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Abstract of the Thesis

Modern Models for Learning Large-Scale Highly

Skewed Online Advertising Data

by

Qiang Zhang

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Ying Nian Wu, Chair

Click through rate (CTR) and conversation rate estimation are two core prediction

tasks in online advertising. However, four major challenges emerged as data sci-

entists trying to analyze the advertising data - sheer volume, the amount of data

available for mining is massive; complex structure, there is no easy way to tell

what factors drive a user to click an ad or make a conversion and how the factors

interacted with one another; high cardinality for categorical variables, features like

device id usually have tons of possible values which will lead to very sparse data;

severe skewness in response variable with the majority of the users not clicking the

ad. In this paper, I will make a comprehensive summary of the state-of-art ma-

chine learning models (decision tree based, regularized logistic regression, online

learning, and factorization machine) that are often used in the industry to solve

the problem. Insights and practical tricks are then provided based on a wide range

of experiments conducted on multiple data sets with different characteristics.
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CHAPTER 1

Introduction

Online advertising, also called online marketing, is a form of marketing and ad-

vertising which uses the Internet to deliver marketing messages to consumers.

Display, search engine, social media marketing, email and recently mobile are the

most common channels for online advertising. It involves both a publisher (usu-

ally the website owner) and an advertiser (who wants to sell a product). The

advertiser provides the advertisement for the publisher to integrate into its online

content to get impressions.

Various payment options are provided by publishers to suit the needs of dif-

ferent advertiser. Traditionally most popular payment option is called cost per

impression (CPI) or cost per mille (CPM), in which advertiser pays each time an

ad is displayed. It would be an appropriate choice for the advertiser if its goal

is to get a message delivered to the target audience, for example to build brand

awareness. For most advertisers, however, paying for impression are not cost effec-

tive as more impressions do not necessarily generate more revenue. Accordingly,

performance based payment options emerge and become more and more popular

in the industry. Among them, cost per click (CPC) and cost per action (CPA) are

the two most popular options. Under the CPC framework, advertisers only have

to pay when a customer clicked on their ads, whereas CPA gives advertisers even

more assurance by allowing them to pay only if the customers take a predefined

action on their website for example, a registration, a form submission, or even

a purchase and as a result is often considered as the optimal way to buy online
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advertising for advertisers.

An online bidding system that incorporates CPC and CPA paying options

needs to calculate the expected price for impression when deciding which ad to

display, which depends on the probability of the impression being clicked or leading

to a specified action. Estimating these probabilities accurately is crucial for an

efficient marketplace [1].

Machine learning algorithms, especially classification and probability estima-

tion models have long been used to predict the probabilities a certain user clicking

on a candidate ad and also the propensity of a conversion. Among them, decision

tree, logistic regression, random forest, gradient boosted machine are used most

often. However, unlike other simple classification problems, estimating CTR and

conversion rate from a large-scale digital advertising data is not an easy task as

four major challenges are usually faced by modelers who tries to mine the data and

apply machine learning algorithms, and thus requires more customized models to

solve the problem.

In Chapter 2, the major challenges in encountered modeling digital advertising

data are illustrated. Chapter 3 introduces main stream and state-of-art models

used to predict CTR and conversion rate in the industry. Chapter 4 presents the

experiment setups including the data sets along with the software implementations

and parameter tuning methods that are used in the experiments. A wide range of

experiments are conducted in Chapter 5, based on which insights and suggestions

in mining online advertising data will be provided. Conclusion and future work

and are covered in Chapter 6.
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CHAPTER 2

Challenges

2.1 Enormous Size

Given the massive global growth of the Internet and the ever-increasing devel-

opment of the technology, new data becomes available at an astonishing rate.

In 2011, EMC pointed out that the worlds information is doubling every two

years. According to the U.S. Chamber of Commerce Foundation, 90 percent of

the world’s data has been produced in the last two years by 2013. At Facebook,

they have over 750 million daily active users and over 1 million active advertisers

[2]. Consequently, the sheer volume of data itself makes predicting clicks and

conversions very challenging tasks, and scalability becomes the key.

2.2 Complex Problem

The factors that influence a user to click on a banner ad or make a conversion at a

website may come from various aspects and vary person to person, site to site and

time to time. And what makes the problem even harder is that all different factors

not solely affect users behavior in their own way but instead may interact with

each other. Therefore, to accurately predict clicks and conversions, the models

used must be able to capture the complex structures in the data, which can either

be higher order interaction effects between features or other historical information

hidden in the data.
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2.3 High Cardinality

In machine learning, categorical features and numerical features are usually treated

differently, and for digital advertising data, categorical variables tend to dominate.

