3.5607E−03 ,4.2070E−03 ,7.7449E−04, \
4 .2390E−04 ,1.4873E−03 ,8.0517E−04 ,7.3306E−04 ,3.5569E−03 ,7.9584E−04, \
2 .3949E−03 ,2.5601E−03 ,2.0745E−03 ,2.1577E−03 ,2.6694E−03 ,1.7471E−03, \
8 .7847E−04 ,9.3258E−04 ,8.9768E−04 ,3.7367E−03 ,3.5090E−03 ,4.0465E−03, \
8 .0198E−04 ,5.3322E−04 ,1.1111E−03 ,1.8056E−03 ,9.1752E−04 ,7.9106E−04, \
6 .2581E−04 ,3.6274E−03 ,9.4636E−04 ,9.0357E−04 ,1.8804E−03 ,2.8996E−03, \
2 .4374E−03 ,7.8565E−04 ,7.7043E−04 ,2.6191E−03 ,2.5502E−03 ,3.1984E−03, \
1 .3665E−03 ,9.3465E−04 ,3.9023E−03 ,2.9212E−03 ,2.5099E−03 ,3.2570E−03, \
2 .2305E−03 ,2.3894E−03 ,2.2476E−03 ,2.4350E−03 ,2.5264E−03 ,2.0922E−03, \
2 .7968E−03 ,4.4841E−03 ,7.6748E−04 ,2.4057E−03 ,2.2320E−03 ,2.3751E−03, \
5 .6294E−04 ,3.2685E−04 ,8.7345E−04 ,1.9426E−03 ,3.9099E−03 ,8.1545E−04, \
5 .4167E−04 ,1.7259E−03 ,2.2966E−03 ,5.5075E−04 ,1.2291E−03 ,1.7259E−03, \
1 .4697E−03 ,3.5815E−03 ,6.7577E−04 ,2.3617E−03 ,2.5177E−03 ,2.8398E−03, \
1 .1183E−03 ,6.1226E−04 ,2.6402E−03 ,2.4008E−03 ,2.2231E−03 ,2.4927E−03, \
2 .2031E−03 ,2.3292E−03 ,2.3979E−03 ,2.6581E−03 ,2.4612E−03 ,2.5616E−03, \
1 .5060E−03 ,2.7802E−03 ,6.7154E−04 ,1.8588E−03 ,2.0822E−03 ,2.2212E−03 \

]
return c o e f

# end of s e t c o e f f s

# s e t pa i rw i se Gaussian decay parameters
def s e t a l p h a ( ) :

alpha = [
−6.1500E−02 ,−1.6700E−02 ,−2.5900E−02 ,−1.9300E−02 ,−1.6100E−02 ,−1.5500E−02, \
−2.5900E−02 ,−2.6100E−02 ,−2.5000E−02 ,−3.8300E−02 ,−2.4000E−02 ,−2.2400E−02, \
−2.9800E−02 ,−3.2500E−02 ,−3.9400E−02 ,−3.5400E−02 ,−3.9000E−02 ,−4.3600E−02, \
−1.9000E−02 ,−3.0000E−02 ,−2.7800E−02 ,−3.0000E−02 ,−3.1700E−02 ,−3.5300E−02, \
−3.3200E−02 ,−3.4800E−02 ,−3.6200E−02 ,−3.7900E−02 ,−3.7800E−02 ,−3.9700E−02, \
−3.1400E−02 ,−3.5100E−02 ,−3.8100E−02 ,−3.6500E−02 ,−3.9500E−02 ,−4.1100E−02, \
−1.0050E−01 ,−1.7300E−01 ,−2.3100E−02 ,−2.5200E−02 ,−6.5300E−02 ,−7.4300E−02, \
−6.0100E−02 ,−8.1800E−02 ,−9.2600E−02 ,−9.6800E−02 ,−2.1300E−02 ,−3.1100E−02, \
−5.9200E−02 ,−7.1100E−02 ,−7.6500E−02 ,−7.0300E−02 ,−7.9200E−02 ,−8.3700E−02, \
−9.1000E−03 ,−3.5400E−02 ,−4.0700E−02 ,−4.8900E−02 ,−4.7200E−02 ,−4.3700E−02, \
−5.2900E−02 ,−5.0800E−02 ,−5.0900E−02 ,−5.1000E−02 ,−5.0200E−02 ,−5.4700E−02, \
−5.9400E−02 ,−6.5300E−02 ,−7.2500E−02 ,−6.2000E−02 ,−6.7900E−02 ,−7.3500E−02, \
−2.8100E−02 ,−3.9300E−02 ,−9.3000E−03 ,−1.0700E−02 ,−8.0000E−04 ,−2.1700E−02, \
−2.2100E−02 ,−2.2000E−02 ,−2.5300E−02 ,−2.5500E−02 ,−8.9000E−03 ,−1.0400E−02, \
−1.0900E−02 ,−8.1000E−03 ,−9.0000E−04 ,−1.6400E−02 ,−1.8000E−02 ,−1.8800E−02, \
−1.0400E−02 ,−1.0200E−02 ,−1.0000E−02 ,−1.0400E−02 ,−1.0400E−02 ,−1.1100E−02, \
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−1.0600E−02 ,−1.1200E−02 ,−1.1600E−02 ,−1.2500E−02 ,−1.1700E−02 ,−1.3200E−02, \
−8.4000E−03 ,−1.1900E−02 ,−7.1000E−03 ,−1.4600E−02 ,−1.6000E−02 ,−1.7200E−02, \
−4.2700E−02 ,−2.2100E−02 ,−2.0500E−02 ,−1.3700E−02 ,−2.4000E−03 ,−1.9700E−02, \
−1.5200E−02 ,−4.8000E−03 ,−3.4500E−02 ,−3.6900E−02 ,−1.4700E−02 ,−1.2700E−02, \
−6.0000E−03 ,−3.3000E−03 ,−8.0000E−04 ,−1.6700E−02 ,−1.5000E−02 ,−9.5000E−03, \
−1.4400E−02 ,−2.5400E−02 ,−1.7700E−02 ,−1.8000E−02 ,−1.7700E−02 ,−1.6900E−02, \
−1.7400E−02 ,−1.7000E−02 ,−1.6800E−02 ,−1.5800E−02 ,−1.6700E−02 ,−1.7100E−02, \
−7.2000E−03 ,−4.5000E−03 ,−2.9000E−03 ,−1.6600E−02 ,−1.7000E−02 ,−1.4900E−02, \
−2.2800E−02 ,−4.3300E−02 ,−2.1600E−02 ,−1.8500E−02 ,−2.7200E−02 ,−3.4300E−02, \
−3.8800E−02 ,−2.4000E−02 ,−7.5000E−03 ,−8.3000E−03 ,−1.5200E−02 ,−2.0800E−02, \
−2.6800E−02 ,−3.2300E−02 ,−3.5500E−02 ,−3.8300E−02 ,−4.0400E−02 ,−4.0800E−02, \
−5.7000E−03 ,−2.3100E−02 ,−2.6400E−02 ,−3.3300E−02 ,−3.4000E−02 ,−3.3300E−02, \
−3.6900E−02 ,−3.6600E−02 ,−3.6900E−02 ,−3.6300E−02 ,−3.6600E−02 ,−3.7200E−02, \
−2.7200E−02 ,−3.1600E−02 ,−3.4100E−02 ,−3.6100E−02 ,−3.8100E−02 ,−3.8400E−02, \
−1.5500E−02 ,−4.1900E−02 ,−1.5500E−02 ,−1.3100E−02 ,−2.5100E−02 ,−4.9800E−02, \
−6.4200E−02 ,−2.6400E−02 ,−2.9300E−02 ,−4.7800E−02 ,−1.1300E−02 ,−1.6800E−02, \
−3.4000E−02 ,−4.4000E−02 ,−5.5200E−02 ,−3.5300E−02 ,−4.9100E−02 ,−5.9900E−02, \
−2.4000E−03 ,−2.0800E−02 ,−2.3700E−02 ,−3.2400E−02 ,−3.3700E−02 ,−3.1200E−02, \
−3.8200E−02 ,−3.9800E−02 ,−4.0600E−02 ,−4.0100E−02 ,−4.0000E−02 ,−4.4600E−02, \
−3.5000E−02 ,−4.5600E−02 ,−5.3100E−02 ,−3.3800E−02 ,−4.3600E−02 ,−5.0500E−02, \
−5.8200E−02 ,−7.7100E−02 ,−1.0800E−02 ,−1.7800E−02 ,−4.9900E−02 ,−4.8300E−02, \
