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Abstract 
Headwater catchments in the mixed-conifer zone of the American and Merced River basins were 
selectively thinned in 2012 to reduce the risk of high-intensity wildfire. Distributed observations of forest 
vegetation thinning, precipitation, snowpack storage, soil-water storage, energy balance and stream 
discharge from 2010 to 2013 were used to calculate the water balance and constrain a hydro-ecologic 
model. Using the spatially calibrated RHESSys model, we assessed thinning effects on the water balance. 
In the central-Sierra American River headwaters, there was a mean annual runoff increase of 14% in 
response to the observed thinning patterns, which included heterogeneous reductions in Leaf Area Index 
(-8%), canopy cover (-3%), and shrub cover (-4%). In the southern-Sierra Merced River headwaters, 
thinning had little impact on forest structure or runoff, as vegetation growth in areas not thinned offset 
reductions from thinning. Observed thinning effects on runoff could not be confirmed in either basin by 
measurements alone, in part because of the high variability in precipitation during the measurement 
period. Modeling results show that when thinning is intensive enough to change forest structure, low-
magnitude vegetation reductions have greater potential to modify the catchment-scale water balance in 
the higher-precipitation central Sierra Nevada versus in the more water-limited southern Sierra Nevada. 
Hydrologic modeling, constrained by detailed, multi-year field measurements, provides a useful tool for 
analyzing catchment response to forest thinning. 
 
1. Introduction 
The movement of water through mountain 
catchments in the western United States depends on 
the interaction of climate, vegetation, and 
subsurface processes. Characterizing these 
components, and their influence on snowpack and 
water supply, is a priority for effective management 
of land and water resources. The major land 
manager in the Sierra Nevada, the U.S. Forest 
Service, routinely undertakes vegetation treatments 
to reduce the risk of large high-intensity wildfires 
and restore forests to more sustainable states. 
Vegetation density in these forests is high compared 
to a century ago [Collins et al., 2011], and thinning 
prescriptions range from low-intensity Strategically 
Placed Landscape Treatments [Finney, 2001] to 

more-intensive restoration treatments [North et al., 
2007; Wayman and North, 2007]. 

Forest management to encourage fire-resilient 
landscapes also impacts the hydrology. Typical 
treatments include prescribed burning and selective 
thinning to reduce surface and ladder fuels and 
lower crown density, while maintaining larger fire-
resistant trees [Agee and Skinner, 2005]. The 
magnitude and pattern of vegetation removal affect 
snow interception [Storck et al., 2002] and melt 
[Essery et al., 2008], water use by vegetation 
[Whitehead et al., 1984; Whitehead and Kelliher, 
1991; Moore et al., 2004], and thus runoff [Ffolliott 
et al., 1989; Zou et al., 2010]. In addition, reviews 
of more than 90 catchment studies of treatment 
effects on streamflow [Stednick, 1996;  Bosch and 

Key Points: 
– Low-intensity forest thinning can increase runoff in the central Sierra Nevada in both wet and dry years 
– In the southern Sierra, low-intensity forest thinning does not affect runoff, owing to evapotranspiration being more 

water limited  
– Distributed measurements of snow and soil moisture can better support spatially explicit modeling than only 

constraining with streamflow 
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Hewlett, 1982] note the importance of post-
treatment precipitation and the rate of vegetation 
regrowth on the run-off response to the treatments.  

Changes in forest vegetation density from 
growth or disturbance can also influence catchment-
scale canopy interception rates and the magnitude 
of energy inputs to the seasonal Sierra Nevada 
snowpack. Kittredge [1953] developed linear 
relationships between precipitation and interception 
rates in forests with different canopy cover and 
found an increase in the interception slope 
coefficient with increases in canopy cover, which 
indicated greater interception capacity in high-
precipitation events. Forest cover affects surface 
energy input to the snowpack on the ground by 
reducing surface shortwave radiation and increasing 
longwave radiation [Essery et al., 2008]. The 
resulting snowmelt rate and timing can have a 
significant influence on the routing and volume of 
precipitation moving through a catchment. In 
regions with warm winters, such as the mid-
elevation Sierra Nevada, Lundquist et al. [2013] 
suggest that reduced canopy cover decreases mid-
winter and early-spring snowmelt. This effect is in 
fact a result of the smaller influence of shortwave 
energy from the low-angle winter sun in open areas 
and the greater influence of longwave energy in 
areas of forest cover from the warmer temperatures. 
Analyzing the specific relationship between forest 
gap size and net radiation, Lawler and Link [2011] 
compared the magnitude of incoming all-wave 
radiation at an Idaho forest with gap sizes of 1 to 6 
tree heights (25-150 m), and determined that net 
radiation is lowest in gaps of 1 to 2 tree heights (25-
50 m). They also showed that net radiation starts to 
exceed open-area radiation in the northern portions 
of gaps 3 tree heights (75 m) and larger, where 
combined rates of shortwave and longwave energy 
from vegetation are highest. 

Catchment-scale transpiration response to forest 
thinning depends on regional precipitation amounts 
and the rate of understory or overstory vegetation 
regrowth following treatments. Zhang et al. [2001] 
used empirical relationships developed from 
catchment water-balance studies worldwide to 
estimate the increasing response of 
evapotranspiration to changes in forest cover with 
increasing annual precipitation. Considering 
forested watersheds across the conterminous United 
States, Sun et al. [2015] used the Water Supply 
Stress Index model to calculate a potential range of 

water yield increases of 0-63% with a 50% 
reduction in leaf area index (LAI). Biederman et al. 
[2014] showed that reduced transpiration in 
disturbed forests may not always lead to expected 
streamflow increases, and can be offset by 
increased evaporation and sublimation.  

The key management question remains the 
extent to which reductions in biomass increase 
runoff in specific forests. Marvin [1996] applied 
multiple regressions of runoff response to percent 
forest cover reduction, mean annual precipitation, 
mean annual runoff, and runoff fraction from 31 
experimental catchments in the western United 
States to project treatment effects in the Sierra 
Nevada. Her results predicted that a 10% reduction 
of canopy cover in mixed conifer forests would 
have no statistically significant effect on annual 
runoff (-0.2-1.2 cm). She further argued that it is 
more difficult to determine effects of treatments on 
runoff in the semi-arid West than in the set of 
catchments analyzed by Bosch and Hewlett [1982]. 
Using existing literature, Kattelmann et al. [1983] 
concluded that removing all vegetation in the Sierra 
Nevada could increase runoff 30-40%, while 
managing National Forest land specifically for 
water production could increase runoff by 2-6%. 
However, they noted that limitations on 
management (e.g., inability to access steep slope, 
wildlife protection zones, and prohibitive costs) 
lower this estimate to about 0.5-2% (0.3-1.2 cm). 
Instead of an increase in runoff, they suggested that 
the hydrological benefit of treatments is a delay in 
snowpack ablation.  

Models for projecting runoff response to 
vegetation changes are often constrained by 
discharge alone [Corbari et al., 2015]. However, 
there has also been a concerted effort for continued 
field studies and increased observational data to 
adequately support modeling efforts [Dunne, 1983; 
Grayson et al., 1992; Silberstein, 2006; Burt and 
McDonnell, 2015]. Grayson et al. [2002] promote 
the comparison of observed and modeled spatial 
patterns, suggesting examples of explicit catchment 
snow, soil moisture, and runoff characterizations, in 
order to avoid getting the right results for the wrong 
reasons [Klemes, 1986 in Grayson et al., 2002]. 
While a number of long-term research catchments 
have provided a wealth of information on forested, 
mountain hydrology [e.g. Hicks et al., 1991; Swank 
et al., 2001; Troendle et al., 2001; Chauvin et al., 
2011], there have been few experimental catchment 



Water Resources Research, doi: 10.1002/2016WR019240 

 3 

studies in the Sierra Nevada [Hunsaker et al., 
2012]. The objectives of this study were to: i) 
measure the water balance in central and southern 
Sierra Nevada mixed-conifer headwater catchments 
across a range of annual precipitation amounts, ii) 
calibrate and evaluate a well-constrained hydrologic 
modeling tool using observations of multiple water-
balance components, and iii) apply the constrained 
model to evaluate catchment hydrologic response to 
forest thinning currently used by land managers. 
 