In predicting conversion rate, for instance, features like the users device, operating

system, browser, most of the demographic features such as city, country, language,

and the website or the mobile app where the user is directed from are all categor-

ical. However, what makes the problem annoying is not the categorical property,

but the high cardinality that comes from those features. For example, the site

name is always the case as an ad is always displayed in a wide range of sites to

reach as much potential customers. High cardinality also naturally happens for

identification variables, like device id, or user id for registered users. Essentially,

high cardinality in categorical variables leads to a very sparse input feature space.

2.4 Severe Skewness

For most advertising channels and platforms, the average CTR or conversion rate

is very low. According to Sizmek’s annual Benchmarks Report, in North America,

the average click through rate (CTR) for standard banners is 0.08% in 2013. In

terms of machine learning, this indicates an imbalanced learning problem in which

the class distribution is highly skewed. As most classification learning algorithms

assume or expect balanced class distributions or equal misclassification costs, the

imbalanced learning problem is concerned with the performance in the presence

of underrepresented data and severe class distribution skewness.
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CHAPTER 3

Models

In this section, four families of machine learning models that are potential to ad-

dress the above challenges are introduced. The first big family are decision tree

based models such as single decision tree, bagging, random forest and gradient

boosting machines. Then logistic regression, especially regularized logistic regres-

sion is introduced, followed by the online learning algorithms including a specific

algorithm of online regularized logistic regression (FTRL-Proximal). Last, a new

model class called factorization machine is presented.

3.1 Decision Tree Based Models

3.1.1 Single Decision Tree

As a non-parametric supervised learning method, decision tree tries to construct

a set of decision rules from the data to predict the target variable. It can be used

either for classification or regression. Though decision trees are accused to be

inaccurate [3] and unstable [4] and not robust to imbalanced class distributions,

the flexibility in handling both categorical and numerical data and its ability to

capture higher order interaction effects make them a good base learner in ensemble

models. Two families of tree based ensemble models are mainly employed in

large scale classification problems bagging (random forest) and boosting trees

(AdaBoost and gradient tree boosting). They differ as to how to build the trees

and how the results of single decision trees are combined, and each has its own
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advantages.

3.1.2 Bagging

The first family of tree-based ensemble model, known as bootstrap aggregating

or bagging, builds multiple trees independently on bootstrap samples of original

training set and then combines the results of single trees by taking the average.

These methods are used as a way to reduce the variance of a single decision tree

by introducing randomization into its construction procedure and is able to give

substantial improvement of performance over unstable learners [5].

3.1.3 Random Forest

When individual trees are similar, which unfortunately happens very often for very

large data sets and balanced class distribution, bagging may not be able to give

a boost. Random forest, as a special version of bagging, provide an improvement

over bagged trees by way of a small tweak that decorrelates the tree. When

growing the trees, not all features are considered at each split. Instead, only

a random subset of features are used in the tree splitting. Such randomness

introduced in the tree building process always give dissimilar trees which help

further reduce the variance of the estimate.

Usually, both bagging and random forest work best with complex if not fully

developed trees. For balanced data, we can keep expanding each single tree with-

out too much concern as the averaging step will cancel out the extremes; for

imbalanced data, however, a second thought is necessary when considering fully

growing a single tree as the probability estimate from a few or even a single sam-

ple may not be able to truly represent the probability in a imbalanced data set.

A recommended practice is to specify the minimum leaf size, say 500, for each

decision tree so that the probability estimates from 500 observations are more

6



reliable and robust.

As all the trees in random forest (also bagging) are independent from one

another, it is possible to take advantage of parallelization in the modeling process

as a way to reduce run time and improve efficiency. In Python, for example,

the scikit-learn package provides such functionality in the random forest modules

to build trees in parallel on multiple cores on a single machine. If a cluster of

machines are available, one can even further reduce the run time.

Whats more, random forest are more robust to the noise in the data compared

to Adaboost [6] which will be metioned in next subsection.