−7.7600E−02 ,−6.3800E−02 ,−6.7500E−02 ,−6.1200E−02 ,−7.6000E−03 ,−1.7700E−02, \
−3.0100E−02 ,−3.5000E−02 ,−5.4600E−02 ,−3.6100E−02 ,−3.8300E−02 ,−4.5800E−02, \
−2.0500E−02 ,−1.7900E−02 ,−1.5800E−02 ,−2.5400E−02 ,−2.7200E−02 ,−2.4300E−02, \
−3.2400E−02 ,−3.3900E−02 ,−3.5000E−02 ,−3.2100E−02 ,−3.3800E−02 ,−3.7900E−02, \
−2.8700E−02 ,−3.3200E−02 ,−4.6800E−02 ,−2.9200E−02 ,−3.1700E−02 ,−3.5900E−02, \
−5.1300E−02 ,−7.9600E−02 ,−1.6100E−02 ,−1.1600E−02 ,−2.4800E−02 ,−8.6000E−03, \
−9.4000E−03 ,−1.8800E−02 ,−1.7800E−02 ,−1.6300E−02 ,−1.5900E−02 ,−1.8000E−02, \
−2.2000E−02 ,−2.1000E−02 ,−1.0100E−02 ,−3.3800E−02 ,−3.0700E−02 ,−2.6900E−02, \
−1.1600E−02 ,−2.2000E−02 ,−1.4100E−02 ,−1.2100E−02 ,−1.1900E−02 ,−1.3400E−02, \
−1.0400E−02 ,−9.6000E−03 ,−9.0000E−03 ,−1.4000E−02 ,−9.6000E−03 ,−1.2300E−02, \
−2.0900E−02 ,−1.9800E−02 ,−1.1500E−02 ,−2.9300E−02 ,−2.6600E−02 ,−2.6200E−02, \
−1.3500E−02 ,−8.2200E−02 ,−1.5100E−02 ,−1.2400E−02 ,−3.9500E−02 ,−2.4600E−02, \
−1.3500E−02 ,−2.0300E−02 ,−1.5000E−02 ,−3.2100E−02 ,−1.1300E−02 ,−1.3400E−02, \
−2.4400E−02 ,−2.7800E−02 ,−2.1100E−02 ,−4.3800E−02 ,−4.1400E−02 ,−3.3500E−02, \
−7.8000E−03 ,−1.5900E−02 ,−9.5000E−03 ,−7.2000E−03 ,−7.3000E−03 ,−1.2000E−02, \
−5.7000E−03 ,−5.1000E−03 ,−7.1000E−03 ,−1.6800E−02 ,−1.1100E−02 ,−1.5200E−02, \
−2.5900E−02 ,−2.6100E−02 ,−2.0500E−02 ,−3.5900E−02 ,−3.4300E−02 ,−3.1100E−02, \
−6.0300E−02 ,−7.1600E−02 ,−1.1800E−02 ,−6.4000E−03 ,−3.0300E−02 ,−3.8100E−02, \
−2.2300E−02 ,−3.5600E−02 ,−1.4200E−02 ,−2.8600E−02 ,−7.6000E−03 ,−7.5000E−03, \
−2.1600E−02 ,−2.2800E−02 ,−2.0800E−02 ,−3.8200E−02 ,−3.9500E−02 ,−3.0700E−02, \
−3.1000E−03 ,−1.0500E−02 ,−5.3000E−03 ,−3.4000E−03 ,−4.0000E−03 ,−8.0000E−03, \
−2.2000E−03 ,−2.3000E−03 ,−4.0000E−03 ,−1.2700E−02 ,−7.5000E−03 ,−1.1000E−02, \
−2.3400E−02 ,−1.8200E−02 ,−1.7000E−02 ,−2.8800E−02 ,−2.6700E−02 ,−2.7500E−02, \
−2.3900E−02 ,−2.8000E−02 ,−1.1600E−02 ,−9.6000E−03 ,−1.8900E−02 ,−2.1800E−02, \
−2.2700E−02 ,−2.1800E−02 ,−2.3400E−02 ,−2.4200E−02 ,−1.0400E−02 ,−1.1100E−02, \
−1.6700E−02 ,−1.8600E−02 ,−1.0000E−03 ,−1.5900E−02 ,−1.7600E−02 ,−1.9300E−02, \
−1.0300E−02 ,−1.1400E−02 ,−1.1100E−02 ,−1.0900E−02 ,−1.0500E−02 ,−1.1000E−02, \
−1.0200E−02 ,−1.0200E−02 ,−1.0400E−02 ,−1.0900E−02 ,−1.0600E−02 ,−1.1300E−02, \
−1.6600E−02 ,−1.8000E−02 ,−2.0000E−03 ,−1.4200E−02 ,−1.5600E−02 ,−1.7100E−02, \
−3.5700E−02 ,−3.3400E−02 ,−9.7000E−03 ,−3.4000E−03 ,−2.6800E−02 ,−2.7200E−02, \
−2.6400E−02 ,−2.9300E−02 ,−3.0100E−02 ,−2.9600E−02 ,−5.0000E−03 ,−1.4000E−03, \
−2.2900E−02 ,−2.6200E−02 ,−2.6500E−02 ,−2.1700E−02 ,−2.4000E−02 ,−2.6100E−02, \
−8.4000E−03 ,−1.2200E−02 ,−8.5000E−03 ,−1.4100E−02 ,−1.6400E−02 ,−1.2200E−02, \
−2.1800E−02 ,−2.3300E−02 ,−2.4100E−02 ,−2.0700E−02 ,−2.2000E−02 ,−2.2400E−02, \
−2.2500E−02 ,−2.5500E−02 ,−2.6400E−02 ,−1.9600E−02 ,−2.1200E−02 ,−2.3200E−02, \
−3.3400E−02 ,−1.7900E−02 ,−1.6900E−02 ,−1.4000E−02 ,−2.5700E−02 ,−3.1900E−02, \
−3.6200E−02 ,−2.5600E−02 ,−2.7300E−02 ,−3.0600E−02 ,−1.3000E−02 ,−1.4500E−02, \
−1.7200E−02 ,−3.1300E−02 ,−3.7400E−02 ,−2.4900E−02 ,−3.1500E−02 ,−3.6000E−02, \
−7.9000E−03 ,−1.8000E−02 ,−1.7200E−02 ,−2.5300E−02 ,−2.6700E−02 ,−2.2200E−02, \
−3.0600E−02 ,−3.1300E−02 ,−3.1800E−02 ,−2.9800E−02 ,−3.0300E−02 ,−3.3200E−02, \
−1.4900E−02 ,−2.8500E−02 ,−3.5900E−02 ,−2.1900E−02 ,−2.9000E−02 ,−3.2500E−02, \
−5.9200E−02 ,−4.4500E−02 ,−1.1100E−02 ,−1.3300E−02 ,−3.3900E−02 ,−4.4800E−02, \
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−4.6900E−02 ,−3.2100E−02 ,−3.8900E−02 ,−4.4000E−02 ,−1.0900E−02 ,−1.4600E−02, \
−2.0900E−02 ,−3.8800E−02 ,−4.7400E−02 ,−3.0800E−02 ,−4.0800E−02 ,−4.7300E−02, \
−4.3000E−03 ,−1.3200E−02 ,−1.7400E−02 ,−2.5100E−02 ,−2.6400E−02 ,−2.4400E−02, \
−3.0000E−02 ,−3.0900E−02 ,−3.2100E−02 ,−3.1100E−02 ,−3.1400E−02 ,−3.5600E−02, \
−2.1000E−02 ,−3.4900E−02 ,−4.5600E−02 ,−2.4600E−02 ,−3.2700E−02 ,−3.9600E−02, \
−5.6800E−02 ,−7.0000E−02 ,−1.4500E−02 ,−1.9300E−02 ,−3.1100E−02 ,−6.0600E−02, \
−6.1900E−02 ,−3.7800E−02 ,−4.0200E−02 ,−5.7000E−02 ,−1.1900E−02 ,−1.9300E−02, \
−2.8900E−02 ,−4.0500E−02 ,−5.8900E−02 ,−3.1800E−02 ,−4.0500E−02 ,−5.5200E−02, \
−3.5000E−03 ,−2.1100E−02 ,−1.8600E−02 ,−2.3700E−02 ,−2.4700E−02 ,−2.4100E−02, \
−2.8000E−02 ,−2.9200E−02 ,−3.0100E−02 ,−2.9200E−02 ,−2.9600E−02 ,−3.3600E−02, \
−2.9900E−02 ,−3.5000E−02 ,−5.2600E−02 ,−3.0500E−02 ,−3.2600E−02 ,−3.9400E−02, \