2. Methods 
The water balances across two headwater 
catchments in the central-Sierra American River 
basin (American R.) and two in the southern-Sierra 
Merced River basin (Merced R.) were monitored to 
inform assessments of fuels treatments and wildfire 
on evapotranspiration and runoff in these areas 
(Figure 1) [Conklin et al., 2015]. The four 
catchments (1.4-2.2 km2 each) are in the high-
density, mixed-conifer zone, and were monitored 
over four water years (October 1, 2009 to 
September 30, 2013). One catchment in each area 
was thinned for fuels reductions beginning in fall 
2011, with most of the vegetation removal 
occurring in fall 2012. However, the thinning 
prescriptions for fuels reduction were relatively low 
intensity, resulting in small biomass removals. 
Vegetation was surveyed before and after thinning. 
Water-balance measurements were used to evaluate 
the catchment hydrologic responses to the highly 
variable seasonal and interannual climate. Data for 
the two treated catchments were integrated using 
the spatially explicit Regional Hydro-Ecologic 
Simulation System (RHESSys) to assess the effects 
of the fuels treatments on the seasonal and 
interannual water balances. We focused model 
calibration and evaluation on the two treated 
catchments. Our calibration approach used multiple 
components of the catchment water balance (snow 
accumulation, snowmelt, and streamflow) for three 
years. For model evaluation, these same 
components were used in the fourth year, plus 
additional water balance elements (soil water 
storage and evapotranspiration) over all four years. 
The two untreated catchments were used to assess 
the consistency of the water balance across forested 
headwater catchments in each study area.  

2.1 Site characteristics 
The Mediterranean climate of the Sierra Nevada is 
characterized by cool wet winters and warm dry 
summers. Study catchments are in the transition 
zone from rain- to snow-dominated precipitation, 
with winter snowpack intermittent at lower 
elevations and persistent higher up. Mean winter 
and summer temperatures are about 4 and 18oC, 
respectively. The Bear Trap Creek (1.4 km2) and 
Frazier Creek (1.8 km2) catchments are in the 
American R. basin, with Big Sandy Creek (2.2 km2) 
and Speckerman Creek (1.9 km2) are in the Merced 
R. basin. Elevations range from 1560 to 2475 m. 

Subsurface bedrock in the American R. 
catchment of Bear Trap is dominated by the Shoo 
Fly Complex, composed of metasedimentary 
sandstone and shale, and in Frazier Creek the 
underlying bedrock is dominated by volcanic 
pyroclasts [Saucedo and Wagner, 1992]. In the 
Merced R., both catchments have similar bedrock 
compositions of granodiorite batholith [Bateman, 
1989]. In the American R. headwater catchments, it 
is assumed that streams are fed by surface and 
shallow subsurface sources; however the 
groundwater component of volcanic deposits can be 
deeper [Tague and Grant, 2004]. Water in Merced 
R. tributary streams comes from recent surface and 
shallow groundwater [Shaw et al., 2014].  

Soils in the American are well drained, with 
Bear Trap having the Crozier-Cohasset, Crozier-
McCarthy-Cohasset, and Hurlbut-Deadwood 
complexes and Frazier having the Crozier-Cohasset, 
Crozier-McCarthy-Cohasset, and Crozier-
Mariposa-Cryumbrepts complexes [Soil Survey 
Staff, 2011]. Merced soils are also well drained, 
with Speckerman having Ledford family-Entic-
Xerumbrepts and Chaix-Chawanakee families, and 
Big Sandy having Ledford-family Entic 
Xerumbrepts and Umpa-family soil series [Soil 
Survey Staff, 2011].  Soil samples were collected at 
all 128 moisture-sensor locations and analyzed for 
texture. Nearly all of the soils contained greater 
than 50% sand, and they all contained less than 
50% silt and 30% clay. Soils in the American were 
classified as loam or sandy loam, and soils in the 
Merced were sand or sandy loam. Textures were 
more variable between individual sensor locations 
than between sensor depths (30-60 cm) below the 
surface. 

Forest-plot vegetation surveys showed 48% 
canopy cover, 31 m2 ha-1 basal area, and 43% shrub 
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cover in the American catchments, with respective 
values for the Merced being 70% canopy cover, 56 
m2 ha-1 basal area, and 26% shrub cover [Fry et al., 
2015]. Mixed-conifer forest in the American sites is 
dominated by white fir (Abies concolor) and 
Douglas-fir (Pseudotsuga menziesii), with an 
understory of manzanita (Arctostaphylos spp.). 
Mixed-conifer in the Merced sites is dominated by 
white fir and incense cedar (Calocedrus decurrens), 
with understory shrub species including mountain 
whitethorn (Ceanothus cordulatus), deerbrush 
(Ceanothus integerrimus), and greenleaf manzanita 
(Arcostaphylos patula).  

2.2 Water-balance measurements 
Meteorological stations in the upper and lower 
elevations of each set of catchments recorded 
hourly precipitation, snow depth, temperature, wind 
speed and direction, and radiation for the entire 
period of this study (Figure 1). The unshielded 
tipping-buckets deployed in the catchments only 
accurately measured precipitation from rain. So 
quantitative daily precipitation amounts for model 
input were acquired from nearby operational 
stations having the capability of consistently 
measuring both rain and snow events. At the 
American River sites, precipitation data were taken 
from the Blue Canyon meteorological station (1610 
m), operated by the U.S. Bureau of Reclamation, 22 
km to the northeast and similar in elevation to the 
lower meteorological station. In the Merced River 
site, precipitation data from the U.S. Bureau of 
Reclamation Poison Ridge meteorological station 
(2100 m) were used, which is 8 km to the southeast 
and similar in elevation to the upper meteorological 
station. Interannual differences in precipitation from 
these gauges were consistent with long-term 
indexes reported by the California Department of 
Water Resources, where the mean of multiple 
stations is used as a relative index of regional 
precipitation. The 8-station Northern California 
Precipitation Index was at 63% (2012) to 145% 
(2011) of the long-term mean (1922-1988) and the 
5-station Southern California Precipitation Index 
was 61% (2012) to 160% (2011) of the mean 
(1956-2005). 

Distributed ultrasonic snow-depth sensors (Judd 
Communications; 15 each for the American and 
Merced study areas) and co-located soil-moisture 
sensors (Decagon ECHO-TM; 64 for each site) 
provided continuous hourly measurements over a 

range of elevation, slope, aspect and forest cover, 
similar to Bales et al. [2011]. For each study area, 
snow-depth sensors were installed on the north-
facing slope (2-3 sensors) and the south-facing 
slope (2-3 sensors) adjacent to the upper and the 
lower meteorological stations. Additional sensors 
were installed on the north-facing slope (1-2 
sensors) and south-facing slope (1-2 sensors) 
adjacent to the thinned catchment outlet and not 
thinned catchment outlet. Observed snow depth was 
converted to snow water equivalent (SWE) using a 
linear relationship between the day of year and 
snowpack density from the nearest snow pillow at 
similar elevation [Liu et al., 2013]. Soil-moisture 
sensors were also installed on the north-facing slope 
(8 sensors) and south-facing slope (8 sensors) at the 
upper and lower meteorological stations and each 
catchment outlet. The sensors were split into pairs 
at the four cardinal directions around a conifer tree, 
installed at 1-m distance out from the trunk, at 
depths of 30 and 60 cm below the surface.  

