
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Generating Distributed Randomness using Artificial Neural Networks

Permalink
https://escholarship.org/uc/item/7mc28624

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Church, Kinsey A
Bolic, Marija
Chartier, Sylvain

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7mc28624
https://escholarship.org
http://www.cdlib.org/

Generating Distributed Randomness using Artificial Neural Networks

Kinsey Antonina Church (kchur026@uottawa.ca)
School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall

Ottawa, ON, K1N 6N5, CAN

Marija Bolic (mboli027@uottawa.ca)
School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall

Ottawa, ON, K1N 6N5, CAN

Sylvain Chartier (sylvain.chartier@uottawa.ca)
School of Psychology, 136 Jean-Jacques Lussier, Vanier Hall

Ottawa, ON, K1N 6N5, CAN

Abstract
Suppose you are asked to choose randomly between left or
right 100 times, would you expect the average of your choices
to be roughly even or to have a bias? In the literature, human
randomness falls on a spectrum from being close to unbiased
to very biased in random choices. To create a model with a
neural implementation of human randomness, unsupervised
artificial neural networks were used to generate a random
representation of binary numbers. These random
representations were tested with both orthogonal and correlated
stimuli as inputs and the properties of all outputs are discussed.
An example of how to bias this generated randomness to model
different cognitive processes is shown under two conditions,
where random decisions are biased for desired outcomes and
for list exhaustion (random sampling without replacement).
Other possible uses for this method of generating randomness
in cognitive modelling are discussed.

Keywords: distributed randomness; biasing decisions; feature
extraction bidirectional associative memory; artificial neural
networks; pseudo-random number generation

If you were asked to pick a number from one to ten, which
would you choose? Is this decision completely random or do
you tend to prefer a certain number? What if you had to
choose 100 times, does this change anything? A certain level
of randomness is present in all our decisions, from deciding
whether to bet on red or black at the roulette wheel to making
large and impactful life decisions. However, there is still a lot
of ambiguity about the definition of the concept of
randomness (Nickerson, 2002). Jokar and Mikaili (2012)
write that “[a] sequence of numbers is said to be random, if
the next element cannot be predicted from the previous one.”
In our study, randomness is also viewed in terms of
unpredictability.

There is a variety of contrasting literature on human
randomness, especially concerning how much bias is in a
random decision. Several systematic reviews of human
randomness research have found that most studies suggest
humans have difficulty generating random sequences or
recognizing random patterns. However, some argue that
findings of bias in randomness could be the result of
ambiguous instructions, issues with the statistical
methodology, or the participant’s limited window of
experience (Ayton, Hunt & Wright, 1989; Nickerson, 2002;
Warren et al., 2018). Others argue that under certain

conditions, it could be possible for human randomness to be
almost entirely unbiased by instructing participants
differently (Guseva et al., 2023).

On the other hand, there are studies that do provide
evidence that human decisions are not truly random and that
there is a bias. One study shows how our perception of
patterns can lead us to fall for the gambler’s fallacy and the
hot hand when watching videos of other people gambling
(Croson & Sundali, 2005). Another study looked at how
choices are considered using both behavioral data and
neuroimaging techniques and found that when choosing
between items, participants chose items from a preferred
category more often and more quickly (Lopez-Parsem,
Domenech & Pessiglione, 2016). A different study found that
since random numbers do not meet the full randomness
criteria, distinctive features in response patterns can be used
to identify which subject produced what random value,
providing more evidence that humans do not follow statistical
randomness (Jokar et al., 2012).

Modelling Cognition and Randomness with

Artificial Neural Networks
Many Artificial Neural Networks (ANNs) that model
cognition rely on randomness to be able to illustrate the
arbitrary nature of neural coding in the brain (Kanerva, 2009).
To generate this pseudo-randomness, a lot of popular
approaches either forego the use of neural networks (Blum,
Shub & Blum, 1986; Matsumoto & Nishimura, 1998) or
generate a numerical value as output (Malik, Pulikkotil, &
Sharma, 2021). Those that do generate pseudo-random
sequences use less biologically plausible models such as deep
neural networks (Almardeny et al., 2022; Park et al., 2022;
Pasqualini & Parton, 2020).