−4.4200E−02 ,−1.2600E−02 ,−1.2800E−02 ,−4.1000E−03 ,−1.0000E−03 ,−3.2000E−03, \
−9.5000E−03 ,−9.0000E−03 ,−5.4000E−03 ,−2.2000E−03 ,−8.8000E−03 ,−5.3000E−03, \
−3.8000E−03 ,−2.3000E−03 ,−2.8400E−02 ,−8.8000E−03 ,−7.6000E−03 ,−5.0000E−03, \
−1.1400E−02 ,−2.0800E−02 ,−6.3000E−03 ,−1.0200E−02 ,−1.1100E−02 ,−8.0000E−03, \
−1.2400E−02 ,−1.1500E−02 ,−1.2100E−02 ,−9.7000E−03 ,−1.1000E−02 ,−1.0300E−02, \
−2.2000E−03 ,−1.8000E−03 ,−1.2000E−03 ,−8.4000E−03 ,−1.0100E−02 ,−8.1000E−03, \
−4.5500E−02 ,−6.0000E−04 ,−1.5400E−02 ,−5.5000E−03 ,−5.0000E−03 ,−1.0000E−03, \
−5.0000E−04 ,−1.0900E−02 ,−8.9000E−03 ,−6.4000E−03 ,−1.3300E−02 ,−1.2400E−02, \
−1.2700E−02 ,−4.3000E−03 ,−2.9100E−02 ,−1.4200E−02 ,−1.3100E−02 ,−9.6000E−03, \
−1.1400E−02 ,−2.5000E−02 ,−1.1600E−02 ,−1.3100E−02 ,−1.3500E−02 ,−1.2400E−02, \
−1.3600E−02 ,−1.2900E−02 ,−1.2400E−02 ,−1.0400E−02 ,−1.2200E−02 ,−9.3000E−03, \
−1.3100E−02 ,−6.8000E−03 ,−1.5000E−03 ,−1.6400E−02 ,−1.5500E−02 ,−1.4400E−02, \
−3.9800E−02 ,−4.9700E−02 ,−1.4600E−02 ,−6.3000E−03 ,−1.2800E−02 ,−5.8000E−03, \
−2.3000E−03 ,−1.8400E−02 ,−1.7800E−02 ,−1.3800E−02 ,−1.4000E−02 ,−1.4600E−02, \
−1.8300E−02 ,−1.2100E−02 ,−3.6000E−03 ,−1.8900E−02 ,−1.6200E−02 ,−1.2400E−02, \
−6.8000E−03 ,−2.1900E−02 ,−1.3900E−02 ,−1.4900E−02 ,−1.4900E−02 ,−1.4500E−02, \
−1.4600E−02 ,−1.3800E−02 ,−1.3400E−02 ,−1.1800E−02 ,−1.3200E−02 ,−1.1400E−02, \
−1.9200E−02 ,−1.5600E−02 ,−9.7000E−03 ,−2.1400E−02 ,−1.9700E−02 ,−1.7800E−02, \
−2.0500E−02 ,−1.9500E−02 ,−9.0000E−03 ,−1.1700E−02 ,−1.5800E−02 ,−1.7500E−02, \
−1.8100E−02 ,−1.8500E−02 ,−1.9900E−02 ,−2.0500E−02 ,−9.6000E−03 ,−1.2400E−02, \
−1.2800E−02 ,−1.4700E−02 ,−1.5800E−02 ,−1.4700E−02 ,−1.5700E−02 ,−1.6400E−02, \
−8.7000E−03 ,−1.0200E−02 ,−9.0000E−03 ,−9.3000E−03 ,−9.7000E−03 ,−1.0500E−02, \
−9.9000E−03 ,−1.0500E−02 ,−1.0900E−02 ,−1.1400E−02 ,−1.0700E−02 ,−1.1700E−02, \
−4.0000E−04 ,−1.4200E−02 ,−1.5400E−02 ,−1.4000E−02 ,−1.4800E−02 ,−1.5600E−02, \
−2.2500E−02 ,−2.1300E−02 ,−1.0000E−02 ,−1.2300E−02 ,−2.7000E−03 ,−2.2100E−02, \
−2.2600E−02 ,−2.3500E−02 ,−2.4300E−02 ,−2.4400E−02 ,−1.0500E−02 ,−1.3800E−02, \
−1.9400E−02 ,−2.0400E−02 ,−1.7000E−03 ,−1.9000E−02 ,−2.0600E−02 ,−2.2000E−02, \
−1.0400E−02 ,−1.1500E−02 ,−1.0600E−02 ,−1.1100E−02 ,−1.0900E−02 ,−1.1800E−02, \
−1.1000E−02 ,−1.1500E−02 ,−1.2000E−02 ,−1.3000E−02 ,−1.2100E−02 ,−1.3900E−02, \
−1.9300E−02 ,−2.0300E−02 ,−1.9000E−03 ,−1.7500E−02 ,−1.8700E−02 ,−2.0000E−02, \
−4.4200E−02 ,−3.4200E−02 ,−8.9000E−03 ,−2.1200E−02 ,−4.8400E−02 ,−5.2100E−02, \
−3.7600E−02 ,−6.2300E−02 ,−5.8600E−02 ,−4.7600E−02 ,−6.6000E−03 ,−2.8300E−02, \
−3.8200E−02 ,−4.8300E−02 ,−5.1400E−02 ,−5.7400E−02 ,−6.2200E−02 ,−6.3000E−02, \
−1.9400E−02 ,−2.4500E−02 ,−1.3900E−02 ,−2.5900E−02 ,−2.7500E−02 ,−2.8100E−02, \
−3.2900E−02 ,−3.5300E−02 ,−3.7600E−02 ,−3.9600E−02 ,−3.7600E−02 ,−4.4100E−02, \
−3.5800E−02 ,−4.5800E−02 ,−5.1700E−02 ,−5.0300E−02 ,−5.6400E−02 ,−5.9500E−02, \
−6.4200E−02 ,−4.3900E−02 ,−2.0000E−03 ,−1.9200E−02 ,−3.9000E−02 ,−5.3200E−02, \
−3.7400E−02 ,−5.6800E−02 ,−5.9400E−02 ,−5.0100E−02 ,−2.2100E−02 ,−1.9800E−02, \
−3.4700E−02 ,−4.4100E−02 ,−4.9700E−02 ,−4.7200E−02 ,−5.3300E−02 ,−5.6300E−02, \
−2.2200E−02 ,−1.6100E−02 ,−5.0000E−03 ,−1.8200E−02 ,−2.0100E−02 ,−2.2400E−02, \
−2.6700E−02 ,−2.9500E−02 ,−3.2200E−02 ,−3.4500E−02 ,−3.3700E−02 ,−3.9700E−02, \
−3.3500E−02 ,−3.9900E−02 ,−4.7900E−02 ,−4.2800E−02 ,−4.8200E−02 ,−5.2900E−02, \
−2.7100E−02 ,−7.2000E−03 ,−8.0000E−04 ,−1.4000E−02 ,−1.8000E−02 ,−2.0300E−02, \
−1.7400E−02 ,−1.9600E−02 ,−1.7700E−02 ,−1.5400E−02 ,−2.4300E−02 ,−5.6000E−03, \
−2.2700E−02 ,−1.7800E−02 ,−1.9100E−02 ,−2.5600E−02 ,−2.3600E−02 ,−2.1000E−02, \
−2.3700E−02 ,−7.3000E−03 ,−2.5200E−02 ,−1.2300E−02 ,−1.4500E−02 ,−1.5000E−02, \
−2.0200E−02 ,−2.2100E−02 ,−2.4000E−02 ,−2.5000E−02 ,−2.3700E−02 ,−2.8600E−02, \
−2.4500E−02 ,−2.0200E−02 ,−1.8900E−02 ,−2.7300E−02 ,−2.5600E−02 ,−2.3500E−02, \
−4.6700E−02 ,−7.9900E−02 ,−1.0400E−02 ,−1.8800E−02 ,−2.4700E−02 ,−2.7900E−02, \
−3.8900E−02 ,−2.4100E−02 ,−2.4800E−02 ,−2.8000E−02 ,−3.0000E−04 ,−1.1900E−02, \
−2.9400E−02 ,−2.3900E−02 ,−2.4700E−02 ,−3.1200E−02 ,−2.8100E−02 ,−2.5000E−02, \
−2.2700E−02 ,−1.3500E−02 ,−1.0400E−02 ,−2.0100E−02 ,−2.1700E−02 ,−2.1900E−02, \
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−2.4600E−02 ,−2.5800E−02 ,−2.6600E−02 ,−2.7300E−02 ,−2.6300E−02 ,−2.8500E−02, \
