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Abstract 
Suppose you are asked to choose randomly between left or 
right 100 times, would you expect the average of your choices 
to be roughly even or to have a bias? In the literature, human 
randomness falls on a spectrum from being close to unbiased 
to very biased in random choices. To create a model with a 
neural implementation of human randomness, unsupervised 
artificial neural networks were used to generate a random 
representation of binary numbers. These random 
representations were tested with both orthogonal and correlated 
stimuli as inputs and the properties of all outputs are discussed. 
An example of how to bias this generated randomness to model 
different cognitive processes is shown under two conditions, 
where random decisions are biased for desired outcomes and 
for list exhaustion (random sampling without replacement). 
Other possible uses for this method of generating randomness 
in cognitive modelling are discussed.  

Keywords: distributed randomness; biasing decisions; feature 
extraction bidirectional associative memory; artificial neural 
networks; pseudo-random number generation 

 
If you were asked to pick a number from one to ten, which 
would you choose? Is this decision completely random or do 
you tend to prefer a certain number? What if you had to 
choose 100 times, does this change anything? A certain level 
of randomness is present in all our decisions, from deciding 
whether to bet on red or black at the roulette wheel to making 
large and impactful life decisions. However, there is still a lot 
of ambiguity about the definition of the concept of 
randomness (Nickerson, 2002). Jokar and Mikaili (2012) 
write that “[a] sequence of numbers is said to be random, if 
the next element cannot be predicted from the previous one.” 
In our study, randomness is also viewed in terms of 
unpredictability.  

There is a variety of contrasting literature on human 
randomness, especially concerning how much bias is in a 
random decision. Several systematic reviews of human 
randomness research have found that most studies suggest 
humans have difficulty generating random sequences or 
recognizing random patterns. However, some argue that 
findings of bias in randomness could be the result of 
ambiguous instructions, issues with the statistical 
methodology, or the participant’s limited window of 
experience (Ayton, Hunt & Wright, 1989; Nickerson, 2002; 
Warren et al., 2018). Others argue that under certain 

conditions, it could be possible for human randomness to be 
almost entirely unbiased by instructing participants 
differently (Guseva et al., 2023). 

On the other hand, there are studies that do provide 
evidence that human decisions are not truly random and that 
there is a bias. One study shows how our perception of 
patterns can lead us to fall for the gambler’s fallacy and the 
hot hand when watching videos of other people gambling 
(Croson & Sundali, 2005). Another study looked at how 
choices are considered using both behavioral data and 
neuroimaging techniques and found that when choosing 
between items, participants chose items from a preferred 
category more often and more quickly (Lopez-Parsem, 
Domenech & Pessiglione, 2016). A different study found that 
since random numbers do not meet the full randomness 
criteria, distinctive features in response patterns can be used 
to identify which subject produced what random value, 
providing more evidence that humans do not follow statistical 
randomness (Jokar et al., 2012).  

 
Modelling Cognition and Randomness with 

Artificial Neural Networks 
Many Artificial Neural Networks (ANNs) that model 
cognition rely on randomness to be able to illustrate the 
arbitrary nature of neural coding in the brain (Kanerva, 2009). 
To generate this pseudo-randomness, a lot of popular 
approaches either forego the use of neural networks (Blum, 
Shub & Blum, 1986; Matsumoto & Nishimura, 1998) or 
generate a numerical value as output (Malik, Pulikkotil, & 
Sharma, 2021). Those that do generate pseudo-random 
sequences use less biologically plausible models such as deep 
neural networks (Almardeny et al., 2022; Park et al., 2022; 
Pasqualini & Parton, 2020).  

The approaches that use recurrent neural networks rarely 
offer a complete neural network-based solution and are often 
combined with other data sources or algorithms (Jeong et al., 
2018; Man et al., 2021; Tirdad & Sadeghian, 2010). Similar 
approaches rely on random orthogonal weight matrices 
(Elyada & Horn, 2005; Hughes, 2007), exploit an input 
source of randomness (De Bernardi, Khouzani & Malacaria, 
2019), or use backpropagation (Desai, Ravindra & Rao, 
2012), methods that are less compatible with cognitive 
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modeling. Our model is an attempt to merge this gap in the 
research by generating pseudo-random sequences, or 
distributed representation of randomness, entirely using 
recurrent neural memory models. 