Stream stage was recorded at each catchment 
outlet by pressure-sensitive depth recorders. Stream 
discharge was measured using the salt-dilution 
method [Moore, 2013] to develop a stage-discharge 
rating curve. Discharges were measured over a 
range of flows during the four years, with a 
minimum of 16 data points available. A majority of 
measurements were at low to medium stream 
discharge (Figure S1). Higher flows thus have 
greater uncertainty, consistent with previous reports 
in small catchments where there is a short 
measurement time to capture the flashy discharge 
[Westerberg et al., 2016]. Over the four years, 93% 
to 99% of the stream discharge volume occurred 
within the range of measured discharge used for 
calculating the rating curves (Figure S1), with much 
of the higher flow being in 2011.  

2.3 Vegetation characteristics 
LiDAR and color-infrared aerial imagery data 
collected before the fuels-reduction were used to 
define polygons of similar aspect, slope position, 
and vegetation composition, vertical structure, basal 
area, and canopy cover [Su et al., 2016]. Bear Trap 
had 28 polygons, 19 covering >1% of the 
catchment, and the largest covering 9.6% of the 
area. Big Sandy had 32 polygons, 19 covering >1% 
of the catchment, and the largest polygon covering 
13.9%. Polygons covering <1% of the catchment 
areas were located along ridges, and extended into 
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adjacent catchments. Detailed vegetation attributes 
(canopy cover, leaf area index, and shrub cover) for 
each polygon were developed from vegetation plots 
sampled before and after thinning, involving over 
1000 individual trees (American, n=1363; Merced, 
n=1100) [Fry et al., 2015]. An imputation 
procedure was developed to assign these field plots 
to each map polygon based on their similarity in 
“gradient space”, defined using multivariate 
analysis [Ohmann and Gregory, 2002]. To recreate 
the fine-scale heterogeneity observed in the field, 
all plots ranked in the 95th percentile in terms of 
similarity to a polygon were identified, and three 
were randomly assigned to the polygon. Variables 
included treatment type, vegetation type, canopy 
cover, relative density of big trees, and a suite of 
topographic metrics.  

Bear Trap was completely covered by the 
mature mixed-conifer classification and Frazier was 
95% mature mixed conifer, 3% young mixed 
conifer, and 2% cedar forest. Speckerman contained 
82% mature mixed conifer with 18% live oak-pine 
forest and Big Sandy was covered by all vegetation 
types at 56% mature mixed conifer, 33% live oak-
pine, 6% open pine-oak woodland, and 5% closed-
canopy conifer forest. 

Canopy cover was defined as the percentage of 
the ground area that is directly covered with tree 
crowns, calculated according to Crookston and 
Stage [1999] using regional allometric equations 
that estimate projected crown area as a function of 
species and diameter at breast height (dbh, breast 
height = 1.37 m).  Cover estimates were corrected 
for canopy overlap. Leaf area was also calculated 
from species-specific allometric models based on a 
robust sampling of the dominant species in the 
catchments [Jones et al., 2015]. The projected leaf 
area of the all the trees was summed and then 
divided by the plot area to calculate LAI. Shrub 
cover was calculated in each vegetation community 
type from the forest-plot measurements:  

SCAmerican = 63.079 − 0.244𝐵𝐵𝐵𝐵 − 0.257𝐶𝐶𝐶𝐶 
   [1] 

SCMerced = 55.273 − 0.294𝐵𝐵𝐵𝐵 − 0.256𝐶𝐶𝐶𝐶 
    [2] 

where SC is shrub cover, BA is basal area (m2 ha-1) 
and CC (%) is canopy cover. The low coefficients 
of determination (R2 = 0.16 for American and 0.25 
for Merced) were a result of the highly scattered 
relationships, but the equations are functionally 

relevant where higher-density vegetation and 
overstory cover produces lower predicted shrub 
cover. In polygons where the overstory was 
thinned, shrub cover was held constant, as the 
understory growth response would not be 
instantaneous. In hydrologic modeling, we assumed 
that the relationships defining overstory and 
understory structure were constant in all scenarios. 

2.4 Hydrologic modeling 
RHESSys combines a meteorological-forcing 
model (MTNCLM, [Hungerford et al., 1989]), an 
ecosystem carbon and nutrient cycling model, and a 
spatially distributed hydrologic-routing model that 
accounts for both vertical and lateral water fluxes. 
RHESSys algorithms are continuously updated to 
reflect improved process representation; in this 
project we used version 5.14.7. The model has been 
previously applied in a variety of snow-dominated 
mountain catchments to examine climate and land-
cover change impacts. Comparisons with 
observations at these sites show good 
correspondence between model estimates and 
observations of streamflow (e.g. Tague and Peng, 
2013; Tague et al., 2013), ecosystem fluxes through 
tree rings [Tague et al., 2013; Vicente-Serrano et 
al., 2015], and flux-tower data [Zierl et al., 2007]. 
The catchments that were not thinned provided a 
second observation point of annual water balance 
components in catchments of similar size and 
vegetation type.  

Input to RHESSys requires extensive spatial 
data, and we used a 20-m DEM, soil layer from the 
SSURGO database [Soil Survey Staff, 2011], and 
the vegetation layer described above. Patches are 
the smallest unit of vegetation and soil 
representation in the model used for calculating 
hydrologic processes. Model patches were created 
using the r.clump module in GRASS GIS (GRASS 
6.4.4), which produces spatially contiguous areas of 
similar elevation and slope based on the DEM. Bear 
Trap had 3213 model patches and Big Sandy had 
4448 patches, at least 75% of patches in both 
catchments were at the native DEM resolution of 
400 m2, with a maximum patch size of 18,400 m2 
(46 pixels). Individual patch vegetation and soil 
characterization is determined from the overlapping 
vegetation polygon and soil type. 

RHESSys also requires precipitation, minimum 
temperature, and maximum temperature at a daily 
time-step. Precipitation input is typically a single 
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amount, with the model estimating the amount of 
rain or snow based on a linear transition from rain 
to snow over a user-defined temperature range (i.e. 
-2 to 2oC). Because individual storms had variable 
temperatures that impacted precipitation phase in 
these rain-snow transition elevations, we instead 
specified separate rain and snow events at each 
meteorological station. We used a binary process 
where an increase in daily snow depth recorded by 
the installed sensors defined a snow event, 
otherwise it was defined as a rain event. The 
specified snow and rain events replicated the 
observed snow accumulation and melt pattern more 
accurately than the model estimate of precipitation 
phase based on air temperature.  

We used two climate zones in the model for the 
upper and lower climate stations, and both of the 
modeled catchments had a mean wintertime 
temperature (Nov-Apr) of 4.3oC, but 40% of 
precipitation was snow in Bear Trap versus 60% in 
Big Sandy, reflecting its higher elevation range. 
The distribution of precipitation phase across each 
zone is adjusted from the elevation of the 
meteorological station using standardized lapse 
rates in the model, as snowpack patterns were not 
sensitive to lapse rates calculated separately using 
the meteorological stations. Summer (May-Oct) 
mean daily temperature was 18.3oC in Bear Trap 
and 17.8oC in Big Sandy. The respective mean 
elevations for Bear Trap and Big Sandy are 1723 m 
and 2140 m, with respective ranges of 1619-1826 m 
and 1808-2473 m. The standardized lapse rate of 
6.5oC km-1 [Barry and Chorley, 1987] suggests that 
if these basins were co-located, Big Sandy would be 
2.7oC cooler than Bear Trap, but the lower latitude 
of Big Sandy results in more comparable 
temperatures between the catchments. 

