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Abstract 

Recent research has suggested that people make physical 
predictions based on extrapolation from a noisy representation 
of the world, which gives rise to a probabilistic distribution 
over possible future worlds. But can people use the 
uncertainty of their predictions to inform their decisions, or 
can people access only a single possible future? Here we 
demonstrate that confidence-sensitive decisions about the 
future track the amount of uncertainty expected from 
probabilistic forward extrapolations. Participants were asked 
to make predictions about where a ball would go and indicate 
an expected range around that prediction. This range was well 
correlated with two measures of uncertainty: variability in 
predictions across participants and the amount of uncertainty 
expected by a model of physical prediction. This suggests that 
people form a probabilistic distribution over possible futures 
in the course of physical prediction and base their decisions 
about the future on this range. 

Keywords: prediction; uncertainty; physical reasoning; noisy 
Newton physics 

Introduction 
Imagine you are playing pool, and the game is coming to the 
end. You have a straight shot to win the game: the most 
likely outcome of the shot you are planning is for the cue 
ball to hit the 8-ball and knock it into the pocket, winning 
the game. But what if you are wrong? If you accidentally hit 
the cue ball differently (e.g., too hard or with too little 
English), it may also go into the pocket and you will instead 
lose. Thus if you consider alternative possibilities, you 
might think that your planned shot is too risky. For many 
real-world situations, it is imperative to not only consider 
the most likely outcome of a physical event, but also less 
likely possibilities (Kording, 2007). But do we actually take 
the range of possible futures into account when we make 
such predictions? 

Recent research has suggested that people accomplish 
physical prediction tasks by extrapolating the future state of 
the world using accurate laws of Newtonian mechanics, but 
also incorporate uncertainty about the current state of the 
world – termed the “noisy Newton” theory of physical 
reasoning (Battaglia, Hamrick, & Tenenbaum, 2013; 
Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 
2013). In this framework, it is assumed that people start 
with a model of the current state of the world that includes 
uncertainty about the locations, attributes, and motions of 
objects due to unobservable properties (e.g., friction 
coefficients) and noisy perceptual estimates. People then use 

an “intuitive physics engine” to propagate the world forward 
given this uncertainty and obtain probabilistic estimates 
about the objects’ future locations and motions, drawing on 
these probabilistic predictions to make relevant decisions 
(Battaglia et al., 2013; Smith, Dechter, Tenenbaum, & Vul, 
2013; Smith & Vul, 2013). 

However, while prior work has assumed that that people 
develop a probability distribution over possible future 
physical states, this theory has not been directly tested. 
Although prior physical models explain behavior across 
people and scenarios, it is possible that aggregate 
probabilistic behavior can arise from individuals who each 
only consider a single future outcome (Daw & Courville, 
2008) and who would thus be incapable of considering the 
dispersion of possible outcomes. In this case, prior models 
would not describe how individuals behave, but would only 
constrain behavior averaged over large numbers of people 
or scenarios. Therefore, we aim to investigate the richness 
of individuals’ representations about the future: do we 
consider a distribution of possible physical outcomes, or just 
a single sampled outcome? 

Prior studies of decisions under uncertainty in sensory-
motor tasks have shown that people behave as if they have 
access to a full probability distribution, or at least the first 
few moments (e.g., mean and variance). For instance, we 
can integrate haptic and visual information in a way that is 
sensitive to the variance of the noise in each of the 
modalities (Ernst & Banks, 2002), we behave as if we are 
inferring the expected value over a probabilistic distribution 
of outcomes in visual (Whiteley & Sahani, 2008) and motor 
(Trommershäuser, Landy, & Maloney, 2006) gambles, and 
we can make rational tradeoffs between our visual and 
motor uncertainty (Battaglia & Schrater, 2007). Similarly, 
we are sensitive to probability distributions over more 
abstract outcomes; our conditional predictions about 
quantities like the total baking time of a cake reflect an 
appreciation of not only the mean and variance, but also the 
shape of the distribution of cake baking times (Griffiths & 
Tenenbaum, 2006). Yet most of these tasks require 
reasoning about a probability distribution over the current 
state of the world, or internal noise that might be learned 
from experience (e.g., motor uncertainty). Thus it is not 
clear whether this knowledge of uncertainty would extend to 
tasks in which the uncertainty arises from stochastic 
extrapolation of the physical world. 
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Here we first present an experiment in which participants 
made predictions about a range of outcomes where an object 
would end up after moving under occlusion, and find that 
participants’ predicted range widths are correlated with the 
amount of variability across participants, suggesting people 
know when their predictions will be more variable. We then 
show the breadths of these predictions are consistent with 
the uncertainty arising from forward predictions in a prior 
noisy Newton model of human physical extrapolation 
(Smith & Vul, 2013). Together, these results suggest that 
people can, and do, use the prospective uncertainty of their 
physical predictions to inform their judgments. 