3.1.4 AdaBoost

AdaBoost (short for Adaptive Boosting), introduced by Freund and Schapire [7]

in 1995 , is a different category of ensemble decision tree models as the trees

are built in a sequential order and the final predictor is a weighted sum of each

individual tree. The motivation is to combine several week learner to produce a

powerful committee [3]. The key idea of AdaBoost is applying weights to each

training sample and the weights are updated at each boosting iteration based on

the prediction accuracy of that specific sample in the previous iteration. To be

specific, in the first iteration, all samples are assigned equal weight 1/n where n

is the total number of observation, so the first step simply trains a simple learner

on the raw data. For successive iterations, those instances that are incorrectly

predicted by the boosted model generated at previous step receive an increased

weight while those correctly predicted ones have their weights decreased. As

iterations proceed, instances that are difficult to predict will receive ever-increasing

weights so that the subsequent learners will focus on those observations. The

predictions from all of them are then combined through a weighted sum to produce
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the final prediction:

F (x) = sign

(
M∑
j=1

αjFj(x)

)
(3.1)

where α1, α2, · · · , αM , are computed based on the accuracy of each respective

tree Fj(x) so that more accurate trees will have a higher influence on the final

model.

Unlike random forest where trees are built independently, AdaBoost constructs

trees in a sequential order and consequently they cannot be parallelized. In spite

of this, the efficiency of AdaBoost algorithm is still comparable to random forest

as in most situations, the trees in a boosting algorithm are very shallow if not

decision stamps, which means the effort we spend on building each single tree is

not as much as we spend on building trees in random forest. Another point worth

mentioning is that the depth of a tree defines the level of variable interactions that

can be captured by the boosting model. In general, a tree of depth h can capture

interactions of order h at most. This ensures that the boosting model is still able

to capture the complex structure of the data by modeling the interaction effects.

3.1.5 Gradient Tree Boosting

Though in many applications AdaBoost can improve the accuracy of decision trees

dramatically, its robustness against overlapping class distributions (a very com-

mon characteristic of most click through rate, conversion rate data) and especially

mislabeling of the training data become its major drawback [8]. A gradient boost-

ing model is a generalization of boosting to arbitrary differentiable loss function

that attempts to mitigate these problems. In the application of CTR or conversion

rate prediction, gradient tree boosting, a specific gradient boosting model with a

logit loss is often chosen and often yields promising results.

To understand gradient tree boosting, we can simply learn the general form of

gradient boosting machine with an arbitrary loss function.
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Let’s denote the training set as {(x1, y1), · · · , (xn, yn)}, we want to find a model

G∗(x) that minimizes the loss function L (y, F (x)):

F ∗ = arg max
F

Ex,y [L (y, F (x))] (3.2)

As In practice, only training data is available, we usually find F̂ (x) that minimizes

the average loss function over the training set.

F̂ (x) = arg max
F

n∑
i=1

L (yi, F (xi)) (3.3)

Gradient boosting method fits F̂ (x) as an additive expansion (weighted sum) of

a set of base learners hi(x) from a certain class H . For gradient tree boosting,

hi(x) is constrained to be a single decision tree.

F (x) =
M∑
j=1

βjhj(x) (3.4)

To find F̂ (x), the algorithms usually starts with a constant function F0(x), and

incrementally expands it in a greedy manner:

Fm(x) = Fm−1(x) + arg max
f∈H

n∑
i=1

L (yi, Fm−1(xi)) (3.5)

However, choosing the best F for an arbitrary loss function at each iteration is not

very easy. Friedman, J. H. proposed to solve a much easier problem instead to find

F [9]. The idea is apply the concept of steepest descent where in each iteration,

we simply find an F that most closely approximates the negative gradient of the

loss function L, which is further derived as a so-called pseudo-residual. Having

chosen F , the multiplier γ can be selected using line search. In this way we can

find a weighted sum of base classifiers (decision trees for gradient tree boosting)

as a final model for prediction.

Since gradient tree boosting is also constructed sequentially like AdaBoost,

it shares the advantages of AdaBoost in dealing with online advertising data as

mentioned above. And on top of that, we also pointed out that gradient tree
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boosting is more robust to overlapping class distributions and mislabeling of class

membership in the training data.

Now we can see that ensemble of decision trees provide solutions for dealing

with the complex structure of the online advertising data and are able to give

accurate prediction even when the class distributions is highly skewed. However, a

major concern for decision tree based model is its ability to handle high cardinality

in categorical variables. On one hand, for a categorical feature with N values there

are 2N − 2 possible decision rules on the feature, which is too many to consider

by a long way.