Modeled snowmelt in RHESSys [Coughlan and 
Running, 1997] is estimated using a quasi-energy 
budget calculation 

q𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑇𝑇 + 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑀𝑀𝑉𝑉   [3] 

where MT is melt due to sensible and latent heat 

𝑀𝑀𝑇𝑇 = 𝛽𝛽𝑀𝑀𝑀𝑀𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(1 − 0.8𝐹𝐹)   [4] 

Mrad is melt from radiation 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝐿𝐿�
𝜆𝜆𝑓𝑓𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

  [5] 

and MV is melt from advection [Tague and Band, 
2004].  

𝑀𝑀𝑉𝑉 = 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜆𝜆𝑓𝑓

   [6] 

In these equations βMT is an empirical temperature 
melt coefficient (m oC-1), Tair is the mean daily air 
temperature (oC), F is the fractional canopy cover 
over the snowpack, βMrad is an empirical radiation 
melt coefficient (m kJ-1 m2 day-1), Kdirect is the direct 
shortwave radiation, Kdiffuse is the diffuse shortwave 
radiation, L is the longwave radiation, λf is the latent 
heat of fusion, ρwater is the density of water, cpwater is 
the heat capacity of water, and TF is throughfall 
into the snowpack. Melt only occurs when the 
snowpack is isothermal (snow temperature is 
uniformly 0oC); otherwise sublimation occurs, and 
the latent heat of vaporization (λv) is added to the 
latent heat of fusion.  

The empirical radiation melt coefficient in 
equation 5 was added after the original radiation 
calculation was published by Tague and Band 
[2004], to provide an index-based temperature and 
radiation calculation of snowmelt, similar to the 
approach of Brubaker et al. [1996] used by 
Cornwall et al. [2016]. Energy input to the 
snowpack is affected by both LAI and canopy 
cover, which are described in equations 19-26 from 
Tague and Band [2004]. The radiation coefficient 
only impacts snowmelt, and does not affect 
incoming radiation or the amount of radiation 
intercepted by vegetation. The need for this 
coefficient was apparent in the current modeling 
versus prior implementations of RHESSys, as 
distributed snow observations were part of the 
calibration. 

Snowmelt in RHESSys was calibrated by 
comparing the model estimate of basin-scale 
snowpack to an elevation-adjusted observed 
snowpack based on the spatially distributed, 
strategically placed sensors. We assumed a constant 
rate of increase in snowpack depth with elevation 
between the lower and upper meteorological 
stations to estimate the snowpack at the mean 
catchment elevation. This optimization approach 
was used to constrain snowpack independently of 
streamflow, and helps account for the heterogeneity 
of LAI and canopy cover within the vegetation 
polygons, which can result in a non-linear snowmelt 
response compared to the polygon mean values. 
Snowmelt parameters were optimized by 
minimizing the mean average error of the simulated 
and observed snowpack: all catchments used a 
radiation melt coefficient (βMrad) of 0.4, and 
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individual temperature-snowmelt coefficients (βMT) 
of 0.0005 for Bear Trap, 0.0003 for Frazier, and 
0.001 for Big Sandy and Speckerman. Compared to 
the original snowmelt model [Coughlan and 
Running, 1997], temperature melt coefficients for 
Bear Trap and Frazier are lower, but Big Sandy and 
Speckerman have the same coefficient value. 
Another Sierra Nevada RHESSys study at a similar 
elevation range using LiDAR-derived vegetation 
input reported a higher melt coefficient of 0.005 
[Son et al., 2016]. 

After manual calibration of snowpack, 
streamflow was calibrated using a Monte Carlo-
based method with 5000 normally distributed 
random parameter sets (Table 1). Parameters 
controlling soil physical properties of pore-size 
index (po) and air-entry pressure (pa), along with 
parameters controlling flow properties of vertical 
and lateral hydraulic conductivity at the surface (k, 
svk, respectively), decay of hydraulic conductivity 
with depth (m), and percent of infiltrated water lost 
through fracture flow to deep groundwater (gw1) 
and deep-groundwater drainage rate (gw2) were 
optimized in the calibration process. Acceptable 
parameter sets were determined by comparing 
observed and modeled daily stream discharge, and 
we used multiple assessments to quantify model 
accuracy, similar to the calibration approach of 
previous studies [Garcia et al., 2013; Garcia and 
Tague, 2015; Son et al. 2016]. Minimum calibration 
criteria included a Nash-Sutcliffe Efficiency (NSe; 
Nash and Sutcliffe, 1970) of daily streamflow and 
Nash-Sutcliffe Efficiency of log-transformed daily 
streamflow (logNSe) that were required to be greater 
than 0.60, in order to capture both the daily 
discharge and seasonal trends of high winter flows 
and low summer flows that are typical of a 
Mediterranean climate. Simulated discharge was 
also required to be within 20% of measured annual 
flows and within 25% of measured August flows to 
constrain the annual water balance and summer 
baseflow. Modeled water balance was assessed 
using surface runoff, evapotranspiration, and 
subsurface bypass flow. Bypass flow is used in 
RHESSys as a comprehensive term for all 
subsurface storage and routing, and is the amount of 
precipitation not attributed to runoff or 
evapotranspiration. 

3. Results 
3.1 Water-balance measurements 
Annual precipitation during the study period varied 
considerably in California and the Sierra Nevada: 
2010 was an average precipitation year, 2011 was a 
very wet year [Guan et al., 2013], and 2012-2013 
were the first two years of an extended drought 
[Griffin and Anchukaitis, 2014; Asner et al., 2015]. 
Measured annual runoff in the American 
catchments (41-167 cm) was higher than in the 
Merced (23-112 cm), reflecting the higher 
precipitation of the more-northern sites. Within the 
American R., the Frazier Creek catchment 
consistently had higher runoff than did Bear Trap in 
the pre-thinning years of 2010-2012 (Figure 2, 
Table 2). Runoff in 2013 was similar in Frazier and 
Bear Trap.  Within the Merced R., runoff in the 
Speckerman catchment was 70-75% of that in in 
Big Sandy for the wetter years of 2010-2011, but 
runoff in the drier years of 2012-2013 was the same 
in both catchments.  

Runoff ratio, the fraction of annual precipitation 
leaving the catchment as runoff, was highest in the 
wet 2011, and lowest in the 2nd dry year (2013) in 
the American catchments (Table 2). In the Merced 
catchments, runoff ratio was also highest in the 
wettest year of 2011, but was lowest in the 1st dry 
year (2012).  

Observed streamflow patterns among the four 
years reflect the variability of precipitation timing 
and amount, which also influenced the cumulative 
amount of runoff (Figure 3). In the American 
catchments, Frazier Creek runoff parallels that for 
Bear Trap for the first four to five months of the 
water year, after which runoff in Frazier is higher 
for the remainder of the snowmelt period. In the 
Merced, the observed streamflow timing is similar 
between Big Sandy and Speckerman, but with 
cumulative runoff higher for Big Sandy for only the 
first two years (2010-2011).  

Soil-moisture values increased with fall rain 
events, which often occurred in the first month of 
the water year (Figure 4). Moisture values typically 
showed sustained saturation through the winter 
from a combination of intermittent rain events, 
snowmelt, and low evapotranspiration. Soils in the 
top 1 m stored 20-30 cm of water during the wet 
winter season in the Merced catchments, while soils 
in the American catchments stored 25-35 cm, 
possibly reflecting the lower sand content. Soil-
water storage recession started as early as day 200 
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in the dry years, but as late as day 270 in the wet 
year, and directly coincided with observed 
snowpack melt-out dates. Despite the low 
precipitation in 2012 and 2013, a combination of 
drier ridge and hillslope soil moisture combined 
with summer storms that maintained higher soil 
moisture in the riparian zone, resulted in a greater 
soil-storage standard deviation at both sites, and 
higher summer mean soil storage overall in the 
American River catchments. 