−3.1500E−02 ,−2.6500E−02 ,−2.3600E−02 ,−3.2300E−02 ,−3.1000E−02 ,−2.8400E−02, \
−1.0700E−02 ,−5.4300E−02 ,−2.3500E−02 ,−1.6000E−03 ,−7.8000E−03 ,−1.5000E−03, \
−4.6200E−02 ,−9.1000E−03 ,−4.7000E−03 ,−4.6000E−02 ,−2.3800E−02 ,−2.7100E−02, \
−1.3900E−02 ,−7.0000E−03 ,−2.6000E−03 ,−1.4000E−02 ,−1.2300E−02 ,−9.2000E−03, \
−2.1700E−02 ,−2.5700E−02 ,−2.4900E−02 ,−2.6000E−02 ,−2.0000E−03 ,−2.7000E−02, \
−9.7000E−03 ,−1.0900E−02 ,−1.3800E−02 ,−1.3800E−02 ,−1.2100E−02 ,−1.8400E−02, \
−1.5700E−02 ,−1.0300E−02 ,−6.5000E−03 ,−1.5800E−02 ,−1.3900E−02 ,−1.2300E−02, \
−5.3400E−02 ,−7.1400E−02 ,−2.8300E−02 ,−1.3900E−02 ,−1.0400E−02 ,−4.3500E−02, \
−4.9800E−02 ,−4.0200E−02 ,−4.3700E−02 ,−4.7800E−02 ,−2.7400E−02 ,−3.3000E−03, \
−2.1300E−02 ,−4.5000E−03 ,−4.2900E−02 ,−2.0400E−02 ,−1.1000E−02 ,−4.0200E−02, \
−2.6100E−02 ,−5.0000E−03 ,−3.0200E−02 ,−5.9000E−03 ,−6.5000E−03 ,−6.6000E−03, \
−1.1100E−02 ,−1.2200E−02 ,−1.2200E−02 ,−1.3300E−02 ,−1.2200E−02 ,−1.3800E−02, \
−2.4000E−02 ,−1.1800E−02 ,−3.9700E−02 ,−2.4400E−02 ,−1.9700E−02 ,−1.2200E−02, \
−5.2200E−02 ,−7.1500E−02 ,−2.8200E−02 ,−9.9000E−03 ,−3.2900E−02 ,−3.9600E−02, \
−4.6100E−02 ,−3.8000E−02 ,−3.9000E−02 ,−4.5400E−02 ,−2.6900E−02 ,−2.8400E−02, \
−1.3900E−02 ,−3.3200E−02 ,−4.1300E−02 ,−1.3000E−02 ,−1.7000E−03 ,−3.7400E−02, \
−2.5700E−02 ,−2.6900E−02 ,−2.9900E−02 ,−2.9800E−02 ,−1.5000E−03 ,−3.0200E−02, \
−6.8000E−03 ,−2.8300E−02 ,−1.0200E−02 ,−4.5000E−03 ,−8.6000E−03 ,−9.8000E−03, \
−1.2500E−02 ,−5.3000E−03 ,−3.8100E−02 ,−1.7200E−02 ,−1.0000E−02 ,−5.3000E−03, \
−1.6200E−02 ,−7.8100E−02 ,−2.9400E−02 ,−1.0300E−02 ,−7.0000E−04 ,−4.1200E−02, \
−4.8300E−02 ,−4.0400E−02 ,−4.5200E−02 ,−4.8900E−02 ,−2.8200E−02 ,−2.9600E−02, \
−1.3900E−02 ,−3.6400E−02 ,−4.1000E−02 ,−7.6000E−03 ,−3.6200E−02 ,−3.9000E−02, \
−2.6300E−02 ,−3.0000E−02 ,−3.1200E−02 ,−3.1600E−02 ,−2.0000E−04 ,−3.1700E−02, \
−4.1000E−03 ,−4.7000E−03 ,−5.5000E−03 ,−6.0000E−03 ,−5.3000E−03 ,−7.1000E−03, \
−1.6800E−02 ,−2.7000E−03 ,−3.9000E−02 ,−1.3400E−02 ,−7.3000E−03 ,−4.0000E−04, \
−7.3000E−03 ,−7.7200E−02 ,−4.2000E−03 ,−1.4800E−02 ,−8.0000E−03 ,−4.1900E−02, \
−4.9100E−02 ,−3.8800E−02 ,−4.3300E−02 ,−4.8100E−02 ,−2.6500E−02 ,−1.9000E−03, \
−1.9500E−02 ,−2.9000E−03 ,−4.1300E−02 ,−1.5700E−02 ,−6.3000E−03 ,−3.9000E−02, \
−2.4500E−02 ,−3.8000E−03 ,−3.0000E−02 ,−7.2000E−03 ,−8.6000E−03 ,−7.8000E−03, \
−1.1600E−02 ,−1.2400E−02 ,−1.3000E−02 ,−1.3400E−02 ,−1.2800E−02 ,−1.3800E−02, \
−2.3200E−02 ,−1.0100E−02 ,−3.8500E−02 ,−2.0900E−02 ,−1.5100E−02 ,−7.6000E−03, \
−6.4000E−03 ,−8.4600E−02 ,−2.9900E−02 ,−1.3000E−03 ,−3.7900E−02 ,−4.5900E−02, \
−5.1500E−02 ,−4.4000E−02 ,−4.9200E−02 ,−5.4300E−02 ,−2.9600E−02 ,−3.1800E−02, \
−6.4000E−03 ,−3.9900E−02 ,−4.5500E−02 ,−3.6000E−02 ,−3.9300E−02 ,−4.3500E−02, \
−2.7500E−02 ,−3.1600E−02 ,−3.1300E−02 ,−3.2400E−02 ,−3.2200E−02 ,−3.2800E−02, \
−3.2800E−02 ,−3.3300E−02 ,−1.1000E−03 ,−3.4500E−02 ,−3.3900E−02 ,−5.0000E−03, \
−7.9000E−03 ,−3.7900E−02 ,−4.2900E−02 ,−4.6000E−03 ,−3.6300E−02 ,−3.9000E−02, \
−1.4800E−02 ,−3.2700E−02 ,−1.7500E−02 ,−1.5600E−02 ,−2.4200E−02 ,−2.6800E−02, \
−2.6000E−02 ,−2.0300E−02 ,−1.3100E−02 ,−1.6300E−02 ,−1.3400E−02 ,−1.5600E−02, \
−1.9700E−02 ,−3.0200E−02 ,−3.2100E−02 ,−2.4800E−02 ,−2.9900E−02 ,−3.3500E−02, \
−6.9000E−03 ,−1.9600E−02 ,−1.9900E−02 ,−2.5400E−02 ,−2.6500E−02 ,−2.3600E−02, \
−2.9000E−02 ,−2.9600E−02 ,−2.9900E−02 ,−2.8400E−02 ,−2.9200E−02 ,−3.1200E−02, \
−1.7800E−02 ,−2.7600E−02 ,−3.1900E−02 ,−2.3900E−02 ,−2.7400E−02 ,−3.1500E−02, \
−4.6300E−02 ,−1.8700E−02 ,−1.4500E−02 ,−1.4800E−02 ,−3.2400E−02 ,−3.3700E−02, \
−3.0800E−02 ,−3.2600E−02 ,−3.0200E−02 ,−3.0300E−02 ,−1.1700E−02 ,−1.5100E−02, \
−2.2600E−02 ,−3.4700E−02 ,−3.6300E−02 ,−3.2900E−02 ,−3.6100E−02 ,−3.9400E−02, \
−4.3000E−03 ,−1.7000E−02 ,−2.0400E−02 ,−2.7000E−02 ,−2.7900E−02 ,−2.6700E−02, \
−3.0500E−02 ,−3.0600E−02 ,−3.1800E−02 ,−3.1300E−02 ,−3.1000E−02 ,−3.3200E−02, \
−2.2100E−02 ,−3.3000E−02 ,−3.7300E−02 ,−2.8700E−02 ,−3.3700E−02 ,−3.6700E−02, \
−5.9000E−02 ,−3.7900E−02 ,−1.2200E−02 ,−1.3500E−02 ,−3.6700E−02 ,−4.0900E−02, \
−3.4100E−02 ,−4.3600E−02 ,−4.3800E−02 ,−4.4700E−02 ,−1.0300E−02 ,−1.4400E−02, \
−2.7100E−02 ,−3.9100E−02 ,−4.1500E−02 ,−3.7300E−02 ,−4.3900E−02 ,−4.7900E−02, \
−2.2000E−03 ,−1.7200E−02 ,−1.9500E−02 ,−2.6700E−02 ,−2.7300E−02 ,−2.6500E−02, \