For software implementations, both R and Python provide packages for de-

cision tree, bagging, random forest, Adaboost and gradient boosting trees. R

packages usually takes input data in the data.frame format, which can be thought

as a spreadsheet like table with raw data (both numeric and categorical) while the

scikit-learn package in Python requires categorical features encoded, such as as

dummy variables, before being fed to the algorithm. As both languages requires

reading data into memory before running the algorithm, for large scale high di-

mensional data, the memory efficiency becomes a concern. A graduate student

at University of Washington introduced an optimized general purpose gradient

boosting library under Apache license called xgboost which takes in sparse data

format and utilizes parallelization in cross validation to train the classifier ef-

ficiently. Xgboost receives wide recognition among machine learning community

due to its efficiency and ease in implementation. For the experiments in the paper,

I will use all three software for different tasks.

3.2 Regularized Logistic Regression

Logistic regression (LR), as a special case of generalized linear model with a logit

link function, is a very different binary or multinomial classifier than decision tree

10



based models. Like other forms of regression analysis, logistic regression makes use

of one or more predictor variables that may be either continuous or categorical

data. Unlike ordinary linear regression, however, logistic regression maps the

linear combination of the input features into a probability via a logistic function. A

detailed introduction to logistic regression can be found on any statistics textbook

so I will skip it here.

The biggest advantage of logistic regression over tree based models is its ability

to handle high cardinality in categorical features elegantly by assuming indepen-

dence between input features and estimating their effects (coefficients) simulta-

neously. What’s more, as a optimization problem, implementations of logistic

regression are usually faster than those tree based models.

However, standard logistic regression tends to fail in the context of high car-

dinarlity categorical data (sparse data) as it is prone to overfit the training data

with too much irrelevant information presents and thus generalizes poorly. To

solve this, regularized logistic regression turns out to be a natural fit. Like any

other regularized linear models, regularized LR controls the complexity of the

model by explicitly introducing penalty terms in the objective (likelihood) func-

tion which we want to optimize.

There are different penalty terms that can be applied, with different prop-

erties. The most commonly used ones are L2 and L1 norm of the weights or a

combination of both, with which the procedures associated are known as ridge

regression, LASSO and elastic net respectively. Ridge regression shrinks the re-

gression coefficients by imposing a penalty on their size such that unimportant

variables will end up with weights very close to zero while the coefficients for in-

formative variables are shrunk by only a very small portion [3]. LASSO, which

stands for Least Absolute Shrinkage and Selection Operator [10], not only shrinks

the regression coefficients (in a slightly different way though), but performs vari-

able selection at the same time, which means the model will end up with some

11



of the parameters estimates being exactly zero. And the elastic net, again, is a

combination of both. The objective functions for the three regularized logistic

regressions are listed below.

βLASSO = max
β0,β

{
n∑
i=1

[
yi
(
β0 + βTxi

)
− log

(
1 + eβ0+β

Txi

)]
− λ

p∑
j=1

|βj|

}
(3.6a)

βridge = max
β0,β

{
n∑
i=1

[
yi
(
β0 + βTxi

)
− log

(
1 + eβ0+β

Txi

)]
− λ

p∑
j=1

|βj|2
}

(3.6b)

βelastic = max
β0,β

{
n∑
i=1

[
yi
(
β0 + βTxi

)
− log

(
1 + eβ0+β

Txi

)]
− λ1

p∑
j=1

|βj|

−λ2
p∑
j=1

|βj|2
} (3.6c)

A efficient algorithms for L1-regularized regression called OW-LQN, which scales

to millions of rows is proposed by by Galen Andrew, Jiafeng Guo [11]. But due to

the lack of an handy implementation, only L2-regularized LR is experimented in

this paper. A scalable implementation of L2-regularized logistic regression can be

found in LIBLINEAR [12], which is a popular open source machine learning library

developed at the National Taiwan University written in C++. It takes input data

in a sparse format, which is memory friendly, and optimizes the objective function

using a coordinate descent algorithm [10].

Both OW-LQN and LIBLINEAR are scalable to millions of rows of data, which

is enough for many small to mid size online marketing analytics tasks. But as we

mentioned in Chapter 2 Section 3 that for some large-scale online advertising,

especially click through rate prediction, the volume of data to mine is huge, even

billions or records a day. This would pose a big challenge for many machine

learning algorithms, let alone the above two. Such big volume of data, plus the

high dimensionality (sparsity) nature, will be very expensive to mine and analyze

as a whole. As a result, online learning or stochastic gradient descent algorithms

seems a better fit under such circumstances.
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3.3 Online Learning Algorithms

3.3.1 Stochastic Gradient Descent

Consider the problem of minimizing an objective function that has the following

form:

F (β) =
n∑
i=1

Fi(β), (3.7)

where β is the parameter to be estimated and each Fi is only associated with

the i-th observation in the training data set. For instance, in terms of optimizing

logistic regression models, the Fi has the form:

Fi(β0,β) = yi
(
β0 + βTxi

)
− log

(
1 + eβ0+β

Txi

)
(3.8)

To minimize F (β), a standard gradient descent method would have an update

function as follows:

β ← β − λ∇F (β) = β − λ
n∑
i=1

∇Fi(β), (3.9)

where λ is a step size (or learning rate in machine learning terms).