Two sets of simulations were conducted. The first aims to 
evaluate the capacity of an ANN to generate distributed 
random behaviors and the second to bias those random 
representations. 
 

Background 
The ANN used in this study was the Feature Extracting 
Bidirectional Associative Memory (FEBAM; see Chartier et 
al., 2007 for more details). The FEBAM is an unsupervised 
memory model that generates a unique representation of each 
input learned, which can then be used in many ways. For 
example, these generated representations have previously 
been used as a “unique signature” or identifying 
representation for different inputs (Church, Ross & Chartier, 
2020; Rolon-Mérette, Rolon-Mérette & Chartier, 2018).  

The FEBAM was selected for this unique property, as we 
hypothesize these generated representations could be adapted 
to represent different aspects of randomness, such as the 
likelihood of making a given decision. Using a binary 
representation means that the outputs can represent a quantity 
and the sum of the outputs can be calculated with a single 
neuron. As with any artificial neural network model, the 
FEBAM can be entirely described by its architecture, 
transmission and learning functions. 
 
Architecture  
The FEBAM architecture is comprised of two layers of units 
which are interconnected in a bidirectional fashion where 
x[0]and y[0] are the initial inputs (Fig. 1). The weight matrices, 
W and V, connect the network units, x and y, and return 
information to each other. The inputs x[c] and y[c] are the 
inputs at the current iteration number c.   
 

 
 

Figure 1: FEBAM Architecture. 
 

Transmission 
The transmission used a binary function of the original cubic 
one (Rolon-Mérette, Rolon-Mérette & Chartier, 2023). It is 
expressed by: 

∀𝑖, … , 𝑚, 𝒚௜[ୡାଵ] = ቐ

1, 𝑖𝑓 𝐖𝐱௜[ୡ] > 1

0, 𝑖𝑓 𝐖𝐱௜[ୡ] < 0

3(𝐖𝐱௜[ୡ])
𝟐 − 2(𝐖𝐱௜[௖])

ଷ, 𝐸𝑙𝑠𝑒 

 
 

(1) 

Where m is the number of units in each layer, i is the index 
unit, and c is the cycle index; for all simulations it was set to 
1. A similar process is used to obtain xi[c+1] by replacing 
Wxi[c] with Vyi[c]. 

Learning  
The learning is based on time difference Hebbian learning: 

 

𝐖[௞ାଵ] = 𝐖[௞] + 𝜂൫𝐲[଴] − 𝐲[௖]൯൫𝐱[଴] + 𝐱[௖]൯
୘
 (2) 

 
Where  is a small positive learning parameter, W is the 
weight matrix, x[0] is the initial pattern, and y[0] is the first 
generated representation; V is updated using an equivalent 
function. For learning, the cycle index, c, is set to 1 
throughout the simulations. 
 

Simulation I – Properties of Generated 
Randomness 

As discussed in the literature, while randomness is on a 
spectrum, it may be possible for human randomness to be 
almost entirely unbiased under specific instructions (Ayton et 
al., 1989; Nickerson, 2002; Warren et al, 2018). Thus, the 
first step was to make sure that regardless of the input, it was 
possible for the network to reliably generate a random output; 
a process akin to computer pseudo-random generators. More 
precisely, we studied the capacity of the network to generate 
values between 0 and 1. If the proportion of 1s and 0s are 
equal, we would get an unbiased binomial distribution. For 
the latter, a sum of greater than 50% could represent decision 
A and less than 50%, decision B. 
 
Method 
Inputs Three different sets of inputs were used: orthogonal, 
randomly generated (correlated) and uppercase letter 
(correlated) patterns were tested to evaluate their effect on the 
generated patterns (Fig 2). For comparison purposes, they 
were all the same size of 7x7 pixels, giving 49 dimensions. 
Orthogonal and random patterns were also tested with higher 
dimensionality. Black pixels were assigned a value of 1 and 
white pixels a value of 0.  
 