3.2 Modeled forest-treatment effects on water 
balance 
Calibration for the treated catchments of Bear Trap 
and Big Sandy was completed for water years 2010-
2012, as all three years exhibited substantially 
different precipitation amounts. From the 5000 
parameter sets tested, 6 sets for Bear Trap and 17 
sets for Big Sandy met the streamflow-performance 
criteria described above (Table 1, Figure 4). Water 
year 2013 was post thinning and not used for 
calibrations, resulting in somewhat lower NSe (0.34-
0.74, 0.27-0.75) and log NSe (0.68-0.79, 0.29-0.81) 
for Bear Trap and Big Sandy, respectively, 
compared to the calibration years (Table 1). All the 
acceptable parameter sets were used to model the 
catchments and to calculate a 95% confidence 
interval. Thinning effects on the catchment water 
balance were assessed by modeling the vegetation 
conditions before and after thinning over all four 
observation years to determine impacts over a range 
of precipitation and vegetation water availability.  

Snowmelt parameters were optimized by 
minimizing the mean average error of simulated 
and observed snowpack. The modeled snowpack in 
Bear Trap represented observations in 2010 and 
2013, but underestimated snowpack in 2012 and the 
accumulation period in 2011 (Figure 4). 
Optimization of the snowmelt radiation coefficient 
to 0.4 resulted in the Mean Average Error of 3.1 
cm, with higher simulation errors resulting from 
coefficients of 0.3 (4.7 cm) or 0.5 (3.9 cm). 
Respective R2 values were 0.82, 0.69 and 0.83. In 
Big Sandy, the modeled snowpack matched the 
2010 observations, but underestimated the mid-
season snowpack in 2011 and 2012 melted 
somewhat slower in 2013. Optimization of the 
snowmelt radiation coefficient to 0.4 also resulted 
in the lowest mean average error (3.1 cm), with 
higher simulation errors for coefficients of 0.3 (3.5 
cm) or 0.5 (4.5 cm). R2 was 0.89 for all 3 cases.  

Modeled root-zone soil storage and streamflow-
recession timing depended on snowpack melt-out 
date and summer storms. Simulation of melt-out 
dates that were later than observed at both sites in 
2010 and at Bear Trap in 2011 propagated to late 
simulation of soil-water and streamflow recession. 
Confidence intervals were wider in Big Sandy than 
in Bear Trap, even with the higher number of 
simulations. Modeled soil-water storage was most 
similar to observations in the dry 2012 and 2013 
years, with wetting-up and drying-out periods that 
were often delayed compared to observations. 
During the wettest year of 2011 in Big Sandy, the 
model showed elevated moisture content relative to 
observations in the top meter of soil because soil 
infiltration exceeded drainage rates in the model, 
but not in observations. Simulated discharges often 
replicated the rapid response to specific storm or 
melt events, but did not recess as quickly as 
observed from peak flows. The modeled slopes of 
the soil-water storage and streamflow-recession 
curves were less steep than observed, possibly 
reflecting subsurface heterogeneity not captured in 
the model.  

In spite of these limitations in model 
performance, the model captured major differences 
between the two sites and between years. Model 
performance was also similar to that found in other 
model-based studies of streamflow response to 
environmental change in the California Sierra 
Nevada (e.g. Luo et al., 2013). 

The mean annual water-balance values (± 95% 
confidence intervals) for the 4 years showed that in 
Bear Trap the average 199 cm of precipitation was 
partitioned into 87 ± 4.5 cm runoff, 74 ± 1 cm 
transpiration, and 19 ± 2 cm evaporation, with the 
remaining 19 ± 1 cm routed to subsurface bypass 
flow. Sublimation was 2.6 cm of the evaporation. In 
Big Sandy, which averaged 130 cm precipitation, 
the water-balance values were 60 ± 2 cm runoff, 44 
± 0.4 cm transpiration, 14 ± 0.3 cm evaporation, 
and 12 ± 0.1 cm subsurface bypass flow. 
Sublimation was 0.7 cm of the evaporation. 
Modeled evaporation was similar to the 14 cm 
interception loss measured by Rowe and Hendrix 
[1951] near Bass Lake, close to Big Sandy.  

Model results of the forest thinning that included 
estimated reductions in both canopy and understory 
cover resulted in an 8.0% overall LAI reduction in 
Bear Trap, with thinning in 91% of the catchment, 
and no overall LAI changes within Big Sandy, with 
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thinning in 33% of the catchment. The small 
reductions in vegetation from the fuels reduction in 
Big Sandy were offset by increases in vegetation in 
other parts of the catchment over the 5 years (2007-
2013) between forest plot measurements.  

Thinning in Bear Trap reduced LAI from 9.9 to 
9.1. Values in Big Sandy were 6.6 both before and 
after thinning, but the post-thinning vegetation 
included relatively more shrubs than trees. was 
composed of more shrub relative to overstory. 
Thinning increased runoff in Bear Trap by 14 cm 
(21%), from 64 ± 5 cm to 78 ± 7 cm during the 
driest year (2013). During the wettest year (2011), 
thinning increased runoff by 13 cm (9%), from 147 
± 5 cm to 160 ± 8 cm. Over the 4 years (2009-
2013), mean annual runoff increased 12 cm (14%), 
from 87 ± 5 cm to 99 ± 8 cm (Figure 5). Simulated 
runoff was 15-20% higher than observed, with 
measured runoff during the dry, wet, and average 
years at 54, 126, and 76 cm, respectively. Simulated 
changes in runoff and evapotranspiration exceeded 
the 95% confidence interval from the 6 parameter 
sets and were consistent in dry to wet precipitation 
conditions, adding 12-14 cm of annual runoff and 
reducing evapotranspiration by 11-12 cm. 
Simulated runoff and evapotranspiration did not 
exceed the 95% confidence interval from the 17 
parameter sets in Big Sandy, associated with the 
light thinning, where overall LAI remained the 
same, canopy cover increased 1.1%, and shrub 
cover increased 7.2%. 

Using the model results from 2010 (an average 
precipitation year) at Bear Trap, the changes in 
storage and fluxes between the pre- and post-
thinning vegetation conditions can be compared. 
Thinning resulted in a deeper modeled snowpack 
during the accumulation period, reflecting less 
canopy interception; but the snow melted more 
quickly during spring ablation owing to the 
increased energy input to the snowpack (Figure 6). 
Runoff increased largely during winter and spring, 
with decreases in evapotranspiration centered 
around the summer months. Soil-water storage also 
increased during the summer months in response to 
the reduction in evapotranspiration. 

We also tested the hydrologic model on Frazier 
and Speckerman (catchments that were not 
thinned). However, in those two catchments the 
measured snowpack accumulation and ablation, and 
the model simulated snowmelt and streamflow, 
failed to match the timing of measured discharge 

and peak flows. That is, none of the parameter sets 
met the minimum calibration criteria for these two 
catchments. The distributed point snow 
measurements in these catchments were limited to 
the extreme upper and lower elevations of the 
basins, and may not have captured the mean basin 
response in the highly variable snowpack that 
occurs across a catchment that transitions from rain- 
to snow-dominated precipitation. 

4 Discussion 
4.1 Observed effects of thinning on water balance  
The water balance in the catchments that were 
thinned was compared to the water balance in the 
catchments that were not thinned to evaluate the 
impacts of vegetation change. Differences in post-
thinning observed runoff between the two American 
River catchments (Figures 2, 3) could in part reflect 
forest thinning, but may also reflect differences in 
subsurface storage due to bedrock differences. 
Between 2012 (pre-thinning) and 2013 (post-
thinning), precipitation increased 5%, and the Bear 
Trap runoff increased 5%, but the Frazier runoff 
decreased 29%.  