In many cases, each Fi(β) has a simple form and the number of observations is

not too big which enables inexpensive evaluation of sum function and sum gradi-

ent. In other cases, however, evaluating the sum-gradient may require expensive

computation when the set it enormous and has no simple formulas. To avoid ex-

pensive computation at every step, stochastic gradient descent uses the gradient

at a single instance to approximate the true gradient of F (β). So the update

function of β can be written as:

β ← β − λ∇Fi(β), (3.10)

The algorithm goes through the training data and performs the update for each

instance until it converges. It may take more than one pass (some times referred

to as epoch) of data before convergence and it is usually suggested to shuffle the
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training instances before each pass to prevent any periodic trend in the data. A

decaying step size (learning rate) is typically used to ensure convergence.

To get back to the problems we want to solve in this paper, we can use a online

(stochastic) version of regularized logistic regression to deal with the enormous

and sparse data sets. An implementation of stochastic gradient descent can be

found in the scikit-learn package in Python which supports both hinge loss for

support vector machine and log loss for logistic regression along with L1 and L2

regularization.

3.3.2 Follow-The-Regularized-Leader (FTRL-Proximal)

Another algorithm for online regularized logistic regression is called follow-the-

regularized-leader (FTRL or FTRL-Proximal). It implements the same idea as

stochastic gradient descent which is to approximate the gradient of the loss func-

tion (with regularization) using the gradient at a single instance but uses a per-

coordinate learning rate with a few memory saving tricks. H. Brendan McMa-

han states that FTRL-Proximal algorithm is able to produce sparser models than

stochastic gradient descent and has excellent convergence properties too [13]. The

algorithm is only lines of code and the pseudo-code can be found in the paper.

3.4 Factorization Machine

Recall the two major families of models that have been introduced. Decision

tree based models are able to capture complex structures in the data i.e. the

higher order interaction effects but does not work well with sparse data; while

logistic regression related approaches are able to handle sparsity, but higher order

interactions has to be manually selected and crafted if we want to capture more

complex structures of the data.

In 2010, Steffen Rendle introduced a new model class call Factorization Ma-
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chine that combines the advantages of Support Vector Machines (SVM) with

factorization models [14]. FM models all interaction between variables using fac-

torized parameters and thus is able to estimate interactions even in problems with

huge sparsity.

The model equiration for a factorization machine of degree d = 2 is defined as:

y(x) = β0 +

p∑
i=1

βixi +

p∑
i=1

p∑
j=i+1

〈vi,vj〉xixj (3.11)

where y is the link function which, for classification, can be viewed as the logit

function. β0 is the global bias, βi is the main effect of the i-th feature, and

V =


v1

v2
...

vp

 , 〈vi,vj〉 =
k∑
j=1

vi,f · vj,f
4
= wij (3.12)

where wij is the interaction effect between variable i and j. vi is a vector describes

the i-th variable with k factors. k ∈ N+
0 is a hyperparameter that defines the

dimensionality of the factorization.

The most innovative idea of FM is to break the independence in estimating

interaction effects, which means the data that is used to estimate one interaction

effect can also help estimating other related interactions. This will give more

reliable interaction effect estimates compared to those directly and independently

estimated interaction effects from the sparse data.

An open source implementation of factorization machine called libFM is avail-

able.

15



CHAPTER 4

Experiments

4.1 Data

In this paper, I experimented with 2 unique data sets, both of which are online

advertising data. One is click level data sets with more than 40 million rows

from a previous data science competitions on Kaggle - Avazu Click-Through Rate

Prediction (later referred to as CTR). Inherently click level data should be high

imbalanced, with majority of the impressions not being clicked. But the real

average CTR is a business secret and the sponsor of the competition is not willing

to disclose. So the data I experimented with is only a slightly imbalanced sample of

the original data set. Features include anonymous information like the ip address

of the user, device id, site category and a bunch of encrypted categorical variables

with meaning not disclosed. The data set and the detailed descriptions of the

features can be found on the competition website on Kaggle.