The approaches that use recurrent neural networks rarely
offer a complete neural network-based solution and are often
combined with other data sources or algorithms (Jeong et al.,
2018; Man et al., 2021; Tirdad & Sadeghian, 2010). Similar
approaches rely on random orthogonal weight matrices
(Elyada & Horn, 2005; Hughes, 2007), exploit an input
source of randomness (De Bernardi, Khouzani & Malacaria,
2019), or use backpropagation (Desai, Ravindra & Rao,
2012), methods that are less compatible with cognitive

4306
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

modeling. Our model is an attempt to merge this gap in the
research by generating pseudo-random sequences, or
distributed representation of randomness, entirely using
recurrent neural memory models.

Two sets of simulations were conducted. The first aims to
evaluate the capacity of an ANN to generate distributed
random behaviors and the second to bias those random
representations.

Background
The ANN used in this study was the Feature Extracting
Bidirectional Associative Memory (FEBAM; see Chartier et
al., 2007 for more details). The FEBAM is an unsupervised
memory model that generates a unique representation of each
input learned, which can then be used in many ways. For
example, these generated representations have previously
been used as a “unique signature” or identifying
representation for different inputs (Church, Ross & Chartier,
2020; Rolon-Mérette, Rolon-Mérette & Chartier, 2018).

The FEBAM was selected for this unique property, as we
hypothesize these generated representations could be adapted
to represent different aspects of randomness, such as the
likelihood of making a given decision. Using a binary
representation means that the outputs can represent a quantity
and the sum of the outputs can be calculated with a single
neuron. As with any artificial neural network model, the
FEBAM can be entirely described by its architecture,
transmission and learning functions.

Architecture
The FEBAM architecture is comprised of two layers of units
which are interconnected in a bidirectional fashion where
x[0]and y[0] are the initial inputs (Fig. 1). The weight matrices,
W and V, connect the network units, x and y, and return
information to each other. The inputs x[c] and y[c] are the
inputs at the current iteration number c.

Figure 1: FEBAM Architecture.

Transmission
The transmission used a binary function of the original cubic
one (Rolon-Mérette, Rolon-Mérette & Chartier, 2023). It is
expressed by:

∀𝑖, … , 𝑚, 𝒚[ୡାଵ] = ቐ

1, 𝑖𝑓 𝐖𝐱[ୡ] > 1

0, 𝑖𝑓 𝐖𝐱[ୡ] < 0

3(𝐖𝐱[ୡ])
𝟐 − 2(𝐖𝐱[])

ଷ, 𝐸𝑙𝑠𝑒

(1)

Where m is the number of units in each layer, i is the index
unit, and c is the cycle index; for all simulations it was set to
1. A similar process is used to obtain xi[c+1] by replacing
Wxi[c] with Vyi[c].

Learning
The learning is based on time difference Hebbian learning:

𝐖[ାଵ] = 𝐖[] + 𝜂൫𝐲[] − 𝐲[]൯൫𝐱[] + 𝐱[]൯

 (2)

Where is a small positive learning parameter, W is the
weight matrix, x[0] is the initial pattern, and y[0] is the first
generated representation; V is updated using an equivalent
function. For learning, the cycle index, c, is set to 1
throughout the simulations.

Simulation I – Properties of Generated
Randomness

As discussed in the literature, while randomness is on a
spectrum, it may be possible for human randomness to be
almost entirely unbiased under specific instructions (Ayton et
al., 1989; Nickerson, 2002; Warren et al, 2018). Thus, the
first step was to make sure that regardless of the input, it was
possible for the network to reliably generate a random output;
a process akin to computer pseudo-random generators. More
precisely, we studied the capacity of the network to generate
values between 0 and 1. If the proportion of 1s and 0s are
equal, we would get an unbiased binomial distribution. For
the latter, a sum of greater than 50% could represent decision
A and less than 50%, decision B.