The sum of annual evapotranspiration and 
change in subsurface storage was calculated as a 
loss term using precipitation minus runoff (Figure 
2, Table 2). In the American R. catchments, this 
value was 119-141 cm in Bear Trap and 98-125 cm 
in Frazier, with no consistent pattern between the 
wet versus dry years. That is, vegetation was 
apparently not water limited in 2012-2013, even 
though precipitation declined significantly. The 
differences in the changes in loss terms from wet to 
dry years in Bear Trap versus Frazier may reflect 
differences in regolith properties. Subsurface 
bedrock in Bear Trap, metasedimentary sandstone 
and shale, has high flow rates and low potential for 
storage [Saucedo and Wagner, 1992], while the 
volcanic pyroclasts in Frazier Creek can have a 
range of behaviors that can include high potential 
storage and low flow rates depending on the amount 
of weathering [Tague and Grant, 2004]. 

Daily streamflow that was less than an area-
normalized discharge of 0.1 cm was defined as 
baseflow for the study catchments. Bear Trap 
discharge was higher than baseflow for 56, 77, 22 
and 28% of the year in 2010-2013, respectively, 
similar to the respective values for Frazier of 50, 
63, 23 and 34%. The higher value in 2013 for 
Frazier could reflect volcanic pyroclasts having 
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greater regolith water storage; the lower storage 
potential of the more granitic Bear Trap could then 
ultimately result in a greater sensitivity to multi-
year droughts. The Bear Trap Creek 
metasedimentary bedrock, with lower storage 
potential, would more likely show a response to 
precipitation variability in the same year, without 
the overlapping multiple-year effects of Frazier 
Creek. Thus the larger runoff losses observed in 
Frazier compared to Bear Trap could be the result 
of a combination of multiple drivers, including a 
second year of low precipitation, the dry antecedent 
conditions in 2013, higher transpiration demand 
from the untreated catchment, or more precipitation 
being routed into subsurface storage that was 
already depleted from the first dry year. The 
differences in the interannual period of higher 
discharge and baseflow, combined with greater 
uncertainty in observed discharge during the higher 
flows, likely contributed to the changes observed 
between the American catchments.  

In the Merced catchments, precipitation minus 
runoff was similar to the American values in 2010-
2011 (90-125 cm), reflecting similar vegetation 
densities, but dropped significantly in the dry years 
of 2012-13 (54-60 cm). Although tree mortality was 
not monitored in Big Sandy and Speckerman 
beyond the summer of 2013, this decline in 
precipitation minus runoff coincides with the 
widespread tree mortality in the southern Sierra 
Nevada observed in 2014 and subsequent drought 
years (https://www.fs.usda.gov/detail/r5/forest-
grasslandhealth). Geophysical characterization of 
granitic terrain [Holbrook et al., 2014] and broader 
spatial scaling of annual evapotranspiration using 
remotely sensed data [Fellows and Goulden, 2016] 
indicate the potential for subsurface water storage 
to sustain forest vegetation through multi-year dry 
periods in some parts of the southern Sierra 
Nevada, however the observed mortality also 
suggests that some areas lack sufficient storage. In 
the Merced R. study area, both Big Sandy and 
Speckerman catchments responded similarly in the 
post-thinning dry year, with both having underlying 
bedrock composed of granodiorite batholith.  

High variability in annual precipitation and low 
post-thinning precipitation resulted in the inability 
to specifically attribute the changes observed in 
stream discharge to the fuels reduction. Bosch and 
Hewlitt [1982] note that streamflow response to 
forest treatments depends on mean-annual 

precipitation and treatment-year precipitation. 
Long-term post-disturbance monitoring would be 
needed to confirm some of the changes in runoff 
characteristics, as Troendle and King [1985] found 
increases in peak streamflow decades after a 
forested catchment was harvested that were not 
detectable shortly after treatments. 

4.2 Modeled effects of thinning on water balance  
The 14% increase in mean annual runoff and 
commensurate decrease in evapotranspiration from 
the fuels treatment in Bear Trap was unexpected, 
given the small LAI reduction of 8%. The dry years 
(2012-2013) in Bear Trap had precipitation 
comparable to the average year (2010) in Big 
Sandy, where vegetation is water limited. The 
response at Bear Trap suggests that the vegetation 
in the higher-precipitation central Sierra is not 
water limited. Precipitation at Bear Trap met the 
subsurface-storage and evapotranspiration demand 
in all years, with excess water from reduced 
evapotranspiration going to runoff. The runoff 
increase in response to the biomass reduction was 
relatively constant (12-14 cm) across wet and dry 
years.  Snowpack and subsurface water availability 
during the dry years did not persist as far into the 
spring and summer as it did during the wetter years. 
As a result, increased water availability from the 
vegetation reduction largely occurred during the 
winter period when evapotranspiration is lowest, 
instead of during the spring period when higher 
evapotranspiration occurs, leading to the higher 
runoff response. 

In contrast for Big Sandy, thinning impacts on 
LAI were small, and modeling showed no 
substantial change in runoff. Lower sensitivity of 
the water-balance response to vegetation density in 
Big Sandy may also reflect a greater sensitivity to 
water limitation, and thus the lower precipitation 
rates in this area may limit responses of runoff and 
evapotranspiration to vegetation thinning.  

Running and Coughlan [1988] show that in their 
biogeochemical model, Forest-BGC, changes in 
LAI scale directly with vegetative water use in 
areas that are not limited by water availability (e.g. 
Bear Trap), but a similar (or larger) variation in LAI 
may not show a response in more water-limited 
ecosystems (e.g. Big Sandy). Our model replicated 
this dependence on water availability, but it also 
explicitly tracked the effect of changing vegetation 
structure on the water cycle through changes in 

https://www.fs.usda.gov/detail/r5/forest-grasslandhealth
https://www.fs.usda.gov/detail/r5/forest-grasslandhealth
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evapotranspiration. Moreover, it translates the 
impact of these eco-hydrologic responses to 
streamflow in catchments with different geologies. 
The model also captured seasonality at both sites 
and key spatial differences between the two sites 
(e.g. greater water limitation in Merced R. sites). 

4.3 Model uncertainty  
Exploring the source of uncertainty can help to 
improve subsequent use of this measurement and 
modeling approach to estimate hydrologic response 
to forest thinning. Hydro-ecologic model 
uncertainty originates from: i) observations of 
precipitation, temperature, snow, soil moisture and 
streamflow used for input and calibration, ii) model 
structure and algorithms, and iii) equifinality of 
model parameters.  

In this study, the distributed measurements of 
snow depth and soil moisture were designed to 
characterize the spatial variability of observations, 
and thus reduce the uncertainty of those key state 
variables. For the 2 modeled catchments, the 
observed timing of catchment-wide snowmelt and 
streamflow patterns were consistent, and we view 
this as an improvement over calibrating using snow 
accumulation inferred from total precipitation. 
Similarly, the observed basin-wide recession of 
soil-moisture storage was consistent with 
streamflow timing. 

Surface temperatures vary considerably in 
mountains [Cantlon, 1953; Fridley, 2009], as much 
as 10oC between north- and south-facing slopes on 
open ground [Parker, 1952] as referenced in the 
MTN-CLIM manuscript [Running et al., 1987]). 
Adjustments for LAI and aspect incorporated to the 
MTN-CLIM meteorological drivers of the 
RHESSys model attempt to account for these 
variations, but even the evaluation sites for the 
meteorological model show a range of seasonal 
temperature estimates that differed 0.04-3.14oC 
from observations, despite correlation coefficients 
consistently around 0.90 [Running et al., 1987]. 