The second data set is a conversion level data that I acquired from a company

that I once worked for (late referred to as Conversion). Though not all conversion

level data sets are necessarily highly skewed, most of them are and this is one

of those. As can be expected, conversion level data tend to be smaller but more

specific compared with click level data. For this data set, in addition to the device

and demographic information, we also knowledge of how long a use spent on the

website and other very specific information of the users that we believe are directly

associated with the conversion.
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Data set # obs in training # obs in test # of features % minority

CTR 40,428,967 4,577,464 23 16.7

Conversion 305,172 84,093 24 0.9

CTR sub 4,000,000 1,000,000 23 16.4

Table 4.1: Summary of the Data Sets

Data set
Cardinality (training)

V1 V2 V3 V4 V5

CTR 6,729,486 2,686,408 8,552, 8,251 7,745

Conversion 102 56 33 24 20

CTR sub 1,056,051 356,977 6,061 4,114 3,351

Table 4.2: Cardinality of Top 5 Categorical Features

To get a comprehensive comparison of different models’ performance in learn-

ing data in various sizes, I sampled the first 5,000,000 observations from the Avazu

click level data set as a third data set (later referred to as CTR sub) to experiment

with.

All three data sets are split into training and test set based on a time related

variable. For CTR data, the training set contains 10 days traffic while the test is

the 11th day. For the Conversion data, the training set contains records through-

out 2013 while in the test set are the records during the first quarter of 2014. For

CTR sub data, the first 4 million records are used as training and the remaining

1 million as test.

A basic summary of the three data sets is shown in Table 4.1. Table 4.2 lists

the top 5 categorical features with the largest cardinality in each data set.

17



4.2 Performance Measurement

Though classification models are used in learning and predicting CTR and con-

version rate, but the predicted class label is usually not what of interest. Instead

a probability score is preferred as it allows us to rank the customers and also can

be used to calculate revenue related metrics that are essential to any business. As

a result, any label based performance metrics are improper here, such as overall

classification accuracy, true positive (recall, sensitivity), true negative (specificity)

and etc. In this paper, Receiver Operating Characteristic (ROC or ROC curve)

and Area Under the Curve (AUC) are used as error metrics to measure the perfor-

mance of different models for the conversion data as they are proven to be an ideal

metric for the domains with skewed class distribution and unequal misclassifica-

tion costs [15]. For the Avazu CTR data set, in addition to ROC and AUC, I also

used the evaluation metric required for the competition the log loss. The formula

of log loss is shown below. From the definition we can find log loss penalizes most

on extreme predictions.

L(y, ŷ) = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4.1)

4.3 Software Implementation

One of the purposes of this paper is to introduce as many potential models and

implementations of the models that can be employed to mine and analyze on-

line advertising data, so I tried to use different software implementations of the

modeling techniques that are introduced in previous sections.

In general I used R, Python, xgboost, LIBLINEAR, libFM, and FTRL-Proximal.

And Specifically:

• rpart package in R for decision tree, bagging of decision tree
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• scikit-learn package in Python for decision tree, bagging, random forest,

Adaboost, gradient boosting machine

• xgboost for gradient boosting machine

• LIBLINEAR for L2-regularized logistic regressions

• libFM for factorization machine

• python code based on FTRL-Proximal algorithm

4.4 Parameter Tuning

Most of the models used in the paper require extensive parameter tuning and

choosing the right parameters is the determining factor of the models performance,

so I will devote this section to discussing the parameter settings within each model

along with some intermediate results from the experiments.

4.4.1 Decision Tree Based Models

When implementing any decision tree based algorithm, the complexity parameters

of the tree structure is usually the first thing to consider. They include the

depth of the tree (depth), the minimum number of observations in a node to

split (min samples split) on and the minimum number of observations in a leaf

node (min samples node). For some decision tree algorithm, such as CART, the

minimum information gain or increase in gini index (cp) whichever metrics is used

has to be met before splitting the node is another complex parameter. Those

complex parameters are in fact correlated with one another, and in practice, one

usually only need to specify one or two of them to control the complexity of the

tree structure.

For single decision tree, bagging and random forest where complex tree struc-
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Figure 4.1: AUC against min samples leaf in RF on Conversion Data

tures are desired, only specifying min samples node is enough if one is not using

a CART like algorithm where cp is also better to be tuned. The principle of

choosing min samples node is to consider how many observations are needed for a

reliable estimate of the probability. For highly imbalanced problem, this number

should be specified bigger. For the Conversion data, 500 turns out to be a fair

choice. Figure 4.1 shows the performance of best random forest models different

different choices of min samples node for the Conversion data. Note that each

random forest consists of 500 trees.