Method
Inputs Three different sets of inputs were used: orthogonal,
randomly generated (correlated) and uppercase letter
(correlated) patterns were tested to evaluate their effect on the
generated patterns (Fig 2). For comparison purposes, they
were all the same size of 7x7 pixels, giving 49 dimensions.
Orthogonal and random patterns were also tested with higher
dimensionality. Black pixels were assigned a value of 1 and
white pixels a value of 0.

Figure 2: Examples of different input patterns of 49
dimensions.

4307

Parameters To assess if the dimensionality, m, of the
generated representation had an impact on its variability, the
number of y-units varied from 49 to 196. The weights were
initialized between [-0.1, 0.1] for each trial and the learning
rate () was set to 1/m. Finally, in some conditions, binary
discretization of the outputs was performed. The error was
calculated by measuring the average of the squares of the
errors, Mean Squared Error (MSE), and minimum MSE was
set to 10-8.

Learning Procedure The learning was accomplished as
follows:
1. Selection of input patterns (Fig. 2)
2. Computation of the output (Eq. 1) and update of the
weights (Eq. 2).
3. Repetition of 1-2 until the minimum MSE is reached.

Orthogonal Patterns
The network was first tested under optimal patterns condition
offered by orthogonality. By using such patterns, it controls
any interactions the patterns may have that would be reflected
on the generated representation by the network. This situation
is closer to the condition in which pseudo-random generator
is used, where the current draw is independent from the
previous. In addition, orthogonal inputs can be used to
represent one-hot encoding (Cohen et al., 2013), which is still
commonly used today (Park et al., 2023; Ranasinghe et al.,
2021). More precisely, 250-dimension orthogonal patterns
with different levels of active pixels (value of 1) were tested
(1, 2, 5, 10, 25, 50, 100). See Figure 2a for an example of 8-
pixel 49-dimension patterns. The number of patterns learned
varied from 1 up to 50. Each condition was repeated 100
times and average performances were reported.

Finally, the type of distribution generated by the network
was assessed. Thus, the network was trained using n-
orthogonal patterns. Recall was performed where the output
with the maximum sum was selected. Learning was then
repeated for 200 trials to have a high sample. A chi-square
was applied to measure the departure of the final distribution
with the expected multinomial one.

Results As shown in Figure 3, the distribution of orthogonal
inputs across 200 trials is not different than the theoretical
uniform distribution either for the binomial, n = 2, 2(1, 199)
= 0.09, p = 0.76 (Fig. 3a) or the multinomial one, n = 5, 2 (1,
199) = 2.19, p = 0.7 (Fig. 3b).

Figure 3: Binomial and multinomial distribution of
orthogonal patterns, with the expected percentage.

Figure 4: Orthogonal patterns with different pixels in input
patterns.

Additionally, these trials showed that with fully orthogonal

patterns, the number of pixels in the input had a large effect
on the average summation percentage of the random outputs
(see Fig. 4). The more pixels in the input pattern, the higher
the sum. We tested this with higher dimensionality and more
input patterns, and the trend continued. With the binary
discretization applied (threshold), the resulting outputs are
around 50%, but this increases with the dimensionality of the
input patterns, so it is not stable.

Random and Structured Correlated Patterns
In a more natural setting, input patterns are correlated;
whether randomly generated (Fig. 2b) or structured (like
uppercase letters; Fig. 2c). The binary random patterns were
randomly generated from a discrete uniform distribution over
[0,1], resulting in an average of 50% active pixels per pattern.
Like the previous section, the number of inputs patterns was
varied to assess the behavior under various memory loads and
the distribution was assessed by a chi-square.