Experiment 
To measure subjective uncertainty in human physical 
predictions, we showed participants a ball bouncing around 
a rectangular table on a computer screen and asked them to 
predict where the ball would end up after a period of 
occlusion by adjusting the vertical position and size of a 
paddle. 

Methods 
Fifty UCSD undergraduate students participated in this 
experiment for course credit. All participants had normal or 
corrected to normal vision. Of these participants, seven were 
excluded from analysis because we did not capture a full set 
of data (either due to participants leaving early or data 
recording errors), leaving 43 participants’ data for review. 

Participants viewed a 40cm x 32cm computer monitor 
from a distance of 60cm. The screen depicted a “table” 
(31.25cm x 28.125cm) that a computerized ball would move 
around, bouncing off of the table walls according to 
idealized Newtonian physics, implemented in the Chipmunk 
2D physics engine (Lembcke, 2011). The ball always 
moved at a constant velocity of 15.625cm/s. Participants 
controlled a paddle at one end of the table: they could move 
the paddle vertically (but not horizontally) with the mouse, 
and could change the size of the paddle with the mouse 

scroll wheel. Paddle size was constrained such that the 
smallest size was 0.78cm, and the largest was 7.8cm. The 
paddle size always started at 3.1cm, but participants were 
required to adjust the size at least once to discourage them 
from simply using the default setting. 

Participants observed the motion of the ball for 500ms 
(Figure 1, left), and then a portion of the screen would be 
occluded. Participants were then asked to position the 
paddle so that it would catch the ball if the ball continued on 
its trajectory (Figure 1, center). Time was not limited, so 
participants could spend as long as they liked positioning 
and resizing the paddle before clicking the mouse to register 
their response. Participants earned points if they caught the 
ball. Feedback was provided by showing the path of the 
ball, starting from the point where it was occluded and 
traveling until it reached the plane of the paddle. Finally, a 
notification appeared if the participants had caught the ball 
and earned points (Figure 1, right). 

To motivate participants to use paddle sizes other than the 
largest, the number of points earned for a catch was 
inversely proportional to the size of the paddle. Thus we 
expected that when participants were more certain, they 
would confidently choose a smaller paddle size to earn more 
points (and vice versa when they were less certain). Points 
were used as an intrinsic motivation but did not otherwise 
affect credit or compensation for participants.  

Each participant was provided with the same 450 trials 
(differing in the observed motion of the ball and horizontal 
location of the paddle) in a randomized order. There were 
50 trials in each of nine conditions that varied how the ball 
would move while occluded: the distance the ball travelled 
(short: 18.75cm, medium: 25cm, long: 31.25cm) crossed 
with the number of times the ball bounced off of the sides of 
the table (0, 1, or 2) before it reached the plane of the 
paddle.1 To ensure the ball would travel a fixed distance, the 

                                                             
1 Two of the trials from the short, 2 bounce condition were 

excluded from analysis due to an error that led to different 
observations across participants. 

Figure 1: Diagram of a trial. Left: Participants observe a ball in motion for 500ms (dotted line is not shown). Center: The path 
of the ball becomes occluded and participants must move the paddle and change its size to catch the ball when it would cross 
the plane of the paddle. A ‘Wager’ is shown that grows larger with smaller paddles, and vice versa. Right: After a response is 

registered, the continued path of the ball is shown and participants earn points if the ball is caught. 
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horizontal position of the paddle varied across trials. 
For each trial, we obtained two measurements from each 

participant: the center point of the paddle to indicate their 
best guess about where the ball would go, and the size of the 
paddle to indicate their confidence in that prediction. On 
each trial, we also determined where the ball actually 
crossed the plane of the paddle according to computerized 
Newtonian mechanics, and we will call this location 
“ground truth.” 

Participants were given five practice trials with no 
occlusion to ensure that they understood the ball would 
move with Newtonian mechanics and then eight further 
practice trials with occluded movement to ensure they were 
comfortable with the task and controls. 

