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1. LEVELS AND FUNCTIONS OF PLANNING

Planning consists of identifying activities and then selecting and ordering them so that they
can be executed in the most efficient fashion. Identifying activities means that a project design
must be understood in order to be broken down into manageable parts, where each part can be
constructed separately yet tie into the project as a whole.

Presumably, the time and effort spent on planning will be offset by time gained in
executing the planned work more efficiently. In principle, one could spend too much time on
planning, but in the practice of construction engineering and management this seldom is the
case. Resources engaged in performing construction work cost hundreds if not thousands of
dollars per hour, so savings resulting from increased productivity through better planning
easily offset costs associated with creating those plans. We simply do not plan enough. Better
planning pays!

The goal of all planning is to make the construction process more manageable. We
therefore use the term production planning to stress that a construction process as a whole is
to be managed. Similarly, Melles and Wamelink (1993) talk about production control in
construction. Production planning can be done at various levels of detail and we propose that
at least three such levels be used:

1. Project Planning
2. Look-ahead Planning
3. Commitment Planning
While it is common practice to distinguish various levels of planning, the terms used here

(especially look-ahead and commitment planning) refer specifically to planning methods that
use lean construction techniques effectively.

1.1.  Project Planning

For any one project, multiple interpretations of the design are possible. Multiple
decompositions therefore exist, though, especially in more abstract plans, the division of work
into parts is largely governed by the nature of the constituent components and their functional
or structural role (e.g., concrete footings vs. structural steel). Prevailing industry practices
regarding the division of work among specialty contractors (e.g., excavation, mechanical,
electrical, vs. roofing) also help delimit the scope of activities. Activities may be further
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specified in terms of their duration (in project plans, these will be on the order of weeks or
months) as well as major resources involved (e.g., pile-driving equipment, cranes). Project-
level activities often relate to contract documents, for instance, work that is subcontracted out
may be represented as a single activity with no further detail on resources needed.

The sequencing of project-level activities is driven to a large extent by technological
constraints. For instance, if one element supports another, then the support is usually built first
(Dzeng and Tommelein 1997 give a comprehensive list of such constraints).

In project-level planning, the critical-path method (CPM) is used to calculate the shortest
project duration given a set of activities with duration and precedence relationships as input.
The method performs a forward/backward pass calculation to compute schedule data
including the earliest/latest start of each activity and also their float. Activities with no float
are said to be critical.

A project-level plan may have a set start and finish date (e.g., ground breaking and the
completion date of construction as defined by the owner who wants to move into the facility
at that time). These dates define the maximum project duration, which may or may not
correspond to the project duration calculated using CPM. When the calculated and the owner-
defined project duration are not one and the same, alternatives to the original plan must be
generated that meet the owner's objectives.

The schedule resulting from these CPM calculations is called a master schedule. It
describes all work to be done on a project, albeit in abstract terms. At the master-schedule
level, there is virtually no repetition of activities; all activities are one of a kind. Master
schedules are tools for executive-level management to describe in a nutshell what type of
construction activities will take place during project execution. They may support long-term
coordination or specification of terms of payment. Since providing more detail on activities
far into the future is difficult to do accurately for the entire duration of the project, no more
detail is provided or desired at this level.

1.2. Look-ahead Planning

Because project-level plans are so abstract, they are not useful to field superintendents and
foremen who plan which work will actually be performed in the next one or several weeks to
come. Instead, they use bar charts reflecting work to be done in a look-ahead time frame,
which often spans three or four weeks. This shorter time span means that fewer project-level
activities will be included. In turn, look-ahead plan activities are detailed to describe the
actual construction process that will be used (see for instance Odeh 1992 and Tommelein et
al. 1994 for a description of integrated project- and process planning). This includes
specifying methods and required resources (e.g., a crew of 3 iron workers, a 20 T crane, and
structural steel for the first floor) so that look-ahead plan activities describe assignable and
controllable pieces of work. Because project-level activities are broken down into smaller
pieces, look-ahead plan activities tend to be more repetitive and they can be sequenced in
several alternative ways. Note however that at this planning stage, resources are
characterized, but they are not specific yet. The total quantity of resources available on the
project, as well as capacity constraints are taken into account at this stage, but no individuals
are named.