In the complex terrain of the Sierra Nevada, 
spatial variability in temperature introduces 
considerable uncertainty into snow accumulation 
and melt fluxes, and thus streamflow. This was 
especially challenging, as the catchments include 
the rain-snow transition zone. We found that 
temperature thresholds for rain versus snow 
precipitation varied from event to event. Using a 
linear model within RHESSys to determine 

precipitation phase resulted in very low snowpack 
estimates, particularly in the American. Comparing 
temperatures from meteorological stations versus 
those in the snow-depth sensors showed that the 
meteorological stations may not be representative of 
the regional elevation. For example, the mean daily 
winter temperatures recorded at the lower-elevation 
meteorological station for the American exceeded 
the maximum daily temperatures recorded in the 
adjacent valley of Bear Trap Creek at times in the 
winter, and valley maximum temperatures exceeded 
meteorological-station maximums during the 
summer (Figure 7). The meteorological station is 
located on a partially open ridge, more exposed to 
the winter sun, and the valley station is located on 
the stream bank of the Bear Trap outlet, subject to 
cold-air-drainage effects and little winter sun 
exposure, causing the differences in daily 
temperature range.  

It has previously been shown that 
meteorological-station location and temperature-
interpolation methods can significantly affect the 
success of model calibration [Garcia et al., 2013]. 
It would be useful to explicitly incorporate spatial 
characteristics of surface temperatures for better 
temperature-dependent snowmelt simulation in 
these rain-snow transition zones. We have 
presented these data to suggest temperature 
variability is a factor limiting the accuracy of the 
modeled snow melt and should be improved for 
future studies.  

Precipitation, evapotranspiration and 
streamflow, the dominant fluxes in our catchments, 
are measured in only a few locations in the Sierra 
Nevada. Precipitation and evapotranspiration are 
challenging to measure, especially at the spatial 
scale of hydrologic modeling. Lacking an accurate 
rain gauge, we followed the conventional practice 
of model calibration using precipitation inferred 
from gauges a few km away and streamflow 
measured in the catchment. Our estimated 
evapotranspiration in Big Sandy compares well 
with concurrent multi-year measurements in the 
Kings River basin [Bales et al., 2011; Goulden et 
al., 2012], about 60 km southeast at the same 
elevation. The further north Bear Trap catchment 
showed higher evapotranspiration, commensurate 
with its greater vegetation density and precipitation. 
Our streamflow data, based on continuous stream-
stage measurements and rating curves, typical for 
shorter-term studies where stream-channel 
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alteration is an issue, have more uncertainty than do 
measurements at longer-term research sites having 
control sections on streams [Hunsaker et al., 2012]. 
In this study, the measurements used to develop our 
rating curves spanned the range of observed 
streamflow, with the exception of the highest flows 
(Figure 7). Over the four years, 93-99% of the 
streamflow volume occurred within the range of 
measured discharge used for calculating the rating 
curves.  

Estimations of vegetation structure vary by 
spatial product, and spatial-data uncertainty 
associated with the polygon-mapping estimates of 
LAI and canopy cover may have caused higher than 
observed snowmelt rates with RHESSys. We tested 
various changes to the model to better represent 
snowpack in the heterogeneous dense forest 
characteristic of catchments, and found that using 
the index-based radiation calculation for snowmelt 
provided the best model fit. To capture the observed 
snowpack persistence and melt timing 
independently of streamflow calibrations, we set the 
radiation melt coefficient to 0.40 in the model. 
Kustas et al. [2004] showed that a radiation and 
temperature index-based snowmelt runoff model 
could perform as well as an energy-balance model, 
and better than only using a temperature-index 
model.  

Estimates of vegetation structure and density 
impact snowpack processes, evapotranspiration 
amount and timing, and the magnitude of changes 
to the water balance when disturbance or growth 
occurs. The canopy-cover estimation used in this 
study was calculated as the amount of ground 
directly covered by forest canopy, resulting in more 
open areas than are provided by spectral estimates. 
Canopy-cover calculated from the polygons defined 
in this study and the 2011 National Land Cover 
Database (NLCD; [Homer et al. , 2015]) were 
highly variable. In Bear Trap, field surveys gave a 
mean canopy cover of 55% (range 32-70%), 
compared to a mean of 69% (1-100%) from LiDAR 
and 62% (54-71%) from NLCD. Respective 
canopy-cover values for Big Sandy were 55% (0-
80%), 52% (0-100%) and 60% (0-97%). Further 
research into the differences of methods used for 
model input of forest structure are needed (e.g. 
Varhola and Coops, 2013) as spatial-mapping 
techniques transition towards higher-resolution 
products, with applications to the vegetation-
hydrology interface.  

Using multiple parameter sets that met the 
calibration criteria addresses issues of parameter 
equifinality and are useful in projecting a 
distribution of simulated response to forest 
thinning. Bear Trap had a smaller range of 
simulation confidence intervals, reflecting the 
smaller number of parameter sets and smaller range 
of parameters in acceptable calibrations (Table 1, 
Figure 4). The 95% confidence intervals of the 
simulated Bear Trap water-balance components 
increased with thinning. The mean annual runoff 
confidence interval was 5 cm before thinning and 8 
cm after thinning. The evapotranspiration 
confidence interval was 3 cm before thinning and 7 
cm after thinning. The response of increased runoff 
and decreased evapotranspiration to the vegetation 
thinning, however, exceeded the confidence 
intervals. Big Sandy had a much wider confidence 
band, associated with the greater number of 
acceptable calibrations and greater parameter 
ranges. 

The lack of transferable snowpack simulation to 
the nearby basins, and unsuccessful adjustment of 
snowmelt parameters for simulation of stream 
discharge, shows the challenge of modeling this 
region on a daily timestep. The majority of 
discharge occurs in winter and spring, and is driven 
by intermittent snowmelt periods. Although we 
achieved acceptable snowpack simulation in the 
two other basins compared to our measurements, 
the lack of success in streamflow simulations shows 
the challenge of constraining models to multiple 
datasets and the need for concentrating distributed 
measurements within headwater catchments. The 
precipitation data used, and observations recorded 
around the ridge meteorological stations near the 
study catchments and at the stream outlets may not 
have accurately represented snow patterns within all 
headwaters, which is critical for simulating daily 
discharge. 

4.4 Data-based modeling 
Silberstein [2006] argues that improved modeling 
for water resources and land management cannot 
exist without improved data collection, “because we 
cannot manage what we do not measure.” The 
limitations and uncertainties of using models to 
answer hydrologic questions are well known (e.g. 
Renard et al., 2010), yet models continue to be used 
ubiquitously. The approach used in this study, 
integrating distributed observed datasets to 
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constrain model parameters, produces a grounded 
and verifiable tool for evaluating catchment-scale 
responses to changes in vegetation. Using multiple 
datasets to constrain modeling may not provide the 
highest model fit. Seibert and McDonnell [2002] 
comment that lower model efficiencies may be 
necessary when incorporating multiple sources of 
data, but can produce a better overall model of 
catchment behavior. Constraining models to a 
single observation dataset, such as streamflow, can 
lead to overfitting of model parameters and result in 
poor model performance, particularly when there is 
uncertainty in meteorological input data [Garcia et 
al., 2013].  

Our relatively short study period and high 
precipitation variability limited the ability of field 
observations alone to conclusively determine 
catchment response to fuels reduction. Studies like 
that reported here will grow in importance as we 
continue to scale estimates of the water-balance 
impacts of forest fuels treatments, restoration and 
wildfire across the highly variable climate and 
regolith found in the Sierra Nevada and other semi-
arid regions. The data-informed modeling used in 
this research provides the ability to evaluate the 
changes in vegetation over a greater time period and 
range of precipitation than was available in the 
post-thinning year of observation. Thus, modeling 
can be a useful tool for extending observations, but 
only provides confident results when constrained by 
spatially distributed field data on multiple 
components of the water balance. 