 
 

Figure 2: Examples of different input patterns of 49 
dimensions. 
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Parameters To assess if the dimensionality, m, of the 
generated representation had an impact on its variability, the 
number of y-units varied from 49 to 196. The weights were 
initialized between [-0.1, 0.1] for each trial and the learning 
rate () was set to 1/m. Finally, in some conditions, binary 
discretization of the outputs was performed. The error was 
calculated by measuring the average of the squares of the 
errors, Mean Squared Error (MSE), and minimum MSE was 
set to 10-8.  
 
Learning Procedure The learning was accomplished as 
follows: 
1. Selection of input patterns (Fig. 2)   
2. Computation of the output (Eq. 1) and update of the 
weights (Eq. 2).  
3. Repetition of 1-2 until the minimum MSE is reached. 
 
Orthogonal Patterns  
The network was first tested under optimal patterns condition 
offered by orthogonality. By using such patterns, it controls 
any interactions the patterns may have that would be reflected 
on the generated representation by the network. This situation 
is closer to the condition in which pseudo-random generator 
is used, where the current draw is independent from the 
previous. In addition, orthogonal inputs can be used to 
represent one-hot encoding (Cohen et al., 2013), which is still 
commonly used today (Park et al., 2023; Ranasinghe et al., 
2021). More precisely, 250-dimension orthogonal patterns 
with different levels of active pixels (value of 1) were tested 
(1, 2, 5, 10, 25, 50, 100). See Figure 2a for an example of 8-
pixel 49-dimension patterns. The number of patterns learned 
varied from 1 up to 50. Each condition was repeated 100 
times and average performances were reported.  

Finally, the type of distribution generated by the network 
was assessed. Thus, the network was trained using n-
orthogonal patterns. Recall was performed where the output 
with the maximum sum was selected. Learning was then 
repeated for 200 trials to have a high sample. A chi-square 
was applied to measure the departure of the final distribution 
with the expected multinomial one.  
 
Results As shown in Figure 3, the distribution of orthogonal 
inputs across 200 trials is not different than the theoretical 
uniform distribution either for the binomial, n = 2, 2(1, 199) 
= 0.09, p = 0.76 (Fig. 3a) or the multinomial one, n = 5, 2 (1, 
199) = 2.19, p = 0.7 (Fig. 3b).  

 

 
 

Figure 3: Binomial and multinomial distribution of 
orthogonal patterns, with the expected percentage. 

 
 

Figure 4: Orthogonal patterns with different pixels in input 
patterns.  

 
Additionally, these trials showed that with fully orthogonal 

patterns, the number of pixels in the input had a large effect 
on the average summation percentage of the random outputs 
(see Fig. 4). The more pixels in the input pattern, the higher 
the sum. We tested this with higher dimensionality and more 
input patterns, and the trend continued. With the binary 
discretization applied (threshold), the resulting outputs are 
around 50%, but this increases with the dimensionality of the 
input patterns, so it is not stable.  
 
Random and Structured Correlated Patterns 
In a more natural setting, input patterns are correlated; 
whether randomly generated (Fig. 2b) or structured (like 
uppercase letters; Fig. 2c). The binary random patterns were 
randomly generated from a discrete uniform distribution over 
[0,1], resulting in an average of 50% active pixels per pattern. 
Like the previous section, the number of inputs patterns was 
varied to assess the behavior under various memory loads and 
the distribution was assessed by a chi-square.   
 
Results When using structured patterns, the resulting 
distribution with the highest sum is not uniform 2 (1, 200) = 
0.09, p = 0.76, as shown in Figure 5. The number of times the 
letter “B” is selected is significantly higher than the other 
letters. This is not surprising since the letter “B” has the 
smallest Euclidian distance from the average of all the five 
letters.  
Another major difference from the orthogonal trials is that the 
number of learned inputs has an effect on the average sum of 
the generated patterns. As the number of input patterns 
increases, the raw summation of the outputs increases (see 
Fig. 6). The observed generated behavior depends on the 
number of patterns learned and not the memory load itself. 
For example, 10 patterns of 98 dimensions (memory load of 
10%) will have around the same proportion of 1s as 10 
patterns of 196 dimensions (5%). As the sum depends on 
several different factors like the dimensionality of the inputs, 
number of inputs, and use of the threshold function, it is 
difficult to determine stable relationships between these 
variables to have a predictable outcome. There was no 
difference between the random correlated patterns and the 
structured correlated (uppercase letter) patterns.  
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Figure 5: Distribution of letter patterns, with the expected 
percentage.  