In boosting tree models where shallow tree structures are needed, depth should

be properly specified along with min samples node. depth defines the highest order

of interaction effects allowed in the tree structure, usually 6 to 10 is enough for a

complex problem. The learning rate and the number of trees in boosting models

parameter need to be tuned too. A practical tip is to target a certain number of

trees, say 500, and tune the learning rate only.
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4.4.2 Regularized Logistic Regression

The LIBLINEAR implementation of regularized logistic regression only supports

L2-regularized logistic regression, and there is only one tuning parameter (denoted

as c) in the model controls the size of the shrinkage. The larger the c, the more

regularization.

4.4.3 FTRL-Proximal

There are four tuning parameters in the algorithm learning rate, calibration

factor, L1 and L2 regularization. A grid search is recommended.

4.4.4 Factorization Machine

Two main turning parameters for libFM are the dimension which specifies the

order of factorization, namely the k in 3.12 and the number of iterations to run.

Other parameters are associated with the optimization methods you choose. Cur-

rently stochastic gradient descent (SGD) and alternating least squares (ALS) opti-

mization as well as Bayesian inference using Markov Chain Monte Carlo (MCMC)

are supported. A very detailed manual can be found on libFM website.
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CHAPTER 5

Results

Table 5.1 compares the performance of different models on the Conversion data.

All models listed in the table are selected based on cross validation using the

parameter tuning methods mentioned in Chapter 4 section 4. For Conversion set,

tree based models outperform the linear models by a big margin. The most likely

reason for the distinction in performance between tree based models and logistic

regression models is that the tree based models naturally capture the higher order

interaction effects among features which either regularized logistic regression or

FTRL is not able to learn without explicitly adding higher order interaction effects

in the model. To prove the idea, I manually added a few interaction terms in FTRL

model based on my understanding of the problem and observe a considerable boost

in performance (0.71035 AUC).

The limited sample size might account for the mediocre performance of fac-

torization machine as FM usually needs a very large sample size to learn the

factorized interaction effects of the data.

Among tree based models, random forest and gradient tree boosting have

very close performance but yield substantial superior results than single decision

tree. For learning highly skewed data, single decision tree either end up with

an over-grown tree with many very small leaves (unstable prediction) or a coarse

tree structure prone to miss out subtle details or relations, while random forest

grows complex trees aiming to capture as much information as possible and then

takes average of hundreds of those over-grown trees to cancel out the extremes

22



Model AUC Log loss Mean pred Pred bias

Decision tree 0.70082 0.03827 0.00934 0.00274

Random forest 0.71795 0.03805 0.00902 0.00242

Gradient tree

boosting (scikit-learn)
0.71816 0.03798 0.00907 0.00247

Gradient tree

boosting (xgboost)
0.71552 0.03815 0.00954 0.00294

LIBLINEAR 0.70548 0.03839 0.00951 0.00291

FTRL 0.70540 0.03910 0.01145 0.00485

libFM 0.70531 0.03887 0.01079 0.00419

Table 5.1: Comparison of Models on Conversion Data Set

and stabilize the prediction. For gradient tree boosting, even each individual tree

is shallow, they are built in a sequential order and thus is also able to capture

information from different aspect in the data.

A visual display of the model performance between different tree-based models

using ROC curve is showed by Figure 5.1 followed by a zoomed version (Figure

5.2) for better visibility.

Figure 5.3 compares the model performance among the best model in each

model family introduced in this paper.

Table 5.2 compares the performance of different models on the CTR sub data.

As can be seen from Table 4.1 and Table 4.2 the CT sub data is very large in

size (4 million rows) and high dimensional (5,431,038 with one-hot encoding and

357,008 after combining rare levels). Taking Python scikit-learn for example, any

data has to be converted to numpy array before being fed to any machine learning

algorithms. Each numpy float64 number takes 8 bytes, this design matrix after

one hot encoding would consume 8×5431038×4000000/109 = 173 Terabytes and

11.4 Terabytes after combining rare levels and will not fit into memory on any
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Figure 5.1: ROC Curve for Tree Based Models on Conversion Data

Figure 5.2: ROC Curve for Tree Based Models on Conversion Data (Zoomed)
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Figure 5.3: ROC Curve for Different Families of Models on Conversion Data

work station. So only linear models are built and compared for CTR sub data.