Results When using structured patterns, the resulting
distribution with the highest sum is not uniform 2 (1, 200) =
0.09, p = 0.76, as shown in Figure 5. The number of times the
letter “B” is selected is significantly higher than the other
letters. This is not surprising since the letter “B” has the
smallest Euclidian distance from the average of all the five
letters.
Another major difference from the orthogonal trials is that the
number of learned inputs has an effect on the average sum of
the generated patterns. As the number of input patterns
increases, the raw summation of the outputs increases (see
Fig. 6). The observed generated behavior depends on the
number of patterns learned and not the memory load itself.
For example, 10 patterns of 98 dimensions (memory load of
10%) will have around the same proportion of 1s as 10
patterns of 196 dimensions (5%). As the sum depends on
several different factors like the dimensionality of the inputs,
number of inputs, and use of the threshold function, it is
difficult to determine stable relationships between these
variables to have a predictable outcome. There was no
difference between the random correlated patterns and the
structured correlated (uppercase letter) patterns.

4308

Figure 5: Distribution of letter patterns, with the expected
percentage.

Figure 6: Random inputs with and without the threshold
function applied, 3 different dimensions.

Discussion
The results from the orthogonal patterns task confirmed the
hypothesis that by using distributed representations in an
ANN, it is possible to create uniformly distributed random
representations and as such could replace pseudo-random
generator when modeling cognitive processes such as
decision processes. This process is akin to sampling with
replacement. For example, if we want a system to perform
Task X 80% of the time and Task Y 20% of time, one can use
5 orthogonal patterns where patterns 1 to 4 will represent
Task X and pattern 5 will represent Task Y (Figure 3b).

However, with the correlated pattern trials, the results were
more varied. With certain dimensions and only a single letter
as the input pattern, it is possible to have an equal proportion
of 1s and 0s. When more input patterns are used, the threshold
will induce a bias towards 1, while the straight sum towards
0. This is not ideal for many situations where more than one
input is used. Some patterns are more likely to be chosen than
others because they have a smaller Euclidean distance from
the average of all patterns than others.

On the other hand, sometimes a biased distribution is
exactly what is desired. This can be seen as a better
representation of random decisions in the real world, where
we may be inherently more likely to be biased towards certain
decisions even before any learning has taken place, based on
our attention (Orquin & Loose, 2013), what our goals are and
the salience of the stimuli (Berridge & Robinson, 2003), or
some other internal or external bias (Wittmann et al., 2008).

As would occur in the real world, we can always change
our behaviors, regardless of our original internal biases. The
next simulation presents such implementation of how
decision can be modified even under initial bias.

Simulation II – Biasing the Random Outputs
As seen in Simulation I, when orthogonal input patterns are
used, the network can give a series of uniformly distributed
output patterns (sampling with replacement). In some
situations, we would like to have the network to perform
sampling without replacement, where the network could
exhaust a list of patterns without repeating any previous one.

Another situation could be that it may not be possible to
use orthogonal patterns. In the real world, it is more likely
that there will be some overlap between possible decisions to
be made. As seen in Figure 5, this results in a biased
distribution and can be seen as analogous to our internal
biases, where we are more likely to select some decisions
over others. In both situations, by introducing a selection
parameter on the output, it will be possible to generate time
series and modify any initial bias. These two conditions were
tested in Simulation II: Desired Output and Sampling without
Replacement.

Desired Output Condition
For this condition, a series of correlated letter patterns (Fig.
2c) are learned by the FEBAM. These input patterns
represent different possible decisions/behaviors. The desired
decision is established ahead of time. During each trial, the
learned letter inputs are sent for recall and the FEBAM recalls
the corresponding random representation for each letter. The
sum is then taken from each of these patterns and the one with
the highest sum is “chosen”. If we want a different outcome,
we simply multiply the output by a value between [0 and 1[
(ex. 0.1) before computing the sums. The effect of this
selection parameter () can be expressed by the following:

𝐨 = 𝛃 𝒚

(3a)

s = Max(𝐨) (3b)

Where yi represents the output pattern i, , the selection
parameter, j the given pixel (j…49), o, the outputs of all
patterns, and s, the resulting selected pattern.