 

 
 

Figure 6: Random inputs with and without the threshold 
function applied, 3 different dimensions. 

 
Discussion 
The results from the orthogonal patterns task confirmed the 
hypothesis that by using distributed representations in an 
ANN, it is possible to create uniformly distributed random 
representations and as such could replace pseudo-random 
generator when modeling cognitive processes such as 
decision processes. This process is akin to sampling with 
replacement. For example, if we want a system to perform 
Task X 80% of the time and Task Y 20% of time, one can use 
5 orthogonal patterns where patterns 1 to 4 will represent 
Task X and pattern 5 will represent Task Y (Figure 3b). 

However, with the correlated pattern trials, the results were 
more varied. With certain dimensions and only a single letter 
as the input pattern, it is possible to have an equal proportion 
of 1s and 0s. When more input patterns are used, the threshold 
will induce a bias towards 1, while the straight sum towards 
0. This is not ideal for many situations where more than one 
input is used. Some patterns are more likely to be chosen than 
others because they have a smaller Euclidean distance from 
the average of all patterns than others. 

On the other hand, sometimes a biased distribution is 
exactly what is desired. This can be seen as a better 
representation of random decisions in the real world, where 
we may be inherently more likely to be biased towards certain 
decisions even before any learning has taken place, based on 
our attention (Orquin & Loose, 2013), what our goals are and 
the salience of the stimuli (Berridge & Robinson, 2003), or 
some other internal or external bias (Wittmann et al., 2008).  

As would occur in the real world, we can always change 
our behaviors, regardless of our original internal biases. The 
next simulation presents such implementation of how 
decision can be modified even under initial bias.  

Simulation II – Biasing the Random Outputs 
As seen in Simulation I, when orthogonal input patterns are 
used, the network can give a series of uniformly distributed 
output patterns (sampling with replacement). In some 
situations, we would like to have the network to perform 
sampling without replacement, where the network could 
exhaust a list of patterns without repeating any previous one.  

Another situation could be that it may not be possible to 
use orthogonal patterns. In the real world, it is more likely 
that there will be some overlap between possible decisions to 
be made. As seen in Figure 5, this results in a biased 
distribution and can be seen as analogous to our internal 
biases, where we are more likely to select some decisions 
over others. In both situations, by introducing a selection 
parameter on the output, it will be possible to generate time 
series and modify any initial bias. These two conditions were 
tested in Simulation II: Desired Output and Sampling without 
Replacement.  

 
Desired Output Condition 
For this condition, a series of correlated letter patterns (Fig. 
2c) are learned by the FEBAM. These input patterns 
represent different possible decisions/behaviors. The desired 
decision is established ahead of time. During each trial, the 
learned letter inputs are sent for recall and the FEBAM recalls 
the corresponding random representation for each letter. The 
sum is then taken from each of these patterns and the one with 
the highest sum is “chosen”. If we want a different outcome, 
we simply multiply the output by a value between [0 and 1[ 
(ex. 0.1) before computing the sums. The effect of this 
selection parameter () can be expressed by the following: 

 

𝐨௜ = 𝛃௜ ෍ 𝒚௜௝

௝

 
 

(3a) 

s = Max(𝐨௜) (3b) 
  

Where yi represents the output pattern i, , the selection 
parameter, j the given pixel (j…49), o, the outputs of all 
patterns, and s, the resulting selected pattern.  