−3.1300E−02 ,−3.1700E−02 ,−3.2500E−02 ,−3.2700E−02 ,−3.2300E−02 ,−3.5600E−02, \
−2.6600E−02 ,−3.7700E−02 ,−4.3200E−02 ,−3.0500E−02 ,−3.7600E−02 ,−4.2600E−02, \
−3.6300E−02 ,−4.2600E−02 ,−2.2000E−03 ,−1.5300E−02 ,−2.3800E−02 ,−2.7100E−02, \
−2.9600E−02 ,−2.7300E−02 ,−3.0800E−02 ,−3.0100E−02 ,−1.4100E−02 ,−1.6000E−02, \
−1.9400E−02 ,−2.2900E−02 ,−2.4800E−02 ,−1.7000E−03 ,0.0000E+00 ,−2.3300E−02, \
−1.1300E−02 ,−5.9000E−03 ,−1.7100E−02 ,−1.7900E−02 ,−5.0000E−04 ,−1.8600E−02, \
−3.7000E−03 ,−2.7000E−03 ,−4.1000E−03 ,−3.4000E−03 ,−2.3000E−03 ,−4.3000E−03, \
−1.9500E−02 ,−2.2000E−02 ,−2.3500E−02 ,−1.0000E−03 ,−1.6000E−03 ,−5.0000E−04, \
−3.6900E−02 ,−3.9800E−02 ,−7.1000E−03 ,−7.0000E−04 ,−2.4300E−02 ,−2.7400E−02, \
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−2.8400E−02 ,−4.0000E−04 ,−3.0900E−02 ,−3.0600E−02 ,−2.6000E−03 ,−1.2000E−03, \
−4.0000E−03 ,−2.3200E−02 ,−2.5000E−02 ,−7.1000E−03 ,−5.8000E−03 ,−2.4000E−03, \
−2.5000E−03 ,−1.2100E−02 ,−1.6000E−03 ,−4.3000E−03 ,−5.3000E−03 ,−3.4000E−03, \
−5.9000E−03 ,−5.4000E−03 ,−5.5000E−03 ,−4.4000E−03 ,−5.0000E−03 ,−5.1000E−03, \
−3.3000E−03 ,−5.0000E−04 ,−2.3800E−02 ,−8.1000E−03 ,−8.3000E−03 ,−6.6000E−03, \
−3.6700E−02 ,−3.8700E−02 ,−9.9000E−03 ,−1.8000E−03 ,−3.0000E−04 ,−2.8800E−02, \
−2.9400E−02 ,−8.7000E−03 ,−3.7000E−03 ,−3.0100E−02 ,−6.8000E−03 ,−6.6000E−03, \
−9.4000E−03 ,−1.6000E−03 ,−2.4900E−02 ,−9.9000E−03 ,−7.3000E−03 ,−3.6000E−03, \
−4.8000E−03 ,−1.7200E−02 ,−5.9000E−03 ,−6.8000E−03 ,−7.0000E−03 ,−6.6000E−03, \
−6.8000E−03 ,−6.3000E−03 ,−6.0000E−03 ,−4.8000E−03 ,−5.9000E−03 ,−4.6000E−03, \
−1.0300E−02 ,−4.5000E−03 ,−2.3800E−02 ,−1.2500E−02 ,−1.0700E−02 ,−8.7000E−03 \
]

return alpha
# end of s e t a l p h a

# se t pa i rw i se exponen t i a l decay parameters
def s e t b e t a ( ) :

beta = [
4 .1330E−01 ,−1.9980E−01 ,1.4000E−01 ,1.7100E−02 ,−1.0940E−01 ,−1.8640E−01, \
−1.1330E−01 ,−2.8500E−02 ,−2.9000E−02 ,1.5930E−01 ,1.4930E−01 ,9.5700E−02, \
1 .1800E−01 ,8.0400E−02 ,1.0320E−01 ,1.5450E−01 ,1.5190E−01 ,1.6850E−01, \
1 .3140E−01 ,2.3260E−01 ,1.5240E−01 ,1.4560E−01 ,1.6240E−01 ,2.0940E−01, \
1 .6420E−01 ,1.7640E−01 ,1.8730E−01 ,1.9630E−01 ,2.0830E−01 ,2.0050E−01, \
1 .4400E−01 ,1.3180E−01 ,1.2700E−01 ,2.1410E−01 ,2.1570E−01 ,2.0140E−01, \
3 .2180E−01 ,9.9440E−01 ,1.5900E−02 ,6.1000E−03 ,3.2030E−01 ,2.6780E−01, \
4 .0300E−02 ,3.5650E−01 ,3.7840E−01 ,3.4670E−01 ,9.8000E−03 ,1.2050E−01, \
3 .7880E−01 ,4.0890E−01 ,3.6950E−01 ,4.6010E−01 ,4.8580E−01 ,4.8560E−01, \
−1.4340E−01 ,1.9900E−01 ,2.3980E−01 ,3.0260E−01 ,2.6980E−01 ,2.2090E−01, \
3 .1990E−01 ,2.7700E−01 ,2.6610E−01 ,2.4980E−01 ,2.5680E−01 ,2.6680E−01, \
3 .9450E−01 ,3.8890E−01 ,3.9200E−01 ,4.3620E−01 ,4.6230E−01 ,4.7450E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.6470E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−8.9000E−02 ,−2.0200E−01 ,−3.9110E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−1.4550E−01 ,−1.0540E−01 ,−2.4370E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,−3.1570E−01 ,5.0700E−02 ,−7.3300E−02 ,−4.5590E−01 ,−1.8430E−01, \
−2.9510E−01 ,−3.9770E−01 ,0.0000E+00 ,0.0000E+00 ,−3.1700E−02 ,−9.4000E−02, \
−3.2120E−01 ,−4.4430E−01 ,−5.1240E−01 ,−1.1160E−01 ,−1.4850E−01 ,−2.7700E−01, \
4 .2100E−02 ,1.7880E−01 ,−4.3800E−02 ,−6.7800E−02 ,−7.8500E−02 ,−9.9200E−02, \
−9.4900E−02 ,−1.0590E−01 ,−1.1000E−01 ,−1.3160E−01 ,−1.1910E−01 ,−9.3200E−02, \
−2.8770E−01 ,−4.0430E−01 ,−4.6350E−01 ,−9.6700E−02 ,−9.3800E−02 ,−1.4490E−01, \
0 .0000E+00 ,0.0000E+00 ,1.4450E−01 ,8.5900E−02 ,8.2700E−02 ,9.1400E−02, \
7 .4000E−02 ,−5.9000E−03 ,−2.5840E−01 ,−3.0040E−01 ,5.9300E−02 ,1.4380E−01, \
1 .4450E−01 ,1.7010E−01 ,1.7050E−01 ,3.3470E−01 ,3.2440E−01 ,3.0240E−01, \
−9.8600E−02 ,1.9440E−01 ,2.1630E−01 ,3.1650E−01 ,3.2210E−01 ,3.0770E−01, \
3 .6410E−01 ,3.4870E−01 ,3.4650E−01 ,3.2540E−01 ,3.3760E−01 ,3.2430E−01, \
1 .6230E−01 ,1.7670E−01 ,1.8350E−01 ,3.4720E−01 ,3.5550E−01 ,3.3030E−01, \
−1.8740E−01 ,−5.4300E−02 ,−4.8800E−02 ,−9.8000E−02 ,−1.6600E−02 ,2.1730E−01, \
3 .0620E−01 ,−3.0500E−02 ,−3.8000E−02 ,1.2050E−01 ,−1.0120E−01 ,−2.0500E−02, \
1 .7700E−01 ,2.4080E−01 ,3.4440E−01 ,1.7930E−01 ,3.3020E−01 ,4.3790E−01, \
−2.5840E−01 ,5.5500E−02 ,6.5000E−02 ,1.8200E−01 ,2.0020E−01 ,1.5380E−01, \
2 .6090E−01 ,2.7630E−01 ,2.8130E−01 ,2.5630E−01 ,2.6940E−01 ,3.1030E−01, \