This selection parameter is tailored for each letter. The
values of are initialized at 1 for each pattern (which will
have no effect on the first decision). After each recall, the
selection parameter can be decreased if needed by a constant,
. Finally, the parameter () has a lower limit at 0, which
results in removing this particular choice as a possible
outcome. The strength, , of the gain can be altered to change
how fast or slow the model changes responses. For the
condition of correlated pattern can be set to value closer to
0 for slow transition:

𝛃[௧ାଵ] = ቊ
0, 𝑖𝑓 (𝛃[௧] − 𝜀) < 0

𝛃[௧ାଵ], 𝐸𝑙𝑠𝑒

(4)

For example, if we have an input list “A, B, C, D, E” and

the desired letter is A, the network will output representations
for each letter. The one with the highest sum will be selected.

4309

If the corresponding letter is any but A (such as E), the gain
value will be decreased. Therefore, for the next recall the sum
of E should be lowered until a new letter is selected (see Fig.
7, “Incorrect Response”). When the correct output is selected,
then the selection parameter remains the same (see Fig. 7,
“Correct Response”).

Figure 7: Flowchart for the Desired Output Condition.

Parameters and Learning Procedure The network
parameters and learning procedure were the same as in
Simulation I. A series of up to 10 correlated letter patterns
were selected (Fig. 2c). Various levels of gain strength were
tested, and a value of (=) 0.05 was set for slow and (=) 0.5
for fast response changing. The effect of the selection
parameter was investigated while finding the desired output.
Each condition was tested using different subsets of letters.

General Selection Procedure
1. Learning of the patterns according to the procedure in
Simulation I.
2. Each learned letter pattern is sent to the FEBAM to obtain
its corresponding representation (Eq. 1).
3. Each representation is then modified using Eq. 3 to select
the letter associated with the largest sum.
4. If that chosen letter is the desired one, then the selection
parameter remains the same, if not, it is decreased according
to Eq. 4.
5. 2-4 are repeated until the maximum number of trials has
been reached.

Results The results show that it is possible to bias towards a
certain letter. By using the selection parameter, each time a
letter is chosen its corresponding sum may be modified,
allowing for the desired letter to be chosen repeatedly. When
the desired letter is changed, the network is able to inhibit the
recall of the previous letter and move to the next one until it
chooses the correct one.

The strength of the gain on the selection parameter has an
impact on how many trials it takes to stabilize on the correct
response. For example, if the desired output was letter A
followed by letter C, when the selection parameter was
decreased by a small amount (0.05; Fig. 8a), it takes almost
11 trials for selecting A. Conversely, when the selection
parameter is decreased with greater quantity (0.5; Fig. 8b) it
took only 4 trials for selecting A. It was successful in both

conditions. It is also possible for the network to restabilize on
previously learned letters, as seen in Figure 9.

Each time a different decision is made it will slowly
decrease the selection values. Therefore, at some point the
values will all be zero and the network will then always select
the first letter in the series (see Fig 10a). One can always reset
the parameter to initial values (= 1) when = 0 and start a
novel decision stream. However, if the decrease in the
selection parameter is slow, it will have enough trials to
exhaust the list of long time series, even with a lot of
fluctuations (see Fig. 10b).

Figure 8: Difference in slow vs. fast selection parameter
for desired letter A for 25 trials and C for 25 trials.

Figure 9: Chosen letter over 100 trials, where the
desired letter is F for 25 trials, then G, I, and G again.

Figure 10: Chosen letter over 250 trials where the desired
letter is changing every 25 trials.

Sampling without Replacement Condition
For this condition, a series of orthogonal or correlated letter
patterns are learned by the FEBAM (Fig. 2a and 2c). The goal

4310

Figure 11: Flowchart for the Sampling without Replacement

Condition.

is to select each of these patterns once, which is akin to list
exhaustion or random draw without replacement. Since each
pattern should be selected only once, will be set higher than
in the previous condition (between 0.5 and 1) to ensure that
selected patterns will not be selected again (Fig. 11).