This selection parameter is tailored for each letter. The 
values of  are initialized at 1 for each pattern (which will 
have no effect on the first decision). After each recall, the 
selection parameter can be decreased if needed by a constant, 
. Finally, the parameter () has a lower limit at 0, which 
results in removing this particular choice as a possible 
outcome. The strength, , of the gain can be altered to change 
how fast or slow the model changes responses. For the 
condition of correlated pattern  can be set to value closer to 
0 for slow transition: 

 

𝛃௜[௧ାଵ] = ቊ
0, 𝑖𝑓 (𝛃௜[௧] − 𝜀) < 0 

𝛃௜[௧ାଵ], 𝐸𝑙𝑠𝑒
  

 

(4) 
 

 
For example, if we have an input list “A, B, C, D, E” and 

the desired letter is A, the network will output representations 
for each letter. The one with the highest sum will be selected. 
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If the corresponding letter is any but A (such as E), the gain 
value will be decreased. Therefore, for the next recall the sum 
of E should be lowered until a new letter is selected (see Fig. 
7, “Incorrect Response”). When the correct output is selected, 
then the selection parameter remains the same (see Fig. 7, 
“Correct Response”).   

 

 
 

Figure 7: Flowchart for the Desired Output Condition. 
 
Parameters and Learning Procedure The network 
parameters and learning procedure were the same as in 
Simulation I. A series of up to 10 correlated letter patterns 
were selected (Fig. 2c). Various levels of gain strength were 
tested, and a value of ( =) 0.05 was set for slow and ( =) 0.5 
for fast response changing. The effect of the selection 
parameter was investigated while finding the desired output. 
Each condition was tested using different subsets of letters.  
 
General Selection Procedure 
1. Learning of the patterns according to the procedure in 
Simulation I. 
2. Each learned letter pattern is sent to the FEBAM to obtain 
its corresponding representation (Eq. 1). 
3. Each representation is then modified using Eq. 3 to select 
the letter associated with the largest sum. 
4. If that chosen letter is the desired one, then the selection 
parameter remains the same, if not, it is decreased according 
to Eq. 4. 
5. 2-4 are repeated until the maximum number of trials has 
been reached. 
 
Results The results show that it is possible to bias towards a 
certain letter. By using the selection parameter, each time a 
letter is chosen its corresponding sum may be modified, 
allowing for the desired letter to be chosen repeatedly. When 
the desired letter is changed, the network is able to inhibit the 
recall of the previous letter and move to the next one until it 
chooses the correct one.  

The strength of the gain on the selection parameter has an 
impact on how many trials it takes to stabilize on the correct 
response. For example, if the desired output was letter A 
followed by letter C, when the selection parameter was 
decreased by a small amount (0.05; Fig. 8a), it takes almost 
11 trials for selecting A. Conversely, when the selection 
parameter is decreased with greater quantity (0.5; Fig. 8b) it 
took only 4 trials for selecting A. It was successful in both 

conditions. It is also possible for the network to restabilize on 
previously learned letters, as seen in Figure 9. 

Each time a different decision is made it will slowly 
decrease the selection values. Therefore, at some point the 
values will all be zero and the network will then always select 
the first letter in the series (see Fig 10a). One can always reset 
the parameter to initial values (= 1) when = 0 and start a 
novel decision stream.  However, if the decrease in the 
selection parameter is slow, it will have enough trials to 
exhaust the list of long time series, even with a lot of 
fluctuations (see Fig. 10b). 

 

 
 

Figure 8: Difference in slow vs. fast selection parameter 
for desired letter A for 25 trials and C for 25 trials. 

 

 
 

Figure 9: Chosen letter over 100 trials, where the  
desired letter is F for 25 trials, then G, I, and G again. 

 

 
 

Figure 10: Chosen letter over 250 trials where the desired 
letter is changing every 25 trials. 

 
Sampling without Replacement Condition 
For this condition, a series of orthogonal or correlated letter 
patterns are learned by the FEBAM (Fig. 2a and 2c). The goal  
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Figure 11: Flowchart for the Sampling without Replacement 

Condition. 
 
is to select each of these patterns once, which is akin to list 
exhaustion or random draw without replacement. Since each 
pattern should be selected only once,  will be set higher than 
in the previous condition (between 0.5 and 1) to ensure that 
selected patterns will not be selected again (Fig. 11).  
 