Look-ahead planning serves multiple purposes (Ballard 1997). First, it helps shape work -
flow in the best achievable sequence and at the fastest possible rate for meeting project -

objectives that are within the power of the organization at each point in time. Second, it makes

the planner think through activities at a level of detail at which labor and related resources can -
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be made to match work flow and work can be assigned to crews. Third, it helps identify long
enough in advance which resources must be available at the site or arrive in the near future for
that work to be executable. Using the proper screening procedures, this results in a regularly
updated backlog of assignments for each frontline supervisor and crew. Fourth, it allows for
highly interdependent work to be grouped together, so the work method can be planned for
the whole operation. Fifth, it helps identify operations that must be planned jointly by multiple
trades.

To understand the use of the look-ahead time frame, consider the day at which the
production plan is updated. If an activity is scheduled to take place in four weeks from that
day and it is unlikely or unknown that all its required resources will be available at its
scheduled time, then that activity should be moved back in the schedule. It should not be
allowed to advance into the third week of the updated look-ahead schedule because there is
only a slim chance that it will constitute a workable assignment two weeks later, when it will
appear in the first week of the then-current look-ahead. Alternatively, the planner may inquire
about resource availability and possibly start pulling (i.e., actively expediting) the resource to
make sure it will arrive in time to meet the activity's need. Deciding which activities should be
allowed into the four-week look-ahead schedule, and which ones should be allowed to move
forward in that schedule, is called screening (explained in more detail later).

Most practitioners using look-ahead schedules today will allow activities to advance in the
schedule unless there is positive knowledge that it cannot be done. In contrast to current
practice, we are advocating that nothing be allowed to advance unless there is positive
knowledge that it can be done. These two are not complementary. In our approach, the look-
ahead time frame helps focus attention on all that will be needed and does so long enough in
advance, so that the planner has time to take corrective action if needed and desirable.

Taking corrective action could mean pulling resources (explained in more detail later) but
it could also mean rescheduling activities. In either case, actions pertain to activities that are
scheduled four or five weeks out, while there is time to have a positive impact on them.
Pulling usually does not instantaneously remedy a problem, as time must be allowed for the
pulled resource to work its way through the supply chain from the point of pull to the point of
demand. Similarly, rescheduling means that the plan will change. The culprit activity gets
delayed but other activities may be re-sequenced and some even move forward in time. If that
is the case, time must be allowed to check the new resource needs against availability and start
pulling if necessary. The appropriate span of the look-ahead time frame will thus depend on
how responsive the supply system is, which is a function of the nature of construction being
performed and the players involved. System characteristics may be determined by asking
questions such as "How easy vs. costly is it to expedite materials?", "Are materials
substitutable by others or are they custom made?", "To what degree can activities be
reshuffled in the plan?”, and "Does the crew have a large workable backlog?".

Look-ahead planning is thus characterized by a look-ahead time frame combined with
screening. When activities are rejected because they fail to meet quality criteria, rescheduling
and pull mechanisms come into play. These will be elaborated on later in this paper. A look-
ahead schedule is to be updated every week: its first week will then be removed from the plan
to become the weekly work plan (see commitment planning) and a week added at the end.

1.3 Commitment Planning

The third level of planning involves assigning specific work to production units (such as
individual crews or named workers as appropriate), determining where exactly they will -
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perform their work, and allocating materials and equipment to them as needed. This is done
using a weekly work plan, prepared a few days prior to the start of the corresponding week.
The weekly work plan may also be complemented by a dynamic layout plan to depict which
crew, materials, and equipment will be where at what time (Tommelein and Zouein 1993).

Ballard termed this assignment task commitment planning in deliberate contradiction to
the belief that commitments are made at the master schedule and contract level (Ballard and
Howell 1994). In current practice, it is all too often the case that managers assign crews to do
work that simply cannot be done for various reasons (e.g., incomplete prerequisite work, lack
of materials, unavailability of needed equipment). This results in a low rate of completing
work as planned. Productivity is hampered because crews are forced to be idle and work gets
done out of sequence, and this, of course, defeats the very purpose of planning.