2 .0540E−01 ,2.9680E−01 ,3.5960E−01 ,1.9150E−01 ,3.0930E−01 ,3.7340E−01, \
2 .5100E−02 ,1.8900E−01 ,−2.0740E−01 ,−1.2360E−01 ,1.7390E−01 ,8.1500E−02, \
3 .5950E−01 ,2.2970E−01 ,2.1460E−01 ,1.3710E−01 ,−2.5920E−01 ,−1.0840E−01, \
2 .0900E−02 ,1.7700E−02 ,1.9540E−01 ,8.1300E−02 ,7.8200E−02 ,1.2750E−01, \
0 .0000E+00 ,−1.1200E−01 ,−1.5650E−01 ,−2.0200E−02 ,8.0000E−03 ,−4.2600E−02, \
8 .0600E−02 ,9.5900E−02 ,1.0490E−01 ,4.6800E−02 ,8.2600E−02 ,1.1410E−01, \
1 .6800E−02 ,1.5200E−02 ,1.3290E−01 ,2.2600E−02 ,2.9800E−02 ,5.5400E−02, \
0 .0000E+00 ,0.0000E+00 ,−9.6200E−02 ,−2.2450E−01 ,−1.1960E−01 ,−4.8810E−01, \
−5.6930E−01 ,−2.6140E−01 ,−3.0600E−01 ,−3.8480E−01 ,−7.9000E−02 ,−6.3000E−02, \
−9.0700E−02 ,−1.4970E−01 ,−3.8680E−01 ,5.7500E−02 ,−3.2100E−02 ,−1.1000E−01, \
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−1.2650E−01 ,6.7000E−03 ,−1.8020E−01 ,−2.4110E−01 ,−2.4310E−01 ,−2.1500E−01, \
−2.8470E−01 ,−3.0490E−01 ,−3.2320E−01 ,−2.4640E−01 ,−3.1140E−01 ,−2.9080E−01, \
−1.0440E−01 ,−1.3470E−01 ,−3.1500E−01 ,4.2300E−02 ,−3.1900E−02 ,−7.3000E−02, \
−3.6180E−01 ,0.0000E+00 ,−1.5610E−01 ,−2.4090E−01 ,3.1400E−02 ,−2.9630E−01, \
−5.5730E−01 ,−3.2080E−01 ,−3.8320E−01 ,−2.2110E−01 ,−2.0550E−01 ,−1.9800E−01, \
−1.2980E−01 ,−9.2700E−02 ,−2.4030E−01 ,1.5890E−01 ,7.2500E−02 ,−8.0300E−02, \
−2.3920E−01 ,−1.6890E−01 ,−3.0430E−01 ,−3.6720E−01 ,−3.6210E−01 ,−2.7350E−01, \
−3.9980E−01 ,−4.1730E−01 ,−3.8600E−01 ,−2.3850E−01 ,−3.1870E−01 ,−2.8160E−01, \
−9.7200E−02 ,−1.1770E−01 ,−2.0650E−01 ,1.0090E−01 ,3.8800E−02 ,−4.7700E−02, \
7 .8900E−02 ,0.0000E+00 ,−2.1170E−01 ,−3.2240E−01 ,−1.4870E−01 ,−9.9900E−02, \
−4.2300E−01 ,−1.5510E−01 ,−4.4570E−01 ,−3.1610E−01 ,−2.7740E−01 ,−3.1950E−01, \
−1.9010E−01 ,−2.2710E−01 ,−2.5930E−01 ,6.0700E−02 ,2.4600E−02 ,−1.5140E−01, \
−3.3240E−01 ,−2.8090E−01 ,−3.8780E−01 ,−4.3970E−01 ,−4.2270E−01 ,−3.5160E−01, \
−4.6230E−01 ,−4.6450E−01 ,−4.3950E−01 ,−3.0660E−01 ,−3.8190E−01 ,−3.5260E−01, \
−1.5050E−01 ,−2.8790E−01 ,−3.1270E−01 ,−3.4100E−02 ,−1.0200E−01 ,−1.2810E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−3.9990E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−3.6420E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−1.3570E−01 ,−2.1950E−01 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−2.0940E−01 ,−2.9380E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−7.8900E−02 ,−6.7600E−02 ,−1.9050E−01 ,−7.9700E−02 ,−2.8600E−02 ,−1.2570E−01, \
9 .7300E−02 ,1.3520E−01 ,1.5760E−01 ,7.7700E−02 ,9.8500E−02 ,1.2130E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
1 .9560E−01 ,−2.5060E−01 ,1.5220E−01 ,7.1100E−02 ,1.5130E−01 ,1.5950E−01, \
1 .7960E−01 ,8.4600E−02 ,7.4500E−02 ,9.9500E−02 ,9.0100E−02 ,1.0680E−01, \
6 .5800E−02 ,2.6060E−01 ,3.1280E−01 ,1.8460E−01 ,2.6650E−01 ,3.2200E−01, \
7 .8000E−03 ,1.9040E−01 ,1.3650E−01 ,2.6480E−01 ,2.8710E−01 ,1.9540E−01, \
3 .4570E−01 ,3.5030E−01 ,3.5070E−01 ,2.9990E−01 ,3.2000E−01 ,3.4810E−01, \
2 .8200E−02 ,2.2640E−01 ,3.1830E−01 ,1.7260E−01 ,2.7300E−01 ,3.0670E−01, \
4 .3890E−01 ,9.3800E−02 ,−4.2200E−02 ,−2.5000E−02 ,2.1620E−01 ,2.9800E−01, \
2 .4440E−01 ,1.1300E−01 ,1.7270E−01 ,2.1830E−01 ,−3.1300E−02 ,2.2900E−02, \
5 .9800E−02 ,3.0180E−01 ,4.0130E−01 ,2.1550E−01 ,3.3930E−01 ,4.1400E−01, \
−1.4840E−01 ,5.7000E−03 ,5.6700E−02 ,1.6990E−01 ,1.8720E−01 ,1.5220E−01, \
2 .3530E−01 ,2.4380E−01 ,2.5450E−01 ,2.2650E−01 ,2.4450E−01 ,2.8750E−01, \
7 .0800E−02 ,2.5260E−01 ,3.9900E−01 ,1.5120E−01 ,2.5750E−01 ,3.3970E−01, \
2 .9070E−01 ,3.9480E−01 ,−6.1300E−02 ,−1.2700E−02 ,9.7400E−02 ,4.6440E−01, \
3 .9180E−01 ,1.3530E−01 ,1.2780E−01 ,3.1610E−01 ,−8.7200E−02 ,2.2100E−02, \
1 .1720E−01 ,2.4540E−01 ,4.8120E−01 ,1.5230E−01 ,2.4730E−01 ,4.3050E−01, \
−2.3850E−01 ,6.4100E−02 ,−2.0000E−03 ,6.2400E−02 ,7.5800E−02 ,6.3800E−02, \
1 .1930E−01 ,1.3100E−01 ,1.3900E−01 ,1.1430E−01 ,1.3010E−01 ,1.6720E−01, \
1 .4200E−01 ,1.7920E−01 ,4.1390E−01 ,1.5810E−01 ,1.7080E−01 ,2.4790E−01, \
0 .0000E+00 ,−4.8720E−01 ,−8.6800E−02 ,−2.7550E−01 ,−4.7430E−01 ,−5.2970E−01, \
−4.6480E−01 ,−3.5580E−01 ,−4.4370E−01 ,−5.5730E−01 ,−1.4770E−01 ,−2.4990E−01, \
−3.5740E−01 ,−4.5450E−01 ,0.0000E+00 ,−2.8690E−01 ,−3.3920E−01 ,−4.1860E−01, \
−2.6300E−02 ,9.5100E−02 ,−2.8320E−01 ,−2.2250E−01 ,−2.0480E−01 ,−2.7580E−01, \
−1.8360E−01 ,−2.0990E−01 ,−1.9760E−01 ,−2.5120E−01 ,−2.2840E−01 ,−2.4010E−01, \