Parameters and Learning Procedure The network
parameters and learning procedure were the same as in
Simulation I. A series of 4 orthogonal (composed of 10 active
pixels) patterns or correlated letters were chosen. The effect
of the selection parameter was investigated while changing
the value after the learning has been accomplished. Each
condition was tested using different subsets of letters.

General Selection Procedure
1-3. Same as the Desired Output Condition.
4. The selection parameter is decreased according to Eq. 4.
5. 2-4 is repeated until all patterns have been selected.
6. 1-5 is repeated 300 times and percentages are computed.

Results With 4 patterns there are a total of 24 (= 4!) different
permutations: 1 = [1 2 3 4], 2 = [1 2 4 3], 3 = [1 3 2 4], …, 24
= [4 3 2 1]. The frequency of each permutation was computed
(Fig. 12) and revealed no difference with the theoretical one
of 4.16ത% (= 100/24) for the orthogonal patterns (𝜒ଶ (1, 299)
= 13.92, p = 0.93). Which is not the case with the correlated
letter patterns, whatever the combination (A to D or E to H),
some permutations have a higher probability of occurrence
than others (Fig. 12), as seen in Simulation I. In both
situations, we observed statistical difference (A-D: 𝜒ଶ (1,
299) = 824, p < 0.01; E-H: 𝜒ଶ (1, 299) = 628, p < 0.01).

Figure 12: Orthogonal and Letter sampling without
replacement trials with theoretical frequency.

Discussion
When orthogonal patterns are combined with FEBAM and
the selection parameter the results showed that random
permutation can be obtained. Each time series will have the
same probability of being selected, making the lists
independent and identically distributed (IID). Of course, if a
particular sequence is desired it is possible for the network to
extract it in the right order. This was shown using a biased
output obtained when using correlated patterns.

Moreover, results show that even if there is a preference in
the output (ex. letter B), it is possible to circumvent this bias
and output the desired behaviour. This provides a possible
neural implementation that supports the studies which argue
that there is bias in human randomness (Croson et al., 2005;
Jokar et al., 2012; Lopez-Parsem et al., 2016).

We show that the network can also produce a series of
outputs with repeating patterns, where the length of the time
series is determined by the strength of the selection
parameter. This bias can shift over time to a different choice
to represent changes in internal bias. The network could even
be tailored to individual preferences by initializing the
selection parameter matrix for each choice to something other
than 1. It could also be modified in function of the task.

In future work, this more plausible implementation of
human randomness could be integrated with different
cognitive models for learning, creativity and problem
solving. For example, by combining this with an existing
neural model for creativity, it could allow the model to break
away from certain patterns, resulting in more creative
decisions and more improvisation (Khalil & Moustafa,
2022). Using randomness can help us break free from fixed
patterns of thinking to discover novel solutions. Thus, it is
important to include an accurate model of human randomness
when modelling any of these cognitive processes.

This ANN model for pseudo-random sequence generation
adds another option to existing recurrent neural network
methods that does not rely on the addition external algorithms
(Jeong et al., 2018; Man et al., 2021; Tirdad et al., 2010),
orthogonal weight matrix initialization (Elyada et al., 2005;
Hughes, 2007), randomized inputs (De Bernardi et al., 2019),
or backpropagation (Desai et al., 2012). It also offers an
alternative to the deep neural networks that are commonly
used in reinforcement learning (Almardeny et al., 2022; Park
et al., 2022; Pasqualini et al., 2020). As an added property,
our model was able to go beyond single digits and generate
distributed arrays of randomness.

Conclusion
This study provides a more accurate implementation of

human randomness using an ANN. The results suggest that
the model can generate unbiased distributed random
representations when orthogonal inputs are used. The model
can be biased towards different choices, which allows us to
model human randomness even when it is not as random as it
may seem. This more biologically plausible representation of
internal randomness could be used to create more realistic
cognitive models of random and biased decisions.