1 WEEK PLAN
PROJECT: Pilot * FOREMAN: PHILLIP
ACTIVITY DATE: 9/20/96
Est Act Mon Tu Wed Thurs Fri Sat  Sun PPC REASON FOR VARIANCES
Gas/F.O. hangers O/H "K" X0 | 300K | | 0% | Owner stopped work
{48 hangers) Sylvano, Modesto, Terry (changing elevations)
Gas/F.0. risers to O/H "K" XXXX Ixxxx X000 12000 0% | Same as above-worked on
(3 risers) Sylvano, Mdesto, Terry backlog & boiler blowdown
36" cond water "K" 42' XX O | 000K 100%
2-45 deg 1-90 deg Charlie, Rick, Ben
Chiller risers (2 chillers wk.) XK | XXX | 20K 20% |Matl from shop rcvd late Thurs.
Charlie, Rick, Ben Grooved couplings shipped late.
Hang H/W O/H “J" (240'-14") X DOXX 1X000C XXX 30000 | X000 100%
Mark M., Mike
Cooling Tower 10" tie-ins (steel) DOXX {XXXX OOXX oo 1000 | 2000k 70% | Some work in next week's
(2 towers per day) Steve, Chris, Mark W. sched. was included this week.
(Weld out CHW pump headers XXX X0 PO X006 | 200K | X000¢ 100%
"J" mezz. (18) | Luke
Weld out cooling towers {12 towers) XXX [ XXXX [DOKX XXX oK | 0o 60% | Eye injury. Lost 2 days
Jeff welding time
|F.R.P. tie-in to E.T. (9 towers) 50% 000 OXX [ XXXX 200 00X | Xxxx 100%
Firt, Packy, Tom
WORKABLE BACKLOG
Boiler blowdown-gas vents
-rupture disks

Figure 1: 9/20/96 Weekly Work Plan

Commitments by production units to specific activities and tasks are often made weekly.
Weekly work plans are effective when they meet specific quality requirements for definition,
soundness, sequence, size, and learning.

1. Definition: Are assignments specific enough so that the right type and amount of
materials can be collected, work can be coordinated with other trades, and it is
possible to tell at the end of the week if the assignment has been completed?

2. Soundness: Are all assignments workable? Are all materials on hand? Is design
complete? Is prerequisite work complete? Note that some make-ready work will
remain for the foreman to do during the week, e.g., coordination with trades
working in the same area, movement of materials to the point of installation, etc.
Nonetheless, the intent is to do whatever can be done to get the work ready before
the week in which it is to be done.

3. Sequence: Are assignments selected from those that are sound in priority order
and in constructability order? Are additional, lower-priority assignments identified
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as workable backlog, that is, are additional quality tasks available in case
assignments fail or productivity exceeds expectations?

4. Size: Are assignments sized to the productive capability of each crew or subcrew,
while still being achievable within the plan period?

5. Learning: Are assignments that are not completed within the week tracked and
reasons identified?

Quality assignments shield production from work-flow uncertainty. Failure to make quality
assignments exposes production units to delays looking or waiting for resources, to multiple
stops and starts, and to inefficient construction sequences. Even more destructive to
productivity is failure to match work load to labor capacity, which is consistently possibly
only by managing work flow through matching resources with production tasks that are
otherwise ready. The principles for shielding production from uncertainty were described
more fully in Ballard's presentation titled "Shielding Production" and are therefore not further
elaborated on here.

2. LOOK-AHEAD PLANS IN THE SUPPLY CHAIN

Look-ahead planning can be performed by any production unit, i.e., any resource that sets a
pace for production (e.g., a crew or a machine operator). To illustrate how look-ahead plans of
several production units along a supply chain relate to one another, consider the process of
constructing an industrial process facility, such as an oil refinery, that involves installing
thousands of unique pipe spools. This process is here characterized as comprising two chains
of activities: pipe spools are designed and fabricated off-site while work areas are prepared on
site. After spools have been shipped to the site, these chains merge upon the installation of
spools in their designated areas.

Pipe spools are fabricated off-site according to the availability of design information, the
fabricator's plant production capacity, etc. Individual tags denote that each spool has unique
properties and each has a designated destination in the facility under construction as shown in
the project documents. Spools are subject to inspection before leaving the fabricator's plant.
The outcome of the inspection activity is that a spool will be found fit-for-installation with x%
likelihood, and, thus, that there will be a problem with 1 - x% of them. In the latter case, the
fabricator must rework this spool to rectify the problem, prior to shipping it to the project site.

Concurrently with this off-site materials handling process, construction is under way on
site. Crews of various trades must complete their work in each area where spools are to be
hung, prior to spool installation. When a specific set of ready-for-installation spools is
available on site, and all prerequisite work in the matching area has been completed, the
spools can be installed. This yields an area completed, ready for another trade to move into.