Results 
Because idealized Newtonian mechanics is deterministic, 
the ground truth outcomes from the computer physics 
engine have no variability, and thus we cannot compare 
participants’ internal measures of uncertainty against 
“ground truth variability” in the trial outcomes based on 
computer physics. Instead, we measured whether people 
have an internal measure of variability that accurately 
reflects the variability in behavior across people, which can 
be used as a proxy for the amount of variability in any 
individual’s predictions. We aggregated across people 
within each trial to calculate two measures of uncertainty: 
(1) across-subject variability in behavior was measured as 
the standard deviation of participants’ predictions for each 
trial, and (2) within-subject uncertainty was measured as the 
average paddle length used for each trial. Because these 
measures were determined from separate response 
dimensions, any relationships between the two measures 
must be modulated solely by participants’ own conception 
of their prediction uncertainty. 

 
Uncertainty across conditions We initially tested whether 
our measures of across-subject variability and within-
subject uncertainty followed our qualitative predictions 
across conditions: as the difficulty increased with greater 
distance or more bounces, would both variability and 
uncertainty increase? Prior work suggests that variability 
across participants should increase as both distance and 
number of bounces increase (Smith & Vul, 2013), so if 
people have an accurate representation of their own 
uncertainty, they should make the paddle larger in the more 
difficult conditions as well. 

Consistent with prior work, we find that the standard 
deviation of predictions across participants increases with 
distance (F(2,439)=51, p<0.001) and number of bounces 
(F(2,439)=77, p<0.001), and is somewhat modulated by the 
interaction of the two (F(4,439)=2.7, p=0.030; see Figure 2, 
top), which suggests that the difference between distances 
becomes smaller with more bounces. Post-hoc analyses 
using a Tukey Range Test suggest that both the short and 
medium no-bounce conditions are significantly less variable 
than all other groups, and the long and medium one and two 

bounce groups are significantly more variable than all other 
groups.  

A similar pattern is seen in the average length of the 
paddles: participants use larger paddles as the distance 
(F(2,439)=30, p<0.001) and number of bounces 
(F(2,439)=19, p<0.001)  increase, though again there is an 
interaction (F(4,439)=7.0, p<0.001; see Figure 2, bottom), 
again due to smaller differences between distance conditions 
with 1 or 2 bounces. Post-hoc analysis suggests that this was 
more driven by the short, no bounce condition, for which 
people used significantly shorter paddles than all other 
conditions, and the medium, no-bounce condition, which 
had significantly smaller paddles than any of the long 
conditions. All analysis was performed on aggregate trial 
data, so each trial contributed a single data point to the 
analysis. 

While it is encouraging that both across-subject 
variability and within-subject uncertainty varied 
systematically across conditions, there is considerable 
variation in both measures across trials within each 
condition; for instance, some trials in the easiest (short, no 
bounce) condition yielded greater uncertainty than some 
trials in the hardest (long, two bounce) condition. 
Furthermore, participants cannot know the distance the ball 
will travel or the number of bounces it will take without first 
extrapolating the motion of the ball, so the trial condition is 
only meaningful to subjects insofar as it maps onto their 

Figure 2: Top: Across-subject variation (standard deviation 
of paddle center across participants [cm]). Bottom: Within-
subject uncertainty (average paddle size across participants 

[cm]). Each point represents a single trial, grouped by 
condition, with a boxplot representing the interquartile 

range across trials for that condition. Uncertainty, 
represented by greater variability and paddle lengths, 

increased with more bounces and greater distance. 
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own extrapolation. We therefore next ask whether 
variability and uncertainty differ systematically across trials 
regardless of condition. 

 
Meta-knowledge of uncertainty by trial In order to test 
whether people have accurate access to prediction 
uncertainty beyond gross trial categories, we can ask 
whether the measures of within-subject uncertainty (paddle 
sizing) correlate with across-subject variability across trials. 

The standard deviation of predictions across participants 
correlated significantly with the average paddle length for 
each trial (r=0.45, 95% CI: [0.37, 0.51], see Figure 3). This 
correlation remains significant even when variability due to 
trial condition (number of bounces and distance) is factored 
out (rpartial=0.23, 95% CI: [0.14, 0.31]), indicating that 
people discern their uncertainty for specific trials based on 
subtle differences in observations. 

 
Individual differences in certainty While we demonstrated 
that there is an aggregate relationship between within-
subject uncertainty as measured by mean paddle size and 
across-subject variability of paddle placement, there was 
also a large amount of individual variability in the risk 
participants were willing to take – some generally used 
smaller paddles, and some were more risk averse and almost 
always used as large a paddle as possible. The average 
paddle size used varied across participants from 1.9cm (25% 
of the maximum paddle size) to 7.6cm (98% of the 
maximum size). 