Parameters and Learning Procedure The network 
parameters and learning procedure were the same as in 
Simulation I. A series of 4 orthogonal (composed of 10 active 
pixels) patterns or correlated letters were chosen. The effect 
of the selection parameter was investigated while changing 
the value after the learning has been accomplished. Each 
condition was tested using different subsets of letters.  
 
General Selection Procedure 
1-3. Same as the Desired Output Condition. 
4. The selection parameter is decreased according to Eq. 4.  
5. 2-4 is repeated until all patterns have been selected. 
6. 1-5 is repeated 300 times and percentages are computed.  
 
Results With 4 patterns there are a total of 24 (= 4!) different 
permutations: 1 = [1 2 3 4], 2 = [1 2 4 3], 3 = [1 3 2 4], …, 24 
= [4 3 2 1]. The frequency of each permutation was computed 
(Fig. 12) and revealed no difference with the theoretical one 
of 4.16ത% (= 100/24) for the orthogonal patterns (𝜒ଶ (1, 299) 
= 13.92, p = 0.93). Which is not the case with the correlated 
letter patterns, whatever the combination (A to D or E to H), 
some permutations have a higher probability of occurrence 
than others (Fig. 12), as seen in Simulation I. In both 
situations, we observed statistical difference (A-D: 𝜒ଶ (1, 
299) = 824, p < 0.01; E-H: 𝜒ଶ (1, 299) = 628, p < 0.01).  
 

 
 

Figure 12: Orthogonal and Letter sampling without 
replacement trials with theoretical frequency. 

Discussion 
When orthogonal patterns are combined with FEBAM and 
the selection parameter the results showed that random 
permutation can be obtained. Each time series will have the 
same probability of being selected, making the lists 
independent and identically distributed (IID). Of course, if a 
particular sequence is desired it is possible for the network to 
extract it in the right order. This was shown using a biased 
output obtained when using correlated patterns.  

Moreover, results show that even if there is a preference in 
the output (ex. letter B), it is possible to circumvent this bias 
and output the desired behaviour. This provides a possible 
neural implementation that supports the studies which argue 
that there is bias in human randomness (Croson et al., 2005; 
Jokar et al., 2012; Lopez-Parsem et al., 2016). 

We show that the network can also produce a series of 
outputs with repeating patterns, where the length of the time 
series is determined by the strength of the selection 
parameter. This bias can shift over time to a different choice 
to represent changes in internal bias. The network could even 
be tailored to individual preferences by initializing the 
selection parameter matrix for each choice to something other 
than 1. It could also be modified in function of the task. 

In future work, this more plausible implementation of 
human randomness could be integrated with different 
cognitive models for learning, creativity and problem 
solving. For example, by combining this with an existing 
neural model for creativity, it could allow the model to break 
away from certain patterns, resulting in more creative 
decisions and more improvisation (Khalil & Moustafa, 
2022). Using randomness can help us break free from fixed 
patterns of thinking to discover novel solutions. Thus, it is 
important to include an accurate model of human randomness 
when modelling any of these cognitive processes.  

This ANN model for pseudo-random sequence generation 
adds another option to existing recurrent neural network 
methods that does not rely on the addition external algorithms 
(Jeong et al., 2018; Man et al., 2021; Tirdad et al., 2010), 
orthogonal weight matrix initialization (Elyada et al., 2005; 
Hughes, 2007), randomized inputs (De Bernardi et al., 2019), 
or backpropagation (Desai et al., 2012). It also offers an 
alternative to the deep neural networks that are commonly 
used in reinforcement learning (Almardeny et al., 2022; Park 
et al., 2022; Pasqualini et al., 2020). As an added property, 
our model was able to go beyond single digits and generate 
distributed arrays of randomness.  
 

Conclusion 
This study provides a more accurate implementation of 

human randomness using an ANN. The results suggest that 
the model can generate unbiased distributed random 
representations when orthogonal inputs are used. The model 
can be biased towards different choices, which allows us to 
model human randomness even when it is not as random as it 
may seem. This more biologically plausible representation of 
internal randomness could be used to create more realistic 
cognitive models of random and biased decisions.  
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