Key to understanding the complexity of managing this kind of construction work is
realizing that materials are to be installed in matching sets. It is assumed here that tens of
spools are needed in each area and that each spool is unique: if one is missing, no other one
can be used instead. This management task is made more difficult due to the possible
manifestation of uncertainty, here modeled in terms of variability in the duration of
fabrication and transportation, and the occurrence of rework.

Figure 2 illustrates a process model for this scenario. The symbols used are those from the
STROBOSCOPE computer system for discrete-event simulation (Martinez 1996). Details of
the model have been omitted here but they are given by Tommelein (1997a, b, c).
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LINK LABELS CHARACTERIZED
;‘Aflf;'; AD Area Done RESOURCES
CR Crew TYPE SUBTYPE
o DA Data ATextFile ASpec
o DT Design Team AGraphicFile  ACutSheet
DW Drawing AMaterial ASpool
ERAT OffSiteWork FB Feedback ASpace AnArea
C 50 Adpos 0 OF  Off-site Work ADataPiece  ADatum
o ON On-site Work
> PS Pipe Spool
WA  Work Area
AText AStart { start
File INIT 1\ OnSite
2 g
DT1
Design Design\ ADesignTeam FieldWork
GENERATE 1 Team / INIT 1 GENERATE 85
4 ACutSheet DT2 - 15 AnArea
o
= 3
DW3
AGraphic | ' ASpace| Work
File Area
Dw4
2 APrepCrew ;(E,
INIT 1
GoodBad CRS
Fabricate PS1y /7 ) Prep PrereqWork
Pertpg[3,5,14] Q’ AMaterial , Crew . 10
CJQ‘_‘_; GENERATE \Qoh a ADataPiece CR6
1A / N
AFabCra Spool Y GENERATE 40 AQéum |5
INIT 20 @J AMateria R
Defect Await | PS§| Transport Staged Work
__$ 9 ASpace( Area
Spool Transport Normal(3,1] Spool Read
-,
>
z Q%?’ CONSOLIDATE 10 AMaterial '?;.
9?, CR7 PSg S ooIInArea
Rework AnlnstallCrew Install AD Area
Pertpg[3,5,14] INIT 1 10 Done

AnAreaDone

Figure 2: Pipe-spool Process Model

The off-site supply chain shows design, fabrication, and transportation in sequence, followed
by on-site installation of pipe spools. Assuming that the designer (Design Team), fabricator
(Fab Crew), and installation crew (Install Crew) all create look-ahead plans, Figure 3
illustrates what the relationship among those plans might be. The creation of design
documents for an assigned set of spools might be scheduled one week out on the designer's
look-ahead plan and be estimated to take 2 days. Fabrication of that same set of spools might
be scheduled at the end of the second week out on the fabricator's look-ahead plan, estimated
to take 4 days. Finally, installation of those spools might be scheduled in week 4 on the-
installation crew's look-ahead plan, estimated to take 8 days. The flow of assignments from -
one production unit to the next along the chain is also shown.

This example assumes that other assignments are performed with different priorities by .
each production unit along the supply chain. This typically is the case for production units

© 1997 I.D. Tommelein and G. Ballard. All Rights Reserved. 6of 12




that serve multiple projects simultaneously. Thus, it may not be possible for the assigned set
of spools to flow through the entire sequence at its fastest possible rate. In addition,
uncertainty about the duration for completing an assignment by one unit may cause the next
unit to add a time buffer between the anticipated completion of the assignment by the first and
the scheduled start by the second. This reduces the likelihood of the second being delayed due
to delay of the first—it is shielded from uncertainty—and in effect makes the two processes
more independent, (Howell et al. 1993).

27 Ot 87 3 Nov 97 10 Nov 97 17 Nov 87
DESIGN :

MTW TFSSIMTW TFSS|{MTW TFSS|{MTW TFSS NEEDS
Team1  Job 10 RRvnay ey
Team 1 Spools m-\
Team 1 Job 12 lmmmm]mmm Drawings footings
Carlos Jdob 2 RFI 14
Carlos Job 3 E[I ]:D]]]:D :ED
Carlos Job 4 E

e ——

27 Oct 97 3 N¥I97 10 Nov 97 17 Nov 97
FABRICATE

MTW TFSS MﬁWTFSS MTW TFSSIMTW TFSS NEEDS
FabCrew 1 Job 1 FFFFFFFRRFRREY RFI 4
FabCrew 1  Spools
FabCrew2 Job18 | [Roveveveesy vy Machine Inspection
FabCrew2 Job 9 I]]mm
Maria Job 13 FISSSSN] ARaSNNSSS
Maria Job 2 %