−3.8580E−01 ,−4.5560E−01 ,−5.0880E−01 ,−2.6680E−01 ,−2.5390E−01 ,−3.1470E−01, \
0 .0000E+00 ,−7.0030E−01 ,−6.9400E−02 ,−2.9470E−01 ,−4.2660E−01 ,−5.9730E−01, \
−6.5150E−01 ,−3.7370E−01 ,−4.4750E−01 ,−5.2610E−01 ,−8.6900E−02 ,−1.3760E−01, \
−1.9250E−01 ,−4.3100E−01 ,0.0000E+00 ,−2.2450E−01 ,−2.6170E−01 ,−3.3640E−01, \
−6.5000E−02 ,1.4110E−01 ,−2.0600E−01 ,−1.9620E−01 ,−1.8980E−01 ,−2.2060E−01, \
−1.9680E−01 ,−2.1600E−01 ,−2.3370E−01 ,−2.8160E−01 ,−2.4010E−01 ,−3.0870E−01, \
−1.8680E−01 ,−3.6640E−01 ,−5.1340E−01 ,−1.5130E−01 ,−1.8670E−01 ,−2.1980E−01, \
0 .0000E+00 ,0.0000E+00 ,−7.9400E−02 ,−2.7240E−01 ,−2.5210E−01 ,−4.7990E−01, \
−5.9960E−01 ,−2.3800E−01 ,−2.8200E−01 ,−3.7450E−01 ,−6.2900E−02 ,−8.4700E−02, \
−7.9200E−02 ,−2.5040E−01 ,−4.6430E−01 ,−1.3650E−01 ,−2.1240E−01 ,−2.9190E−01, \
−1.6990E−01 ,6.3000E−02 ,−1.4610E−01 ,−1.4910E−01 ,−1.5050E−01 ,−1.6520E−01, \
−1.7040E−01 ,−1.9180E−01 ,−2.0840E−01 ,−2.4970E−01 ,−2.1420E−01 ,−2.6570E−01, \
−6.6500E−02 ,−1.6670E−01 ,−3.1770E−01 ,−5.5700E−02 ,−1.0910E−01 ,−1.6550E−01, \
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0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−2.8500E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.6690E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−4.1720E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−4.0950E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
1 .5590E−01 ,0.0000E+00 ,−1.7270E−01 ,4.2100E−02 ,4.1780E−01 ,3.5490E−01, \
4 .8000E−03 ,5.7240E−01 ,4.5490E−01 ,2.1940E−01 ,−2.4990E−01 ,1.7750E−01, \
3 .1870E−01 ,4.1840E−01 ,3.8800E−01 ,6.5430E−01 ,6.8020E−01 ,6.3740E−01, \
0 .0000E+00 ,1.4630E−01 ,−9.9900E−02 ,1.2250E−01 ,1.5290E−01 ,1.6320E−01, \
2 .4580E−01 ,2.8420E−01 ,3.2010E−01 ,3.4920E−01 ,3.1850E−01 ,4.1210E−01, \
2 .8620E−01 ,4.0230E−01 ,4.4360E−01 ,5.8300E−01 ,6.5280E−01 ,6.6580E−01, \
3 .1550E−01 ,0.0000E+00 ,−3.7050E−01 ,−6.2800E−02 ,1.7110E−01 ,2.5940E−01, \
−1.0820E−01 ,3.7840E−01 ,3.4200E−01 ,1.3380E−01 ,0.0000E+00 ,−6.2500E−02, \
1 .7370E−01 ,2.4540E−01 ,2.4990E−01 ,3.8900E−01 ,4.2830E−01 ,4.1120E−01, \
0 .0000E+00 ,−1.0830E−01 ,−3.4840E−01 ,−1.0090E−01 ,−6.2800E−02 ,−1.5700E−02, \
5 .3700E−02 ,9.8400E−02 ,1.4120E−01 ,1.7430E−01 ,1.7200E−01 ,2.4720E−01, \
1 .6860E−01 ,2.0950E−01 ,2.7350E−01 ,3.5990E−01 ,4.1250E−01 ,4.4680E−01, \
−3.6550E−01 ,−8.1020E−01 ,−4.4910E−01 ,−2.1390E−01 ,−2.8640E−01 ,−3.8500E−01, \
−5.3870E−01 ,−3.3490E−01 ,−4.3330E−01 ,−5.4780E−01 ,0.0000E+00 ,−4.0970E−01, \
−1.3700E−01 ,−3.1530E−01 ,−3.9130E−01 ,−9.4400E−02 ,−1.8600E−01 ,−3.0900E−01, \
0 .0000E+00 ,−3.6880E−01 ,0.0000E+00 ,−2.7840E−01 ,−2.3120E−01 ,−2.2700E−01, \
−1.2770E−01 ,−9.8500E−02 ,−7.1800E−02 ,−5.8200E−02 ,−7.5200E−02 ,−1.6800E−02, \
−8.5300E−02 ,−2.4410E−01 ,−3.4390E−01 ,−2.3000E−02 ,−9.6900E−02 ,−1.7850E−01, \
1 .1100E−02 ,2.7070E−01 ,−2.5560E−01 ,−1.0690E−01 ,−1.2490E−01 ,−2.0470E−01, \
−1.4510E−01 ,−2.0440E−01 ,−2.5490E−01 ,−2.9200E−01 ,−4.8180E−01 ,−2.5360E−01, \
1 .9100E−02 ,−1.5720E−01 ,−2.4290E−01 ,4.2000E−02 ,−6.0600E−02 ,−1.8740E−01, \
0 .0000E+00 ,−2.2950E−01 ,−2.9660E−01 ,−1.1990E−01 ,−8.5300E−02 ,−8.4900E−02, \
−3.7000E−02 ,−1.9500E−02 ,−9.7000E−03 ,−2.0000E−03 ,−1.5300E−02 ,1.8000E−03, \
7 .4600E−02 ,−8.5100E−02 ,−2.1500E−01 ,9.7000E−02 ,3.7600E−02 ,−4.6400E−02, \
−6.5630E−01 ,0.0000E+00 ,0.0000E+00 ,−4.4240E−01 ,−5.2830E−01 ,−7.6310E−01, \
0 .0000E+00 ,−5.6810E−01 ,−6.9510E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−3.4150E−01 ,−5.6560E−01 ,−7.3610E−01 ,−3.5860E−01 ,−4.4310E−01 ,−5.6560E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−4.7980E−01 ,0.0000E+00, \
−3.3010E−01 ,−3.1630E−01 ,−2.6600E−01 ,−2.7570E−01 ,−3.0020E−01 ,−2.1240E−01, \
−2.9150E−01 ,−4.7760E−01 ,−6.2690E−01 ,−2.8600E−01 ,−3.6170E−01 ,−4.3440E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.1010E−01 ,−5.1150E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−5.5800E−01, \
−2.3520E−01 ,−6.7480E−01 ,0.0000E+00 ,−2.7980E−01 ,−5.2750E−01 ,0.0000E+00, \
0 .0000E+00 ,−5.2910E−01 ,0.0000E+00 ,−5.2050E−01 ,−5.0200E−01 ,−5.0600E−01, \
−4.0050E−01 ,−3.8630E−01 ,−3.9650E−01 ,−3.7340E−01 ,−3.9410E−01 ,−3.9220E−01, \
−1.6800E−01 ,−4.8890E−01 ,0.0000E+00 ,−1.6820E−01 ,−2.9850E−01 ,−4.9870E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.8570E−01 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−3.8490E−01 ,0.0000E+00 ,0.0000E+00 ,−4.3550E−01 ,−7.0360E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−5.9360E−01 ,0.0000E+00, \