Furthermore, participants were remarkably consistent in 
their relative paddle sizing. We calculated how each 
participant’s paddle size differed from the average for each 
trial. The split-half correlation of this difference (averaged 

across two sets of trials, within participants) was extremely 
high: (r=0.998, 95% CI: [0.996, 0.999]), suggesting that 
some participants in general are simply more or less risk 
averse. However, this risk aversion was not driven by some 
participants knowing they are more accurate – there was no 
appreciable correlation between average paddle sizing and 
individual average prediction errors (r=0.04, 95% CI: 
[-0.26, 0.34]). 

Despite the range in riskiness, we can ask whether there is 
evidence that individual participants had access to internal 
measures of uncertainty. Though the standard deviation of 
predictions for a given trial is necessarily an across-
participant measure, we treat this as an approximate 
measure of each individual participant’s internal 
uncertainty. We therefore tested whether an individual’s 
paddle sizing correlated with the across-participant 
variability across all trials.  

Because there is more noise in individual paddle sizes 
than average paddle sizes, the individual correlations are 
lower and extremely variable (mean r: 0.10, sd: 0.11, see 
Figure 4). Nonetheless, there is evidence that participants on 
average modulate their paddle sizes by how variable across-
participant predictions are (t(42)=6.1, p<0.001), and we 
found positive correlations for 74% of participants (32 of 
43). This suggests that most individuals informed their 
paddle sizes by an assessment of prospective uncertainty.  

 
Learning over time Participants received feedback after 
each trial, which could allow for learning non-physical 
contingencies between the initial ball motion and where the 
ball crossed the plane of the paddle. If participants were 
learning in this way, it is possible that the relationship 
between variability and paddle size might have arisen from 
mechanisms other than physical extrapolation.  

However, there was evidence of only small improvement 
in prediction over time. Controlling for subject and trial 
effects, we find that prediction error (average paddle 

Figure 3: Within-subject uncertainty (average paddle 
length) is well explained by across-subject variability 
(standard deviation of paddle center; r=0.45). Each 

point represents a separate trial. 
 Figure 4: Histogram of correlations between standard 

deviation of predictions across participants and individual 
paddle sizes across trials. Most participants had a positive 
correlation, suggesting individual access to probabilistic 

distributions over potential future states of the world. 
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distance from the ground truth) only decreased by 6.4*10-4 
cm/trial (95% CI: [3.1*10-4, 9.8*10-4]), which would 
suggest an improvement of 0.29 cm over the experiment, or 
about 6.8% of the average error.  

In addition, there was no evidence that participants 
changed their paddle sizing strategy over the experiment: 
controlling for subject and trial effects, there was only a size 
increase of 8.0*10-5 cm/trial (95% CI: [-4.7*10-5, 20.6*10-

5]), which would be equivalent to an increase of 0.04 cm, or 
0.8% of the average paddle length over the entire 
experiment. Nor was there evidence that the average 
participant’s scores improved over the experiment: there 
was only an estimated score improvement of 0.0036 points 
per trial (95% CI: [-0.0006, 0.0078]), which would be an 
average improvement of only 1.6 points from the initial to 
final trials. 

Because there was little change in participants’ 
performance on the task over the course of the experiment, 
we can be confident that we are not studying strategies 
learned during the experiment, but rather physical intuitions 
that were formed previously. 

Forming a representation of uncertainty 
Although an individual’s uncertainty tracks with the amount 
of variability across people, we might wonder how that 
representation of uncertainty is formed. For this we turn to a 
prior model of physical prediction from Smith and Vul 
(2013). We show that the amount of uncertainty expected by 
this physical prediction process explains participants’ 
individual uncertainty, even above and beyond the 
expectations from across-participant variability in 
predictions. 

Physical prediction model 
Smith and Vul (2013) used a task similar to the current 
experiment to elicit physical predictions.2 In this study we 
found that predictions of ball motions were well captured by 
assuming that people used a noisy Newton model with two 
general sources of uncertainty: perceptual uncertainty about 
the initial location and trajectory of the ball at the moment 
its motion was occluded, and dynamic uncertainty 
accounting for accumulated noise as the ball traveled along 
its path (e.g., it might not travel in a perfectly straight line 
due to a rough floor or imperfections in the ball). We also 
found that people had a prior belief that the ball would 
travel towards the center of the screen, and that their 
predictions were a combination of motion extrapolation with 
this prior belief. 

The uncertainty and prior parameters for this model were 
fit based on aggregate participants’ predictions, as described 
in Smith and Vul (2013). Crucially, no information about 
paddle size was used to parameterize the model, which 
allows for a clean comparison between the uncertainty in 

                                                             
2 The main differences in that study were that participants used a 

paddle with a fixed length and had a limited time to “catch” the 
ball. 

predictions expected by the model and the individual 
uncertainty expressed by participants via paddle sizing. 