4311

Acknowledgements

We acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC).

References

Almardeny, Y., Benavoli, A., Boujnah, N., & Naredo, E.
(2022). A reinforcement learning system for generating
instantaneous quality random sequences. IEEE
Transactions on Artificial Intelligence.
https://doi.org/10.1109/TAI.2022.3161893.

Ayton, P., Hunt, A. J., & Wright, G. (1989). Psychological
conceptions of randomness. Journal of Behavioral
Decision Making, 2(4), 221–238.
https://doi.org/10.1002/bdm.3960020403.

Berridge, K. C., & Robinson, T. E. (2003). Parsing reward.
Trends in Neuroscience, 26, 507-512.
https://doi.org/10.1016/S0166-2236(03)00233-9.

Blum, L., Shub, M., & Blum, M. (1986). A simple
unpredictable pseudo-random number generator. SIAM
Journal on computing, 15(2), 364-383.
https://doi.org/10.1137/0215025.

Chartier, S., Giguere, G., Renaud, P., Lina, J.-M., & Proulx,
R. (2007). FEBAM: A feature-extracting bidirectional
associative memory. 2007 International Joint Conference
on Neural Networks, Orlando, FL, USA, 1679-1684.
https://doi.org/10.1109/IJCNN.2007.4371210.

Church, K., Ross, M., & Chartier, S. (2020). Using a
Bidirectional Associative Memory and Feature Extraction
to model Nonlinear Exploitation Problems. Proceedings of
the International Conference on Cognitive Modelling, 37-
43.

Cohen, J., Cohen, P., West, S., & Aiken, L. (2013). Applied
multiple regression/correlation analysis for the behavioral
sciences. Routledge.
https://doi.org/10.4324/9780203774441.

Croson, R., & Sundali, J. (2005). The Gambler’s Fallacy and
the hot hand: Empirical data from casinos. Journal of Risk
and Uncertainty, 30(3), 195–209.
https://doi.org/10.1007/s11166-005-1153-2.

De Bernardi, M., Khouzani, M. H. R., & Malacaria, P.
(2019). Pseudo-Random Number Generation Using
Generative Adversarial Networks. Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, 18, 191-200.
https://doi.org/10.1007/978-3-030-13453-2_15.

Desai, V., Ravindra, P., & Dandina, R. (2012). Using layer
recurrent neural network to generate pseudo random
number sequences. International Journal of Computer
Science Issues, 9(2), 324-334.

Elyada, Y. M., & Horn, D. (2005, September). Can dynamic
neural filters produce pseudo-random sequences? In
Artificial Neural Networks: Biological Inspirations-
ICANN 2005: 15th International Conference, Warsaw,
Poland (pp. 211-216). Springer Berlin Heidelberg.
https://doi.org/10.1007/11550822_34.

Guseva, M., Bogler, C., Allefeld, C., & Haynes, J. D. (2023).
Instruction effects on randomness in sequence generation.
Frontiers in Psychology, 14, 1113654.
https://doi.org/10.3389/fpsyg.2023.1113654

Hughes, J. M. (2007). Pseudo-random Number Generation
Using Binary Recurrent Neural Networks Doctoral
dissertation, Kalamazoo College.

Jeong, Y. S., Oh, K., Cho, C. K., & Choi, H. J. (2018,
January). Pseudo random number generation using LSTMs
and irrational numbers. In 2018 IEEE international
conference on big data and smart computing (BigComp)
(pp. 541-544). IEEE.
https://doi.org/10.1109/BigComp.2018.00091.

Jokar, E., & Mikaili, M. (2012). Assessment of Human
Random Number Generation for Biometric Verification.
Journal of Medical Signals and Sensors, 2(2), 82–87.

Kanerva, P. (2009). Hyperdimensional Computing: An
introduction to computing in distributed representation
with high-dimensional random vectors. Cognitive
Computation, 1(2), 139–159.
https://doi.org/10.1007/s12559-009-9009-8.