27 Oct 97 3 Nov 97 10 Nov 97 17 Nov 97
INSTALL

MTW TFSS|IMTW TFSS|{MTW TF SIMTW TFSS NEEDS
installCrew 1Job 5 Rty T
InstallCrew 1 Spools W Materials, drawings
InstallCrew 1 Jol; 21 Immmmm
Tony Job 2 m m m
Manuela  Job 3 @ -
Manuela  Job 13 NN NN

Figure 3: Look-ahead Plans for a Sequence of Supply-chain Production Units

3. SCREENING FUNCTION IN LOOK-AHEAD PLANNING

As mentioned previously, screening refers to decision criteria that determine which activities
should be allowed into the look-ahead time frame and which ones should be allowed to move
up in time within that time frame. The quality criteria for shielding production from
uncertainty at the commitment-planning level apply just the same to look-ahead planning, and
they will help in screening. When this is done successfully, look-ahead planning produces and
maintains an inventory of quality assignments, so less shielding will be needed during weekly
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work planning. However, several practical questions arise in this regard and further research
is needed to provide more insight. ‘

Based on data collected to date, there appears to be a lot of uncertainty pertaining to the
definition of activities. Planners may not fully appreciate the complexity and scope of work
they are planning when they compose networks of activities three and four weeks out from the
planning date, so activities are overlooked. Definition may be amended by revelation of some
previously undetected prerequisite work or item of material, sizing may change accordingly,
etc. In addition, unforeseen changes due to outside factors (e.g., an owner changing the
design) may make some activities obsolete while forcing others to be included in the plan,
thereby causing the look-ahead schedule to get fouled up. The rarity of 100% PPC suggests
caution on this point. However, many of the failures may be the result of not trying to do
detailed planning until faced with the grim reality of having to do the task next week or
tomorrow. Accordingly, experimentation is under way with doing first-run studies in the third
week of look-ahead schedules.

4. PuLL MECHANISM IN LOOK-AHEAD PLANNING

Upon execution of a schedule, it is traditionally assumed that all resources required to perform
an activity that is about to start will indeed be available at that activity's early-start time. In
this so-called push-driven approach, each activity passively waits for its resources to become
available and prerequisites to be completed. When some have become available but others
needed at the same time have not, those available will wait in a queue or buffer for the
combination of resources—the set of matching parts—in its entirety to be ready. While it may
be possible to start work with an incomplete set of resources, chances are this will negatively
affect productivity (e.g., Thomas et al. 1989, Howell et al. 1993).

Unfortunately, because of uncertainty in duration as well as variation in execution quality
and dependency logic of activities, schedule delays are bound to occur as construction
progresses. The actual manifestation of that uncertainty will be known only upon plan
execution and therefore must thus be dealt with in real time. At that point, rigorously adhering
to the initial plan may not be the best approach for successful project completion as network
characteristics and resource availability will deviate from those assumed during planning.

In contrast to the push-driven approach, a pull-driven approach supports the urge to finish
partially completed work in the system. Keeping busy by processing just any one of the
resources in the input queue of an activity requiring a combination of resources is insufficient.
To pull means that resources must be selectively drawn from queues—so the activity that
processes them will be busy just the same—but chosen so that the activity's output is a
product needed further downstream in the process, and needed more so than its output using
other resources in the queue would have been.

To implement a pull mechanism, individual resources must have been specified in the
schedule, so that missing ones can be identified early on when schedule delays can still be
prevented. Traditional schedules usually do not show such detail on individual resources but
look-ahead schedules do require it for quality criteria to be applicable to assignments.

In addition, pull mechanisms require selective control over which resources to draw for
any given activity. This selection is driven by information not solely about resources in the
queues immediately preceding the activity under consideration, but also about work-in-
progress and resources downstream (successor activities and queues) in the process.
Resources get priority over others in the queue if they are known to match up with resources .
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already available in queues further downstream in the process. This way, those available
resources will not unduly await their match and be in process for any time longer than needed.

The following illustration of a pull mechanism is based on the pipe-spool supply-chain
model that was presented in section 2. The effect of pulling (Case 3) is contrasted with two
alternative models (Case A and Case B) that use random and predetermined sequencing of
spools, respectively (Table 1).