Accuracy of physical model 
As observed in similar work (Hamrick, Smith, Griffiths, & 
Vul, 2015; Smith, Dechter, Tenenbaum, & Vul, 2014; Smith 
& Vul, 2013), participants’ predictions are well explained 
by the physical model. Participants’ average predictions for 
each trial were correlated with the ground truth position 
where the ball crossed the plane of the paddle (r=0.87, 95% 
CI: [0.85, 0.89]), but participants were systematically 
biased to predict the ball would cross closer to the middle of 
the screen. Nonetheless, the physical prediction model could 
account for these systematic biases; this model made similar 
errors (deviations from ground truth) to participants on each 
trial (r=0.80, 95% CI: [0.77,0.83]). This suggests that we 
are capturing the process participants are using to make 
physical predictions. 

Measures of uncertainty 
Because this physical model produces probabilistic 
predictions for each trial, we can treat the variability in these 
predictions as a representation of the uncertainty that 
participants’ would be expected to hold for each trial. We 
can therefore investigate whether participants adjust paddle 
size based on this prospective uncertainty about possible 
futures. 

The average paddle size for each trial was well correlated 
with the uncertainty expected under the noisy Newton 
model (r=0.45, 95% CI: [0.37, 0.52], see Figure 5), which 
provides evidence that participants were drawing on 
information from a probability distribution over possible 
outcomes to decide how confident they are.  

Figure 3: Within-participant average paddle length 
is well explained by the uncertainty in the noisy 
Newton model (r=0.45). Each point represents a 

separate trial.  
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However, the uncertainty expected by the noisy Newton 
model also correlated well with the standard deviation of 
participants’ predictions (r=0.51, 95% CI = [0.43, 0.57]). 
Thus we must ask whether the uncertainty in the model is 
capturing any internal psychological mechanisms, or simply 
correlating with paddle sizing because it is explaining the 
variability in participants’ predictions. To test this we can 
ask whether the model uncertainty has any explanatory 
power beyond the measure of across-participant standard 
deviation. We find that with across-participant variability 
partialed out, there is still a relationship between noisy 
Newton uncertainty and paddle length (rpartial=0.28, 95% 
CI: [0.20,0.37]). Conversely, we find that across-participant 
standard deviation can explain the uncertainty produced 
with paddle sizing, even above and beyond the uncertainty 
from the noisy Newton model (rpartial=0.29, 95% CI: 
[0.20,0.37]). This pattern of partial correlations indicates 
that both across-subject variability and noisy forward 
physical simulations are capturing partially independent 
aspects of the uncertainty that individuals use when 
determining their confidence to adjust the size of a paddle. 

Discussion 
In this paper we show that people have access to an internal 
representation of uncertainty over potential future world 
states, which can be used in decisions of how much risk to 
take on in a particular situation. Across trials, participants 
shrank their paddle to catch the ball when there was less 
variability in possible futures and used larger paddles when 
there was more variability. 

Uncertainty in the future was measured in two ways: as 
the variability of point predictions across participants and as 
the uncertainty estimated with a probabilistic model of 
physical reasoning. Both estimates of uncertainty were 
related, but each separately explained how people use 
uncertainty to set the size of the paddle. This may be 
because both are noisy estimates of the same mechanism: 
across-subject variability in paddle placement will reflect 
more than the average participant uncertainty, while the 
average participant uncertainty may not be perfectly 
captured by our simple physical model. Nonetheless, each 
measure seems to capture part of the internal representation 
of uncertainty that people hold. 

These results provide further insight into the mechanisms 
underlying physical prediction, demonstrating that people 
do hold a probabilistic representation of future physical 
outcomes, as suggested by the noisy Newton theory. This 
leads to the question of how this sort of uncertainty arises in 
the brain. Determining the posterior predictive distribution 
of where the ball will cross the plane of the paddle is a 
computationally taxing task, and similar distributions can 
only be achieved in noisy Newton models through sampling 
a number of possible futures. Concurrent research suggests 
that this method might be shared by the mind – we appear to 
make judgments about physical events based on a limited 
number of samples of future world states (Hamrick et al., 
2015), since a limited number of samples may be enough to 

make efficient predictions (Vul, Goodman, Griffiths, & 
Tenenbaum, 2014). While it is possible to get some sense of 
the spread of predictions based on just a few samples, it 
remains an open question how people exploit a sampling 
process to estimate their prospective uncertainty and inform 
their judgments. 
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