5 Conclusions 
Model simulations constrained by multiyear 
spatially distributed water-balance measurements 
show that a reduction in vegetation from forest 
thinning has potential to result in a corresponding 
runoff increase in higher-precipitation areas, such 
as the American River basin, but not necessarily in 
more-water-limited regions such as the Merced 
River basin. Simulated evapotranspiration and 
runoff were sensitive to the relatively small 
decreases in vegetation over the range of low to 
high precipitation rates experienced during the 
study. These model results provide an initial 
evaluation on the use of forest thinning for 
increased water yield in the Sierra Nevada, and 
suggest low-intensity thinning can be effective in 
forests that are not water limited. In regions of 
lower precipitation that have greater forest canopy 

cover and basal area, higher-intensity thinning 
covering a greater portion of the catchment may be 
needed to influence the catchment-scale water 
balance. The high variability in annual 
precipitation, combined with low post-thinning 
precipitation, masked any detectable changes in 
headwater catchment runoff from fuels reduction. 
Modeling tools to evaluate catchment response to 
fuels reduction were necessary to address the 
challenges of a short study period and high 
precipitation variability. Using a spatially 
distributed dataset of snow and soil moisture 
observations, we were able to develop a well-
constrained model using multiple observations for 
simulating catchment response to vegetation 
thinning. Using this approach of hydrologic 
modeling, informed by multiple observed datasets, 
provides a more confident and useful tool for 
evaluating catchment response to changes in 
vegetation than models evaluated only on 
streamflow. 
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Table 1. Calibrated model parameter ranges and streamflow fit statistics1 for Bear Trap and Big Sandy catchments.  

Parameter Description Range Bear Trap Big Sandy 

m decay of hydraulic conductivity with depth, dimensionless 0 - 20 5.6 – 12.3 0.6 – 19.9 

k Surface lateral hydraulic conductivity, m day-1 0 - 300 2.0 – 6.6 5 - 294 

svk Surface vertical hydraulic conductivity, m day-1 0 - 300 7 – 250 2 – 294 

po soil pore size index, dimensionless 0 - 3 1.4 – 3.0 0.1 – 3.0 

pa soil air entry pressure, m 0 - 3 0.6 – 2.6 0.2 – 2.9 

gw1 groundwater bypass flow, dimensionless 0 - 0.4 0.0 – 0.15 0.2 – 0.4 

gw2 Groundwater drainage rate , dimensionless 0 - 0.4 0.0 – 0.01 0.1 – 0.4 

NSe Nash-Sutcliffe Efficiency 0.60 – 1.00 0.60 – 0.64 0.67 – 0.78 

logNSe Nash-Sutcliffe Efficiency of log-transformed streamflow 0.60 – 1.00 0.75 – 0.84 0.62 – 0.70 

ERRstr Annual streamflow error -0.20 – 0.20 0.00 – 0.17 -0.20 – 0.06 

ERRaug August streamflow error -0.25 – 0.25 -0.18 – 0.23 -0.19 – 0.12 
1Model statistics of Nash-Sutcliffe Efficiency for streamflow (NSe>0.6), NSe for log-transformed streamflow 
(logNSe>0.6), annual streamflow error (ERRstr<0.2), and August streamflow error (ERRaug<0.25) were used to 
determine acceptable parameter sets. 
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Table 2. Interannual variability of precipitation (P), runoff (Q), and loss (P-Q) through evapotranspiration and 
subsurface drainage observed in the study catchments.1  

Catchment Year P, cm Q, cm P-Q, cm Q/P (P-Q)/P 

Bear Trap 

2010 191 67 124 0.35 0.65 

2011 275 134 141 0.49 0.51 

2012 160 41 119 0.26 0.74 

2013 169 43 126 0.25 0.75 

Frazier 

2010 191 88 103 0.46 0.54 

2011 275 167 108 0.61 0.39 

2012 160 62 98 0.39 0.61 

2013 169 44 125 0.26 0.74 

Big Sandy 

2010 152 52 100 0.34 0.66 

2011 202 112 90 0.55 0.45 

2012 83 23 60 0.28 0.72 

2013 85 29 56 0.34 0.66 

Speckerman 

2010 152 39 113 0.26 0.74 

2011 202 77 125 0.38 0.62 

2012 83 24 59 0.29 0.71 

2013 85 31 54 0.36 0.64 
1Runoff fraction (Q/P) and loss fraction ((P-Q)/P) are calculated as the fraction of precipitation by water 
year, and include a mean precipitation year (2010), wet year (2011), and two dry years (2012-13). 

 
 
 
 
 
 
 
 
 
 
  

 
Figure 1. Locations of the headwater research catchments in the American and Merced River basins. The upper elevation 
meteorological station in the American is located off the map, 8.8 km northeast of the lower-elevation station shown 
above. The met zone boundary shows the delineation between upper and lower meteorological stations used for 
determining climate zones in the RHESSys model. Coordinates are in decimal degrees and elevation-band colors apply to 
all catchments. 
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Figure 2. Interannual variability of precipitation (P) and runoff (Q) observed during the four-year study. The height of 
each bar represents total precipitation, and the blue section of the bar indicates the portion of precipitation measured as 
runoff in each catchment. Precipitation amounts are the same for Bear Trap and Frazier in the American River and for Big 
Sandy and Speckerman in the Merced River. Water years 2010 to 2012 are pre-thinning and 2013 is the post-thinning 
year. 

 
Figure 3. Daily (a,c) and cumulative (b,d) precipitation and runoff observations for the American and Merced River 
sites during water years (October through September) 2010-2013. Cumulative precipitation and runoff panels (b,d) 
show the daily increases of the water balance components over the water year. Black lines show mean of distributed 
snow and soil-water observations; shaded area shows one standard deviation.  
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Figure 4. Model daily output of snow water equivalent (SWE) (a,d), root zone soil storage in the top 1-m (b,e), and 
stream discharge (c,f) compared to mean observation values in Bear Trap (American River, top panel) and Big Sandy 
(Merced River, bottom panel) catchments. The shaded area of modeled SWE represents the range of radiation 
coefficients for snowmelt from 0.3 to 0.5, with the line showing the snowpack at the 0.4 radiation coefficient used for all 
simulations. Shaded areas for all other data represent one standard deviation from the mean, with model mean and 
standard deviations from the sets of calibrated parameters. 
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Figure 5. Modeled thinning effects on the water balance 
in Bear Trap (American River) over the range of observed 
annual precipitation rates. Runoff increased 21% in the 
driest year (2012), 14% over the mean from all four years 
of observations (2010-2013), and 9% in the wettest year 
(2011). Simulated discharge in the pre-thinning scenarios 
exceeded observed discharge by 15-20%. Vertical bars 
indicate 95% confidence intervals of simulated annual 
runoff from the multiple sets of calibrated parameters. 
 

 
Figure 6. Changes in daily snowpack storage, soil water 
storage, evapotranspiration, and discharge modeled for 
the Bear Trap catchment after forest thinning. Panels 
show the difference in water balance components 
modeled with pre- and post-thinning vegetation 
conditions during an average precipitation year (2010). 

 
Figure 8. Distributed sensors show ridge temperatures 
recorded at the meteorological station used for 
hydrologic model input may not capture the temperature 
characteristics recorded by the snow depth sensor in the 
valley. Shaded areas highlight the temperature 
differences and daily values are smoothed using a 
running 30-day mean. 

 
Figure 7. Mean, standard deviation and median of rating-
curve and stream-discharge measurements for the 4 
study catchments. The number of rating-curve 
measurements for Bear Trap, Frazier, Big Sandy, and 
Speckerman were 24, 21, 24 and 16, respectively. 
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