−4.8280E−01 ,0.0000E+00 ,−4.3090E−01 ,−5.2340E−01 ,−4.5080E−01 ,−4.6120E−01, \
−3.8520E−01 ,−6.2040E−01 ,0.0000E+00 ,−3.1900E−01 ,−4.9460E−01 ,−6.3240E−01, \
−6.6850E−01 ,0.0000E+00 ,0.0000E+00 ,−4.1060E−01 ,−7.4430E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−4.2800E−01 ,0.0000E+00 ,0.0000E+00 ,−5.8510E−01 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−6.5360E−01 ,0.0000E+00, \
−5.6260E−01 ,−5.5430E−01 ,−5.4130E−01 ,−5.3600E−01 ,−5.4440E−01 ,−5.2980E−01, \
−3.6080E−01 ,−7.1170E−01 ,0.0000E+00 ,−4.4420E−01 ,−5.9800E−01 ,−7.6460E−01, \
−7.7070E−01 ,0.0000E+00 ,−5.0490E−01 ,−2.9660E−01 ,−5.7200E−01 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,−5.9170E−01, \
−2.9430E−01 ,−7.0540E−01 ,0.0000E+00 ,−3.9280E−01 ,−6.2360E−01 ,0.0000E+00, \
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0 .0000E+00 ,−5.6800E−01 ,0.0000E+00 ,−4.9710E−01 ,−4.5690E−01 ,−4.8640E−01, \
−3.9240E−01 ,−3.8130E−01 ,−3.7420E−01 ,−3.6830E−01 ,−3.7720E−01 ,−3.8190E−01, \
−2.0830E−01 ,−5.3580E−01 ,0.0000E+00 ,−2.5990E−01 ,−4.0880E−01 ,−5.9640E−01, \
−8.2770E−01 ,0.0000E+00 ,0.0000E+00 ,−5.6070E−01 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
−5.7060E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,−6.2600E−01 ,0.0000E+00 ,0.0000E+00 ,−5.8030E−01, \
−5.2540E−01 ,0.0000E+00 ,0.0000E+00 ,−6.0620E−01 ,0.0000E+00 ,0.0000E+00, \
−8.8500E−02 ,0.0000E+00 ,1.6910E−01 ,1.0380E−01 ,1.2870E−01 ,9.1700E−02, \
2 .9900E−02 ,−8.0000E−04 ,−1.6190E−01 ,−1.4680E−01 ,1.0540E−01 ,1.3390E−01, \
1 .1840E−01 ,2.5870E−01 ,2.3640E−01 ,1.9420E−01 ,2.5460E−01 ,3.0180E−01, \
−9.4000E−03 ,2.2970E−01 ,1.9930E−01 ,2.8400E−01 ,2.9870E−01 ,2.3380E−01, \
3 .3270E−01 ,3.3450E−01 ,3.3360E−01 ,2.8900E−01 ,3.1600E−01 ,3.2870E−01, \
8 .4100E−02 ,2.2260E−01 ,2.6210E−01 ,2.1760E−01 ,2.5930E−01 ,3.1300E−01, \
2 .9750E−01 ,−2.3630E−01 ,2.4600E−02 ,6.1000E−03 ,2.2080E−01 ,1.5480E−01, \
3 .4200E−02 ,1.4470E−01 ,5.8400E−02 ,4.5700E−02 ,−1.0000E−02 ,3.8300E−02, \
9 .5800E−02 ,2.6820E−01 ,2.4690E−01 ,2.6350E−01 ,2.8400E−01 ,3.1940E−01, \
−1.3990E−01 ,8.5100E−02 ,1.2300E−01 ,2.1980E−01 ,2.3130E−01 ,2.0560E−01, \
2 .6550E−01 ,2.5690E−01 ,2.7260E−01 ,2.5200E−01 ,2.5630E−01 ,2.6990E−01, \
9 .4200E−02 ,2.4900E−01 ,2.9530E−01 ,2.2770E−01 ,2.9040E−01 ,3.1780E−01, \
3 .9100E−01 ,6.8000E−03 ,−7.8400E−02 ,−7.9300E−02 ,2.0970E−01 ,2.1960E−01, \
2 .3000E−02 ,2.3590E−01 ,2.0430E−01 ,1.9890E−01 ,−9.5300E−02 ,−3.7700E−02, \
1 .0820E−01 ,2.5810E−01 ,2.6110E−01 ,2.6010E−01 ,3.2740E−01 ,3.6130E−01, \
−2.4240E−01 ,2.1600E−02 ,3.6600E−02 ,1.4010E−01 ,1.4390E−01 ,1.2800E−01, \
2 .0260E−01 ,1.9930E−01 ,2.0430E−01 ,1.9690E−01 ,2.0050E−01 ,2.2900E−01, \
1 .0770E−01 ,2.4950E−01 ,3.1250E−01 ,1.8430E−01 ,2.7480E−01 ,3.2750E−01, \
0 .0000E+00 ,0.0000E+00 ,−2.6920E−01 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.8400E−01 ,−4.4260E−01 ,0.0000E+00, \
0 .0000E+00 ,−1.9360E−01 ,0.0000E+00 ,0.0000E+00 ,−3.7290E−01 ,0.0000E+00, \
−3.0940E−01 ,−3.3220E−01 ,−3.0030E−01 ,−3.1980E−01 ,−3.4440E−01 ,−2.9900E−01, \
0 .0000E+00 ,0.0000E+00 ,0.0000E+00 ,−3.7430E−01 ,−3.7970E−01 ,−4.2490E−01, \
0 .0000E+00 ,0.0000E+00 ,−1.9660E−01 ,−3.3910E−01 ,0.0000E+00 ,0.0000E+00, \
0 .0000E+00 ,−4.8540E−01 ,0.0000E+00 ,0.0000E+00 ,−2.8100E−01 ,−3.4020E−01, \
−3.2910E−01 ,0.0000E+00 ,0.0000E+00 ,−3.0690E−01 ,−3.4460E−01 ,−4.2680E−01, \
−2.3290E−01 ,−9.2600E−02 ,−3.6790E−01 ,−3.2520E−01 ,−3.0340E−01 ,−3.4970E−01, \
−2.9580E−01 ,−3.1230E−01 ,−3.1000E−01 ,−3.3630E−01 ,−3.2710E−01 ,−3.2390E−01, \
−3.4390E−01 ,−4.5040E−01 ,0.0000E+00 ,−2.6200E−01 ,−2.7340E−01 ,−3.1900E−01, \
0 .0000E+00 ,0.0000E+00 ,−1.5520E−01 ,−3.4350E−01 ,−4.7050E−01 ,0.0000E+00, \
0 .0000E+00 ,−3.3460E−01 ,−4.4780E−01 ,0.0000E+00 ,−2.0370E−01 ,−2.4090E−01, \
−2.3120E−01 ,−4.4350E−01 ,0.0000E+00 ,−2.7610E−01 ,−3.3860E−01 ,−4.1540E−01, \
−1.9870E−01 ,−6.9000E−03 ,−2.9650E−01 ,−2.9370E−01 ,−2.8940E−01 ,−3.0340E−01, \
−3.0110E−01 ,−3.1640E−01 ,−3.2650E−01 ,−3.5590E−01 ,−3.2990E−01 ,−3.6410E−01, \
−2.1590E−01 ,−3.7080E−01 ,0.0000E+00 ,−1.9870E−01 ,−2.4940E−01 ,−2.9970E−01 \

]
return beta

# end of s e t b e t a

i f name == ” main ” :
main ( )
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