Table 1: Alternative Sequencing Strategies

CASE DESCRIPTION ' CutSheet WorkArea
DRAW SEQUENCE DRAW SEQUENCE
A Random Sequencing Random FIFO
B Coordinated Sequencing FIFO FIFO
C Pull-driven Sequencing | Priority to spools that match FIFO
area(s) ready

The three models were derived from the same basic template that was crafted to illustrate the
occurrence of various kinds of uncertainty in construction processes. Some industry data was
obtained to estimate orders of magnitude for activity durations and percent rework (Howell
and Ballard 1995). Some uncertainty was not modeled (OffSiteWork is assumed to be
complete and thus all Specs are available at time 0; FieldWork results in all WorkAreas being
available at time 85) so as to not complicate interpretation of the simulation results.
Obviously, modeling uncertainties further upstream in the off- or on-site activity chains and
including those regarding Design, PrereqWork, and Install will further exacerbate the effects
described below. The basic model simulates the installation of 600 pipe spools in 15 areas; 40
spools are designated to each area.

The models differ from one another in two ways: (1) they use a different order in which to
draw resources from the CutSheet queue (see Table 1), and (2) only Case C includes the
Feedback queue, the Update activity, and links FB1, FB2, DW3, and DW4 (see Figure 2).
Other draw sequences could have been implemented and their impact studied on productivity,
project completion, etc. Readers interested in reproducing the outputs presented here or
running other scenarios can obtain the source code from the authors.

Cases A and B reflect two extremes in degree of pre-construction planning. Figure 4
illustrates the results of their computer-based simulation. Case A reflects total lack of
coordination. CutSheets (or Spools) and WorkAreas are processed in an order independent of
one another. Thus, the likelihood for mismatches to occur at installation time is high. This
leads to a huge build-up of spools on site waiting for the areas where they are to be installed
to open up, and vice versa. However, when installation finally starts, it progresses at its fastest
possible rate.

Case B describes perfect coordination. It is an idealized case, which, for mdny reasons
will be impossible to achieve in reality. CutSheets 1 through 40 go to fabrication before 41
through 80, etc. Similarly, Area 1's prerequisite work is performed prior to Area 2's, etc. This
results in minimal space needed to stage spools on site, though some spools will accumulate
due to asynchrony of the two activity sequences, and uncertainty and defects in their
activities.
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Case C augments Case A with a pull mechanism. CutSheets are first processed in random
order relative to work areas, but as soon as areas are ready for spool installation, the
CutSheet's priorities are updated with that feedback and pulled to the site. Here, again,
relatively few spools accumulate on site and the project duration remains fairly short.
However, there is a penalty in terms of field productivity. Fortunately, this can be improved
by ordering the crew to start later, when more spools are on site, so they can work at their
fastest possible rate.
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Figure 4: Percent Complete vs. Time and Number of Resources vs. Time
for Specs, WorkArea, CutSheet, StagedSpool, WorkAreaReady, and AreaDone Queues for
Random, Coordinated, and Pull-driven Sequencing

The effects of pulling on the number of spools accumulating at the site and on the completion

time of the project are indeed quite dramatic. Note that the pull mechanism presented here i is

not even the most optimal one for this system. As shown, feedback on the completion of work
areas is relayed only after those areas have been completed and are ready for installation
work. Instead, feedback could have been relayed earlier on in anticipation of area completion
while also taking into account the time it will then take the pulled spools to be fabricated and
shipped to the site. Additional pull links could be included, relaying progress data from on-
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site to off-site and vice versa. Determining the proper pull mechanisms is a key function of
production system design. As the example has illustrated, system design can be aided by
computer-based simulation of the construction process.

5. SUMMARY

This paper presented three levels of production planning of which two, namely look-ahead
planning and commitment planning, use lean construction techniques effectively. The paper's
specific focus was on look-ahead planning, which involves planning based on a four-to-five
week time horizon using screening, pulling, and rescheduling. A computer-based simulation
of an example pull mechanism was included.

While pulling is an effective technique to expedite resources, the need for it can be
minimized when one succeeds in setting up an integrated, real time, and transparent
production planning system. This would allow upstream suppliers to adjust their schedules to
downstream needs, without having to wait for a pull signal. In turn, this would allow suppliers
to get a jump on demand, so they would be better prepared to respond to pull signals when
they do arrive. Pull signals could be like kanban cards that say "deliver me x". In construction,
we are still far removed from having such systems in place but establishing them would serve
our industry well in its goal to achieve lean production.
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