With this amount of data, factorization machine is able to model the factorized

interaction effects pretty well and shows superiority to (online) regularized logistic

regression models which are unable to learn the interaction effects from the raw

data at all. As a trade-off, factorization machine (libFM) is more time consuming

compared to LIBLINEAR and FTRL-Proximal in training.

For the original CTR data which contains more than 40 million of records

with high cardinality categorical features, even LIBLINEAR and libFM fail to

scale. So for CTR data, there isn’t any model comparison in performance, but

in feasibility. Only online learning algorithms which analyze the data one row at

a time seem promising in such context. It’s worth mentioning that with some

complex data preprocessing, such as convert high cardinality categorical features

to numerical features based on certain rules will make other models feasible again

but it’s beyond the scope and interest of this paper. The best performing FTRL

model on the CTR data has a log loss as low as 0.39410.

A useful trick to further improve the efficiency of FTRL (or any online learning
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Model AUC Log loss Mean pred Pred bias

LIBLINEAR 0.74663 0.40270 0.17076 0.00292

FTRL 0.74512 0.40292 0.17045 0.00323

libFM 0.75031 0.40008 0.17923 0.00556

Table 5.2: Model Comparison on CTR sub Data

algorithm in general) is to use hashing trick instead of one hot encoding. To apply

one hot encoding (dummy encoding), one has to request one pass of data to learn

the mapping from original feature:value pair to the index in design matrix and

the size is determined by the number of rows and also the total cardinality of the

categorical variables. Hashing trick (also known as feature hashing), on the other

hand, is faster and more space efficient since only a hash function is used to define

the mapping from original feature:value pair to the index in the design matrix

and the dimension of the design matrix is predefined [16]. Though hash collision

is inevitable, in practice such collisions rarely affect classification results [17] and

the advantages in efficiency make it the preferred encoding method in large scale

learning.
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CHAPTER 6

Conclusion and Future Work

In this paper, we first presented the challenges we have in analyzing online adver-

tising data, namely enormous size, complex structure, high cardinality and severe

skewness. Then four families of state-of-art classification (probability estimation)

models were introduced to approach the problem. A wide range of empirical

experiments were conducted using the models introduced from various sortware

packages and implementations and the best models from an extensive cross val-

idation were compared in detail. We found for mid-size tasks where the data

(design matrix) fits into memory and is manageable, tree based models, especially

random forest and gradient tree boosting tend to be a superior choice as they are

able to learn the complex structures of the problem yet give robust predictions.

Regularized logistic regression with manually added and seleted interaction terms

and feature transformations may also give comparable results but require consid-

erable trial and error. Online learning methods are not necessary in such context

and factorization machine usually fail to take advantage of the limited dta. For

large-scale task (millions or instances), most tree based models fail to scale if high

cardinality also exists. Factorization machine proves to be superior to regularized

logistic regression models as the data set is large enough for FM to learn the

complex structure. If the data size keeps growing, both FM and LIBLINEAR

becomes infeasible and only online learning methods seems promising.

One key factor in improving model performance in machine learning but is

a not a focus in this paper is feature engineering. Feature engineering is the
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Model
AUC Log loss Pred bias

w/ w/o w/ w/o w/ w/o

LIBLINEAR 0.75032 0.74663 0.40108 0.40270 0.00728 0.00292

FTRL 0.74991 0.74512 0.40172 0.40292 0.00323 0.00323

libFM 0.75472 0.75031 0.39687 0.40008 0.00022 0.00556

Table 6.1: Comparison of Models with and without Simple Feature Engineering

on CTR sub Data

process of transforming raw data into features that better represent the underlying

problem to the predictive models, resulting in improved model accuracy on unseen

data. In fact, adding interaction terms to logistic regression can be understood

as feature engineering in a broad sense. But in practice feature engineering can

go far more that that. It is a deep while broad topic and requires profound

business understanding of the problem, considerable experience with data and

programming skills to efficiently engineer new features. To illustrate the idea,

I add a new feature to the CTR sub data set trying to capture some historical

information of the users - the number of impressions that a user have had from

this specific web site or application. By simply adding this one feature, the model

performance improves quite a bit. See Table 6.1 for details.

So far, all the discussion in this paper is based on single models or at least

single family of models. In fact, another way to further improve the predictive

performance of models is to use multiple models at the same time. We can either

make an ensemble of different families of models that capture different sources of

information of data to come up with a comprehensive model by taking a simple

average or a weighted average of predictions from different models, or use stacking

of models where the output (prediction) of one model is used as input for another

model [18].
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