Khalil, R., & Moustafa, A. A. (2022). A neurocomputational
model of creative processes. Neuroscience &
Biobehavioral Reviews, 137, 104656.
https://doi.org/10.1016/j.neubiorev.2022.104656.

Lopez-Persem, A., Domenech, P., & Pessiglione, M. (2016).
How prior preferences determine decision-making frames
and biases in the human brain. ELife, 5, e20317.
https://doi.org/10.7554/eLife.20317.

Malik, K., Pulikkotil, J., & Sharma, A. (2021). Comparison

of pseudorandom number generators and their application
for uncertainty estimation using Monte Carlo Simulation.
MAPAN, 36(3), 481–496. https://doi.org/10.1007/s12647-
021-00443-3.

4312

Man, Z., Li, J., Di, Z., Liu, X., Zhou, J., Wang, J., & Zhang,
X. (2021). A novel image encryption algorithm based on
least squares generative adversarial network random
number generator. Multimedia Tools and Applications, 80,
27445-27469. https://doi.org/10.1007/s11042-021-10979-
w.

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister:

a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1), 3-
30. https://doi.org/10.1145/272991.272995.

Nickerson, R. S. (2002). The production and perception of

randomness. Psychological Review, 109(2), 330–357.
https://doi.org/10.1037/0033-295X.109.2.330.

Orquin, J. L., & Loose, S. M. (2013). Attention and choice:

A review on eye movements in decision making. Acta
psychologica, 144(1), 190-206.
https://doi.org/10.1016/j.actpsy.2013.06.003.

Park, J., Hong, J. P., Kim, H., & Jeong, B. J. (2023). Auto-

Encoder Based Orthogonal Time Frequency Space
Modulation and Detection with Meta-Learning. IEEE
Access, 11, 43008-43018.
https://doi.org/10.1109/ACCESS.2023.3271993.

Park, S., Kim, K., Kim, K., & Nam, C. (2022). Dynamical

pseudo-random number generator using reinforcement
learning. Applied Sciences, 12(7), 3377.
https://doi.org/10.3390/app12073377.

Pasqualini, L., & Parton, M. (2020). Pseudo random number

generation: A reinforcement learning approach. Procedia
Computer Science, 170, 1122-1127.
https://doi.org/10.1016/j.procs.2020.03.057.

Ranasinghe, K., Naseer, M., Hayat, M., Khan, S., & Khan, F.

S. (2021). Orthogonal Projection Loss. In Proceedings of
the IEEE/CVF international conference on computer
vision (pp. 12333-12343).

Rolon-Mérette, T., Rolon-Mérette, D., & Chartier, S. (2018).

Generating Cognitive Context with Feature-Extracting
Bidirectional Associative Memory. Procedia Computer
Science, 145, 428-436.
https://doi.org/10.1016/j.procs.2018.11.102.

Rolon-Mérette, T., Rolon-Mérette, D., & Chartier, S. (2023,

May). Towards Binary Encoding in Bidirectional
Associative Memories. The International FLAIRS
Conference Proceedings, 36(1).
https://doi.org/10.32473/flairs.36.133365.

Tirdad, K., & Sadeghian, A. (2010, July). Hopfield neural
networks as pseudo random number generators. In 2010
Annual meeting of the North American fuzzy information
processing society (pp. 1-6). IEEE.
https://doi.org/10.1109/NAFIPS.2010.5548182.

Warren, P. A., Gostoli, U., Farmer, G. D., El-Deredy, W., &

Hahn, U. (2018). A re-examination of “bias” in human
randomness perception. Journal of Experimental
Psychology: Human Perception and Performance, 44(5),
663–680. https://doi.org/10.1037/xhp0000462.

Wittmann, B. C., Daw, N. D., Seymour, B., & Dolan, R. J.

(2008). Striatal activity underlies novelty-based choice in
humans. Neuron, 58(6), 967-973.
https://doi.org/10.1016/j.neuron.2008.04.027.

4313

